Solutions Second Quizz M \& I, 19-5-11

Problem 1 [$\mathbf{3 5} \mathbf{p t}]$. Let (X, \mathcal{A}, μ) be a measure space and let $u: X \rightarrow \overline{\mathbb{R}}$ be \mathcal{A}-measurable and such that $\int_{X}|u| d \mu=0$. Prove that $|u|=0$ almost everywhere.

Solution. Let $A_{j}:=\{|u| \geq 1 / j\}, j \in \mathbb{N}$. Then $A:=\{|u|>0\}$ is the monotone limit of the increasing sequence $\left\{A_{j}\right\}_{j}$, which implies $\mu(A)=\lim _{j} \uparrow \mu\left(A_{j}\right)$. Also, by Markov's inequality $\frac{1}{j} \mu\left(A_{j}\right) \leq \int_{X}|u| d \mu=0$ for every j, which implies $\mu\left(A_{j}\right)=0$. So it follows that $\mu(A)=0$.

Problem 2 [$\mathbf{3 5} \mathbf{~ p t}]$. a. Let $\left\{\alpha_{j}\right\}_{j}$ be a monotone sequence of nonnegative real numbers such that $\alpha_{j} \downarrow 0$. Then prove, using a Cauchy sequence argument, that the series $\sum_{j=0}^{\infty}(-1)^{j} \alpha_{j}$ converges (i.e., the corresponding sequence of partial sums $s_{n}:=\sum_{j=0}^{n}(-1)^{j} \alpha_{j}$ has a limit in \mathbb{R}). Hint: Start by proving that $s_{2 m}-s_{2 n} \geq \alpha_{2 m}-\alpha_{2 n+1}$ for $m>n$.
b. Let (X, \mathcal{A}, μ) be a measure space and let $\left\{u_{j}\right\}_{j}$ be a sequence of nonnegative functions in $\mathcal{L}_{\mathbb{R}}^{1}$ such that $u_{j}(x) \downarrow 0$ for every $x \in X$. Prove the following statement: $f(x):=\sum_{j=0}^{\infty}(-1)^{j} u_{j}(x)$ defines a function which is integrable and for which $\int_{X} f d \mu=\sum_{j=0}^{\infty}(-1)^{j} \int_{X} u_{j} d \mu$.

Proof. a. Step 1: $\left\{s_{2 j}\right\}_{j}$ is a Cauchy sequence. For $m>n$ the inequality in the hint holds by

$$
s_{2 m}-s_{2 n}=-\alpha_{2 n+1}+\underbrace{\alpha_{2 n+2}-\alpha_{2 n+3}}_{\geq 0}+\cdots+\underbrace{\alpha_{2 m-2}-\alpha_{2 m-1}}_{\geq 0}+\alpha_{2 m} \geq-\alpha_{2 n+1}+\alpha_{2 m}
$$

and an opposite bound is provided directly by

$$
s_{2 m}-s_{2 n}=\underbrace{-\alpha_{2 n+1}+\alpha_{2 n+2}}_{\leq 0} \underbrace{-\alpha_{2 n+3}+\alpha_{2 n+4}}_{\leq 0}-\cdots+\underbrace{-\alpha_{2 m-1}+\alpha_{2 m}}_{\leq 0} \leq 0
$$

Hence, $\left|s_{2 m}-s_{2 n}\right|=s_{2 n}-s_{2 m} \leq \alpha_{2 n+1}-\alpha_{2 m} \leq \alpha_{2 n+1}$ for $m>n$. It thus follows that $\left\{s_{2 j}\right\}_{j}$ is Cauchy (given any $\epsilon>0$, choose N so large that $\alpha_{2 n+1}<\epsilon$ for all $n \geq N$; then $m>n \geq N$ implies $\left|s_{2 m}-s_{2 n}\right|<\epsilon$).

Step 2: $\left\{s_{2 j+1}\right\}_{j}$ is a Cauchy sequence. Imitating step 1, we find for $m>n$

$$
s_{2 m+1}-s_{2 n+1}=\underbrace{\alpha_{2 n+2}-\alpha_{2 n+3}}_{\geq 0}+\ldots+\underbrace{\alpha_{2 m}-\alpha_{2 m+1}}_{\geq 0} \geq 0
$$

and

$$
s_{2 m+1}-s_{2 n+1}=\alpha_{2 n+2} \underbrace{-\alpha_{2 n+3}+\alpha_{2 n+4}}_{\leq 0} \cdots \underbrace{-\alpha_{2 m-1}+\alpha_{2 m}}_{\leq 0}-\alpha_{2 m+1} \leq \alpha_{2 n+2}-\alpha_{2 m+1}
$$

Hence, $\left|s_{2 m+1}-s_{2 n+1}\right|=s_{2 m+1}-s_{2 n+1} \leq \alpha_{2 n+2}$. Just as in step 1 , this inequality implies that $\left\{s_{2 j+1}\right\}_{j}$ is Cauchy.

Step 3: Conclusion. By steps 1-2 there exists z_{1} and z_{2} in \mathbb{R} such that $s_{2 j} \rightarrow z_{1}$ and $s_{2 j-1} \rightarrow z_{2}$. By $z_{2} \leftarrow s_{2 j+1}=s_{2 j}+\alpha_{2 j+1} \rightarrow z_{1}+0$ it follows that $z_{1}=z_{2}$ and therefore the sequence $\left\{s_{n}\right\}_{n}$ as a whole converges. ${ }^{1}$
b.By part a, applied pointwise, the function f is well-defined and by another application of part a

$$
\begin{equation*}
\text { the series } \sum_{j=0}^{\infty}(-1)^{j} \int_{X} u_{j} d \mu \text { is convergent, } \tag{1}
\end{equation*}
$$

because of $\lim _{j} \downarrow \int_{X} u_{j}=0$, which is true by the monotone convergence theorem (note that $u_{j} \leq u_{1} \in \mathcal{L}^{1}(\mu)$ for all j). We can now either use the LDCT or the MCT to finish the proof.

Use of the LDCT. We seek to apply the LDCT to the partial sums $f_{n}(x):=$ $\sum_{j=0}^{n}(-1)^{j} u_{j}(x)$, which clearly belong to $\mathcal{L}^{1}(\mu)$ and converge to $f(x)$ pointwise for every $x \in X$ by part a. For the even indices we have

$$
f_{2 n}(x)=\underbrace{u_{0}(x)-u_{1}(x)}_{\geq 0}+\cdots+\underbrace{u_{2 n-2}(x)-u_{2 n-1}(x)}_{\geq 0}+\underbrace{u_{2 n}(x)}_{\geq 0} \geq 0
$$

and

$$
f_{2 n}(x)=u_{0}(x) \underbrace{-u_{1}(x)+u_{2}(x)}_{\leq 0}-\cdots \underbrace{-u_{2 n-1}(x)+u_{2 n}(x)}_{\leq 0} \leq u_{0}(x) .
$$

Also, for the odd indices

$$
f_{2 n+1}(x)=\underbrace{u_{0}(x)-u_{1}(x)}_{\geq 0}+\cdots+\underbrace{u_{2 n}(x)-u_{2 n+1}(x)}_{\geq 0} \geq 0
$$

and

$$
f_{2 n+1}(x)=u_{0}(x) \underbrace{-u_{1}(x)+u_{2}(x)}_{\leq 0}-\cdots \underbrace{-u_{2 n-1}(x)+u_{2 n}(x)}_{\leq 0} \underbrace{-u_{2 n+1}(x)}_{\leq 0} \leq u_{0}(x)
$$

hold. This shows that $\sup _{n}\left|f_{n}\right| \leq w:=u_{0} \in \mathcal{L}^{1}(\mu)$ (alternatively, a similarly useful bound could also be deduced from the inequalities already derived in part a). Hence, it follows that $(i) f$, the pointwise limit of the f_{n}, is also dominated by w (whence $f \in \mathcal{L}^{1}(\mu)$) and (ii) the LDCT can be applied, giving

$$
\begin{equation*}
\sum_{j=0}^{\infty}(-1)^{j} \int_{X} u_{j} \stackrel{(1)}{=} \lim _{n} \sum_{j=0}^{n}(-1)^{j} \int_{X} u_{j}=\lim _{n} \int_{X} f_{n} \stackrel{L D C T}{=} \int_{X} \lim _{n} f_{n}=\int_{X} f \tag{2}
\end{equation*}
$$

as had to be proven.

[^0]Alternative: use of the MCT. As an alternative to the above use of the LDCT, one can observe from the above and part a that $(i)\left\{f_{2 j}\right\}_{j}$ decreases monotonically to f with $0 \leq f_{2 j} \leq f_{2} \in \mathcal{L}^{1}(\mu)$, implying $\lim _{j} \downarrow \int_{X} f_{2 j}=\int_{X} f$ by the MCT, and (ii) $\left\{f_{2 j+1}\right\}_{j}$ increases monotonically to f, implying $\lim _{j} \uparrow \int f_{2 j+1}=\int_{X} f$ by the MCT. Combined, this gives $\lim _{n} \int_{X} f_{n}=\int_{X} f$ and the rest is as in (2).

Problem 3 [$\mathbf{3 0} \mathbf{~ p t}]$. Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces and let $K: X \times \mathcal{B} \rightarrow[0,+\infty]$ be a function which is such that (i) for every $x \in X B \mapsto K_{x}(B):=K(x, B)$ is a measure on (Y, \mathcal{B}) and (ii) for every $B \in \mathcal{B} x \mapsto K_{x}(B):=K(x, B)$ is a nonnegative \mathcal{A}-measurable function on X. Let μ be a measure on (X, \mathcal{A}) and let $f: Y \rightarrow[0,+\infty]$ be \mathcal{B}-measurable.
a. Prove that $\nu: B \mapsto \int_{X} K(x, B) \mu(d x)$ is a measure on (Y, \mathcal{B}).
b. Prove that $g: x \mapsto \int_{Y} f(y) K_{x}(d y)$ is an \mathcal{A}-measurable function.
c. Prove that $\int_{Y} f d \nu=\int_{X} g d \mu$.

Solution. a. Let $\left\{B_{j}\right\}$ be at most countable and mutually disjoint and denote $B:=\cup_{j} B_{j}$. Then $\sum_{j} K_{x}\left(B_{j}\right)=K_{x}(B)$ holds by (i) for every $x \in X$. Hence, Beppo Levi's theorem (or the MCT) gives

$$
\sum_{j} \nu\left(B_{j}\right)=\sum_{j} \int_{X} K\left(x, B_{j}\right) \mu(d x) \stackrel{B L T}{=} \int_{X} \sum_{j} K\left(x, B_{j}\right) \mu(d x)=\int_{X} K(x, B) \mu(d x)=\nu(B)
$$

so we can conclude that ν is σ-additive. Finally, $\nu(\emptyset)=\int_{X} 0=0$ is totally obvious.
b -c. We follow the well-known three-step procedure to prove the statements in b and c :

Step 1: both statements are true if f is a characteristic function. Let $f=1_{B}$. Then $g(x)=K(x, B)$ is measurable by (i) and we have both $\int_{Y} f d \nu=\int_{Y} 1_{B} d \nu=$ $\nu(B)$ and $\int_{X} g d \mu=\int_{X} K(x, B) \mu(d x)=: \nu(B)$.

Step 2: the statement is true if f is a step function. Let $f=\sum_{i=1}^{N} y_{i} 1_{B_{i}}$. Then $g(x)=\sum_{i} y_{i} K\left(x, B_{i}\right)$ is measurable by (i) and by elementary measurability properties. By step 1 we then also have $\int_{Y} f d \nu=\sum_{i} y_{i} \nu\left(B_{i}\right)$ and $\int_{X} g d \mu=$ $\sum_{i} y_{i} \int_{X} K\left(x, B_{i}\right) \mu(d x)=\sum_{i} y_{i} \nu\left(B_{i}\right)$.

Step 3: the statement is true if f is a nonnegative measurable function. We know that f is the pointwise monotone limit of a sequence $\left\{f_{k}\right\}$ of step functions. Then the BLT/MCT implies $g(x)=\lim _{k} \uparrow g_{k}(x)$ for every $x \in X$, with $g_{k}(x):=$ $\int_{Y} f_{k}(y) K_{x}(d y)$. So g is measurable, because of step 2. Further, another application of the BLT/MCT (twice) gives

$$
\int_{Y} f d \nu \stackrel{B L T}{=} \lim _{k} \uparrow \int_{Y} f_{k} d \nu \stackrel{s t e p}{=} 2 \lim _{k} \uparrow \int_{X} g_{k} d \mu \stackrel{B L T}{=} \int_{X} g d \mu .
$$

[^0]: ${ }^{1}$ Note from steps 1-2 that $\left\{s_{2 j}\right\}_{j}$ decreases monotonically and that $\left\{s_{2 j+1}\right\}_{j}$ increases monotonically. That leads to an alternative convergence proof, but not the one asked for in problem 1a-see also the alternative solution of part b below.

