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Fundamentals:

Working with +∞ and −∞:

• ∀α∈(−∞,+∞] α + (+∞) = (+∞) + α = +∞.

• ∀α∈[−∞,+∞) α− (+∞) = α + (−∞) = −∞.

• neither (+∞) − (+∞) nor (+∞) + (−∞) etc.
defined!

• careful! 2 + (+∞) = 3 + (+∞) 6⇒ 2 = 3

• ∀α∈(0,+∞] α · (+∞) = +∞
• ∀α∈[−∞,0) α · (+∞) = −∞
• By definition: 0 · (+∞) = 0 · (−∞) = 0.

• ∀α∈R α/(+∞) = α/(−∞) = 0.

• neither (+∞)/(+∞) nor (+∞)/(−∞) etc. de-
fined!

• (+∞)/(+∞), etc. undefined.

• careful! 2/(+∞) = 3/(+∞) 6⇒ 2 = 3
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Convex sets in Rn:

Definition A.1: S ⊂ Rn is convex if

∀x1,x2∈S∀λ∈[0,1]λx1 + (1− λ)x2 ∈ S.

Convex functions:

Definition 2.1: Let S ⊂ Rn be convex. Then
f : S → (−∞, +∞] is convex on S if

∀x1,x2∈S∀λ∈[0,1]f (λx1+(1−λ)x2) ≤ λf (x1)+(1−λ)f (x2).

Also, f is strictly convex on S if

∀x1,x2∈S,x1 6=x2∀λ∈(0,1)f (λx1+(1−λ)x2) < λf(x1)+(1−λ)f (x2).

Remark: f 6= −∞, so λ(+∞) + (1 − λ)(−∞)
cannot confuse us.

Associated definition: Let f : S → [−∞, +∞).
Then: f is (strictly) concave on S ⇔−f is (strictly)
convex on S.

Example: f1(x) := ptx + α is affine, i.e., both
convex and concave, on Rn for any p ∈ Rn and α ∈
R. It is neither strictly convex nor strictly concave.

Example: f2(x) := β|x|2 is strictly convex on Rn

if β > 0. It is strictly concave on Rn if β < 0.
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Example (Exercise 2.1c): Let S := R+. Define
f3 : S → (−∞, +∞] by f3(x) := 1/x if x > 0 and
by f3(0) := γ. Then f3 can only be made convex on
S by setting γ = +∞.

Example (Exercise 2.7b): Define f4 : R →
(−∞, +∞] by f4(x) := 1−

√
1− x2 if |x| ≤ 1 and

f4(x) = +∞ if |x| > 1. Then f4 is convex on R.

Definition (Exercise 2.2): Let S ⊂ Rn be con-
vex. Then f : S → (−∞, +∞] is quasiconvex on
S if

∀α∈RSα := {x ∈ S : f (x) ≤ α} is convex

Every convex function on Rn is quasiconvex, but not
conversely.

Domain extension by adding values +∞:

Exercise 2.5: Let S ⊂ Rn be convex. Let f : S →
(−∞, +∞]. Define f̂ : Rn → (−∞, +∞] by

f̂ (x) :=

{
f (x) if x ∈ S
+∞ if x 6∈ S.

Exercise: f̂ convex on Rn ⇔ f convex on S.

Consequence: From now on we mainly consider
convex functions on Rn. This is thanks to working
with +∞!
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New habit: Speak of “convex functions” instead
of “convex functions on Rn”.

Definition 2.2: Let f : Rn → (−∞, +∞]. The
essential domain of f is defined by

dom f := {x ∈ Rn : f (x) < +∞}.
Exercise: f convex ⇒ dom f is convex, but not con-
versely.

Connections between convex sets and con-
vex functions:

From convex sets to convex functions:

Definition 2.3: Let S ⊂ Rn. The indicator func-
tion χS of S is defined by

χS(x) :=

{
0 if x ∈ S
+∞ if x 6∈ S.

Exercise: S convex set ⇔ χS convex function.

From convex functions to convex sets:

Definition 2.4: Let f : Rn → (−∞, +∞]. The
epigraph epi f ⊂ Rn+1 is defined by

epi f := {(x, y) ∈ Rn × R : f (x) ≤ y}.
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Exercise: f convex function ⇔ epi f convex set.

Remark: Many proofs of results for convex func-
tions “work” on their convex epigraphs by means of
separation results (see Appendix A).

Example: For S ⊂ Rn let f := χS. Then epif =
S × R+.

From convex functions to more convex functions:

Easy: Let fi : Rn → (−∞, +∞] be convex and
let αi ∈ [0, +∞] for i = 1, . . . ,m. Then f (x) :=∑m

i=1 αifi(x) defines a convex function, as does f (x) :=
max1≤i≤m αifi(x).

Exercise 2.6: Let S ⊂ Rn be convex. Let f : S →
R be convex and let g : D → R be convex and
nondecreasing on a convex interval D ⊂ R, with
D ⊃ f (S). Then h(x) := g(f (x)) defines a convex
function h : S → R.

Example (Exercise 2.7): a. If f : Rn → [0, +∞]
is convex on Rn, then so is f 2. However, f 2 need not
be convex if f can also take negative values.
b. f (x) := 1−

√
1− x2 is convex on [−1, +1].

c. f (x) := exp(x2) is convex on R.
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Subdifferentials and subgradients of convex
functions

Definition 2.5: Let f : Rn → (−∞, +∞], f 6≡
+∞, and let x0 ∈ domf (so f (x0) ∈ R).
a. A subgradient of f at x0 is a ξ ∈ Rn with

f (x) ≥ f (x0) + ξt(x− x0) for all x ∈ Rn.

b. The subdifferential of f at x0 is the set

∂f (x0) := {ξ ∈ Rn : ξ is subgradient of f at x0}.
This set may be empty!

Observation: If x0 6∈ domf (so f (x0) = +∞)
then ∂f (x0) = ∅. But ∂f (x0) = ∅ is also possible
for x0 ∈ dom f.

Example: a. Let f (x) := 1−
√

1− x2 on [−1, +1]
and define f (x) := +∞ if x < −1 or x > 1. Then
f is convex and 1 ∈ dom f . However, ∂f (1) = ∅.
b. Let f (x) := |x| on R. Then ∂f (2) = {1},
∂f (−3) = {−1} and ∂f (0) = [−1, +1].

For differentiable convex functions: “subgradient
= gradient”’:

Proposition 2.6: Let f : Rn → (−∞, +∞] be
convex. If f is differentiable at x0 ∈ int dom f , then
∂f (x0) = {∇f (x0)}.

6



Here: “int” means “interior”.

Example (Exercise 2.9b): In previous example
with f (x) = 1 −

√
1− x2 on [−1, +1] and f (x) =

+∞ if x < −1 or x > 1, one has ∂f (x) = {x/
√

1− x2}
for every x ∈ (−1, 1).

How to determine convexity of functions:

Proposition 2.7: Let S ⊂ Rn be open and convex.
Let f : S → R.

(i) If f is differentiable, then f is convex on S ⇔

∀x1,x2∈S(∇f (x1)−∇f (x2))
t(x1 − x2) ≥ 0.

(i′) If f is differentiable, then f is strictly convex
on S ⇔

∀x1,x2∈S,x1 6=x2(∇f (x1)−∇f (x2))
t(x1 − x2) > 0.

(ii) If f is twice continuously differentiable, then
f is convex on S ⇔ the Hessian matrix

Hf(x) :=

(
∂2f (x)

∂xi∂xj

)
i,j

is positive semidefinite at every point x of S.
(ii′) If f is twice continuously differentiable, then

Hf(x) is positive definite at every point x of S ⇒ f
is strictly convex on S
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Definition: An n×n matrix M is positive semidef-
inite if dtMd ≥ 0 for all d ∈ Rn. And M is positive
definite if dtMd > 0 for all d ∈ Rn, d 6= 0.

Corollary 2.8: Let S ⊂ R be open and convex.
Let f : S → R.

(i) If f is differentiable, then f is convex [strictly
convex] on S ⇔ f ′ is nondecreasing [increasing] on
S.

(ii) If f is twice continuously differentiable, then
f is convex [strictly convex] on S ⇔ [⇐] f ′′(x) ≥ 0
[f ′′(x) > 0] for all x ∈ S.
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MR-theorem and “small” KKT-theorem

Theorem 2.9 (Moreau-Rockafellar) Let f, g :
Rn → (−∞, +∞] be convex. Then

∀x0∈Rn∂f (x0) + ∂g(x0) ⊂ ∂(f + g)(x0).

Moreover, if int dom f ∩ dom g 6= ∅. Then also

∀x0∈Rn∂(f + g)(x0) ⊂ ∂f (x0) + ∂g(x0).

Comment: First part is trivial. Proof of second
part goes by separating hyperplane Theorem A.4,
applied to disjoint convex sets Λf and Λg that are
“epigraph-like” – see syllabus.

Theorem 2.10 (“small KKT”): Let f : Rn →
R be convex and let S ⊂ Rn be nonempty convex.
Consider the optimization problem

(P ) inf
x∈S

f (x).

Then

x̄ ∈ S optimal for (P ) ⇔ ∃ξ̄∈∂f(x̄)∀x∈S ξ̄t(x−x̄) ≥ 0.

Sketch of proof. Observe

x̄ ∈ S optimal for (P ) ⇔ 0 ∈ ∂(f + χS)(x̄).

Then apply MR-theorem to right side.
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