General duality II - highlights 7

October 2010

\mathbb{S}^{n} : set of all symmetric $n \times n$-matrices
\mathbb{S}^{n} is Euclidean space, i.e. vector vector space with

$$
\langle X, Y\rangle:=\operatorname{tr}(X Y)=\sum_{i, j} X_{i, j} Y_{i, j} .
$$

as inner product. Then for every $X \in \mathbb{S}^{n}$

$$
X=\sum_{i, j, j \geq i} X_{i, j} E^{i, j}=\sum_{i, j, j \geq i}\left\langle X, E^{i, j}\right\rangle E^{i, j} .
$$

Here for $k<l$:

$$
\left(E^{k, l}\right)_{i, j}:= \begin{cases}\frac{1}{2} \sqrt{2} & \text { if }(i, j) \in\{(k, l),(l, k)\} \\ 0 & \text { otherwise }\end{cases}
$$

and for $k=l$

$$
\left(E^{k, k}\right)_{i, j}:= \begin{cases}1 & \text { if }(i, j)=(k, k) \\ 0 & \text { otherwise }\end{cases}
$$

Two special convex cones in \mathbb{S}^{n} :
\mathbb{S}_{+}^{n} : set of all positive semidefinite matrices
\mathbb{S}_{++}^{n} : set of all positive definite matrices

Fact: \mathbb{S}_{+}^{n} is closed and $\mathbb{S}_{++}^{n}=$ int \mathbb{S}_{+}^{n}.
Let $A_{i} \in \mathbb{S}^{n}$ and $b_{i} \in \mathbb{R}$ for $i=1, \ldots, m$.
The primal semidefinite program is
$\left(P_{S D P}\right) \inf _{X \in \mathbb{S}_{+}^{n}}\left\{\operatorname{tr}(C X): \operatorname{tr}\left(A_{i} X\right)=b_{i}, i=1, \ldots, m\right\}$.
Can be written as

$$
\left(P_{S D P}\right) \quad \inf _{X \in K}\{\langle C, X\rangle: \mathcal{A}(X)=b\} .
$$

Here $K:=\mathbb{S}_{+}^{n}\left(\right.$ whence $\left.K^{*}=-\mathbb{S}_{+}^{n}\right)$ and

$$
\mathcal{A}(X):=\left(\left\langle A_{i}, X\right\rangle\right)_{i=1}^{m} .
$$

Compare to standard linear primal program

$$
\inf _{x \in \mathbb{R}_{+}^{n}}\{\langle c, x\rangle: A x=b\},
$$

with $\langle c, x\rangle:=c^{t} x=$ inner product on \mathbb{R}^{n}. Define semidefinite dual problem by

$$
\left(D_{S D P}\right) \sup _{q \in \mathbb{R}^{m}}\left\{b^{t} q: C-\sum_{i=1}^{m} q_{i} A_{i} \in \mathbb{S}_{+}^{n}\right\} .
$$

Compare to standard linear dual program

$$
\sup _{q \in \mathbb{R}^{m}}\left\{b^{t} q: c-A^{t} q \in \mathbb{R}_{+}^{n}\right\} .
$$

SDP duality theorem

(i) If $\left(P_{S D P}\right)$ has feasible solution in \mathbb{S}_{++}^{n}, then

$$
\inf \left(P_{S D P}\right)=\max \left(D_{S D P}\right)
$$

provided $\sup \left(D_{S D P}\right) \in \mathbb{R}$.
(ii) If $\exists_{\tilde{q} \in \mathbb{R}^{m}} C-\tilde{q}_{i} A_{i} \in \mathbb{S}_{++}^{n}$ then

$$
\min \left(P_{S D P}\right)=\sup \left(D_{S D P}\right)
$$

provided $\inf \left(P_{S D P}\right) \in \mathbb{R}$.
Follows by Fenchel duality thm. in \mathbb{S}^{n}, specialized to

$$
f(X):=\langle C, X\rangle+\chi_{K}(X), g(y):=\chi_{\{b\}}(y)
$$

Here $g^{*}(z)=b^{t} z$, whence $-g^{*}(-q)=b^{t} q$, and $f^{*}(Y)=\sup _{Y \in K}\langle Y-C, X\rangle= \begin{cases}0 & \text { if } Y-C \in K^{*} \\ +\infty & \text { otherwise }\end{cases}$ whence

$$
f^{*}\left(\mathcal{A}^{*} q\right)= \begin{cases}0 & \text { if } \mathcal{A}^{*} q-C \in K^{*}=-\mathbb{S}_{+}^{n} \\ +\infty & \text { otherwise }\end{cases}
$$

Here \mathcal{A}^{*}, the adjoint of \mathcal{A}, is defined by

$$
\forall_{q \in \mathbb{R}^{m}, X \in \mathbb{S}^{n}}<q, \mathcal{A}(X)>=\left\langle\mathcal{A}^{*} q, X\right\rangle
$$

which gives

$$
\mathcal{A}^{*} q=\sum_{i=1}^{m} q_{i} A_{i}
$$

