
Solutions Final Exam M & I, 23-6-11

E.J. Balder

Problem 1 [25 pt]. For j = 1, 2, . . . let Xj := R and let Aj := B(R). Then the set X := Π∞j=1Xj

consists of all infinite sequences (xj)
∞
j=1 of real numbers. Let C ⊂ 2X be the collection of all sets C ⊂ X of

the following form: there exists a finite set of indices K ⊂ N (K may vary with the set C and may even be
empty) and associated sets Bk ∈ Ak, k ∈ K, such that C = {(xj)

∞
j=1 : ∀k∈Kxk ∈ Bk}. Define A := σ(C) to

be the σ-algebra on X.
a. Prove: for every α ∈ R the set A := {(xj)

∞
j=1 ∈ X : lim supj xj ≤ α} belongs to A.

b. Prove: the set D := {(xj)
∞
j=1 ∈ X : limj xj exists and is finite} belongs to A. Hint: a sequence converges

in R if and only if it is a Cauchy sequence.

Solution. Below it is handy to write x := (xj)∞j=1, similar to what you usually do for
n-tuples.

a. Method 1: use of Corollary 8.9. Define for each p ∈ N the function up : x 7→ xp

from X into R. Each up is obviously A-measurable (because u−1
p (B) ∈ C ⊂ A for every

B ∈ B(R) – take K := {p} and Bp := B in the above definition). So by Corollary 8.9,
the function u := lim supp up is also A-measurable. Because of u(x) := lim supp up(x) =
lim supp xp, this implies A = u−1((−∞, α]) ∈ A.

Method 2: direct proof. The following proof “from scratch” repeats a lot of what
goes into Corollary 8.9. By

x ∈ A ⇔ ∀p∈N lim sup
j

xj < α +
1
p
⇔ ∀p inf

m∈N
sup
j≥m

xj < α +
1
p
⇔ ∀p∃m sup

j≥m
xj < α +

1
p

you get A = ∩p ∪m Bp,m, with Bp,m := {x ∈ X : supj≥m xj < α + 1
p}. Next, for every

p, m ∈ N

x ∈ Bp,m ⇔ ∃k∈N sup
j≥m

xj ≤ α +
1
p
− 1

k
⇔ ∃k∈N∀j≥mxj ≤ α +

1
p
− 1

k

shows that Bp,m = ∪k ∩j≥m Cp,k,j , with Cp,k,j := {x ∈ X : xj ≤ α + 1
p −

1
k}. Together with

the preceding this proves A = ∩p ∪m ∪k ∩j≥m Cp,k,j and each Cp,k,j obviously belongs to
C ⊂ A. From this identity you obtain A ∈ A, because A is closed for countable intersections
and unions.

b. Method 1: use the hint. Let D := {x ∈ X : limj xj exists and is finite}. The
hint suggests you to use that x = (xj)∞j=1 belongs to D if and only if it is Cauchy, which
holds evidently if and only if

∀p∈N∃m∈N∀k,l≥m|xk − xl| <
1
p
.

Therefore, D = ∩p ∪m ∩k,l≥mEp,k,l, where Ep,k,l := {x ∈ X : |xk − xl| < 1
p}. By

|xk − xl| <
1
p
⇔ ∃q,q′∈Q xl −

1
p

< q < xk and xk < q′ < xl +
1
p
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it follows that Ep,k,l = ∪q,q′∈QFp,k,l,q ∩ F ′
p,k,l,q′ , with

Fp,k,l,q := {x ∈ X : xk ∈ (q, +∞), xl ∈ (−∞, q +
1
p
)} ∈ C ⊂ A,

F ′
p,k,l,q := {x ∈ X : xk ∈ (−∞, q′), xl ∈ (q′ − 1

p
,+∞)} ∈ C ⊂ A.

By repeated use of the fact that A is closed for countable intersections and unions it thus
follows that D belongs to A.

Method 2: use part a. Let D := {x ∈ X : limj xj exists and is finite}. Then

D = {x ∈ X : li(x) = ls(x)} ∩ [∪k{x ∈ X : ls(x) ≤ k}] ∩ [∪k{x ∈ X : li(x) ≥ −k}],

by defining ls(x) := lim supj xj and li(x) := lim infj xj for x = (xj)j ∈ X. By part a the
function ls : X → [−∞,+∞] is measurable and so is the other function li : X → [−∞,+∞].
The latter is seen by first observing that x := (xj)j 7→ (−xj)j =: −x is measurable from X
into X (you can use Lemma 7.2 for this) and then using the well-known identity li(x) =
−ls(−x). So D ∈ A follows by Corollary 8.12 and Lemma 8.1.

Problem 2 [25 pt] Consider X := R, equipped with the Borel σ-algebra and the Lebesgue measure λ.
Let (fn)n be a sequence of functions fn : X → R+ with

R
X

fn dλ = 1 and {x ∈ X : fn(x) 6= 0} ⊂ {x ∈ X :
|x − rn| < 2−n} =: Sn for each n. Here Q := {rn : n ∈ N} denotes an arbitrary but fixed enumeration of
the rational numbers. Define µ(A) :=

P∞
n=1

R
A

fn dλ. Prove successively:

i. µ is a measure on (X,A),

ii.
P∞

n=1 fn(x) < +∞ holds λ-a.e. [Hint: Use the following result and give its proof as well: ifP
n λ(Bn) < +∞ holds for a sequence (Bn)n in A, then λ(∩m ∪n≥m Bn) = 0.]

iii. µ is σ-finite on (X,A).

iv. µ(A) = ∞ holds for every open subset A of X. [Hint: An open subset of R contains two concentric
open intervals.]

Solution. i. Method 1. A direct consequence of Lemma 10.8, which guarantees that
each νn : A 7→

∫
A fn is a measure, and Problem 4.6(ii), which then implies that

∑
n νn is a

measure.
Method 2. First, µ(∅) =

∑
n 0 = 0 is obvious and for any mutually disjoint collection

{Aj} in A

µ(∪jAj) =
∑

n

∫
X

∑
j

1Ajfn
Cor 9.9=

∑
n

∑
j

∫
Aj

fn
Tonelli=

∑
j

∑
n

∫
Aj

fn =
∑

j

µ(Aj),

where “Tonelli” refers to the swith of the summation indices, applied to two counting
measures (validity of that switch also follows by Problem 4.6(ii), p 24).

ii. First you must prove the hint (= actual homework problem 6.9, p. 47) about the
Borel-Cantelli theorem. Let Cm := ∪n≥mBn; then Cm ↓ ∩m ∪n≥m Bn =: N . Now 0 ≤
µ(N) ≤ µ(Cm) ≤

∑
n≥m µ(Bn) and for m → ∞ the right hand side converges to zero by

the hypothesis
∑

n λ(Bn) < +∞. Conclusion: µ(N) = 0. Now apply this hint to the sets
Bn := {fn 6= 0}. Note that λ(Bn) < 2 ∗ 2−n is given, so

∑
n λ(Bn) is certainly finite. By

the hint, it then follows that λ(N) = 0 for N := ∩m ∪n≥m {fn 6= 0}. Now for any x 6∈ N
you have, by definition of N , that there is m = m(x) ∈ N such that x 6∈ Bn (i.e., such that
fn(x) = 0) for all n ≥ m(x); hence, it follows that

∑∞
n=1 fn(x) =

∑m(x)
n=1 fn(x) < +∞.

iii. Define Em := {x ∈ X :
∑m

n=1 fn(x) < +∞} for every m ∈ N; then by part b the
set E0 := X\(∪mEm), being contained in N , has µ(E0) = 0. Now ∪∞m=0Em = X, where
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µ(E0) = 0 < +∞ and µ(Em) =
∑∞

n=1

∫
Em

fn ≤
∑m

n=1

∫
X fn = m < +∞ for every m ≥ 1.

This proves µ to be σ-finite.
iv. Correction: The open set A should – obviously – be supposed nonempty in addition.

Then A has some point x0 and there is δ > 0 such that the interval I1 := (x0 − δ, x0 + δ),
whence also I2 := (x0 − δ

2 , x0 + δ
2), is contained in A. Choose n from now on so large that

2−n < δ/2. Now the nonempty open interval I2 contains infinitely many rn’s (i.e., they
satisfy |rn − x0| < δ/2) and for each of the corresponding indices n the set {fn 6= 0} ⊂ Sn

is entirely contained in A (use |x−x0| ≤ |x0− rn|+ |x− rn| < δ
2 +2−n < δ). The definition

of µ now gives µ(A) = +∞, because
∫
A fn = 1 for infinitely many n’s.

Problem 3 [25 pt]. Let (X,A, µ) be a measure space, let (uj)j∈N be a sequence in L∞(X) and

let u be in L∞(X) as well. As usual, the essential supremum seminorm on L∞(X) is denoted by ‖ · ‖∞.

Prove the following equivalence limj ‖uj − u‖∞ = 0 ⇔ ∃A∈A,µ(A)=0 limj supx∈X\A |uj(x)− u(x)| = 0. Hint:

limj ‖uj − u‖∞ = 0 means that for every m ∈ N ‖uj − u‖∞ ≤ m−1 for large enough j.

Solution. ⇒: By the hint the hypothesis can be stated as follows: for every m ∈ N
there exists Jm such that ‖uj − u‖∞ := inf{C : µ(|uj − u| > C) = 0} < 1/m for all j ≥ Jm.
Hence, for every m ∈ N there exists Cm < 1/m such that µ(|uj − u| > Cm) = 0 for all
j ≥ Jm. Form A := ∪m ∪j≥Jm {|uj − u| > Cm}, a countable union of null sets; then
µ(A) = 0. Given any ε > 0, let m be so large that 1/m < ε. Then one has for j ≥ Jm that
X\A ⊂ {|uj − u| ≤ Cm}, which implies supx 6∈A |uj(x)− u(x)| ≤ Cm < 1/m < ε.

⇐: Let the null set A be as in the statement and let ε > 0 be arbitrary. The following
is given: there exists J such that supx 6∈A |u(x) − uj(x)| ≤ ε for every j ≥ J . Then for
every j ≥ J it follows from x 6∈ A ⇒ |u(x) − uj(x)| ≤ ε that {|uj − u| > ε} ⊂ A, whence
µ({|uj − u| > ε}) = 0. This proves ‖uj − u‖∞ ≤ ε for all j ≥ J .

Problem 4 [25 pt] Let µ be a finite measure on (X,A) := (Rd,B(Rd)). Prove that for every A ∈ A

µ(A) = inf{µ(G) : G ⊃ A and G is open } =: ι(A)

and
µ(A) = sup{µ(F ) : F ⊂ A and F is closed} =: σ(A)

Hint: Used the good sets principle and recall that every closed subset of X is a countable intersection of

open sets (prove this as well).

Solution. Step 1. Naturally, you still remember homework Problem 10.12, so you
begin by mimicking its part (i). By monotonicity of µ, the above definitions give ι(A) ≥
µ(A) ≥ σ(A) for every A ∈ A. Notice also the following property: for any A ∈ A

ι(X\A) = inf
G open,G⊃X\A

µ(G) = inf
F closed,F⊂A

µ(X\F ) = inf
F closed,F⊂A

µ(X)− µ(F ),

which implies
ι(X\A) = µ(X)− sup

F closed,F⊂A

µ(F ) = µ(X)− σ(A). (1)

Step 2. Next, you follow the hint: let C be the class of all “good sets”, i.e., the class
of all A ∈ A for which µ(A) = ι(A) = σ(A) (also this is still similar to the spirit of
Problem 10.12). Then the inequalities above imply that C is actually the set of all A ∈ A
for which ι(A) ≤ σ(A). The strategy suggested by the hint is to try to prove that C is a
σ-algebra (see step 4) and to prove also that C contains any closed set F ⊂ X (see step 3).
After that, the proof is obviously finished, for then you have achieved A ⊃ C = σ(C) ⊃
B(Rd) = A, i.e., C = A.
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Step 3. You must show ι(F ) ≤ σ(F ), for which it is enough to prove (1) σ(F ) ≥ µ(F )
and (2) µ(F ) ≥ ι(F ). Here (1) follows immediately from the definition of σ(F ). You can
prove (2) by using the hint, which says that F = ∩kGk for some countable collection {Gk}k

of open sets. Without loss of generality you may suppose monotonicity (or else consider
the open sets G′

m := ∩k≤mGk ⊃ F ). Because the measure µ is finite, it follows that
µ(Gk) ↓ µ(F ). By µ(Gk) ≥ ι(F ) this gives (2).

Step 4. You must show that C does the following: (i) it contains ∅, (ii) it is closed
for taking complements and (iii) it is closed for taking countable unions. As for (i), this
follows immediately from ι(∅) = σ(∅) = 0. As for (ii), let A ∈ C be arbitrary. Then
ι(A) ≤ σ(A), so (1) implies ι(X\A) = µ(X)− σ(A) ≤ µ(X)− ι(A). Because it also follows
from (1) that σ(X\A) = µ(X)− ι(A), you get ι(X\A) ≤ σ(X\A), which proves that X\A
belongs to C. As for (iii), you must prove that if {Aj}j ⊂ C (i.e., ι(Aj) ≤ σ(Aj) for every
j) then A := ∪jAj ∈ C, i.e., ι(A) ≤ σ(A), and for this it is already enough to prove that
ι(A) ≤ σ(A) + ε for an arbitrary, fixed ε > 0. Now for every j the inequality ι(Aj) ≤ σ(Aj)
implies that there exist an open set Gj , Gj ⊃ Aj , and a closed set Fj , Fj ⊂ Aj , such that
µ(Gj) < µ(Fj) + ε/2j . Then for the open set G := ∪jGj ⊃ A and the set F := ∪jFj you
have µ(G\F ) ≤

∑
j µ(Gj\Fj) by G\F ⊂ ∪j(Gj\Fj) < ε. Although F need not be closed,

each set F ′
m := ∪m

j=1Fj is closed. Here F ′
m ↑ F implies G\F ′

m ↓ G\F , so it follows from
the above that µ(G\F ′

m) < ε for large enough m. By G ⊃ A ⊃ F ′
m this implies the desired

inequality ι(A) ≤ σ(A) + ε. The proof is now finished, in view of what was observed in
step 2.

Finally, the hint follows by taking for an arbitrary closed and nonempty set F ⊂ X the
sequence composed of the open sets Gk, k ∈ N, where Gk := {x ∈ X : infz∈F ‖z−x‖ < 1/k}
is open, being the union over z ∈ F of all open balls Bz,1/k. Then ∩kGk ⊃ F is trivial and
∩kGk ⊂ F follows simply from the fact that F is closed (if x̃ ∈ ∩kGk then there exists a
sequence (zk) ⊂ F such that zk → x̃).
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