Solutions Final Exam M \& I, 24-6-10

Erik J. Balder

Problem 1 [$\mathbf{1 6} \mathbf{p t}]$. Let (X, \mathcal{A}, μ) be a finite measure space and let $T: X \rightarrow X$ be an $\mathcal{A} / \mathcal{A}$-measurable mapping. Then T is said to preserve the measure μ if $\mu\left(T^{-1}(A)\right)=\mu(A)$ for every $A \in \mathcal{A}$.
a. Denote by $T^{n}: X \rightarrow X$ the n-fold composition of T with itself (i.e., $T^{1}:=T, T^{2}:=T \circ T, T^{3}:=T \circ T \circ T$, etc.). Prove by means of induction that T^{n} preserves the measure μ for every $n \in \mathbb{N}$.
b. For fixed $B \in \mathcal{A}$ let $C:=\left\{x \in B: T^{n}(x) \notin B\right.$ for all $\left.n \in \mathbb{N}\right\}$. Prove that C belongs to \mathcal{A}.
c. For $m \in \mathbb{N}$ define $C_{m}:=\left(T^{m}\right)^{-1}(C)$. Prove that the sets C_{m} are mutually disjoint.
d. Prove that $\mu(C)=0$.
e. Provide a concrete counterexample to show that the result in d does not continue to hold if $\mu(X)=\infty$.

Solution. a. Let $\left(H_{n}\right): T^{n}$ is measure preserving. Then $\left(H_{n}\right) \Rightarrow\left(H_{n+1}\right)$ by $\mu\left(\left(T^{n+1}\right)^{-1}(A)\right)=\mu\left(T^{-1}\left(\left(T^{n}\right)^{-1}(A)\right)\right)=\mu\left(\left(T^{n}\right)^{-1}(A)\right) \stackrel{\left(H_{n}\right)}{=} \mu(A)$.
b. Clearly, $C=B \cap\left(\cap_{n} D_{n}\right)$, with $D_{n}:=\left(T^{n}\right)^{-1}(X \backslash B)$. Every D_{n} belongs to \mathcal{A}, because T^{n}, the composition of measurable mappings, is $\mathcal{A} / \mathcal{A}$-measurable. Hence, $C \in \mathcal{A}$.
c. Consider $k \neq m$ and suppose $k>m$ without loss of generality. Then $x \in C_{k} \cap C_{m}$ would imply $T^{m}(x) \in C$, whence $T^{m+n}(x) \notin B$ for all $n \in \mathbb{N}$. Hence, $n=k-m$ gives $T^{k}(x) \notin B$, which contradicts $x \in C_{k}$, because the latter implies $T^{k}(x) \in C \subset B$.
d. We have $\mu\left(C_{m}\right)=\mu(C)$ by part a. So $\mu(C)>0$ would imply $\mu\left(\cup_{m} C_{m}\right)=$ $\sum_{m} \mu\left(C_{m}\right)=\infty$ by part c. By $\mu(X)<\infty$ this is impossible. Conclusion: $\mu(C)=0$.
e. Take $X:=\mathbb{R}_{+}$, equipped with the Lebesgue measure μ, and take $B:=[0,1[$ and $T(x):=x+1$. Then the above definition of C gives $C=B$ and $\mu(C)=1$.

Problem 2 [$\mathbf{1 6} \mathbf{~ p t}$]. Let $\left(X_{i}, \mathcal{A}_{i}, \mu_{i}\right) . i=1,2,3$ be three finite measure spaces. By complete analogy to the case of two measure spaces in the book, one can introduce the following objects (you need not prove this!):
(i) $\mathcal{A}:=\sigma\left(\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3}\right)$; this is called the product σ-algebra on $X:=X_{1} \times X_{2} \times X_{3}$.
(ii) The unique extension $\rho: \mathcal{A} \rightarrow[0, \infty]$ which extends $\rho: \mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \rightarrow[0, \infty]$, given by $\rho(A \times B \times C):=$ $\mu_{1}(A) \mu_{2}(B) \mu_{3}(C)$, to a σ-finite measure on (X, \mathcal{A}); this is called the product measure of μ_{1}, μ_{2} and μ_{3}.
a. Prove that $\mathcal{A}=\left(\mathcal{A}_{1} \otimes \mathcal{A}_{2}\right) \otimes \mathcal{A}_{3}$.
b. Prove that $\rho=\left(\mu_{1} \times \mu_{2}\right) \times \mu_{3}$. Important: Every major result from the course that you wish to invoke to prove parts a and b must be written out completely in your solution.

Solution. a. We invoke Lemma 13.3^{1} with $\mathcal{F}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ and $\mathcal{G}=\mathcal{A}_{3}$ (here the exhaustive sequences are trivial: use $F_{j} \equiv X_{1} \times X_{2}$ and $G_{i} \equiv X_{3}$). This yields the desired identity by $\mathcal{A}:=\sigma\left(\mathcal{F} \times \mathcal{A}_{3}\right)^{L .} \stackrel{13.3}{=} \sigma(\mathcal{F}) \otimes \mathcal{A}_{3}$, with $\sigma(\mathcal{F})=: \mathcal{A}_{1} \otimes \mathcal{A}_{2}$. Of course, an independent proof of the nontrivial inclusion \supset in (i) (which rather resembles the proof of Lemma 13.3) can also be given.
b. Let $\pi:=\left(\mu_{1} \times \mu_{2}\right) \times \mu_{3}$. Then, by the definition of the product of two measures applied twice, we have $\pi(A \times B \times C)=\mu_{1}(A) \mu_{2}(B) \mu_{3}(C)=\rho(A \times B \times C)$ for every $A \times B \times C$

[^0]in the class \mathcal{H} of all measurable rectangles. We now apply the uniqueness Theorem 5.7. ${ }^{2}$ This is allowed because the measures μ_{i} are finite (just take $H_{j} \equiv X$).

Problem 3 [$\mathbf{1 8} \mathbf{~ p t}]$. Let (X, \mathcal{A}, μ) be a finite measure space and let $f: X \rightarrow \mathbb{R}_{+}$be a nonnegative μ-integrable function with the following property: there exists a constant $c \in \mathbb{R}$ such that $\int_{X} f^{n} d \mu=c$ for every $n \in \mathbb{N}$. Prove that there exists $A \in \mathcal{A}$ such that $f(x)=1_{A}(x)$ for almost every x in X.

Solution. Step 1: $0 \leq f \leq 1$ a.e. Let $B:=\{f>1\}$; then $\infty>c \geq \int_{B} f^{n}$ and on B we have $f^{n}(x)=(f(x))^{n} \uparrow \infty$, so $\mu(B)=0$ by the monotone convergence theorem.

Step 2: $f \in\{0,1\}$ a.e. For $C:=X \backslash B$ step 1 implies $\int_{C} f^{2}=c=\int_{C} f$, so $\int_{C}\left(f-f^{2}\right)=0$, where $f-f^{2} \geq 0$. Hence, $f=f^{2}$ a.e. on C, i.e., $f \in\{0,1\}$ a.e. on C.

Step 3. By steps $1-2$ we have $f \in\{0,1\}$ a.e. on X. Let $A:=\{f=1\}$ and we are done.
Alternative step 2: $c=\mu(\{f=1\})$. By $f^{n} \downarrow 0$ on $\{f=1\}$ we get $c \stackrel{*}{=} \int_{\{f=1\}} 1+$ $\int_{\{0<f<1\}} f^{n} \rightarrow \mu(\{f=1\})(\mathrm{MCT})$, so $c=\mu(\{f=1\})$, but then $\stackrel{*}{=}$ with $n:=1$ becomes $0=\int_{\{0<f<1\}} f$, causing $\mu(\{0<f<1\})=0$. Now go to step 3 .

Problem $4[16 \mathrm{pt}] .{ }^{3}$ Let (X, \mathcal{A}, μ) be a finite measure space and let $\left(u_{j}\right)_{j}$ be a sequence of \mathcal{A} measurable functions $u_{j}: X \rightarrow \mathbb{R}$. Let $u: X \rightarrow \mathbb{R}$ also be \mathcal{A}-measurable. Prove the following equivalence: the sequence $\left(u_{j}\right)_{j}$ converges to u in measure if and only if $\int_{X} \frac{\left|u_{j}-u\right|}{1+\left|u_{j}-u\right|} d \mu \rightarrow 0$ for $j \rightarrow \infty$.

Solution. Write $v_{j}:=u_{j}-u$ and note: $\xi \mapsto \xi /(1+\xi)$ is strictly increasing on \mathbb{R}_{+}.
\Rightarrow : Give $\eta>0$; then for any $\epsilon>0$ we have $\mu\left(\left\{\left|v_{j}\right|>\epsilon\right)<\eta / 2\right.$ for j large enough, so $\int_{\left\{\left|v_{j}\right|>\epsilon\right\}}\left|v_{j}\right| /\left(1+\left|v_{j}\right|\right)+\int_{\left\{\left|v_{j}\right| \leq \epsilon\right\}}\left|v_{j}\right| /\left(1+\left|v_{j}\right|\right) \leq \eta / 2+\epsilon /(1+\epsilon) \mu(X)<\eta$ for j large enough; namely, choose $\epsilon<\eta /(2 \mu(X))$.
\Leftarrow : Give $\epsilon>0$. By Markov's inequality $\epsilon \mu\left(\left|v_{j}\right|>\epsilon\right) /(1+\epsilon) \leq \int_{X}\left|v_{j}\right| /\left(1+\left|v_{j}\right|\right) \rightarrow 0$. This implies $\mu\left(\left|v_{j}\right|>\epsilon\right) \rightarrow 0$.

Problem 5 [$\mathbf{1 8} \mathbf{~ p t}]$. Let (X, \mathcal{A}, μ) be a measure space and let λ be another measure on (X, \mathcal{A}), with $\lambda(X)<\infty$. Recall that λ is defined to be absolutely continuous with respect to μ if $\mu(A)=0 \Rightarrow \lambda(A)=0$ for every $A \in \mathcal{A}$. Prove that λ is absolutely continuous with respect to μ if and only if $\lim _{n} \lambda\left(A_{n}\right)=0$ holds for every sequence $\left(A_{n}\right)_{n}$ in \mathcal{A} with $\lim _{n} \mu\left(A_{n}\right)=0$. Hint. Use contradiction and apply the Borel-Cantelli lemma (exercise 6.9, week 9): $\sum_{k} \nu\left(B_{k}\right)<\infty$ implies $\nu\left(\cap_{p=1}^{\infty} \cup_{k \geq p} B_{k}\right)=0$; this holds for any measure ν on (X, \mathcal{A}).

Solution. \Leftarrow : Let $\mu(A)=0$ and take $A_{n} \equiv A$. Then $\lambda(A)=0$ follows.
\Rightarrow : If there is $\left(A_{n}\right)_{n}$ with $\lim _{n} \mu\left(A_{n}\right)=0$ but $\lambda\left(A_{n}\right) \nrightarrow 0$, then there is a subsequence $\left(n_{j}\right)$ and $\epsilon>0$ such that $\lambda\left(A_{n_{j}}\right) \geq \epsilon$ for all j. Now pick from $\left(n_{j}\right)$ a further subsequence $\left(m_{k}\right)$ as follows: let m_{1} be the first index n_{j} with $\mu\left(A_{n_{j}}\right)<2^{-1}$, let m_{2} be the first index $n_{j}>m_{1}$ with $\mu\left(A_{n_{j}}\right)<2^{-2}$, etc., etc. Then still $\lambda\left(A_{m_{k}}\right) \geq \epsilon$ for all k and now also $\sum_{k} \mu\left(A_{m_{k}}\right)<\infty$, causing $\mu\left(A_{*}\right)=0$ for $A_{*}:=\cap_{p=1}^{\infty} C_{p}$ with $C_{p}:=\cup_{k \geq p} A_{m_{k}}$ (by BorelCantelli, as suggested). However, now $C_{p} \downarrow A_{*}$ implies $\lambda\left(C_{p}\right) \downarrow \lambda\left(A_{*}\right)$, for λ is a finite measure. Also, $\lambda\left(C_{p}\right) \geq \epsilon$ is evident, so $\lambda\left(A_{*}\right) \geq \epsilon>0$, which contradicts $\mu\left(A_{*}\right)=0$ above.

Problem 6 [16 pt]. Let (X, \mathcal{A}, μ) be a finite measure space and let $\left(u_{j}\right)_{j}$ be a sequence of \mathcal{A}-measurable functions $u_{j}: X \rightarrow \mathbb{R}$. Let $u: X \rightarrow \mathbb{R}$ also be \mathcal{A}-measurable. Suppose that $\left(u_{j}\right)_{j}$ converges almost everywhere to u. Suppose also that the sequence $\left(u_{j}^{-}\right)_{j}$ of negative parts $u_{j}^{-}:=\max \left(0,-u_{j}\right)$ is uniformly integrable. Then prove that the following extension of Fatou's lemma holds: $\lim \inf _{j \rightarrow \infty} \int_{X} u_{j} d \mu \geq \int_{X} u d \mu$.

[^1]Hint 1: Time can be saved by employing Vitali's theorem. If you use it, then make sure that what you want to use from it is written out completely in your solution. Hint 2: In general, if $\alpha:=\liminf _{j} \alpha_{j}$ in $[-\infty,+\infty]$, then a subsequence of $\left(\alpha_{j}\right)_{j}$ converges to α.

Solution method 1: use Vitali. By Vitali's theorem, ${ }^{4}$ applied to the sequence $\left(u_{j}^{-}\right)_{j}$, we have $\int u_{j}^{-} \rightarrow \int u^{-} \in \mathbb{R}_{+}$(here $\left(u_{j}^{-}\right)_{j}$ converges a.e., whence also in measure, to $\left.u^{-}\right)$. So $\liminf _{j} \int u_{j} \stackrel{*}{=} \liminf _{j} \int u_{j}^{+}-\int u^{-}$and now Fatou's lemma (p. 73) gives $\liminf _{j} \int_{X} u_{j}^{+} \geq$ $\int u^{+}$, because $u_{j}^{+} \geq 0$ and $u_{j}^{+} \rightarrow u^{+}$a.e. Together, this gives $\lim \inf _{j} \int u_{j} \geq \int u^{+}-\int u^{-}$. Note 1: hint 2 is not really needed (but handy for those not aware of identities like $\stackrel{*}{=}$). Note 2: although $\int u^{-}<\infty$, it could happen that $\int u^{+}=\infty$, but then $\int u:=\int u^{+}-\int u^{-}$ is still a meaningful value in $(-\infty,+\infty]$, just as in the Fatou lemma on p. 73 .

Solution method 2: use Fatou and UI. By the UI hypothesis, for every fixed $\epsilon>0$ there exists an integrable $w_{\epsilon}: X \rightarrow \mathbb{R}_{+}$such that $\sup _{j} \int_{\left\{u_{j}<-w_{\epsilon}\right\}} u_{j}^{-}<\epsilon$. In succession the above, $u_{j} \geq-u_{j}^{-}$and the definition of $w_{j}:=\max \left(u_{j},-w_{\epsilon}\right)$ give

$$
\int u_{j}=\int_{\left\{u_{j}<-w_{\epsilon}\right\}} u_{j}+\int_{\left\{u_{j} \geq-w_{\epsilon}\right\}} u_{j} \geq-\epsilon+\int_{\left\{u_{j} \geq-w_{\epsilon}\right\}} w_{j}=-\epsilon+\int_{X} w_{j}+\int_{\left\{u_{j} \geq-w_{\epsilon}\right\}} w_{\epsilon} .
$$

By $w_{\epsilon} \geq 0$ this gives $\int u_{j} \geq-\epsilon+\int w_{j}$. Now Fatou's lemma can be applied to $\left(w_{j}\right)_{j}$, because of $w_{j} \geq-w_{\epsilon}$ with $w_{\epsilon} \in \mathcal{L}^{1}(\mu)$ (this uses exactly the same elementary reasoning as the reverse Fatou lemma in course Exercise 9.8), so $\lim \inf _{j} \int w_{j} \geq \int \max \left(u,-w_{\epsilon}\right)$ because $w_{j} \rightarrow$ $\max \left(u,-w_{\epsilon}\right)$ a.e. Combined with the above, this yields $\liminf _{j} \int u_{j} \geq-\epsilon+\int \max \left(u,-w_{\epsilon}\right) \geq$ $-\epsilon+\int u$, using $\max \left(u,-w_{\epsilon}\right) \geq u$. The proof is finished by letting $\epsilon \downarrow 0$.

[^2]
[^0]: ${ }^{1}$ Lemma 13.3: if $\mathcal{B}=\sigma(\mathcal{F}), \mathcal{C}=\sigma(\mathcal{G})$ then $\sigma(\mathcal{F} \times \mathcal{G})=\mathcal{B} \otimes \mathcal{C}$, provided that \mathcal{F} and \mathcal{G} contain exhaustive sequences $\left(F_{j}\right)$ and $\left(G_{i}\right)$.

[^1]: ${ }^{2}$ Theorem 5.7: if two measures π and ρ coincide on a class $\mathcal{H} \subset \mathcal{A}$, closed for finite intersections and generating \mathcal{A}, and if a monotone sequence $\left(H_{j}\right)_{j}$ exists with $\pi\left(H_{j}\right)=\rho\left(H_{j}\right)<\infty$ for all j and $H_{j} \uparrow X$, then π and ρ coincide on \mathcal{A}.
 ${ }^{3}$ This was course Exercise 16.8.

[^2]: ${ }^{4}$ From Vitali's Theorem 16.6 (for $p=1$): if $\left(v_{j}\right)$ converges in measure to v and if $\left(\left|v_{j}\right|\right)$ is uniformly integrable, then $\int\left|v_{j}-v\right| \rightarrow 0$ and a fortiori $\int v_{j} \rightarrow \int v$.

