
Solutions First Quizz M & I, 31-3-11

Problem 1 [35 pt]. Let C be a collection of subsets of the set X and, as usual, let σ(C) be
the σ-algebra on X which is generated by C. Demonstrate that for each set A ∈ σ(C) there exists a
countable1 subcollection C0 ⊂ C, such that A ∈ σ(C0).

Hint: Denote by D the collection of all countable collections D ⊂ C. Consider U := ∪D∈Dσ(D)

and show that U is a σ-algebra.

Solution. Step 1: proof of the hint. First, take any D ∈ D (for instance, it
could even be the empty collection). Then ∅ ∈ σ(D) ⊂ U by the first property of a
σ-algebra. Second, if A ∈ U , then there exists D ∈ D with A ∈ σ(D) and then also
Ac ∈ σ(D) by the second property of a σ-algebra. Third, if {Aj}j is an arbitrary
countable collection of sets in U , then for every j there exists Dj ∈ D such that
Aj ∈ σ(Dj). Form D̄ := ∪jDj. Then D̄ is evidently countable, so D̄ ∈ D. Now
{Aj}j belongs to σ(D̄), which implies ∪jAj ∈ σ(D̄) ⊂ U by the third property of a
σ-algebra. This proves the hint.

Step 2: U = σ(C). First, we claim C ⊂ U . Let C ∈ C be arbitrary. Then
D̃ := {C} belongs to D and hence C ∈ σ(D̃) ⊂ U , which proves the claim. By
definition of U , we also have U ⊂ σ(C), so it follows that C ⊂ U ⊂ σ(C). But then

σ(C) ⊂ σ(U)
step 1

= U ⊂ σ(C), which implies U = σ(C).
Step 3: proof of the desired result. Give any A ∈ σ(C). Then by step 2 A ∈

∪D∈Dσ(D). So there exists C0 ∈ D such that A ∈ σ(C0). By definition of D, this
finishes the proof.

Problem 2 [40 pt]. Let (X,A, µ) be a measure space. Define ν : A → [0,+∞] by ν(A) :=
sup{µ(B) : B ∈ A, B ⊂ A,µ(B) < +∞}.
a. Prove that ν(A) ≤ µ(A) holds for every A ∈ A.
b. Prove that ν is a measure on (X,A).
c. Prove that if µ is σ-finite, then ν = µ.
d. Does the converse implication in part c also hold? If yes, then give a proof. If no, then give a
counterexample.

e. Determine ν for the following special measure µ: µ(A) := +∞ if A 6= ∅ and µ(∅) = 0.

Solution. Notation: let Af := {A ∈ A : µ(A) < +∞}.
a. If A ∈ A, then µ(B) ≤ µ(A) for every B ∈ Af that is contained in A. Hence,

µ(A) is an upper bound for the supremum expression ν(A).

b. We make two preliminary observations:
(i) ν is monotone: if A ⊂ A′ then ν(A) ≤ ν(A′)
(ii) ν(A) = µ(A) whenever A ∈ Af .

1Note: as usual “countable” means “at most countable” (i.e., finite sets are also considered to
be countable).
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Here (i) is obvious, because the set over which the supremum in the definition of
ν is taken, is at least as large for A′ as for A. To see (ii), note that ν(A) ≤ µ(A)
follows from part a and the converse inequality follows by the supremal definition of
ν(A), since A ∈ Af and A ⊂ A.

To prove part b, note first that ν(∅) = 0 follows trivally from (ii) above. To prove
σ-additivity of ν, let {Aj} be an arbitrary countable, mutually disjoint collection in
A. Denote A := ∪jAj. Let B ∈ Af be arbitrary, with B ⊂ A. Note that B = ∪jBj,
where Bj := B ∩ Aj ∈ Af . Since the Bj’s are obviously disjoint and have Bj ⊂ Aj,
we have

µ(B) =
∑
j

µ(Bj)
(ii)
=

∑
j

ν(Bj)
(i)

≤
∑
j

ν(Aj),

Taking the supremum over all such B ∈ Af with B ⊂ A then gives ν(A) ≤
∑

j ν(Aj).
Conversely, fix N ∈ N. For each 1 ≤ j ≤ N let Bj ∈ Af be arbitrary, with Bj ⊂ Aj.
Then also the Bj’s are disjoint and ∪Nj=1Bj ∈ Af , so

N∑
j=1

µ(Bj) = µ(∪Nj=1Bj)
(ii)
= ν(∪Nj=1Bj)

(i)

≤ ν(A).

Taking first the supremum over all B1 on the left gives ν(A1) +
∑

j=2 µ(Bj) ≤ ν(A).
Clearly, this procedure can succesively be extended to all other B2, . . . , BN to yield∑N

j=1 ν(Aj) ≤ ν(A).
c. If µ is σ-finite, then there exists a countable (i.e., at most countable) collection

{Ej} ⊂ Af such that ∪jEj = X and without loss of generality we can suppose that
such Ej’s are disjoint. Give an arbitrary A ∈ A; then ν(A) =

∑
j ν(A ∩ Ej) and

µ(A) =
∑

j µ(A ∩ Ej). By (ii) above it follows from A ∩ Ej ∈ Af that ν(A ∩ Ej) =
µ(A ∩ Ej) for every j. So nu(A) = µ(A).

d. The converse to part c does not hold. Consider X := R equipped with the
counting measure. Then ν = µ. Indeed, for A ∈ A it follows by (ii) above that
ν(A) = µ(A) if A ∈ Af and if µ(A) = ∞, then A has infinitely many elements,
so ν(A) = µ(A) follows by considering arbitrarily large but finite subsets of A. If
the converse to part c were true, there would exist finite subsets Ej, monotonically
increasing to X. This would imply that X = ∪jEj has at most countably many
elements, which is not true.

e. The case X = ∅ is trivial and leads to µ(∅) = ν(∅) = 0. If X 6= ∅, then
Af = {∅} gives ν(A) = µ(∅) = 0 for every A ∈ A. So in both cases ν is the null
measure on (X,A).

Problem 3 [25 pt]. a. Prove that in R2 the line L := {(x1, x2) : x2 = 0} has λ2(L) = 0 (i.e.,
has zero two-dimensional Lebesgue measure).

b. Prove that every line in R2 has zero two-dimensional Lebesgue measure.

Solution. a. For n ∈ Z let Ln := {(x1, x2) : x1 ∈ [n, n + 1), x2 = 0} =
[n, n+ 1)× {0}. Then λ2(Ln) = 1 ∗ 0 = 0. Because L = ∪n∈ZLn, where the union is
disjoint, σ-additivity of λ2 gives λ2(L) = 0.

b. If the line is parallel to L, then the result follows from part a by the invariance
of the Lebesgue measure with respect to translations. Otherwise, the line intersects
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L at a unique point. Rotation around this point shows that the new line is a rotation
of L, so the result follows from part a by the invariance of the Lebesgue measure with
respect to rotations. Alternatively, one could work with a generic line equation (e.g.,
x2 = ax1 + b, etc.) and imitate the proof of part a.
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