On subdifferential calculus - highlights

September 2010

Fundamentals:

Working with $+\infty$ and $-\infty$:

- $\forall_{\alpha \in(-\infty,+\infty]} \alpha+(+\infty)=(+\infty)+\alpha=+\infty$.
- $\forall_{\alpha \in[-\infty,+\infty)} \alpha-(+\infty)=\alpha+(-\infty)=-\infty$.
- neither $(+\infty)-(+\infty)$ nor $(+\infty)+(-\infty)$ etc. defined!
- careful! $2+(+\infty)=3+(+\infty) \nRightarrow 2=3$
- $\forall_{\alpha \in(0,+\infty]} \alpha \cdot(+\infty)=+\infty$
- $\forall_{\alpha \in[-\infty, 0)} \alpha \cdot(+\infty)=-\infty$
- By definition: $0 \cdot(+\infty)=0 \cdot(-\infty)=0$.
- $\forall_{\alpha \in \mathbb{R}} \alpha /(+\infty)=\alpha /(-\infty)=0$.
- neither $(+\infty) /(+\infty)$ nor $(+\infty) /(-\infty)$ etc. defined!
- $(+\infty) /(+\infty)$, etc. undefined.
- careful! $2 /(+\infty)=3 /(+\infty) \nRightarrow 2=3$

Convex sets in \mathbb{R}^{n} :

Definition A.1: $S \subset \mathbb{R}^{n}$ is convex if

$$
\forall_{x_{1}, x_{2} \in S} \forall_{\lambda \in[0,1]} \lambda x_{1}+(1-\lambda) x_{2} \in S .
$$

Convex functions:

Definition 2.1: Let $S \subset \mathbb{R}^{n}$ be convex. Then $f: S \rightarrow(-\infty,+\infty]$ is convex on S if
$\forall_{x_{1}, x_{2} \in S} \forall_{\lambda \in[0,1]} f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$.
Also, f is strictly convex on S if
$\forall_{x_{1}, x_{2} \in S, x_{\mp} x_{2}} \forall_{\lambda \in(0,1)} f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$.
Remark: $f \neq-\infty$, so $\lambda(+\infty)+(1-\lambda)(-\infty)$ cannot confuse us.

Associated definition: Let $f: S \rightarrow[-\infty,+\infty)$. Then: f is (strictly) concave on $S \Leftrightarrow-f$ is (strictly) convex on S.

Example: $f_{1}(x):=p^{t} x+\alpha$ is affine, i.e., both convex and concave, on \mathbb{R}^{n} for any $p \in \mathbb{R}^{n}$ and $\alpha \in$ \mathbb{R}. It is neither strictly convex nor strictly concave.

Example: $f_{2}(x):=\beta|x|^{2}$ is strictly convex on \mathbb{R}^{n} if $\beta>0$. It is strictly concave on \mathbb{R}^{n} if $\beta<0$.

Example (Exercise 2.1c): Let $S:=\mathbb{R}_{+}$. Define $f_{3}: S \rightarrow(-\infty,+\infty]$ by $f_{3}(x):=1 / x$ if $x>0$ and by $f_{3}(0):=\gamma$. Then f_{3} can only be made convex on S by setting $\gamma=+\infty$.
Example (Exercise 2.7b): Define $f_{4}: \mathbb{R} \rightarrow$ $(-\infty,+\infty]$ by $f_{4}(x):=1-\sqrt{1-x^{2}}$ if $|x| \leq 1$ and $f_{4}(x)=+\infty$ if $|x|>1$. Then f_{4} is convex on \mathbb{R}.

Definition (Exercise 2.2): Let $S \subset \mathbb{R}^{n}$ be convex. Then $f: S \rightarrow(-\infty,+\infty]$ is quasiconvex on S if

$$
\forall_{\alpha \in \mathbb{R}} S_{\alpha}:=\{x \in S: f(x) \leq \alpha\} \text { is convex }
$$

Every convex function on \mathbb{R}^{n} is quasiconvex, but not conversely.

Domain extension by adding values $+\infty$:
Exercise 2.5: Let $S \subset \mathbb{R}^{n}$ be convex. Let $f: S \rightarrow$ $(-\infty,+\infty]$. Define $\hat{f}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ by

$$
\hat{f}(x):= \begin{cases}f(x) & \text { if } x \in S \\ +\infty & \text { if } x \notin S .\end{cases}
$$

Exercise: \hat{f} convex on $\mathbb{R}^{n} \Leftrightarrow f$ convex on S.
Consequence: From now on we mainly consider convex functions on \mathbb{R}^{n}. This is thanks to working with $+\infty$!

New habit: Speak of "convex functions" instead of "convex functions on \mathbb{R}^{n} ".

Definition 2.2: Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. The essential domain of f is defined by

$$
\operatorname{dom} f:=\left\{x \in \mathbb{R}^{n}: f(x)<+\infty\right\}
$$

Exercise: f convex $\Rightarrow \operatorname{dom} f$ is convex, but not conversely.

Connections between convex sets and convex functions:

From convex sets to convex functions:
Definition 2.3: Let $S \subset \mathbb{R}^{n}$. The indicator function χ_{S} of S is defined by

$$
\chi_{S}(x):= \begin{cases}0 & \text { if } x \in S \\ +\infty & \text { if } x \notin S .\end{cases}
$$

Exercise: S convex set $\Leftrightarrow \chi_{S}$ convex function.
From convex functions to convex sets:
Definition 2.4: Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. The epigraph epi $f \subset \mathbb{R}^{n+1}$ is defined by

$$
\text { epi } f:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq y\right\} .
$$

Exercise: f convex function \Leftrightarrow epi f convex set.
Remark: Many proofs of results for convex functions "work" on their convex epigraphs by means of separation results (see Appendix A).

Example: For $S \subset \mathbb{R}^{n}$ let $f:=\chi_{S}$. Then epif $=$ $S \times \mathbb{R}_{+}$.

From convex functions to more convex functions:
Easy: Let $f_{i}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be convex and let $\alpha_{i} \in[0,+\infty]$ for $i=1, \ldots, m$. Then $f(x):=$ $\sum_{i=1}^{m} \alpha_{i} f_{i}(x)$ defines a convex function, as does $f(x):=$ $\max _{1 \leq i \leq m} \alpha_{i} f_{i}(x)$.

Exercise 2.6: Let $S \subset \mathbb{R}^{n}$ be convex. Let $f: S \rightarrow$ \mathbb{R} be convex and let $g: D \rightarrow \mathbb{R}$ be convex and nondecreasing on a convex interval $D \subset \mathbb{R}$, with $D \supset f(S)$. Then $h(x):=g(f(x))$ defines a convex function $h: S \rightarrow \mathbb{R}$.

Example (Exercise 2.7): a. If $f: \mathbb{R}^{n} \rightarrow[0,+\infty]$ is convex on \mathbb{R}^{n}, then so is f^{2}. However, f^{2} need not be convex if f can also take negative values.
b. $f(x):=1-\sqrt{1-x^{2}}$ is convex on $[-1,+1]$.
c. $f(x):=\exp \left(x^{2}\right)$ is convex on \mathbb{R}.

Subdifferentials and subgradients of convex functions

Definition 2.5: Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty], f \not \equiv$ $+\infty$, and let $x_{0} \in \operatorname{dom} f$ (so $f\left(x_{0}\right) \in \mathbb{R}$).
a. A subgradient of f at x_{0} is a $\xi \in \mathbb{R}^{n}$ with

$$
f(x) \geq f\left(x_{0}\right)+\xi^{t}\left(x-x_{0}\right) \text { for all } x \in \mathbb{R}^{n} .
$$

b. The subdifferential of f at x_{0} is the set $\partial f\left(x_{0}\right):=\left\{\xi \in \mathbb{R}^{n}: \xi\right.$ is subgradient of f at $\left.x_{0}\right\}$. This set may be empty!

Observation: If $x_{0} \notin \operatorname{dom} f$ (so $f\left(x_{0}\right)=+\infty$) then $\partial f\left(x_{0}\right)=\emptyset$. But $\partial f\left(x_{0}\right)=\emptyset$ is also possible for $x_{0} \in$ dom f .

Example: a. Let $f(x):=1-\sqrt{1-x^{2}}$ on $[-1,+1]$ and define $f(x):=+\infty$ if $x<-1$ or $x>1$. Then f is convex and $1 \in \operatorname{dom} f$. However, $\partial f(1)=\emptyset$.
b. Let $f(x):=|x|$ on \mathbb{R}. Then $\partial f(2)=\{1\}$, $\partial f(-3)=\{-1\}$ and $\partial f(0)=[-1,+1]$.

For differentiable convex functions: "subgradient = gradient"':

Proposition 2.6: Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be convex. If f is differentiable at $x_{0} \in \operatorname{int} \operatorname{dom} f$, then $\partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.

Here: "int" means "interior".
Example (Exercise 2.9b): In previous example with $f(x)=1-\sqrt{1-x^{2}}$ on $[-1,+1]$ and $f(x)=$ $+\infty$ if $x<-1$ or $x>1$, one has $\partial f(x)=\left\{x / \sqrt{1-x^{2}}\right\}$ for every $x \in(-1,1)$.

How to determine convexity of functions:
Proposition 2.7: Let $S \subset \mathbb{R}^{n}$ be open and convex. Let $f: S \rightarrow \mathbb{R}$.
(i) If f is differentiable, then f is convex on $S \Leftrightarrow$

$$
\forall_{x_{1}, x_{2} \in S}\left(\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right)^{t}\left(x_{1}-x_{2}\right) \geq 0 .
$$

(i^{\prime}) If f is differentiable, then f is strictly convex on $S \Leftrightarrow$

$$
\forall_{x_{1}, x_{2} \in S, x_{1} \neq x_{2}}\left(\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right)^{t}\left(x_{1}-x_{2}\right)>0 .
$$

(ii) If f is twice continuously differentiable, then f is convex on $S \Leftrightarrow$ the Hessian matrix

$$
H_{f}(x):=\left(\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right)_{i, j}
$$

is positive semidefinite at every point x of S.
($i i^{\prime}$) If f is twice continuously differentiable, then $H_{f}(x)$ is positive definite at every point x of $S \Rightarrow f$ is strictly convex on S

Definition: An $n \times n$ matrix M is positive semidefinite if $d^{t} M d \geq 0$ for all $d \in \mathbb{R}^{n}$. And M is positive definite if $d^{t} M d>0$ for all $d \in \mathbb{R}^{n}, d \neq 0$.

Corollary 2.8: Let $S \subset \mathbb{R}$ be open and convex. Let $f: S \rightarrow \mathbb{R}$.
(i) If f is differentiable, then f is convex [strictly convex] on $S \Leftrightarrow f^{\prime}$ is nondecreasing [increasing] on S.
(ii) If f is twice continuously differentiable, then f is convex [strictly convex] on $S \Leftrightarrow f^{\prime \prime}(x) \geq 0$ $\left[f^{\prime \prime}(x)>0\right]$ for all $x \in S$.

MR-theorem and "small" KKT-theorem

Theorem 2.9 (Moreau-Rockafellar) Let f, g :
$\mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be convex. Then

$$
\forall_{x_{0} \in \mathbb{R}^{n}} \partial f\left(x_{0}\right)+\partial g\left(x_{0}\right) \subset \partial(f+g)\left(x_{0}\right) .
$$

Moreover, if int $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. Then also

$$
\forall_{x_{0} \in \mathbb{R}^{n}} \partial(f+g)\left(x_{0}\right) \subset \partial f\left(x_{0}\right)+\partial g\left(x_{0}\right) .
$$

Comment: First part is trivial. Proof of second part goes by separating hyperplane Theorem A.4, applied to disjoint convex sets Λ_{f} and Λ_{g} that are "epigraph-like" - see syllabus.

Theorem 2.10 ("small KKT"): Let $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R} be convex and let $S \subset \mathbb{R}^{n}$ be nonempty convex. Consider the optimization problem

$$
(P) \inf _{x \in S} f(x) \text {. }
$$

Then
$\bar{x} \in S$ optimal for $(P) \Leftrightarrow \exists_{\bar{\xi} \in \partial f(\bar{x})} \forall_{x \in S} \bar{\xi}^{t}(x-\bar{x}) \geq 0$.
Sketch of proof. Observe

$$
\bar{x} \in S \text { optimal for }(P) \Leftrightarrow 0 \in \partial\left(f+\chi_{S}\right)(\bar{x}) .
$$

Then apply MR-theorem to right side.

