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LECTURE 6
Appendix: A special map in symbol space

6.4. The exponential of a differential operator

In these notes we assume that A is a symmetric n X n matrix with complex
entries and with Re (A&, &) > 0 for all £ € R™. Here (-, -) denotes the standard
bilinear pairing C"* x C* — C. The function

(61) €T — 6_<A£7€>

is bounded on R™. Moreover, every derivative of (6.1) is polynomially bounded.
Hence, multiplication by the function (6.1) defines a continuous linear endomor-
phism M (A) of the Schwartz space S(R™). As the operator M (A) is symmetric
with respect to the usual pairing S(R™) x S(R™) — C defined by integration, it
follows that M (A) has a unique extension to a continuous linear endomorphism
S'(R") — S'(R™).

Clearly, M(A) leaves each subspace L2(R"), for s € R, invariant and re-
stricts to a bounded linear endomorphism with operator norm at most 1 on
it.

We define E(A) to be the unique continuous linear endomorphism of &'(R™)
such that the following diagram commutes

SR HE SR
F1 TF
SR 22 S(RY)

As F restricts to a topological automorphism of S(R™) and to an isometric
automorphism isomorphism from Hg(R") onto L2(R"), it follows that E(A)
restricts to a bounded endomorphism of Hg(R™) of operator norm at most 1.
Furthermore, F(A) restricts to a continuous linear endomorphism of S(R™).

If p € S(R™), then clearly 0, M (tA)p + (A&, )M (tA)p = 0. By application
of the inverse Fourier transform, we see that for a given function f € S the
function f; := E(tA)f satisfies:

Ofe = —(AD,D)f;, where —(AD,D)=">" A;;0;0;.
ij

We note that fy = f, so that f; may be viewed as a solution to the associated
Cauchy problem with initial datum f.
For obvious reasons, we will write

E(tA) = E~H4P:D)
from now on. The purpose of these notes is to derive estimates for £ which are

needed for symbol calculus.

Lemma 6.4.1. The operator ¢/AP:P) . S'(R™) — S'(R™) commutes with the
translations T translations and the partial differentiations 0;, for a € R"™ and
I1<j<n.
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Proof This is obvious from the fact that translation and partial differentia-
tion become multiplication with a function after Fourier transform; each such
multiplication operator commutes with M (A). O

Lemma 6.4.2. Assume that A is non-singular. Then the tempered function
z — e A22)/2 hag Fourier transform

F(e=Am2l/2) = ¢(A)e (BE4)/2
with ¢(A) a non-zero constant.

Remark 6.4.3. It can be shown that ¢(A) = (det A)~'/2, where a suitable
analytic branch of the square root must be chosen. However, we shall not need
this here.

Proof For v € R" let 0, denote the directional derivative in the direction v.
Thus, 0, f(z) = df (x)v. Then the tempered distribution f given by the function
x — exp(—(Ax,z)/2) satisfies the differential equations 0,f = —(Av,z)f. It
follows that the Fourier transform fsatisﬁes the differential equations (v, £ >]?:
—8Avffor all v € R™, or, equivalently, 9,f = —(Bv,§) f. This implies that the
tempered distribution

has all partial derivatives equal to zero, hence is the tempered distribution
coming from a constant function c(A). O

Proposition 6.4.4. For each k € N there exists a positive constant Cy > 0
such that the following holds. Let A be a complexr symmetric n X n-matriz with
ReA > 0. Let f € S(R) and let x € R™ be a point such that the distance d(z)
from x to suppu is at least one. Then

(6.2) e PP f(2)] < Cpd(x) M| A" max sup|Df|.
|a|<2s+k

Proof The function e*<A5’§>fin S(R™) depends continuously on A and hence,
so does e!4P:L) £ We may therefore assume that A is non-singular.

As e~ 4D:D) commutes with translation, we may as well assume that z = 0.
We assume that f has support outside the unit ball B in R™.

For each j let €1; denote the set points y on the unit sphere S = 9B with
|(y,ej)| > 1/2y/n. Then the U; form an open cover of S. Let {t;} be a partition
of unity subordinate to this covering and define x; : R™\ {0} — R by x;(y) =
¥ (y/|lyll). Then each of the functions f; = x; f satisfies the same hypotheses as
f and in addition, [(y,e;)| > |y|/2v/n for y € supp f;. As f =3, f;, it suffices
to prove the estimate for each of the f;. Thus, without loss of generality, we
may assume from the start that there exists a unit vector v € R” such that

[y, v)| = [yl/2y/n for all y € supp f.
‘We now observe that

e=(AD:D) £(0) = /e_<‘4€’5>f(§) dé = c/ e~ Byv/4 f(y) dy,
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where B = A~!. The idea is to apply partial differentiation with the directional
derivative 04, to this formula. For this we note that

By 2 5 —(Byy)/a
(v,)
on supp f, so that, for each j > 0,

e~ APPIr(0) = c2j/6<3y’y>/4 [, 9) " 0l f(y) d
=[PP (v, ) 0a0) £1(0).

By using the Sobolev lemma, we find, for each natural number s > n/2, that
e APPFO] < O max || D% MR (o, ) T0nY 12
= C'max |le“UPPIDY((v, YLD, ) £ 12

jal<s
< C'max || D¥((v, - ) 0u0) f| L2

B || <s

By application of the Leibniz rule and using that |[(v,y)| > ||y||/2v/n and ||y|| >
d > 1 for y € supp f, we see that, for j > 2n,

[e”APP f(0)] < C| AP > max sup|D* f|.
o[ <s+j
We now take j = s + k to obtain the desired estimate. O

Our next estimate is independent of supports.

Lemma 6.4.5. Let s > n/2 be an integer. Then there exists a positive con-
stant with the following property. Let A € M,,(C) be symmetric with Re A > 0.
Then for all f € S(R™) and all x € R™,

74P (@) < Cmax |D°f

Proof By the Sobolev lemma we have
|€7<AD’D>f(LU)| < Cﬁla}; HDa (AD,D) fH )

= Cmax|e 4P Df||
lo|<s

< Cmax || DYf]| 2
o <s

0

Corollary 6.4.6. Let s > n/2 be an integer and let C > 0 be the constant of
Lemma 6.4.5. Let K C R™ a compact subset. Let A € M, (C) be symmetric
and Re A > 0. Then for every f € Cg(R™), the distribution e~ ADD) ¢ s g
continuous function, and

e~ ADD) f(2)| < C/vol (K maxsup|D fl, (x € R").
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Proof We first assume that f € C(R™) with £’ compact. Then by straight-
forward estimation,

1D fl[r2 < vol (K) sup [ D f|

and the estimate follows with K instead of K. Let now f € Cg(R™). Then
by regularization there is a sequence f, € C¥ (R™), with K, — K and f, —
f in C*(R™). By the above estimate, the sequence e~ AD.D) ¢ is Cauchy in
C(R™). By passing to a subsequence we may arrange that the sequence already
converges to a limit ¢ in C(R"). By continuity of e (4P} in S§'(R™) it follows
that ¢ = e 4D:D) £ The required estimate for ¢ now follows from the similar
estimates for e=AP:D) £ by passing to the limit for n — co. O

In the sequel we shall frequently refer to a principle that is made explicit in
the following lemma.

Lemma 6.4.7. Let L : S'(R") — S'(R™) be a continuous linear endomor-
phism. Let VW be linear subspaces of S'(R™) equipped with locally convex
topologies for which the inclusion maps are continuous. Assume that C°(R"™)
is dense in V and that W is complete. If L maps C°(R™) into W, and the
restricted map Lo : C°(R™) — W is continuous with respect to the V -topology
on the first space, then L(V) C W.

Proof The restricted map Lo has a unique extension to a continuous linear
map L : V — W. Thus, it suffices to show that L; = L on V. Fix ¢ € S(R").
Then, the linear functional (-, ¢) is continuous on W. It follows that the linear
functional p on C2°(R™) given by u(f) = (L1f,¢) is continuous linear for the
V-topology.

From the assumption about the continuity of L is follows that the functional
v: f (Lf, ) is continuous for the S’'(R™) topology. In particular, this implies
that v is continuous for the V-topology.

As p=v on CF(R™) and C(R") is dense in V' it follows that L; = L on
V. O

If p € N we denote by C}(R™) the Banach space of p times continuously
differentiable functions f : R" — C with max|q <, sup [D®f| < oo.

Proposition 6.4.8. Let s > n/2 be an integer. Then there exists a constant
C > 0 with the following property. For each symmetric A € M,,(C) with Re A >
0 and all f € C?(R™) the distribution e~APD) f is continuous and

=422 f(@)] < Cl|A|1" max sup |D*f.

For x with d(x) := d(x,supp f) > 1 the stronger estimate (6.2) is valid.

Proof As in the proof of the previous corollary, we first prove the estimate
for f € C2°(R™). By translation invariance we may as well assume that x = 0.

We fix a function x € C2°(R™) which equals 1 on the unit ball and has
support contained in K = B(0;2) and such that 0 < x < 1. Then the desired
estimate follows from combining the estimate of Corollary 6.4.6 for x f with the
estimate of Proposition 6.4.4 with k = 0 for (1 — x)f.



98 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

By density of C°(R™) in C2(R") it follows that e~ APP) maps C3(R™)
continuously into Cp(R"™), with the desired estimate (apply Lemma 6.4.7). As
CZ(R™) is not dense in C}(R™) we need an additional argument to pass to the
latter space.

Let x be as above, and put x,(z) = x(xz/n). Then it is readily seen that
Xnf — fin &' (R"™). Hence e~ (AP:D) £, — ¢=(AD.D) f i S'(R™). Tt follows by ap-
plication of Proposition 6.4.4 that for each compact subset I C R the sequence
e~ {ADD) £ 1 is Cauchy in C(K). This implies that e~ (4P-P) £ converges to a
limit ¢ in the Fréchet space C'(R™). In particular, ¢ is also the limit in S&'(R™)
so that e~ {4P:D) f — o is a continuous function.

We now note that by application of the Leibniz rule,

sup |D® f,| < sup |[D*f|+ O(1/n).

Hence the desired estimate for f follows from the similar estimate for f, by
passing to the limit. ([l

Theorem 6.4.9. Let s > n/2 be an integer and let k € N. Then there exists
a constant Cy > 0 with the following property. For each symmetric A € M, (C)
with ReA > 0 and all f € C§S+2k(R”) the function e~ APD) f is continuous,
and
1 ,

|e” PP f(@) = Y = (—(AD, D)) f(2)| < Ci||A|l* max sup|D*(AD, D)*f|.
— j! la|<2s

i<k
Proof Let Ry(A)f(z) denote the expression between absolute value signs

on the left-hand side of the above estimate. We first prove the estimate for a
function f € C°(R™). The function

fulw) i= e~ APP)(z)
is smooth in (t,z) € [0, 00) x R™ and satisfies the differential equation

O fi(z) = —(AD, D) fi(x).

By application of Taylor’s formula with remainder term with respect to the
variable t at ¢t = 0, we find that

=N 9 ! 1 ok )
hle) = S0 - = | 1= ko) an

|
i<k )
This leads to

1 ! _
Re(A) f(z) = =1t /0 (1 —t)*1 (—(AD, D))" fi(x) dt
1 1
— G [ @ 0F e P (AD, D) (o) at.
(k=1 Jo
By estimation under the integral sign, making use of Proposition 6.4.8, we now
obtain the desired estimate for f € C2°(R"™). For the extension of the estimate to
C2s+2k(R") and finally to CI?SJF% (R™) we proceed as in the proof of Proposition

6.4.8. 0
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6.5. The exponential of a differential operator in symbol space

Let I be a compact subset of R and let d € R. Then the space of symbols
S,‘é (R™) is a subspace of the space of tempered distributions S’(R?") with con-
tinuous inclusion map. Indeed, if p € SE(R™), then for all ¢ € S(R™) we have

o) = [ b ol dode

IN

/Rzn(l + €D (. )11 + (@, NI (2, €)| da d€

Cﬂ%,o(p) V|d|+n+1,0(90)7

with C' > 0 only depending on n, K and d.
We consider the second order differential operator

(Da, %) _Zzax]a@

Thus, with notation as in the previous section, (D, 0¢) = —(AD, D), where

(0 I,
A:Z(In 0 ),

with I, the n x n identity matrix. The matrix A is complex, symmetric, and
has real part equal to zero, hence fulfills all conditions of the previous section.
Moreover, its operator norm ||A|| equals 1

In the rest of this section we will discuss the action of e!P=%) on SL(R™M).
The following lemma is obvious.

IN

Lemma 6.5.1. For each k € N,
ng,a5 > Daag
|ee|= k& '

In particular, (Dy,0¢) defines a continuous linear map S4R"™) — SF(R"),
preserving supports.

Theorem 6.5.2. Let k € N. Then
1
D,0, a o
(6.3) etPrde) — 3" — D2,
la|<k

originally defined as an endomorphism of S'(R™), maps S’,%(]R”) continuous

Dq,0¢)

linearly into S**(R™). In particular, e restricts to a continuous linear

map SEL(R™) — SURM).

Before turning to the proof of the theorem, we list a corollary that will be
important for applications.

Corollary 6.5.3. Let p € SE(R™). Then eP=%)p € S4R") and

1
<D178 > ~ JE—
e ¢p E a!Dg‘ﬁg‘p.
aeN”?
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We will prove Theorem 6.5.2 through a number of lemmas of a technical
nature. The next lemma will be used frequently for extension purposes.

Lemma 6.5.4. Let K C U be compact and let d < d'. Then the space Cg° (R™)
is dense in S,%(U) for the topology of S%(U).

Proof Letp € SE(U). Select ¢ € C°(R™) such that ¢ = 1 on a neighborhood
of 0. Put ¢, (&) = ¥(§/n) and

pn(,8) = Pn(Ep(, §).

Then by an application of the Leibniz rule in a similar fashion as in the proof
of Lemma 4.1.9, it follows that 1/%7,{(;0” —r) — 0 asn — oo, for each k € N. [J

The expression (6.3) is abbreviated by Ry(D). It will be convenient to use
the notation

CRL(R¥™) := {f € C(R*™) | supp f C K x R"}.

Lemma 6.5.5. Let k € N. Then for each d < k the map Ry(D) maps SE(R™)
continuous linearly into Cy(R?*™).

Proof Let s> n/2 be an integer. Let f € C,%‘?C(R%). Then by Theorem 6.4.9,
[Re(D)f(#.&)] < Cp max sup [D3O] (D, 0)" f ()]
o] +[B8]<2s L xR"

< up |DETO7 f(x,8)]

k max S
| +IB1<2s,|v|=k KKxRn

< max sup (1+||¢ d—k d f
k|a\+|5|§28,|'y|=k;g><Rn( €D Vi 25421 (f)

< Cf Vi agion(f)-

It follows that the map Ry, (D) is continuous Cg°, (R2") — Cy(R?"), with respect
to the S,%(R”)—topology on the first space, for each d < k.

Let now d < k and fix d’ with d < d’ < k. Then by density of C,OC‘fC(R%)
in S&(R?") for the S,‘g (R?")-topology, it follows by application of Lemma 6.4.7
that Ry(D) maps SE(R™) to Cy(R") with continuity relative to the S (R™)-
topology on the domain. As this topology is weaker than the original topology
on S&(R"), the result follows. O

Lemma 6.5.6. Letd € R and assume that k > |d|. Let s be an integer > n/2.
Then there exists a constant C' > 0 such that for all f € C,%‘fc(R”) and all

(2,€) € R?™ with ||€]| > 4 we have

(6.4) |[Ri(D)f(2,€)] < C(L+ €N 1R pe i (f)-

Proof Let x € C°(R") be a smooth function which is identically 1 on the
unit ball of R™, and has support inside the ball B(0;2). For t > 0 we define
the function y; € C°(R™) by x¢(£) = x(t71€). Then x;(€) is identically 1 on
B(0;t) and has support inside the ball B(0; 2t). We agree to write ) = 1—y and
i (€) = (t71€). In the following we will frequently use the obvious equalities

sup|9¢ x| = t71 sup [0 x|, sup[9ge] = t71* sup |Og .
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Let f € C,OC?C(R"). Then f is a Schwartz function, hence e/P=:%) f is a Schwartz
function as well, and therefore, so is Ri(D)f. For t > 0 we agree to write
fi(@,8) = xe(€) f(z,t) and gi(x, &) = e(€)) f(z,€). Then f = f; + g;. From now
on we assume that (z,£) € R?, that ||| > 4 and ¢t = 1[|¢|.

We will complete the proof by showing that both the values |Rx(D) fi(z, §)|
and |Ry(D)g¢(z,€)| can be estimated by C/V,%’Zerk(f) with C’ > 0 a constant
independent of f,x,&. We start with the first of these functions. As f; has
support inside B(0;2t) = B(0; [|£]|/2), it follows that d(&, supp fi) > ||€]|/2 > 2.
In view of Proposition 6.4.4 it follows that there exists a constant Cj, > 0, only
depending on k, such that

|Ru(D)f(z,6)| = |eP=%) f(z,¢)]

< C 2)~* DSoy;
< Cullll/ ™ s |D2OY ()
< CLa+En* max sup ]8?1)(1; D?@?Qf],

|ae|+|B1+B2|<25+kK

with C}, > 0 independent of f, x and §. For n € supp x; we have ||n| < ||£]/2,
so that

10 % (m) DEOZ f(ym)l < CReT 1B 4 Iyt oy ()
< RO+ €0/ pgan(f)
C (L + (161D o1 (f)-

IN

It follows that

[Ru(D) folw, O < C"(L+ €D 1 2401 ().
We now turn to g;. By application of Theorem 6.4.9 it follows that

| Re(D)(g:) (2, €)]|

< Dy max  sup|Dz0e (Da, 0" (v1f)]

max su a’y+ﬁ Da+')/
k|°‘|+HﬁH§2s,|~,|:k p| 3 (Ve DI )]

To estimate the latter expression, we concentrate on

(6.5) 07 (DS £) (y, )

for y € K and n € R™. Since ¢;(n) equals zero for ||n|| <t = ||€||/4 and equals 1
for ||n|| > 2t = ||£]|/2, we distinguish two cases: (a) [|£]|/4 < |In]] < ||£]|/2 and

(b) lInll = llll/2-

Case (a): the expression (6.5) can be estimated by a sum of derivatives of the
form

(@) DLyl (i +r2 =7 +0),
with suitable binomial coeflicients. Now

(07 ) D02 fly.m)| < DI+ [l P2 oy i (F)
< DI+ €D+ €D g an ()
D (L4 NIENT" 1R 22k (F)-

N

IA
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Case (b): we now have that (6.5) equals |D§+78g+ﬁf(y, n)|, and can be esti-
mated by

IA

DS Nml < (L D o (F)
(L4 D)0 5o o1 ()
(L+ 1€0/2)* 51 oo (F)

D1+ [IE[N" 1 gsan ().

ININ A

Collecting these estimates we see that

| Ri(D)ge(w, &) < D'(1+ (1€ F v, or (),
with D’ > 0 a constant independent of f,x and &. O
Corollary 6.5.7. Let d,k and s be as in the above lemma. With a suitable
adaptation of the constant C > 0, the estimate (6.4) holds for all (z,£) € R?".

Proof It follows from Lemma 6.5.5 and its proof that there exists a constant
Cy > 0 such that |Ri(D)f(z,€)| < C’ly,‘é725+2k(f). We now use that

(1+ flg)=* > 54~
for all ¢ with |¢|| < 4. Hence, the estimate (6.4) holds with C' = 5¥~14Cy for
€]} < 4. m

Corollary 6.5.8. Let d € R and m € N. Then there exist constants C' > 0
and 1 € N such that for all f € CF(R") and all (z,§) € R?" we have

(6.6) |[Rin(D)f (2, €)] < O+ 11N o (f)-

Proof Let s be as in the previous corollary. Fix k& € N such that |d| — k <
d —m. Let now C’ > 0 be constant as in the previous corollary. Then for all

f € CE.(R") we have

[Re(D) f(2,&)] < C"(L+ €N v pyiam(f), ((2,6) €R®™).
On the other hand,

Ry(D) = Ry(D) = Y (Dy,0)

k<j<m

is a continuous linear operator S&(R") — S,‘é_k(R”). In fact, there exists a
constant C” > 0 such that

|Rin (D) f(f(2,€) = Re(D) f (2, )| < C"(1+ [|EINT v oo (f)

for all f € SL(R™) and (z,&) € R?™. The result now follows with C' = C’ 4+ C”
and with | = max(2s + 2m,2m — 2). O

After these technicalities we can now finally complete the proof of the main
theorem of this section.
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Completion of the proof of Theorem 6.5.2 Let k € N, let o, 5 € N and
put m = k — |3|. Then by the previous corollary, applied with d — |3| in place
of d there exist constants C' > 0 and I € N such that for all f € CR (R") and

all (z,¢) € R?",
[Ru(D)f(x,€)] < (1+ [l 7 ).

Moreover, by definition of the seminorms,

d—
V;c,z'ﬁ'(D?f)?f) < Vl%,l+\a|+|ﬂ\(f)
for all f € O (R"). Combining these estimates and using that Ry (D) com-
mutes with Dg‘&? , we find that

D20/ Ri(D) f(,€)] = R(D)[D30; fl(z,€)

d
< CVisjars ()
for all f € CF,(R™) and (z,§) € R*".
It follows from the above that for each d’ € R the map
Ry1(D) : CR(R™) — 7~ D ([R™)
is continuous with respect to the S,Cg (R™)-topology on C,OC"’C(R"). In particular,
this is valid for @' = d + 1. As CR°(R") is dense in SL(R™) with respect to the
topology of S,‘é“(R"), it follows by application of Lemma 6.4.7 that Ry1(D)
maps Si-(R™) into S¢~*(R™) with continuity relative to the S,‘éH(R")-topology
on the first space. As this topology is weaker than the usual one, we conclude
that Ry.1(D) : SE(R") — S4=F(R™) is continuous. Now
Ria(D) = By(D) = (Dy, 0)*

is continuous SE(R™) — S2F(R") as well, and the result follows. O



