Homework CAO, Part 1 - October, 2012

Due: Turn in your solutions by 1 December, 11 p.m. Make precisely 8 out of 12 problems.

Problem 1. Do "the remainder of the proof is left as an exercise" on p. 12 of [OSC], just before Theorem 2.17.
Problem 2. Let $f: S \rightarrow(-\infty,+\infty]$ be a function on the convex set $S \subset \mathbb{R}^{n}$
a. Prove that f is quasiconvex on S if and only if for every pair $x, y \in S$ and every $\lambda \in[0,1] f(\lambda x+(1-\lambda) y) \leq \max (f(x), f(y))$ (recall the definition of quasiconvexity from Exercise 2.2).
b. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous and quasiconvex function on the interval $[a, b]$. Prove that at least one of the following is true: $(i) f$ is (monotonically) nondecreasing , (ii) f is nonincreasing or (iii) there exists a real number c, with $a<c<b$, such that f is nonincreasing on $[a, c]$ and nondecreasing on $[c, b]$.
Problem 3. Exercise B. 2 in [OSC] (i.e., of "On Subdifferential Calculus").
Problem 4. Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be an arbitrary function. Use the FenchelMoreau theorem to prove the following identity: for every $x_{0} \in \mathbb{R}^{n}$

$$
f^{* *}\left(x_{0}\right)=\sup _{q, q \leq f}\left\{q\left(x_{0}\right): q: \mathbb{R}^{n} \rightarrow(-\infty,+\infty] \text { is l.s.c. and convex }\right\}
$$

i.e., $f^{*} *$ is the largest lower semicontinuous and convex function that is less than or at most equal to f.
Problem 5. Let $f\left(x_{1}, x_{2}\right):=\exp \left(x_{1}+x_{2}^{2}\right)$.
a. Demonstrate: f is convex on \mathbb{R}^{2}.
b. Calculate explicitly the function f^{*}.
c. Calculate explicitly the function $f^{* *}$ and check that it is equal to f.

Problem 6. Exercise 2.12 of [OSC].
Problem 7. Exercise 2.15 of [OSC].
Problem 8. Exercise 2.17 of [OSC]
Problem 9. Exercise 2.18 of [OSC]
Problem 10. Exercise 2.20 of [OSC]
Problem 11. Exercise 3.1 of [OSC]

Problem 12. Let $p: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be positively homogeneous (i.e., $p(\alpha x)=$ $\alpha p(x)$ holds for all $\alpha \geq 0$ and all $x \in \mathbb{R}^{n}$), lower semicontinuous and subadditive (i.e., $p(x+y) \leq p(x)+p(y)$ for all $x, y \in \mathbb{R}^{n}$). Prove: there exists a closed convex set $C \subset \mathbb{R}^{n}$ such that $p(x)=\sup _{\xi \in C} \xi^{t} x$ for each $x \in \mathbb{R}^{n}$. Hint: The desired C must satisfy $p=\chi_{C}^{*}$.

