
Solutions Final Exam M & I, 24-6-10

Erik J. Balder

Problem 1 [16 pt]. Let (X,A, µ) be a finite measure space and let T : X → X be an A/A-measurable
mapping. Then T is said to preserve the measure µ if µ(T−1(A)) = µ(A) for every A ∈ A.

a. Denote by Tn : X → X the n-fold composition of T with itself (i.e., T 1 := T , T 2 := T ◦T , T 3 := T ◦T ◦T ,
etc.). Prove by means of induction that Tn preserves the measure µ for every n ∈ N.

b. For fixed B ∈ A let C := {x ∈ B : Tn(x) 6∈ B for all n ∈ N}. Prove that C belongs to A.

c. For m ∈ N define Cm := (Tm)−1(C). Prove that the sets Cm are mutually disjoint.

d. Prove that µ(C) = 0.

e. Provide a concrete counterexample to show that the result in d does not continue to hold if µ(X) =∞.

Solution. a. Let (Hn) : Tn is measure preserving. Then (Hn) ⇒ (Hn+1) by

µ((Tn+1)−1(A)) = µ(T−1((Tn)−1(A))) = µ((Tn)−1(A))
(Hn)
= µ(A).

b. Clearly, C = B ∩ (∩nDn), with Dn := (Tn)−1(X\B). Every Dn belongs to A,
because Tn, the composition of measurable mappings, is A/A-measurable. Hence, C ∈ A.

c. Consider k 6= m and suppose k > m without loss of generality. Then x ∈ Ck ∩ Cm
would imply Tm(x) ∈ C, whence Tm+n(x) 6∈ B for all n ∈ N. Hence, n = k − m gives
T k(x) 6∈ B, which contradicts x ∈ Ck, because the latter implies T k(x) ∈ C ⊂ B.

d. We have µ(Cm) = µ(C) by part a. So µ(C) > 0 would imply µ(∪mCm) =∑
m µ(Cm) = ∞ by part c. By µ(X) < ∞ this is impossible. Conclusion: µ(C) = 0.

e. Take X := R+, equipped with the Lebesgue measure µ, and take B := [0, 1[ and
T (x) := x+ 1. Then the above definition of C gives C = B and µ(C) = 1.

Problem 2 [16 pt]. Let (Xi,Ai, µi). i = 1, 2, 3 be three finite measure spaces. By complete analogy
to the case of two measure spaces in the book, one can introduce the following objects (you need not prove
this!):
(i) A := σ(A1 ×A2 ×A3); this is called the product σ-algebra on X := X1 ×X2 ×X3.
(ii) The unique extension ρ : A → [0,∞] which extends ρ : A1×A2×A3 → [0,∞], given by ρ(A×B×C) :=
µ1(A)µ2(B)µ3(C), to a σ-finite measure on (X,A); this is called the product measure of µ1, µ2 and µ3.

a. Prove that A = (A1 ⊗A2)⊗A3.

b. Prove that ρ = (µ1 × µ2) × µ3. Important: Every major result from the course that you wish to invoke

to prove parts a and b must be written out completely in your solution.

Solution. a. We invoke Lemma 13.31 with F = A1 × A2 and G = A3 (here the
exhaustive sequences are trivial: use Fj ≡ X1 ×X2 and Gi ≡ X3). This yields the desired

identity by A := σ(F × A3) L. 13.3= σ(F) ⊗ A3, with σ(F) =: A1 ⊗ A2. Of course, an
independent proof of the nontrivial inclusion ⊃ in (i) (which rather resembles the proof of
Lemma 13.3) can also be given.

b. Let π := (µ1 × µ2) × µ3. Then, by the definition of the product of two measures
applied twice, we have π(A×B×C) = µ1(A)µ2(B)µ3(C) = ρ(A×B×C) for every A×B×C

1Lemma 13.3: if B = σ(F), C = σ(G) then σ(F ×G) = B ⊗ C, provided that F and G contain exhaustive
sequences (Fj) and (Gi).
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in the class H of all measurable rectangles. We now apply the uniqueness Theorem 5.7.2

This is allowed because the measures µi are finite (just take Hj ≡ X).
Problem 3 [18 pt]. Let (X,A, µ) be a finite measure space and let f : X → R+ be a nonnegative

µ-integrable function with the following property: there exists a constant c ∈ R such that
R
X
fn dµ = c for

every n ∈ N. Prove that there exists A ∈ A such that f(x) = 1A(x) for almost every x in X.

Solution. Step 1: 0 ≤ f ≤ 1 a.e. Let B := {f > 1}; then ∞ > c ≥
∫
B f

n and on B we
have fn(x) = (f(x))n ↑ ∞, so µ(B) = 0 by the monotone convergence theorem.

Step 2: f ∈ {0, 1} a.e. For C := X\B step 1 implies
∫
C f

2 = c =
∫
C f , so

∫
C(f−f2) = 0,

where f − f2 ≥ 0. Hence, f = f2 a.e. on C, i.e., f ∈ {0, 1} a.e. on C.
Step 3. By steps 1-2 we have f ∈ {0, 1} a.e. on X. Let A := {f = 1} and we are done.

Alternative step 2: c = µ({f = 1}). By fn ↓ 0 on {f = 1} we get c ∗=
∫
{f=1} 1 +∫

{0<f<1} f
n → µ({f = 1}) (MCT), so c = µ({f = 1}), but then ∗= with n := 1 becomes

0 =
∫
{0<f<1} f , causing µ({0 < f < 1}) = 0. Now go to step 3.

Problem 4 [16 pt].3 Let (X,A, µ) be a finite measure space and let (uj)j be a sequence of A-

measurable functions uj : X → R. Let u : X → R also be A-measurable. Prove the following equivalence:

the sequence (uj)j converges to u in measure if and only if
R
X

|uj−u|
1+|uj−u|

dµ→ 0 for j →∞.

Solution. Write vj := uj − u and note: ξ 7→ ξ/(1 + ξ) is strictly increasing on R+.
⇒: Give η > 0; then for any ε > 0 we have µ({|vj | > ε) < η/2 for j large enough, so∫

{|vj |>ε} |vj |/(1+ |vj |)+
∫
{|vj |≤ε} |vj |/(1+ |vj |) ≤ η/2+ ε/(1+ ε)µ(X) < η for j large enough;

namely, choose ε < η/(2µ(X)).
⇐: Give ε > 0. By Markov’s inequality εµ(|vj | > ε)/(1 + ε) ≤

∫
X |vj |/(1 + |vj |) → 0.

This implies µ(|vj | > ε)→ 0.
Problem 5 [18 pt]. Let (X,A, µ) be a measure space and let λ be another measure on (X,A), with

λ(X) < ∞. Recall that λ is defined to be absolutely continuous with respect to µ if µ(A) = 0 ⇒ λ(A) = 0

for every A ∈ A. Prove that λ is absolutely continuous with respect to µ if and only if limn λ(An) = 0 holds

for every sequence (An)n in A with limn µ(An) = 0. Hint. Use contradiction and apply the Borel-Cantelli

lemma (exercise 6.9, week 9):
P
k ν(Bk) <∞ implies ν(∩∞p=1 ∪k≥pBk) = 0; this holds for any measure ν on

(X,A).

Solution. ⇐: Let µ(A) = 0 and take An ≡ A. Then λ(A) = 0 follows.
⇒: If there is (An)n with limn µ(An) = 0 but λ(An) 6→ 0, then there is a subsequence

(nj) and ε > 0 such that λ(Anj ) ≥ ε for all j. Now pick from (nj) a further subsequence
(mk) as follows: let m1 be the first index nj with µ(Anj ) < 2−1, let m2 be the first index
nj > m1 with µ(Anj ) < 2−2, etc., etc. Then still λ(Amk) ≥ ε for all k and now also∑

k µ(Amk) < ∞, causing µ(A∗) = 0 for A∗ := ∩∞p=1Cp with Cp := ∪k≥pAmk (by Borel-
Cantelli, as suggested). However, now Cp ↓ A∗ implies λ(Cp) ↓ λ(A∗), for λ is a finite
measure. Also, λ(Cp) ≥ ε is evident, so λ(A∗) ≥ ε > 0, which contradicts µ(A∗) = 0 above.

Problem 6 [16 pt]. Let (X,A, µ) be a finite measure space and let (uj)j be a sequence of A-measurable

functions uj : X → R. Let u : X → R also be A-measurable. Suppose that (uj)j converges almost

everywhere to u. Suppose also that the sequence (u−j )j of negative parts u−j := max(0,−uj) is uniformly

integrable. Then prove that the following extension of Fatou’s lemma holds: lim infj→∞
R
X
uj dµ ≥

R
X
udµ.

2 Theorem 5.7: if two measures π and ρ coincide on a class H ⊂ A, closed for finite intersections and
generating A, and if a monotone sequence (Hj)j exists with π(Hj) = ρ(Hj) <∞ for all j and Hj ↑ X, then
π and ρ coincide on A.

3This was course Exercise 16.8.
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Hint 1: Time can be saved by employing Vitali’s theorem. If you use it, then make sure that what you want

to use from it is written out completely in your solution. Hint 2: In general, if α := lim infj αj in [−∞,+∞],

then a subsequence of (αj)j converges to α.

Solution method 1: use Vitali. By Vitali’s theorem,4 applied to the sequence (u−j )j ,
we have

∫
u−j →

∫
u− ∈ R+ (here (u−j )j converges a.e., whence also in measure, to u−). So

lim infj
∫
uj
∗= lim infj

∫
u+
j −

∫
u− and now Fatou’s lemma (p. 73) gives lim infj

∫
X u

+
j ≥∫

u+, because u+
j ≥ 0 and u+

j → u+ a.e. Together, this gives lim infj
∫
uj ≥

∫
u+ −

∫
u−.

Note 1: hint 2 is not really needed (but handy for those not aware of identities like ∗=).
Note 2: although

∫
u− <∞, it could happen that

∫
u+ =∞, but then

∫
u :=

∫
u+ −

∫
u−

is still a meaningful value in (−∞,+∞], just as in the Fatou lemma on p. 73.
Solution method 2: use Fatou and UI. By the UI hypothesis, for every fixed ε > 0

there exists an integrable wε : X → R+ such that supj
∫
{uj<−wε} u

−
j < ε. In succession the

above, uj ≥ −u−j and the definition of wj := max(uj ,−wε) give∫
uj =

∫
{uj<−wε}

uj +
∫
{uj≥−wε}

uj ≥ −ε+
∫
{uj≥−wε}

wj = −ε+
∫
X
wj +

∫
{uj≥−wε}

wε.

By wε ≥ 0 this gives
∫
uj ≥ −ε+

∫
wj . Now Fatou’s lemma can be applied to (wj)j , because

of wj ≥ −wε with wε ∈ L1(µ) (this uses exactly the same elementary reasoning as the
reverse Fatou lemma in course Exercise 9.8), so lim infj

∫
wj ≥

∫
max(u,−wε) because wj →

max(u,−wε) a.e. Combined with the above, this yields lim infj
∫
uj ≥ −ε+

∫
max(u,−wε) ≥

−ε+
∫
u, using max(u,−wε) ≥ u. The proof is finished by letting ε ↓ 0.

4From Vitali’s Theorem 16.6 (for p = 1): if (vj) converges in measure to v and if (|vj |) is uniformly
integrable, then

R
|vj − v| → 0 and a fortiori

R
vj →

R
v.
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