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1 Introduction

This paper presents a new, penetrating approach to Young measure convergence in an abstract,
measure theoretical setting. It was started in [12, 13, 14] and given its definitive shape in [18, 22].
This approach is based on K-convergence, a device by which narrow convergence on P(Rd) can
be systematically transferred to Young measure convergence. Here P(Rd) stands for the set of all
probability measures on Rd (in the sequel, a much more general topological space S is used instead of
Rd). Recall that in this context Young measures are measurable functions from an underlying finite
measure space (Ω,A, µ) into P(Rd). Recall also from [12], [13] (see also [24]) that K-convergence
takes the following form when applied to Young measures (see Definition 3.1): A sequence (δk) of
Young measures K-converges to a Young measure δ0 [notation: δk

K−→ δ0] if for every subsequence
(δkj ) of (δk) the following pointwise Cesaro-type convergence takes places

1
N

N∑
j=1

δkj (ω) ⇒ δ0(ω) as N →∞

at µ-almost every point ω in Ω. Here “⇒” means classical narrow convergence on P(Rd) (see Def-
inition 2.1). As is shown much more completely in Proposition 3.6 and Theorem 4.8, the following
fundamental relationship holds between Young measure convergence, denoted by “=⇒”, and K-
convergence as just defined [18, Corollary 3.16]:

Theorem 1.1 Let (δn) be a sequence of Young measures. The following are equivalent:
(a) δn =⇒ δ0.
(b) Every subsequence (δn′) of (δn) contains a further subsequence (δn′′) such that δn′′

K−→ δ0.

Both the nature of this equivalence result and the way in which we shall employ it are rather remi-
niscent of the well-known characterization of convergence in measure in terms of convergence almost
everywhere. But while the latter result is simple, the former one is deep, as will become clear in the
sequel. Nevertheless, thanks to this result several fundamental results on (sequential) Young measure
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convergence become simple to derive and can be stretched to what are arguably their most general
versions in an abstract setting. These include: (1) the Prohorov-type criterion for relative sequential
narrow compactness (Theorem 4.10), (2) the support theorem (Theorem 4.12, (3) the lower closure
theorem (Theorem 4.13), (4) the denseness theorem for Dirac Young measures. The power of the
apparatus thus developed is demonstrated by a selection of advanced applications in section 5, some
of which are new as well (see also [18, 22] for references to applications in economics, such as [19, 21]).
To the interested reader we also recommend [44, 48, 49, 56, 57, 59] for further background material
and orientations towards various applications in applied analysis and optimal control.

2 Narrow convergence of probability measures

This section recapitulates some results on narrow convergence of probability measures on a metric
space; cf. [2, 27, 28, 35, 46]. Let S be a completely regular Suslin space, whose topology is denoted by
τ . On such a space there exists a metric ρ whose topology τρ is not stronger than τ , with the property
that the Borel σ-algebras B(S, τρ) and B(S, τ) coincide. To see this, recall that in a completely regular
space the points are separated by the collection Cb(S, τ) of all bounded continuous functions on S.
Since S is also Suslin, it follows by [32, III.32] that there exists a countable subset (ci) of Cb(S, τ), with
supx∈S |ci(x)| = 1 for each i, that still separates the points of S. A metric as desired is then given
by ρ(x, y) :=

∑∞
i=1 2−i|ci(x) − ci(y)|. This is because τρ ⊂ τ is obvious and by another well-known

property of Suslin spaces, the Borel σ-algebras B(S, ρ) and B(S, τ) coincide [51, Corollary 2, p. 101].
Of course, if S is a metrizable Suslin space to begin with, then for ρ one can simply take any metric
on S that is compatible with τ .

As a consequence of the above, we shall write from now on

B(S) := B(S, ρ) = B(S, τ), P(S) := P(S, ρ) = P(S, τ)

for respectively the Borel σ-algebra and the set of all probability measures on (S,B(S)).

Definition 2.1 (narrow convergence in P(S)) A sequence (νn) in P(S) converges τρ-narrowly
to ν0 ∈ P(S) (notation: νn

ρ⇒ ν0) if limn

∫
S
c dνn =

∫
S
c dν0 for every c in Cb(S, τρ).

Here Cb(S, τρ) stands for the set of all bounded τρ-continuous functions from S into R. Although τρ-
narrow convergence is more fundamental for our purposes, we shall often be able to use the stronger
form of narrow convergence that arises when Cb(S, τρ) in the above definition is replaced by the
larger set Cb(S, τ). This will be denoted by “ τ⇒ ”. Definition 2.1 obviously extends to a definition
of the τ - and τρ-narrow topologies on P(S); we indicate these by Tτ and Tρ). By [51, Appendix,
Theorem 7] P(S) is a Suslin space for Tτ (it is also Suslin and even metrizable for Tρ – cf. [35, III.60]).
Hence, completely analogous to what was observed above for S, the Borel σ-algebras coincide by [51,
Corollary 2, p. 101]:

B(P(S)) := B(P(S), Tτ ) = B(P(S), Tρ).

A vehicle by which we frequently manage to go from τρ-convergence to the more general τ -convergence
is τ -tightness:

Definition 2.2 (tightness in P(S)) A sequence (νn) in P(S) is said to be τ -tight if there exists a
sequentially τ -inf-compact function h : S → [0,+∞] (i.e., all lower level sets {x ∈ S : h(x) ≤ β},
β ∈ R, are sequentially τ -compact) such that supn

∫
S
h dνn < +∞.

Observe that a fortiori h must be τρ-inf-compact on S (causing h to be Borel measurable); note
here that τρ is metrizable, so that the distinction between sequential and ordinary τρ-inf-compactness
vanishes.
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Remark 2.3 The above definition can be shown to be equivalent to the following one [5, Example 2.5]:
(δn) is τ -tight if and only if for every ε > 0 there exists a sequentially τ -compact set Kε such that
supn νn(S\Kε) ≤ ε.

Theorem 2.4 (portmanteau theorem for ⇒) (i) Let (νn) and ν0 be in P(S). The following are
equivalent:

(a) νn
ρ⇒ ν0.

(b) limn

∫
S
c dνn =

∫
S
c dν0 for every c ∈ Cu(S, ρ).

(c) lim infn

∫
S
q dνn ≥

∫
S
q dν0 for every τρ-lower semicontinuous function q : S → (−∞,+∞]

which is bounded from below.
(ii) Moreover, if (νn) is τ -tight, then the above are also equivalent to

(d) νn
τ⇒ ν0.

(e) lim infn

∫
S
q dνn ≥

∫
S
q dν0 for every sequentially τ -lower semicontinuous function q : S →

(−∞,+∞] which is bounded from below.

Here Cu(S, ρ) stands for the set of all uniformly ρ-continuous and bounded functions from S into R.
The name “portmanteau theorem” comes from [28].
Proof. Part (i), which is stated in a metrizable context, is classical; cf. [2, 4.5.1], [27, Proposition 7.21]
and [28, Theorem 2.1]. Next, we prove part (ii): (d) ⇒ (a) holds a fortiori. (e) ⇒ (d) is evident
since for any c ∈ Cb(S, τ) both c and −c meet the conditions imposed on q in part (e). (d) ⇒ (e):
Let h be as in Definition 2.2 For any q as stated in (e) and for any ε > 0 the function qε := q + εh
is sequentially τ -inf-compact, whence τρ-inf-compact. Hence, qε is τρ-lower semicontinuous on S and
bounded from below.1 So (c) and an easy argument with ε→ 0 give (e). QED

It turns out that tightness is a criterion for relative compactness in the narrow topology. Just as
in Definition 2.2 we only state the sequential version.

Theorem 2.5 (Prohorov’s theorem for ⇒) Let (νn) in P(S) be τ -tight. Then there exist a sub-
sequence (νn′) of (νn) and ν∗ ∈ P(S) such that νn′

τ⇒ ν∗.

Proof. By τ ⊃ τρ we can apply Prohorov’s classical theorem [28, Theorem 6.1]. Hence, there exist a
subsequence (νn′) of (νn) and ν∗ ∈ P(S) such that νn′

ρ⇒ ν∗. Hereupon, we can invoke Theorem 2.4.
QED

Let N̂ := N ∪ {∞} be the usual Alexandrov-compactification of the natural numbers. This is
a metrizable space, so let ρ̂ be a fixed metric on N̂ and let S̃ := S × N̂. We can equip S̃ with the
product metric ρ̃ or with the product topology τ̃ := τ×τρ̂. For n ∈ N̂, let εn ∈ P(N̂) be Dirac measure
concentrated at the point n. The proof of the next result is rather obvious by Theorem 2.4(b) and a
triangle inequality argument.

Corollary 2.6 Let (νn) and ν0 be in P(S). If 1
N

∑N
n=1 νn

ρ⇒ ν0 in P(S), then

1
N

N∑
n=1

(νn × εn)
ρ̃⇒ ν0 × ε∞ in P(S̃).

In particular, if νn
ρ⇒ ν0 in P(S), then

νn × εn
ρ̃⇒ ν0 × ε∞ in P(S̃).

Recall that the support τ -supp ν of ν ∈ P(S) defined to be the complement of the union of all open
ν-null sets; hence, ν(τ -supp ν) = 1 (note that every τ -open subset of S has the countable subcover
property by [35, III.67]).

1This shows q̃ : S → R to be B(S)-measurable, with q̃ := q on {h < +∞} and q̃ := +∞ on {h = +∞}. Hence, the
integrals in (e) are well-defined.
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Theorem 2.7 (support theorem for ⇒) (i) Let 1
N

∑N
n=1 νn

ρ⇒ ν0 for (νn) and ν0 in P(S) (in
particular, this holds when νn

ρ⇒ ν0). Then

τρ-supp ν0 ⊂ τρ-Lsnτρ-supp νn.

(ii) Moreover, if (νn) τ -tight, then

ν0(τ -seq-cl τ -Lsnτ -supp νn) = 1 and τ -supp ν0 ⊂ τ -cl τ -Lsnτ -supp νn,

Here “τ -seq-cl” stands for sequential closure with respect to the topology τ and “τ -Lsn” refers to the
usual Kuratowski sequential τ -limes superior of a sequence of subsets. This set is τ -closed if τ = τρ
(metrizable case).

Proof. (i) By Corollary 2.6 it follows that πN := 1
N

∑N
n=1(νn × εn)

ρ̃⇒ ν0 × ε∞ in P(S̃), where
S̃ := S × N̂. Setting Sn := τρ-supp νn and S∞ := τρ-Lsnτρ-supp νn, we define q̃0 : S̃ → {0,+∞}
as follows: If x ∈ Sk then q̃0(x, k) := 0. If x 6∈ Sk for all k, 1 ≤ k ≤ ∞, then q̃0(x, k) := +∞. We
claim that q̃0 is τρ̃-lower semicontinuous in every point (x, k) of S× N̂. For let ρ̃((xj , kj), (x, k)) → 0.
We must show that α := lim infn q̃0(xj , kj) ≥ q′0(x, k). If k < ∞, then eventually kj ≡ k, so
α ≥ q̃0(x, k) follows since Sk is τρ-closed. If k = ∞, we can have two cases: if eventually kj ≡ ∞,
then α ≥ q̃0(x,∞) follows by τρ-closedness of S∞. On the other hand, if kj <∞ infinitely often, then
the same inequality follows directly from the definition of S∞. This shows that q̃0 is indeed τρ̃-lower
semicontinuous. Now

∫
S̃
q̃0d(νn × εn) =

∫
S
q̃0(x, n)νn(dx) = 0 for every n. Hence,

∫
S̃
q̃0dπN = 0 for

every N . Thus, Theorem 2.4 gives
∫

S
q̃0(x,∞)ν0(dx) = 0, and the desired τρ-support property for ν0

follows.
(ii) Since N̂ is compact, τ̃ -tightness of (νn × εn) in P(S̃) is evident. Hence, Theorem 2.4 gives

1
N

∑N
n=1(νn × εn) τ̃⇒ ν0 × ε∞ in P(S̃). We now essentially proceed as in the proof of (i), but a little

more carefully: the additional sequential closure operation in the definition of S∞) is needed because
τ -Lsnτ -supp νn need not be sequentially τ -closed on its own accord. QED

Theorem 2.8 Let νn
ρ⇒ ν0 in P(S). Then (νn) is τρ-tight.

Proof. S is Suslin, so any probability measure in P(S) is a Radon measure for both τ and τρ [35,
III.69]. Hence, the result follows from [28, Theorem 8, Appendix III]. QED

The above sufficient condition for τρ-tightness of a sequence will play a role further on. It seems
to have no analogue for τ -tightness when τ is nonmetrizable. The following result, also to be used
later, is [27, Proposition 7.19]:

Proposition 2.9 (countable determination of ⇒) There exists a countable set C0 ⊂ {c ∈ Cu(S, ρ) :
supS |c| = 1} such that for every (νn) and ν0 in P(S) one has νn

ρ⇒ ν0 if and only if limn

∫
S
c dνn =∫

S
c dν0 for every c ∈ C0. In particular, C0 separates the points of P(S).

3 K-convergence of Young measures

A Young measure is a function δ : Ω → P(S) that is measurable with respect to A and B(P(S))
The set of all such Young measures is denoted by R(Ω;S). By B(S) = B(S, τρ) of the previous
section it is not hard to see that Young measures are precisely the transition probabilities from
(Ω,A) into (S,B(S)) [45, III.2], i.e., δ : Ω → P(S) belongs to R(Ω;S) if and only if ω 7→ δ(ω)(B)
is A-measurable for every B ∈ B(S). For some elementary measure-theoretical properties of Young
measures the reader is referred to [45, III.2] or [2, 2.6]. In particular, the product measure induced
on (Ω × S,A × B(S)) by µ and any δ ∈ R(Ω;S) (cf. [45, III.2]) is denoted by µ ⊗ δ. Let L0(Ω;S)
be the set of all measurable functions from (Ω,A) into (S,B(S)). A Young measure δ ∈ R(Ω;S) is
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said to be Dirac if it is a degenerate transition probability [45, III.2], i.e., if there exists a function
f ∈ L0(Ω;S) such that for every ω in Ω

δ(ω) = εf(ω) := Dirac measure at the point f(ω).

Conversely, δ is also called the Young measure relaxation of f . In this special case δ is denoted by
δ = εf . The set of all Dirac Young measures in R(Ω;S) is denoted by RDirac(Ω;S).

The fundamental idea behind Young measure theory is that, in some sense, R(Ω;S) forms a
completion of L0(Ω;S), when the latter is identified with RDirac(Ω;S).

Let us agree to the following terminology: an integrand on Ω × S is a function g : Ω × S →
(−∞,+∞] such that for every ω ∈ Ω the function g(ω, ·) on S is B(S)-measurable. A function
g : Ω × S → (−∞,+∞] is said to be a (sequentially) τ -lower semicontinuous [τ -continuous] [[τ -inf-
compact]] integrand on Ω × S if for every ω ∈ Ω the function g(ω, ·) on S is (sequentially) τ -lower
semicontinuous [τ -continuous] [[τ -inf-compact]] respectively. Let g be an integrand on Ω × S. The
following expression is meaningful for any δ ∈ R(Ω;S):

Ig(δ) :=
∫ ∗

Ω

[
∫

S

g(ω, x)δ(ω)(dx)]µ(dω),

provided that the two integral signs are interpreted as follows: (1) for every fixed ω the integral over
the set S of the function g(ω, ·), which is B(S)-measurable by definition of the term integrand, is a
quasi-integral in the sense of [45, p. 41], (2) the integral over Ω is interpreted as an outer integral
(note that outer integration comes down to quasi-integration when measurable functions are involved
– cf. [9, Appendix A] or [22, Appendix B]). The resulting functional Ig : R(Ω;S) → [−∞,+∞] is
called the Young measure integral functional associated to g. Another integral functional associated
to g, this time on the set L0(Ω;S) of all measurable functions from Ω into S, is given by the formula

Jg(f) :=
∫ ∗

Ω

g(ω, f(ω))µ(dω) = Ig(εf ).

The following notion of convergence was introduced and studied in a more abstract context in
[12, 13].

Definition 3.1 (K-convergence in R(Ω;S)) A sequence (δn) in R(Ω;S) K-conver-ges with re-

spect to the topology τ to δ0 ∈ R(Ω;S) (notation: δn
K,τ−→ δ0) if for every subsequence (δn′) of

(δn)
1
N

N∑
n′=1

δn′(ω) τ⇒ δ0(ω) as N →∞ for a.e. ω in Ω.

Note that in the expression above the exceptional null set is allowed to vary with the subsequence
(δn′). We remark that K-convergence is nontopological. If in the above definition τ is replaced by
τρ and “ τ⇒ ” by “

ρ⇒ ”, we obtain the weaker notion of K-convergence with respect to τρ. This is

denoted by “
K,ρ−→ ”. We shall occasionally use “ K−→ ” in situations where we need not distinguish

between the two at all.

Example 3.2 Let (Ω,A, µ) be ([0, 1],L([0, 1]), λ1) (i.e., the Lebesgue unit interval). Let (fn) be the
sequence of Rademacher functions, defined by fn(ω) := sign sin(2nπω) (here S := R, of course).
Then εfn

K−→ δ0, where δ0 ∈ R([0, 1]; R) is the constant function δ0(ω) ≡ 1
2ε1 + 1

2ε−1. This can be
proven by the (scalar) strong law of large numbers, analogous to the proof of Theorem 3.8.

Definition 3.3 (tightness in R(Ω;S)) A sequence (δn) in R(Ω;S) is τ -tight if there exists a non-
negative, sequentially τ -inf-compact integrand h on Ω× S such that supn Ih(δn) < +∞.
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This definition comes from [26]; clearly this extends Definition 2.2. Recall from the previously given
definition of integrands that a sequentially τ -inf-compact integrand h is simply a function on Ω× S
with the following property: for every ω ∈ Ω the function h(ω, ·) is sequentially τ -inf-compact.

Remark 3.4 Similar to Remark 2.3, Definition 3.3 can easily be shown to be equivalent to the fol-
lowing one [39]: (δn) is τ -tight if and only if for every ε > 0 there exists a multifunction Γε : Ω → 2S,
with Γε(ω) sequentially τ -compact for every ω ∈ Ω, such that

sup
n

∫ ∗

Ω

δn(ω)(S\Γε(ω))µ(dω) ≤ ε.

Example 3.5 (a) Let E be a separable reflexive Banach space with norm ‖ · ‖. Let E′ be the dual
space of E. Suppose that (fn) ⊂ L1(Ω;E) is L1-bounded: supn

∫
Ω
‖fn(ω)‖µ(dω) < +∞. Then (εfn

)
is σ(E,E′)-tight in R(Ω;S): simply set h(ω, x) := ‖x‖ in Definition 3.3.

(b) Let E be a separable Banach space with norm ‖·‖. Suppose that (fn) ⊂ L1(Ω;E) is L1-bounded
and that there exists a multifunction R : Ω → 2S such that for a.e. ω both {fn(ω) : n ∈ N} ⊂ R(ω) and
R(ω) is σ(E,E′)-ball-compact [i.e., the intersection of R(ω) with every closed ball in E is σ(E,E′)-
compact]. Then (εfn

) is σ(E,E′)-tight: now we set hR(ω, x) := ‖x‖ if x ∈ R(ω), and hR(ω, x) := +∞
otherwise. Then for every ω ∈ Ω and β ∈ R+ the set of all x ∈ E such that hR(ω, x) ≤ β is the
intersection of R(ω) and the closed ball with radius β around 0. By the Eberlein-S̆mulian theorem it
is sequentially σ(E,E′)-compact as well.

Part (b) in the above example generalizes part (a): simply observe that in part (a) E itself is
σ(E,E′)-ball-compact by reflexivity, so there we can take R ≡ E. A very important property of
K-convergence of Young measures is as follows [13, 12, 18]:

Proposition 3.6 (Fatou-Vitali for K−→ ) (i) Let δn
K,ρ−→ δ0 in R(Ω;S). Then

lim infn Ig(δn) ≥ Ig(δ0) for every τρ-lower semicontinuous integrand g on Ω× S such that

s(α) := sup
n

∫ ∗

Ω

[
∫
{g≤−α}ω

g−(ω, x)δn(ω)(dx)]µ(dω) → 0 for α→∞. (3.1)

(ii) Moreover, if (δn) is τ -tight, then also lim infn Ig(δn) ≥ Ig(δ0) for every sequentially τ -lower
semicontinuous integrand g on Ω× S such that (3.1) holds.

Here, as usual, g− := max(−g, 0) and {g ≤ −α}ω denotes {x ∈ S : g(ω, x) ≤ −α}. Note that
footnote 1 applies to each g(ω, ·) in part (ii).

Remark 3.7 If δn = εfn
for all n ∈ N, then (3.1) runs as follows:

lim
α→∞

sup
n

∫ ∗

Ω

1{g(·,fn(·))≤−α}g
−(ω, fn(ω))µ(dω) = 0.

Since g(ω, fn(ω)) ≤ −α if and only if g−(ω, fn(ω)) ≥ α, (3.1) comes down to uniform (outer)
integrability of the sequence (g−(·, fn(·))) in the case of a Dirac sequence, in agreement with standard
formulations; cf. [37, 5].

Proof of Proposition 3.6. The proof of (i) will be given in two steps.
Step 1: g ≥ 0. Set β := lim infn Ig(δn); then there is a subsequence (δn′) such that β =

limn′ Ig(δn′). Define ψN (ω) := 1
N

∑N
n′=1

∫
S
g(ω, x)δn′(ω)(dx) and ψ0(ω) :=

∫
S
g(ω, x)δ0(ω)(dx). Then

lim infN ψN ≥ ψ0 a.e. by Theorem 2.4(c), because by Definition 3.1 1
N

∑N
n′=1 δn′(ω)

ρ⇒ δ0(ω) in P(S)
for a.e. ω. Thus, Fatou’s lemma can be applied (it remains valid for outer integration in the direction
that suits us; cf. [22, Appendix B]). This gives β ≥ lim infN→∞

∫ ∗
Ω
ψN dµ ≥

∫ ∗
Ω
ψ0 dµ = Ig(δ0) by

subadditivity of outer integration.
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Step 2: general case. We essentially follow Ioffe [37] by pointing out that∫
S

g(ω, x)δn(ω)(dx) +
∫

S

1{g≤−α}(ω, x)g−(ω, x)δn(ω)(dx) ≥
∫

S

gα(ω, x)δn(ω)(dx),

by g + 1{g≤−α}g
− ≥ gα := max(g,−α). One more (outer) integration gives, in the notation of (3.1),

Ig(δn)+s(α) ≥ Igα
(δn), where we use subadditivity of outer integration. Now step 1 trivially extends

to any g that is bounded from below, such as gα. This gives

lim inf
n

Ig(δn) + s(α) ≥ lim inf
n

Igα(δn) ≥ Igα(δ0) ≥ Ig(δ0),

where we use gα ≥ g. The proof of (i) is finished by letting α go to infinity.
(ii) Let h be as in Definition 3.3 and denote s := supn Ih(δn). We augment g, similar to the

proof of Theorem 2.4(ii): For ε > 0 define gε := g + εh. Then gε ≥ g and gε(ω, ·) is τρ-lower
semicontinuous on S for every ω ∈ Ω (see the proof of Theorem 2.4(ii)). Thus, part (i) gives
lim infn Ig(δn) + εs ≥ lim infn Igε(δn) ≥ Igε(δ0) ≥ Ig(δ0) for any ε > 0. Letting ε go to zero gives the
desired inequality. QED

The following important Prohorov-type relative compactness criterion for K-conver-gence is [13,
Theorem 5.1]. It was obtained as a specialization to Young measures of an abstract version of Komlós’
theorem [41]; see also [14].

Theorem 3.8 (Prohorov’s theorem for K−→ ) Let (δn) in R(Ω;S) be τ -tight.

Then there exist a subsequence (δn′) of (δn) and δ∗ ∈ R(Ω;S) such that δn′
K,τ−→ δ∗.

To prove Theorem 3.8 we use the following theorem, due to Komlós [41].

Theorem 3.9 (Komlós) Let (φn) be a sequence in L1(Ω; R) such that supn

∫
Ω
|φn|dµ < +∞. Then

there exist a subsequence (φn′) of (φn) and a function φ∗ ∈ L1(Ω; R) such that for every further
subsequence (φn′′) of (φn′)

lim
N→∞

1
N

N∑
n′′=1

φn′′(ω) = φ∗(ω) for a.e. ω in Ω.

Lemma 3.10 Let (νn) in P(S) be τ -tight and let C0 be a subset of {c ∈ Cb(S, τ) : supS |c| = 1} that
separates the points of P(S). If

lim
n

∫
S

cdνn exists for every c ∈ C0,

then there exists ν∗ ∈ P(S) such that νn
τ⇒ ν∗.

This lemma is a direct result of Theorem 2.5 and the point separating property of C0; cf. Proposi-
tion 2.9.
Proof of Theorem 3.8. Let C0 = {ci : i ∈ N} be as in Lemma 3.10. Define φi,n(ω) :=∫

S
ci(x)δn(ω)(dx); then supn

∫
Ω
|φi,n|dµ < +∞ for every i ∈ N. Let h be as in Definition 3.3.

By definition of outer integration, there exists for each n ∈ N a function φ0,n ∈ L1(Ω; R) such that
φ0,n(ω) ≥

∫
S
h(ω, x)δn(ω)(dx) for a.e. ω ∈ Ω and

∫
Ω
φ0,n dµ = Ih(δn). Applying Theorem 3.9 in a

diagonal extraction procedure, we obtain a subsequence (δn′) of (δn) and functions φi,∗ ∈ L1(Ω; R),
i ∈ N∪{0}, such that limN

1
N

∑N
n′′=1 φi,n′′ = φi,∗ a.e. for every further subsequence (δn′′) and for all

i ∈ N ∪ {0}. Explicitly, we have every such (δn′′) for a.e. ω in Ω

lim
N

∫
S

h(ω, x)
1
N

N∑
n′′=1

δn′′(ω)(dx) = φ0,∗(ω) < +∞, (3.2)
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lim
N

∫
S

ci(x)
1
N

N∑
n′′=1

δn′′(ω)(dx) = φi,∗(ω) for all i ∈ N. (3.3)

Let us first consider (δn′) itself as the subsequence in question. Fix ω outside the exceptional null
set M , associated with this particular choice of a subsequence in (3.2)–(3.3). Then (3.2) implies
that the sequence (νN ) in P(S), defined by νN := 1

N

∑N
n′=1 δn′(ω), is τ -tight in the classical sense of

Definition 2.2. Also, (3.3) implies that limN

∫
S
cidνN exists for every i. By Lemma 3.10 there exists

νω,∗ in P(S) such that νN
τ⇒ νω,∗. Define δ∗(ω) := νω,∗ for ω ∈ Ω\M . Also, on M we define δ∗

to be equal to an arbitrary fixed element of P(S). Then it is elementary to show that δ∗ belongs to
R(Ω;S). The argument following (3.3) can be repeated with a change of the null set M (for which
Definition 3.1 leaves room) if one starts out with an arbitrary subsequence (δn′′) of (δn′). QED

The next example extends Example 3.2 and demonstrates the power of Theorem 3.8, which brings
K-convergence (for subsequences!) to settings where Kolmogorov’s law of large numbers, used in the
special Example 3.2, stands no chance at all.

Example 3.11 Let (Ω,A, µ) be ([0, 1],L([0, 1]), λ1) (i.e., the Lebesgue unit interval). Let f1 ∈
L1([0, 1]; R) be arbitrary; it can be extended periodically from [0, 1] to all of R. We define fn+1(ω) :=
f1(2nω). Clearly, the sequence (εfn

) is tight in the sense of Definition 3.3 (see Example 3.5(a)). By

Theorem 3.8 there exist a subsequence (fn′) of (fn) and some δ∗ ∈ R([0, 1]; R) such that εfn′
K−→ δ∗.

The precise nature of δ∗ can now be determined by means of Proposition 3.6, but we shall defer this
to Example 4.4 later on.

The following are direct consequences of Corollary 2.6 and Theorem 2.7 for K-convergence of
Young measures (by their application pointwise):

Corollary 3.12 Let (δn) and δ0 be in R(Ω;S). The following are equivalent:

(a) δn
K,ρ−→ δ0 in R(T ;S)

(b) δn × εn
K,ρ̃−→ δ0 × ε∞ in R(T ; S̃).

Theorem 3.13 (support theorem for K−→ ) (i) Let δn
K,ρ−→ δ0 in R(Ω;S). Then

τρ-supp δ0(ω) ⊂ τρ-Lsnτρ-supp δn(ω) for a.e. ω in Ω.

(ii) Moreover, if δn
K,τ−→ δ0, then also

δ0(ω)(τ -seq-cl τ -Lsnτ -supp δn(ω)) = 1,

τ -supp δ0(ω) ⊂ τ -cl τ -Lsnτ -supp δn(ω) for a.e. ω in Ω.

4 Narrow convergence of Young measures

In this section our program to transfer narrow convergence results for probability measures (section 2)
to Young measures comes is completed. We use the same fundamental hypotheses as in the previous
section: (Ω,A, µ) is a finite measure space and (S, τ) is a completely regular Suslin space, on which
we also consider the weak metric topology τρ ⊂ τ . We start out by giving the definition of narrow
convergence for Young measures [3, 4, 10] (see also [38]).

Definition 4.1 (narrow convergence in R(T ;S)) A sequence (δn) inR(Ω;S) converges τ -narrowly
to δ0 in R(Ω;S) (this is denoted by δn

τ=⇒ δ0) if for every A ∈ A and c in Cb(S, τ)

lim
n

∫
A

[
∫

S

c(x)δn(ω)(dx)]µ(dω) =
∫

A

[
∫

S

c(x)δ0(ω)(dx)]µ(dω).
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The weaker notion of τρ-narrow convergence is defined by replacing τ by τρ; this is denoted by
“

ρ
=⇒ ”. We shall occasionally use “=⇒” in situations where we need not distinguish between the

two at all. We shall see that on τ -tight sets of Young measures these two modes actually coincide
(note the complete analogy to section 2). For further benefit, note carefully the distinct notation
used for narrow convergence for probability measures (indicated by short arrows) and Young measure
convergence (indicated by long arrows).

Remark 4.2 ( K−→ implies =⇒) Let (δn) and δ0 be in R(Ω;S). The following hold: (a) If δn
K,ρ−→ δ0,

then δn
ρ

=⇒ δ0. (b) If δn
K,ρ−→ δ0 and if (δn) is τ -tight, then δn

τ=⇒ δ0. (c) If δn
K,τ−→ δ0, then

δn
τ=⇒ δ0.

Definition 4.1 obviously extends to a definition of the τ - and τρ-narrow topologies. In the form
given above, the definition of narrow convergence is classical in statistical decision theory [58, 43]. It
merges two completely different classical modes of convergence:

Remark 4.3 Let (δn) and δ0 be in R(Ω;S). The following are obviously equivalent:
(a) δn

τ=⇒ δ0 in R(Ω;S).
(b) [µ⊗ δn](A× ·)/µ(A) τ⇒ [µ⊗ δ0](A× ·)/µ(A) in P(S) for every A ∈ A, µ(A) > 0.
(c)

∫
S
c(x)δn(·)(dx) ∗

⇀
∫

S
c(x)δ0(·)(dx) in L∞(Ω; R) for every c ∈ Cb(S, τ). Here “ ∗

⇀ ” denotes
convergence in the topology σ(L∞(Ω; R),L1(Ω; R)).

The following example continues the previous Examples 3.2 and 3.11.

Example 4.4 Let (Ω,A, µ) be ([0, 1],L([0, 1]), λ1) (cf. Example 3.2). As in Example 3.11, let f1 ∈
L1([0, 1]; R) be arbitrary and extended periodically from [0, 1] to all of R. We define fn+1(ω) :=
f1(2nω). Then εfn =⇒ δ0, where δ0 ∈ R([0, 1],R) is the constant function given by δ0(ω) ≡ λf1

1 .
Here λf1 ∈ P(R) is the image of λ1 under the mapping f1; i.e., λf1(B) := λ(f−1

1 (B)). To prove the
above convergence statement, let c ∈ Cb(R) be arbitrary, and let A be first of the form A = [0, β]
with β > 0. Then a simple change of variable gives limn→∞

∫
A
c(fn)dλ1 =

∫
A
[
∫

R c(x)δ0(ω)(dx)]dω
for A = [0, β]. By standard methods this can then be extended to all A in A.

It follows that δ∗ in Example 3.11 is equal to the above δ0, modulo a λ1-null set. The proviso of an
exceptional null-set is indispensible, because the narrow limits in R(Ω;S) are only unique modulo a
µ-null set:

Proposition 4.5 For every δ, δ′ in R(Ω;S) the following are equivalent:
(a)

∫
A
[
∫

S
c(x)δ(ω)(dx)]µ(dω) =

∫
A
[
∫

S
c(x)δ′(ω)(dx)]µ(dω) for every A ∈ A and c ∈ C0.

(b) δ(ω) = δ′(ω) for a.e. ω in Ω.

Theorem 4.6 Suppose that the σ-algebra A on Ω is countably generated. Then there exists a semi-
metric dR on R(Ω;S) such that for every (δn) and δ0 in R(Ω;S) the following are equivalent:

(a) δn
ρ

=⇒ δ0.
(b) limn dR(δn, δ0) = 0.

Proof. Let (ci) enumerate C0 of Proposition 2.9, and let (Aj) be the at most countable algebra
generating A. Denote qi(A, δ) :=

∫
A
[
∫

S
ciδ(·)(dx)]dµ and define a semimetric on R(Ω;S) by dR(δ, δ′)

:=
∑

i,j 2−i−j |qi(Aj , δ)− qi(Aj , δ
′)|. To prove (a) ⇒ (b) we note that standard arguments [2, 1.3.11]

give limn qi(A, δn) = qi(A, δ0) for every A ∈ A and i. By Proposition 2.9 and Remark 4.3 this implies
δn

ρ
=⇒ δ0. Conversely, (a) ⇒ (b) is simple. QED
Proposition 3.6 and Theorem 3.8 imply the following transfer of the earlier portmanteau Theo-

rem 2.4 to the domain of Young measures [10].
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Theorem 4.7 (portmanteau theorem for =⇒) (i) Let (δn) and δ0 be in R(Ω;S). The following
are equivalent:

(a) δn
ρ

=⇒ δ0.
(b) limn

∫
A
[
∫

S
c(x)δn(ω)(dx)]µ(dω) =

∫
A
[
∫

S
c(x)δ0(ω)(dx)]µ(dω) for every A ∈ A, c ∈ Cu(S, ρ).

(c) lim infn Ig(δn) ≥ Ig(δ0) for every τρ-lower semicontinuous integrand g on Ω× S such that

lim
α→∞

sup
n

∫ ∗

Ω

[
∫
{g≤−α}ω

g−(ω, x)δn(ω)(dx)]µ(dω) = 0.

(ii) Moreover, if (δn) is τ -tight, then the above are also equivalent to
(d) δn

τ=⇒ δ0.
(e) lim infn Ig(δn) ≥ Ig(δ0) for every sequentially τ -lower semicontinuous integrand g on Ω × S

such that

lim
α→∞

sup
n

∫ ∗

Ω

[
∫
{g≤−α}ω

g−(ω, x)δn(ω)(dx)]µ(dω) = 0.

Proof. By Remark 4.3 (a) ⇔ (b) follows by (a) ⇔ (b) in Theorem 2.4. (c) ⇒ (b) is obvious: apply
(c) to g(ω, x) := ±1A(ω)c(x). (a) ⇒ (c): By Remark 4.3 νn

ρ⇒ ν0, where νn := [µ⊗ δn](Ω× ·)/µ(Ω).
So by Theorem 2.8 (νn) is τρ-tight in P(S): there exists a τρ-inf-compact h′ : S → [0,+∞] such that
supn

∫
S
h′dνn < +∞. So (δn) is τρ-tight, since

∫
S
h′dνn = Ih(δn)/µ(Ω) for h(ω, x) := h′(x), Therefore,

Theorem 3.8 applies to (δn). For g as stated, let β := lim infn Ig(δn). Then β = limn′ Ig(δn′) for
a suitable subsequence (δn′) and, by Theorem 3.8, we may suppose without loss of generality that

δn′
K,ρ−→ δ∗ for some δ∗ in R(Ω;S). But in combination with (a) this implies δ∗(ω) = δ0(ω) a.e.

(Proposition 4.5), so in fact δn′
K,ρ−→ δ0. Now β ≥ Ig(δ0) follows from Proposition 3.6. Next, (d) ⇒ (a)

holds a fortiori and (a) ⇒ (e) is proven similarly to (a) ⇒ (c), but now τ -tightness holds ab initio; let
h be as in Definition 3.3. In the remainder of the proof of (a) ⇒ (c) we now substitute gε := g + εh,
which is a τρ-lower semicontinuous integrand. Letting ε→ 0 gives (e). Finally, (e) ⇒ (d) is obvious.
QED

Results of this kind (but less general) are usually obtained by means of approximation procedures
for the lower semicontinuous integrands [31, 26, 3, 38, 5, 10, 56, 57], that are completely avoided
here. Another difference is that the present approach directly produces results for sequential Young
measure convergence.

Theorem 4.8 (characterization of =⇒ by K−→ ) (i) Let (δn) and δ0 be in R(Ω;S). The follow-
ing are equivalent:

(a) δn
ρ

=⇒ δ0.

(b) Every subsequence (δn′) of (δn) contains a further subsequence (δn′′) such that δn′′
K,ρ−→ δ0.

(ii) Moreover, if (δn) is τ -tight, then the above are also equivalent to
(c) δn

τ=⇒ δ0.

(d) Every subsequence (δn′) of (δn) contains a further subsequence (δn′′) such that δn′′
K,τ−→ δ0.

In parts (b) and (d) the use of subsequences cannot be replaced by the use of the entire sequence (δn)
itself, simply because a narrowly convergent sequence does not have to K-converge as a whole [18,
Example 3.17].

Corollary 4.9 (i) Let (δn) and δ0 be in R(Ω;S). The following are equivalent:
(a) δn

ρ
=⇒ δ0 in R(Ω;S).

(b) δn × εn
ρ̃

=⇒ δ0 × ε∞ in R(Ω; S̃).
(ii) Moreover, if (δn) is τ -tight, then the above are also equivalent to

(c) δn
τ=⇒ δ0 in R(Ω;S).

(d) δn × εn
τ̃=⇒ δ0 × ε∞ in R(Ω; S̃).

10



Proof. (a) ⇔ (b) is immediate by Theorem 4.8 and Corollary 3.12. (a) ⇔ (c) is contained in
Theorems 4.7 and 4.8. (b) ⇔ (d) is contained in Theorems 4.7 and 4.8, since (δn × εn) is τ̃ -tight if
and only if (δn) is τ -tight (by compactness of N̂). QED

Transfers of Prohorov’s theorem and of the support theorem to Young measure convergence are
immediate because of the intermediate results obtained in section 3. The following result is evident
by combining Theorem 3.8 and Remark 4.2. See [11] for the topological (i.e., nonsequential) version
of this result in precisely the setting of this paper.

Theorem 4.10 (Prohorov’s theorem for =⇒) (i) Let (δn) in R(Ω;S) be τρ-tight. Then there
exist a subsequence (δn′) of (δn) and δ∗ ∈ R(Ω;S) such that δn′

ρ
=⇒ δ∗.

(ii) Let (δn) in R(Ω;S) be τ -tight. Then there exist a subsequence (δn′) of (δn) and δ∗ ∈ R(Ω;S)
such that δn′

τ=⇒ δ∗.

Example 4.11 We continue with Example 3.5(b). By σ(E,E′)-tightness of (εfn
) we get from The-

orem 4.10 that there exist a subsequence (fn′) of (fn) and δ∗ ∈ R(Ω;E) such that εfn′
τ=⇒ δ∗.

(a) We now introduce a function f∗ ∈ L1
E that is “barycentrically” associated to δ∗, simply by

inspecting the consequences of the tightness inequality s := supn IhR
(εfn

) < +∞ that was estab-
lished there. For hR is a fortiori a σ(E,E′)-lower semicontinuous integrand, so Theorem 4.7(e) gives
IhR

(δ∗) ≤ s < +∞, which implies
∫

S
hR(ω, x)δ∗(ω)(dx) < +∞ for a.e. ω. So by the definition of

hR it follows that both δ∗(ω)(R(ω)) = 1 and
∫

E
‖x‖δ∗(ω)(dx) < +∞ for a.e. ω. By standard facts

of Bochner integration it follows that the barycenter f∗(ω) := bar δ∗(ω) of the probability measure
δ∗(ω) is defined for a.e. ω. Thus, if we set f∗ := 0 on the exceptional null set, we obtain a function
f∗ ∈ L0(Ω;E). Finally we notice that, as announced, f∗ is µ-integrable, i.e., f∗ ∈ L1(Ω;E). This
follows simply from IhR

(δ∗) < +∞ by use of Jensen’s inequality and the inequality hR(ω, x) ≥ ‖x‖.
(b) Suppose that in part (a) one has in addition that (‖fn′‖) is uniformly integrable in L1(Ω; R).

Then fn′
w→ f∗ ∈ L1(Ω;E) (weak convergence in L1(Ω;E)). This follows directly from another

application of Theorem 4.7(e), namely, to all integrands g of the type g(ω, x) = ± < x, b(ω) >,
b ∈ L∞(Ω, E′)[E]. The latter symbol denotes the set of all scalarly measurable bounded E′-valued
functions on Ω; it forms the prequotient dual of L1(Ω;E). This yields limn′ Ig(εfn′ ) = Ig(δ∗), with
Ig(εfn′ ) = Jg(fn′) =

∫
Ω
< fn′ , b(ω) > dµ and Ig(δ∗) =

∫
Ω
< f∗, b(ω) > dµ.

Part (b) in the above example implies that fn
w→ f0 in Example 4.4, where f0 is the constant function

given by f0(ω) := bar δ0(ω) =
∫

R f1 dλ1 (apply [35, II.12]). Concatenation of Theorem 3.13 and
Theorem 4.8 gives immediately the following result:

Theorem 4.12 (support theorem for =⇒) (i) Let δn
ρ

=⇒ δ0 in R(Ω;S). Then

τρ-supp δ0(ω) ⊂ τρ-Lsnτρ-supp δn(ω) for a.e. ω in Ω.

(ii) Moreover, if (δn) is τ -tight, then δn
τ=⇒ δ0 in R(Ω;S) and

δ0(ω)(τ -seq-cl τ -Lsnτ -supp δn(ω)) = 1,

τ -supp δ0(ω) ⊂ τ -cl τ -Lsnτ -supp δn(ω) for a.e. ω in Ω.

The following so-called lower closure theorem for Young measures forms a combination of the main
relative compactness, lower semicontinuity and support results of the present section. Let (D, dD) be
a metric space.

Theorem 4.13 (fundamental lower closure theorem) Let (δn) in R(Ω;S) be τ -tight and let
dn

µ→ d0 in L0(Ω;D) (convergence in measure). Then there exist a subsequence (δn′) of (δn) and
δ∗ in R(Ω;S) such that

lim inf
n′

∫ ∗

Ω

[
∫

S

`(ω, x, dn′(ω))δn′(ω)(dx)]µ(dω) ≥
∫ ∗

Ω

[
∫

S

`(ω, x, d0(ω))δ∗(ω)(dx)]µ(dω)
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for every sequentially τ̃ -sequentially lower semicontinuous integrand ` on Ω× S ×D) such that

s′(α) := sup
n

∫ ∗

Ω

[
∫
{`≤−α}ω,n

`−(ω, x, dn(ω))δn(ω)(dx)]µ(dω) → 0 for α→∞. (4.1)

More precisely, we have δn′
K,τ−→ δ∗, causing δ∗ to be supported as follows

δ∗(ω)(τ -seq-cl τ -Lsnτ -supp δn(ω)) = 1 for a.e. ω in Ω.

Here {` ≤ −α}ω,n stands for the set of all x ∈ S for which `(ω, x, dn(ω)) ≤ −α.
Proof. Theorem 3.8 and well-known facts about convergence in measure [28, Theorem 20.5] imply

existence of a subsequence (δn′ , dn′) of (δn, dn) and existence of δ∗ ∈ R(T ;S) such that δn′
K,τ−→ δ∗ in

R(Ω;S) and dD(dn′(ω), d0(ω)) → 0 for a.e. ω. A fortiori this gives δn′
τ=⇒ δ∗ (by Remark 4.2). By

Theorem 4.12 this gives the desired pointwise support property for δ∗. By Corollary 4.9, we also have
δ̃n′

τ̃=⇒ δ̃∗ in R(Ω; S̃), with δ̃n := δn × εn and δ̃∗ := δ∗ × ε∞ Without loss of generality we discard
renumbering and pretend that (n′) enumerates all the numbers in N. For ` as stated we observe that
for each n′ ∈ N the following identity holds∫

S̃

g`(ω, x̃)δ̃n′(ω)(dx̃) =
∫

S

`(ω, x, dn′(ω))δn′(ω)(dx),

and it continues to hold for n′ = ∞ if we write d∞ := d0 and δ∞ := δ∗. Here g`(ω, (x, k)) :=
`(ω, x, dk(ω)) defines a τ̃ -lower semicontinuous integrand g` on Ω × S̃ (modulo an insignificant null
set). Note in particular that for k = ∞ lower semicontinuity of g`(ω, ·) at (x,∞) follows from
dn′(ω) → d0(ω) and lower semicontinuity of `(ω, ·, ·) at (x, d0(ω)). Thus, the desired inequality is
contained in lim infn′ Ig`

(δ̃n′) ≥ Ig`
(δ̃∗), a result that follows by applying Theorem 4.7 to g` (observe

here that (4.1) coincides with (3.1) for g = g`). QED

Remark 4.14 Let h be the nonnegative, sequentially τ -inf-compact integrand h on Ω×S that corre-
sponds as in Definition 3.3 to the τ -tight sequence (δn) in Theorem 4.13; i.e., with s := supn Ih(δn) <
+∞. Then the uniform integrability condition (4.1) applies whenever the integrand ` has the following
growth property with respect to h: for every ε > 0 there exists φε ∈ L1(Ω; R) such that for every n ∈ N

`−(ω, x, dn(ω)) ≤ εh(ω, x) + φε(ω) on Ω××S.

Indeed, we can observe that the set {` ≤ −α}ω,n in (4.1) is contained in the union of {φε < εh} and
{φε ≥ α/2}, which gives s′(α) ≤ 3εs +

∫
{φε≥α/2} φε dµ, whence s′(α) → 0 for α→∞, as claimed.

5 Some applications to lower closure and denseness

We illustrate the power of the above apparatus by some applications to a variety of problems; we
refer to [18, 22] for more extensive expositions.

As our first application, we derive an extension of the so-called fundamental theorem for Young
measures in [25]. Here L is a locally compact space that is countable at infinity; its usual Alexandrov
compactification is denoted by L̂ := L ∪ {∞}. The space L̂ is metrizable, and its metric is denoted
by d̂. On L we use the natural restriction of d̂, and denote it by d. Let C0(L) be the usual space
of continuous functions on L that converge to zero at infinity. Although it could be avoided by
the additional introduction of transition subprobabilities (see the comments below), the Alexandrov
compactification L̂ of L figures explicitly in the result. Also, below ν denotes a σ-finite measure on
(Ω,A).
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Corollary 5.1 (i) Let (fn) in L0(Ω;L) and the closed set C ⊂ L be such that limn ν(f−1
n (L\G))

= 0 for every open G, C ⊂ G ⊂ L. Then there exist a subsequence (fn′) of (fn) and δ∗ in R(Ω; L̂)
such that δ∗(ω)(L\C) = 0 for a.e. ω in Ω and

lim
n

∫
Ω

φ(ω)c(fn′(ω))ν(dω) =
∫

Ω

[
∫

L

φ(ω)c(x)δ∗(ω)(dx)]ν(dω)

for every φ ∈ L1(Ω; R) and every c ∈ C0(L).
(ii) Moreover, if for that subsequence there exists a sequence (Kr) of compact sets in L such that
limr→∞ supn′ ν({ω ∈ Ω : fn′(ω) 6∈ Kr} = 0 then δ∗(ω)({∞}) = 0 for a.e. ω in Ω and

lim
n

∫
A

φ(ω)c(fn′(ω))ν(dω) =
∫

A

[
∫

L

φ(ω)c(x)δ∗(ω)(dx)]ν(dω)

for every A ∈ A, φ ∈ L1(A; R) and c ∈ C(L) for which (1Ac(fn′)) is relatively weakly compact in
L1(A; R).

In [25] both L and Ω are Euclidean, and the Kr’s are closed balls around the origin with radius r. As
was done in [25], the result could be equivalently restated in terms of the transition subprobability
δ′∗ from (Ω,A) into (L,B(L)), defined by obvious restriction to L, i.e., δ′∗(ω)(B) := δ∗(ω)(B ∪ {∞}),
B ∈ B(L). In this connection the tightness condition in part (ii) guarantees that δ∗ is an authentic
transition probability (Young measure). Rather than via (i), part (ii) could also have been derived
directly from Theorem 3.8 or 4.13.
Proof. (i) By σ-finiteness of ν, there exists a finite measure µ that is equivalent to ν. Let φ̃ be a
version of the Radon-Nikodym density dν/dµ. Now (δn), defined by δn := εfn

∈ R(Ω, ; L̂), is trivially
tight by compactness of L̂ (set h ≡ 0). By Theorem 3.8 or 4.13 (with S := L̂, ρ := d̂), there exist

a subsequence (fn′) of (fn) and δ∗ in R(Ω; L̂) for which εfn′
ρ

=⇒ δ∗ (and even εfn′
K,ρ−→ δ∗). Every

c ∈ C0(L) has a canonical extension ĉ ∈ Cb(S) by setting ĉ(∞) = 0. Now φφ̃ is µ-integrable for any
φ ∈ L1(Ω,A, ν; R), and Theorem 4.7(c) (or 4.13) can be applied to g : Ω× L̂→ R given by g(ω, x) :=
±φ(ω)φ̃(ω)ĉ(x). This gives the desired equality, because of the identity

∫
Ω
φφ̃

∫
L
ĉ(x)δ∗(·)(dx)dµ =∫

Ω
φ

∫
L
c(x)δ∗(·)(dx)dν.

Next, let C be as stated. For any i ∈ N the set Fi, consisting of all x ∈ L with d-dist(x,C) ≤ i−1,
is closed in L. Note already that ∩iFi = C, by the given τd-closedness of C in L. Further, F̂i :=
Fi∪{∞} is closed in L̂. Set ĝi(ω, x) := φ̃(ω)1S\F̂i

(x). This defines a nonnegative lower semicontinuous

integrand ĝi on Ω × L̂. Hence, Iĝi
(δ∗) ≤ βi := lim infn′ Iĝi

(εfn′ ) by Theorem 4.7(c). By S\F̂i =
L\Fi, the definitions of ĝi and εfn′ give Iĝi(εfn′ ) = ν(f−1

n′ (L\Fi)). So βi = lim infn′ ν(f−1
n′ (L\Fi))

≤ ν(f−1
n′ (L\Gi)), where Gi, Gi ⊂ Fi, is the τd-open set of all x ∈ L with d-dist(x,C) < i−1. Since

Gi ⊃ C, the hypotheses imply 0 = βi ≥ Iĝi(δ∗) =
∫
Ω
δ∗(·)(L\Fi)dν. Hence δ∗(ω)(L\C) = 0 ν-a.e.

because of ∩iFi = C, which was demonstrated above.
(ii) The additional condition is a tightness condition for (εfn

), when viewed as a subset of
R(Ω;L) (take Γε ≡ Kr in Remark 3.4). Hence, there is a τρ-inf-compact integrand h on Ω × L

with supn Ih(δn) < +∞. Now define the inf-compact integrand ĥ on Ω × L̂ by ĥ(ω, x) := h(ω, x)
if x ∈ L and ĥ(ω,∞) := +∞. Then Iĥ(δ∗) ≤ lim infn′ Iĥ(εfn′ ) < +∞ by Theorem 4.7(c). Hence,
δ∗(·)({∞}) = 0 µ-a.e., whence ν-a.e. Finally, for any A ∈ A with ν(A) < +∞ Theorem 4.7(c)
applies to g(ω, x) := ±1A(ω)φ(ω)φ̃(ω)ĉ(x). This gives the desired limit statement. If ν(A) = +∞
and A is as stated, there exists a sequence (Aj) of subsets of A with finite ν-measure, with Aj ↑ A.
The previous result applies to each of the Aj and the weak relative compactness hypothesis implies
uniform σ-additivity [30], so also in this case the desired limit statement follows. QED

Next, let E and F be separable Banach spaces, each equipped with a locally convex Hausdorff
topology, respectively denoted by τE and τF , that is not weaker than the weak topology and not
stronger than the norm topology. Let (D, dD) be a metric space. Functions that are “barycentrically”
associated to Young measures can play a special role in lower closure and existence results. This is
demonstrated by our proof of the following result.
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Theorem 5.2 Let dn
µ→ d0 in L0(Ω;D) (convergence in measure), en

w→ e0 in L1(Ω;E) (weak con-
vergence), and let (fn) in L1(Ω;F ) satisfy supn

∫
Ω
‖fn‖F dµ < +∞. Suppose that there exist τE- and

τF -ball-compact multifunctions RE : Ω → 2E and RF : Ω → 2F such that

{(en(ω), fn(ω)) : n ∈ N} ⊂ RE(ω)×RF (ω)µ-a.e.

Then there exist a subsequence (dn′ , en′ , fn′) of (dn, en, fn) and f∗ ∈ L1(Ω;F ) such that

lim inf
n′

∫ ∗

Ω

`(ω, en′(ω), fn′(ω), dn′(ω))µ(dω) ≥
∫ ∗

Ω

`(ω, e0(ω), f∗(ω), d0(ω))µ(dω)

for every sequentially τE × τF × τD-lower semicontinuous integrand ` on Ω× (E × F ×D) such that
the following hold:

(`−(·, en(·), fn(·), dn(·))) is uniformly (outer) integrable,

`(ω, ·, ·, d0(ω)) is convex on E × F for a.e. ω.

Moreover, the functions e0 and f∗ can be localized as follows: 2

(e0(ω), f∗(ω)) ∈ cl co-w-Lsn{(en(ω), fn(ω))} for a.e. ω in Ω.

Observe, as was already done following Example 3.5, that the ball-compactness condition involving
RE and RF is automatically satisfied in case the Banach spaces E and F are reflexive.
Proof. To apply Theorem 4.13 we set S := E × F , τ := τE × τF and δn := ε(en,fn). Then S
is completely regular (by the Hahn-Banach theorem) and Suslin. Note that (‖en‖) in L1(Ω; R) is
uniformly integrable by [30, Theorem 1] and [45, Proposition II.5.2]. In particular, this implies
supn

∫
Ω
‖(en, fn)‖S dµ < +∞. This proves that (δn) is τ -tight, in view of Example 3.5(b). We

can now apply Theorem 4.13: let the subsequence (δn′ , dn′) of (δn, dn) and δ∗ in R(Ω;S) be as

guaranteed by that theorem, i.e., with δn′
τ=⇒ δ∗ (and even δn′

K,τ−→ δ∗). Then it is elementary by
Definition 4.1 that, “E-marginally”, εen′

τ=⇒ δE
∗ and, “F -marginally”, εfn′

τ=⇒ δF
∗ . Here δE

∗ (ω) :=
δ∗(ω)(· × F ), etc. Then E-marginally Example 4.11(b) applies, which gives that bar δE

∗ = e0 a.e.
Also, F -marginally Example 4.11(a) applies, giving the existence of f∗ ∈ L1(Ω;F ) such that f∗ =
bar δF

∗ a.e. (note that τE- and τF -ball-compactness imply σ(E,E′)- and σ(F, F ′)-ball-compactness
respectively). Recombining the above two marginal cases, we find bar δ∗ = (e0, f∗) a.e. (note that
barycenters decompose marginally).

We now finish the proof. For an integrand ` of the stated variety Theorem 4.13 gives

β ≥
∫ ∗

Ω

[
∫

E×F

`(ω, x, y, d0(ω))δ∗(ω)(d(x, y))]µ(dω),

where β := lim infn′
∫ ∗
Ω
`(ω, en′(ω), fn′(ω), dn′(ω))µ(dω). In the inner integral of the above inequality

the convexity of `(ω, ·, ·, d0(ω)) gives∫
E×F

`(ω, x, y, d0(ω))δ∗(ω) ≥ g(ω,bar δ∗(ω), d0(ω)) = g(ω, e0(ω), f∗(ω), d0(ω))

for a.e. ω, by Jensen’s inequality and our previous identity bar δ∗ = (e0, f∗) a.e. The desired
inequality thus follows. QED

The above lower closure result “with convexity” is quite general: it further extends the results
in [5, 8], which in turn already generalize several lower closure results in the literature, including
those for orientor fields (cf. [33]). See [15] for another development, not covered by the above result.
Results of this kind are very useful in the existence theory for optimal control and optimal growth

2In case E and F are finite-dimensional one may replace here “cl co” by “co”.
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theory; e.g., see [33, 15]. Recently, similar-spirited versions that employ quasi-convexity in the sense
of Morrey have been given in [42, 52] (these have for en the gradient function of dn and depend on
a characterization of so-called gradient Young measures [40, 48]). Corollaries of Theorem 5.2 are
so-called weak-strong lower semicontinuity results for integral functionals in the calculus of variations
and optimal growth theory; cf. [29, 33, 37]. Another immediate corollary would be [1, Proposition C],
which is obtained by activating the footnote in the statement of Theorem 5.2.

Next, we give a lower closure result “without convexity”. As in previous sections, (S, τ) is a
completely regular Suslin space.3

Theorem 5.3 (Lyapunov’s theorem for Young measures) Suppose that (Ω,A, µ) is non-atomic.
Let g := (g1, . . . , gd) : Ω × S → Rd be A × B(S)-measurable and let δ ∈ R(Ω;S) be such that
I|g|(δ) < +∞. Then there exists f ∈ L1(Ω;S) such that Jgi

(f) = Igi
(δ) for i = 1, . . . , d and

f(ω) ∈ supp δ(ω) for a.e. ω in Ω.

Corollary 5.4 Suppose that (Ω,A, µ) is nonatomic. Let δ ∈ R(Ω; Rd) be such that I|·|(δ) < +∞.
Then there exists f ∈ L1(Ω; Rd) such that

∫
Ω
f dµ =

∫
Ω

bar δ dµ and f(ω) ∈ supp δ(ω) for a.e. ω in
Ω.

Here I|·|(δ) :=
∫
Ω
[
∫

Rd |x|δ(ω)(dx)]µ(dω) < +∞. The corollary follows by applying Theorem 5.3 to
S := Rd and gi(ω, x) := xi (i-th coordinate function).
Proof of Theorem 5.3. Denote Γ(ω) := supp δ(ω). By [47, Lemma] we have p(ω) :=

∫
S
(|g(ω, x)|, g(ω, x))δ(ω)(dx) ∈

co {(|g(ω, x)|, g(ω, x)) : x ∈ Γ(ω)} for a.e. ω in Ω. The closed-valued multifunction Γ : Ω → 2S is
measurable in the standard sense [32, III.9, III.10]), because for any open U ⊂ S the set of all ω
with Γ(ω) ∩ U 6= ∅ is precisely {ω ∈ Ω : δ(ω)(U) 6= 0} ∈ A. So by Carathéodory’s theorem and
an obvious application of the implicit measurable selection theorem [32, Theorem III.38] there exist
A-measurable functions α1, . . . , αd+2 : Ω → [0, 1], with

∑d+2
i=1 αi(ω) = 1 for all ω, and A-measurable

selections s1, . . . , sd+2 : Ω → S of Γ such that p(ω) =
∑d+2

i=1 αi(ω)(|g(ω, si(ω))|, g(ω, si(ω))) for a.e.
ω in Ω. Integration over ω in the first component of this identity gives

∫
Ω

∑
i αi|g(·, si(·))| < +∞.

Hence, by an extension of Lyapunov’s theorem [17, Proposition 3.2] (see also [18, 22] for a much
simpler proof), there exists a measurable partition B1, . . . , Bd+2 of Ω such that each g(·, si(·)) is
integrable over Bi and

∫
Ω

∑
i αi(|g(·, si(·))|, g(·, si(·))) =

∑
i

∫
Bi

(|g(·, si(·))|, g(·, si(·))). We define
f ∈ L1(Ω;S) by setting f := si on Bi, i = 1, . . . , d + 2. Then, f is evidently an a.e. selection
of Γ and if we integrate over ω in the last d coordinates of the above identity for p(ω) we ob-
tain

∫
Ω

∑
i αig(·, si(·)) =

∑
i

∫
Bi
g(·, si(·)) =

∫
Ω
g(·, f(·)). This is the desired identity, for the right

hand side equals (Jg1(f), . . . , Jgd
(f)) and by the definition of p(ω) the left hand side is equal to

(Ig1(δ), . . . , Igd
(δ)). QED

The following lower closure result “without convexity” comes from [5]; it subsumes the result
given in [1] and the original “Fatou lemma in several dimensions” that is due to Schmeidler [50]. See
[23] for further generalizations which involve multifunctions with unbounded values and associated
asymptotic correction terms.

Theorem 5.5 (Fatou-Vitali in several dimensions) Let (fn) in L1(Ω; Rd) be such that both a :=
limn

∫
Ω
fn dµ exists and ((f i

n)−))n is uniformly integrable for i = 1, . . . , d. Then there exists f∗ ∈
L1(Ω; Rd) such that

∫
Ω
f∗ dµ ≤ a and f∗(ω) ∈ Lsn{fn(ω)} for a.e. ω in Ω.

Proof. It is easy to see from the conditions that the sequence (fn) is bounded in L1-seminorm.
As usual, (Ω,A, µ) can be decomposed in a nonatomic part and a purely atomic part. The latter
is the union of at most countably many µ-atoms Aj . Since each of the fn is constant a.e. on each
Aj , the desired f∗ follows on the purely atomic part of Ω by the obvious extraction of a diagonal

3Correction: As the theorem stands, S should be supposed metrizable Suslin. Only if one omits the last part of its
statement (involving the support), S can be as stated above. I am grateful to F. Martins-da-Rocha (Paris) for pointing
this out.
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subsequence [5]. So essentially without loss of generality we can assume that (Ω,A, µ) is nonatomic.
Since (εfn

)) is tight by Example 3.5, we can apply Theorem 4.13 with D := N̂, dD := ρ̂, dn := n and
d0 := ∞. Let (εfn′ ) and δ∗ ∈ R(Ω; Rd) be as in that theorem. The pointwise support property for δ∗
in Theorem 4.13 gives δ∗(ω)(L(ω)) = 1 a.e., where L(ω) := Lsm{fm(ω)}. Also, Theorem 4.7, applied
to g(ω, x) := |x| and gi(ω, x, n) := xi, gives I|·|(δ∗) ≤ lim infn

∫
Ω
|fn| < +∞ and

∫
Ω

bar δ∗dµ ≤ a.
Hence, we may invoke Corollary 5.4: there exists f∗ ∈ L1(Ω; Rd) such that

∫
Ω
f∗ dµ =

∫
Ω

bar δ∗ dµ
and f∗(ω) ∈ supp δ∗(ω) ⊂ L(ω) a.e. QED

The above lower closure result can be used efficiently to address a number of existence problems
“without convexity” in optimal control theory; e.g., cf. [6, 18, 22]. A more general approach to
existence without convexity (based on the the extreme point role of Dirac young measures, not
treated here) can be found in [16].

A close relationship exists between the above subject of lower closure without convexity and the
classical denseness of Dirac Young measures (e.g., cf.[59]). The following very general denseness result
was given in [7]:

Theorem 5.6 (denseness of Dirac Young measures) Suppose that (Ω,A, µ) is
nonatomic. Let g := (g1, . . . , gd) : Ω × S → Rd be A × B(S)-measurable and let δ ∈ R(Ω;S) be
such that I|g|(δ) < +∞. Then there exists a sequence (fn) in L0(Ω;S) such that εfn

ρ
=⇒ δ and for

every n both Jgk
(fn) = Igk

(δ), k = 1, . . . , d, and fn(ω) ∈ supp δ(ω) for a.e. ω in Ω.

Proof. Recall from what followed Definition 2.1 that P(S) is metrizable Suslin for Tρ. So the
σ-algebra generated on Ω by δ : Ω → P(S) is countably generated. In conjunction with a well-
known trick [32, p. 78] (see also [54, Appendix]), this shows that there exists a countably gener-
ated sub-σ-algebra A0 of A such that the given δ belongs to R0 := R(Ω,A0;S) and such that
g1, . . . , gd are A0 × B(S)-measurable. By Theorem 4.6 there exists a semimetric d on R0, given
by dR(δ, δ′) :=

∑∞
i=1

∑∞
j=1 2−i−j |

∫
Aj

[
∫

S
ci(x)δ(ω)(dx)]µ(dω) −

∫
Aj

[
∫

S
ci(x)δ′(ω)(dx)]µ(dω)|/µ(Aj).

Define gi,j(ω, x) := 1Aj
(ω)ci(x). For every n ∈ N there exists by Theorem 5.3 fn ∈ L0(Ω;S) such that

Jgi,j (fn) = Igi,j (δ) for all 1 ≤ i ≤ n, 1 ≤ j ≤ n and Jgk
(fn) = Igk

(δ), k = 1, . . . , d and fn ∈ supp δ
a.e. For the sequence (fn) thus created we clearly have dR(εfn , δ) → 0. QED

The following “limiting bang-bang” result, which generalizes [54, 55], serves to underline the power
of the results obtained thus far. This result is also related to Lp-Young measures; cf. [18, 20].

Corollary 5.7 Suppose that (Ω,A, µ) is nonatomic. Let δ ∈ R(Ω; Rd) be such that I|·|(δ) < +∞.
Then there exists a sequence (fn) in L1(Ω; Rd) such that fn

w→ bar δ (weak convergence in L1(Ω; Rd))
and Lsn{fn(ω)} = supp δ(ω) for a.e. ω in Ω.

In particular, let f1, . . . , fr be functions in L0(Ω; Rd) and let α1, . . . , αr be nonnegative functions
in L∞(Ω; R), with

∑r
i=1 αi = 1, and such that

∫
Ω

∑r
i=1 αi|fi|dµ < +∞. Then there exists a sequence

(fn) in L1(Ω; Rd) such that fn
w→

∑r
i=1 αifi and Lsn{fn(ω)} = {f1(ω), . . . , fr(ω)} for a.e. ω in Ω.

Proof. Let ν be the finite measure on (Rd,B(Rd)) defined by ν := [µ⊗δ](Ω×·). Then
∫

Rd |x|ν(dx) <
+∞, so by de la Vallée Poussin’s theorem [35, II.22] there exists h′ : Rd → R+, continuous, convex,
nondecreasing and superlinear, such that

∫
Rd h

′(|x|)ν(dx) < +∞. This amounts to Ih(δ) < +∞ when
we set h(ω, x) := h′(|x|). By Theorem 5.6 there exists a sequence (fm) in L0(Ω; Rd) such that εfm

=⇒
δ, Jh(fm) = Ih(δ and fm ∈ supp δ a.e. In particular, the latter implies Lsn{fn(ω)} ⊂ supp δ(ω) a.e.
by closedness of the support. By the converse part of de la Vallée Poussin’s theorem [35, II.12] and
the Dunford-Pettis criterion [45, IV.2.3], the identity implies that (fm) contains a weakly converging
subsequence (fn). It then is obvious from Theorem 4.7 that fn

w→ bar δ (cf. Example 4.11). Also, by
the support Theorem 4.12 we get supp δ(ω) ⊂ Lsn{fn(ω)} for a.e. ω in Ω. QED

In [18] it has been shown that, following [26], the present approach can also be used to obtain
some rather general results on “functional relaxation” of integral functionals by means of the method
of “Young measure relaxation”. In this way e.g. the principal relaxation result of [36], as improved
in [55], was improved a little further in [18, ch. 9].
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