Lagrangian duality and general duality highlights 5

October 2010

Recall convex programming problem (new name primal problem):

$$
(P) \inf _{x \in Z} f(x) \text {, }
$$

with
$Z:=\left\{x \in S: g_{1}(x) \leq 0, \cdots, g_{m}(x) \leq 0, A x-b=0\right\}$.
Assume $\inf (P)<+\infty(\Leftrightarrow Z \neq \emptyset$ and $f \not \equiv+\infty$ on Z).

Define Lagrangian dual of (P) by

$$
\text { (D) } \sup _{(u, v) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}} \theta(u, v),
$$

where

$$
\theta(u, v):=\inf _{x \in S}\left[f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x)+v^{t}(A x-b)\right] .
$$

Note: $\theta: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} \rightarrow[-\infty,+\infty)(!)$ is concave.

Example 1.1: Standard LP problem:

$$
\text { (P) } \inf _{x \in S}\left\{c^{t} x: A x-b=0\right\}
$$

with $S:=\mathbb{R}_{+}^{n}$. Then above definition gives

$$
\theta(u, v):=\inf _{x \geq 0}\left[c^{t} x+v^{t}(A x-b)\right] .
$$

So

$$
\theta(u, v)= \begin{cases}-b^{t} v & \text { if } c+A^{t} v \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

Write $w:=-v$. Then (D) becomes

$$
(D) \sup _{w \in \mathbb{R}^{p}}\left\{b^{t} w: A^{t} w \leq c\right\},
$$

which is familiar form of dual in LP.
Example 1.2: Linear regression problem:

$$
\text { (P) } \inf _{x \in \mathbb{R}^{n}}\left\{|x|^{2}: A x-b=0\right\}
$$

Only equality constraints, so use for (D)

$$
\theta(v):=\inf _{x \in \mathbb{R}^{n}}\left[|x|^{2}+v^{t}(A x-b)\right] .
$$

To calculate, solve $\nabla\left(|x|^{2}+v^{t}(A x-b)\right)=0$, then $\theta(v)=-v^{t} A A^{t} v / 4-b^{t} v$. Hence

$$
(D) \sup _{v \in \mathbb{R}^{p}}\left[-v^{t} A A^{t} v / 4-b^{t} v\right] \text {. }
$$

(D) is solved via $\nabla \theta(v)=0$. Hence, $\bar{v}:=-2\left(A A^{t}\right)^{-1} b$ is optimal (recall θ is concave and recall A has rank p, so $A A^{t}$ is invertible).

Direct consequence of KKT theorem in [OSC]:
Theorem 1.3 (Lagrangian duality): (i) For all $x \in Z$ and $(u, v) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}$

$$
\theta(u, v) \leq f(x)(\text { weak duality }) .
$$

In particular, if for some $\bar{x} \in Z$ and $(\bar{u}, \bar{v}) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}$

$$
\theta(\bar{u}, \bar{v})=f(\bar{x})
$$

then \bar{x} is optimal for $(P),(\bar{u}, \bar{v})$ is optimal for (D) and complementary slackness holds for \bar{x}.
(ii) Conversely, if \bar{x} is an optimal solution of (P) and if both the regularity condition and Slater's constraint qualification hold, then there exists $(\bar{u}, \bar{v}) \in$ $\mathbb{R}_{+}^{m} \times \mathbb{R}^{p}$ such that

$$
\theta(\bar{u}, \bar{v})=f(\bar{x}) \text { (strong duality). }
$$

Duality by perturbations

Associate to
$(P) \inf _{x \in S}\left\{f(x): g_{1}(x) \leq 0, \cdots, g_{m}(x) \leq 0, A x-b=0\right\}$,
the perturbed optimization problems $\left(P_{y, z}\right), y \in$ $\mathbb{R}^{m}, z \in \mathbb{R}^{p}$, given by
$\inf _{x \in S}\left\{f(x): g_{1}(x) \leq y_{1}, \cdots, g_{m}(x) \leq y_{m}, A x-b=z\right\}$ (recall $\inf \emptyset:=+\infty!$). Then $\left(P_{0,0}\right)$ coincides with (P).
Define $\nu: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow[-\infty,+\infty]$ by $\nu(y, z):=$ $\inf \left(P_{y, z}\right)$. Observe: ν is convex and $\nu(0,0)=\inf (P)$. By definition of Fenchel conjugate

$$
\nu^{*}(-u,-v):=\sup _{y, z}\left[-u^{t} y-v^{t} z-\nu(y, z)\right] .
$$

By $\nu(y, z):=\inf \left(P_{y, z}\right)$ obtain

$$
\nu^{*}(-u,-v)=\sup _{x \in S, y}\left\{-u^{t} y-v^{t}(A x-b)-f(x): g_{j}(x) \leq y_{j} \forall_{j}\right\}
$$

Hence,

$$
\nu^{*}(-u,-v)= \begin{cases}-\theta(u, v) & \text { if } u \geq 0 \\ +\infty & \text { otherwise }\end{cases}
$$

So can rewrite Lagrangian dual of previous (P) as

$$
(D) \sup -\nu^{*}(-u,-v) \text {. }
$$

$$
(u, v) \in \mathbb{R}^{m} \times \mathbb{R}^{p}
$$

(note use of full space $\mathbb{R}^{m} \times \mathbb{R}^{p}$). Observe:

$$
\sup (D)=\sup _{(u, v)}\left[0^{t}(-u)+0^{t}(-v)-\nu^{*}(-u,-v)\right]=: \nu^{* *}(0,0)
$$

by definition of biconjugate. Hence
$\nu^{* *}(0,0) \leq \nu(0,0) \Leftrightarrow \sup (D) \leq \inf (P) \Leftrightarrow$ weak duality
Also, if \bar{x} optimal for (P) then $\forall(\bar{u}, \bar{v}) \in \mathbb{R}^{m} \times \mathbb{R}^{p}$

$$
(-\bar{u},-\bar{v}) \in \partial \nu(0,0) \Leftrightarrow \nu(0,0) \stackrel{!}{=}-\nu^{*}(-\bar{u},-\bar{v})
$$

shows
$f(\bar{x})=\theta(\bar{u}, \bar{v}) \Leftrightarrow(-\bar{u},-\bar{v}) \in \partial \nu(0,0) \Leftrightarrow$ strong duality.

Let (general) primal problem be

$$
(\mathbb{P}) \inf _{x \in \mathbb{R}^{n}} \phi_{0}(x)
$$

for given $\phi_{0}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. A perturbation scheme for (\mathbb{P}) consists of $l \in \mathbb{N}$ and $\phi: \mathbb{R}^{n} \times \mathbb{R}^{l} \rightarrow(-\infty,+\infty]$ such that

$$
\forall_{x} \phi(x, 0)=\phi_{0}(x)
$$

Call

$$
\left(\mathbb{P}_{u}\right) \inf _{x \in \mathbb{R}^{n}} \phi(x, u)
$$

for $u \in \mathbb{R}^{l}$ the u-perturbation of (\mathbb{P}).
Example Consider previous convex programming problem (P). Define for $u:=(y, z) \in \mathbb{R}^{m} \times \mathbb{R}^{p}$
$\phi(x, u):=\left\{\begin{array}{cc}f(x) & \text { if } x \in S, g(x) \leq y \text { and } A x-b=z \\ +\infty & \text { otherwise }\end{array}\right.$
For this perturbation scheme (\mathbb{P}) is equivalent to (P) :

$$
\phi(x, 0)= \begin{cases}f(x) & \text { if } x \in Z \\ +\infty & \text { if } x \in \mathbb{R}^{n} \backslash Z\end{cases}
$$

Define perturbation function $h: \mathbb{R}^{l} \rightarrow$ $[-\infty,+\infty]$ by

$$
h(u):=\inf \left(\mathbb{P}_{u}\right)=\inf _{x \in \mathbb{R}^{n}} \phi(x, u)
$$

Define dual problem corresponding to above perturbation scheme:

$$
(\mathbb{D}) \sup _{v \in \mathbb{R}^{l}}-h^{*}(-v) .
$$

Observe: dual objective function is $-h^{*}(-v)$ and $\sup (\mathbb{D})=h^{* *}(0)$.
Theorem 3.1 (general duality-stability):
(i) For all $x \in \mathbb{R}^{n}$ and $q \in \mathbb{R}^{k}$

$$
-h^{*}(-q) \leq f(x)(\text { weak duality })
$$

Consequently,

$$
\inf (\mathbb{P})=h(0) \geq h^{* *}(0)=\sup (\mathbb{D})
$$

(ii) h is l.s.c. at $0 \Leftrightarrow \inf (\mathbb{P})=\sup (\mathbb{D})$. (iii) If h is continuous at 0 then

$$
\inf (\mathbb{P})=\max (\mathbb{D})
$$

Here set of optimal dual solutions is nonempty and equal to $-\partial h(0)$.

Terminology:
h l.s.c. at 0 is called weak stability h continuous at 0 is called (strong) stability.

Specialization: Fenchel duality.

Let A be $m \times n$-matrix. Consider

$$
\left(P_{F}\right) \inf _{x \in \mathbb{R}^{n}}[f(x)+g(A x)],
$$

where $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ and $g: \mathbb{R}^{m} \rightarrow$ $(-\infty,+\infty]$ are convex functions. Suppose that $\inf \left(P_{F}\right) \in \mathbb{R}$.

Define associated Fenchel dual problem:

$$
\left(D_{F}\right) \sup _{q \in \mathbb{R}^{m}}\left[-f^{*}\left(A^{t} q\right)-g^{*}(-q)\right]
$$

Thm 3.2 (Fenchel's duality theorem)
(i) For all $x \in \mathbb{R}^{n}$ and $q \in \mathbb{R}^{m}$

$$
-f^{*}\left(A^{t} q\right)-g^{*}(-q) \leq f(x)+g(A x)
$$

(ii) If $0 \in \operatorname{int}(\operatorname{dom} g-A(\operatorname{dom} f))$, then

$$
\inf \left(P_{F}\right)=\max \left(D_{F}\right)
$$

Moreover, then $\bar{x} \in \mathbb{R}^{n}$ is optimal for $\left(P_{F}\right)$ and $\bar{q} \in \mathbb{R}^{k}$ is optimal for $\left(D_{F}\right)$ if and only if

$$
A^{t} \bar{q} \in \partial f(\bar{x}) \text { and }-\bar{q} \in \partial g(A \bar{x})
$$

Examples Let $b \in \mathbb{R}^{m}$ and let $K \subset \mathbb{R}^{m}$ be convex cone.
(a) $g:=\chi_{\{b\}}$ gives $A x=b$.
(b) $g:=\chi_{b+K}$ gives conical constraint $A x \in$ $b+K$.
(c) $f(x):=\mu^{-1} c^{t} x-\sum_{i=1}^{n} \log \left(x_{i}\right)+\chi_{\mathbb{R}_{++}^{n}}(x)$
and $g:=\chi_{\{b\}}$. Here $c \in \mathbb{R}^{n}$ and $\mu>0$ is a scaling (penalty) parameter. Then $\left(P_{F}\right)$ is

$$
\inf _{x \in \mathbb{R}_{++}^{n}, A x=b} \mu^{-1} c^{t} x-\sum_{i=1}^{n} \log \left(x_{i}\right)
$$

(logarithmic barrier function).
(d) $f(x)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$ (additive separability) and $g=\chi_{\{b+K\}}$, then $\left(P_{F}\right)$ is

$$
\inf _{x, A x \in b+K} \sum_{i} f_{i}\left(x_{i}\right)
$$

Here each f_{i} is convex function on \mathbb{R}.

