
Solutions Second Quizz M & I, 19-5-11

Problem 1 [35 pt]. Let (X,A, µ) be a measure space and let u : X → R̄ be A-measurable and

such that
∫
X
|u|dµ = 0. Prove that |u| = 0 almost everywhere.

Solution. Let Aj := {|u| ≥ 1/j}, j ∈ N. Then A := {|u| > 0} is the monotone
limit of the increasing sequence {Aj}j, which implies µ(A) = limj ↑ µ(Aj). Also, by
Markov’s inequality 1

j
µ(Aj) ≤

∫
X
|u|dµ = 0 for every j, which implies µ(Aj) = 0. So

it follows that µ(A) = 0.

Problem 2 [35 pt]. a. Let {αj}j be a monotone sequence of nonnegative real numbers such
that αj ↓ 0. Then prove, using a Cauchy sequence argument, that the series

∑∞
j=0(−1)jαj converges

(i.e., the corresponding sequence of partial sums sn :=
∑n

j=0(−1)jαj has a limit in R). Hint: Start
by proving that s2m − s2n ≥ α2m − α2n+1 for m > n.

b. Let (X,A, µ) be a measure space and let {uj}j be a sequence of nonnegative functions in

L1
R such that uj(x) ↓ 0 for every x ∈ X. Prove the following statement: f(x) :=

∑∞
j=0(−1)juj(x)

defines a function which is integrable and for which
∫
X
f dµ =

∑∞
j=0(−1)j

∫
X
uj dµ.

Proof. a. Step 1: {s2j}j is a Cauchy sequence. For m > n the inequality in the
hint holds by

s2m − s2n = −α2n+1 + α2n+2 − α2n+3︸ ︷︷ ︸
≥0

+ · · ·+ α2m−2 − α2m−1︸ ︷︷ ︸
≥0

+α2m ≥ −α2n+1 + α2m

and an opposite bound is provided directly by

s2m − s2n = −α2n+1 + α2n+2︸ ︷︷ ︸
≤0

−α2n+3 + α2n+4︸ ︷︷ ︸
≤0

− · · ·+−α2m−1 + α2m︸ ︷︷ ︸
≤0

≤ 0.

Hence, |s2m− s2n| = s2n− s2m ≤ α2n+1−α2m ≤ α2n+1 for m > n. It thus follows that
{s2j}j is Cauchy (given any ε > 0, choose N so large that α2n+1 < ε for all n ≥ N ;
then m > n ≥ N implies |s2m − s2n| < ε).

Step 2: {s2j+1}j is a Cauchy sequence. Imitating step 1, we find for m > n

s2m+1 − s2n+1 = α2n+2 − α2n+3︸ ︷︷ ︸
≥0

+ . . .+ α2m − α2m+1︸ ︷︷ ︸
≥0

≥ 0

and

s2m+1 − s2n+1 = α2n+2−α2n+3 + α2n+4︸ ︷︷ ︸
≤0

· · · −α2m−1 + α2m︸ ︷︷ ︸
≤0

−α2m+1 ≤ α2n+2 − α2m+1.
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Hence, |s2m+1 − s2n+1| = s2m+1 − s2n+1 ≤ α2n+2. Just as in step 1, this inequality
implies that {s2j+1}j is Cauchy.

Step 3: Conclusion. By steps 1-2 there exists z1 and z2 in R such that s2j → z1
and s2j−1 → z2. By z2 ← s2j+1 = s2j + α2j+1 → z1 + 0 it follows that z1 = z2 and
therefore the sequence {sn}n as a whole converges.1

b.By part a, applied pointwise, the function f is well-defined and by another
application of part a

the series
∑∞

j=0(−1)j
∫
X
uj dµ is convergent, (1)

because of limj ↓
∫
X
uj = 0, which is true by the monotone convergence theorem

(note that uj ≤ u1 ∈ L1(µ) for all j). We can now either use the LDCT or the MCT
to finish the proof.

Use of the LDCT. We seek to apply the LDCT to the partial sums fn(x) :=∑n
j=0(−1)juj(x), which clearly belong to L1(µ) and converge to f(x) pointwise for

every x ∈ X by part a. For the even indices we have

f2n(x) = u0(x)− u1(x)︸ ︷︷ ︸
≥0

+ · · ·+ u2n−2(x)− u2n−1(x)︸ ︷︷ ︸
≥0

+u2n(x)︸ ︷︷ ︸
≥0

≥ 0

and
f2n(x) = u0(x)−u1(x) + u2(x)︸ ︷︷ ︸

≤0

− · · ·−u2n−1(x) + u2n(x)︸ ︷︷ ︸
≤0

≤ u0(x).

Also, for the odd indices

f2n+1(x) = u0(x)− u1(x)︸ ︷︷ ︸
≥0

+ · · ·+ u2n(x)− u2n+1(x)︸ ︷︷ ︸
≥0

≥ 0

and

f2n+1(x) = u0(x)−u1(x) + u2(x)︸ ︷︷ ︸
≤0

− · · ·−u2n−1(x) + u2n(x)︸ ︷︷ ︸
≤0

−u2n+1(x)︸ ︷︷ ︸
≤0

≤ u0(x)

hold. This shows that supn |fn| ≤ w := u0 ∈ L1(µ) (alternatively, a similarly useful
bound could also be deduced from the inequalities already derived in part a). Hence,
it follows that (i) f , the pointwise limit of the fn, is also dominated by w (whence
f ∈ L1(µ)) and (ii) the LDCT can be applied, giving

∞∑
j=0

(−1)j
∫
X

uj
(1)
= lim

n

n∑
j=0

(−1)j
∫
X

uj = lim
n

∫
X

fn
LDCT

=

∫
X

lim
n
fn =

∫
X

f, (2)

as had to be proven.

1Note from steps 1-2 that {s2j}j decreases monotonically and that {s2j+1}j increases monotoni-
cally. That leads to an alternative convergence proof, but not the one asked for in problem 1a – see
also the alternative solution of part b below.
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Alternative: use of the MCT. As an alternative to the above use of the LDCT,
one can observe from the above and part a that (i) {f2j}j decreases monotonically
to f with 0 ≤ f2j ≤ f2 ∈ L1(µ), implying limj ↓

∫
X
f2j =

∫
X
f by the MCT, and (ii)

{f2j+1}j increases monotonically to f , implying limj ↑
∫
f2j+1 =

∫
X
f by the MCT.

Combined, this gives limn

∫
X
fn =

∫
X
f and the rest is as in (2).

Problem 3 [30 pt]. Let (X,A) and (Y,B) be measurable spaces and let K : X ×B → [0,+∞]
be a function which is such that (i) for every x ∈ X B 7→ Kx(B) := K(x,B) is a measure on (Y,B)
and (ii) for every B ∈ B x 7→ Kx(B) := K(x,B) is a nonnegative A-measurable function on X. Let
µ be a measure on (X,A) and let f : Y → [0,+∞] be B-measurable.

a. Prove that ν : B 7→
∫
X
K(x,B)µ(dx) is a measure on (Y,B).

b. Prove that g : x 7→
∫
Y
f(y)Kx(dy) is an A-measurable function.

c. Prove that
∫
Y
f dν =

∫
X
g dµ.

Solution. a. Let {Bj} be at most countable and mutually disjoint and denote
B := ∪jBj. Then

∑
j Kx(Bj) = Kx(B) holds by (i) for every x ∈ X. Hence, Beppo

Levi’s theorem (or the MCT) gives∑
j

ν(Bj) =
∑
j

∫
X

K(x,Bj)µ(dx)
BLT
=

∫
X

∑
j

K(x,Bj)µ(dx) =

∫
X

K(x,B)µ(dx) = ν(B),

so we can conclude that ν is σ-additive. Finally, ν(∅) =
∫
X

0 = 0 is totally obvious.

b-c. We follow the well-known three-step procedure to prove the statements in b
and c:

Step 1: both statements are true if f is a characteristic function. Let f = 1B.
Then g(x) = K(x,B) is measurable by (i) and we have both

∫
Y
f dν =

∫
Y

1B dν =
ν(B) and

∫
X
g dµ =

∫
X
K(x,B)µ(dx) =: ν(B).

Step 2: the statement is true if f is a step function. Let f =
∑N

i=1 yi1Bi
.

Then g(x) =
∑

i yiK(x,Bi) is measurable by (i) and by elementary measurabil-
ity properties. By step 1 we then also have

∫
Y
f dν =

∑
i yiν(Bi) and

∫
X
g dµ =∑

i yi
∫
X
K(x,Bi)µ(dx) =

∑
i yiν(Bi).

Step 3: the statement is true if f is a nonnegative measurable function. We
know that f is the pointwise monotone limit of a sequence {fk} of step functions.
Then the BLT/MCT implies g(x) = limk ↑ gk(x) for every x ∈ X, with gk(x) :=∫
Y
fk(y)Kx(dy). So g is measurable, because of step 2. Further, another application

of the BLT/MCT (twice) gives∫
Y

f dν
BLT
= lim

k
↑
∫
Y

fk dν
step 2

= lim
k
↑
∫
X

gk dµ
BLT
=

∫
X

g dµ.
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