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Exercises for Chapter 1

Exercise 1 The purpose of this exercise is to show that the three dimensional sphere de-
composes into two solid tori, glued together along their boundaries. Of course the reader is
also encouraged to find an immediate visualization of this fact.

Given a point x ∈ R4, we agree to write x = (x′, x′′), with x′, x′′ ∈ R2. The circle group
SO(2) has a smooth action on R4, given by

a · x = (ax′, a−1x′′).

Let ∆ denote the closed disc ‖y‖2 ≤ 1/2 in R2

(a) Show that the action described induces a free action on the unit sphere S := S3 in R4.

(b) Put S1 = {x ∈ S | ‖x′‖ ≤ 1
2

√
2} and S2 = {x ∈ S | ‖x′′‖ ≤ 1

2

√
2}. Show that the map

ϕ1 : ∆× SO(2) → S given by

ϕ1(y, a) = a · (y,
√

1− y2, 0)

is a diffeomorphism onto S1. Likewise, show that the map ϕ2 : ∆×SO(2) → S given by

ϕ2(z, a) = a · (
√

1− z2, 0, z)

is a diffeomorphism onto S2.

(c) Show that S1 ∩ S2 ' SO(2)× SO(2) is the torus.

(d) Show that the orbit space X := S3/SO(2) is a Hausdorff topological space, homeomor-
phic to the 2-sphere. Show that the fibration S3 → X is locally trivial with fiber SO(2).
This fibration is known as the Hopf fibration. In the course Lie groups this fibration
will naturally occur as the composed fibration S3 ' SU(2) → SO(3) → S2.

Exercise 2 The result stated in Remark (1) on page 11 can be reformulated as follows. Let
J be an ideal in Ω(M) which is generated by an everywhere linearly independent collection
ω1, . . . , ωq of one forms. Then the following two assertions are equivalent, for every λ ∈ Ω1(M).

(a) dλ ∈ J ;

(b) dλ ∧ ω1 ∧ · · ·ωq = 0.
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We leave the proof as an exercise to the reader. Hint for the implication ‘(b) ⇒ (a)’: first
consider an open set U of M on which ω1, . . . , ωq extends to a frame for ∧∗T ∗M |U and show
that there exist one forms αU

j on U such that dλ =
∑q

j=1 α
j
U ∧ωj . Then glue such local results

together by using a partition of unity.

Exercise 3 Let ω be an integrable nowhere vanishing one form on M. Show that for every
m ∈ M there exists an open neighborhood U 3 m and a submersion f : U → R such that
ω = gdf on U for a nowhere vanishing function g ∈ C∞(U). Hint: define the codimension one
subbundle E of TM given by Ex = kerωx. Show that E is locally at m given by a submersion
f.

Exercise 4 Show that the 2-sphere has no codimension 1 foliation. Hint: assume that a
foliation F exists. If F is orientable, consider a suitable vector field. If F is not orientable,
consider the orientation cover.

Exercise 5 Let V be a finite dimensional real linear space, let A : V → V be linear map
and let f ∈ F (V ). Let (Aij) be the matrix of A with respect to the frame f. Thus,

Afj =
∑

i

Aijfi.

(a) Show that A is the matrix of f−1 ◦A ◦ f ∈ L(Rn,Rn) with respect to the standard basis
of Rn.

(b) Show that det(Aij) is independent of the choice of f. Therefore, we may as well write
detA for det(Aij).

(c) Given two frames f, g letA = Af
g be the unique linear map V → V such thatAfj = gj for

all j = 1, . . . , n. Show that f and g have the same orientation if and only if detAf
g > 0.

Exercise 6 Let E be a vector bundle on the manifold M. Let ε be an orientation section on
E. Show that the orientation section ε is smooth on U if and only if for every frame f defined
on an open subset V ⊂ U the function m 7→ εm(f(m)) is smooth on V.

Exercise 7 Let π : E → M be a vector bundle. Assume that M is connected. Show that
there exist either no or two smooth orientations on E. Hint: show that given two orientations
ε1 and ε2 there exists a unique smooth scalar function χ ∈ C∞(M) such that (ε1)m =
χ(m)(ε2)m for all m ∈M. Investigate χ.

Exercise 8 Show that a vector bundle is orientable if and only if there exists an open
covering of M by open sets Uα with frames fα of E on Uα such that for all α, β such that for
all α, β and all m ∈ Uα ∩ Uβ the frames fα(m) and fβ(m) of Em have the same orientation.

Exercise 9 Prove the following result. Let p : Y → X be a continuous covering projection of
topological spaces. Assume that X has the structure of a smooth manifold, and that p−1({x})
is at most countable for every x. Then Y has a unique manifold structure for which p is a
local diffeomorphism.
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Exercise 10 Let M be a non-orientable smooth connected manifold, and let q : M̃ :=
oc(TM) →M be the associated two-fold covering by an orientable connected manifold.

For every m ∈ M we define the map Sm : oc(TmM) → oc(TmM) by Sm(ε) = −ε.
Moreover, we define the map S : M̃ → M̃ by S = Sm on oc(TmM). Show that S is a
diffeomorphism of order 2 (i.e., S2 = 2) without fixed points. Show that S reverses every
choice of orientation for M.

Conversely, let N be an oriented smooth connected manifold, and let S be a diffeomor-
phism of N of order 2, which reverses orientation and has no fixed points. Let ∼ be the
relation on N defined by x ∼ y ⇐⇒ y ∈ {x, Sx}. Show that ∼ is an equivalence relation and
that M = N/ ∼ has a unique structure of smooth manifold for which the canonical projection
N →M is a submersion. Show that M is not orientable and that N ' oc(M).

Exercise 11 Let M be a smooth manifold, and let G be a finite group acting freely on M
by diffeomorphisms. Show that M/G has a unique structure of smooth manifold for which
the natural map p : M →M/G is a submersion. Show that p is a smooth covering projection
on which G acts by covering transformations.

Exercise 12 Let f : X → Y be a smooth map of manifolds. Moreover, let Z ⊂ Y be
a smooth submanifold of codimension q. Then f is said to be transversal to Z if for all
x ∈ f−1(Z) we have

image(df(x)) + Tf(x)Z = Tf(x)Y.

Show that if f is transversal to Z, then f−1(Z) is a submanifold of X of codimension q.
Hint: fix x ∈ f−1(Z). Then there exists a neighborhood U of f(x) in Y and a submersion

s : U → Rq, such that Z ∩ U = q−1(0). Show that s ◦ f is a submersion in a suitable
neighborhood of x.

Exercise 13 Let f : N →M be a smooth map of smooth manifolds, and let p : Y →M be
a submersion.

(a) Show that the diagonal ∆ := {(m,m) | m ∈M} is a smooth submanifold of M ×M.

(b) Show that the map f × p : N × Y →M ×M is transversal to ∆.

(c) Show that Γ = {(x, y) ∈ N × Y | f(n) = p(y)} is a smooth submanifold of N × Y.

(d) Show that the map pr1|Γ : Γ → N is a submersion.

We write f∗Y := Γ and f∗p := pr1|Γ. The map f∗p : f∗Y → N is called the pull-back of the
submersion p under f. We write f̃ := pr2|Γ.

(e) Show that f∗p, f∗Y is characterized by the following universal property. For every
smooth manifold Z and every pair of smooth maps q : Z → N and g : Z → Y such that
p ◦ g = f ◦ q there exists a unique smooth map ϕ : Z → f∗Y such that f̃ ◦ϕ = g and
f∗p ◦ϕ = q. Draw a diagram to illustrate this property.

(f) Assume now that p : Y →M is a fiber bundle, i.e., p allows local trivializations. Show
that f∗p : p∗Y → N is a fiber bundle modeled on the same fiber. Formulate the
universal property in terms of fiber bundles Z → N. The fiber bundle p∗Y → N is
called the pull-back of Y →M under f.

(g) Same question, but now for p : Y → M a vector bundle. The associated vector bundle
f∗p : f∗Y → N is called the pull-back of the vector bundle Y →M.
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Exercises for Chapter 2

Exercise 14 Let (M,F) be a foliated manifold and let p : TM → N(F) be the natural vector
bundle homomorphism from the tangent bundle of M onto the quotient bundle N(F) :=
TM/TF . Then p∗ : Y 7→ p ◦Y defines a mapping X(M) → Γ(N(F)).

(a) Show that the map p∗ is a surjective linear map, with kernel X(F).

Let X ∈ X(F). The flow of X is denoted by ϕ : (t, x) 7→ ϕt(x) = ϕ(t, x). Its domain D is an
open subset of R×M.

(b) Show that for every (t, x) ∈ D the derivative dϕt(x) maps TxF onto Tϕt(x)(F), hence
induces a bijective linear isomorphism dϕt(x)∗ from TxM/TxF onto Tϕ(t,x)M/Tϕ(t,x)F .

For σ a smooth section of N(F) we define the Lie derivative LXσ ∈ Γ(N(F)) by

LXσ(x) =
d

dt

∣∣∣∣
t=0

dϕ−t(x)∗ σ(ϕt(x)).

(c) Show that for any vector field Y ∈ X(M) we have

LX(p∗Y ) = p∗[X,Y ].

(d) Show that a vector field Y is projectable if and only if LX(p∗Y ) = 0 for all X ∈ X(F).

Let now g be a positive semi-definite inner product on TM such that ker gx = TxF for every
x ∈M.

(e) Show that there exists a unique positive definite inner product ḡ on the quotient bundle
N(F) such that p∗ḡ = g.

(f) Give a definition of Lie derivative LX operating on sections of the tensor bundleN(F)∗⊗
N(F)∗ in such a fashion that

p∗LX ḡ = LXg,

for every X ∈ X(M). Show that the metric g is transverse on (M,F) if and only if

LX ḡ = 0 for all X ∈ X(F).

Exercise 15 Let (M,F) be a foliated manifold.

(a) Show that for every x0 ∈M there exists an open neighborhood U of x and a collection
of projectable vector fields X1, . . . , Xn such that X1(x), . . . , Xn(x) is a basis for TxM,
for all x ∈ U.

Let 〈 · , · 〉 be a Riemannian metric on M. Let TF⊥ be the associated normal bundle, i.e.,

(TF⊥)x := (TxF)⊥, (x ∈M).

Given a vector field Y ∈ X(M) we write Y = Y (t) + Y (n) with tangential component Y (t) ∈
X(F) and normal component Y (n) ∈ Γ(TF⊥).
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(b) Show that Y is projectable if and only if its normal component Y (n) is projectable.

We define the positive semi-definite metric g on TM by g(X,Y ) = 〈X(n) , Y (n)〉.

(c) Show that for all X ∈ X(F) and all projectable vector fields Y, Z ∈ X(M),

Xg(Y, Z) = LXg(Y, Z).

(d) Show that the metric g is transverse on (M,F) if and only if

Xg(Y, Z) = 0

for all X ∈ X(F) and all normal projectable vector fields Y, Z ∈ X(M).

Exercise 16 (Foliated Lie group action) Let M be a manifold, G a compact Lie group,
and assume that a smooth left action G×M →M, (g, x) 7→ gx is given. We assume that the
action is foliated, i.e., dimGx is a constant function of x ∈M.

Fix a ∈ M. It is known that there exists a connected smooth submanifold S of M,
containing a, invariant under Ga and such that the map

ϕ : G× S →M,

given by ϕ(g, x) = gx, factors to a diffeomorphism of G×Ga S onto an open subset U of M.
(This is the slice theorem; a submanifold S with these properties is said to be a slice for the
action in the point a. For more details, we refer to the notes ‘Quotients and actions’).

(a) Show that for x ∈ S the isotropy subgroup Gx is an open subgroup of Ga. In particular,
conclude that Ga/Gx is a finite group.

(b) Let K be the kernel of the natural map Ga → Diff(S). Show that K has finite index in
Ga and conclude that G/K → G/Ga is a finite covering with covering group Ga/K.

The action by G determines a unique foliation F whose leaves are the G-orbits. We fix the
leaf L := Ga and will study its holonomy group.

(c) Show that the natural map g 7→ ga factors to a covering G/K ' L with covering group
Ga/K.

(d) Let α : [0, 1] → L be a continuous curve with α(0) = a. and let α̃ be its lifting to G/K,
with initial point α̃(0) = ē := eK. Show that holα̃(1)S,S(α) is the germ at a of the map
x 7→ α̃(1)x.

(e) Now assume that α is a loop in L, based at a, so that α̃(1) = ē · [α], for the natural right
action of the fundamental group Π1(L, a) on the covering space (G/K, ē). Show that

holS,S(α) : x 7→ α̃(1)x.

(f) Show that the holonomy group of L at a equals the finite group Ga/K.
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Exercise 17 (The tubular neighborhood theorem) For background to this exercise, read
Chapter 3 of the notes ‘Quotients and group actions’ and Section 2 of the course notes
‘Foliation theory’.

We assume that L is a compact submanifold of the smooth manifoldM. LetM be equipped
with a Riemannian metric 〈 · , · 〉 and letN be the associated normal bundle of L inM, defined
by

N = {(x, ξ) ∈ TM | x ∈ L, ξ ⊥ TxL}.

We denote the natural inclusion map L→ N, x 7→ (x, 0), by jL. For each x ∈ L, we denote the
natural inclusion map Nx → TM by iN,x. We define the map ϕ from an open neighborhood
of L (in N) to M by

ϕ(x, ξ) = Expx(ξ).

Here Exp denotes the exponential map associated with the Riemannian metric on M.

(a) Calculate dϕ(x, 0)(djL(x)X + diN,x(0)Y ) for x ∈ L, X ∈ TxL and Y ∈ Nx.

(b) Show that dϕ(x, 0) is a bijective linear map from T(x,0)N onto TxM, for each x ∈ L.

(c) For ε > 0 we define the open neighborhood N(ε) of L in N by

N(ε) = {(x, ξ) ∈ N | ‖ξ‖x < ε}.

Show that for ε > 0 sufficiently close to zero the map ϕ is a diffeomorphism from N(ε)
onto an open neighborhood of L in M.

Let q be the codimension of L in M. In the following we assume that there exists an open
ball B = B(0;R) in Rq and a diffeomorphism ψ of L×B onto an open neighborhood of L in
M such that ψ(x, 0) = x for all x ∈ L.

(d) Show that for ε > 0 sufficiently small there exists an embedding α : N(ε) → L × Rq

such that ψ ◦α = ϕ.

(e) Show that the map τ : N → L× Rq defined by

τ(x, ξ) = (x, d(pr2 ◦α ◦ iN,x)(0)ξ)

is smooth, and that pr2 ◦ τ(x, · ) is a linear bijection from Nx onto Rq.

(f) Show that it follows from the assumption made before (d) that the normal bundle N is
trivial.

Exercise 18 We consider the foliation F in Rn = Rn−q × Rq whose leaves are of the form
Rn−q ×{b}, with b ∈ Rq. Let V1 be an open subset of Rn−q containing 0. Let B(ε) denote the
open ball in Rq of center 0 and radius ε. Assume there exists an embedding ν : V1×B(ε) → Rn

such that ν(x, 0) = (x, 0) for all x ∈ V1. Let V denote the image of ν and let r : V → V be
the map defined by r(ν(x, y)) = ν(x, 0) = (x, 0), for (x, y) ∈ V1 ×B(ε).

(a) Show that Rn−q × {0} ⊕ ker dr(0) = Rn.

(b) Show that the map ψ : V → Rn defined by

ψ(x, y) = (pr1r(x, y), y)

is a local diffeomorphism at 0.
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(c) Show that by replacing V1 by a smaller neighborhood and ε > 0 by a smaller positive
constant, we may arrange that ψ is a diffeomorphism from V onto an open neighborhood
of 0 in Rn. Show that ϕ(x, 0) = (x, 0) for all x ∈ V1.

(d) Show that (ϕ, V ) is a foliation chart for F and that

ϕ(r(x, y)) = (pr1ϕ(x, y), 0)

for all (x, y) ∈ V.

We now assume that M is a manifold of dimension n, that F is a codimension q foliation and
that L is a compact leaf. Let r : N → L be a tubular neighborhood of L in M.

(e) Show that for every a ∈ L there exists an open neighborhood V1 = Va,1 ⊂ L such that
for every ((n− q)-dimensional) chart (U1, χ) of L with U1 ⊂ V1 there exists a foliation
chart (U,ϕ) with the following properties:

(i) U ∩ L = U1, and pr1 ◦ϕ = χ on U1;

(ii) ϕ(U) = χ(U1)× Rq;

(iii) r(U) ⊂ U1;

(iv) ϕ ◦ r = (pr1 ◦ϕ, 0) on U.

This explains the choice of foliation charts covering the leaf L suggested in the proof of the
Local Reeb Stability Theorem in Section 2.3 of the book.

Exercise 19 Let M be smooth manifold of dimension n and G a finite group of diffeomor-
phisms of M. Let a ∈M.

(a) Show that there exists an open neighborhood O of a such that for all g ∈ G we have

O ∩ gO 6= ∅ ⇒ g ∈ Ga.

(b) Show that for every open neighborhood V of a there exists an open neighborhood U of
a in V, a diffeomorphism ϕ from U onto the open unit ball B = B(0; 1) ⊂ Rn and an
embedding µ : G→ O(n) such that

ϕ(gx) = µ(g)ϕ(x), (x ∈ G).

Hint: use a suitable Riemannian metric on M.

(c) Show that for every open neighborhood V of a there exists an open neighborhood U as
above which is G-stable.

(d) Show that there exists a diffeomorphism ψ : B(0; 1) → Rn such that for all A ∈ O(n)
we have ψ ◦A = A ◦ψ

(e) Prove assertions (b) and (c), but this time with B = Rn.

Exercise 20 Prove (iv) of Proposition 2.12. Hint: Apply Lemma 2.11 with domain µ(V )
instead of V and with map λ ◦µ instead of f.
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Exercise 21 We assume that Q is an orbifold of dimension n, that (U,G, ϕ) is an orbifold
chart for Q and that b ∈ ϕ(U).

(a) Let a ∈ U be such that ϕ(a) = b and let O be an open neighborhood of a in U. Show that
there exist an orbifold chart (Rn,H, ψ), with H a finite subgroup of O(n) isomorphic
to Ga, and an embedding λ : (Rn,H, ψ) → (U,G, ϕ) with λ(0) = a and λ(Rn) ⊂ O.

(b) Show thatQ possesses an orbifold atlas consisting of orbifold charts of the form (Rn,Ki, χi),
with Ki a finite subgroup of O(n).

Exercise 22 Show that FQ has the structure of an orbifold for which π : FQ → Q is an
orbifold map.

Exercise 23 If M is a smooth manifold, and FM its frame bundle, then we have a natural
smooth map FM × Rn → TM, defined by

((x, f), v) 7→ (x, fv).

Show that this map factors to a vector bundle isomorphism

FM ×GL(n,R) Rn → TM.

Use this idea to define the tangent bundle TQ of an orbifold Q. Show that the tangent
bundle need not be a manifold, but that it admits an orbifold structure for which the natural
projection TQ→ Q becomes an orbifold map.

Exercise 24 The purpose of this exercise is to provide hints for Exercise 2.18 of the book.
That exercise can be reduced to the following slightly simpler situation (of course here there
is still some work to do). We assume that Q is an orbifold and that H is a finite subgroup of
the group of orbifold automorphisms of Q. The simplification is that we assume that H has
a simultaneous fixed point a ∈ Q.

(a) Show that there exists an orbifold chart (U,G, ϕ) of Q with ϕ−1(a) consisting of one
point, x say. Thus, x is a fixed point for G.

(b) Show that there exists an open G-invariant neighborhood U0 of x such that every h ∈ H
has a lift h̃ : U0 → U. Show that h̃x = x and that Hϕ(U0) ⊂ ϕ(U).

Let O be the intersection of the sets hϕ(U0), for h ∈ H. Let V be the connected component
of the set U0 ∩ ϕ−1(O) containing x.

(c) Show that V is G-invariant. Show also that for each h ∈ H and h̃ : U0 → U a lift we
have h̃(V ) = V.

(d) Show that ϕ(V ) is H-invariant.

Let HV be the image of the map h 7→ h|ϕ(V ). Let A be the group of diffeomorphisms of V map-
ping G-orbits to G-orbits. Let Ā be its natural image in the group of orbifold automorphisms
of ϕ(V ) and let p : A→ Ā be the natural epimorphism. Finally, let H̃ = p−1(HV ).

(e) Show that the natural sequence

1 → G→ H̃ → HV → 1

is short exact.

(f) Let π : Q→ Q/H be the canonical projection. Show that (V, H̃, π ◦ϕ|V ) is an orbifold
chart for Q/H
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