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1 Introduction

There exists a calculus for general nondifferentiable functions that englobes a large
part of the familiar subdifferential calculus for convex nondifferentiable functions [1].
This development started with F.H. Clarke, who introduced a generalized gradient
for functions that are locally Lipschitz, but (possibly) nondifferentiable. Generalized
gradients turn out to be the subdifferentials, in the sense of convex analysis [1],
of generalized directional derivative functions that are canonically associated to the
locally Lipschitz functions under consideration. The key point to note is that such
generalized directional derivative functions are automatically convex, even when the
original locally Lipschitz functions are not convex. Two important special cases of
functions f that are locally Lipschitz near some point x0 ∈ Rn and their generalized
gradients, denoted by ∂̄f(x0), are as follows: (i) f is continuously differentiable at x0

and (ii) f is convex on Rn and x0 ∈ int dom f . Then

∂̄f(x0) =

{
{∇f(x0)} in case (i)
∂f(x0) in case (ii)

See Propositions 2.7 and 2.8. The corresponding calculus for generalized gradients
manages to preserve the relevant parts of the Moreau-Rockafellar and Dubovitskii-
Milyutin theorems (see Theorems 2.9 and 2.10 below) that we know in the convex
setting from [1]. For problems with only inequality constraints this calculus leads, by
means of a pointwise maximum function of Dubovitskii-Milyutin-type (as employed
in [1]), to a “not necessarily convex or smooth” version of the Karush-Kuhn-Tucker
theorem (Theorem 3.3).1

If equality constraints are introduced as well, then a new method is required to
obtain such a theorem (Theorem 3.5); this is based on Ekeland’s Theorem 3.4. This
time, the pointwise maximum function of Dubovitskii-Milyutin-type will also have to
involve the equality constraints. This contrasts with [1], but recall that the convex
framework could only deal with equality constraints that were linear/affine. In a
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1However, the set S over which one minimizes is treated by means of the distance function distS

instead of the characteristic function χS ; this changes the nature of the obtuse angle property (OAP)
somewhat.
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certain sense the present approach by means of generalized gradients abridges what
was done for the “convex” KKT theorem in [1] and for the “smooth” KKT theorem in
Chapter 4 in [2]: Theorem 3.5 comes very close – without doing so precisely, i.e., in all
respects – to generalizing both of these results simultaneously. Even if one restricts
oneself beforehand to “smooth” optimization problems, generalized gradients can be
viewed an alternative, quite useful device to derive important results, such as the
“smooth” KKT theorem. Good references for these developments are [3] and [4].

2 Generalized gradients and their calculus

Definition 2.1 (local Lipschitz continuity) A function f : Rn → (−∞, +∞] is
Lipschitz near a point x0 ∈ int dom f if there exist K ≥ 0, the so-called Lipschitz
constant, such that

|f(x)− f(x′)| ≤ K|x− x′| for all x, x′ ∈ Bδ(x0),

where δ > 0 sufficiently small so as to have Bδ(x0) := {x ∈ Rn : |x − x0| < δ} ⊂
dom f . A locally Lipschitz function is a function that is Lipschitz near every point in
Rn.

Since all our optimality considerations will be local and at points of local Lipschitz
continuity that lie in the interior of effective domains of functions, no real purpose
is served by retaining functions that can take the value +∞. Therefore, we shall
only consider real-valued function from now on, except when dealing with convex
functions.

Example 2.2 (i) A convex function f : Rn → (−∞, +∞] is Lipschitz near every
point in int dom f . To see this, let x0 ∈ int dom f be arbitrary. Observe that f
is continuous at x0 by Lemma 2.16 of [1]. Therefore, there exist a and b in R and
ε > 0 such that a ≤ f(x) ≤ b for all x ∈ Bε(x0). Let 0 < ε′ < ε and x, x′ ∈ Bε′(x0)
be arbitrary. Then x′ = λz + (1 − λ)x, with z := x′ + (ε − ε′)(x′ − x)/|x′ − x| and
λ := |x′ − x|/(|x′ − x| + ε − ε′). Since |z − x0| ≤ |x′ − x0| + ε − ε′ < ε, we have
z ∈ Bε(x0). By convexity of f

f(x′)− f(x) ≤ λ(f(z)− f(x)) ≤ λ(b− a) ≤ K|x′ − x|,

where K := (b − a)/(ε − ε′). By reversing the roles of x and x′, it then follows that
|f(x′)− f(x)| ≤ K|x′ − x| for all x′, x ∈ Bε′(x0).

(ii) A function f : Rn → R is Lipschitz near every point in which f is continuously
differentiable.

Exercise 2.1 Prove part (ii) of the above Example 2.2 by fixing two points x, x′ and
applying the usual (scalar) intermediate value theorem. Recall that f is said to be
continuously differentiable at a point x0 if all its partial derivatives are continuous
functions in some neighborhood of x0 (in turn, this implies that f is differentiable at
x0).
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Definition 2.3 (generalized gradient) Let f : Rn → R and let x0 ∈ Rn. Then
Clarke’s generalized directional derivative of f at x0 in the direction d ∈ Rn is defined
by

f o(x0; d) := lim sup
h → 0

λ↓0

f(x0 + h + λd)− f(x0 + h)

λ
:= lim

δ↓0
sup

h∈Bδ(0),λ∈(0,δ)

f(x0 + h + λd)− f(x0 + h)

λ
.

Also, Clarke’s generalized gradient of f at x0 is defined by

∂̄f(x0) := {ξ ∈ Rn : f o(x0; d) ≥ ξtd for all d ∈ Rn}.

Observe a fundamental difference with the ordinary directional derivative (see Defi-
nition 2.13 in [1]): in that definition the “base point” for taking differences was the
fixed vector x0, but now it is the variable vector x0 +h → x0. Precisely this difference
is responsible for “automatic convexity” of the generalized directional derivative (see
Lemma 2.6) that holds even even when f itself is nonconvex.

Exercise 2.2 Prove that f o(x0; d) is the maximum of

l((hk, λk)
∞
1 ) := lim sup

k→∞

f(x0 + hk + λkd)− f(x0 + hk)

λk

over all sequences (hk, λk)
∞
1 with hk → 0 and λk ↓ 0. Here maximum means that

there actually exists a sequence (h̄k, λ̄k)
∞
1 for which f o(x0; d) = l((h̄k, λ̄k)

∞
1 ).

Example 2.4 (a) Consider n = 1 and f(x) := |x|. For x0 := 0 we have

f o(0; d) = lim sup
h → 0

λ↓0

[
|h
λ

+ d| − |h
λ
|
]

.

By the triangle inequality, this gives f o(0; d) ≤ |d|, and it is easily seen that the
majorant |d| is also attainable as a limit:

|d| = lim
k

[
|hk

λk

+ d| − |hk

λk

|
]

for λk := k−1 and hk := k−2. Hence, f o(0; d) = |d| (see Exercise 2.2), and it follows
that ∂̄f(0) = [−1, +1], which coincides with the classical subgradient of f in the sense
of convex analysis.

(b) Consider n = 1 and f(x) := −|x|. Then for x0 := 0 we have

f o(0; d) = lim sup
h → 0

λ↓0

[
|h
λ
| − |h

λ
+ d|

]
,

which is again at most |d| by the triangle inequality. Again, but now in a diametrically
opposite way, the majorant |d| is attainable as a limit:

|d| = lim
k

[
−|hk

λk

+ d|+ |hk

λk

|
]
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by taking λk := k−2 and hk := −k−1 if d > 0, and by taking λk := k−2 and hk := k−1

if d < 0. Hence, f o(0; d) = |d|, and it follows that ∂̄f(0) = [−1, +1]. So the concave
function x 7→ −|x| has the same generalized gradient as the convex function x 7→ |x|
in part (a).

This shows clearly that the theory involving generalized gradients in the sense of
Clarke is much less unilateral in nature than convex analysis. As one more indication
of this, we observe that, although formally it would be possible to consider extended
real-valued functions in Definition 2.3 and further on, the fact that the local Lipschitz
property plays such an important role makes such adaptations so obvious that we
prefer instead to keep our functions real-valued from now on.

Exercise 2.3 Let f : Rn → R be Lipschitz near x0 ∈ Rn. Let ξ ∈ ∂̄f(x0) and
suppose that f(x0) 6= 0. Prove that ∂̄|f |(x0) ⊂ sign(f(x0))∂̄f(x0).

Theorem 2.5 Let f : Rn → R be Lipschitz near x0 ∈ Rn with local Lipschitz constant
K. Then the following hold:

(i) ∂̄f(x0) 6= ∅.
(ii) |ξ| ≤ K for all ξ ∈ ∂̄f(x0).
(iii) f 0(x0; d) = supξ∈∂̄f(x0) ξtd for every d ∈ Rn.

Lemma 2.6 (automatic convexity of generalized directional derivative functions)
In Theorem 2.5 the function p : d 7→ f o(x0; d) is positively homogeneous and subad-
ditive (whence in particular convex). Also, |p(d)| ≤ K|d| for all d ∈ Rn.

Proof. It is trivial to see that p(αd) = αp(d) for every d and α ≥ 0 (positive
homogeneity). Also, for every pair of directions d and d′ it is elementary to see that

lim sup
h → 0

λ↓0

f(x0 + h + λd + λd′)− f(x0 + h)

λ
≤ lim sup

h → 0
λ↓0

f(x0 + h + λd + λd′)− f(x0 + h + λd′)

λ
+

+ lim sup
h → 0

λ↓0

f(x0 + h + λd′)− f(x0 + h)

λ
,

whence p(d+d′) ≤ p(d)+p(d′) (subadditivity). Together with the positive homogene-
ity observed above, it therefore follows that p(αd+(1−α)d′) ≤ p(αd)+p((1−α)d′) =
αp(d) + (1 − α)p(d′) for every α ∈ [0, 1] (convexity). Also, for all d, h in Rn and all
λ > 0 the given local Lipschitz continuity of f gives

|f(x0 + h + λd)− f(x0 + h)

λ
| ≤ K|d|,

so p(d) ≤ K|d| follows immediately. QED

Proof of Theorem 2.5. Denote again p(d) := f o(x0; d). By Lemma 2.6 p is
a convex real-valued function. So by Lemma 2.16 of [1] it follows that ∂p(0), the
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subdifferential of p at 0 in the sense of convex analysis, is nonempty, i.e., there exists
ξ ∈ Rn such that p(d) ≥ p(0) + ξtd = ξtd for all d ∈ Rn. Hence, ξ ∈ ∂̄f(x0). This
proves (i). Since ∂̄f(x0) = ∂p(0), part (ii) follows immediately from Lemma 2.6 and
part (iii) follows from Theorem 2.15 in [1], which says that the directional derivative
of p at 0 (in the sense of convex analysis) satisfies for every d

p′(0; d) = sup
ξ∈∂p(0)

ξtd.

Here p′(0; d) = p(d), by p(0) = 0 and positive homogeneity of p (Lemma 2.6), and
∂p(0) = ∂̄f(x0). QED

We shall now establish connections between the generalized gradient and two
classical concepts: the ordinary gradient and the subdifferential of convex analysis.

Proposition 2.7 Let f : Rn → R be continuously differentiable at x0 ∈ Rn. Then

∂̄f(x0) = {∇f(x0)},

i.e., then Clarke’s generalized gradient coincides with the gradient of f .

Observe that if f is in addition convex in Proposition 2.7, then we already know its
result from Proposition 2.6 of [1], in view of Proposition 2.8 below.

Proof of Proposition 2.7. For every d and h in Rn, with |h| sufficiently small,
an application of the mean value theorem to λ 7→ f(x0 +h+λd) gives for every λ > 0
the existence of λ′ ∈ (0, λ) such that

f(x0 + h + λd)− f(x0 + h)

λ
= dt∇f(x0 + h + λ′d).

Since x 7→ ∇f(x) is continuous at x0, this easily gives f o(x0; d) = dt∇f(x0). So by
Theorem 2.5(iii)

sup
ξ∈∂̄f(x0)

ξtd = dt∇f(x0) = sup
ξ∈{∇f(x0}

ξtd,

and we can finish as in the proof of Theorem 2.5. QED

Proposition 2.8 Let f : Rn → R be convex. Then for every x0 ∈ Rn

∂̄f(x0) = ∂f(x0),

i.e., then Clarke’s generalized gradient coincides with the subdifferential of f .

Proof of Proposition 2.8. Let d ∈ Rn be arbitrary. First, observe that by
taking h = 0 in Definition 2.3 we get trivially f ′(x0; d) ≤ f o(x0; d). Next, we also
prove the converse inequality. Note that by Definition 2.3, for any c > 0

f o(x0; d) = lim
δ↓0

sup
h∈Bδc(0)

sup
λ∈(0,δ)

f(x0 + h + λd)− f(x0 + h)

λ
.
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But we know that for a convex function the difference quotients are monotone (see
Proposition 2.14 in [1]); hence,

f o(x0; d) ≤ lim
δ↓0

sup
h∈Bδc(0)

f(x0 + h + δd)− f(x0 + h)

δ
.

By Example 2.2, f is Lipschitz near every point, so there exists K > 0 such that

|f(x0 + h + δd)− f(x0 + h)

δ
− f(x0 + δd)− f(x0)

δ
| ≤ 2K|h|

δ
≤ 2Kc

for all h ∈ Bδc(0). Combined with the previous inequality and the triangle inequality
this gives

f o(x0; d) ≤ lim
δ↓0

f(x0 + δd)− f(x0)

δ
+ 2Kc = f ′(x0; d) + 2Kc.

Letting c ↓ 0, we thus find f o(x0; d) ≤ f ′(x0; d). We conclude from the preceding that
for every d ∈ Rn

f o(x0; d) = f ′(x0; d),

which, by Theorem 2.5(iii) and the corresponding property of convex functions (i.e.,
Theorem 2.15 of [1]), can also be written as

sup
ξ∈∂̄f(x0)

ξtd = sup
ξ∈∂f(x0)

ξtd. (1)

Observe that both ∂̄f(x0) and ∂f(x0) are closed (and in fact compact) convex sets.
Let ξ0 be arbitrary in ∂̄f(x0). Suppose that ξ0 did not belong to the compact convex
set ∂f(x0). Then we could separate strictly by Theorem A.2 in [1]: there would be
d ∈ Rn and α ∈ R such that

ξt
0d > α ≥ sup

ξ∈∂f(x0)

ξtd = f o(x0; d),

where the identity on the right holds by Theorem 2.5(iii). But by that same theorem,
ξt
0d ≤ f o(x0; d), so we would get a contradiction to (1). Hence, it follows that ξ0

belongs to ∂f(x0), and we conclude that ∂̄f(x0) ⊂ ∂f(x0). One can prove the opposite
inclusion in precisely the same way. QED

Exercise 2.4 Give an alternative proof of the last step in the proof by means of
conjugate functions and the Fenchel-Moreau theorem. Hint: Note that (1) expresses
the equality of two conjugate functions.

Some basic calculus rules for generalized gradients will now be stated. They
are rather similar to rules developed for the subgradients/subdifferentials of convex
analysis in [1]. The following rule retains the “interesting” inclusion of the Moreau-
Rockafellar theorem:
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Theorem 2.9 Let f, g : Rn → R be Lipschitz near x0 ∈ Rn and let α > 0. Then

∂̄(αf)(x0) = α∂̄f(x0),

∂̄(f + g)(x0) ⊂ ∂̄f(x0) + ∂̄g(x0).

Proof. For every d ∈ Rn the identity (αf)o(x0; d) = αf o(x0; d) is obvious, and
then the first result immediately follows. Also, for every d ∈ Rn the inequality

(f + g)o(x0; d) ≤ f o(x0; d) + go(x0; d)

follows by elementary subadditivity properties of the limes superior. Now let ξ0 be
arbitrary in ∂̄(f + g)(x0). Suppose that ξ0 did not belong to the compact convex set
∂̄f(x0) + ∂̄g(x0). Then the strict separation Theorem A.2 of [1] applies: there would
exist d ∈ Rn and β ∈ R such that

ξt
0d > β ≥ sup

ξ∈∂̄f(x0),ξ′∈∂̄g(x0)

(ξ + ξ′)td.

Since

sup
ξ∈∂̄f(x0),ξ′∈∂̄g(x0)

(ξ + ξ′)td = sup
ξ∈∂̄f(x0)

ξtd + sup
ξ′∈∂̄g(x0)

ξ′td = f o(x0; d) + go(x0; d)

(here the last identity holds by Theorem 2.5(iii)), we get ξt
0d > f o(x0; d) + go(x0; d).

But by that same result also ξt
0d ≤ (f + g)o(x0; d), and so we have a contradiction

with the above inquality. It therefore follows that ξ0 belongs to ∂̄f(x0)+ ∂̄g(x0), and,
since ξ0 was arbitrary in ∂̄(f + g)(x0), the desired inclusion has been proven. QED

Exercise 2.5 Show by means of a counterexample that in the second part of Theo-
rem 2.9 it is in general not possible to have the opposite inclusion “⊃′′ (note: this is
in contrast to the Moreau-Rockafellar theorem).

As the second calculus rule, we consider the following analogue for generalized
gradients of the “interesting” inclusion in the Dubovitskii-Milyutin theorem:

Theorem 2.10 Let f1, . . . , fm : Rn → R be Lipschitz near x0 ∈ Rn. Let f : Rn → R
be given by

f(x) := max
1≤i≤m

fi(x)

and let I(x0) be the (nonempty) set of all i ∈ {1, . . . ,m} for which fi(x0) = f(x0).
Then

∂̄f(x0) ⊂ co
(
∪i∈I(x0)∂̄fi(x0)

)
.

Proof. First, we have that for |h| sufficiently small I(x0 + h) ⊂ I(x0). Indeed,
if j 6∈ I(x0), then continuity of fj and f implies that there exists δj > 0 such that
fj(x0 + h) < f(x0 + h) for |h| < δj. Hence, j 6∈ I(x0 + h). So I(x0 + h) ⊂ I(x0) for
|h| < minj 6∈I(x0) δj. It follows that for every d ∈ Rn

f(x0+h+λd)−f(x0+h) ≤ max
i∈I(x0+h+λd)

fi(x0+h+λd)−fi(x0+h) ≤ max
i∈I(x0)

fi(x0+h+λd)−fi(x0+h),
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where the last inequality holds by the above inclusion I(x0+h+λd) ⊂ I(x0), provided
that |h| and λ are sufficiently small. After division by λ and taking the limes superior
in the usual way, we find

f o(x0; d) ≤ max
i∈I(x0)

f o
i (x0; d) for every d ∈ Rn. (2)

Let ξ0 be arbitrary in ∂̄f(x0). Suppose that ξ0 did not belong to the compact convex
set C := co ∪i∈I(x0) ∂̄fi(x0). Then we could separate strictly by Theorem A.2 in [1]:
there would exist d ∈ Rn and α ∈ R such that

ξt
0d > α ≥ sup

ξ∈C
ξtd = max

i∈I(x0)
sup

ξ∈∂̄fi(x0)

ξtd = max
i∈I(x0)

f o
i (x0; d),

where the identity on the right holds by Theorem 2.5(iii). But by that same theorem,
ξt
0d ≤ f o(x0; d), so we would get a contradiction to (2). Hence we conclude that ξ0

belongs to co ∪i∈I(x0) ∂̄fi(x0). QED

Exercise 2.6 Show by means of a counterexample that in Theorem 2.10 it is in
general not possible to have the opposite inclusion “⊃′′ (note: this is in contrast to
the Dubovitskii-Milyutin theorem).

3 Generalized gradients and the KKT theorem

It is not surprising that Theorem 2.10 à la Dubovitskii-Milyutin will again serve us
well in connection with the inequality constraints in proving the Lagrangain inclu-
sion and complementary slackness relationship. But, in connection with the equality
constraints, the counterpart of the obtuse angle property can no longer be expected
to come from gradients connected with indicator functions, since indicator functions
completely lack the local Lipschitz property that Clarke’s generalized gradient calcu-
lus requires. First, we discuss the analogue of the “small” KKT Theorem 2.10 in [1].
Recall that this is the “set constraints only” version of the KKT theorem. Below we
write distS(x) := infx′∈S |x− x′|.

Theorem 3.1 (“small” KKT) Let S be a closed subset of Rn and let f : Rn → R
be Lipschitz near x̄ ∈ S. Consider the optimization problem

(P ) inf
x∈S

f(x).

If x̄ is a local optimal solution of (P ), then there exists η̄ ∈ Rn such that

0 ∈ ∂̄f(x̄) + η̄

and
η̄ ∈ ∪t>0t ∂̄distS(x̄) (normal cone property).
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A notable difference with its counterpart in [1] is that this result has only necessary
conditions for (local) optimality. In contrast, Theorem 2.10 in [1] contained also suf-
ficient conditions for (global) optimality, which was possible because of its convexity
conditions. This pattern will be reproduced in the KKT theorems that follow be-
low: only necessary conditions for (local) optimality can be stated within the present
locally Lipschitz framework.

Proof. By hypothesis, there exists ε > 0 such that f(x̄ ≤ f(x) for all x ∈
S ∩ Bε(x̄) and such that f has the local Lipschitz property on Bε(x̄) with Lipschitz
constant K > 0.

Case 1: S = Rn. In this case we simply take h = 0 in Definition 2.3 and get

f o(x̄; d) ≥ lim
δ↓0

sup
λ∈(0,δ)

f(x̄ + λd)− f(x̄)

λ
= lim sup

λ↓0

f(x̄ + λd)− f(x̄)

λ
≥ 0 = 0td

for every d, since f(x̄ + λd) ≥ f(x̄) for λ < ε/|d|. Hence,

0 ∈ ∂̄f(x̄).

Since distRn(x) = 0 for all x, we finish by setting η̄ := 0.
Case 2: general case. We reduce this to the unconstrained situation of Case 1 as

follows: We claim that x̄ is also a local optimal solution of the unconstrained auxiliary
problem

(P ′) inf
x∈Bε/2(x̄)

[f(x) + KdistS(x)] .

For suppose that there existed an x ∈ Bε/2(x̄) (note already: this implies distS(x) <
ε/2) for which f(x) + KdistS(x) < f(x̄); then, by [2, Theorem 2.4.1] there would
exist x′ ∈ S such that |x− x′| = distS(x) < ε/2. Notice that then |x′ − x̄| < ε by the
triangle inequality. Yet the local Lipschitz property gives f(x′) ≤ f(x) + K|x′− x| =
f(x) + KdistS(x) < f(x̄), which contradicts the given local optimality property of x̄.
This proves our claim about (P ′). By Case 1 and Theorem 2.9 this implies

0 ∈ ∂̄(f + KdistS)(x̄) ⊂ ∂̄f(x̄) + K∂̄distS(x̄).

Hence, the result follows. QED

Remark 3.2 (return of the (OAP)) The set ∪t>0t ∂̄distS(x̄) is called the normal
cone to S at x̄. If S is additionally convex, then this normal cone consists precisely
of all vectors having the obtuse angle property that we used in [1]. For then distS

is obviously convex, so ∂̄distS(x̄) = ∂distS(x̄) (Proposition 2.8), and from this the
above fact follows easily.

Exercise 3.1 Give a complete proof of the fact mentioned in the above remark.

We now can prove a first version of the KKT theorem by means of the “small”
KKT Theorem 3.1 and the Dubovitskii-Milyutin-like Theorem 2.10. This develop-
ment is very similar to the proof of Theorem 3.1 in [1], which is the convex counterpart
of the following result:
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Theorem 3.3 (KKT – no equality constraints) Let S ⊂ Rn be closed and let
f, g1, . . . , gm : Rn → R be Lipschitz near x̄ ∈ S. Consider the nonlinear programming
problem

(P ) inf
x∈S

{f(x) : g1(x) ≤ 0, . . . , gm(x) ≤ 0} .

Denote by I(x̄) the set of all i ∈ {1, . . . ,m} for which gi(x̄) = 0.
If x̄ is a local optimal solution of (P ), then there exist ū0 ∈ {0, 1} and ū :=

(ū1, . . . , ūm) ∈ Rm
+ , (ū0, ū1, . . . , ūm) 6= (0, 0, . . . , 0), and η̄ ∈ Rn such that

ūigi(x̄) = 0 for i = 1, . . . ,m (complementary slackness),

0 ∈ ū0∂̄f(x̄) +
∑

i∈I(x̄)

ūi∂̄gi(x̄) + η̄ (Lagrange inclusion),

η̄ ∈ ∪t>0t ∂̄distS(x̄) (normal cone property).

Proof. Let us write I := I(x̄). Consider the auxiliary optimization problem

(P ′) inf
x∈S

φ(x),

where φ(x) := max[f(x)−f(x̄), max1≤i≤m gi(x)]. Since x̄ is a local optimal solution of
(P ), it is not hard to see that x̄ is also local optimal for (P ′) (observe that φ(x̄) = 0
and that x ∈ S is feasible if and only if max1≤i≤m gi(x) ≤ 0). By Theorem 3.1
there exists η̄ in Rn such that η̄ has the normal cone property and −η̄ ∈ ∂̄φ(x̄). By
Theorem 2.10 this gives

−η̄ ∈ ∂̄φ(x̄) = co(∂̄f(x̄) ∪ ∪i∈I ∂̄gi(x̄)).

Since generalized gradients form convex sets, we get the existence of (u0, ξ0) ∈ R+ ×
∂̄f(x̄) and (ui, ξi) ∈ R+ × ∂̄gi(x̄), i ∈ I, such that

∑
i∈{0}∪I ui = 1 and

−η̄ =
∑

i∈{0}∪I

uiξi.

In case u0 = 0, we are done by setting ūi := ui for i ∈ {0} ∪ I and ūi := 0 otherwise.
Observe that in this case (ū1, . . . , ūm) 6= (0, . . . , 0) by

∑
i∈I ui = 1. In case u0 6= 0,

we know that u0 > 0, so we can set ūi := ui/u0 for i ∈ {0} ∪ I and ūi := 0 otherwise.
QED

From Chapter 4 in [2] we already know that the inclusion of equality constraints
in the KKT theorem requires considerable additional analytical efforts.

Recall that in Chapter 4 of [2] these efforts involved a certain version of the
implicit function theorem. Recall also that this theorem is proven by appealing to
completeness of the underlying (Euclidean) space. The situation is not different for
the treatment by means of generalized gradients: We shall need extra analytical
results, and these are based on the completeness of the underlying (Euclidean) space.
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Theorem 3.4 (Ekeland) Let S ⊂ Rn be closed and let F : S → R be lower semi-
continuous on and bounded from below. Let x0 ∈ S be such that F (x0) ≤ infS F + ε
for ε > 0. Then there exists x̃ ∈ S such that |x0 − x̃| ≤

√
ε and

F (x̃) ≤ F (x) +
√

ε|x− x̃| for all x ∈ S.

This so-called variational principle states, rather surprisingly, that an almost-mimimizer
of F is, in a certain sense, very close to an exact minimizer of an “almost-F” function.
A proof can be found in [4, pp. 266-268].

Theorem 3.5 (KKT – general case) Let S ⊂ Rn be closed and let f , g1, . . . , gm,
h1, . . . , hp : Rn → R be Lipschitz near x̄ ∈ S. Consider the nonlinear programming
problem

(P ) inf
x∈S

{f(x) : g1(x) ≤ 0, . . . , gm(x) ≤ 0, h1(x) = · · · = hp(x) = 0} .

Denote by I(x̄) the set of all i ∈ {1, . . . ,m} for which gi(x̄) = 0. If x̄ is a local
optimal solution of (P ), then there exist multipliers ū0 ∈ {0, 1}, ū ∈ Rm

+ , v̄ ∈ Rp,
(ū0, ū, v̄) 6= (0, 0, 0), and η̄ ∈ Rn such that the complementary slackness relationship
and normal cone property hold as in Theorem 3.3, as well as:

0 ∈ ū0∂̄f(x̄) +
∑

i∈I(x̄)

ūi∂̄gi(x̄) +

p∑
j=1

v̄j ∂̄hj(x̄) + η̄ (Lagrange inclusion).

Lemma 3.6 (closure property) Let F : Rn → R be Lipschitz near x0 ∈ Rn. Sup-
pose that (xk) ⊂ Rn converges to x0 and that (ξk), with ξk ∈ ∂̄F (xk) for each k,
converges to ξ0. Then ξ0 ∈ ∂̄F (x0).

Proof. Let d ∈ Rn be arbitrary. For each k we have F o(xk; d) ≥ ξt
kd. Hence,

there exist hk ∈ Rn and λk > 0 such that |hk|, λk < 1/k and

F (xk + hk + λkd)− F (xk + hk)

λk

> ξt
kd− 1/k.

Since xk+hk = x0+h′k, where h′k := xk−x0+hk → 0, Definition 2.3 gives immediately
F o(x0; d) ≥ ξt

0d. Since d was arbitrary, we get ξ0 ∈ ∂̄F (x0). QED

Proof of Theorem 3.5. Step 1: application of Ekeland’s theorem and Theo-
rem 3.1. We form the following function Fε : Rn → R; here ε > 0:

Fε(x) := max

[
f(x)− f(x̄) + ε, max

1≤i≤m
gi(x), max

1≤j≤p
|hj(x)|

]
.

Clearly, Fε ≥ 0 and we have Fε(x̄) = ε. So by Ekeland’s theorem there exists a x̃ε,
|x̃ε − x̄| <

√
ε, that is a local optimal solution of the following problem:

(Pε) inf
x∈S

[
Fε(x) +

√
ε|x− x̃ε|

]
.
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Note already that Fε(x̃ε) > 0 for sufficiently small ε (or else we would have an obvious
contradiction to the local optimality of x̄ in (P )). We now repeat the part of the proof
of Theorem 3.3 involving the auxiliary problem (P ′) and the successive application
of Theorems 3.1 and 2.9, to get

0 ∈ ∂̄Fε(x̃ε) +
√

ε∂̄bε(x̃ε) + K∂̄distS(x̃ε),

where bε(x) := |x− x̃ε|.
Step 2: extraction of convergent subsequences. Observe that ∂̄bε(x̃ε) = cl B1(0),

by an easy adaptation of Example 2.4. So the result of step 1 can be phrased as
follows: there exist ξε ∈ ∂̄Fε(x̃ε) and ηε ∈ K∂̄distS(x̃ε) such that |ξε + ηε| ≤

√
ε.

Thus, since ∂̄distS(x̃ε) ⊂ cl B1(0) (apply Theorem 2.5(ii), observing that distS has
Lipschitz constant 1), we may invoke the Bolzano-Weierstrass theorem and conclude
that a certain subsequence (ξε′ , ηε′) converges to some (ξ, η) with |ξ + η| = 0 (i.e.,
ξ = −η).

Step 3: proof of (NCP). Since |x̃ε′ − x̄| ≤
√

ε′ → 0, it follows already from
Lemma 3.6 that η ∈ K∂̄distS(x̄). Hence, η belongs to the normal cone to S at x̄.

Step 4: proof of (CS). In step 2 we found ξε′ ∈ ∂̄Fε′(x̃ε′), so by Theorem 2.10
there exist (u0,ε′ , ξ0,ε′) ∈ R+ × ∂̄f(x̃ε′), (ui,ε′ , ξi,ε′) ∈ R+ × ∂̄gi(x̃ε′), i = 1, . . . ,m and
(wj,ε′ , ξ′j,ε′) ∈ R+ × ∂̄|hj|(x̃ε′), j = 1, . . . , p, such that

ξε′ =
m∑

i=0

ui,ε′ξi,ε′ +

p∑
j=1

wj,ε′ξ′j,ε′ , (3)

and
∑m

i=0 ui,ε′ +
∑p

j=1 wj,ε′ = 1. This allows us to suppose without loss of generality
(rather than extracting a suitable subsequence by the Bolzano-Weierstrass theorem)
that (ui,ε′) converges to ui ∈ R+ for each i and that (wj,ε′) converges to wj ∈ R+ for
each j. Observe that in the limit we retain the convex combination property:

m∑
i=0

ui +

p∑
j=1

wj = 1. (4)

Still by Theorem 2.10, we also have for i = 1, . . . ,m that if gi(x̃ε′) < Fε′(x̃ε′), then
ui,ε′ = 0 and for j = 1, . . . , p that if |hj|(x̃ε′) < Fε′(x̃ε′), then wj,ε′ = 0. Now if
i 6∈ I(x̄), then gi(x̄) < 0, whence gi(x̃ε′) < 0 for ε′ sufficiently small. But this means
ui,ε′ = 0 by the above (recall from step 1 that Fε(x̃ε′) > 0). This proves ui = 0 for
i 6∈ I(x̄). In other words, (CS) holds.

Step 5: Application of Exercise 2.3. We claim for each j the existence of vj,ε′ ∈ R,
|vj,ε′| = wj,ε′ and ξ′′j,ε ∈ ∂̄hj(x̃ε′) such that

wj,ε′ξ′j,ε′ = vj,ε′ξ′′j,ε′ . (5)

Indeed, if hj(x̃ε′) = 0, then 0 = |hj|(x̃ε′) < Fε′(x̃ε′), so wj,ε′ = 0 by step 4. Of course,
then we can match by taking vj,ε′ := 0. On the other hand, if hj(x̃ε′) 6= 0, then the
result follows from Exercise 2.3: we then set vj,ε′ := signhj(x̃ε′)wj,ε′ . It is clear that,

12



without loss of generality, we may suppose that for each j the sequence vj,ε′ converges
to some vj ∈ R.

Step 6: proof of (LI). In steps 4, 5 we found ξ0,ε′ ∈ ∂̄f(x̃ε′), ξi,ε′ ∈ ∂̄gi(x̃ε′), and
ξ′′j,ε′ ∈ ∂̄hj(x̃ε′). Applying Theorem 2.5(ii) we may suppose without loss of generality
that (ξi,ε′) converges to some ξi ∈ Rn for each i and that (ξ′′j,ε) converges to some
ξ′′j ∈ Rn for each j; application of Lemma 3.6 then gives

ξ0 ∈ ∂̄(x̄), ξi ∈ ∂̄gi(x̄), ξ′′j ∈ ∂̄hj(x̄).

Taking now the limit in (3), while taking into consideration (5), gives

−η = ξ =
m∑

i=0

uiξi +

p∑
j=1

vjξ
′′
j .

In case u0 = 0, we set ūi := ui, v̄j := vj for all i, j and we set η̄ := η. Observe that
then (ū, v̄) 6= (0, 0) by (4). In case u0 > 0, we normalize: set ūi := ui/u0, v̄j := vj/u0

for all i, j and we set η̄ := η/u0. QED
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