Exercise HW3

Let $p,q,n \ge 1$ be positive integers, such that n = p + q. Let $a \in \mathbb{R}^n$. Let $g : \mathbb{R}^n \to \mathbb{R}^p$ be a C^1 -function such that g(a) = 0 and $Dg(a) : \mathbb{R}^n \to \mathbb{R}^p$ is surjective. Using the identification $\mathbb{R}^p \simeq \mathbb{R}^p \times \{0\} \subset \mathbb{R}^n$ we will view Dg(a) as a linear map $\mathbb{R}^n \to \mathbb{R}^n$ with image \mathbb{R}^p .

(a) Show that there exist indices $j_1 < ... < j_p$ such that $Dg(a)(e_{j_k})$, for k = 1, ..., p, span \mathbb{R}^p .

After a permutation of coordinates in \mathbb{R}^n we may as well assume that $j_k = k$, for $1 \le k \le p$. We then define the map $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ by

$$\Phi(x) = (g(x), x_{p+1} - a_{p+1}, \dots, x_n - a_n)^{\mathrm{T}},$$

where the superscript T indicates that the transposed of the row vector has been taken.

(b) Show that the Jacobian matrix of Φ at *a* takes the form

$$\operatorname{mat} D\Phi(a) = \left(\begin{array}{cc} D'g(a) & D''g(a) \\ 0 & I_q \end{array}\right)$$

Here D'g(a) stands for the matrix consisting of the first p columns of the Jacobian matrix matDg(a), and D''g(a) stands for the matrix consisting of the remaining q columns of matDg(a). Finally, I_q stands for the $q \times q$ identity matrix.

- (c) Show that there exists an open neighborhood U of a in \mathbb{R}^n such that Φ maps U diffeomorphically onto an open subset V of \mathbb{R}^n .
- (d) Let $S := \{x \in \mathbb{R}^n \mid g_1(x) = g_2(x) = \dots = g_p(x) = 0\}$. Show that $\Phi(a) = 0$ and that $\Phi(S \cap U) = V \cap (\{0\} \times \mathbb{R}^q).$

Now assume that $f : \mathbb{R}^n \to \mathbb{R}$ is a differentiable function such that $f(a) \le f(x)$ for all $x \in S$. Let $\Psi : V \to U$ be the inverse of Φ .

- (e) Show that $D_i(f \circ \Psi)(0) = 0$ for $j \ge p+1$.
- (f) Show that $D\Psi(0)(\{0\} \times \mathbb{R}^q) = \ker Dg(a)$.
- (g) Show that Df(a) = 0 on kerDg(a).