Extra exercises Analysis in several variables

E.P. van den Ban

Spring 2019

Exercise 1.

(a) Show that $\mathrm{GL}(n, \mathbb{R}))$ is dense in $\mathrm{M}(n, \mathbb{R}):=\mathrm{M}(n \times n, \mathbb{R})$. Hint: let $A \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ and consider the function $t \mapsto \operatorname{det}(A+t I)$.
(b) We consider the function $R: \mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
R(H)=\operatorname{det}(I+H)-1-\operatorname{trace}(H)
$$

Show that there exists a $C>0$ such that $|R(H)| \leq C\|H\|^{2}$ for all $H \in \mathrm{M}(n, \mathbb{R})$ with $\|H\| \leq 1$.
(c) Show that the function $f: \mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R}$ given by $f(X)=\operatorname{det} X$ is differentiable at I. Show that the associated derivative $D f(I)$ is equal to the linear map $\mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
D f(I): H \mapsto \operatorname{trace}(H)
$$

(d) If $A \in \operatorname{GL}(n, \mathbb{R})$ show that f is differentiable at A and that

$$
D f(A)(H)=\operatorname{tr}\left(A^{\#} H\right), \quad(H \in \mathrm{M}(n, \mathbb{R})) .
$$

Here $A^{\#}$ is the complementary matrix which appears in Cramer's rule.
(e) Show that the result of (d) is true for any $A \in \mathrm{M}(n, \mathbb{R})$.

Exercise 2.

(a) Let $\beta: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{N}$ be a bilinear map, i.e., $\beta(\cdot, v) \in \operatorname{Lin}\left(\mathbb{R}^{p}, \mathbb{R}^{N}\right)$ and $\beta(u, \cdot) \in$ $\operatorname{Lin}\left(\mathbb{R}^{q}, \mathbb{R}^{N}\right)$ for all $u \in \mathbb{R}^{p}$ and $v \in \mathbb{R}^{q}$. Show that there exists a constant $C>0$ such that

$$
\|\beta(u, v)\| \leq C\|u\|\|v\|
$$

for all $u \in \mathbb{R}^{p}$ and $v \in \mathbb{R}^{q}$.
(b) Let $\mu: \mathrm{M}(n, \mathbb{R}) \times \mathrm{M}(n, \mathbb{R}) \rightarrow \mathrm{M}(n, \mathbb{R})$ be a bilinear map, let $U \subset \mathrm{M}(n, \mathbb{R})$ be open, and let $A \in U$. Let $f, g: U \rightarrow \mathrm{M}(n, \mathbb{R})$ be maps which are differentiable at A. Show that the map

$$
M: U \rightarrow \mathrm{M}(n, \mathbb{R}), X \mapsto \mu(f(X), g(X))
$$

is differentiable at A, with derivative given by

$$
D M(A)(H)=\mu(D f(A)(H), g(A))+\mu(f(A), D g(A)(H)), \quad(H \in \mathrm{M}(n, \mathbb{R}))
$$

(c) We consider $\mathrm{GL}(n, \mathbb{R}):=\{X \in \mathrm{M}(n, \mathbb{R}) \mid \operatorname{det}(X) \neq 0\}$. Show that $\mathrm{GL}(n, \mathbb{R})$ is an open subset of $\mathrm{M}(n, \mathbb{R})$.
(d) Show that the map $F: \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R}), \quad X \mapsto X^{-1}$ is C^{1}.
(e) For each $A \in \operatorname{GL}(n, \mathbb{R})$ show that the map F is differentiable at A, with derivative $D F(A): \mathrm{M}(n, \mathbb{R}) \rightarrow \mathrm{M}(n, \mathbb{R})$ given by

$$
D F(A) H=-A^{-1} H A^{-1} .
$$

Hint: use the equality $F(X) X=I$.

Exercise 3. Let $U \subset \mathbb{R}^{n}$ be an open subset.
(a) If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, and attains a local minimum at a point $x^{0} \in U$, show that $D g\left(x^{0}\right)=0$. Hint: consider partial derivatives.

We consider a differentiable map $\Phi: U \rightarrow \mathbb{R}^{n}$ such that $D \Phi(x)$ is invertible for every $x \in U$. Let $a \in U$ and put $b:=\Phi(a)$.
(b) Show that there exists a constant $C>0$ such that $\|D \Phi(a) v\| \geq C\|v\|$ for all $v \in \mathbb{R}^{n}$.
(c) Show that there exists a $\delta>0$ such that $\bar{B}(a ; \delta) \subset U$ and

$$
\|\Phi(x)-b\| \geq \frac{2}{3} C\|x-a\|
$$

for all $x \in \bar{B}(a ; \delta)$ (the bar indicates that the closed ball is taken).
For $y \in B\left(b ; \frac{1}{3} C \delta\right)$ we consider the function

$$
f_{y}: \bar{B}(a ; \delta) \rightarrow \mathbb{R}, x \mapsto\|\Phi(x)-y\|^{2}
$$

(d) Show that the function f_{y} attains a minimum value $m(y)$ at a point $x(y) \in \bar{B}(a ; \delta)$.
(e) Show that $\sqrt{m(y)}<\frac{1}{3} C \delta$ and that $x(y) \in B(a ; \delta)$.
(f) Show that $\Phi(x(y))=y$.
(g) By using the previous items, prove that $\Phi(U)$ is open.

Exercise 4. Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{p}$ be open subsets and let $\pi: U \rightarrow V$ be a C^{k} map which is a surjective submersion. By a local C^{k} section of π we mean a C^{k}-map $s: V_{0} \rightarrow U$ with V_{0} open in U, such that $\pi_{\circ} s=\mathrm{id}_{V_{0}}$.
(a) Let $b \in V$ and $a \in U$ be such that $\pi(a)=b$. Show that there exists an open neighborhood V_{0} of b in V and a local C^{k} section $s: V_{0} \rightarrow U$ such that $s(b)=a$.
(b) Let $f: V \rightarrow \mathbb{R}^{q}$ be a map. Show that f is C^{k} if and only if $f \circ \pi$ is C^{k}.

Exercise 5. We consider the determinant map $f: \mathrm{M}(n \times n, \mathbb{R}) \rightarrow \mathbb{R}, X \mapsto \operatorname{det} X$.
(a) Show that the set $\mathrm{SL}(n, \mathbb{R}):=f^{-1}(\{1\})$ is a subgroup of $\mathrm{GL}(n, \mathbb{R})$.
(b) Show that $\mathrm{SL}(n, \mathbb{R})$ is a C^{∞} submanifold of $\mathrm{M}(n \times n, \mathbb{R})$ at its point I.
(c) Let now $A \in \operatorname{SL}(n, \mathbb{R})$. Show that the map $L_{A}: \mathrm{M}(n \times n, \mathbb{R}) \rightarrow \mathrm{M}(n \times n, \mathbb{R}), X \mapsto A X$ is a C^{∞} diffeomorphism.
(d) Show that $\mathrm{SL}(n, \mathbb{R})$ is a C^{∞} submanifold of $\mathrm{M}(n \times n, \mathbb{R})$. What is its dimension?

Exercise 6.

(a) Let $\mathrm{S}_{n}(\mathbb{R})$ denote the set of symmetric $n \times n$-matrices. Show that this set is a linear subspace of $\mathrm{M}_{n}(\mathbb{R})$ which is linearly isomorphic to $\mathbb{R}^{n(n+1) / 2}$.
(b) Let $\mathrm{O}(n)$ be the set of matrices $A \in M_{n}(\mathbb{R})$ such that $A^{\mathrm{T}} A=I$. We consider the map $g: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{S}_{n}(\mathbb{R}), X \mapsto X^{\mathrm{T}} X-I$. Show that the total derivative of g at $A \in \mathrm{M}_{n}(\mathbb{R})$ equals the linear map given by

$$
D g(A): \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{S}_{n}(\mathbb{R}), \quad H \mapsto A^{\mathrm{T}} H+H^{\mathrm{T}} A
$$

Hint: use the definition.
(c) Show that g is a submersion at $I \in \mathrm{O}(n)$.
(d) Show that $\mathrm{O}(n)$ is a submanifold of $\mathrm{M}_{n}(\mathbb{R})$ at the point I. Determine the tangent space $T_{I} \mathrm{O}_{n}(\mathbb{R})$.
(e) Show that for $B \in \mathrm{O}(n)$ the map $L_{B}: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ given by $L_{B}(X)=B X$ is a linear automorphism of $\mathrm{M}_{n}(\mathbb{R})$, which preserves $\mathrm{O}(n)$.
(f) Show that $\mathrm{O}(n)$ is a submanifold of $\mathrm{M}_{n}(\mathbb{R})$. Determine the dimension of this submanifold. Determine the tangent space $T_{A} \mathrm{O}(n)$ for every $A \in \mathrm{O}(n)$.

Exercise 7. Let $A \in \mathrm{M}_{n}(\mathbb{R})$ be a symmetric matrix, i.e., $A_{i j}=A_{j i}$ for all $1 \leq i, j \leq n$.
(a) Show that

$$
\langle A x, y\rangle=\langle x, A y\rangle
$$

for all $x, y \in \mathbb{R}^{n}$.
(b) Consider the C^{∞}-function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=\langle A x, x\rangle$. Determine the total derivative $D f(x) \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, for every $x \in \mathbb{R}^{n}$. Determine the gradient $\operatorname{grad} f(x) \in \mathbb{R}^{n}$ for every $x \in \mathbb{R}^{n}$.
(c) Consider the unit sphere $S=S^{n-1}$ in \mathbb{R}^{n} given by the equation $g(x)=0$, where $g: \mathbb{R}^{n} \rightarrow$ $\mathbb{R},\|x\|^{2}-1$. Show that $\left.f\right|_{S}$ attains a maximal value M at a suitable $x^{0} \in S$.
(d) By using the multiplier method, show that $A x^{0}=M x^{0}$. Thus, M is an eigenvalue for A.
(e) Formulate and prove a similar result with the minimal value m of $\left.f\right|_{S}$.
(f) Show that all eigenvalues of A are contained in $[m, M]$.

Exercise 8. In this exercise we assume that $M \subset \mathbb{R}^{m}$ and $N \subset \mathbb{R}^{n}$ are C^{k} submanifolds of dimensions d and e, respectively. In addition, we assume that $f: M \rightarrow N$ is a C^{k} map, that $a \in M$ and $b=f(a) \in N$. Here we do not assume that f is defined on an neighborhood of M in \mathbb{R}^{m}.
(a) Let I be an open interval in \mathbb{R} and $\gamma: I \rightarrow M$ a C^{1} curve (just differentiable would be enough). Show that $f \circ \gamma: I \rightarrow N$ is a C^{1}-curve.
(b) (U, κ) be a chart of M with $a \in U$. Assume $0 \in I$ and let $\gamma_{1}, \gamma_{2}: I \rightarrow M$ be two C^{1}-curves such that $\gamma_{j}(0)=a$, for $j=1,2$. Show that $\kappa \circ \gamma_{j}$ define C^{1} curves with domain a suitable open interval containing 0 . Furthermore, show that

$$
\gamma_{1}^{\prime}(0)=\gamma_{2}^{\prime}(0) \Longleftrightarrow\left(\kappa \circ \gamma_{1}\right)^{\prime}(0)=\left(\kappa \circ \gamma_{2}\right)^{\prime}(0)
$$

(c) Show that there exists a unique map $L: T_{a} M \rightarrow T_{b} N$ such that

$$
L\left(\gamma^{\prime}(0)\right)=(f \circ \gamma)^{\prime}(0)
$$

for every C^{1}-curve $\gamma: I \rightarrow M$ with $\gamma(0)=a$.
(d) Let (V, λ) be a chart of N with $b \in V$ and (U, κ) a chart of M with $a \in U$ and $f(U) \subset V$. Argue that the following diagram makes sense and commutes:

$$
\begin{array}{rlll}
T_{a} M & \xrightarrow{L} & T_{b} N \\
{ }_{D\left(\kappa^{-1}\right)\left(a^{\prime}\right) \uparrow} & & \uparrow_{D\left(\lambda^{-1}\right)\left(b^{\prime}\right)} \\
\mathbb{R}^{d} & \xrightarrow{L^{\prime}} & \mathbb{R}^{e}
\end{array}
$$

Here we have written $a^{\prime}=\kappa(a), b^{\prime}=\lambda(b)$ and $L^{\prime}=D\left(\lambda \circ f \circ \kappa^{-1}\right)\left(a^{\prime}\right)$.
(e) Show that the map L in (c) is linear. We will denote it by $T_{a} f$ and call it the tangent map of f at a.
(f) Let $g: N \rightarrow R$ be a C^{k} map from N to a C^{k} submanifold R of \mathbb{R}^{r}. Show that $g \circ f: M \rightarrow$ R is C^{k} and that

$$
T_{a}(g \circ f)=T_{b} g \circ T_{a} f
$$

This formula is known as the chain rule for tangent maps.

Exercise 9.

(a) Show that the following result is a particular case of [DK2, Thm. 6.4.5]: Let $B=$ $\prod_{j=1}^{n}\left[a_{j}, b_{j}\right]$ be a block in \mathbb{R}^{n} and $f: B \rightarrow \mathbb{R}$ a continuous function. Then

$$
\int_{B} f(x) d x=\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} f\left(x_{1}, \ldots, x_{n}\right) d x_{n} \ldots d x_{1} .
$$

(b) Write $B=\left[a_{1}, b_{1}\right] \times C$ with C a rectangle in \mathbb{R}^{n-1}. Inspect the proof of [DK2, Thm. 6.4.5] and show that the function

$$
F: x_{1} \mapsto \int_{C} f\left(x_{1}, y\right) d y
$$

is continuous $\left[a_{1}, b_{1}\right] \rightarrow \mathbb{R}$.

Exercise 10. Let $A \subset \mathbb{R}^{n}$ be a bounded set. Prove that the following assertions are equivalent.
(a) the set A is (Jordan) negligable.
(b) for every $\epsilon>0$ there exists a finite collection of rectangles R_{1}, \ldots, R_{k} such that

$$
A \subset \cup_{j=1}^{k} R_{j} \quad \text { and } \quad \sum_{j=1}^{n} \operatorname{vol}_{n}\left(R_{j}\right)<\epsilon
$$

(c) for every $\epsilon>0$ there exists a finite collection of rectangles R_{1}, \ldots, R_{k} such that

$$
A \subset \cup_{j=1}^{k} \operatorname{int}\left(R_{j}\right) \quad \text { and } \quad \sum_{j=1}^{n} \operatorname{vol}_{n}\left(R_{j}\right)<\epsilon
$$

Exercise 11. For the purpose of this exercise, by a semi-rectangle in \mathbb{R}^{n} we shall mean a subset R for which there exists an n-dimensional rectangle $B \subset \mathbb{R}^{n}$ such that $\operatorname{int}(B) \subset R \subset B$.
(a) Argue that a semi-rectangle R is Jordan measurable, with volume given by

$$
\operatorname{vol}_{n}(R)=\operatorname{vol}_{n}(\bar{R}) .
$$

(b) Let $B \subset \mathbb{R}^{n}$ be a rectangle and $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ a partition of B. Show that there exist semi-rectangles R_{1}, \ldots, R_{k} with $R_{j} \subset B_{j}$ and

$$
\sum_{j=1}^{k} 1_{R_{j}}=1_{B}
$$

By a step function on \mathbb{R}^{n} we mean a finite linear combination of functions of the form 1_{R}, with R a semi-rectangle in \mathbb{R}^{n}. The linear space of these step functions is denoted by $\Sigma\left(\mathbb{R}^{n}\right)$.
(c) Let $f: B \rightarrow \mathbb{R}$ be a bounded function. Show that there exist step functions $s_{ \pm}$with

$$
s_{-} \leq f \leq s_{+}, \quad \bar{S}(f, \mathcal{B})=\int s_{+}(x) d x, \quad \underline{S}(f, \mathcal{B})=\int s_{-}(x) d x .
$$

(d) We denote by $\Sigma_{+}(f)$ the set of step functions $s: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f \leq s$. Show that

$$
\overline{\int_{B}} f(x) d x=\inf _{s \in \Sigma_{+}(f)} \int s(x) d x .
$$

Give a similar characterisation of the lower integral of f over B.
Exercise 12. We define $\Sigma\left(\mathbb{R}^{n}\right)$ as above.
(a) Let B be a rectangle, and $S \subset \partial B$. Show that 1_{S} is a step function.
(b) Let \mathcal{B} be a partition of B. Let $s: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that
(1) $s\left(\mathbb{R}^{n}\right)$ has finitely many values;
(2) for all $B^{\prime} \in \mathcal{B}, s$ is constant on $\operatorname{int}\left(B^{\prime}\right)$;
(3) $s=0$ outside B.
(c) Let $s \in \Sigma\left(\mathbb{R}^{n}\right)$ vanish outside the rectangle B. Show that there exists a partition \mathcal{B} of B such that the above condition (2) is fulifilled.
(d) If s, t are step functions, show that both $\min (s, t)$ and $\max (s, t)$ are step functions.

Exercise 13. Let $U \subset \mathbb{R}^{n}$ be an open subset. We denote by $\mathcal{J}(U)$ the collection of compact subsets of U which are Jordan measurable.
(a) If $f: U \rightarrow \mathbb{R}$ is absolutely Riemann integrable, show that there exists a unique real number $I \in \mathbb{R}$ such that for every $\epsilon>0$ there exists a $K_{0} \in \mathcal{J}(U)$ such that for all $K \in \mathcal{J}(U)$ with $K \supset K_{0}$ we have

$$
\left|\int_{K} f(x) d x-I\right|<\epsilon
$$

(b) Show that $I=\int_{U} f(x) d x$.

Exercise 14.

(a) Determine the collection of all $s \in \mathbb{R}$ for which the integral

$$
\int_{\mathbb{R}^{2}}(1+\|x\|)^{-s} d x
$$

is absolutely convergent. Hint: use polar coordinates. Prove the correctness of your answer.
(b) Answer the same question for

$$
\int_{\mathbb{R}^{3}}(1+\|x\|)^{-s} d x .
$$

(c) Wat is your guess for the similar integral over \mathbb{R}^{n}, for $n \geq 4$.? We will return to this question at a later stage.

Exercise 15. We consider the cone $C: x_{2}^{2}+x_{3}^{2}=m x_{1}^{2}$, with $m>0$ a constant.
(a) Show that $M:=C \backslash\{0\}$ is a C^{∞} submanifold of dimension 2 of \mathbb{R}^{3}.
(b) Determine the area of the subset M_{h} of M given by

$$
M_{h}=\left\{x \in C \mid 0<x_{1}<h\right\}, \quad(h>0) .
$$

Exercise 16. We consider a C^{1}-function $f:(a, b) \rightarrow(0, \infty)$. Consider the graph G of f in $\mathbb{R}^{2} \simeq \mathbb{R}^{2} \times\{0\} \subset \mathbb{R}^{3}$. Let S be the surface arising from G by rotating G about the x_{1}-axis over all angles from $[0,2 \pi]$.
(a) Guess a formula for the area of S. Explain the heuristics.
(b) Show that S is a C^{1}-submanifold of \mathbb{R}^{3}.
(c) Prove that the conjectured formula is correct.

Exercise 17. Let v_{1}, \ldots, v_{n-1} be $n-1$ vectors in \mathbb{R}^{n}.
(a) Show that $\xi: v \mapsto \operatorname{det}\left(v, v_{1}, v_{2}, \ldots, v_{n-1}\right)$ defines a map in $\operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
(b) Show that there exists a unique vector $v \in \mathbb{R}^{n}$ such that

$$
\xi(u)=\langle u, v\rangle \quad\left(\forall u \in \mathbb{R}^{n}\right) .
$$

The uniquely determined element v of (c) is called the exterior product of v_{1}, \ldots, v_{n-1} and denoted by $v_{1} \times \cdots v_{n-1}$.
(c) Show that the map $\left(v_{1}, \ldots, v_{n-1}\right) \mapsto v_{1} \times \cdots v_{n-1}$ is alternating multilinear $\left(\mathbb{R}^{n}\right)^{\times(n-1)} \rightarrow$ \mathbb{R}^{n}. Furthermore, show that $v_{1} \times \cdots \times v_{n-1} \perp v_{j}$ for every $j=1, \ldots, n-1$. Finally, show that $v_{1} \times \cdots \times v_{n-1}=0$ if and only if v_{1}, \ldots, v_{n-1} are linearly independent.
(d) Show that for $n=3$, the above corresponds to the usual exterior product.

We consider an injective linear map $L: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$. Let $V=L\left(\mathbb{R}^{n}\right)$ and let d_{V} be the Euclidean density on V. Let \mathbf{n} be a unit vector in V^{\perp} such that $\operatorname{det}(\mathbf{n} \mid L)>0$.
(e) Show that for every $v \in \mathbb{R}^{n}$ we have

$$
L^{*}\left(\langle v, \mathbf{n}\rangle d_{V}\right)=\operatorname{det}(v \mid L) \quad v \in \mathbb{R}^{n}
$$

Hint: first show this for $v=\mathbf{n}$.
(f) Show that

$$
L^{*}\left(d_{V}\right)=\left\|L e_{1} \times \cdots \times L e_{n}\right\| \cdot d_{\mathbb{R}^{n-1}}
$$

(g) Show that

$$
\left\|L e_{1} \times \cdots \times L e_{n}\right\|=\sqrt{\operatorname{det}\left(L^{\mathrm{T}} L\right)}
$$

Let now $U \subset \mathbb{R}^{n-1}$ be open and $\varphi: U \rightarrow \mathbb{R}^{n}$ an embedding onto a codimension 1 submanifold M of \mathbb{R}^{n}. Let $\mathbf{n}: M \rightarrow \mathbb{R}^{n}$ be defined by $\mathbf{n}(x) \perp T_{x} M$ and

$$
\operatorname{det}\left(\mathbf{n}(\varphi(y)), D_{1} \varphi(y), \ldots D_{n-1} \varphi(y)\right)>0, \quad(y \in U)
$$

(h) Show that for every vector field $v: M \rightarrow \mathbb{R}^{n}$ we have

$$
\varphi^{*}(\langle v, \mathbf{n}\rangle d x)=\operatorname{det}(v(\varphi(y)) \mid D \varphi(y)) d_{\mathbb{R}^{n-1}} .
$$

Exercise 18. Let e_{1}, \ldots, e_{n} be the standardbasis of \mathbb{R}^{n}. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a bijective linear map, and put $v_{j}=L e_{j}$.
(a) Show that the image of $[0,1]^{n}$ under L equals the parallelepiped spanned by v_{1}, \ldots, v_{n}, defined by

$$
P\left(v_{1}, \ldots, v_{n}\right)=\left\{x \in \mathbb{R}^{n} \mid \exists\left(t_{1}, \ldots, t_{n} \in[0,1]\right): x=\sum_{j=1}^{n} t_{j} v_{j}\right\} .
$$

(b) Show that $P\left(v_{1}, \ldots, v_{n}\right)$ is Jordan measurable in \mathbb{R}^{n} with volume given by

$$
\operatorname{vol}_{n}\left(P\left(e_{1}, \ldots, e_{n}\right)\right)=\operatorname{det}(L)
$$

(c) Is (b) still valid if L is not bijective?

Exercise 19. Let $V \subset \mathbb{R}^{n}$ be open and let $B_{c}(V)$ be the space of bounded functions $f: V \rightarrow$ \mathbb{R} with supp f compact and contained in V. Let $f \in B_{c}(V)$ and let $\mathcal{F}_{+}(f, V)$ be the space of functions $g \in C_{c}(V)$ with $g \geq f$.
(a) Show that

$$
\int_{\mathbb{R}^{n}} f(y) d y=\inf _{g \in \mathcal{F}+(f, V)} \int_{\mathbb{R}^{n}} g(y) d y .
$$

Let $\Phi: U \rightarrow V$ be a diffeomorphism between an open subset $U \subset \mathbb{R}^{n}$ and V. Given a bounded function $g: V \rightarrow \mathbb{R}$ with compact support we define $\Phi^{\#}(g): U \rightarrow \mathbb{R}$ by

$$
\Phi^{\#}(g)(x)=g(\Phi(x))|\operatorname{det} D \Phi(x)| .
$$

(b) Show that $\Phi^{\#}$ is a bijective linear map from $B_{c}(V)$ onto $B_{c}(U)$.
(c) Show that $\Phi^{\#}$ maps $\mathcal{F}_{+}(f, V)$ bijectively onto $\mathcal{F}_{+}\left(\Phi^{\#}(f), U\right)$.
(d) Show that

$$
\bar{\int}_{\mathbb{R}^{n}} f(y) d y=\bar{\int}_{\mathbb{R}^{n}} f(\Phi(x))|\operatorname{det} D \Phi(x)| d x .
$$

Exercise 20. Let U and V be open subsets of \mathbb{R}^{n} with closures \bar{U} and \bar{V} which are compact Jordan measurable in \mathbb{R}^{n}.
(a) Suppose that $f: \bar{V} \rightarrow \mathbb{R}$ is continuous. Show that f is Riemann integrable over \bar{V} and that f is absolutely Riemann integrable over V with integral

$$
\int_{V} f(x) d x=\int_{\bar{V}} f(x) d x .
$$

(b) Let $\Phi: U \rightarrow V$ be a C^{1}-diffeomorphism such that both Φ and $D \Phi$ extend continuously to \bar{U}. Show that for every continuous function $f: \bar{V} \rightarrow \mathbb{R}^{n}$ one has that $(f \circ \Phi)|\operatorname{det} D \Phi|$ is Riemann integrable over \bar{U} in the usual sense, and that

$$
\int_{\bar{V}} f(x) d x=\int_{\bar{U}} f(\Phi(y))|\operatorname{det} D \Phi(y)| d y .
$$

(c) Use (a), (b) and substitution of variables to show that for every continuous function f : $\mathbb{R}^{2} \rightarrow \mathbb{R}$ and all $R>0$ one has

$$
\int_{\bar{D}(0 ; R)} f(x) d x=\int_{0}^{2 \pi} \int_{0}^{R} f(r \cos \varphi, r \sin \varphi) r d r d \varphi
$$

