Exercise HW3

Let $p, q, n \geq 1$ be positive integers, such that $n=p+q$. Let $a \in \mathbb{R}^{n}$. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a C^{1}-function such that $g(a)=0$ and $\operatorname{Dg}(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is surjective. Using the identification $\mathbb{R}^{p} \simeq \mathbb{R}^{p} \times\{0\} \subset \mathbb{R}^{n}$ we will view $\operatorname{Dg}(a)$ as a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with image \mathbb{R}^{p}.
(a) Show that there exist indices $j_{1}<\ldots<j_{p}$ such that $\operatorname{Dg}(a)\left(e_{j_{k}}\right)$, for $k=1, \ldots, p$, span \mathbb{R}^{p}.

After a permutation of coordinates in \mathbb{R}^{n} we may as well assume that $j_{k}=k$, for $1 \leq k \leq p$. We then define the map $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\Phi(x)=\left(g(x), x_{p+1}-a_{p+1}, \ldots, x_{n}-a_{n}\right)^{\mathrm{T}}
$$

where the superscript T indicates that the transposed of the row vector has been taken.
(b) Show that the Jacobian matrix of Φ at a takes the form

$$
\operatorname{mat} D \Phi(a)=\left(\begin{array}{cc}
D^{\prime} g(a) & D^{\prime \prime} g(a) \\
0 & I_{q}
\end{array}\right)
$$

Here $D^{\prime} g(a)$ stands for the matrix consisting of the first p columns of the Jacobian matrix mat $D g(a)$, and $D^{\prime \prime} g(a)$ stands for the matrix consisting of the remaining q columns of mat $D g(a)$. Finally, I_{q} stands for the $q \times q$ identity matrix.
(c) Show that there exists an open neighborhood U of a in \mathbb{R}^{n} such that Φ maps U diffeomorphically onto an open subset V of \mathbb{R}^{n}.
(d) Let $S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x)=g_{2}(x)=\cdots=g_{p}(x)=0\right\}$. Show that $\Phi(a)=0$ and that

$$
\Phi(S \cap U)=V \cap\left(\{0\} \times \mathbb{R}^{q}\right)
$$

Now assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a differentiable function such that $f(a) \leq f(x)$ for all $x \in S$. Let $\Psi: V \rightarrow U$ be the inverse of Φ.
(e) Show that $D_{j}(f \circ \Psi)(0)=0$ for $j \geq p+1$.
(f) Show that $D \Psi(0)\left(\{0\} \times \mathbb{R}^{q}\right)=\operatorname{ker} D g(a)$.
(g) Show that $D f(a)=0$ on $\operatorname{ker} D g(a)$.

