Extra exercises Analysis in several variables

E.P. van den Ban

Spring 2018

Exercise 1. Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{p}$ be open subsets and let $\pi: U \rightarrow V$ be a C^{k} map which is a surjective submersion. By a local C^{k} section of π we mean a C^{k}-map $s: V_{0} \rightarrow U$ with V_{0} open in U, such that $\pi \circ s=\mathrm{id}_{V_{0}}$.
(a) Let $b \in V$ and $a \in U$ be such that $\pi(a)=b$. Show that there exists an open neighborhood V_{0} of b in V and a local C^{k} section $s: V_{0} \rightarrow U$ such that $s(b)=a$.
(b) Let $f: V \rightarrow \mathbb{R}^{q}$ be a map. Show that f is C^{k} if and only if $f \circ \pi$ is C^{k}.

Exercise 2. Let $A \in \mathrm{M}_{n}(\mathbb{R})$ be a symmetric matrix, i.e., $A_{i j}=A_{j i}$ for all $1 \leq i, j \leq n$.
(a) Show that

$$
\langle A x, y\rangle=\langle x, A y\rangle
$$

for all $x, y \in \mathbb{R}^{n}$.
(b) Consider the C^{∞}-function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=\langle A x, x\rangle$. Determine the total derivative $D f(x) \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, for every $x \in \mathbb{R}^{n}$. Determine the gradient $\operatorname{grad} f(x) \in \mathbb{R}^{n}$ for every $x \in \mathbb{R}^{n}$.
(c) Consider the unit sphere $S=S^{n-1}$ in \mathbb{R}^{n} given by the equation $g(x)=0$, where $g: \mathbb{R}^{n} \rightarrow$ $\mathbb{R},\|x\|^{2}-1$. Show that $\left.f\right|_{S}$ attains a maximal value M at a suitable $x^{0} \in S$.
(d) By using the multiplier method, show that $A x^{0}=M x^{0}$. Thus, M is an eigenvalue for A.
(e) Formulate and prove a similar result with the minimal value m of $\left.f\right|_{S}$.
(f) Show that all eigenvalues of A are contained in $[m, M]$.

Exercise 3.

(a) Let $S_{n}(\mathbb{R})$ denote the set of symmetric $n \times n$-matrices. Show that this set is a linear subspace of $\mathrm{M}_{n}(\mathbb{R})$ which is linearly isomorphic to $\mathbb{R}^{n(n+1) / 2}$.
(b) Let $\mathrm{O}(n)$ be the set of matrices $A \in M_{n}(\mathbb{R})$ such that $A^{\mathrm{T}} A=I$. We consider the map $g: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{S}_{n}(\mathbb{R}), X \mapsto X^{\mathrm{T}} X-I$. Show that the total derivative of g at $A \in \mathrm{M}_{n}(\mathbb{R})$ equals the linear map given by

$$
D g(A): \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{S}_{n}(\mathbb{R}), \quad H \mapsto A^{\mathrm{T}} H+H^{\mathrm{T}} A
$$

Hint: use the definition.
(c) Show that g is a submersion at $I \in \mathrm{O}(n)$.
(d) Show that $\mathrm{O}(n)$ is a submanifold of $\mathrm{M}_{n}(\mathbb{R})$ at the point I. Determine the tangent space $T_{I} \mathrm{O}_{n}(\mathbb{R})$.
(e) Show that for $B \in \mathrm{O}(n)$ the map $L_{B}: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ given by $L_{B}(X)=B X$ is a linear automorphism of $\mathrm{M}_{n}(\mathbb{R})$, which preserves $\mathrm{O}(n)$.
(f) Show that $\mathrm{O}(n)$ is a submanifold of $\mathrm{M}_{n}(\mathbb{R})$. Determine the dimension of this submanifold. Determine the tangent space $T_{A} \mathrm{O}(n)$ for every $A \in \mathrm{O}(n)$.

Exercise 4.

(a) Show that the following result is a particular case of [DK2, Thm. 6.4.5]: Let $B=$ $\prod_{j=1}^{n}\left[a_{j}, b_{j}\right]$ be a block in \mathbb{R}^{n} and $f: B \rightarrow \mathbb{R}$ a continuous function. Then

$$
\int_{B} f(x) d x=\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} f\left(x_{1}, \ldots, x_{n}\right) d x_{n} \ldots d x_{1} .
$$

(b) Write $B=\left[a_{1}, b_{1}\right] \times C$ with C a rectangle in \mathbb{R}^{n-1}. Inspect the proof of [DK2, Thm. 6.4.5] and show that the function

$$
F: x_{1} \mapsto \int_{C} f\left(x_{1}, y\right) d y
$$

is continuous $\left[a_{1}, b_{1}\right] \rightarrow \mathbb{R}$.

Exercise 5. For the purpose of this exercise, by a semi-rectangle in \mathbb{R}^{n} we shall mean a subset R for which there exists an n-dimensional rectangle $B \subset \mathbb{R}^{n}$ such that $\operatorname{int}(B) \subset R \subset B$.
(a) Argue that a semi-rectangle R is Jordan measurable, with volume given by

$$
\operatorname{vol}_{n}(R)=\operatorname{vol}_{n}(\bar{R})
$$

(b) Let $B \subset \mathbb{R}^{n}$ be a rectangle and $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ a partition of B. Show that there exist semi-rectangles R_{1}, \ldots, R_{k} with $R_{j} \subset B_{j}$ and

$$
\sum_{j=1}^{k} 1_{R_{j}}=1_{B}
$$

By a step function on \mathbb{R}^{n} we mean a finite linear combination of functions of the form 1_{R}, with R a semi-rectangle in \mathbb{R}^{n}. The linear space of these step functions is denoted by $\Sigma\left(\mathbb{R}^{n}\right)$.
(c) Let $f: B \rightarrow \mathbb{R}$ be a bounded function. Show that there exist step functions $s_{ \pm}$with

$$
s_{-} \leq f \leq s_{+}, \quad \bar{S}(f, \mathcal{B})=\int s_{-}(x) d x, \quad \underline{S}(f, \mathcal{B})=\int s_{+}(x) d x .
$$

(d) We denote by $\Sigma_{+}(f)$ the set of step functions $s: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f \leq s$. Show that

$$
\overline{\int_{B}} f(x) d x=\inf _{s \in \Sigma_{+}(f)} \int s(x) d x
$$

Give a similar characterisation of the lower integral of f over B.

Exercise 6. We define $\Sigma\left(\mathbb{R}^{n}\right)$ as above.
(a) Let B be a rectangle, and $S \subset \partial B$. Show that 1_{S} is a step function.
(b) Let \mathcal{B} be a partition of B. Let $s: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that
(1) $s\left(\mathbb{R}^{n}\right)$ has finitely many values;
(2) for all $B^{\prime} \in \mathcal{B}, s$ is constant on $\operatorname{int}\left(B^{\prime}\right)$;
(3) $s=0$ outside B.
(c) Let $s \in \Sigma\left(\mathbb{R}^{n}\right)$ vanish outside the rectangle B. Show that there exists a partition \mathcal{B} of B such that the above condition (2) is fulifilled.
(d) If s, t are step functions, show that both $\min (s, t)$ and $\max (s, t)$ are step functions.

Exercise 7. Let $U \subset \mathbb{R}^{n}$ be an open subset. We denote by $\mathcal{J}(U)$ the collection of compact subsets of U which are Jordan measurable.
(a) If $f: U \rightarrow \mathbb{R}$ is absolutely Riemann integrable, show that there exists a unique real number $I \in \mathbb{R}$ such that for every $\epsilon>0$ there exists a $K_{0} \in \mathcal{J}(U)$ such that for all $K \in \mathcal{J}(U)$ with $K \supset K_{0}$ we have

$$
\left|\int_{K} f(x) d x-I\right|<\epsilon
$$

(b) Show that $I=\int_{U} f(x) d x$.

Exercise 8.

(a) Determine the collection of all $s \in \mathbb{R}$ for which the integral

$$
\int_{\mathbb{R}^{2}}(1+\|x\|)^{-s} d x
$$

is absolutely convergent. Hint: use polar coordinates. Prove the correctness of your answer.
(b) Answer the same question for

$$
\int_{\mathbb{R}^{3}}(1+\|x\|)^{-s} d x .
$$

(c) Wat is your guess for the similar integral over \mathbb{R}^{n}, for $n \geq 4$.? We will return to this question at a later stage.

Exercise 9. We consider the cone $C: x_{2}^{2}+x_{3}^{2}=m x_{1}^{2}$, with $m>0$ a constant.
(a) Show that $M:=C \backslash\{0\}$ is a C^{∞} submanifold of dimension 2 of \mathbb{R}^{3}.
(b) Determine the area of the subset M_{h} of M given by

$$
M_{h}=\left\{x \in C \mid 0<x_{1}<h\right\}, \quad(h>0) .
$$

Exercise 10. We consider a C^{1}-function $f:(a, b) \rightarrow(0, \infty)$. Consider the graph G of f in $\mathbb{R}^{2} \simeq \mathbb{R}^{2} \times\{0\} \subset \mathbb{R}^{3}$. Let S be the surface arising from G by rotating G about the x_{1}-axis over all angles from $[0,2 \pi]$.
(a) Guess a formula for the area of S. Explain the heuristics.
(b) Show that S is a C^{1}-submanifold of \mathbb{R}^{3}.
(c) Prove that the conjectured formula is correct.

Exercise 11. Let v_{1}, \ldots, v_{n-1} be $n-1$ vectors in \mathbb{R}^{n}.
(a) Show that $\xi: v \mapsto \operatorname{det}\left(v, v_{1}, v_{2}, \ldots, v_{n-1}\right)$ defines a map in $\operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
(b) Show that there exists a unique vector $v \in \mathbb{R}^{n}$ such that

$$
\xi(u)=\langle u, v\rangle \quad\left(\forall u \in \mathbb{R}^{n}\right) .
$$

The uniquely determined element v of (c) is called the exterior product of v_{1}, \ldots, v_{n-1} and denoted by $v_{1} \times \cdots v_{n-1}$.
(c) Show that the map $\left(v_{1}, \ldots, v_{n-1}\right) \mapsto v_{1} \times \cdots v_{n-1}$ is alternating multilinear $\left(\mathbb{R}^{n}\right)^{\times(n-1)} \rightarrow$ \mathbb{R}^{n}. Furthermore, show that $v_{1} \times \cdots \times v_{n-1} \perp v_{j}$ for every $j=1, \ldots, n-1$. Finally, show that $v_{1} \times \cdots \times v_{n-1}=0$ if and only if v_{1}, \ldots, v_{n-1} are linearly independent.
(d) Show that for $n=3$, the above corresponds to the usual exterior product.

We consider an injective linear map $L: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$. Let $V=L\left(\mathbb{R}^{n}\right)$ and let d_{V} be the Euclidean density on V. Let \mathbf{n} be a unit vector in V^{\perp} such that $\operatorname{det}(\mathbf{n} \mid L)>0$.
(e) Show that for every $v \in \mathbb{R}^{n}$ we have

$$
L^{*}\left(\langle v, \mathbf{n}\rangle d_{V}\right)=\operatorname{det}(v \mid L) \quad v \in \mathbb{R}^{n}
$$

Hint: first show this for $v=\mathbf{n}$.
(f) Show that

$$
L^{*}\left(d_{V}\right)=\left\|L e_{1} \times \cdots \times L e_{n}\right\| \cdot d_{\mathbb{R}^{n-1}}
$$

(g) Show that

$$
\left\|L e_{1} \times \cdots \times L e_{n}\right\|=\sqrt{\operatorname{det}\left(L^{\mathrm{T}} L\right)}
$$

Let now $U \subset \mathbb{R}^{n-1}$ be open and $\varphi: U \rightarrow \mathbb{R}^{n}$ an embedding onto a codimension 1 submanifold M of \mathbb{R}^{n}. Let $\mathbf{n}: M \rightarrow \mathbb{R}^{n}$ be defined by $\mathbf{n}(x) \perp T_{x} M$ and

$$
\operatorname{det}\left(\mathbf{n}(\varphi(y)), D_{1} \varphi(y), \ldots D_{n-1} \varphi(y)\right)>0, \quad(y \in U)
$$

(h) Show that for every vector field $v: M \rightarrow \mathbb{R}^{n}$ we have

$$
\varphi^{*}(\langle v, \mathbf{n}\rangle d x)=\operatorname{det}(v(\varphi(y)) \mid D \varphi(y)) d_{\mathbb{R}^{n-1}} .
$$

