
LECTURE 4
Fourier transform

4.1. Schwartz functions

Recall that L1(Rn) denotes the Banach space of functions f : Rn → C that are
absolutely integrable, i.e., |f | is Lebesgue integrable over Rn. The norm on this
space is given by

∥f∥1 =

∫
Rn

|f(x)| dx.

Given ξ ∈ Rn and x ∈ Rn, we put

ξx := ξ1x1 + · · ·+ ξnxn.

For each ξ ∈ Rn, the exponential function

eiξ : x 7→ eiξx, Rn → C,

has absolute value 1 everywhere. Thus, if f ∈ L1(Rn) then e−iξf ∈ L1(Rn) for
all ξ ∈ Rn.

Definition 4.1.1. For a function f ∈ L1(Rn) we define its Fourier transform

f̂ = Ff : Rn → C by

(4.1) Ff(ξ) =

∫
Rn

f(x)e−iξx dx.

We will use the notation Cb(Rn) for the Banach space of bounded continuous
functions Rn → C equipped with the sup-norm.

Lemma 4.1.2. The Fourier transform maps L1(R) continuous linearly to the
Banach space Cb(Rn).

Proof Let f be any function in L1(Rn). The functions fe−iξ are all dominated
by |f | in the sense that |fe−iξ| ≤ |f | (almost) everywhere. Let ξ0 ∈ Rn; then
it follows by Lebesgue’s dominated convergence theorem that Ff(ξ)→ Ff(ξ0)
if ξ → ξ0. This implies that Ff is continuous. It follows that F defines a
linear map from L1(R) to C(Rn). It remains to be shown that F maps L1(R)
continuously into Cb(R).
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For this we note that for f ∈ L1(Rn) and ξ ∈ Rn,

|Ff(ξ)| = |
∫
Rn

f(x) e−iξx dx | ≤
∫
Rn

|f(x) e−iξx| dx = ∥f∥1.

Thus, sup |Ff | ≤ ∥f∥1. It follows that F is a linear map L1(R)→ Cb(Rn) which
is bounded for the Banach topologies, hence continuous. �

Remark 4.1.3. We denote by C0(Rn) the subspace of Cb(Rn) consisting of
functions f that vanish at infinity. By this we mean that for any ϵ > 0 there
exists a compact set K ⊂ Rn such that |f | < ϵ on the complement Rn \K. It
is well known that C0(Rn) is a closed subspace of Cb(Rn), thus a Banach space
of its own right.

The well known Riemann-Lebesgue lemma asserts that, actually, F maps
L1(Rn) into C0(Rn).

The above amounts to the traditional way of introducing the Fourier trans-
form. Unfortunately, the source space L1(Rn) is very different from the target
space Cb(Rn). We shall now introduce a subspace of L1(Rn) which has the ad-
vantage that it is preserved under the Fourier transform: the so-called Schwartz
space.

Definition 4.1.4. A smooth function f : Rn → C is called rapidly decreasing,
or Schwartz, if for all α, β ∈ Nn,

(4.2) sup
x∈Rn

|xβ∂αf(x)| <∞.

The linear space of these functions is denoted by S(Rn).

Exercise 4.1.5. Show that the function

f(x) = e−∥x∥2

belongs to S(x).

Condition (4.2) for all α, β is readily seen to be equivalent to the following
condition, for all N ∈ N, k ∈ N :

νN,k(f) := max
|α|≤k

sup
x∈Rn

(1 + ∥x∥)N |∂αf(x)| <∞.

We leave it to the reader to check that ν = νN,k defines a norm, hence in
particular a seminorm, on S(Rn). We equip S(Rn) with the locally convex
topology generated by the set of norms νN,k, for N, k ∈ N.

The Schwartz space behaves well with respect to the operators (multiplica-
tion by) xα and ∂β.

Exercise 4.1.6. Let α, β be multi-indices. Show that

xα : f 7→ xαf and ∂β : f 7→ ∂βf

define continuous linear endomorphisms of S(Rn).

Exercise 4.1.7.

(a) Show that S(Rn) ⊂ L1(Rn), with continuous inclusion map.
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(b) Show that
C∞
c (Rn) ⊂ S(Rn) ⊂ C∞(Rn),

with continuous inclusion maps.

Lemma 4.1.8. The space S(Rn) is a Fréchet space.

Proof As the given collection of seminorms is countable it suffices to show
completeness, i.e., every Cauchy sequence in S(Rn) should be convergent. Let
(fn) be a Cauchy sequence in S(Rn). Then by continuity of the second inclusion
in Exercise 4.1.7 (b), the sequence is Cauchy in C∞(Rn). By completeness of the
latter space, the sequence fn converges to f , locally uniformly, in all derivatives.
We will show that f ∈ S(Rn) and fn → f in S(Rn). First, since (fn) is Cauchy,
it is bounded in S(Rn). Let N, k ∈ N; then there exists a constant CN,k > 0 such
that νN,k(fn) ≤ CN,k, for all n ∈ N. Let x ∈ Rn, then from ∂αfn(x)→ ∂αf(x)
it follows that

(1 + ∥x∥)N∂αfn(x)→ (1 + ∥x∥)N∂αf(x), as n→∞.
In view of the estimates νN,k(fn) ≤ CN,k, it follows that |(1 + ∥x∥)N∂αf(x)| ≤
CN,k, for all α with |α| ≤ k. This being true for arbitrary x, we conclude that
νN,k(f) ≤ CN,k. Hence f belongs to the Schwartz space.

Finally, we turn to the convergence of the sequence fn in S(Rn). Let N, k ∈
N. Let ϵ > 0. Then there exists a constant M such that

n,m > M ⇒ νN,k(fn − fm) ≤ ϵ/2.
Let |α| ≤ k and fix x ∈ Rn. Then it follows that

(1 + ∥x∥)N |∂αfn(x)− ∂αfm(x)| ≤ ϵ

2
As ∂αfn → ∂αf locally uniformly, hence in particular pointwise, we may pass
to the limit for m→∞ and obtain the above estimate with fm replaced by f,
for all x ∈ Rn. It follows that νN,k(fn − f) < ϵ for all n ≥M. �

Another important property of the Schwartz space is the following.

Lemma 4.1.9. The space C∞
c (Rn) is dense in S(Rn).

Proof Fix a function φ ∈ C∞
c (Rn) such that 0 ≤ φ ≤ 1 and φ = 1 on the

closed unit ball in Rn. For k ∈ N we put

∥φ∥Ck := max
|α|≤k

sup
x∈Rn

|∂αφ(x)|.

For j ∈ Z+ define the function φj ∈ C∞
c (Rn) by

φj(x) = φ(x/j).

Let now f ∈ S(Rn). Then φjf ∈ C∞
c (Rn) for all j ∈ Z+. We will complete the

proof by showing that φjf → f in S(Rn) as j →∞.
Fix N, k ∈ N. Our goal is to find an estimate for νN,k(φjf−f), independent

of f. To this end, we first note that for every multi-index β we have ∂βφj(x) =

(1/j)|β|∂βφ(x/j). It follows that

sup
Rn
|∂βφj | ≤

1

j
∥φ∥Ck , (j ∈ Z+, 0 < |β| ≤ k).
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Let |α| ≤ k. Then by application of Leibniz’ rule we obtain, for all x ∈ Rn, that

|∂α(φjf − f)(x)| ≤ |(φj(x)− 1) ∂αf(x)|+ 1

j
∥φ∥Ck

∑
0̸=β≤α

(
α
β

)
|∂α−βf(x)|.

The first term on the right-hand side is zero for ∥x∥ ≤ j. For ∥x∥ ≥ j it can be
estimated as follows:

|(φj(x)− 1)∂αf(x)| ≤ (1 + sup |φ|)(1 + j)−1(1 + ∥x∥)|∂αf(x)|
≤ 2j−1(1 + ∥x∥)|∂αf(x)|.

We derive that there exists a constant Ck > 0, only depending on k, such that
for every N ∈ N,

νN,k(φjf − f) ≤ Ck
j
νN+1,k(f).

It follows that φjf → f in S(Rn). �
The following lemma is a first confirmation of our claim that the Schwartz

space provides a suitable domain for the Fourier transform.

Lemma 4.1.10. The Fourier transform is a continuous linear map S(Rn)→
S(Rn). Moreover, for each f ∈ S(Rn) and all α ∈ Nn, the following hold.

(a) F(∂αf) = (iξ)αFf ;
(b) F(xαf) = (i∂ξ)

αFf.

Proof Let f ∈ S(Rn) and let 1 ≤ j ≤ n. Then it follows by differentiation
under the integral sign that

∂

∂ξj

∫
Rn

f(x) e−iξx dx =

∫
Rn

f(x)(−ixj)e−iξx dx.

The interchange of integration and differentiation is justified by the observa-
tion that the integrand on right-hand side is continuous and dominated by
the integrable function (1 + ∥x∥)−n−1νn+1,0(f) (check this). It follows that
F(−xjf) = ∂jFf. By repeated application of this formula, we see that Ff is a
smooth function and that (b) holds. Since the inclusion map S(Rn)→ L1(Rn)
and the Fourier transform L1(Rn) → Cb(Rn) are continuous, it follows that F
is continuous from S(Rn) to Cb(Rn). As multiplication by xα is a continuous
endomorphism of the Schwartz space, it follows by application of (b) that F is
a continuous linear map S(Rn)→ C∞(Rn).

Let f ∈ C∞
c (Rn) and 1 ≤ j ≤ n. Then by partial integration it follows that∫

Rn

∂jf(x)e−iξx dx = (iξj)

∫
Rn

f(x)e−iξx dx

so that F(∂jf) = (iξj)F(f)(ξ). By repeated application of this formula, it
follows that (a) holds for all f ∈ C∞

c (Rn). By density of C∞
c (Rn) in S(Rn)

combined with continuity of the endomorphism ∂α ∈ End(S) and continuity of
F as a map S(Rn)→ C(Rn) it now follows that (a) holds for all f ∈ S(Rn).

It remains to establish the continuity of F as an endomorphism of S(Rn).
For this it suffices to show that ξα∂βF is continuous linear as a map S(Rn)→
Cb(Rn). This follows from ξα∂βF = F ◦ (−i∂)α(−ix)β (by (a), (b)) and the fact
that (−i∂)α ◦ (−ix)β is a continuous linear endomorphism of S(Rn). �
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Later on, we will see that it is convenient to write

Dα = (−i∂)α,

so that formula (a) of the above lemma becomes

F(Dαf) = ξαFf.
Given a ∈ Rn we write Ta for the translation Rn → Rn, x 7→ x+a and T ∗

a for
the map C∞(Rn)→ C∞(Rn) induced by pull-back. Thus, T ∗

a f(x) = f(x+ a).

Lemma 4.1.11. The map T ∗
a restricts to a continuous linear endomorphism

of S(Rn). Moreover, for all f ∈ S(Rn),

F(T ∗
a f) = eiξaF(f); F(e−iaxf) = T ∗

aFf.

Exercise 4.1.12. Prove the lemma.

We write S for the point reflection Rn → Rn, x 7→ −x and S∗ for the induced
linear endomorphism of C∞(Rn). It is readily seen that S∗ defines a continuous
linear endomorphism of S(Rn).

Exercise 4.1.13. The map S∗ defines a continuous linear endomorphism of
S(Rn) which commutes with F .

We can now give the full justification for the introduction of the Schwartz
space.

Theorem 4.1.14. (Fourier inversion)

(a) F is a topological linear isomorphism S(Rn)→ S(Rn).
(b) The endomorphism S∗FF of S(Rn) equals (2π)n times the identity op-

erator. Equivalently, for every f ∈ S(Rn) we have

f(x) =
1

(2π)n

∫
Rn

Ff(ξ) eiξx dξ, (x ∈ Rn).

Proof We consider the continuous linear operator T := S∗FF from S(Rn)
to itself. By Lemma 4.1.10 it follows that

T ◦xα = S∗F ◦ (i∂)α ◦F = S∗ ◦ (−x)α ◦FF = xα ◦ T .
In other words, T commutes with multiplication by xα, for every multi-index
α. In a similar fashion it is shown that T commutes with T ∗

a , for every a ∈ Rn.
We will now show that any continuous linear endomorphism T of S(Rn)

with these properties must be equal to a constant times the identity. For this
we use the Gaussian function G(x) = exp(−∥x∥2/2). Let f ∈ C∞

c (Rn) and put
φ = G−1f. Then φ is smooth compactly supported as well. Moreover, in view
of the formula

φ(x) = φ(0) +

∫ 1

0

∂

∂t
φ(tx) dt

= φ(0) +

[∫ 1

0
Dφ(tx) dt

]
x,

we see that there exists a smooth map L : Rn → L(Rn,C) such that φ(x) =
φ(0)+L(x)x for all x ∈ Rn. It is easily seen that each component Lj(x) is smooth
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with partial derivatives that are all bounded on Rn. Hence, LjG ∈ S(Rn). It
now follows that

T (f) = T (φG)

= T (φ(0)G) + T (
∑
j

xjLjG)

= φ(0)T (G) +
∑
j

xjT (LjG).

Evaluating at x = 0 we find that T (f)(0) = cf(0), with c the constant T (G)(0).
We now use that T commutes with translation:

T (f)(x) = [T ∗
xT (f)](0) = T (T ∗

xf)(0) = c T ∗
xf(0) = cf(x).

This proves the claim that T = cI. To complete the proof of (b) we must show
that c = (2π)n. This is the subject of the exercise below.

It follows from (b) and the fact that S∗ commutes with F that F has
(2π)−nS∗F as a continuous linear two-sided inverse. Hence, F is a topological
linear automorphism of S(Rn).

Exercise 4.1.15. We consider the Gaussian function g : R → R given by

g(x) = e−
1
2
x2 .

(a) Show that Fg satisfies the differential equation d
dxFg = −xFg.

(b) Determine the Fourier transform Fg.
(c) Prove that for the Gaussian function G : Rn → R we have T (G) =

(2π)nG.

In order to get rid of the constant (2π)n in formulas involving Fourier inver-
sion, we change the normalization of the measures dx and dξ on Rn, by requiring
both of these measures to be equal to (2π)−n/2 times Lebesgue measure. The
definition of F is now changed by using formula (4.1) but with the new nor-
malization of measures. Accordingly, the Fourier inversion formula becomes,
for f ∈ S(Rn),

(4.3) f(x) =

∫
Rn

f̂(ξ) eiξx dξ.

4.2. Convolution

The Schwartz space is also very natural with respect to convolution. In the
following we shall make frequent use of the following easy estimates, for x, y ∈
Rn

(4.4) (1 + ∥x∥)(1 + ∥y∥)−1 ≤ (1 + ∥x+ y∥) ≤ (1 + ∥x∥)(1 + ∥y∥).

The inequality on the right is an easy consequence of the triangle inequality.
The inequality on the left follows from the one on the right if we first substitute
−y for y and then, in the resulting inequality, x+ y for x.

Assume that f1, f2 : Rn → C are continuous functions with

νN (fj) := sup(1 + ∥x∥)N |fj(x)| <∞



LECTURE 4. FOURIER TRANSFORM 69

for all N ∈ N (Schwartz functions are of this type). Then it follows that

|fj(x)| = (1 + ∥x∥)−N (1 + ∥x∥)N |fj(x)|
≤ (1 + ∥x∥)NνN (fj)

for all x ∈ Rn. Therefore,

f1(y)f2(x− y) ≤ (1 + ∥y∥)−M (1 + ∥x− y∥)−NνM (f1)νN (f2)

≤ (1 + ∥y∥)N−M (1 + ∥x∥)−NνM (f1)νN (f2).

Choosing N = 0 and M > n we see that the function y 7→ f1(y)f2(x − y) is
integrable for every x ∈ Rn.

Definition 4.2.1. For f, g ∈ S(Rn) we define the convolution product f ∗ g :
Rn → C by

(f ∗ g)(x) =

∫
Rn

f(y) g(x− y) dy.

Lemma 4.2.2.

(a) The convolution product defines a continuous bilinear map

(f, g) 7→ f ∗ g, S(Rn)× S(Rn)→ S(Rn).

(b) For all f, g ∈ S(Rn),

F(f ∗ g) = FfFg and F(fg) = Ff ∗ Fg.

Proof Let f, g ∈ S(Rn) and let α be a multi-index of order at most k. Let
K ∈ N. Then it follows from the above estimates with f1 = f and f2 = ∂αg
that

(1 + ∥x∥)K |f(y)∂αg(x− y)| ≤ (1 + ∥y∥)N−M (1 + ∥x∥)K−NνM,0(f)νN,k(g).

We now choose N = K and M > N + n. Then the function on the right-
hand side is integrable with respect to y. It now follows by differentiation under
the integral sign that the function f ∗ g is smooth and that for all α we have
∂α(f ∗ g) = f ∗ ∂αg. Moreover, it follows from the estimate that

νK,k(f ∗ g) ≤ νM,0(f)νN,k(g)

∫
Rn

(1 + ∥y∥)N−M dy.

We thus see that the map (f, g) 7→ f ∗ g is continuous bilinear from S(Rn) ×
S(Rn) to S(Rn).

Moreover, the above estimates justify the following application of Fubini’s
theorem:

F(f ∗ g)(ξ) =

∫
Rn

∫
Rn

f(y)g(x− y)e−iξx dy dx

=

∫
Rn

∫
Rn

f(y)g(x− y)e−iξx dx dy

=

∫
Rn

∫
Rn

f(y)g(z)e−iξ(z+y) dz dy

= Ff(ξ)Fg(ξ).
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To obtain the second equality of (b), we use that S∗F = FS∗ is the inverse
to F (by our new normalization of measures). Put φ = FS∗f and ψ = FS∗g.
Then fg = FφFψ = F(φ ∗ ψ). By application of F we now readily verify that

F(fg) = S∗(φ ∗ ψ) = S∗(φ) ∗ S∗(ψ) = Ff ∗ Fg.

�

Corollary 4.2.3. The convolution product ∗ on S(Rn) is continuous bilinear,
associative and commutative, turning S(Rn) into a commutative continuous
algebra.

Proof This follows from the above lemma combined with the fact that F :
S(Rn)→ S(Rn) is a topological linear isomorphism. �

Exercise 4.2.4. By using Fourier transform, show that the algebra (S(Rn),+, ∗)
has no unit element.

On S(Rn) we define the L2-inner product ⟨ · , · ⟩L2 by

⟨f, g⟩L2 =

∫
Rn

f(x) g(x) dx.

Accordingly, the space L2(Rn) may be identified with the Hilbert completion
of S(Rn).

Proposition 4.2.5. Let f, g ∈ S(Rn). Then ⟨Ff,Fg⟩L2 = ⟨f, g⟩L2 . The Fourier
transform has a unique extension to a surjective isometry F : L2(Rn) →
L2(Rn).

Proof We define the function ǧ : Rn → C by

ǧ(x) = g(−x).

Then g belongs to the Schwartz space, and F(ǧ) = Fg. Moreover,

⟨f, g⟩L2 = f ∗ ǧ(0).

By the Fourier inversion formula it follows that the latter expression equals∫
Rn

F(f ∗ ǧ)(ξ) dξ =

∫
Rn

Ff(ξ)Fg(ξ) dξ = ⟨Ff,Fg⟩L2 .

Thus, F : S(Rn)→ S(Rn) is an isometry for ⟨ · , · ⟩L2 . Since C∞
c (Rn) is dense in

L2(Rn), so is S(Rn) and it follows that F has a unique continuous linear exten-
sion to an endomorphism of the Hilbert space L2(Rn); moreover, the extension
is an isometry. Likewise, S∗ is isometric hence extends to an isometric endomor-
phism of L2(Rn). By density of S(Rn) in L2(Rn) the composition of extended
maps S∗F is a two-sided inverse to the extended map F : L2(Rn) → L2(Rn).
Therefore, F is surjective. �
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4.3. Tempered distributions and Sobolev spaces

By means of the Fourier transform we shall give a different characterization of
Sobolev spaces, which will turn out to be very useful in the context of pseudo-
differential operators. We start by introducing the notion of tempered distri-
bution.

Definition 4.3.1. The elements of S ′(Rn), the continuous linear dual of the
Fréchet space S(Rn), are called tempered distributions.

Here we note that a linear functional u : S(Rn) → C is continuous if and
only if there exist constants N, k ∈ N and C > 0 such that

|u(f)| ≤ C νN,k(f) for all f ∈ S(Rn).

The name distributions is justified by the following observation. By transposi-
tion the continuous inclusions

C∞
c (Rn) ⊂ S(Rn) ⊂ C∞(Rn)

give rise to continuous linear transposed maps between the continuous linear
duals of these spaces. Here we assume to have the duals equipped with the
strong dual topologies (of uniform convergence on bounded sets). Moreover, as
C∞
c (Rn) is dense in both S(Rn) and C∞(Rn), it follows that the transposed

maps are injective:

E ′(Rn) ↪→ S ′(Rn) ↪→ D′(Rn).

We note that the transposed maps are given by restriction. Thus, E ′(Rn) →
S ′(Rn) is given by u 7→ u|S(Rn). Moreover, the map S ′(Rn) → D′(Rn) is given
by v 7→ v|C∞

c (Rn). In this sense tempered distributions may be viewed as distri-
butions.

We recall that the operators xα· and ∂α on D′(Rn) are defined through
transposition:

xαu = u ◦ (xα·), and ∂αu = u ◦ (−∂)α,

for u ∈ D′(Rn).

Exercise 4.3.2. Show that S ′(Rn) is stable under the operators ∂α and xα

for all multi-indices α.

We recall that there is a natural continuous linear injection L2
loc(Rn) ↪→

D′(Rn). If φ ∈ L2
loc(Rn) then the associated distribution is given by

f 7→ ⟨φ, f⟩ :=

∫
Rn

φ(x)f(x) dx, C∞
c (Rn)→ C.

Lemma 4.3.3. The continuous linear injection L2(Rn) ↪→ D′(Rn) maps L2(Rn)
continuously into S ′(Rn).
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Proof Denote the injection by j. Let φ ∈ L2(Rn) and f ∈ S(Rn). Fix N > n/2.
Then

⟨φ, f⟩ =

∫
Rn

φ(x)f(x) dx

≤
∫
Rn

φ(x)(1 + ∥x∥)−NνN,0(f) dx

≤ C ∥φ∥2 νN,0(f)

where C is the L2-norm of (1+∥ξ∥)−N . It follows that the pairing (φ, f) 7→ ⟨φ, f⟩
is continuous bilinear L2(Rn) × S(Rn) → C. This implies that j maps L2(Rn)
continuously into S ′(Rn). �

The inclusion S(Rn) ↪→ L2(Rn) is continuous. Accordingly, the natural
injection S(Rn)→ D′(Rn) maps S(Rn) continuous linearly into S ′(Rn).

Exercise 4.3.4. Let s ∈ R. We denote by L2
s(Rn) the space of f ∈ L2

loc(Rn)
with (1 + ∥x∥)sf ∈ L2(Rn). Equipped with the inner product

⟨f, g⟩L2,s :=

∫
Rn

f(x)g(x)(1 + ∥x∥)2s dx

this space is a Hilbert space.
Show that the continuous linear injection L2

s(Rn) → D′(Rn) maps L2
s(Rn)

continuously into S ′(Rn).

The following result will be very useful for our understanding of Sobolev
spaces.

Proposition 4.3.5. The Fourier transform has a continuous linear extension
to a continuous linear map F : S ′(Rn) → S ′(Rn). For all u ∈ S ′(Rn) and
f ∈ S(Rn) we have

⟨Fu, f⟩ = ⟨u,Ff⟩.
The extension to S ′(Rn) is compatible with the previously defined extension to
L2(Rn).

Remark 4.3.6. It can be shown that C∞
0 (Rn), hence also S(Rn) is dense

in S ′(Rn). Therefore, the continuous linear extension is uniquely determined.
However, we shall not need this.

Proof The Fourier transform F : S(Rn)→ S(Rn) is continuous linear. There-
fore its tranposed F t : u 7→ u ◦F is a continuous linear map S ′(Rn)→ S ′(Rn).

We claim that F t restricts to F on S(Rn). Indeed, let us view φ ∈ S(Rn)
as a tempered distribution. Then by a straightforward application of Fubini’s
theorem, it follows that, for all f ∈ S(Rn),

⟨F tφ, f⟩ = ⟨φ,Ff⟩

=

∫
Rn

φ(ξ)

∫
Rn

f(x)e−iξx dx dξ

=

∫
Rn

∫
Rn

φ(ξ)e−iξx dξ f(x) dx

= ⟨Fφ, f⟩.
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This establishes the claim. We have thus shown that F has F t as a continuous
linear extension to S ′(Rn).

It remains to prove the asserted compatibility. Let u ∈ L2(Rn). There exists
a sequence of Schwartz functions un ∈ S(Rn) such that un → u in L2(Rn) for
n→∞. It follows that Fun → Fu in L2(Rn), hence also in S ′(Rn), by Lemma
4.3.3. On the other hand, we also have un → u in S ′(Rn) by the same lemma.
Hence F tun → F tu by what we proved above. Since F t = F on S(Rn) it
follows that Fun = F tun for all n. Thus, Fu = F tu. �

From now on, we shall denote the extension of F to S ′(Rn) by the same
symbol F . The following lemma is proved in the same spirit as the lemma above.
We leave the easy proof to the reader.

Lemma 4.3.7. The operators ∂α, xα·, T ∗
a and eia· have (unique) continuous

linear extensions to endomorphisms of S ′(Rn). For u ∈ S ′(Rn) we have

∂αu = u ◦ (−∂)α, xαu = u ◦xα, T ∗
au = u ◦T ∗

−a, eiau = u ◦ eia.

The formulas (a),(b) of Lemma 1.1.10 and the formulas of Lemma 1.1.11 are
valid for f ∈ S ′(Rn).

Lemma 4.3.8. Let u ∈ E ′(Rn). Then Fu is a smooth function. Moreover, for
every ξ ∈ Rn,

Fu(ξ) = ⟨u, e−iξ⟩.

Proof We sketch the proof. Not all details can be worked out because of time
constraints. Let f ∈ C∞

c (Rn). Then the function φ : ξ 7→ f(ξ)e−iξ with values
in the Fréchet space C∞(Rn) is smooth and compactly supported. This implies
that ξ 7→ u(φ(ξ)) is smooth and compactly supported. Now

u(φ(ξ)) = f(ξ)u(e−iξ)

and since f was arbitrary, we see that û : ξ 7→ u(e−iξ) is a smooth function.
Furthermore, the integral for Ff may be viewed as an integral of the

C∞(Rn)-valued function φ. This means that in C∞(Rn) it can be approximated
by C∞(Rn)-valued Riemann sums. This in turn implies that

⟨Fu, f⟩ = ⟨u,Ff⟩

= u(

∫
Rn

φ(ξ) dξ)

=

∫
Rn

u(φ(ξ)) dξ

=

∫
Rn

f(ξ)u(e−iξ) dξ

= ⟨û, f⟩.
Since this is true for any f ∈ C∞

c (Rn), it follows that û = Fu. �
We recall from Definition 2.2.10 that for r ∈ N the Sobolev space Hr(Rn) is

defined as the space of distributions u ∈ D′(Rn) such that ∂αf ∈ L2(Rn) for each
α ∈ Nn with |α| ≤ r. In particular, taking α = 0 we see that Hr(Rn) ⊂ L2(Rn).
Hence also Hr(Rn) ⊂ S ′(Rn).
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Lemma 4.3.9. Let r ∈ N. Then
Hr(Rn) = {u ∈ S ′(Rn) | (1 + ∥ξ∥)rF(u) ∈ L2(Rn)}.

Proof Let u ∈ Hr(Rn) and let α be a multi-index of order at most r. Then
∂αu ∈ L2(Rn). It follows that

(iξ)αFu = F(∂αu) ∈ L2(Rn).

In view of the lemma below this implies that (1 + ∥ξ∥)rFu ∈ L2(Rn).
Conversely, let u ∈ S ′(Rn) and assume that (1 + ∥ξ∥)rFu ∈ L2(Rn). Then

Fu is locally square integrable, and in view of the obvious estimate

|ξα| ≤ (1 + ∥ξ∥)|α|, (ξ ∈ Rn)

it follows that (iξ)αFu ∈ L2(Rn). We conclude that

∂αu = S∗F((iξ)αFu) ∈ L2(Rn).

�

Lemma 4.3.10. Let r ∈ N. There exists a constant C > 0 such that for all
ξ ∈ Rn,

(1 + ∥ξ∥)r ≤ C
∑
|α|≤r

|ξα|;

here ξ0 should be read as 1.

Proof It is readily seen that there exists a constant C > 0 such that

(1 +
√
n|t|)r ≤ C(1 + |t|r), (t ∈ R),

where |t|0 ≡ 1. Let ξ ∈ Rn and assume that k is an index such that |ξk| is
maximal. Then ∥ξ∥ ≤

√
n|ξk|. Hence,

(1 + ∥ξ∥)r ≤ (1 +
√
n|ξk|)r ≤ C(1 + |ξk|r) ≤ C

∑
|α|≤r

|ξα|.

�

Exercise 4.3.11. Show that the Fourier transform maps Hr(Rn) bijectively
onto L2

r(Rn). Thus, by transfer of structure, Hr(Rn) may be given the structure
of a Hilbert space. Show that this Hilbert structure is not the same as the one
introduced in Definition 2.2.10, but that the associated norms are equivalent.

The characterization of Hr(Rn) given above allows generalization to arbi-
trary real r.

Definition 4.3.12. Let s ∈ R. We define the Sobolev space Hs(Rn) of order
s to be the space of f ∈ S ′(Rn) such that (1 + ∥ξ∥)sFf ∈ L2(Rn), equipped
with the inner product

⟨f, g⟩s =

∫
Rn

Ff(ξ)Fg(ξ) (1 + ∥ξ∥)2s dξ.

Equipped with this inner product, the Sobolev space Hs(Rn) is a Hilbert
space. The associated norm is denoted by ∥ · ∥s.
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Exercise 4.3.13. The Heaviside function H : R → R is defined as the char-
acteristic function of the interval [0,∞). For R > 0 we define uR to be the
characteristic function of [0, R].

(a) Show that uR,H ∈ S ′(R) and that uR → H in S ′(R) (pointwise) as
R→∞.

(b) Determine FuR for every R > 0.
(c) Show that uR ∈ Hs(R) for every s < 1

2 , but not for s = 1
2 .

(d) Determine FH and show that H /∈ Hs(Rn) for all s ∈ R.

Lemma 4.3.14. Let s ∈ R. Then S(Rn) ⊂ Hs(Rn), with continuous inclusion
map. Furthermore, C∞

c (Rn) is dense in Hs(Rn).

Proof If f ∈ S(Rn) then Ff ∈ S(Rn). Moreover, let N ∈ N be such that
N > s+ n/2. Then N = s+ n/2 + ϵ, with ϵ > 0, hence

|Ff(ξ)|2 (1 + ∥ξ∥)2s ≤ νN,0(Ff)2 (1 + ∥x∥)−n−2ϵ.

This implies that f ∈ Hs(Rn) and that

∥f∥s ≤ νN,0(Ff) ∥(1 + ∥x∥)−n−2ϵ∥1/2
L1 .

Since F : S → S is continuous, it follows from this estimate that the inclusion
map S → Hs is continuous.

For the assertion about density it suffices to show that the orthocomplement
of C∞

c (Rn) in the Hilbert space Hs(Rn) is trivial. Let u ∈ Hs(Rn), and assume
that ⟨u, f⟩s = 0 for all f ∈ S(Rn). This means that∫

Rn

Fu(ξ)Ff(ξ) (1 + ∥ξ∥)2s dξ = 0, (f ∈ S(Rn)).

Therefore, the tempered distribution Fu(ξ) (1 + ∥ξ∥)2s vanishes on the space
F(C∞

c (Rn)). The latter space is dense in F(Rn), since C∞
c (Rn) is dense in

S(Rn) and F is a topological linear automorphism of S(Rn). We conclude that
Fu = 0, hence u = 0. �

We conclude this section with two results that will allow us to define the
local versions of the Sobolev spaces.

Lemma 4.3.15. Let s ∈ Rn. Then convolution (f, g) 7→ f ∗ g, S(Rn) →
S(Rn) → S(Rn) has a unique extension to a continuous bilinear map S(Rn) ∗
L2
s(Rn)→ L2

s(Rn).

In the proof we will need a particular type of estimate that will be useful
at a later stage as well. Specifically, for every s ∈ R the following estimate is
valid for all x, y ∈ Rn :

(1 + ∥x+ y∥)s ≤ (1 + ∥x∥)|s|(1 + ∥y∥)s.

It suffices to check the estimate for s = rϵ, with r > 0 and ϵ = ±1. By
monotonicity of the function z 7→ zr on ] 0,∞ [ it suffices to check the estimate
for s = ±1. In these cases, the estimate follows from (4.4).
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Proof Let f, g ∈ C∞
c (Rn). Then for all x, y ∈ Rn we have

(1 + ∥x∥)s|f(y)g(x− y)| ≤ (1 + ∥y∥)|s||f(y)|(1 + ∥x− y∥)s|g(x− y)|.

Let φ ∈ C∞
c (Rn). Then multiplying the above expression by |φ(y)|, followed by

integration against dxdy, application of Fubini’s theorem and of the Cauchy-
Schwartz inequality for the L2-inner product, we find

|⟨(1 + ∥x∥)sf ∗ g, φ⟩| ≤
∫
Rn

(1 + ∥y∥)|s||f(y)| dy ∥g∥L2,s ∥φ∥L2 .

Since this holds for arbitrary φ ∈ C∞
c (Rn), we obtain

∥(1 + ∥x∥)s(f ∗ g)∥L2 ≤ ∥(1 + ∥y∥)|s|f∥L1 ∥g∥L2,s.

The expression on the left-hand side equals ∥f ∗ g∥L2,s. Fix N ∈ N such that

|s| − N < −n. Then the L1-norm on the right-hand side is dominated by

CνN,0(f), with C equal to the L1-norm of the function (1+∥y∥)|s|−N . It follows
that

∥f ∗ g∥L2,s ≤ CνN,0(f) ∥g∥L2,s.

As C∞
c (Rn) is dense in both S(Rn) and L2

s(Rn), the result follows. �

Lemma 4.3.16. Let s ∈ R, φ ∈ S(Rn) and u ∈ Hs(Rn). Then φu ∈ Hs(Rn).
Moreover, the associated multiplication map S(Rn) × Hs(Rn) → Hs(Rn) is
continuous bilinear.

Proof We recall that by definition the Fourier transform F : S(Rn)→ S(Rn)
is an isometry for the norms ∥ · ∥s (from Hs(Rn)) and ∥ · ∥L2,s. From the
above lemma it now follows that the multiplication map S(Rn) × S(Rn) →
S(Rn) has a unique extension to a continuous bilinear map S(Rn)×Hs(Rn)→
Hs(Rn). We need to check that this extension coincides with the restriction
of the multiplication map S(Rn) × D′(Rn) → D′(Rn). Fix f ∈ S(Rn) and
φ ∈ C∞

c (Rn). Then we must show that ⟨fg, φ⟩ = ⟨g, fφ⟩ for all g ∈ Hs(Rn).
By continuity of the expressions on both sides in g (verify this!), it suffices to
check this on the dense subspace C∞

c (Rn), where it is obvious. �

In particular, it follows that C∞
c (Rn)Hs(Rn) ⊂ Hs(Rn). Therefore, we may

define local Sobolev spaces.
Let U ⊂ Rn be open, and let s ∈ R. We define the local Sobolev space Hs,loc

in the usual way, as the space of distributions u ∈ D′(U) such that χu ∈ Hs(Rn)
for every χ ∈ C∞

c (Rn). At a later stage we will prove invariance of the local
Sobolev spaces under diffeomorphisms, so that the notion of Hs,loc can be lifted
to sections of a vector bundle on a smooth manifold.

Exercise 4.3.17. This exercise is a continuation of Exercise 4.3.13. Show that
the Heaviside function H = 1[0,∞) belongs to Hs,loc(Rn) for every s < 1

2 but

not for s = 1
2 .
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4.4. Some useful results for Sobolev spaces

We note that for s < t the estimate ∥f∥s ≤ ∥f∥t holds for all f ∈ Ht(Rn).
Accordingly, we see that

Ht(Rn) ⊂ Hs(Rn), for s < t,

with continuous inclusion map. We also note that, by the Plancherel theorem
for the Fourier transform, H0(Rn) = L2(Rn). Accordingly,

(4.5) Hs(Rn) ⊂ L2(Rn) ⊂ H−s(Rn) (s ≥ 0).

Lemma 4.4.1. Let α ∈ Nn. Then ∂α : S ′(Rn)→ S ′(Rn) restricts to a contin-
uous linear map Hs(Rn)→ Hs−|α|(Rn), for every s ∈ R.

Proof This is an immediate consequence of the definitions. �
Given k ∈ N we define Ckb (Rn) to be the space of Ck-functions f : Rn → C

with
sk(f) := max

|α|≤k
sup
x∈Rn

|Dα
xf(x)| <∞.

Equipped with the norm sk, this space is a Banach space.

Lemma 4.4.2. (Sobolev lemma) Let k ∈ N and let s > k + n/2. Then

Hs(Rn) ⊂ Ckb (Rn)

with continuous inclusion map.

Proof In view of the previous lemma, it suffices to prove this for k = 0. We
then have s = n/2 + ϵ, with ϵ > 0. Let u ∈ C∞

c (Rn), then

u(x) =

∫
Rn

Fu(ξ)eiξx dx

=

∫
Rn

eiξxFu(ξ)(1 + ∥ξ∥)s(1 + ∥ξ∥)−n/2−ϵ dξ

From this we read off that u is bounded continuous, and

sup |u| ≤ ∥u∥s ∥(1 + ∥ξ∥)−n/2−ϵ∥L2 .

It follows that the inclusion C∞
c ⊂ Cb is continuous with respect to the Hs

topology on the first space. By density the inclusion has a unique extension to
a continuous linear map Hs → Cb. By testing with functions from S we see that
the latter map coincides with the inclusion of these spaces viewed as subspaces
of S ′. �

In accordance with the above embedding, we shall view Hs(Rn), for s >
k+n/2, as a subspace of Ckb (Rn). We observe that as an important consequence
we have the following result. Put

H∞(Rn) =
∩
s∈R

Hs(Rn).

Corollary 4.4.3.

(a) H∞(Rn) ⊂ C∞
b (Rn).

(b) H∞(Rn) equals the space of smooth functions f ∈ C∞(Rn) with ∂αf ∈
L2(Rn), for all α ∈ Rn.
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Proof Assertion (a) is an immediate consequence of the previous lemma. For
(b) we note that Hr ⊂ Hs for s < r. We see that H∞(Rn) is the intersection
of the spaces Hr(Rn), for r ∈ N. Now use the original definition of Hr(Rn),
Definition 2.2.10. �

Let V,W be topological linear spaces. Then a pairing of V and W is a
continuous bilinear map β : V ×W → C. The pairing induces a continuous map
β1 : V → W ∗ by β1(v) : w 7→ β(v, w) and similarly a map β2 : W → V ∗; the
stars indicate the continuous linear duals of the spaces involved. The pairing
is called non-degenerate if both the maps β1 and β2 are injective. It is called
perfect if it is non-degenerate, and if β1 is an isomorphism V →W ∗, and β2 an
isomorphism W → V ∗.

If V is a complex linear space, we denote by V̄ the conjugate space. This is
the complex space which equals V as a real linear space, whereas the complex
scalar multiplication is given by (z, v) 7→ z̄v.

If V is a Banach space, the continuous linear dual V ∗ is equipped with the
dual norm ∥ · ∥∗, given by

∥u∥∗ = sup{|u(x)| | x ∈ V, ∥x∥ ≤ 1}.

This dual norm also defines a norm on the conjugate space V̄ ∗.
If H is a Hilbert space with inner product ⟨ · , · ⟩, then the associated norm

∥ · ∥ may be characterized by

∥v∥ = sup
∥w∥≤1

|⟨v, w⟩|

It follows that v 7→ ⟨v, · ⟩ induces a linear isomorphism φ : H → H̄∗ which
is an isometry for the norm on H and the associated dual norm on H∗. The
isometry φ may be used to transfer the Hilbert structure on H to a Hilbert
structure on H̄∗, called the dual Hilbert structure. It is readily seen that the
norm associated with this dual Hilbert structure equals the dual norm ∥ · ∥∗
defined above.

Lemma 4.4.4. Let s ∈ R. Then the L2-inner product ⟨ · , · ⟩ on C∞
c (Rn) ex-

tends uniquely to a continuous bilinear pairing Hs(Rn) × H̄−s(Rn) → C. The
pairing is perfect and induces isometric isomorphisms Hs(Rn) ≃ H̄−s(Rn)∗ and
H̄−s(Rn) ≃ Hs(Rn)∗.

Proof Let f, g ∈ C∞
c (Rn). Then

⟨f, g⟩L2 =

∫
Rn

Ff(ξ)Fg(ξ) dξ

=

∫
Rn

Ff(ξ)(1 + ∥ξ∥)sFg(ξ)(1 + ∥ξ∥)−s dξ.

By the Cauchy-Schwartz inequality, it follows that the absolute value of the
latter expression is at most ∥f∥s∥g∥−s. By density of C∞

c (Rn) in Hs(Rn), this
implies the assertion about the extension of the pairing. The above formulas
also imply that

sup
g∈C∞

c (Rn),∥g∥−s=1
⟨f, g⟩ = ∥f∥s.
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Thus, by density of C∞
c (Rn), the induced map β1 : Hs(Rn) → H̄−s(Rn)∗ is

an isometry. Likewise, β2 : H−s(Rn) → H̄s(Rn)∗ is an isometry. From the
injectivity of β1 it follows that β2 has dense image. Being an isometry, β2 must
then be surjective. Likewise, β1 is surjective. �

4.5. Rellich’s lemma for Sobolev spaces

In this section we will give a proof of the Rellich lemma for Sobolev spaces,
which will play a crucial role in the proof of the Fredholm property for elliptic
pseudo-differential operators on compact manifolds.

Given s ∈ R and a compact subset K ⊂ Rn, we define

Hs,K(Rn) = {u ∈ Hs(R
n) | suppu ⊂ K}.

Lemma 4.5.1. Hs,K(Rn) is a closed subspace of Hs(Rn).

Proof Let f ∈ C∞
c (Rn). Then the space

f⊥ := {u ∈ Hs(Rn) | ⟨u, f⟩ = 0}
has Fourier transform equal to the space of φ ∈ L2

s(Rn) with ⟨φ,Ff⟩ = 0, which
is the orthocomplement of (1+∥ξ∥)−2sFf in L2

s(Rn). As this orthocomplement
is closed in L2

s(Rn), it follows that f⊥ is closed in Hs(Rn).
We now observe that Hs,K(Rn) is the intersection of the spaces f⊥ for

f ∈ C∞
c (Rn) with supp f ∩K = ∅. �

Lemma 4.5.2. (Rellich) Let t < s. Then the inclusion map Hs,K(Rn) →
Ht(Rn) is compact.

To prepare for the proof, we first prove the following result, which is based
on an application of the Ascoli-Arzéla theorem.

Lemma 4.5.3. Let B be a bounded subset of the Fréchet space C1(Rn). Then
B is relatively compact (i.e., has compact closure) as a subset of the Fréchet
space C(Rn).

Proof Boundedness of B means that every continuous semi-norm of C1(Rn)
is bounded on B. Let K ⊂ Rn be a compact ball. Then there exists a constant
C > 0 such that supK ∥df∥ ≤ C for all f ∈ B and each 1 ≤ j ≤ n. Since

f(x)− f(y) =

∫ 1

0
df(y + t(x− y))(x− y) dt

for all y ∈ x, we see that

|f(y)− f(x)| ≤ C∥x− y∥, for all (x, y ∈ K).

It follows that the set of functions B|K = {f |K | f ∈ B} is equicontinuous
and bounded in C(K). By application of the Arzèla–Ascoli theorem (see next
section), the set B|K is relatively compact in C(K). In particular, if (fk) is a
sequence in B, then there is a subsequence (fkj ) which converges uniformly on
K.

Let (fk) be a sequence in B. We shall now apply the usual diagonal proce-
dure to obtain a subsequence that converges in C(Rn).
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For r ∈ N let Kr denote the ball of center 0 and radius r in Rn. Then
by repeated application of the above there exists a sequence of subsequences
(fk1,j ) ≽ (fk2,j ) ≽ · · · ... such that (fkr,j ) converges uniformly on Kr, for every
r ∈ N.

The sequence (fkj,j )j∈N is a subsequence of all the above sequences. Hence,
it converges uniformly on each ball Kr. Therefore, it converges in C(Rn). �

Remark 4.5.4. By a slight modification of the proof above, one obtains a
proof of the compactness of each inclusion map Ck+1(Rn) ↪→ Ck(Rn). This
implies that the identity operator of C∞(Rn) is compact. Equivalently, each
bounded subset of C∞(Rn) is relatively compact. A locally convex topological
vector space with this property is called Montel.

If B is a subset of L2
s(Rn) and φ ∈ S(Rn), we write

φ ∗B := {φ ∗ f | f ∈ B}.
Then φ ∗B is a subset of L2

s(Rn).

Lemma 4.5.5. Let s ∈ R and let B ⊂ L2
s(Rn) be bounded. If φ ∈ S(Rn), then

the set φ ∗B is a relatively compact subset of C(Rn).

Proof In view of the previous lemma, it suffices to prove that f ∗B is bounded
in C1(Rn). For this we note that for each 1 ≤ j ≤ n,

| ∂
∂xj

[φ(x− y)f(y)]|

= |∂jφ(x− y)|(1 + ∥y∥)−s(1 + ∥y∥)s|f(y)|
≤ (1 + ∥x∥)|s||(1 + ∥x− y∥)−s∥∂jφ(x− y)∥(1 + ∥y∥)s|f(y)|.

The right-hand side can be dominated by an integrable function of y, locally
uniformly in x. It now follows by differentiation under the integral sign that
φ ∗ f ∈ C1(Rn), that ∂j(φ ∗ f) = ∂jφ ∗ f and that

∥∂j(φ ∗ f)(x)∥ ≤ (1 + ∥x∥)|s| ∥φ∥L2,−s ∥f∥L2,s.

This implies that the set φ ∗B is bounded in C1(B), hence relatively compact
in C(Rn). �

Proposition 4.5.6. Let s > t and let B be a bounded subset of L2
s(Rn) which

at the same time is a relatively compact subset of C(Rn). Then B is relatively
compact in L2

t (Rn).

Proof For R > 0 we denote by 1R the characteristic function of the closed
ball B(R) := B̄(0;R). Then for each r ∈ R, the map f 7→ 1Rf gives the
orthogonal projection from L2

s(Rn) onto the closed subspace L2
s,B(R) of functions

with support in B(R). We now observe that the following estimate holds for
every f ∈ L2

s(Rn) :

∥(1− 1R)f∥2L2,t =

∫
∥x∥≥R

(1 + ∥x∥)2t−2s(1 + ∥x∥)2s∥f(t)∥2 dt

≤ (1 +R)2(t−s)∥f∥2L2,s.
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Fix M > 0 such that ∥f∥L2,s ≤M for all f ∈ B. Then we see that

∥(1− 1R)f∥L2,t ≤M (1 +R)t−s, (f ∈ B).

Let now (fk) be a sequence in B. Then (fk) has a subsequence (fkj ) which
converges in C(Rn), i.e., there exists a function f ∈ C(Rn) such that fkj → f
uniformly on each compact set K ⊂ Rn. It easily follows from this that 1Rfkj is

a Cauchy-sequence in L2
t (R), for each R > 0. We will show that fkj is actually

a Cauchy sequence in L2
t (Rn). By completeness of the latter space, this will

complete the proof.
Let ϵ > 0. We fix R > 0 such that

M(1 +R)t−s <
ϵ

3
.

There exists a constant N > 0 such that

i, j ≥ N ⇒ ∥1Rfki − 1Rfkj∥L2,t <
ϵ

3
.

It follows that for all i, j > N,

∥fki − fkj∥L2,t

≤ ∥1R(fki − fkj )∥L2,t + ∥(1− 1R)fki∥L2,t + ∥(1− 1R)fkj∥L2,t

< ϵ.

�

Proof of Lemma 4.5.2 Let K ⊂ Rn be compact and let B be a bounded
subset of Hs,K(Rn). Fix a smooth compactly supported function χ ∈ C∞

c (Rn)
that is 1 on a neighborhood of K. Then χf = f for all f ∈ B. It follows that

F(B) = φ ∗ F(B),

with φ = F(χ) ∈ S(Rn). By Lemma 4.5.5 it now follows that F(B) is both
bounded in L2

s(Rn) and a relatively compact subset of C(Rn). By the previous
proposition, this implies that F(B) is relatively compact in L2

t (Rn). As F is
an isometry from Ht(Rn) to L2

t (Rn), it follows that B is relatively compact in
Ht(Rn). �

4.6. The Arzèla–Ascoli theorem

The Arzèla–Ascoli theorem gives a useful characterization for relative compact-
ness of a set of continuous functions on a locally compact metric space X,
which in addition is σ-compact, i.e., X is the union of countably many compact
subsets. In the following we assume X to be a such a metric space.

The space C(X) of continuous functions X → C, is equipped with the
locally convex topology of uniform convergence on compact subsets. More pre-
cisely, for K ⊂ X a compact subset we define the seminorm ∥ · ∥K by

∥f∥K := sup
x∈K
|f(x)|, (f ∈ C(X).

The space C(X) is equipped with the topology induced by the seminorms ∥ · ∥K
for K ⊂ X compact. Note that C(X) is a Fréchet space with this topology. In
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the special case X compact, the topology is induced by the sup-norm ∥ · ∥X ,
and C(X) is a Banach space.

Definition 4.6.1. Let F ⊂ C(X) be a set of continuous functions on the
compact metric space X. The set F is said to be equicontinuous at a point
a ∈ X if for every ϵ > 0 there exists a δ > 0 such that for all x ∈ X with
d(x, a) < δ we have

|f(x)− f(a)| < ϵ, for all f ∈ F .

The set F is said to be equicontinuous if it is equicontinuous at every point of
X.

Exercise 4.6.2. Assume that X is compact metric space and let F ⊂ C(X).
Show that F is equicontinuous if and only if F is uniformly equicontinuous, i.e.,
for every ϵ > 0 there exists a δ > 0 such that for all f ∈ F and all x, y ∈ X,

d(x, y) < δ ⇒ |f(x)− f(y)| < ϵ.

Hint: use the open covering property.

A set F ⊂ C(X) is said to be relatively compact if its closure F̄ in C(X) is
compact. Since every Fréchet space is metrizable, the latter is equivalent to F̄
being sequentially compact.

Theorem 4.6.3. (Arzèla-Ascoli) Let X be a locally compact and σ-compact
metric space, and F ⊂ C(X). Then the following assertions are equivalent.

(a) The set F is relatively compact in C(X).
(b) The set F is equicontinuous and pointwise bounded.

Proof We first assume that X is compact. Assume (a). Fix a ∈ X. Then
the map eva : C(X) → C is continuous. Therefore, eva(F) = {f(a) | f ∈ F}
is relatively compact, hence bounded in C. This implies that F is pointwise
bounded.

Let F̄ denote the closure of F in C(X). Let ϵ > 0. Then by compactness of
F̄ there exists a finite collection of functions fj ∈ F̄ , 1 ≤ j ≤ k, such that the
balls B(fj ; ϵ/2) in C(X) cover F̄ . By compactness of X, each fj is uniformly
continuous. Hence there exists a δ > 0 such that for all x, y ∈ X with d(x, y) < δ
and all j we have |fj(x) − fj(y)| < ϵ/3. Let now f ∈ F̄ . Then there exists a j
such that ∥f − fj∥X < ϵ/3. It follows that for all x, y ∈ X with d(x, y) < δ we
have

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|
≤ 2∥f − fj∥X + |fj(x)− fj(y)|
< ϵ.

This shows that F̄ , and hence F , is (uniformly) equicontinuous.
For the converse, assume (b). Then it is easily seen that the closure F̄ is

equicontinuous and pointwise bounded as well.
Since C(X) is metric, it suffices to show that F̄ is sequentially compact, or,

equivalently, that every sequence in F̄ has a converging subsequence.
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We will first show the validity of the following claim. Let (fj) be any
sequence in F̄ and ϵ > 0. Then by passing to a subsequence we may arrange
that for all k, l we have ∥fk − fl∥X < ϵ.

To establish the claim, let ϵ > 0. Then for every a ∈ X there exists a
δa > 0 such that for for all x ∈ X with d(x, a) < δa and all f ∈ F̄ we have
|f(x)− f(a)| < ϵ/4.

By compactness of X, there exist finitely many points a1, . . . , ar such that
the open balls BX(ai, δai) cover X. Fix i. Then the sequence (fj(ai)) is bounded,
hence has a converging subsequence. We see that we may replace (fj) by a
subsequence to arrange that (fj(ai)) converges, for every 1 ≤ i ≤ r. Thus we
may pass to yet another subsequence of (fj) to arrange that for all j, k, i we
have

|fj(ai)− fk(ai)| < ϵ/4.

Let x ∈ X. Select i such that d(x, ai) < δai . Then we find that for all j, k,

|fj(x)− fk(x)| ≤ |fj(x)− fj(ai)|+ |fj(ai)− fk(ai)|+ |fk(ai)− fk(x)|
< 3ϵ/4.

It follows that the obtained subsequence satisfies ∥fj − fk∥X ≤ 3ϵ/4 < ϵ, for all
j, k. This establishes the claim.

Let now (fj) be a sequence in F̄ . Applying the above claim repeatedly we
obtain a sequence of subsequences

(fj) ≽ (f1,j) ≽ (f2,j) ≽ · · ·

such that for all k, i, j we have

∥fk,i − fk,j∥ < 2−k.

The sequence (fk,k)k∈N is a subsequence of (fj) and satisfies ∥fk,k−fl,l∥X < 2−k

for all k < l. One now readily verifies that the sequence (fk,k) is Cauchy for
the sup-norm on C(X) hence converges to a function f ∈ C(X). Thus F̄ is
sequentially compact, and (a) follows.

The general situation can be reduced to the present one by application of
a diagonal argument, see the exercise below. �

Exercise 4.6.4. Let the metric space X be locally compact and σ-compact.
Let (fj) be a sequence in X such that the set F := {fj | j ∈ N} is equicontinu-
ous.

(a) Show that there exists a countable sequence (Kj) of compact subsets of
X such that Kj ⊂ int (Kj+1) and ∪jKj = X.

(b) Use a diagonal argument to show that (fj) has a subsequence (fjν ) which
converges uniformly on every set Kl, for l ∈ N.

(c) Show that the sequence (fjν ) converges in C(X).
(d) Complete the proof of Theorem 4.6.3.

Exercise 4.6.5. Let X be a locally compact metric space. Let Cb(X) denote
the set of bounded continuous functions X → C. Equipped with the supnorm
∥ · ∥X this space is a Banach space.
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Let F : X → [0,∞ [ be a continuous function which vanishes at infinity,
i.e., for every ϵ > 0 there exists a compact set K ⊂ X such that F (x) < ϵ for
all x ∈ X \K.

Let F be an equicontinuous subset of Cb(X) which is dominated by F, i.e.
|f(x)| ≤ F (x) for all f ∈ F and x ∈ X.

(a) Let (fj) be a sequence in F . Show that for every ϵ > 0 there exists a
subsequence (fjk) of (fj) such that

∥fjk − fjl∥X < ϵ

for all k, l.
(b) Show that F is relatively compact in Cb(X).


