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A new general relative sequential compactness criterion for scalarly integrable 
functions is presented. The novel feature of this result is the fact that it deals with 
a strong form of pointwise Cesaro-convergence (almost everywhere), which is 
stronger than the usual types of weak convergence. Applications of the main result 
include extensions of a classical weak compactness criterion for abstract L,-spaces 
and a recent relative sequential compactness criterion of Prohorov type for transi- 
tion probabihtes. The main result can also be seen as an abstract version of a 
famous theorem of Komlos, which is also essential for its proof. 0 1990 Academic 

Press. Inc. 

1. INTRODUCTION 

Let (T, F-, ,D) be an arbitrary measure space, and let E be some 
topological vector space. A sequence (fm} of functions f,,, : T + E is defined 
to K-converge almost everywhere on T to a function f, : T -+ E if for every 
subsequence {fm,} of ( fm} there exists a null set NE F (i.e., ,u(N) = 0) such 
that 

i i$l fmi(t) +fJt) for every t E T\N. (1.1) 

In case the topology (say z) on E must be specified, we shall also speak 
of r-K-convergence a.e., etc. Because of its subsequence character 
K-convergence a.e. is obviously a topological notion. 

A famous result of Komlbs [14], derived by means of a rather delicate 
truncation argument, involving martingale convergence, says the following : 

THEOREM (Komlb). Suppose that {+k} is a sequence of integrable 
functions dk : T -+ R’ such that 
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Then {$k} has a subsequence which K-converges a.e. to an integrable 
function #*: T+ R. 

In [ld] this result was extended in two ways to functions {4,} which 
take their values in a Banach space E. One of these extensions requires E 
to be reflexive, and in the other one the set {tjk(t)} c E must be relatively 
weakly compact for almost every t E T (in both cases one deals with 
a( E, E’)-K-convergence a.e.). Different extensions of Komlos’ result 
to infinite dimensions were given in [ 10, 161; there one studies norm- 
K-convergence a.e. Obviously, conditions of a much stronger nature must 
then be imposed, since E must at least have the Banach-Saks property. 
In this connection mention should be made of a remarkable result by 
J. Bourgain [2,9], which says that the validity of Komlos’ result for norm- 
K-convergence is equivalent to I;: having the Banach-Saks property and 
also equivalent to LL having the weak Banach-Saks property, but not 
equivalent to E having the Banach-Saks property (see also [ 151 for the 
latter observation). 

The proofs in [ld] depend on a diagonal method, whereby the above 
scalar version of Komlos’ theorem is applied repeatedly, plus the intro- 
duction of a countable collection of linear continuous functionals which 
separates the points of E. The purpose of the present paper is to show how 
these ideas can be used in a much more general setup, and then lead to 
a new, very general criterion for relative sequential compactness for 
K-convergence a.e. in spaces of scalarly integrable functions (Theorem 2.1). 
As an immediate consequence, a concomitant criterion for relative 
sequential “weak” compactness in those spaces is obtained in Corollary 2.2. 
The latter criterion is also new, but much more standard in nature. 

The power of these criteria is demonstrated by four applications. The 
first application, Theorem 3.2, gives extensions of Komlos’ theorem which 
go slightly further than the above-mentioned extensions in [ld]. The 
second application, Theorem 4.1, furnishes a new relative weak compact- 
ness criterion for L’-spaces. Among other things, this criterion generalizes 
a well-known result due to Diestel [8a] (Corollary 4.2). The third applica- 
tion, Theorem 5.1, extends a recent criterion for relative narrow sequential 
compactness in a space of transition probabilities [la, lc]. Finally, 
Theorem 6.1, a fourth application of Theorem 2.1 and Corollary 2.2, gives 
a criterion for relative weak sequential compactness in a generalized Kiithe 
space, which forms the sequential counterpart to a result of Castaing and 
Valadier [4, V.133. For more applications along the lines of this paper, 
found after this paper was written, we refer to [ le]. 
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2. MAIN RESULT 

Let (T, Y, p) be an arbitrary measure space, and E a convex subset of 
a Hausdorff topological vector space. Any function from TX E into 
( - co, + co] is be called integrand. An integrand g : T x E -+ ( - co, + a] is 
said to be respectively convex, affrne, (sequentially) lower semicontinuous, 
(sequentially) continuous, or (sequentially) inf-compact if for every t E T 
the function g(t, .) on E has the corresponding property (recall that g(t, .) 
is (sequentially) inf-compact on E if for every fi E R the set of all x E E such 
that g(t, x) < p, is (sequentially) compact). Thus, these adjectives refer only 
to the behavior of the integrand in its second variable. 

Let h: T x E -+ [0, + co] be given nonnegative convex sequentially 
inf-compact integrand and let d be a set of affrne sequentially continuous 
integrands a: T x E -+ R. A function f: T -+ E is defined to be d-scalarly 
measurable if 

t + a(t, f(t)) is measurable on T for every a E d. 

We require that all integrands a~&’ have the following property (B) 
with respect to h: there exist C> 0 and an integrable function 4: T+ R’ 
(these may depend on a) such that 

(B) la(t, x)1 Q Ch(t, X) + d(t) on TX E. 

A subset D of E is defined to be countably separated by d if there exists 
a countable subset {ui} of d such that for every t E T and every pair of 
points x, y E D 

uj(t, x) = uj(t, y) for j= 1,2, . . . implies that x = y. 

We recall the definition of outer integration: the outer integral over 
(T, Y-, ,u) of a (possibly nonmeasurable) function +: T-+ (-co, + co] is 
defined by 

/T rc/ dp := inf {I, 4 dp : 4 : T + R integrable, $ < #} 

(the infimum over the empty set is + cc by convention). For more details 
we refer to, e.g., [la, Appendix]. 

Our main result, a criterion for relative sequential compactness for 
K-convergence a.e., can now be stated (recall below that cl co is used to 
denote closed convex hulls). 

THEOREM 2.1. Suppose that all elements of the collection d of ajjfine 
sequentially continuous integrands have property (B) with respect to the 
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convex sequentially inf-compact integrand h. Let { fk} be a sequence of 
d-scalarly measurable functions fk : T--f E such that 

* 

sup ! h(t, f,At)) p(dt) < +a. 
k T  

(2.1) 

Suppose also that there exists a null set NE F such that 

{ cl co u fk( T\N) is countably separated by d. 
p=l k2p 

(2.2) 

Then (fk} has a subsequence {f,,,} which K-converges a.e. to an d-scalarly 
measurable function f, : T--+ E satisfying 

* * 

j 
T  

h(t,f,(t))/4dt)d sup! h(t> fk(t))Cl(dt)< +a. (2.3) 
k T  

ProoJ It follows directly from the definition of outer integration that 
for every k~ N there exists an integrable function from T into R, for 
convenience to be denoted-perhaps somewhat oddly-as t + a&t, fk( t)), 
such that 

f h(t,fk(t)) P(dt)=J %(t,fk(t))P(dt)> 
T  T  

ao(t2fk(t)) a h(t,fk(t))ao on T. (2.4) 

Let {ai> c d be the countable subset which figures in the definition of 
(2.2). By property (B) and (2.1) 

sup s laj(C fk(t))l Adt)< +a for j = 0, 1, 2 . . . 
k T  

We follow an obvious diagonal method, by successively applying Komlos’ 
theorem to suitably chosen subsequences of {a,( ., fk( .)): k E N > for 
j = 0, 1, 2, . . . . This yields the existence of a sequence {dji) of integrable 
functions #j: T -+ R, and a subsequence {fm} of { fk} such that for every 
subsequence {f,,} of {fm} 

for j=O, 1, 2, . . . a.e. in T. (2.5) 

Denote by M the union of N and the exceptional set for (2.5) if {f,,,} itself 
is taken to be the subsequence of interest. Define s, := (l/n) C;= I f,. Fix 
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t E T\M; then it follows from convexity of the function h(t, .) and 
(2.4)-(2.5) that 

lim sup Nt, s,(t)) dlim sup i i a,(t, f,(t)) G f&(t) < SCO. (2.6) 
n n m=l 

By sequential inf-compactness of h(t, .) this implies that there exist y, E E 
and a (t-dependent) subsequence {s,,(t)} of {s,(t)} such that s,Jt) + y,. 
Note that this implies that y,~ nP cl co Uk,p f,(T\N). By (2.5) and 
affinity and sequential continuity of the function a,(t, .) on E it follows that 

q(t, Y,) =&i(t) for j= 1, 2, . . . . (2.7) 

But at the same time this argument shows that every limit point y, of 
{s,(t)} must satisfy the above identity. Suppose we had s,,(t) + y,. 
Then there would be an open neighborhood V of y, and a subsequence 
b”,W of {%W such that s,,(t) $ V for q= 1, 2, . . . . But by (2.6) and 
sequential inf-compactness of h(t, .) on E the subsequence {s,Jt)} would 
have a further subsequence converging to a point z, E (E\V) A 
[n, cl co Ukap fk( T\N)]. By (2.7) we would have 

uj(t3 zt) = 4jCt) = uj(tt Yt) for j= 1, 2, . . . . 

which, by condition (2.2), would imply that yt = z, $ V. This contradiction 
shows that s,(t) + yI. Now we define f* : T -+ E by f,(t) := y, for t E T\M. 
On A4 we set f, equal to some arbitrary but fixed constant in E. This gives 
that f, is d-scalarly measurable, since for every a E d 

44 f*(t)) = liy t i 46 .Mt)) on T\M. 
m=l 

Note that by convexity and sequential lower semicontinuity of h(t, .) for 
every t E T, it follows from (2.6) that h(t,f,(t))<$,(t) a.e. By (2.5) this 
means that f, satisfies (2.3). 

Now let (fmi} be an arbitrary subsequence of (fm}. Then the argument 
above can be repeated for s’ n := (l/n) C:= r f,,. This gives that there is a 
null set M’ such that for every t E T\M’ there exists y; E cl co Uk fk( T\N) 
such that s:(t) + y; and 

uj(t, Vi) = 4jtt) for j= 1, 2, . . . 

By (2.2), (2.7) it follows that y: =f*(t) for every t E T\(Mu M’). Thus, we 
have proved that {fm> K-converges a.e. to f,. 1 

An immediate consequence of Theorem 2.1 is as follows. We shall say 
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that an integrand a E d has the growth property (G) with respect to h if for 
every E > 0 there exists an integrable function dE: T -+ R’ such that 

(G) 14~ XII < ~46 x) + O,(t) on TxE. 

Slightly more generally, we define an integrand g: T x E --$ ( - co, + a] to 
have the growth property (G’) with respect to h if for every E > 0 there exists 
an integrable function 4,: T -+ R such that 

(G’) max(O, -dt, xl) G ~h(t, x) + d,(t) on TxE, 

COROLLARY 2.2. The K-convergent a.e. subsequence {f,} of (fk} in 
Theorem 2.1 is such that, for every a E r;4 having growth property (G), 

lim j 4t, f,(t)) Adt) = j” 44 f*(t)) cL(dt) 
m  T  T  

and, more generally, 

lim inff At, fi&N Adt) >f sk f*(t)) W) (2.8) m T  T  

for each convex sequentially lower semicontinuous integrand g: T x E -+ 
( - 00, + co] having growth property (G’). 

Proof: Let tl be the left side of (2.8) ; if M equals + 00 we are done. If 
not, there is a subsequence ( fm,> of { fm> such that a = limi czi, where every 
ai := j? g(t, f,,(t)) ddt) is finite. By convexity and sequential lower semi- 
continuity of g(t, .) it follows that 

liqinft ,i: At, fm,(t)) 2 s(4 f*(t)) a.e. in T. 
,=l 

(2.9) 

For every iE N there exists an integrable function bi: T + R such that 
di(t)> g(t,f,,(t)) on T, with c(;=J~~~~P. By the growth property (G) we 
get, for every .s > 0, 

4((t) + &hi(t) 2 -de(t) for all t E T, i E N, 

where we denote hi(t) := a,(& fm,(t)) (see the proof of Theorem 2.1). Note 
that h,(t)> h(t,fMI(t))>O. Let us set (T :=supijrhi& (C is finite by (2.1)). 
We can apply Fatou’s lemma, which gives 

1 n n 
ol+.sa=lim- C cci+.sa>liminf 

fi njzl n SC (4; + &hi) dP 
Ti=L 

>, s liminfl i (#i+Ehi)dp. 
T  n njzl 
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Since 

i icl (4i(t) + Ehi(t)) 3 i $, #j(t) > i ,i g(t, f,,(t)), 
t=l 

the desired inequality (2.8) follows from the above by (2.9) letting E go to 
zero. For every UE & satisfying (G), both a and -a satisfy (G’). The 
inequality (2.8) therefore holds for both g= a and g = --a, with outer 
integration replaced by ordinary integration. 1 

3. APPLICATIONS: EXTENSIONS OF KOML~S' THEOREM 

Here we present two very direct application of Theorem 2.1, which lead 
to two different extensions of Komlos’ theorem (cf. [Id]). In this section E 
is a Banach space, the norm of which we denote by II.II. As before, 
(T, Y, ,u) stands for an arbitrary measure space. Recall that a function 
f: T + E is said to be strongly measurable if it is the pointwise limit a.e. in 
the norm II.11 of a sequence of finite-valued measurable functions; 
moreover, f is said to be Bochner-integrable if ST 11 f 11 dp < +CO [8b, 173. 
The following technical lemma is important in connection with the 
countable separability condition (2.2) and the sequential nature of our 
inf-compactness condition for h. 

LEMMA 3.1. Let {fk} b e a sequence of strongly measurable functions 
from T into the Bunuch space E. Suppose that E is equipped with a 
Hausdorff locally convex topology T not finer than the norm topology. 
Then there exists a null set NE 9 such that the following hold for 
D:=clco Ukfk(T\N): 

(a) D is 11 . II-separable. 

(b) D is a Suslin space for the relative topology t. 

(c) There exists a countable subset {XI) of the topological dual of 
(E, 7) which separates the points of D (that is (x, xi ) = ( y, xi) for 
j= 1, 2, . . . implies that x = y for every pair x, y E D). 

Proof: From the definition of strong measurability it is evident that 
there exists a nul set NE Y such that the set uk fk( T\N) is separable for 
II . (I. Hence, D := cl co uk f,(T\N) is also II . /I - separable. Now (D, )I . II) is 
obviously Polish (i.e., separable and complete for II . )I ). Therefore, the space 
(D, T) is Suslin [7,111.67], for the injection from (D, 11 .I[) into (D, z) is 
continuous. Since (E, t) is Hausdorff locally convex, the elements of its 
topological dual separate the points of E, and in particular the points of D. 
It now remains to apply a well-known result for Suslin spaces due to 
L. Schwartz [4,111.31]. 1 
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THEOREM 3.2. Suppose that E is the topological dual of a Banach space 
F, and that /I .I1 is the corresponding dual norm. Let ( fk) he a sequence of 
Bochner-integrable ,functions .fk : T -+ E such that 

sup 
i‘ 

IlfAl &< +a. 
k 7 

Then {fk} has a subsequence which o(E, F)-K-converges a.e. to a Bochner- 
integrable function f, : T + E. 

Proof We apply Theorem 2.1, making the following substitutions : E is 
equipped with the topology a(,?$ F). By the Alaoglu-Bourbaki theorem, 
the function 11. I( is inf-compact on E (but not necessarily sequentially 
inf-compact). Define the integrand h has 

l/XII h(t, x) := + ~ 
if XED, 

otherwise. 

Here D is the o(E, F)-closed set cl co Uk f,(T\N) corresponding to {fk} 
by Lemma 3.1. Note that for every t E T, /I E IF! the set of all x E E such that 
h(t, x) 6 fl is a a(E, F)-compact set contained in D, and therefore 
metrizable [7, 111.661, in view of Lemma 3.lb. Thus, h is a convex and 
sequentially inf-compact integrand. Note that (2.1) holds trivially. By Lem- 
ma 3.1~ there exists a countable subset { yi} of F separating the points of 
D. We define d to consist of the integrands (t, x) -+ a( t, x) := (x, t ), y E F 
(note that they have property (B)). Then condition (2.2) holds as well. The 
result follows from Theorem 2.1, because the limit function f,: T-+ E is 
such that t -+ (f*(t), y) is measurable on T for every y E F, and satisfies 
f*(t) ED a.e. in T. Hence, by Pettis’ measurability theorem [8b, IV], f, is 
strongly measurable. In fact, from (2.3) it follows that f, is Bochner- 
integrable. 1 

Let us say that a subset K of E is locally sequentially z-compact for some 
topology T on E if the intersection of K with each norm-closed ball in E is 
sequentially t-compact. 

THEOREM 3.3. Let z be a Hausdorff locally convex topology on E not 
finer than the norm topology. Let {fk} be a sequence of Bochner-integrable 
functions fk: T + E such that 

sup 
s 

llfkll 4< +a, 
k T  

cl co { fk( t)} is locally (sequentially) z-compact a.e. in T. 

Then (fk} has a subsequence which z-K-converges a.e. to a Bochner- 
integrable function f,: T + E. 
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Proof. We imitate the previous proof, making the following alteration: 
E is now equipped with z, and the integrand h is defined as 

llxll h(t, x) := + o. 
if xEDnclco{f,(t)}, 
otherwise. 

Here D := cl co (Jkfk(T\N) again corresponds to {fk} as in Lemma 3.1. 
Note that for every t E T, BE R the set of all XE E such that h(t, x) G/3 
consists of the intersection of the ball (XCZ E: ilxll d/I} with the locally 
(sequentially) compact set cl co{fk(t)} ; hence h(t, .) is inf-compact and 
sequentially inf-compact (in a Suslin space ordinary compactness implies 
sequential compactness [7, 111.661). Finally, Lemma 3.1~ yields the same 
collection d as used previously. m 

4. APPLICATIONS: CRITERIA FOR WEAK COMPACTNESS IN L,-SPACES 

In this section (T, Y-, p) is a-finite, and (E, 11.11) is a Banach space; the 
topological dual of (E, 11. I/ ) is d enoted by E’, and the dual norm on E’ by 
)I .)I’. Let 2’; be the space of all Bochner-integrable functionsf: T + E, and 
define the usual seminorm 

llfll1 := i, Ilf(t)ll Adt). 

It is well known that the topological dual of (P’k, I( . II i) can be identified 
with the space A!; [E] consisting of all E-scalarly measurable bounded 
functions from T into (E’, )I. II’) [ 11, VII]. We call the topology 
cr(ZL, AZ [E]) the weak topology on 9”f. We can already observe that 
by the Eberlein-Smulian theorem (relative) weak sequential compactness 
and (relative) weak compactness in 9; coincide (the fact that we work in 
a prequotient setting does not affect this; actually, everything said below 
can easily be transcribed to the usual quotient setting). 

In this setup we present a new criterion for (relative) sequential K-com- 
pactness, which implies a criterion for (relative) weak compactness in 2’;. 

THEOREM 4.1. Suppose that h : T x E -+ [0, + 001 is a D( E, E’)-inf- 
compact integrand with the following superlinear growth property : for every 
E > 0 there exists an integrable function ICIE: T + [0, + co) such that 

46 xl > i 
AT’& 

foraIZt~Tandx~E\{O} with llxll 2$E(t). (4.1) 
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Then every subset Y c 3; for which 

* 

SUP s h(t,f(t)) ,4dt)< +a, 
ftp T  

(4.2) 

is relatively sequentially compact for o(E, E’)-K-convergence a.e. In 
particular, 9 is relatively weakly compact and relatively weakly sequentially 
compact. 

The following corollary of Theorem 4.1 generalizes a result frequently 
encountered under the name “Diestel’s theorem” [8a, 3, 131. 

COROLLARY 4.2. Suppose that Z: T -+ 2E is a multzfunction with convex 
a( E, E’)-compact values such that for some integrable function 
rf/: T-, [O, +oo) 

llxli G+(t) forall xEZ(t). 

Then the set 9’ of all f E 9’; such that f(t) E Z(t) a-e. in T is sequentially 
compact for o( E, E’)-K-convergence a.e. ; in particular, Y is a weakly 
compact subset of 2;. 

Proof: Apply Theorem 4.1 with the following integrand h : 

II4 h(t, x) := + a3 
if xfzZ(t) 
otherwise. 

Then sequential inf-compactness of h(t, .) follows directly, as in the proof 
of Theorem 3.3. Also, (4.1) and (4.2) hold trivially . Note elementarily that 
Y is sequentially closed for K-convergence a.e. 1 

Proof of Theorem 4.1. As noted before, the Eberlein-Smulian theorem 
ensures that it is enough to prove relative weak sequential compactness 
of 9. So let (fk> be an arbitrary sequence in 9. We apply Theorem 2.1 
and Corollary 2.2 with the following substitutions. Let h be as given, and 
notice that, by the Eberlein-Smulian theorem, a(E, E’)-compactness and 
sequential o(E, E’)-compactness coincide. Let J# be the collection of all 
integrands ag : T x E + R, defined by 

ag(t, x) := (x, g(t)>, gEA’;[E]. 

Then by (4.1) for every E > 0 

lag(t, x)l G II4 Ilgll m G I/ gll m (Nt, x) + $,(t)), 

where II II m stands for the supremum norm on .&z, [E]. This shows that 
all elements of d have property (G). Note that d-scalar measurability of 
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the elements of 9; is guaranteed by their strong measurability. Since 
integrands (t, X) + (x, x’ ), x’ E E’, also belong to d, it follows from 
Lemma 3.1~ that condition (2.2) is fulfilled. Of course, (2.1) holds by (4.2). 
Thus, by Theorem 2.1 there exist an d-scalarly measurable function 
f, : T + E and a sequence {fm} of {fk > such that 

(fm} o(E, E/)-K-converges a.e. to f,, 

It follows immediately from the former statement that f* is strongly 
measurable; (see the proof of Theorem 3.2). Together with the latter 
statement this implies that f, is Bochner-integrable, i.e., belongs to 9;. 
Also, by Corollary 2.2 

1~ 5, CL,(~), g(t)> PL(~~I = JT (f*(t), g(t) > I for every gc A; [El. 
Thus, the subsequence {fm} of {f,} converges weakly tof, in 9;. m 

5. APPLICATIONS: PROHOROV'S THEOREM 

FOR TRANSITION PROBABILITIES 

In this section (T, F, p) is o-finite. Let S be a completely regular Suslin 
space, and denote the set of all probability measures on (S, g(S)) by P(S). 
We equip P(S) with the narrow topology cr(B(S), @,(S)), i.e., the initial 
topology with respect to the functionals v -+ Js c dv, c E 9$(S). Here $,(S) 
indicates the set of all bounded continuous real-valued functions on S. 
Under the above conditions for S, the space E := B(S) is a Suslin space ; 
see for instance [lb, Appendix]. Note already that this entails that 
ordinary narrow compactness on 9(S) implies sequential narrow compact- 
ness [7,111.66]. 

A transition probability from T into S is defined to be a function 
6 : T + B(S) such that for every BE 99(S) the function t + 6(r)(B) is 
F-measurable. It is not hard to verify, following [4, p. 1031, that in this 
framework transition probabilities are precisely the functions from T into 
9(S) that are with respect to F and the narrow-Bore1 c-algebra on P(S). 
The set of all transition probabilities from T into S is denoted as W(T; S). 
The narrow topology on B(S) has an obvious analogue on %?( T; S): Let 
F&( T; S) be the set of all CarathPodory integrands on TX S, i.e., the set of 
all 9 x W(S)-measurable continuous integrands g: T x S -+ R such that for 
some integrable function 4 : T -+ [O, + co ) 

Ig(t, s)l G 4(t) for all t E T, s E S. (5.1) 
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The narrow topology on B(T; S) is defined as the initial topology on 
W( T; S) with respect to the functionals 

(by what was said above about .B?(T; S), these integrals are well-defined). 
Following [la, lc], a subset B?,, of 9?( T; S) is defined to be tight if there 

exists an inf-compact integrand h’ : T x S + [0, + cc ] such that 

s h’(t, s) G(t)(d) 
1 

p(d)< +co. 

As shown in [ 12, Prop. 2.21, a remark in [la, p. 5731 can be extended as 
follows : the subset &, of 99( T; S) is tight if and only if for every E > 0 there 
exists a multifunction r, : T + 2’ with compact values, such that 

* 

sup I h(t)(S\f,(t)) /J(dt) Q a. 
scaa T 

Thus, tightness extends the classical notion of tightness on 9(S) [7]. We 
now derive a Prohorov-type criterion for relative narrow sequential 
compactness. The technical conditions imposed here on S are less 
restrictive than those of earlier such results, which require S to be 
metrizable Lusin [la, Theorem I], or the countable union of metrizable 
Lusin spaces [ lc, Theorem 2.11. For a number of applications of such 
results we refer to [la, lc]. In the same setting as here, in [lf] a 
Prohorov-type result was obtained in terms of nonsequential narrow 
compactness. Together with the sequential compactness result presented 
below, this resolves an open question of the author (cf., e.g., [lb, p. 4681) 
and C. Castaing [S, p. 5171. 

THEOREM 5.1. Every tight subset of W(T; S) is relatively sequentially 
compact for 0(9(s), Cg,(S))-K-convergence a.e. In particular, it is relatively 
narrowly sequentially compact. 

Proof: Let (6,) be an arbitrary sequence in B(T; S). We apply 
Theorem 2.1, making the following substitutions: E is the set 9(S), 
equipped with the topology a(B(S), %$(S)). To h’ as in the definition of 
tightness we let correspond the function h: T x S(S) -+ [O, + 001, given by 

h(t, x) := js h’(t, s) x(ds); 
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then inf-compactness of h’( t, . ) on S implies inf-compactness and sequential 
inf-compactness of h(t, .) on P(S). Of course, tightness now means that 
(2.1) is fulfilled. Also, convexity (indeed affinity) of h(t, .) holds auto- 
matically. We define & to be the collection of continuous integrands 
ug : T x 9(S) -+ R given by 

For every g E $( T; S) there exists an integrable function 4: T + IF4 such 
that (5.1) is valid; then also J&(t,x)l <d(t) for all tcT, xeP(S), so 
property (G) is immediate. Further, by what was said above about 
W( T; S), it is easy to see that for every k E N and g E gc( T; S) 

t -+ a”( 1,6,(t)) = f g( t, s) G,(t)(&) is measurable on T. 
S 

Thus, all elements of the sequence (6,) are &-scalarly measurable. As 
remarked above and proven in, e.g., [lb, Appendix], P(S) is Suslin ; by 
L. Schwartz’s result [4, III.311 there exists a countable subset {ci> of %?JS) 
which separates the points of B(S). Let $: T + (0, + co) be a strictly 
positive integrable function; then the integrands (1, x) + 1,6(t) Js ci(s) x(ds) 
on TX P(S), Jo N, belong to &. This shows that condition (2.2) also holds 
here (take for N the empty set). Thus, we may apply Theorem 2.1: there 
exist a transition probability 6, EW(T; S) and a subsequence (6,) of {S,} 
such that 

(6,) 0(.9(S), %$,(S))-K-converges a.e. to 6,, 

and in particular, by Corollary 2.2 

(8,) narrowly converges to 6,. 

This proves the desired results. 1 

6. APPLICATIONS: COMPACTNESS CRITERION 
FOR GENERALIZED K~THE FUNCTIONS 

In this section we derive from Theorem 2.1 and Corollary 2.2 the sequen- 
tial analogue of a relative compactness criterion in a generalized KSthe 
function space, due to Castaing and Valadier [4, V.131. We suppose in this 
section that the measure space (T, Y-, p) is a-finite. Recall that a function 

409’151 1-z 
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I$: T + R is said to be locally integrable on T if it is measurable and if for 
every BEG, u(B)< +co, 

5 B 141 dv +a. 

Let 9:,, be the space of all such real-valued locally integrable functions on 
T. Let 9 be a given nonempty subset of Y;“:,,; define 9 to be the vector 
space of all C$ E 9:,, such that 

s T WI &< +a~ for all $ E Y. 

Also, define 9* to be the vector space of all tj E ZrrO, such that 

Let E be a locally convex Suslin vector space; following [4, V] we define 
the generalized Kijthe space ZE to be the vector space of all functions 
f: T+ E such that for every x’ E E’ the function t -+ (f(t), x’) belongs to 
8 (here E’ is the topological dual of E). The weak topology on YE is 
defined to be the initial topology with respect to the functionals 

f- lT Il/(tKf(t), x’> ddt), ti E Y*, x’ E E’. 

The following result forms an improved sequential analogue of [4, 
v.131. 

THEOREM 6.1. Suppose that P: T-+ 2E is a multtfunction with convex 
a(E, E’)-compact values such that for every x’ E E’ the function 4”’ belongs 
to 3, where 4”’ : T -+ R is defined by 

qv’(t) := sup (x, x’). 
s.sr(r) 

Then the set Yr of all functions f E ~3’~ such that f(t) E f(t) a.e., is sequen- 
tially compact for a(E, E’)-K-convergence a.e., and in particular weakly 
sequentially compact. 

Proof Let {fk} be an arbitrary sequence in Yr. We can apply 
Theorem 2.1 by making the following substitutions: Define the convex 
sequentially (T( E, E’)-inf-compact integrand h as 

0 
h(t, x) := + o. 

if xEr(t) 
otherwise 
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(note that by [7, III.661 ordinary a(E, E’)-compactness implies sequential 
a(E, E’)-compactness). Then (2.1) is fulfilled. Define d to be the set of all 
integrands ax’,” : TX E+ R given by 

ayt, x) := l)(t)(x, x’), x’EE’, @EL!*. 

Since 
lax’qc XII <4”‘(t) IC/(t), (6.1) 

where the right-hand side forms an integrable function, all integrands in JS? 
have property (G). Also, for every x’ E E’, $ E 2* 

r + a”“@(& fk(f)) = $(t)(fk(t), x’) is measurable, 

so the elements of {fk} are d-scalarly measurable. Since E is locally 
convex Suslin, it follows by [4, III.311 that there exists a countable subset 
{xi’) of E’ which separates the points of E (see also the proof of 
Lemma 3.1). Also, since (T, Y, p) is a-finite, there exists a sequence { Ti} 
of mutually disjoint sets in Y-, having T as its union, such that p( Ti) < + co 
for all ie N. It is easy to see that for every ie lW the characteristic function 
1 r,: T+ (0, 1) of Ti belongs to both 9 and $P*. Now note that the 
integrands ai,j, i, je N, given by 

q(c x) := 1 T,WX, x;l>, 

form a countable collection in d which satisfies (2.2) (take for N the empty 
set). By Theorem 2.1 there exist a subsequence {fm} of {fk} and an 
d-scalarly measurable function f* : T + E such that 

(fm} o(E, E/)-K-converges a.e. to f,, 

f*(t) E r(t) a.e. 

By (6.1) and d-scalar measurability off,, it follows immediately that f, 
belongs to &, and also to gr. Finally, by Corollary 2.2 

for every x’ E E’, $ E .Y*, so in particular ( fm} converges weakly to&. 1 
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