Exercise HW5

Let $n \ge 1$. In this exercise we will investigate absolute integrability of the function

$$f_s: \mathbb{R}^n \to \mathbb{R}, \ x \mapsto (1 + \|x\|)^s$$

for $s \in \mathbb{R}$.

(a) For r > 0 show that the map $\Psi : x \mapsto rx$ is a diffeomorphism from \mathbb{R}^n onto itself. Use substitution of variables to show that for any compact Jordan measurable set $K \subset \mathbb{R}^n$ we have

$$\operatorname{vol}_n(rK) = r^n \operatorname{vol}_n(K).$$

In particular, this implies that $\operatorname{vol}_n(\overline{B}(0;r)) = r^n V_n$, with $V_n = \operatorname{vol}_n(\overline{B}(0;1))$.

(b) If $s \ge 0$, show that the function f_s is not absolutely Riemann integrable over \mathbb{R}^n .

From now on, we assume that s < 0. For every integer $k \ge 0$ we define the set $S(k) := \overline{B}(0; k+1) \setminus B(0; k)$.

(c) Show that

$$\int_{S(k)} (1 + ||x||)^s \, dx \le V_n (1 + k)^s [(1 + k)^n - k^n].$$

(d) Show that, for $k \ge 1$,

$$\int_{S(k)} (1+||x||)^s \, dx \le nV_n \int_k^{k+1} t^s t^{n-1} \, dt.$$

(e) Show that for s < -n the function f_s is absolutely integrable over \mathbb{R}^n .

Conversely, by a similar method it can be shown that for $s \ge -n$ the function f_s is not absolutely integrable over \mathbb{R}^n . We do not ask you to prove this, but if you wish, you are welcome to do so.