Solution of Problem 3.7

Erik J. Balder

Problem 3.7. Determine, for every possible value of the parameter a in \mathbb{R}, the Nash equilibria of the bimatrix game

$$
(A, B)=\left(\begin{array}{ll}
1,1 & a, 0 \\
0,0 & 2,1
\end{array}\right)
$$

Solution. The ususal expected payoff functions are
$F_{A}(p, q)=p q * 1+a p(1-q)+0 *(1-p) q+2(1-p)(1-q)=(3-a) p q+(a-2) p-2 q+2=s_{a}(q) * p-2 q+2$, where $s_{a}(q):=(3-a) q+a-2$, and

$$
F_{B}(p, q)=p q+(1-p)(1-q)=2 p q-p-q+1=(2 p-1) q-p+1
$$

To determine player 1's best replies if player 2 chooses any given $q \in[0,1]$ for column 1 , you must maximize $s_{a}(q) p-2 q+2$ over all $p \in[0,1]$. For player 1's best reply set this gives

$$
\beta_{1}(q)= \begin{cases}\{1\} & \text { if } s_{a}(q)>0 \tag{1}\\ {[0,1]} & \text { if } s_{a}(q)=0 \\ \{0\} & \text { if } s_{a}(q)<0\end{cases}
$$

and this will be worked out further below. Vice versa, to determine player 2's best replies if player 1 chooses any given $p \in[0,1]$ for row 1 , you must maximize $(2 p-1) q-p+1$ over all $q \in[0,1]$. For player 2 's best reply set this gives

$$
\beta_{2}(p)= \begin{cases}\{1\} & \text { if } p>\frac{1}{2} \\ {[0,1]} & \text { if } p=\frac{1}{2} \\ \{0\} & \text { if } p<\frac{1}{2}\end{cases}
$$

Next, you must still work out the consequences of the formula (1), which by itself is too indirect to be of use. To determine for a given value of the parameter a, which q 's lead to $s_{a}(q)>0$, the easiest solution is to plot the linear function $s_{a}(q)$ on the interval $[0,1]$. For $q=0$ it takes the value $s_{a}(0)=a-2$ and for $q=1$ it is $s_{a}(1)=1$. Because a can be any value, this plot suggests distinguishing between the following three cases:
Case 1: $a>2$. In this case the entire plotted line takes strictly positive values, i.e., $s_{a}(q)>0$ for all $q \in[0,1]$. This leads to the following rewriting of (1) in case 1 :

$$
\beta_{1}(q)=\{1\} \text { for all } q \in[0,1] .
$$

Case 2: $a=2$. In this border case, the plotted line takes strictly positive values, exept for its value in $q=0$, which is $s_{2}(0)=2-2=0$. So the rewriting of (1) in case 2 gives:

$$
\beta_{1}(q)= \begin{cases}\{1\} & \text { if } q>0 \\ {[0,1]} & \text { if } q=0\end{cases}
$$

Case 3: $a<2$: In this case the plotted line intersects the horizontal axis at $q=\frac{2-a}{3-a}$ (note that in the present case $0<\frac{2-a}{3-a}<1$!). Consequently, this shows that $s_{a}(q)<0$ for all $q<\frac{2-a}{3-a}$ and
$s_{a}(q)>0$ for all $q>\frac{2-a}{3-a}$. So the rewriting of (1) in case 3 gives:

$$
\beta_{1}(q)= \begin{cases}\{1\} & \text { if } q>\frac{2-a}{3-a}, \\ {[0,1]} & \text { if } q=\frac{2-a}{3-a}, \\ \{0\} & \text { if } q<\frac{2-a}{3-a} .\end{cases}
$$

In each of these three cases you can draw the two reaction curves in the same way as shown on pp. 36-37. This leads to the following conclusions for the mixed NE pairs, which should officially be denoted by $((\bar{p}, 1-\bar{p}),(\bar{q}, 1-\bar{q}))$, but which you can more conveniently denote by (\bar{p}, \bar{q}), as is done below:

Case 1: $a>2$. The only NE is $(\bar{p}, \bar{q})=(1,1)$; observe that this is not surprising: $a>2$ leads to row 1 strictly dominating row $2 .{ }^{1}$

Case 2: $a=2$. There is a multitude of NE's (\bar{p}, \bar{q}), namely $(1,1)$ and all $(p, 0)$ with $0 \leq p \leq \frac{1}{2}$.
Case 3: $a<2$. There are three NE's (\bar{p}, \bar{q}), namely $(0,0),(1,1)$ and $\left(\frac{1}{2}, \frac{2-a}{3-a}\right)$.
Remark. Without the above idea to plot the function $s_{a}(q)$, another, more laborious method still works as well: it is based on keeping track of the signs of numerator $a-2$ and denominator $a-3$ in the aforementioned intersection point $q=\frac{2-a}{3-a}$. In principle, this method distinguishes five cases (namely $a>3, a=3,2<a<3, a=2$ and $a<2$) instead of the above three.

[^0]
[^0]: ${ }^{1}$ By making this observation initially, a small amount of work, such as plotting the two reaction curves in case 1 , could have been saved.

