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1 Orientation on a linear space

Let V be a finite dimensional real linear space, of dimension n. By a frame in V' we mean an
ordered basis f1,..., f, of V. Let FI(V) denote the set of frames in V. Let e1,...,e, be the
standard basis of R™. Then given a frame (f;) € F, there is a unique linear map f : R" — V
such that f(e;) = f; for all 1 < i < n. Clearly, the linear map f is an isomorphism of linear
spaces. Conversely, every linear isomorphism f : R™ — V gives rise to the frame (f; = f(e;)).
Let L(R™, V) denote the (finite dimensional linear) space of linear maps R” — V and let
Liso(R™, V') denote the subset of invertible ones. Then the map f — (f(e;)) gives a bijection
from Liso(R™, V') onto F'(M). We will use this bijection to identify the two sets. In particular,
since Liso(R™, V') is an open subset of the finite dimensional linear space L(R"™, V') we obtain
a structure of smooth manifold on F'(M).

Given two frames f,g € F(M), the linear map A = g~ !f : R® — R" is invertible, hence
has a non-zero determinant. We will say that f and g have the same orientation, notation
f ~ gif and only if this determinant is positive. Clearly, ~ is an equivalence relation on F'(M),
and F(M)/ ~ consists of two elements. The elements of F(M)/ ~ are called orientations of
V. An oriented finite dimensional real linear space is a finite dimensional real linear space V'
together with a fixed choice of an orientation.

Exercise 1.1 Let A:V — V be linear map and let f € F(V). Let (A;;) be the matrix of
A with respect to the frame f. Thus,

Af; = ZAijfi-

(a) Show that A is the matrix of f~1o Ao f € L(R™, R") with respect to the standard basis
of R™.

(b) Show that det(A;;) is independent of the choice of f. Therefore, we may as well write
det A for det(A;;).

(c) Given two frames f,glet A = Ag be the unique linear map V' — V such that Af; = g; for
all j = 1,...,n. Show that f and g have the same orientation if and only if det Ai; > 0.

In the following it will be convenient to view the set of orientations on V somewhat differently.
Given an orientation o € F(M)/ ~ we define a map € = ¢, : F(M) — {£1} by e(f) = +1
if f € oand by e(f) = —1if f ¢ o. Then e : F(V) — {—1,1} is a surjective map which is
constant on the classes for ~ . The set of such maps is denoted by or(V). It is easily checked



that the map o — ¢, is a bijection from F(M)/ ~ onto or(V). Indeed, the inverse map is
given by € — o, where o = {f € F(M) | e(f) = 1}. In particular, it follows that or(V')
consists of two elements. If € € or(V') then or(V) = {—e¢, €}. In the following we shall identify
the elements of or(V) with the classes for ~ in F(V) in the above fashion. Given a choice
e € or(V) we say that a frame f is positively oriented if €(f) = 1 and that it is negatively
orientend if €(f) = —1.

Yet another view on orientation is obtained by using alternating n-forms. Let A" V* be the
(1-dimensional) space of alternating n-forms on V. Given a non-zero element w € A" V*\ {0}
we obtain a non-zero function F(M) — R given by f — w(f) = w(f1,..., fn). We note that
f ~ g if and only if w(f) and w(g) have the same sign. Indeed, w(f) = f*w(e1,...,e,) and a
similar formula for w(g), so that

w(g) = w(gf " f) = det(gf Hw(f).

Given a non-zero n-form w we define the orientation €, € or(V) by €,(f) = signw(f). The
map w — €, is surjective to or(V'). Two forms belong to the same fiber for this map if and
only if they differ by a positive scalar factor. Accordingly, the map induces a bijection

(AV\{0})/RT = or(V).

We will use this bijection to identify the elements of the spaces on both sides.

2 Orientation on vector bundles

Let M be a smooth manifold and let 7 : £ — M be a vector bundle of rank n on M. If U is an
open subset of M, then by a (smooth) frame f of E on U we mean an n-tuple f = (f1,..., fn
of smooth sections f; : U — E such that for every z € M the tuple (fi(x),..., fn(z)) is
a frame for E,. Given such a frame f, we define the map f : U x R" — E|y by f(z,£) =
f(x)(&) = Z;‘:l & f;- Then it is readily seen that 75 = f~1is a trivialization of the bundle
E|y. Conversely, if 7 : E|y — U x R" is a trivialization, then the functions fj(z) = 771(z, e;)
define a smooth frame for E on U. It follows that giving a local frame is equivalent to giving
a local trivialization of the bundle.

An orientation € on E is the choice of an element €, € or(E,,) for every m € M. An
orientation is said to be smooth at a point a if there exists an open neighborhood U of a and
a smooth frame f of E|y such that m — €,,(f(m)) is a smooth function U — {—1,1}. Note
that a function U — {£1} is smooth if and only if it is locally constant. The orientation is
said to be smooth on an open set U if it is smooth at every point of U.

Exercise 2.1 Show that the orientation € is smooth on U if and only if for every frame f
defined on an open subset V' C U the function m +— €,,(f(m)) is smooth on V.

Definition 2.2 The vector bundle 7 : E — M is said to be orientable if and only if there
exists a smooth orientation for

Definition 2.3 The manifold M is said to be orientable if and only if the tangent bundle
T'M is orientable.



Exercise 2.4 Let m: E — M be a vector bundle. Assume that M is connected. Show that
there exist either no or two smooth orientations on E. Hint: show that given two orientations
€1 and e there exists a unique smooth scalar function xy € C°°(M) such that (e1),, =
x(m)(€e2)m for all m € M. Investigate x.

Lemma 2.5 Letm: E — M be a vector bundle on the manifold M. Then the following
assertions are equivalent.

(a) The vector bundle E is orientable.

(b) There exists a smooth non-vanishing section w of the line bundle \" E* =11, cpr N Ef,.

Proof: Assume (b). Let w be a non-vanishing section. Then we define €, € or(E,,) by
em(f) = signwy, (f) for f € F(E,,). By smoothness of w, it follows that € is smooth.

Assume (a). Let a € M and let fi,..., f, be a local frame for F|y on some open neigh-
borhood U = U, of a. Then €(f) is a locally constant function with values in {+1}. Replacing
fi1 by —fi1 if necessary, we may assume that ¢,(f(a)) = 1. Replacing U by a smaller neigh-
borhood if necessary, we may assume that e(f) = 1 on U. In other words, f is a positively
oriented local frame with respect to the smooth orientation e. Let f1... f” be the dual frame
for E*. Then w = f'A--- A f" is a non-vanishing smooth section of A" E* over U. Moreover,
for every m € U, the form w,, is positively oriented with respect to €,,.

In view of the above, there exists an open cover U;, ¢ € I, of M together with non-
vanishing sections w; of A" E*|y, such that w;(m) is ey,-positively oriented for every i € I
and m € U;. There exists a partition of unity {ty} subordinate to U;. This means that
Y € C(M), 0 < ¢y, < 1, for every k there exists a iy € I such that suppyy C U;,, and
finally, >, ¥ = 1, with locally finite sum.

We now claim that w = >, ¥xrw;, is a smooth non-vanishing section of A" E* which is
everywhere positively oriented with respect to €. The proof of this claim is left as an execise
to the reader. O

Remark 2.6 Note that in the above proof we have actually shown that the form w may be
chosen such that it is everywhere positively oriented with respect to the orientation e.

Exercise 2.7 Show that a vector bundle is orientable if and only if there exists an open
covering of M by open sets U, with frames f, of F on U, such that for all «, 8 such that for
all o, 8 and all m € U, N Ug the frames f,(m) and fg(m) of E,, have the same orientation.

3 The orientation cover of a vector bundle

Let m : E — M be a rank n vector bundle on the smooth manifold M. We consider the
disjoint union
oc(E) = [ or(Em).
meM

In the previous section we defined an orientation € on E to be section ¢ : M — oc(E).
The purpose of this section is to put a manifold structure on oc(F) such that the natural
map oc(E) — M becomes a fiber bundle (with fiber diffeomorphic to {£1}) and such that
smoothness of an orientation corresponds to smoothness of the orientation viewed as a section.



Consider the line bundle L = A" E*, viewed as a manifold. Let 0;, denote the image of
the zero section in L. Then O := L\ 0y, is an open subset of L hence a smooth manifold of its
own right. The canonical map p : O — M, obtained by restriction of the projection L — M
gives O the structure of a fiber bundle with fiber diffeomorphic to R\ {0}.

Recall that for every m € M we have a natural map 7, : L, \ {0} — or(E,,) given
by 9 (W)(f) = |w(f)|tw(f). Let n : O — oc(E) be defined by 7 = n,, on O,,. Then 7 is

surjective.

Lemma 3.1 The set oc(E) has a unique structure of smooth manifold for which n : O —
oc(E) is a submersion. For this manifold structure, the natural projection q : oc(E) — M is
a two-fold smooth covering projection.

Let € : M — oc(E) a section. Then € is smooth at a if and only if there exists a frame f
of E defined in an open neighborhood of a such that m — €y, (f(m)) is locally constant.

Remark 3.2 The last assertion implies that the new notion of smoothness of an orientation
coincides with the old one.

Proof: We have to show that such a manifold structure exists. It is then necessarily unique.

First of all, we equip oc(F) with the quotient topology. The natural projection map
p: O — M factors to the natural projection map ¢ : oc(E) — M. Since p is continuous,
q is continuous for the quotient topology on oc(FE). We will first show that ¢ is a covering
projection.

To see this, let a € M. There exists an open neighborhood U of @ in M together with a
smooth local frame f of E|y. Let f* = (f7,..., f7) be the dual frame, and put w = fyA---Afr.
Then wy := w is a smooth section of O|y. Similarly, wo := —w is a smooth section of O|y.

The map s : U x R\ {0} — Ol|y given by s(z,t) = tw(x) is readily seen to be a diffeo-
morphism. We define V; = image(now;), for j = 1,2. Then the preimage of V; in O equals
s(U x RT) hence V; is open in oc(F). Similarly, V3 is open in oc(E).

Furthermore, ¢~*(U) is the disjoint union of V; and V3 and qlv; : V; — U is a homeomor-
phism with inverse now;. It follows that ¢ : oc(E) — M is a (two-fold) covering projection.
By the lemma below, oc(E) has a unique structure of smooth manifold for which ¢ becomes a
local diffeomorphism. Since p = gon is a submersion O — M, it follows that 1 : O — oc(FE)
is a submersion.

To establish the final assertion, let € : M — oc(FE) be a section. Assume that e is smooth at
the point a € M. Let f be any local frame of F defined on an open neighborhood U of a. Let f*
and w be associated to f as above. Then €,,(f(m)) = now(m)(f(m) = signw,,(f(m)) = +1
and (b) follows for any local section.

Conversely, let f be a frame as in (b), defined on an open neighborhood U of a. Then
replacing U by a smaller neighborhood if necessary, we may assume that m +— €,,(f(m)) is
constant on U, and replacing f by (—f1, f2, ..., fn) if necessary, we may assume that e(f) =1
on U. Let f* and w be associated to f as before. Then w(fi,...,f,) = 1 on U, hence
Nm(w(m)) = €y, on f(m) from which it follows that € = now is smooth. O

Lemma 3.3 Let p : Y — X be a continuous covering projection of topological spaces.
Assume that X has the structure of a smooth manifold, and that p~*({x}) is at most countable
for every x. Then Y has a unique manifold structure for which p is a local diffeomorphism.

Proof: Exercise for the reader. O



Remark 3.4 Recall that a continuous map p : Y — X is called a covering projection if for
every a € X there exists an open neighborhood U such that p~!(U) is the disjoint union of
open sets V; C Y such that ply, : V; — U is a homeomorphism for every i.

Lemma 3.5 Let E be a rank n-vector bundle on a connected manifold M. Then the orien-
tation cover oc(E) has either one or two connected components. Moreover, the following two
assertions are equivalent.

(a) The bundle E is orientable.
(b) The manifold oc(M) is not connected.

Proof: Let q: oc(E) — M be the canonical projection. Then ¢ is a two-fold smooth covering
projection.

Fix a point a € M. Then the fiber of ¢~ !(a) consists of two points a1, as. Let O; be the
connected component of oc(FE) containing «;. Let 8 be any point of oc(M). Then there exist
a continuous curve v : [0, 1] — M with initial point b := ¢(/3) and end point a. By the lifting
theorem, the curve has a unique lift to a curve 4 : [0,1] — oc(E) with 5(0) = . The end
point 7(1) belongs to ¢~!(a) hence equals a; or az. Therefore, oc(E) is the union of O; and
Os. As 01,04 are connected components, it follows that either O; = Oy or O1 # Os. This
establishes the first assertion.

Assume (a). Then there exists a smooth section €1 : M — oc(F). Now €2 = —¢; is a
smooth section as well, and oc(F) is the disjoint union of €; (M) and ex(M). As g is a local
diffeomorphism, each ¢; is a local diffeomorphism, hence €;(M) are non-empty connected
open subsets of oc(F). This implies that oc(FE) has two connected components.

Now assume (b). Then oc(FE) has two connected components, O; and Os. By the reasoning
of the first part of the proof, the components O and O intersect each fiber of ¢ in different
points. Moreover, since the sets have union o(E) and ¢ is a two-fold covering, it follows
that O; intersects each fiber of ¢ in precisely one point. It follows that ¢; := q]@j is local
diffeomorphism which is both injective and surjective, hence a global diffeomorphism onto M.
Let €j : M — o(E) be the inverses to g;. Then € is a global smooth section of oc(E). Note
that eg = —e7. ]

Lemma 3.6 Let E be a non-orientable vector bundle on M. Let q : oc(E) — M be the
associated covering projection. Then the pull-back bundle ¢*E on oc(E) is orientable.

Proof: Put M = oc(E). We recall that ¢*E may be realized as the submanifold of M x E
consisting of (m, §) with & € Ey ).

Accordingly, it is readily checked that oc(¢*(E)) is the submanifold of M xoc(E) consisting
of the points (1, €) with ¢(m) = g(e). The identity map I : M — oc(E) is thus seen to be a
global smooth section of oc(¢*(E)). Hence, ¢*(F) is orientable. O

Corollary 3.7 Let M be a non-orientable connected manifold. Then oc(TM) — M is a
double smooth covering of M by an orientable connected manifold.

Exercise 3.8 Let M be a non-orientable smooth connected manifold, and let ¢ : M :=
oc(TM) — M be the associated two-fold covering by an orientable connected manifold.

For every m € M we define the map Sy, : oc(T,M) — oc(TyM) by Sm(e) = —e.
Moreover, we define the map S : M — M by S = Sy, on oc(T,M). Show that S is a



diffeomorphism of order 2 (i.e., S? = 2) without fixed points. Show that S reverses every
choice of orientation for M.

Conversely, let N be an oriented smooth connected manifold, and let S be a diffeomor-
phism of N of order 2, which reverses orientation and has no fixed points. Let ~ be the
relation on N defined by z ~y <= y € {x, Sx}. Show that ~ is an equivalence relation and
that M = N/ ~ has a unique structure of smooth manifold for which the canonical projection
N — M is a submersion. Show that M is not orientable and that N ~ oc(M).



