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Exercise 1. Let U ⊂ Rn and V ⊂ Rp be open subsets and let π : U → V be a Ck map which
is a surjective submersion. By a local Ck section of π we mean a Ck-map s : V0 → U with V0

open in U, such that π ◦ s = idV0 .

(a) Let b ∈ V and a ∈ U be such that π(a) = b. Show that there exists an open neighborhood
V0 of b in V and a local Ck section s : V0 → U such that s(b) = a.

(b) Let f : V → Rq be a map. Show that f is Ck if and only if f ◦π is Ck.

Exercise 2. Let A ∈ Mn(R) be a symmetric matrix, i.e., Aij = Aji for all 1 ≤ i, j ≤ n.

(a) Show that
〈Ax, y〉 = 〈x,Ay〉

for all x, y ∈ Rn.

(b) Consider the C∞-function f : Rn → R given by f(x) = 〈Ax, x〉. Determine the total
derivativeDf(x) ∈ Lin(Rn,R), for every x ∈ Rn.Determine the gradient gradf(x) ∈ Rn

for every x ∈ Rn.

(c) Consider the unit sphere S = Sn−1 in Rn given by the equation g(x) = 0, where g : Rn →
R, ‖x‖2 − 1. Show that f |S attains a maximal value M at a suitable x0 ∈ S.

(d) By using the multiplier method, show that Ax0 = Mx0. Thus, M is an eigenvalue for A.

(e) Formulate and prove a similar result with the minimal value m of f |S.

(f) Show that all eigenvalues of A are contained in [m,M ].

Exercise 3.

(a) Let Sn(R) denote the set of symmetric n × n-matrices. Show that this set is a linear
subspace of Mn(R) which is linearly isomorphic to Rn(n+1)/2.
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(b) Let O(n) be the set of matrices A ∈ Mn(R) such that ATA = I. We consider the map
g : Mn(R) → Sn(R), X 7→ XTX − I. Show that the total derivative of g at A ∈ Mn(R)
equals the linear map given by

Dg(A) : Mn(R)→ Sn(R), H 7→ ATH +HTA.

Hint: use the definition.

(c) Show that g is a submersion at I ∈ O(n).

(d) Show that O(n) is a submanifold of Mn(R) at the point I. Determine the tangent space
TIOn(R).

(e) Show that for B ∈ O(n) the map LB : Mn(R) → Mn(R) given by LB(X) = BX is a
linear automorphism of Mn(R), which preserves O(n).

(f) Show that O(n) is a submanifold of Mn(R). Determine the dimension of this submanifold.
Determine the tangent space TAO(n) for every A ∈ O(n).

Exercise 4.

(a) Show that the following result is a particular case of [DK2, Thm. 6.4.5]: Let B =∏n
j=1[aj, bj] be a block in Rn and f : B → R a continuous function. Then∫

B

f(x) dx =

∫ b1

a1

· · ·
∫ bn

an

f(x1, . . . , xn) dxn . . . dx1.

(b) WriteB = [a1, b1]×C with C a rectangle in Rn−1. Inspect the proof of [DK2, Thm. 6.4.5]
and show that the function

F : x1 7→
∫
C

f(x1, y) dy

is continuous [a1, b1]→ R.

Exercise 5. For the purpose of this exercise, by a semi-rectangle in Rn we shall mean a subset R
for which there exists an n-dimensional rectangle B ⊂ Rn such that int(B) ⊂ R ⊂ B.

(a) Argue that a semi-rectangle R is Jordan measurable, with volume given by

voln(R) = voln(R̄).

(b) Let B ⊂ Rn be a rectangle and B = {B1, B2, . . . , Bk} a partition of B. Show that there
exist semi-rectangles R1, . . . , Rk with Rj ⊂ Bj and

k∑
j=1

1Rj
= 1B.
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By a step function on Rn we mean a finite linear combination of functions of the form 1R, with
R a semi-rectangle in Rn. The linear space of these step functions is denoted by Σ(Rn).

(c) Let f : B → R be a bounded function. Show that there exist step functions s± with

s− ≤ f ≤ s+, S(f,B) =

∫
s−(x) dx, S(f,B) =

∫
s+(x) dx.

(d) We denote by Σ+(f) the set of step functions s : Rn → R with f ≤ s. Show that∫
B

f(x) dx = inf
s∈Σ+(f)

∫
s(x) dx.

Give a similar characterisation of the lower integral of f over B.

Exercise 6. We define Σ(Rn) as above.

(a) Let B be a rectangle, and S ⊂ ∂B. Show that 1S is a step function.

(b) Let B be a partition of B. Let s : Rn → R be a function such that

(1) s(Rn) has finitely many values;

(2) for all B′ ∈ B, s is constant on int(B′);

(3) s = 0 outside B.

(c) Let s ∈ Σ(Rn) vanish outside the rectangle B. Show that there exists a partition B of B
such that the above condition (2) is fulifilled.

(d) If s, t are step functions, show that both min(s, t) and max(s, t) are step functions.

Exercise 7. Let U ⊂ Rn be an open subset. We denote by J (U) the collection of compact
subsets of U which are Jordan measurable.

(a) If f : U → R is absolutely Riemann integrable, show that there exists a unique real number
I ∈ R such that for every ε > 0 there exists a K0 ∈ J (U) such that for all K ∈ J (U)
with K ⊃ K0 we have ∣∣∣∣∫

K

f(x) dx− I
∣∣∣∣ < ε.

(b) Show that I =
∫
U
f(x) dx.
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Exercise 8.

(a) Determine the collection of all s ∈ R for which the integral∫
R2

(1 + ‖x‖)−s dx

is absolutely convergent. Hint: use polar coordinates. Prove the correctness of your an-
swer.

(b) Answer the same question for ∫
R3

(1 + ‖x‖)−s dx.

(c) Wat is your guess for the similar integral over Rn, for n ≥ 4. ? We will return to this
question at a later stage.

Exercise 9. We consider the cone C : x2
2 + x2

3 = mx2
1, with m > 0 a constant.

(a) Show that M := C \ {0} is a C∞ submanifold of dimension 2 of R3.

(b) Determine the area of the subset Mh of M given by

Mh = {x ∈ C | 0 < x1 < h}, (h > 0).

Exercise 10. We consider a C1-function f : (a, b) → (0,∞). Consider the graph G of f in
R2 ' R2 × {0} ⊂ R3. Let S be the surface arising from G by rotating G about the x1-axis over
all angles from [0, 2π].

(a) Guess a formula for the area of S. Explain the heuristics.

(b) Show that S is a C1-submanifold of R3.

(c) Prove that the conjectured formula is correct.

Exercise 11. Let v1, . . . , vn−1 be n− 1 vectors in Rn.

(a) Show that ξ : v 7→ det (v, v1, v2, . . . , vn−1) defines a map in Lin(Rn,R).

(b) Show that there exists a unique vector v ∈ Rn such that

ξ(u) = 〈u, v〉 (∀u ∈ Rn).

The uniquely determined element v of (c) is called the exterior product of v1, . . . , vn−1 and
denoted by v1 × · · · vn−1.
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(c) Show that the map (v1, . . . , vn−1) 7→ v1×· · · vn−1 is alternating multilinear (Rn)×(n−1) →
Rn. Furthermore, show that v1×· · ·× vn−1 ⊥ vj for every j = 1, . . . , n− 1. Finally, show
that v1 × · · · × vn−1 = 0 if and only if v1, . . . , vn−1 are linearly independent.

(d) Show that for n = 3, the above corresponds to the usual exterior product.

We consider an injective linear map L : Rn−1 → Rn. Let V = L(Rn) and let dV be the Euclidean
density on V. Let n be a unit vector in V ⊥ such that det (n | L) > 0.

(e) Show that for every v ∈ Rn we have

L∗(〈v,n〉 dV ) = det (v | L) v ∈ Rn

Hint: first show this for v = n.

(f) Show that
L∗(dV ) = ‖Le1 × · · · × Len‖ · dRn−1 .

(g) Show that
‖Le1 × · · · × Len‖ =

√
det (LTL).

Let now U ⊂ Rn−1 be open and ϕ : U → Rn an embedding onto a codimension 1 submanifold
M of Rn. Let n : M → Rn be defined by n(x) ⊥ TxM and

det (n(ϕ(y)), D1ϕ(y), . . . Dn−1ϕ(y)) > 0, (y ∈ U).

(h) Show that for every vector field v : M → Rn we have

ϕ∗(〈v,n〉 dx) = det (v(ϕ(y)) | Dϕ(y)) dRn−1 .
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