
Lagrangian duality and perturbational duality I ∗

Erik J. Balder

Our approach to the Karush-Kuhn-Tucker theorem in [OSC] was entirely based
on subdifferential calculus (essentially, it was an outgrowth of the two subdifferential
calculus rules contained in the Fenchel-Moreau and Dubovitskii-Milyutin theorems,
i.e., Theorems 2.9 and 2.17 of [OSC]). On the other hand, Proposition B.4(v) in
[OSC] gives an intimate connection between the subdifferential of a function and the
Fenchel conjugate of that function. In the present set of lecture notes this connection
forms the central analytical tool by which one can study the connections between an
optimization problem and its so-called dual optimization problem (such connections
are commonly known as duality relations). We shall first study duality for the convex
optimization problem that figured in our Karush-Kuhn-Tucker results. In this simple
form such duality is known as Lagrangian duality. Next, in section 2 this is followed by
a far-reaching extension of duality to abstract optimization problems, which leads to
duality-stability relationships. Then, in section 3 we specialize duality to optimization
problems with cone-type constraints, which includes Fenchel duality for semidefinite
programming problems.

1 Lagrangian duality

An interesting and useful interpretation of the KKT theorem can be obtained in terms
of the so-called duality principle (or relationships) for convex optimization. Recall
our standard convex minimization problem as we had it in [OSC]:

(P ) inf
x∈S
{f(x) : g1(x) ≤ 0, · · · , gm(x) ≤ 0, Ax− b = 0}

and recall that we allow the functions f, g1, . . . , gm on Rn to have values in (−∞,+∞].
Recall also that the feasible set of (P ) is sometimes denoted by Z. We assume that
the set of all feasible solutions is nonempty (in [OSC] that was not necessary, because
of the role assigned to x̄ in KKT-results). Let inf(P ) denote the value of the above
infimum in (P ). We shall assume that inf(P ) is not equal to +∞; this excludes the
trivial case where f is identically equal to +∞ on Z. We can associate to (P ) the
following maximization problem:

(D) sup
(u,v)∈Rm

+×Rp

θ(u, v),
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whose objective function is defined by

θ(u, v) := inf
x∈S

[f(x) +
m∑
i=1

uigi(x) + vt(Ax− b)].

In this section we shall refer to (D) as the (Lagrangian) dual optimization problem,1

associated to (P ). Together with giving this name to (D), it is customary to refer
to the original optimization problem (P ) as the primal optimization problem. The
function θ(u, v) is concave in (u, v), regardless of any convexity properties of (P ).
Also, θ cannot be equal to +∞ anywhere, but it may take the value −∞.

Exercise 1.1 a. Prove that the dual objective function θ(u, v) is concave in (u, v).

b. Prove that θ cannot be equal to +∞ anywhere.

Example 1.1 The standard linear programming problem (P ) is as follows:

(P ) inf
x∈S
{ctx : Ax− b = 0},

where S := Rn
+. Let us find the corresponding dual problem (D). Here (P ) is

a problem with no explicit inequality constraints; we can therefore do one of two
things: (1) introduce the purely cosmetic inequality constraint g1(x) ≤ 0 with g1 ≡ 0
or (2) re-read the derivation of Corollary 3.5 in [OSC], this time based on using
Theorem 2.10 instead of Theorem 3.1.2 Both lead to essentially the same result
(check this), but we prefer (2) because it dispenses with an otherwise purely cosmetic
multiplier u1. We have

θ(v) := inf
x≥0

[ctx+ vt(Ax− b)] =

{
−btv if c+ Atv ≥ 0
−∞ otherwise

Thus, writing w := −v, we can state (D) as follows:

(D) sup
w∈Rp

{btw : Atw ≤ c}.

This is the familiar form of the dual problem in linear programming.

Example 1.2 Let A be a p× n-matrix of rank p < n and suppose b ∈ Rp\{0}. For
L := {x ∈ Rn : Ax = b} as the feasible set (supposed to be nonempty) consider the
following minimum norm optimization problem:

(P ) inf
x∈Rn
{|x|2 : Ax− b = 0}.

a. Before formulating the dual problem, we wish to solve (P ) by means of the
KKT theorem, because, unlike Example 1.1, this can be done explicitly. Just as

1The expression f(x) +
∑

i uigi(x) + vt(Ax− b) is often called the Lagrangian of (P ).
2 Actually, in the absence of inequality constraints the “small” KKT theorem Theorem 2.10 could

well be used to deal directly with problems without inquality constraints, provided that one borrows
from Corollary 3.5 the identity stated in the first line of its proof; cf. Example 1.2.
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in the previous example, problem (P ) only has equality constraints and we treat it
similarly to Example 1.1 by ignoring the inequality multiplier u. We set f(x) := |x|2
and S := Rn. Then S is open, and regularity comes down to L = S ∩ L 6= ∅,
i.e., to nonemptiness of L. So regularity holds and, since there are no inequality
constraints, normality in the Lagrangian inclusion holds automatically. Hence, by
the KKT theorem in [OSC] a vector x̄ ∈ L is optimal if and only if there exists
v̄ ∈ Rp such that

0 ∈ ∂f(x̄) + Atv̄,

where ∂f(x̄) = {∇f(x̄)} = 2x̄. Hence, the above Lagrangian inclusion gives x̄ =
−1

2
Atv̄. To determine the unknown multiplier v̄, we apply A to both sides of the

latter identity. By x̄ ∈ L it gives b = −1
2
AAtv̄, so v̄ = −2(AAt)−1b (notice that AAt

is a regular p × p matrix by the original full rank condition for A). When this is
substituted back into x̄ = −1

2
Atv̄, it gives x̄ = At(AAt)−1b, an expression familiar to

students of regression theory in statistics. We conclude that x̄ = At(AAt)−1b is the
(unique) optimal solution of (P ).

b. Next, we determine the Lagrangian dual optimization problem associated to
(P ). Problem (P ) has only equality constraints, so the dual objective function is
given by

θ(v) := inf
x∈S

[|x|2 + vt(Ax− b)].

This is an unconstrained infimum of a convex function, so setting the gradient of
x 7→ |x|2 + vt(Ax− b) equal to zero (i.e., 2x+Atv = 0) gives the minimum value, and
we find θ(v) = −vtAAtv/4− btv. For the Lagrangian dual problem this gives

(D) sup
v∈Rp

−vtAAtv/4− btv.

Incidentally, we can solve this optimization problem immediately: setting the gradient
of the concave function θ equal to zero gives −AAtv/2−b = 0; hence v̄ := −2(AAt)−1b
is the optimal solution of (D).

Exercise 1.2 The optimization problem studied in Example 1.2 can be equivalently
written as

(P ) inf
x∈S
{|x| : Ax− b = 0},

with S := Rn and f(x) := |x|. Similar to what was done in that example, derive
first the optimal solution for the optimization problem in this form. Hint 1: first
demonstrate the following for f(x) := |x|:

∂f(x̄) =

{
{ x̄|x̄|} if x̄ 6= 0

{x ∈ Rn : |x| ≤ 1} if x̄ = 0.

Next, show that the corresponding dual problem (D) is given by

sup
v∈Rp

{−btv : |Atv| ≤ 1},
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and thus it is completely different from (D) in the previous example, even though the
primal (P )’s are equivalent. Hint: Prove first by the Cauchy-Schwarz inequality that

inf
x∈S

[|x|+ wtx] =

{
0 if |w| ≤ 1
−∞ otherwise

Finally, prove that the optimal solution of the present dual problem (D) is given by

v̄ =
−(AAt)−1b√
bt(AAt)−1b

.

Exercise 1.3 The optimization problem studied in Example 1.2 can also be equiva-
lently written as

(P ) inf
x∈S
|x|,

with S := L and f(x) := |x|. This problem has no explicit inequality or equality
constraints. Derive its optimal solution by means of the “small” KKT Theorem 2.10;
see also footnote 2. Propose also a suitable Lagrangian dual problem that is consistent
with the general formula for θ by introducing the artificial constraint function g1 ≡ 0.

The key to the Lagrangian duality interpretation of the KKT theorem of [OSC]
is contained in the following exercise.

Exercise 1.4 Let x̄ be feasible for (P ) and let (ū, v̄) ∈ Rm
+ × Rn. In the context of

[OSC], we indicate by (OPT) the statement that x̄ is optimal solution of (P ) (i.e.,
x̄ is feasible for (P ) and f(x̄) = inf(P )). Let (CS) abbreviate the complementary
slackness relations and let (MP) the minimum principle in terms of the same x̄ and
multiplier vectors ū and v̄, i.e.,

x̄ ∈ argminx∈S[f(x) +
m∑
i=1

ūigi(x) + v̄t(Ax− b)]

a. Prove the equivalence

θ(ū, v̄) = f(x̄)⇔ (CS) + (MP).

b. Use part a to prove that the KKT theorem can now be restated in the following
form

(OPT) ⇔ ∃ū≥0,v̄θ(ū, v̄) = f(x̄),

provided that both the regularity condition and Slater’s constraint qualification hold.

We can now state the main Lagrangian duality result. Like the KKT theorem
in [OSC] it has an elementary part (i) and a deeper part (ii), the latter part being
based on separating hyperplane theorems (or its proxies).
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Theorem 1.3 (Lagrangian duality) (i) For every x ∈ Z and every (u, v) ∈ Rm
+ ×

Rp

θ(u, v) ≤ f(x) (weak duality).

In particular, if
θ(ū, v̄) = f(x̄)

for some x̄ ∈ Z and some (ū, v̄) ∈ Rm
+ × Rp, then

x̄ is optimal for (P ) and (ū, v̄) is optimal for (D).

and the complementary slackness relationship then also holds for x̄.
(ii) Conversely, if x̄ is an optimal solution of (P ) and if both the regularity con-

dition and Slater’s constraint qualification hold, then there exists (ū, v̄) ∈ Rm
+ × Rp

such that
θ(ū, v̄) = f(x̄) (strong duality).

Proof. (i) If x ∈ S meets g1(x), · · · , gm(x) ≤ 0 and Ax = b, and if (u, v) ∈
Rm

+×Rp, then
∑

i uigi(x) ≤ 0 implies θ(u, v) ≤ f(x)+
∑

i uigi(x)+vt(Ax−b) ≤ f(x).
As for the additional part, for a x̄ ∈ Z and a (ū, v̄) ∈ Rm

+ × Rp the equality
θ(ū, v̄) = f(x̄) first implies θ(ū, v̄) = f(x̄) ≥ θ(u, v) for any (u, v) ∈ Rm

+ × Rp, and
then also, in a second round, f(x̄) = θ(ū, v̄) ≤ f(x) for any x ∈ Z.

(ii) By part (ii) of Corollary 3.5 and Remarks 3.2 and 3.3 in [OSC] there exists
(ū, v̄) in Rm

+ ×Rp such that θ(ū, v̄) = f(x̄), as was already seen in Exercise 1.4. QED

Example 1.4 Example 1.2 gave the same (unique) optimal primal solution x̄ =
At(AAt)−1b and the (unique) dual optimal solution was found to be v̄ := −2(AAt)−1b.
Since f(x) = |x|2 and θ(v) = −vtAAtv/4− btv, we find empirically

f(x̄) = bt(AAt)−1b = −bt(AAt)−1b+ 2bt(AAt)−1b = θ(v̄).

By Theorem 1.3(ii) this identity should indeed hold, because Slater’s constraint qual-
ification is valid (vacuously – this problem (P ) has no inequality constraints) and
regularity holds trivially.

2 Duality: towards an approach based on pertur-

bations

After having used the “convex” KKT theorem of [OSC] to arrive at its duality re-
interpretation in Theorem 1.3, we can now move toward far-reaching generalizations.
First we shall only sketch the outlines of this approach in the context of our standard
optimization problem

(P ) inf
x∈S
{f(x) : g1(x) ≤ 0, · · · , gm(x) ≤ 0, Ax− b = 0}.
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We consider an infinite collection of perturbed optimization problems (Py,z), y ∈ Rm,
z ∈ Rp, given by

(Py,z) inf
x∈S
{f(x) : g1(x) ≤ y1, · · · , gm(x) ≤ ym, Ax− b = z},

where we “perturb” the right hand side of the inequality and equality constraints. It
is important to observe that the problem (P0,0) coincides with (P ). Here the following
convention will be followed: the infimum over the empty set is +∞ and, likewise, the
supremum over the empty set is −∞. The perturbation function associated to the
above perturbations is ν : Rm × Rp → [−∞,+∞] is given by ν(y, z) := inf(Py,z).
Hence, ν(0, 0) = inf(P ) gives the minimum value of the primal problem (P ). By
Exercise 2.1 below, the function ν is convex under the usual convexity conditions for
(P ). Let us now calculate the Fenchel conjugate function of ν (recall this notion from
Appendix B in [OSC]). We have

ν∗(−u,−v) := sup
y,z

[−uty − vtz − ν(y, z)]

= sup
x∈S,y
{−uty − vt(Ax− b)− f(x) : g1(x) ≤ y1, · · · , gm(x) ≤ ym}.

By the usual arguments this gives

ν∗(−u,−v) =

{
supx∈S −f(x)−

∑m
i=1 uigi(x)− vt(Ax− b) = −θ(u, v) if u ≥ 0,

+∞ otherwise

Hence, the dual optimization problem (D) can also be written as

(D) sup
(u,v)∈Rm×Rp

−ν∗(−u,−v),

and it is then obvious that sup(D) = ν∗∗(0, 0). Also, the strong duality identity
inf(P ) = θ(ū, v̄) for (ū, v̄) in Theorem 1.3(ii) is equivalent to ν(0, 0) = θ(ū, v̄) =
−ν∗(−ū,−v̄), which, in turn, is equivalent to

(−ū,−v̄) ∈ ∂ν(0, 0)

by Proposition B.4(v) of [OSC]. See figures 6.1 and 6.3 in [BSS] for a geometric
interpretation (with only inequality constraints). This shows that the optimal dual
solution is associated with marginal behavior with respect to perturbations of the
right hand side. This is especially clear if ν is differentiable at (0, 0), for then for
small increments δy and δz of the right hand side in (P ) give, by the above, in first
order approximation:

inf(Pδy,δz) = ν(δy, δz) =̇ inf(P ) + ūtδy + v̄tδz. (1)

This is useful to determine possible “bottlenecks” in a concrete problem: look for the
highest values of ūi and of |v̄j|.

Exercise 2.1 Prove that, under the convexity conditions of Theorem 1.1, the per-
turbation function ν : Rm

+ ×Rp → [−∞,+∞] is convex. Note here that the definition
of convexity must be adapted: ν is said to be convex if ν(λ(y1, z1) +(1−λ)(y2, z2)) ≤
λν(y1, z1)+̇(1 − λ)ν(y2, z2). Here +̇ is just the same as +, but with the additional
convention (−∞)+̇(+∞) = (+∞)+̇(−∞) = +∞.
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3 Duality: an approach based on perturbations

In this section we present an abstract approach to duality; however, we still keep all
dimensions finite-dimensional (if infinite dimensions are chosen, applications can also
include problems in mechanics and approximation theory for instance – see [ET] or
[L]). In the previous section we associated to our standard optimization problem

(P ) inf
x∈S
{f(x) : g1(x) ≤ 0, · · · , gm(x) ≤ 0, Ax− b = 0},

the collection of perturbed optimization problems (Py,z), y ∈ Rm, z ∈ Rp, given by

(Py,z) inf
x∈S
{f(x) : g1(x) ≤ y1, · · · , gm(x) ≤ ym, Ax− b = z}.

It was shown there that the associated perturbation function ν : Rm×Rp → [−∞,+∞],
defined by ν(y, z) := inf(Py,z), had the following Fenchel conjugate:

ν∗(−u,−v) =

{
−θ(u, v) if u ≥ 0,
+∞ otherwise

This caused the usual Lagrangian dual optimization problem (D) to be rewritable as

(D) sup
(u,v)∈Rm×Rp

−ν∗(−u,−v).

There we also noticed the following connections:

inf(P ) = ν(0, 0) and sup(D) = ν∗∗(0, 0).

It followed that weak duality, as defined in section 1, can be reproven by appealing
to Proposition B.4(iv) in [OSC]. Moreover, the strong duality identity f(x̄) = θ(ū, v̄)
for (ū, v̄) from section 1 was seen to be equivalent to ν(0, 0) = −ν∗(−ū,−v̄), which,
in turn, is equivalent to

(−ū,−v̄) ∈ ∂ν(0, 0)

by Proposition B.4(v) of [OSC].
We shall now generalize these findings as follows. For some k ∈ N let φ : Rn×Rk →

(−∞,+∞] be a given convex function. Denote φ0(x) := φ(x, 0) and consider the
primal optimization problem

(P ) inf
x∈Rn

φ0(x),

associated to which we consider the family {(Pp)} of perturbed optimization problems

(Pp) inf
x∈Rn

φ(x, p).

Define h(p) := inf(Pp); then h : Rk → [−∞,+∞], the so-called perturbation function,
is a convex function (see Exercise 2.1). We suppose that inf(P ) 6∈ {−∞,+∞}, which
is equivalent to h(0) ∈ R.

Now let h∗ : Rk → (−∞,+∞] be the Fenchel conjugate of h. This is defined as in
Definition B.1 of [OSC] (here h(0) ∈ R implies that h∗ cannot take the value −∞).
Then the dual optimization problem is defined as

(D) sup
q∈Rk

−h∗(−q).
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Theorem 3.1 (general duality-stability theorem)) (i) For every x ∈ Rn and every
q ∈ Rk

−h∗(−q) ≤ φ0(x) (weak duality).

In particular,
inf(P ) = h(0) ≥ h∗∗(0) = sup(D).

(ii) The following are equivalent:
(iia) the perturbation function h is lower semicontinuous at 0 (weak stability),
(iib) inf(P ) = sup(D) (absence duality gap).

(iii) If the perturbation function h is continuous at 0 ((strong) stability), then

inf(P ) = max(D) (absence duality gap + existence optimal dual solution)

and the set of all optimal dual solutions is −∂h(0) 6= ∅.

Exercise 3.1 Prove the above Theorem 3.1. Hint: First prove that, by h(0) ∈ R
and convexity of h, weak stability implies h > −∞. Imitate parts of the proof of the
Lagrangian duality theorem and use properties of Fenchel conjugates in Appendix B
of [OSC]. Use also Lemma 2.16 of [OSC].

Exercise 3.2 Give a new proof of the Lagrangian duality theorem in section 1 (with
inequality constraints only), by applying Theorem 3.1 to a suitably formulated convex
function φ : Rn×Rm → (−∞,+∞]. Hint: Argue that Slater’s constraint qualification
allows application of Lemma 2.16 of [OSC].

Exercise 3.3 Give an extension of the Lagrangian duality theorem in section 1 (with
inequality constraints only), by considering the problem infx∈Rn{f(x) : g(x) ∈ K}.
Here g := (g1, . . . , gm) and K is a closed convex cone in Rm (in the special case
K = Rm

− we return to the problem mentioned in the first line of this exercise). Hint:
Imitate parts of the proof of the Lagrangian duality theorem.

Theorem 3.2 (Fenchel’s duality theorem) Consider the following convex minimiza-
tion problem

(PF ) inf
x∈Rn

[f(x) + g(Ax)],

where f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] are convex functions and A is
an m× n-matrix. Suppose that inf(PF ) ∈ R.

Define the associated Fenchel dual problem as follows:

(DF ) sup
q∈Rm

[−f ∗(Atq)− g∗(−q)].

(i) For every x ∈ Rn and every q ∈ Rm

−f ∗(Atq)− g∗(−q) ≤ f(x) + g(Ax).

(ii) If 0 ∈ int (dom g − A(dom f)), then

inf(PF ) = max(DF ).
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Moreover, then x̄ ∈ Rn is optimal for (PF ) and q̄ ∈ Rk is optimal for (DF ) if and
only if

Atq̄ ∈ ∂f(x̄) and − q̄ ∈ ∂g(Ax̄). (2)

Proof. We apply Theorem 3.1 to the following perturbed optimization problems

(Pp) inf
x∈Rn

[f(x) + g(Ax+ p)].

That means we use φ(x, p) := f(x) + g(Ax+ p). It gives

h∗(−q) = sup
p
{−qtp− inf

x
[f(x) + g(Ax+ p)]} = sup

p,x
[−qtp− f(x)− g(Ax+ p)].

Hence,

h∗(−q) = sup
x
{−f(x)+sup

p
[−qtp−g(Ax+p)]} = sup

x
{−f(x)+qtAx+sup

p′
[−qtp′−g(p′)]},

where we substitute p′ := Ax + p to work out the inner supremum. It thus follows
that

h∗(−q) = g∗(−q) + sup
x

[xtAtq − f(x)] = g∗(−q) + f ∗(Atq).

Hence the Fenchel dual problem (DF ) is a special case of the dual problem (D) of
Theorem 3.1, obtained by choosing φ as above. So we may apply that theorem, of
which we only need parts (i) and (iii).

The thing that remains to be settled is the strong stability condition (i.e., the
continuity of h at 0). Now note that the condition 0 ∈ int (dom g − A(dom f))
implies that there exists ε > 0 such that

∀p,|p|<ε∃xp,ypp = yp − Axp, f(xp) < +∞, g(yp) < +∞.

Then h(p) := inf(Pp) ≤ f(xp) + g(Axp + p) = f(xp) + g(yp) < +∞ for all p with
|p| < ε. So 0 ∈ int dom h, and this implies continuity of h in 0 by Lemma 2.16 in
[OSC]. The final part is Exercise 3.5. QED

Remark 3.3 Theorem 3.2 applies to the following particular cases:

(a) If g := χ{b}, it applies to infx,Ax=b f(x).

(b) If g := χb+K, it applies to infx,Ax∈b+K f(x). Here K ⊂ Rm is a convex cone and
Ax ∈ b+K called a conical constraint. Special cones: K = {0} (then we are back to
(a)) or K = Rm

− .
(c) If f(x) := µ−1ctx −

∑n
i=1 log(xi) + χRn

++
(x) and g := χ{b}, then it applies to

minimizing the so-called logarithmic barrier function. Here c ∈ Rn and µ > 0 is a
scaling (penalty) parameter.
(d) If f(x) =

∑n
i=1 fi(xi) (additive separability) and g = χ{b+K}, then it applies to

infx,Ax∈b+K
∑

i fi(xi). Here the fi are convex functions on R. Consider in particular
the case f1 = · · · = fn and, even more in particular, the case with fi(xi) := (xi)

2 for
all i.

Exercise 3.4 Give a complete workout of Theorem 3.2 in each of the special situa-
tions (a), (b), (c) and (d), described in Remark 3.3.

Exercise 3.5 Prove the equivalence involving (2) in Theorem 3.2.
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4 Bidual optimization problems

Observe that (DF ) is equivalent to

(D′F ) inf
x∈Rm

[g∗(x) + f ∗((−A)tx)]

(set x := −q) which is of the same form as (PF ) above, if we substitute n := m,
f := g∗, g := f ∗ and A := −At. So let us now take the dual of (D′F ). Then we obtain
the bidual optimization problem:

(D′′F ) sup
q∈Rn

[−g∗∗(−Attq)− f ∗∗(−q)],

Of course, here −Att = −A, and if f and g are at least convex and lower semicontin-
uous functions, then f ∗∗ = f and g∗∗ = g by the Fenchel-Moreau theorem. So then
(D′′F ) can be rewritten as

(D′′F ) sup
x∈Rn

[−f(x)− g(Ax)],

which is equivalent to the original primal optimization problem (PF ). This finding
can be generalized, as is done in the following exercise:

Exercise 4.1 Suppose that φ : Rn ×Rk → (−∞,+∞] is convex and lower semicon-
tinuous. Define ψ := φ∗ and observe that −h∗(−q) = −ψ(0,−q) holds for the dual
objective function, which is analogous to φ0(x) := φ(x, 0), the objective function of
the primal problem (P ). Now develop a duality-stability scheme that uses the per-
turbed optimization problems (Dy) : supq−ψ(y,−q) to produce the general bidual
optimization problem. Prove that it is equivalent to the original primal problem (P ).
Show also that the above bidual of (PF ) fits into that scheme.
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