
Perturbational duality (continued) and Applications
∗

Erik J. Balder

1 Polyhedral convexity and duality

A subset S of Rn is said to be polyhedral if it is the intersection of a finite num-
ber of closed halfspaces, i.e., if there exist J ∈ N and collections {y1, . . . , yJ} ⊂ Rn,
{α1, . . . , αJ} ⊂ R such that S = ∩J

j=1{x ∈ Rn : ytjx ≤ αj}. A function f : Rn →
[−∞,+∞] is polyhedral if its epigraph epi f ⊂ Rn+1 is a polyhedral set. Clearly,
any polyhedral set is automatically convex and closed. Consequently, any polyhedral
function is convex and lower semicontinuous (exercise). Polyhedral functions have a
special form, which can also be used to obtain refinements of the previous duality
results (for instance, refinements that include linear programming duality). We shall
not go into the details of this, but the following example illustrates the main point,
which is to be confirmed by Proposition 1.2 below: the conditions under which poly-
hedral functions are subdifferentiable are less stringent than those of arbitrary convex
functions.

Example 1.1 a. Consider again the convex function f : R → (−∞,+∞], defined
by f(x) := 1−

√
1− x2 if |x| ≤ 1 and f(x) := +∞ otherwise. Consider the following

primal optimization problem (P ): inf{f(x) : 1−x ≤ 0}, which has the trivial optimal
solution x̄ = 1. If we perturb the right hand side of the inequality in the usual way,
we obtain (Pp): inf{f(x) : 1− x ≤ p}, For h(p) := inf(Pp) this gives

h(p) =


+∞ if p < 0

f(1− p) = 1−
√

2p− p2 if 0 ≤ p ≤ 1
f(0) = 0 if p > 1

Hence, the dual objective function is seen to be as follows. For q < 0 we get
−h∗(−q) = −∞. For q ≥ 0 we can determine h∗(q) = max(−q,−q + sup0≤t≤1[tq −
f(t)]) by first showing that sup0≤t≤1[tq − f(t)] =

√
1 + q2 − 1 and then conclud-

ing that −h∗(−q) = 1 − (q +
√

1 + q2)−1. So the dual problem (D) is to maximize

1 − (q +
√

1 + q2)−1 over all q ≥ 0. This gives sup(D) = 1 = f(x̄) = min(P ), but
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it is clear that there exists no optimal dual solution. These two findings could also
have been deduced directly from the calculation of h, which shows that (1) h(p) is
lower semicontinuous and finite at p = 0, but (2) ∂h(0) = ∅. In this problem the
perturbation function h is clearly not polyhedral.

b. Next, consider the same primal problem, but now with f(x) = |x| for |x| ≤ 1
and f(x) := +∞ otherwise. Then (P ): inf{f(x) : 1 − x ≤ 0} again has the trivial
optimal solution x̄ = 1. For (Pp): inf{f(x) : 1− x ≤ p} and h(p) := inf(Pp) we now
easily find

h(p) =


+∞ if p < 0
f(1− p) = 1− p if 0 ≤ p ≤ 1
f(0) = 0 if p > 1

The dual objective function is as follows: −h∗(−q) = −∞ if q < 0, −h∗(−q) = q if
0 ≤ q < 1 and −h∗(−q) = 1 if q ≥ 1. Clearly, the set of all optimal dual solutions is
[1,+∞) (which is confirmed by −∂h(0) = [1,+∞)) and max(D) = 1 = min(P ). In
this problem the perturbation function is polyhedral.

Proposition 1.2 Let f : Rn → [−∞,+∞], f 6≡ +∞, be polyhedral.
(i) There exists a finite collection (possibly empty) of affine functions ai : Rn → R,

i ∈ I and a nonempty polyhedral set P ⊂ Rn such that

f(x) = χP (x)+̇ max
i∈I

ai(x) for every x ∈ Rn

and I may be empty, in which case the maximum is set to −∞.1

(ii) Moreover, if f 6≡ −∞ then

∂f(x0) 6= ∅ for every x0 ∈ dom f .

Proof. By definition, epi f is the intersection of some number J ≥ 1 of halfspaces
{(x, r) ∈ Rn×R : ztjx+ρjr ≤ αj}. We now distinguish the “vertical halfspaces” from
the non-vertical ones: let I ⊂ {1, . . . , J} be the set of all indices j with ρj 6= 0. If
j ∈ I, then ∅ 6= epi f ⊂ {(x, r) ∈ Rn ×R : ztjx+ ρjr ≤ αj} implies ρj < 0 and we set
aj(x) := (αj − ztjx)/ρj. Also, we define P := ∩j 6∈I{x ∈ Rn : ztjx ≤ αj} ⊂ Rn; then P
is polyhedral. Now epif = {(x, r) : x ∈ P} ∩ ∩j∈Iepi aj. If I is nonempty, then this
states epif = epi(χP + maxj∈I aj) and the desired identity follows; observe also that
in this case f > −∞. If I is empty, we find epi f = P × R and the desired identity
also follows. Finally, by the preceding lines the extra condition f > −∞ implies that
I is nonempty. In this case both x 7→ maxi∈I ai(x) and χP take values in (−∞,+∞].
The final step of the proof of part (ii) now follows by the Moreau-Rockafellar theorem
in [OSC] (exercise). QED

Using certain representation results for polyhedral sets (which state that any
such set can be decomposed as the sum C + K of a convex hull C of finitely many
points and a finitely generated cone K) it can be proved that if the function φ in

1Observe: in this situation the identity comes down to the following: f(x) = −∞ if x ∈ P and
f(x) = +∞ if x ∈ Rn\P .
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section 3 of part I is polyhedral, then so is the perturbation function h [R] . Therefore,
part (ii) of the above proposition implies that in this situation strong duality holds
under less stringent conditions than those stated in Theorem 1.3 of Part I. A special,
but important consequence of this development is the following version of Fenchel’s
duality theorem, which has a much weaker sufficient condition for strong stability
than Theorem 3.2 in part I:

Theorem 1.3 (Fenchel’s duality theorem for polyhedral functions) Consider the fol-
lowing convex minimization problem

(PF ) inf
x∈Rn

[f(x) + g(Ax)],

where f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] are polyhedral functions and
A is an m× n-matrix. Suppose that inf(PF ) ∈ R.

Define the associated Fenchel dual problem as follows:

(DF ) sup
q∈Rm

[−f ∗(Atq)− g∗(−q)].

(i) For every x ∈ Rn and every q ∈ Rm

−f ∗(Atq)− g∗(−q) ≤ f(x) + g(Ax).

(ii) If 0 ∈ dom g − A(dom f)), then

inf(PF ) = max(DF ).

Moreover, then x̄ ∈ Rn is optimal for (PF ) and q̄ ∈ Rk is optimal for (DF ) if and
only if

Atq̄ ∈ ∂f(x̄) and − q̄ ∈ ∂g(Ax̄).

2 Semidefinite programming duality

Until now, we have worked with optimization problems defined on the finite-dimensional
vector space Rn, whose inner product was given by < x, y >:= xty. In this section
we shall consider another finite-dimensional vector space, namely the set Sn of all
symmetric n× n-matrices. This vector space has R as the field of scalars. It has the
following inner product

〈X, Y 〉 := tr(XY ) =:=
∑
i

(XY )ii =
∑
i,j

Xi,jYi,j

and the corresponding inner product norm is ‖X‖ := (
∑

i,j X
2
i,j)

1/2. For fixed i < j

let Ei,j ∈ Sn be the n × n-matrix consisting of zeros except for the (i, j)-th and
(j, i)-th entries, which are set equal to 1

2

√
2. Also, let Ei,i ∈ Sn be the n× n-matrix

consisting of zeros except for the (i, i)-th entry, which is set equal to 1. Then every
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X in Sn can be decomposed as a linear combination of the 1
2
n(n + 1) matrices Ei,j,

which therefore form a basis of Sn:

X =
∑
i,j,j≥i

Xi,jE
i,j =

∑
i,j,j≥i

〈X,Ei,j〉Ei,j

and this basis can easily be checked to be orthonormal (i.e., its elements are mutually
orthogonal with respect to the above inner product and they all have unit length with
respect to the corresponding inner product norm). We shall leave it to the reader to
inspect that all the foregoing material in this course extends from Rn to an arbitrary
finite-dimensional vector space, hence to Sn in particular. Two special convex cones
in Sn are (1) Sn

+, the set of all n × n-matrices that are positive semidefinite (p.s.d.),
and (2) Sn

++, the set of all positive definite (p.d.) n× n-matrices. Recall that A ∈ Sn

is p.s.d. if xtAx ≥ 0 for all x ∈ Rn and A is p.d. if xtAx > 0 for all x ∈ Rn\{0}.

Exercise 2.1 Prove the following: Sn
+ and Sn

++ are convex cones and, moreover, Sn
+

is closed and Sn
++ is the interior of Sn

+.

Observe that Sn
+ forms a convex subset of Sn. However, it is a rather complicated

convex subset; for instance, for n = 2 a matrix X ∈ S2 belongs to S2
+ if and only if

X11, X22 ≥ 0 and X11X22 ≥ X2
12. (1)

Let Ai ∈ Sn and bi ∈ R for i = 1, . . . ,m. The primal semidefinite program is

(PSDP ) inf
X∈Sn+
{tr(CX) : tr(AiX) = bi, i = 1, . . . ,m}.

Of course, this can also be written as

(PSDP ) inf
X∈Sn+
{A(X) = b},

where b := (b1, . . . , bm)t and where the linear mapping A : Sn → Rm is given by

A(X) := (〈Ai, X〉)mi=1.

The form of (PSDP ) is similar to that of the standard linear program

inf
x∈Rn

+

{< c, x >:< ai, x >= bi, i = 1, . . . ,m},

where the corresponding linear mapping is the matrix multiplication x 7→ Ax, with
A being the n ×m-matrix whose i-th row is the horizontal vector ati. We shall now
show that the natural dual problem of (PSDP ) is given by

(DSDP ) sup
q∈Rm

{btq : C −
m∑
i=1

qiAi ∈ Sn
+}.

Conversely, by biduality (see the previous section), (PSDP ) can also be regarded as
the dual of (DSDP ). Semidefinite programs form a broad class of convex optimiza-
tion problems. They include linear programming, quadratic programming, but also
fractional programming as the next example shows:
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Example 2.1 Consider for an m× n-matrix A and vectors c, d ∈ Rn, b ∈ Rm:

(P ) inf
x∈Rn
{(ctx)2

dtx
: Ax+ b ≥ 0}.

We assume that dtx > 0 for every x with Ax+ b ≥ 0. Then (P ) can be rewritten as

inf
t∈R,x∈Rn

{t : Ax+ b ≥ 0, (ctx)2 ≤ tdtx}

Note that the last constraint is of the same form as (1). That enables us to rewrite
(P ) in the same form as (DSDP ) (exercise).

Exercise 2.2 Execute the last line in Example 2.1.

We have the following result about duality for SDP:

Theorem 2.2 (i) Suppose that (PSDP ) has a feasible solution that is p.d. Then
inf(PSDP ) = max(DSDP ), provided that sup(DSDP ) ∈ R.
(ii) Suppose that there exists q̃ ∈ Rm such that C − q̃iAi is p.d. Then min(PSDP ) =
sup(DSDP ), provided that inf(PSDP ) ∈ R.

Proof.Step 1. In this step we prove that Fenchel’s duality theorem applies. Let
K := Sn

+ and observe that the negative polar K∗ equals the cone −Sn
+ of all negative

semidefinite symmetric matrices. Define f : Sn → (−∞,+∞] and g : Rm → R by
f(X) := 〈C,X〉+ χK(X) and g(y) := χ{b}(y). Then (PSPD) can be rewritten as the
following version of Fenchel’s primal (PF ):

inf
X∈Sn

[f(X) + g(A(X))].

Observe that

f ∗(Y ) := sup
X∈Sn

[〈X, Y 〉 − f(X)] =

{
0 if Y − C ∈ K∗
+∞ otherwise

}
= χC+K∗(Y )

and that g∗(−q) = supy∈Rm [(−q)ty − χ{b}(y)] = −qtb. According to Fenchel the
corresponding dual version of (PSDP ) is

sup
q∈Rm

[−f ∗(A∗(q))− g∗(−q)],

where A∗ : Rm → Sn is the so-called adjoint of the operator A, which is defined via
the following relationship:2

〈X,A∗(q)〉 =< A(X), q > for every X ∈ Sn, q ∈ Rm.

2Notice that for a matrix operator x 7→ Ax from Rn to Rm the same kind of relationship leads
to the adjoint being q 7→ Atq, because of < Ax, q >= xtAtq.
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Combining the above, we conclude that the previous dual version of (PSDP ) can be
rewritten as

sup
q∈Rm

[−χC+K∗(A∗(q))− (−qtb)

and it is easy to see that this optimization problem coincides with the above problem
(DSDP ).

Step 2. Based on step 1, we may apply Fenchel’s duality theorem. To prove (i),
we distinguish between the following cases:

Case 1: inf(PSDP ) = −∞. In this case weak duality implies sup(DSDP ) = −∞,
which is impossible.

Case 2: inf(PSDP ) = +∞. This is impossible by the fact that (PSDP ) has a
feasible solution that is p.d.

Case 3: inf(PSDP ) ∈ R. Because of the above substitutions, the sufficient con-
dition for stability in Fenchel’s duality theorem is as follows: 0 ∈ int ({b} − A(K)),
i.e., b ∈ int A(K). This condition is satisfied, because of Exercise 2.3 below. In
Exercise 2.4 the reader is invited to prove (ii). QED

Exercise 2.3 Show: if (PSDP ) has an feasible solution that is p.d., then b ∈ int A(K)
holds in case 3 of part (i).

Exercise 2.4 Prove part (ii) of Theorem 2.2. Hint: Use the bidual approach of
section 4 in part I. As an alternative, observe that (DSDP ) is equivalent to a problem
of the following form: infq∈Rm{btq : c−A∗q ∈ K}, where A∗, b, c and K are as in the
proof of part (i). Using this as the primal problem, apply Fenchel’s duality theorem
(note here that A∗∗ = A).

Exercise 2.5 Consider (PSDP ) for n = 2, m = 1, with b = 0, C :=

(
0 1
1 0

)
and

A1 :=

(
1 0
0 0

)
.

a. Show: min(PSDP ) = 0, but (DSDP ) has no feasible solutions. Hint: M ∈ S2 is
s.p.d. if and only if M11,M22 ≥ 0 and M11M22 −M2

12 ≥ 0.
b. Show explicitly that in this example the conditions of Theorem 2.2 do not hold.

3 Applications of duality: von Neumann’s mini-

max theorem

As an important application of duality, we now present von Neumann’s minimax
theorem for zero-sum noncooperative games, which establishes equilibrium existence
for mixed strategies. We describe a zero-sum game for two players I and II. Each
player can choose from finitely many actions; more precisely, player I can choose
between m actions 1, . . . ,m and player II between n actions 1, . . . , n. Let P be an
m×n-matrix; this is the payoff matrix: when I chooses action i and II chooses action
j, then I has to pay II the amount of pij dollars (here pij stands for the element in
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the i-the row and j-th column of P – a negative number pij means, of course, that II
is effectively paying a positive amount to I)).

The idea of the game is that player I wishes to choose i in such a way that the the
amount pij (which she has to pay to II) is kept small, whereas player II, who is on the
receiving end, wishes to keep pij large by choosing j prudently. A pure equilibrium
for the game consists of a pair (̄i, j̄) such that

pīj̄ ≤ pij̄ for i = 1, . . . ,m and pīj̄ ≥ pīj for j = 1, . . . , n. (2)

To understand this notion, observe that any deviation from ī results in a loss for player
I in that she has to pay more (or at least not less) to II; similarly, any deviation from
j̄ results in a loss for player II in that he will receive less from I. Unfortunately,
such a pure equilibrium rarely exists, because (2) amounts to the matrix P having a
saddle point pī,j̄. However, most matrices do not possess such saddle points. For
instance, the 2× 2 matrix P with p11 = p22 = 1 and p12 = p21 = −1 (this models the
well-known game of “matching pennies”) does not have a saddle point.

Von Neumann’s resolution of this dilemma (which was already known to gamblers
as early as 1713) is to allow both players to use mixed strategies. Formally, this means
that players I and II each can choose a probability vector from the unit simplices
SI := {x ∈ Rm

+ :
∑n

i=1 xi = 1} and SII := {u ∈ Rn
+ :
∑m

j=1 uj = 1} respectively. By
basic expectation and probabilistic independence considerations the expected payoff
E(x, u) for player I is then defined as

E(x, u) :=
m∑
i=1

n∑
j=1

xiujpij = xtPu,

when I uses x ∈ SI and II uses u ∈ SII . A mixed equilibrium for the game consists of
a pair (x̄, ū) such that

E(x̄, ū) ≤ E(x, ū) for all x ∈ SI and E(x̄, ū) ≥ E(x̄, u) for all u ∈ SII .

The interpretation of this notion is quite similar to the one given above for the pure
equilibrium: players cannot become better off by deviating. Of course, the use of
expectations in this equilibrium notion requires further justification, for which we
refer to the literature on game theory. Observe that if a pure equilibrium should
exist, this corresponds to having a special mixed equilibrium, namely one where the
pair of probability vectors consists of two unit vectors. The success of the mixed
extension of the pure equilibrium concept lies in the fact that for both the simple
games considered here and their generalizations, a mixed equilibrium always exists:

Theorem 3.1 (von Neumann) For the above game there exists at least one mixed
equilibrium pair.

Proof. Observe first that maxj(x
tP )j = maxj x

tP j = supu∈SII
E(x, u) for every

x ∈ SI , because the maximum of the linear function u 7→ xtPu over the unit simplex
SII is attained in the extreme point (= unit vector) ej of SII for which xtPej = xtP j
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has the largest value. Similarly, we get mini(Pu)i = mini P
t
i u = infx∈SI

E(x, u) for
every u ∈ SII . Consider now the optimization problem

(PI) inf
x∈SI

max
j
xtP j.

By the Weierstrass theorem, there exists an optimal solution x̄ ∈ SI of (PI). By
the obvious identity maxj x

tP j = inf{r ∈ R : r ≥ xtP j for j = 1, . . . , n} we have
inf (PI) = inf (P ′I), where

(P ′I) inf
x≥0,r∈R

{r : xtP j − r ≤ 0, j = 1, . . . , n, 1−
m∑
i=1

xi = 0},

is an equivalent optimization problem. This has as its optimal solution the pair (x̄, r̄),
with r̄ := maxj x̄

tP j. The problem (P ′I) is a special case of the convex programming
problem in the Lagrangian duality theorem. We see this by the substitutions S :=
Rm

+ ×R, f(x, r) := r, gj(x, r) := xtP j−r, A := (−1, · · · ,−1, 0) and b := −1. Observe
that the regularity conditions of that theorem hold (including Slater’s constraint
qualification – notice that (1/m, · · · , 1/m) lies in int Rm

+ ∩ L and that gj(0,−1) =
−1 < 0). Hence, there exist ū ∈ Rn

+, v̄ ∈ R such that

θ1(ū, v̄) = r̄ = max
j

(x̄tP )j.

Here
θ1(u, v) := inf

x≥0,r∈R
r +

∑
j

uj(x
tP j − r) + v(1−

∑
i

xi)

is the dual objective function. By rewriting this as

θ1(u, v) = inf
x≥0,r∈R

v + r(1−
∑
j

uj) +
∑
i

xi((Pu)i − v)

we obtain

θ1(u, v) =

{
v if

∑
j uj = 1 and mini(Pu)i ≥ v,

−∞ otherwise.

Since θ1(ū, v̄) > −∞, we have ū ∈ SII and mini(Pū)i ≥ v̄ = θ1(ū, v̄) = maxj(x̄
tP )j.

By what was said at the start of this proof, this amounts to infx∈SI
E(x, ū) ≥

supu∈SII
E(x̄, u), and by E(x̄, ū) ≥ infx∈SI

E(x, ū) ≥ supu∈SII
E(x̄, u) ≥ E(x̄, ū) this

shows that (x̄, ū) is a mixed equilibrium pair. QED

Corollary 3.2 If (x̄, ū) is a mixed equilibrium pair, then

x̄i((Pū)i − v̄) = 0 for i = 1, . . . ,m (equalizing property for player I),

ūj((P
tx̄)j − v̄) = 0 for j = 1, . . . , n (equalizing property for player II),

where, as in the proof of Theorem 3.1,

v̄ := inf
x∈SI

sup
u∈SII

E(x, u) = sup
u∈SII

inf
x∈SI

E(x, u).
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Proof. Observe that in the proof of Theorem 3.1 the following complementary
slackness relation must hold, as a consequence of the duality theorem: ūj((x̄

tP )j−r̄) =
0 for every j. From that proof it is also clear that r̄ = v̄. The other equalizing property
follows by rewriting: 0 =

∑
j ūj((x̄

tP )j − v) = x̄tPū − v =
∑

i x̄i((Pū)i − v). The
latter sum has only nonnegative terms. QED

The following examples demonstrate the importance of the equalizing property in
determining equilibrium solutions for games; this is quite comparable to the impor-
tance of complementary slackness when solving ordinary NLP problems.

Let the support supp ū of ū be defined as the set of all j, 1 ≤ j ≤ n, such that
ūj > 0; this is the set of all player II’s actions j which have positive probability under
the mixed strategy ū. Observe that the equalizing property for player I ensures that
(P tx̄)j = v for every j ∈ supp ū. Similarly, the equalizing property for player II gives
(Pū)i = v for every i ∈ supp x̄.

Example 3.3 Consider the game with payoff matrix

P =

(
2 3 1 5
4 1 6 0

)
The four functions (p2j − p1j)x2 + p1j , as well as their pointwise maximum, can be
plotted easily. Thus, the minimizer of the pointwise maximum function is seen to be
x̄2 = 2/5; this gives x̄ = (3/5, 2/5)t for player I’s equilibrium strategy. Also, v = 3.
Observe that x̄tP = (14/5, 11/5, 3, 3), so ū1 = ū2 = 0 by the equalizing property
for player I. Also, since supp x̄ = {1, 2}, player II’s equalizing property leads to the
equations ū3 + 5ū4 = 3 and 6ū3 = 3, which result in ū = (0, 0, 1/2, 1/2)t.

The following surveillance example, with the same structure as Example 3.3 above,
is from [KF]:

Example 3.4 [surveillance of a store] A store has two rooms A and B and a control
room T with t.v. monitors. The store is being guarded by two surveillants. There
is one (prospective) thief, who can strike in either A or B. When the thief strikes,
then his/her chance of being caught in the act by a specific surveillant in T is 0.3
in room A and 0.5 in room B. The corresponding probabilities of being caught by
a specific surveillant in A are 0.4 and 0.2, and these numbers change into 0.3 and
0.7 respectively when the specific surveillant is in room B. The thief (“player I”) has
two actions (A or B). Together, the two guards (“player II”) can choose between the
following six actions: TT, AA, BB, TA, TB and AB (for instance, TA means that
one guard is in T and the other in room A, etc. – for simplicity we suppose that the
surveillants must stick to their choice and cannot switch rooms during the play). A
natural payoff matrix is

P =

(
.51 .64 .19 .58 .37 .46
.75 .36 .91 .60 .85 .76

)
To understand these entries, observe for instance that when the thief chooses room
A (i.e., row 1) and the surveillants choose action TA (i.e., column 4), then, assuming
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the surveillants operate independently from each other, the probability of the thief
not being caught is 0.7 * 0.6 = 0.42. Thus, the corresponding entry in P is 1 - 0.42
= 0.58, etc. By reasoning just as in Example 3.3, we find as equilibrium strategies
x̄ = (0.8, 0.2)t for the thief and ȳ = (0, 1/15, 0, 14/15, 0, 0)t for the surveillants.

Example 3.5 Let us consider a game that is symmetric, i.e. a game whose payoff
matrix is skew-symmetric: P = −P t. It is easy to see that by P = −P t Theorem 3.1
implies here that v = 0. Also, it is easy to see that in a symmetric game a mixed
equilibrium pair (x̄, ū) can always be taken in such a way that x̄ = ū. More concretely,
let us consider the skew-symmetric payoff matrix

P :=

 0 1 −2
−1 0 3
2 −3 0


and let (x̄, ū) be as in Theorem 3.1. We wish to compute this pair explicitly. Let
supp x̄ be the support of x̄.

Case 1: supp x̄ = {1}. In this case x̄ is the unit vector (1, 0, 0)t. But then we
would have 0 = vI = supu∈SII

E(x̄, u) = supj P1j = 1, which is impossible. Similar
reasoning excludes the other two cases where supp x̄ is a singleton.

Case 2: supp x̄ = {1, 2}. In this case x̄3 = 0 and x̄1, x̄2 > 0. By player II’s
equalizing property we find ū2 − 2ū3 = 0, −ū1 + 3ū3 = 0, which leads to ū =
(1/2, 1/3, 1/6)t. But then the equalizing property of player I gives three equations,
with solution x̄ = (0, 0, 0)t, which is impossible. Similar reasoning excludes the other
two cases where supp x̄ has precisely two elements.

Case 3: supp x̄ = {1, 2, 3}. This is the only remaining case. The equalizing
property for player II implies that (Pū)i = 0 for all i. The resulting 3 equations
can easily be solved, and we find ū = (1/2, 1/3, 1/6)t, just as in the previous case.
This time, however, application of player I’s equalizing property does not start from
x̄3 = 0, which resulted in the impossible x̄ = (0, 0, 0)t in case 2, but rather from
x̄i > 0 for all i, and this gives x̄ = (1/2, 1/3, 1/6)t. The pair (x̄, ū) just found is the
desired mixed equilibrium solution.
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Paris, 1963.
[L] J.-P. Laurent, Approximation et Optimisation, Herrmann, Paris, 1972.
[R] R.T. Rockafellar, Convex Analysis, Princeton Press, 1970.

11


