Exercise HW1

(a) Let $\beta : \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^N$ be a bilinear map, i.e., $\beta(\cdot, v) \in \text{Lin}(\mathbb{R}^p, \mathbb{R}^N)$ and $\beta(u, \cdot) \in \text{Lin}(\mathbb{R}^q, \mathbb{R}^N)$ for all $u \in \mathbb{R}^p$ and $v \in \mathbb{R}^q$. Show that there exists a constant C > 0 such that

$$\|\boldsymbol{\beta}(\boldsymbol{u},\boldsymbol{v})\| \leq C \|\boldsymbol{u}\| \|\boldsymbol{v}\|$$

for all $u \in \mathbb{R}^p$ and $v \in \mathbb{R}^q$.

(b) Let µ : Mat(n, ℝ) × Mat(n, ℝ) → Mat(n, ℝ) be a bilinear map, let U ⊂ Mat(n, ℝ) be open, and let A ∈ U. Let f : U → Mat(n, ℝ) be a map which is (totally) differentiable at A. Show that the map

$$M: U \to \operatorname{Mat}(n, \mathbb{R}), X \mapsto \mu(f(X), X)$$

is (totally) differentiable at A, with derivative given by

$$DM(A)(H) = \mu(Df(A)(H), A) + \mu(f(A), H), \quad (H \in \operatorname{Mat}(n, \mathbb{R})).$$

Hint: consider M(A + H) - M(A), use the definition of (total) differentiability and apply (a) to obtain certain necessary estimates.

We consider $GL(n, \mathbb{R}) := \{X \in Mat(n, \mathbb{R}) \mid det(X) \neq 0\}$. This is set open in $Mat(n, \mathbb{R})$ since it is the preimage under the continuous function det : $Mat(n, \mathbb{R}) \to \mathbb{R}$ of the open subset $\mathbb{R} \setminus \{0\}$ of \mathbb{R} .

- (c) Show that the map $F : \operatorname{GL}(n, \mathbb{R}) \to \operatorname{GL}(n, \mathbb{R}), \ X \mapsto X^{-1}$ is C^1 .
- (d) For each $A \in GL(n,\mathbb{R})$ show that the map *F* is (totally) differentiable at *A*, with derivative $DF(A) : Mat(n,\mathbb{R}) \to Mat(n,\mathbb{R})$ given by

$$DF(A)H = -A^{-1}HA^{-1}.$$

Hint: use the equality F(X)X = I and apply (b).