Solutions Final Exam M \& I, 23-6-11

E.J. Balder

Problem 1 [25 pt]. For $j=1,2, \ldots$ let $X_{j}:=\mathbb{R}$ and let $\mathcal{A}_{j}:=\mathcal{B}(\mathbb{R})$. Then the set $X:=\Pi_{j=1}^{\infty} X_{j}$ consists of all infinite sequences $\left(x_{j}\right)_{j=1}^{\infty}$ of real numbers. Let $\mathcal{C} \subset 2^{X}$ be the collection of all sets $C \subset X$ of the following form: there exists a finite set of indices $K \subset \mathbb{N}(K$ may vary with the set C and may even be empty) and associated sets $B_{k} \in \mathcal{A}_{k}, k \in K$, such that $C=\left\{\left(x_{j}\right)_{j=1}^{\infty}: \forall_{k \in K} x_{k} \in B_{k}\right\}$. Define $\mathcal{A}:=\sigma(\mathcal{C})$ to be the σ-algebra on X.
a. Prove: for every $\alpha \in \mathbb{R}$ the set $A:=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in X: \limsup _{j} x_{j} \leq \alpha\right\}$ belongs to \mathcal{A}.
b. Prove: the set $D:=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in X: \lim _{j} x_{j}\right.$ exists and is finite $\}$ belongs to \mathcal{A}. Hint: a sequence converges in \mathbb{R} if and only if it is a Cauchy sequence.

Solution. Below it is handy to write $\mathbf{x}:=\left(x_{j}\right)_{j=1}^{\infty}$, similar to what you usually do for n-tuples.
a. Method 1: use of Corollary 8.9. Define for each $p \in \mathbb{N}$ the function $u_{p}: \mathbf{x} \mapsto x_{p}$ from X into \mathbb{R}. Each u_{p} is obviously \mathcal{A}-measurable (because $u_{p}^{-1}(B) \in \mathcal{C} \subset \mathcal{A}$ for every $B \in \mathcal{B}(\mathbb{R})$ - take $K:=\{p\}$ and $B_{p}:=B$ in the above definition). So by Corollary 8.9, the function $u:=\limsup _{p} u_{p}$ is also \mathcal{A}-measurable. Because of $u(\mathbf{x}):=\limsup _{p} u_{p}(\mathbf{x})=$ $\lim \sup _{p} x_{p}$, this implies $A=u^{-1}((-\infty, \alpha]) \in \mathcal{A}$.

Method 2: direct proof. The following proof "from scratch" repeats a lot of what goes into Corollary 8.9. By

$$
\mathbf{x} \in A \Leftrightarrow \forall_{p \in \mathbb{N}} \limsup _{j} x_{j}<\alpha+\frac{1}{p} \Leftrightarrow \forall_{p} \inf _{m \in \mathbb{N}} \sup _{j \geq m} x_{j}<\alpha+\frac{1}{p} \Leftrightarrow \forall_{p} \exists_{m} \sup _{j \geq m} x_{j}<\alpha+\frac{1}{p}
$$

you get $A=\cap_{p} \cup_{m} B_{p, m}$, with $B_{p, m}:=\left\{\mathbf{x} \in X: \sup _{j \geq m} x_{j}<\alpha+\frac{1}{p}\right\}$. Next, for every $p, m \in \mathbb{N}$

$$
\mathbf{x} \in B_{p, m} \Leftrightarrow \exists_{k \in \mathbb{N}} \sup _{j \geq m} x_{j} \leq \alpha+\frac{1}{p}-\frac{1}{k} \Leftrightarrow \exists_{k \in \mathbb{N}} \forall_{j \geq m} x_{j} \leq \alpha+\frac{1}{p}-\frac{1}{k}
$$

shows that $B_{p, m}=\cup_{k} \cap_{j \geq m} C_{p, k, j}$, with $C_{p, k, j}:=\left\{\mathbf{x} \in X: x_{j} \leq \alpha+\frac{1}{p}-\frac{1}{k}\right\}$. Together with the preceding this proves $A=\cap_{p} \cup_{m} \cup_{k} \cap_{j \geq m} C_{p, k, j}$ and each $C_{p, k, j}$ obviously belongs to $\mathcal{C} \subset \mathcal{A}$. From this identity you obtain $A \in \mathcal{A}$, because \mathcal{A} is closed for countable intersections and unions.
b. Method 1: use the hint. Let $D:=\left\{\mathbf{x} \in X: \lim _{j} x_{j}\right.$ exists and is finite $\}$. The hint suggests you to use that $\mathbf{x}=\left(x_{j}\right)_{j=1}^{\infty}$ belongs to D if and only if it is Cauchy, which holds evidently if and only if

$$
\forall_{p \in \mathbb{N}} \exists_{m \in \mathbb{N}} \forall_{k, l \geq m}\left|x_{k}-x_{l}\right|<\frac{1}{p}
$$

Therefore, $D=\cap_{p} \cup_{m} \cap_{k, l \geq m} E_{p, k, l}$, where $E_{p, k, l}:=\left\{\mathbf{x} \in X:\left|x_{k}-x_{l}\right|<\frac{1}{p}\right\}$. By

$$
\left|x_{k}-x_{l}\right|<\frac{1}{p} \Leftrightarrow \exists_{q, q^{\prime} \in \mathbb{Q}} x_{l}-\frac{1}{p}<q<x_{k} \text { and } x_{k}<q^{\prime}<x_{l}+\frac{1}{p}
$$

it follows that $E_{p, k, l}=\cup_{q, q^{\prime} \in \mathbb{Q}} F_{p, k, l, q} \cap F_{p, k, l, q^{\prime}}^{\prime}$, with

$$
\begin{aligned}
F_{p, k, l, q} & :=\left\{\mathbf{x} \in X: x_{k} \in(q,+\infty), x_{l} \in\left(-\infty, q+\frac{1}{p}\right)\right\} \in \mathcal{C} \subset \mathcal{A} \\
F_{p, k, l, q}^{\prime} & :=\left\{\mathbf{x} \in X: x_{k} \in\left(-\infty, q^{\prime}\right), x_{l} \in\left(q^{\prime}-\frac{1}{p},+\infty\right)\right\} \in \mathcal{C} \subset \mathcal{A}
\end{aligned}
$$

By repeated use of the fact that \mathcal{A} is closed for countable intersections and unions it thus follows that D belongs to \mathcal{A}.

Method 2: use part a. Let $D:=\left\{\mathbf{x} \in X: \lim _{j} x_{j}\right.$ exists and is finite $\}$. Then

$$
D=\{\mathbf{x} \in X: l i(\mathbf{x})=l s(\mathbf{x})\} \cap\left[\cup_{k}\{\mathbf{x} \in X: l s(\mathbf{x}) \leq k\}\right] \cap\left[\cup_{k}\{\mathbf{x} \in X: l i(\mathbf{x}) \geq-k\}\right]
$$

by defining $l s(\mathbf{x}):=\limsup _{j} x_{j}$ and $l i(\mathbf{x}):=\liminf _{j} x_{j}$ for $x=\left(x_{j}\right)_{j} \in X$. By part a the function $l s: X \rightarrow[-\infty,+\infty]$ is measurable and so is the other function $l i: X \rightarrow[-\infty,+\infty]$. The latter is seen by first observing that $\mathbf{x}:=\left(x_{j}\right)_{j} \mapsto\left(-x_{j}\right)_{j}=:-\mathbf{x}$ is measurable from X into X (you can use Lemma 7.2 for this) and then using the well-known identity $l i(\mathbf{x})=$ $-l s(-\mathbf{x})$. So $D \in \mathcal{A}$ follows by Corollary 8.12 and Lemma 8.1.

Problem 2 [$\mathbf{2 5} \mathbf{~ p t}$] Consider $X:=\mathbb{R}$, equipped with the Borel σ-algebra and the Lebesgue measure λ. Let $\left(f_{n}\right)_{n}$ be a sequence of functions $f_{n}: X \rightarrow \mathbb{R}_{+}$with $\int_{X} f_{n} d \lambda=1$ and $\left\{x \in X: f_{n}(x) \neq 0\right\} \subset\{x \in X$: $\left.\left|x-r_{n}\right|<2^{-n}\right\}=: S_{n}$ for each n. Here $\mathbb{Q}:=\left\{r_{n}: n \in \mathbb{N}\right\}$ denotes an arbitrary but fixed enumeration of the rational numbers. Define $\mu(A):=\sum_{n=1}^{\infty} \int_{A} f_{n} d \lambda$. Prove successively:
i. μ is a measure on (X, \mathcal{A}),
ii. $\sum_{n=1}^{\infty} f_{n}(x)<+\infty$ holds λ-a.e. [Hint: Use the following result and give its proof as well: if $\sum_{n} \lambda\left(B_{n}\right)<+\infty$ holds for a sequence $\left(B_{n}\right)_{n}$ in \mathcal{A}, then $\lambda\left(\cap_{m} \cup_{n \geq m} B_{n}\right)=0$.]
iii. μ is σ-finite on (X, \mathcal{A}).
iv. $\mu(A)=\infty$ holds for every open subset A of X. [Hint: An open subset of \mathbb{R} contains two concentric open intervals.]

Solution. i. Method 1. A direct consequence of Lemma 10.8, which guarantees that each $\nu_{n}: A \mapsto \int_{A} f_{n}$ is a measure, and Problem 4.6(ii), which then implies that $\sum_{n} \nu_{n}$ is a measure.

Method 2. First, $\mu(\emptyset)=\sum_{n} 0=0$ is obvious and for any mutually disjoint collection $\left\{A_{j}\right\}$ in \mathcal{A}

$$
\mu\left(\cup_{j} A_{j}\right)=\sum_{n} \int_{X} \sum_{j} 1_{A_{j}} f_{n} \stackrel{\text { Cor } 9.9}{=} \sum_{n} \sum_{j} \int_{A_{j}} f_{n} \stackrel{\text { Tonelli }}{=} \sum_{j} \sum_{n} \int_{A_{j}} f_{n}=\sum_{j} \mu\left(A_{j}\right)
$$

where "Tonelli" refers to the swith of the summation indices, applied to two counting measures (validity of that switch also follows by Problem 4.6(ii), p 24).
ii. First you must prove the hint (= actual homework problem 6.9, p. 47) about the Borel-Cantelli theorem. Let $C_{m}:=\cup_{n \geq m} B_{n}$; then $C_{m} \downarrow \cap_{m} \cup_{n \geq m} B_{n}=: N$. Now $0 \leq$ $\mu(N) \leq \mu\left(C_{m}\right) \leq \sum_{n \geq m} \mu\left(B_{n}\right)$ and for $m \rightarrow \infty$ the right hand side converges to zero by the hypothesis $\sum_{n} \lambda\left(\bar{B}_{n}\right)<+\infty$. Conclusion: $\mu(N)=0$. Now apply this hint to the sets $B_{n}:=\left\{f_{n} \neq 0\right\}$. Note that $\lambda\left(B_{n}\right)<2 * 2^{-n}$ is given, so $\sum_{n} \lambda\left(B_{n}\right)$ is certainly finite. By the hint, it then follows that $\lambda(N)=0$ for $N:=\cap_{m} \cup_{n \geq m}\left\{f_{n} \neq 0\right\}$. Now for any $x \notin N$ you have, by definition of N, that there is $m=m(x) \in \mathbb{N}$ such that $x \notin B_{n}$ (i.e., such that $\left.f_{n}(x)=0\right)$ for all $n \geq m(x)$; hence, it follows that $\sum_{n=1}^{\infty} f_{n}(x)=\sum_{n=1}^{m(x)} f_{n}(x)<+\infty$.
iii. Define $E_{m}:=\left\{x \in X: \sum_{n=1}^{m} f_{n}(x)<+\infty\right\}$ for every $m \in \mathbb{N}$; then by part b the set $E_{0}:=X \backslash\left(\cup_{m} E_{m}\right)$, being contained in N, has $\mu\left(E_{0}\right)=0$. Now $\cup_{m=0}^{\infty} E_{m}=X$, where
$\mu\left(E_{0}\right)=0<+\infty$ and $\mu\left(E_{m}\right)=\sum_{n=1}^{\infty} \int_{E_{m}} f_{n} \leq \sum_{n=1}^{m} \int_{X} f_{n}=m<+\infty$ for every $m \geq 1$. This proves μ to be σ-finite.
$i v$. Correction: The open set A should - obviously - be supposed nonempty in addition. Then A has some point x_{0} and there is $\delta>0$ such that the interval $I_{1}:=\left(x_{0}-\delta, x_{0}+\delta\right)$, whence also $I_{2}:=\left(x_{0}-\frac{\delta}{2}, x_{0}+\frac{\delta}{2}\right)$, is contained in A. Choose n from now on so large that $2^{-n}<\delta / 2$. Now the nonempty open interval I_{2} contains infinitely many r_{n} 's (i.e., they satisfy $\left.\left|r_{n}-x_{0}\right|<\delta / 2\right)$ and for each of the corresponding indices n the set $\left\{f_{n} \neq 0\right\} \subset S_{n}$ is entirely contained in A (use $\left|x-x_{0}\right| \leq\left|x_{0}-r_{n}\right|+\left|x-r_{n}\right|<\frac{\delta}{2}+2^{-n}<\delta$). The definition of μ now gives $\mu(A)=+\infty$, because $\int_{A} f_{n}=1$ for infinitely many n 's.

Problem 3 [25 pt]. Let (X, \mathcal{A}, μ) be a measure space, let $\left(u_{j}\right)_{j \in \mathbb{N}}$ be a sequence in $\mathcal{L}^{\infty}(X)$ and let u be in $\mathcal{L}^{\infty}(X)$ as well. As usual, the essential supremum seminorm on $\mathcal{L}^{\infty}(X)$ is denoted by $\|\cdot\|_{\infty}$. Prove the following equivalence $\lim _{j}\left\|u_{j}-u\right\|_{\infty}=0 \Leftrightarrow \exists_{A \in \mathcal{A}, \mu(A)=0} \lim _{j} \sup _{x \in X \backslash A}\left|u_{j}(x)-u(x)\right|=0$. Hint: $\lim _{j}\left\|u_{j}-u\right\|_{\infty}=0$ means that for every $m \in \mathbb{N}\left\|u_{j}-u\right\|_{\infty} \leq m^{-1}$ for large enough j.

Solution. \Rightarrow : By the hint the hypothesis can be stated as follows: for every $m \in \mathbb{N}$ there exists J_{m} such that $\left\|u_{j}-u\right\|_{\infty}:=\inf \left\{C: \mu\left(\left|u_{j}-u\right|>C\right)=0\right\}<1 / m$ for all $j \geq J_{m}$. Hence, for every $m \in \mathbb{N}$ there exists $C_{m}<1 / m$ such that $\mu\left(\left|u_{j}-u\right|>C_{m}\right)=0$ for all $j \geq J_{m}$. Form $A:=\cup_{m} \cup_{j \geq J_{m}}\left\{\left|u_{j}-u\right|>C_{m}\right\}$, a countable union of null sets; then $\mu(A)=0$. Given any $\epsilon>0$, let m be so large that $1 / m<\epsilon$. Then one has for $j \geq J_{m}$ that $X \backslash A \subset\left\{\left|u_{j}-u\right| \leq C_{m}\right\}$, which implies $\sup _{x \notin A}\left|u_{j}(x)-u(x)\right| \leq C_{m}<1 / m<\epsilon$.
\Leftarrow : Let the null set A be as in the statement and let $\epsilon>0$ be arbitrary. The following is given: there exists J such that $\sup _{x \notin A}\left|u(x)-u_{j}(x)\right| \leq \epsilon$ for every $j \geq J$. Then for every $j \geq J$ it follows from $x \notin A \Rightarrow\left|u(x)-u_{j}(x)\right| \leq \epsilon$ that $\left\{\left|u_{j}-u\right|>\epsilon\right\} \subset A$, whence $\mu\left(\left\{\left|u_{j}-u\right|>\epsilon\right\}\right)=0$. This proves $\left\|u_{j}-u\right\|_{\infty} \leq \epsilon$ for all $j \geq J$.

Problem 4 [25 pt] Let μ be a finite measure on $(X, \mathcal{A}):=\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$. Prove that for every $A \in \mathcal{A}$

$$
\mu(A)=\inf \{\mu(G): G \supset A \text { and } G \text { is open }\}=: \iota(A)
$$

and

$$
\mu(A)=\sup \{\mu(F): F \subset A \text { and } F \text { is closed }\}=: \sigma(A)
$$

Hint: Used the good sets principle and recall that every closed subset of X is a countable intersection of open sets (prove this as well).

Solution. Step 1. Naturally, you still remember homework Problem 10.12, so you begin by mimicking its part (i). By monotonicity of μ, the above definitions give $\iota(A) \geq$ $\mu(A) \geq \sigma(A)$ for every $A \in \mathcal{A}$. Notice also the following property: for any $A \in \mathcal{A}$

$$
\iota(X \backslash A)=\inf _{G \text { open }, G \supset X \backslash A} \mu(G)=\inf _{F \operatorname{closed}, F \subset A} \mu(X \backslash F)=\inf _{F \operatorname{closed}, F \subset A} \mu(X)-\mu(F),
$$

which implies

$$
\begin{equation*}
\iota(X \backslash A)=\mu(X)-\sup _{F \operatorname{closed}, F \subset A} \mu(F)=\mu(X)-\sigma(A) \tag{1}
\end{equation*}
$$

Step 2. Next, you follow the hint: let \mathcal{C} be the class of all "good sets", i.e., the class of all $A \in \mathcal{A}$ for which $\mu(A)=\iota(A)=\sigma(A)$ (also this is still similar to the spirit of Problem 10.12). Then the inequalities above imply that \mathcal{C} is actually the set of all $A \in \mathcal{A}$ for which $\iota(A) \leq \sigma(A)$. The strategy suggested by the hint is to try to prove that \mathcal{C} is a σ-algebra (see step 4) and to prove also that \mathcal{C} contains any closed set $F \subset X$ (see step 3). After that, the proof is obviously finished, for then you have achieved $\mathcal{A} \supset \mathcal{C}=\sigma(\mathcal{C}) \supset$ $\mathcal{B}\left(\mathbb{R}^{d}\right)=\mathcal{A}$, i.e., $\mathcal{C}=\mathcal{A}$.

Step 3. You must show $\iota(F) \leq \sigma(F)$, for which it is enough to prove (1) $\sigma(F) \geq \mu(F)$ and (2) $\mu(F) \geq \iota(F)$. Here (1) follows immediately from the definition of $\sigma(F)$. You can prove (2) by using the hint, which says that $F=\cap_{k} G_{k}$ for some countable collection $\left\{G_{k}\right\}_{k}$ of open sets. Without loss of generality you may suppose monotonicity (or else consider the open sets $\left.G_{m}^{\prime}:=\cap_{k \leq m} G_{k} \supset F\right)$. Because the measure μ is finite, it follows that $\mu\left(G_{k}\right) \downarrow \mu(F)$. By $\mu\left(G_{k}\right) \geq \iota(F)$ this gives (2).

Step 4. You must show that \mathcal{C} does the following: (i) it contains \emptyset, (ii) it is closed for taking complements and (iii) it is closed for taking countable unions. As for (i), this follows immediately from $\iota(\emptyset)=\sigma(\emptyset)=0$. As for $(i i)$, let $A \in \mathcal{C}$ be arbitrary. Then $\iota(A) \leq \sigma(A)$, so (1) implies $\iota(X \backslash A)=\mu(X)-\sigma(A) \leq \mu(X)-\iota(A)$. Because it also follows from (1) that $\sigma(X \backslash A)=\mu(X)-\iota(A)$, you get $\iota(X \backslash A) \leq \sigma(X \backslash A)$, which proves that $X \backslash A$ belongs to \mathcal{C}. As for $($ iii $)$, you must prove that if $\left\{A_{j}\right\}_{j} \subset \mathcal{C}$ (i.e., $\iota\left(A_{j}\right) \leq \sigma\left(A_{j}\right)$ for every $j)$ then $A:=\cup_{j} A_{j} \in \mathcal{C}$, i.e., $\iota(A) \leq \sigma(A)$, and for this it is already enough to prove that $\iota(A) \leq \sigma(A)+\epsilon$ for an arbitrary, fixed $\epsilon>0$. Now for every j the inequality $\iota\left(A_{j}\right) \leq \sigma\left(A_{j}\right)$ implies that there exist an open set $G_{j}, G_{j} \supset A_{j}$, and a closed set $F_{j}, F_{j} \subset A_{j}$, such that $\mu\left(G_{j}\right)<\mu\left(F_{j}\right)+\epsilon / 2^{j}$. Then for the open set $G:=\cup_{j} G_{j} \supset A$ and the set $F:=\cup_{j} F_{j}$ you have $\mu(G \backslash F) \leq \sum_{j} \mu\left(G_{j} \backslash F_{j}\right)$ by $G \backslash F \subset \cup_{j}\left(G_{j} \backslash F_{j}\right)<\epsilon$. Although F need not be closed, each set $F_{m}^{\prime}:=\cup_{j=1}^{m} F_{j}$ is closed. Here $F_{m}^{\prime} \uparrow F$ implies $G \backslash F_{m}^{\prime} \downarrow G \backslash F$, so it follows from the above that $\mu\left(G \backslash F_{m}^{\prime}\right)<\epsilon$ for large enough m. By $G \supset A \supset F_{m}^{\prime}$ this implies the desired inequality $\iota(A) \leq \sigma(A)+\epsilon$. The proof is now finished, in view of what was observed in step 2.

Finally, the hint follows by taking for an arbitrary closed and nonempty set $F \subset X$ the sequence composed of the open sets $G_{k}, k \in \mathbb{N}$, where $G_{k}:=\left\{x \in X: \inf _{z \in F}\|z-x\|<1 / k\right\}$ is open, being the union over $z \in F$ of all open balls $B_{z, 1 / k}$. Then $\cap_{k} G_{k} \supset F$ is trivial and $\cap_{k} G_{k} \subset F$ follows simply from the fact that F is closed (if $\tilde{x} \in \cap_{k} G_{k}$ then there exists a sequence $\left(z_{k}\right) \subset F$ such that $\left.z_{k} \rightarrow \tilde{x}\right)$.

