On subdifferential calculus – highlights 4

October 2010

Appendix B: Fenchel conjugation

Definition B.1: Let $f : \mathbb{R}^n \to (-\infty, +\infty]$. The *Fenchel conjugate of* f is $f^* : \mathbb{R}^n \to [-\infty, +\infty]$, given by

$$f^*(\xi) := \sup_{x \in \mathbb{R}^n} [\xi^t x - f(x)].$$

Define the *Fenchel biconjugate* of f by repetition:

$$f^{**}(x) := \sup_{\xi \in \mathbb{R}^n} [\xi^t x - f^*(\xi)],$$

so f^{**} is the conjugate of f^{*} . Simple general properties (see Proposition B.1):

• f^* and f^{**} are convex, even when f isn't.

•
$$f \ge g \Rightarrow f^* \le g^*$$
.

- $\exists_{\xi} f^*(\xi) = -\infty \Leftrightarrow f \equiv +\infty$ on all of \mathbb{R}^n .
- $\forall_{x_0,\xi\in\mathbb{R}^n}$ $f^*(\xi) \ge \xi^t x_0 - f(x_0)$ (Young's inequality).

•
$$f \ge f^{**}$$
.
• $\forall_{x_0,\xi \in \mathbb{R}^n}$
 $f^*(\xi) = \xi^t x_0 - f(x_0) \Leftrightarrow \xi \in \partial f(x_0).$

Example B.2: a. Let $f : \mathbb{R} \to (-\infty, +\infty]$ be given by

$$f(x) := \begin{cases} x \log x & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ +\infty & \text{if } x < 0. \end{cases}$$

For fixed ξ calculate $f^*(\xi)$:

Step 1. Can restrict maximization to dom f:

$$f^*(\xi) = \sup_{x \ge 0} [\xi x - x \log x].$$

Here $0 \log 0 := 0$ captures f(0) = 0. Step 2: So now we maximize over \mathbb{R}_+ ! Step 2a: Search for *interior* maximum. Note: f is convex, so $\psi(x) := \xi x - x \log x$ is concave. Hence for $x_0 > 0$:

 x_0 gives *interior* maximum $\Leftrightarrow \psi'(x_0) = 0$

by Prop. 2.6. So obtain $\xi - \log x_0 - 1 = 0$, i.e., $x_0 = \exp(\xi - 1)$ (note: $x_0 > 0$, so is indeed interior!). Get $\psi(x_0) = \exp(\xi - 1)$.

Step 2b: Search for maximum on boundary. Only point in boundary is x = 0, with $\psi(0) = 0$.

 $0<\exp(\xi-1),$ so combining steps 2a-b gives $f^*(\xi)=\exp(\xi-1).$

Next, fix x and calculate $f^{**}(x)$:

$$f^{**}(x) = \sup_{\xi \in \mathbb{R}} \phi(\xi) := \xi x - \exp(\xi - 1)].$$

Here ϕ is concave and differentiable on \mathbb{R} . So for $\xi_0 \in \mathbb{R}$

 ξ_0 gives maximum $\Leftrightarrow g'(\xi_0) = 0$

by Prop. 2.6. So

 ξ_0 gives maximum $\Leftrightarrow \xi_0 = \log x + 1$

Note: $\log x$ makes only sense for x > 0. So distinguish

Case 1: x > 0. Then $f^{**}(x) = \phi(\log x + 1) = x \log x$.

Case 2: x < 0. Then $f^{**}(x) = +\infty$ (let $\xi \to -\infty$).

Case 3: x = 0. Now $f^{**}(0) = \sup_{\xi \in \mathbb{R}} - \exp(\xi - 1) = 0$ by $\lim_{\xi \to -\infty} - \exp(\xi - 1) = 0$. Combining cases 1,2,3 gives $f^{**} = f$. b. Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be given by $f(x) := \begin{cases} -\sum_{i=1}^n \log(x_i) & \text{if } x \in \mathbb{R}^n_{++}, \\ +\infty & \text{otherwise.} \end{cases}$ Can exclude dom f from sup:

$$f^*(\xi) = \sup_{x \in \mathbb{R}^n_{++}} \psi(x) := \sum_i \xi_i x_i + \sum_i \log(x_i).$$

Here $-\psi$ is convex and differentiable. So for any $x \in \mathbb{R}^n_{++}$:

x gives maximum in sup $\Leftrightarrow \nabla \psi(x) = 0$, by Prop. 2.6. Gives $\xi_i + x_i^{-1} = 0$ for each i. So

x gives maximum in sup $\Leftrightarrow \forall_i \xi_i = -x_i^{-1}$. By requirement $x \in \mathbb{R}_{++}^n$ distinguish: Case 1: $\forall_i \xi_i < 0$: then $x_i := -\xi_i^{-1} > 0$ for all i. So

$$f^*(\xi) = -n + \sum_i \log(1/-\xi_i) = -n + f(-\xi).$$

Case 2: $\exists_j \xi_j > 0$: then above sup not attained and actually $f^*(\xi) = +\infty$.

Combining cases 1-2 gives

$$f^*(\xi) = \begin{cases} -n - f(-\xi) & \text{if } \xi \in \mathbb{R}^n_{--} \\ +\infty & \text{otherwise} \end{cases}$$

Next, fix x and calculate $f^{**}(x) {:}$ by $f^*(\xi)$ above obtain

$$f^{**}(x) = \sup_{\xi \in \mathbb{R}^{n}_{--}} [\xi^{t} x + n - f(-\xi)].$$

Trick: change of variable $\zeta := -\xi$ gives

$$f^{**}(x) = \sup_{\zeta \in \mathbb{R}^n_{++}} \left[-\zeta^t x + n - f(\zeta) \right] \stackrel{!}{=} n + f^*(-x)$$

by above expression for $f^*(\xi)$. If $x \in \mathbb{R}_{--}^n$ this implies $f^{**}(x) = n - n + f(x) = f(x)$ and if $x \notin \mathbb{R}_{--}^n$ one gets $f^{**}(x) = n + \infty = +\infty = f(x)$. Hence, $f^{**} = f$.

Found twice $f^{**} = f!$ What is the explanation?

Definition: Let $f : \mathbb{R}^n \to (-\infty, +\infty]$. Then f is *lower semicontinuous* (l.s.c.) at $x_0 \in \mathbb{R}^n$ if

$$\forall_{r \in \mathbb{R}, r < f(x_0)} \exists_{\delta > 0} \forall_{x, |x - x_0| < \delta} f(x) > r.$$

Also: f is l.s.c. if $\forall_{x_0} f$ l.s.c. at x_0 . Further: f is upper semicontinuous (u.s.c.) at $x_0 \in \mathbb{R}^n$ if -f is l.s.c. at x_0 .

Elementary facts:

1. For
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
 and $x_0 \in \text{int dom } f$:

f continuous at $x_0 \Leftrightarrow f$ l.s.c. and u.s.c. at x_0 .

2. If $\{f_{\kappa} : \kappa\}$ is collection of functions $f_{\kappa} : \mathbb{R}^n \to (-\infty, +\infty]$, such that

$$\forall_{\kappa} f_{\kappa} \text{ is l.s.c. at } x_0 \in \mathbb{R}^n,$$

then $f : \mathbb{R}^n \to (-\infty, +\infty]$, defined by $f(x) := \sup_{\kappa} f_{\kappa}(x)$, is l.s.c. at x_0 . 3. Fact 2 implies that

$$\bar{f}(x) := \sup_{q} \{ q(x) : q : \mathbb{R}^n \to \mathbb{R}, q \text{ l.s.c.} \}$$

defines a l.s.c. function $\overline{f} : \mathbb{R}^n \to (-\infty, +\infty]$. Name: $l.s.c. \ (lower) \ hull \ of \ f \ (it is the "largest l.s.c. func$ $tion <math>\leq f$ "). 4. For $f : \mathbb{R}^n \to (-\infty, +\infty]$: $f \ is l.s.c. \ \Leftrightarrow epi \ f \ is \ closed \ set.$

Theorem B.5 (Fenchel-Moreau): Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be convex. Then

$$f(x_0) = f^{**}(x_0) \Leftrightarrow f$$
 is l.s.c. at x_0 .

Proof of \Rightarrow is not difficult, because f^{**} is l.s.c. by elementary fact 2 above. \Leftarrow uses the separation Theorem A.4, applied to epi \overline{f} , which is convex and also closed by above facts 3, 4.

Example B.2 (continued): Concrete calculations gave $f^{**} = f$. Explanation: f's in Example B.2a-b are convex and l.s.c.

Definition: Let $K \subset \mathbb{R}^n$ be a cone at 0 (i.e., $\forall_{\alpha>0,x\in K}\alpha x \in K$). The (negative) *polar* of K is

$$K^* := \{ \xi \in \mathbb{R}^n : \forall_{x \in K} \xi^t x \le 0 \}.$$

Example: Let $S \subset \mathbb{R}^n$ and $x_0 \in S$. Then $K := \bigcup_{\alpha > 0} \alpha(S - x_0)$ is cone at 0. Here

$$K^* = N_S(x_0) = \{\xi : \forall_{x \in S} \xi^t (x - x_0) \le 0\}.$$

Corollary B.6 (bipolar theorem for cones): Let K be a closed convex cone in \mathbb{R}^n . Then $K = K^{**} := (K^*)^*$.

Proof. Set $f := \chi_K$. Then f is l.s.c. and convex. So $f^{**} = f$ by F-M theorem. Now check that

$$f^*(\xi) = \sup_{x \in K} \xi^t x = \chi_{K^*}(\xi)$$

for all ξ . Consequence:

$$f^{**}(x) = \sup_{\xi \in K^*} \xi^t x$$

and $f^{**} = \chi_{K^{**}}$ follows. So $\chi_{K^{**}} = \chi_K$. Conclusion: $K^{**} = K$. QED

Corollary: Let *L* be a linear subspace of \mathbb{R}^n . Then $L = L^{\perp \perp} := (L^{\perp})^{\perp}$.

Farkas' Lemma: Let A be $p \times n$ -matrix, $c \in \mathbb{R}^n$. Then precisely one of the following is true:

(1)
$$\exists_{x \in \mathbb{R}^n} Ax \leq 0 \text{ and } c^t x > 0,$$

(2) $\exists_{y \in \mathbb{R}^p_+} A^t y = c.$

Proof. Hint: $(2) \Rightarrow \text{not} (1)$ is easy. Next, not (1) means:

$$\forall_{x \in \mathbb{R}^n, Ax \le 0} c^t x \le 0.$$

Thus, $\forall_{x \in K^*} c^t x \leq 0$, i.e., $c \in K^{**}$. Here $K := A^t(\mathbb{R}^p_+)$ is the closed convex cone generated by all nonnegative linear combinations of colums of A^t (= rows of A, viewed as colums). By F-M Theorem, $K^{**} = K$, so we obtain $c \in K^{**} = K = A^t(\mathbb{R}^p_+)$. QED