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1 Orientation on a linear space

Let V be a finite dimensional real linear space, of dimension n. By a frame in V we mean an
ordered basis f1, . . . , fn of V. Let F (V ) denote the set of frames in V. Let e1, . . . , en be the
standard basis of Rn. Then given a frame (fi) ∈ F, there is a unique linear map f : Rn → V
such that f(ei) = fi for all 1 ≤ i ≤ n. Clearly, the linear map f is an isomorphism of linear
spaces. Conversely, every linear isomorphism f : Rn → V gives rise to the frame (fi = f(ei)).
Let L(Rn, V ) denote the (finite dimensional linear) space of linear maps Rn → V and let
Liso(Rn, V ) denote the subset of invertible ones. Then the map f 7→ (f(ei)) gives a bijection
from Liso(Rn, V ) onto F (M). We will use this bijection to identify the two sets. In particular,
since Liso(Rn, V ) is an open subset of the finite dimensional linear space L(Rn, V ) we obtain
a structure of smooth manifold on F (M).

Given two frames f, g ∈ F (M), the linear map A = g−1f : Rn → Rn is invertible, hence
has a non-zero determinant. We will say that f and g have the same orientation, notation
f ∼ g if and only if this determinant is positive. Clearly, ∼ is an equivalence relation on F (M),
and F (M)/ ∼ consists of two elements. The elements of F (M)/ ∼ are called orientations of
V. An oriented finite dimensional real linear space is a finite dimensional real linear space V
together with a fixed choice of an orientation.

Exercise 1.1 Let A : V → V be linear map and let f ∈ F (V ). Let (Aij) be the matrix of
A with respect to the frame f. Thus,

Afj =
∑

i

Aijfi.

(a) Show that A is the matrix of f−1 ◦A ◦ f ∈ L(Rn,Rn) with respect to the standard basis
of Rn.

(b) Show that det(Aij) is independent of the choice of f. Therefore, we may as well write
detA for det(Aij).

(c) Given two frames f, g letA = Af
g be the unique linear map V → V such thatAfj = gj for

all j = 1, . . . , n. Show that f and g have the same orientation if and only if detAf
g > 0.

In the following it will be convenient to view the set of orientations on V somewhat differently.
Given an orientation o ∈ F (M)/ ∼ we define a map ε = εo : F (M) → {±1} by ε(f) = +1
if f ∈ o and by ε(f) = −1 if f /∈ o. Then ε : F (V ) → {−1, 1} is a surjective map which is
constant on the classes for ∼ . The set of such maps is denoted by or(V ). It is easily checked
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that the map o 7→ εo is a bijection from F (M)/ ∼ onto or(V ). Indeed, the inverse map is
given by ε 7→ oε, where oε = {f ∈ F (M) | ε(f) = 1}. In particular, it follows that or(V )
consists of two elements. If ε ∈ or(V ) then or(V ) = {−ε, ε}. In the following we shall identify
the elements of or(V ) with the classes for ∼ in F (V ) in the above fashion. Given a choice
ε ∈ or(V ) we say that a frame f is positively oriented if ε(f) = 1 and that it is negatively
orientend if ε(f) = −1.

Yet another view on orientation is obtained by using alternating n-forms. Let
∧n V ∗ be the

(1-dimensional) space of alternating n-forms on V. Given a non-zero element ω ∈
∧n V ∗ \ {0}

we obtain a non-zero function F (M) → R given by f 7→ ω(f) = ω(f1, . . . , fn). We note that
f ∼ g if and only if ω(f) and ω(g) have the same sign. Indeed, ω(f) = f∗ω(e1, . . . , en) and a
similar formula for ω(g), so that

ω(g) = ω(gf−1f) = det(gf−1)ω(f).

Given a non-zero n-form ω we define the orientation εω ∈ or(V ) by εω(f) = signω(f). The
map ω 7→ εω is surjective to or(V ). Two forms belong to the same fiber for this map if and
only if they differ by a positive scalar factor. Accordingly, the map induces a bijection

(
n∧
V ∗ \ {0}) /R+ '−→ or(V ).

We will use this bijection to identify the elements of the spaces on both sides.

2 Orientation on vector bundles

Let M be a smooth manifold and let π : E →M be a vector bundle of rank n on M. If U is an
open subset of M, then by a (smooth) frame f of E on U we mean an n-tuple f = (f1, . . . , fn

of smooth sections fj : U → E such that for every x ∈ M the tuple (f1(x), . . . , fn(x)) is
a frame for Ex. Given such a frame f, we define the map f̂ : U × Rn → E|U by f̂(x, ξ) =
f(x)(ξ) =

∑n
j=1 ξjfj . Then it is readily seen that τf = f̂−1 is a trivialization of the bundle

E|U . Conversely, if τ : E|U → U ×Rn is a trivialization, then the functions fj(x) = τ−1(x, ej)
define a smooth frame for E on U. It follows that giving a local frame is equivalent to giving
a local trivialization of the bundle.

An orientation ε on E is the choice of an element εm ∈ or(Em) for every m ∈ M. An
orientation is said to be smooth at a point a if there exists an open neighborhood U of a and
a smooth frame f of E|U such that m 7→ εm(f(m)) is a smooth function U → {−1, 1}. Note
that a function U → {±1} is smooth if and only if it is locally constant. The orientation is
said to be smooth on an open set U if it is smooth at every point of U.

Exercise 2.1 Show that the orientation ε is smooth on U if and only if for every frame f
defined on an open subset V ⊂ U the function m 7→ εm(f(m)) is smooth on V.

Definition 2.2 The vector bundle π : E → M is said to be orientable if and only if there
exists a smooth orientation for E

Definition 2.3 The manifold M is said to be orientable if and only if the tangent bundle
TM is orientable.
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Exercise 2.4 Let π : E →M be a vector bundle. Assume that M is connected. Show that
there exist either no or two smooth orientations on E. Hint: show that given two orientations
ε1 and ε2 there exists a unique smooth scalar function χ ∈ C∞(M) such that (ε1)m =
χ(m)(ε2)m for all m ∈M. Investigate χ.

Lemma 2.5 Let π : E → M be a vector bundle on the manifold M. Then the following
assertions are equivalent.

(a) The vector bundle E is orientable.

(b) There exists a smooth non-vanishing section ω of the line bundle
∧nE∗ =

∐
m∈M

∧nE∗m.

Proof: Assume (b). Let ω be a non-vanishing section. Then we define εm ∈ or(Em) by
εm(f) = signωm(f) for f ∈ F (Em). By smoothness of ω, it follows that ε is smooth.

Assume (a). Let a ∈ M and let f1, . . . , fn be a local frame for E|U on some open neigh-
borhood U = Ua of a. Then ε(f) is a locally constant function with values in {±1}. Replacing
f1 by −f1 if necessary, we may assume that εa(f(a)) = 1. Replacing U by a smaller neigh-
borhood if necessary, we may assume that ε(f) = 1 on U. In other words, f is a positively
oriented local frame with respect to the smooth orientation ε. Let f1 . . . fn be the dual frame
for E∗. Then ω = f1 ∧ · · · ∧ fn is a non-vanishing smooth section of

∧nE∗ over U. Moreover,
for every m ∈ U, the form ωm is positively oriented with respect to εm.

In view of the above, there exists an open cover Ui, i ∈ I, of M together with non-
vanishing sections ωi of

∧nE∗|Ui such that ωi(m) is εm-positively oriented for every i ∈ I
and m ∈ Ui. There exists a partition of unity {ψk} subordinate to Ui. This means that
ψk ∈ C∞c (M), 0 ≤ ψk ≤ 1, for every k there exists a ik ∈ I such that suppψk ⊂ Uik , and
finally,

∑
k ψk = 1, with locally finite sum.

We now claim that ω =
∑

k ψkψkωik is a smooth non-vanishing section of
∧nE∗ which is

everywhere positively oriented with respect to ε. The proof of this claim is left as an execise
to the reader. �

Remark 2.6 Note that in the above proof we have actually shown that the form ω may be
chosen such that it is everywhere positively oriented with respect to the orientation ε.

Exercise 2.7 Show that a vector bundle is orientable if and only if there exists an open
covering of M by open sets Uα with frames fα of E on Uα such that for all α, β such that for
all α, β and all m ∈ Uα ∩ Uβ the frames fα(m) and fβ(m) of Em have the same orientation.

3 The orientation cover of a vector bundle

Let π : E → M be a rank n vector bundle on the smooth manifold M. We consider the
disjoint union

oc(E) =
∐

m∈M

or(Em).

In the previous section we defined an orientation ε on E to be section ε : M → oc(E).
The purpose of this section is to put a manifold structure on oc(E) such that the natural
map oc(E) → M becomes a fiber bundle (with fiber diffeomorphic to {±1}) and such that
smoothness of an orientation corresponds to smoothness of the orientation viewed as a section.
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Consider the line bundle L =
∧nE∗, viewed as a manifold. Let 0L denote the image of

the zero section in L. Then O := L\0L is an open subset of L hence a smooth manifold of its
own right. The canonical map p : O → M, obtained by restriction of the projection L→ M
gives O the structure of a fiber bundle with fiber diffeomorphic to R \ {0}.

Recall that for every m ∈ M we have a natural map ηm : Lm \ {0} → or(Em) given
by ηm(ω)(f) = |ω(f)|−1ω(f). Let η : O → oc(E) be defined by η = ηm on Om. Then η is
surjective.

Lemma 3.1 The set oc(E) has a unique structure of smooth manifold for which η : O →
oc(E) is a submersion. For this manifold structure, the natural projection q : oc(E) → M is
a two-fold smooth covering projection.

Let ε : M → oc(E) a section. Then ε is smooth at a if and only if there exists a frame f
of E defined in an open neighborhood of a such that m 7→ εm(f(m)) is locally constant.

Remark 3.2 The last assertion implies that the new notion of smoothness of an orientation
coincides with the old one.

Proof: We have to show that such a manifold structure exists. It is then necessarily unique.
First of all, we equip oc(E) with the quotient topology. The natural projection map

p : O → M factors to the natural projection map q : oc(E) → M. Since p is continuous,
q is continuous for the quotient topology on oc(E). We will first show that q is a covering
projection.

To see this, let a ∈ M. There exists an open neighborhood U of a in M together with a
smooth local frame f of E|U . Let f∗ = (f∗1 , . . . , f

∗
n) be the dual frame, and put ω = f∗1∧· · ·∧f∗n.

Then ω1 := ω is a smooth section of O|U . Similarly, ω2 := −ω is a smooth section of O|U .
The map s : U × R \ {0} → O|U given by s(x, t) = tω(x) is readily seen to be a diffeo-

morphism. We define Vj = image(η ◦ωj), for j = 1, 2. Then the preimage of Vj in O equals
s(U × R+) hence V1 is open in oc(E). Similarly, V2 is open in oc(E).

Furthermore, q−1(U) is the disjoint union of V1 and V2 and q|Vj : Vj → U is a homeomor-
phism with inverse η ◦ωj . It follows that q : oc(E) → M is a (two-fold) covering projection.
By the lemma below, oc(E) has a unique structure of smooth manifold for which q becomes a
local diffeomorphism. Since p = q ◦ η is a submersion O → M, it follows that η : O → oc(E)
is a submersion.

To establish the final assertion, let ε : M → oc(E) be a section. Assume that ε is smooth at
the point a ∈M. Let f be any local frame of E defined on an open neighborhood U of a. Let f∗

and ω be associated to f as above. Then εm(f(m)) = η ◦ω(m)(f(m) = signωm(f(m)) = +1
and (b) follows for any local section.

Conversely, let f be a frame as in (b), defined on an open neighborhood U of a. Then
replacing U by a smaller neighborhood if necessary, we may assume that m 7→ εm(f(m)) is
constant on U, and replacing f by (−f1, f2, . . . , fn) if necessary, we may assume that ε(f) = 1
on U. Let f∗ and ω be associated to f as before. Then ω(f1, . . . , fn) = 1 on U, hence
ηm(ω(m)) = εm on f(m) from which it follows that ε = η ◦ω is smooth. �

Lemma 3.3 Let p : Y → X be a continuous covering projection of topological spaces.
Assume that X has the structure of a smooth manifold, and that p−1({x}) is at most countable
for every x. Then Y has a unique manifold structure for which p is a local diffeomorphism.

Proof: Exercise for the reader. �
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Remark 3.4 Recall that a continuous map p : Y → X is called a covering projection if for
every a ∈ X there exists an open neighborhood U such that p−1(U) is the disjoint union of
open sets Vi ⊂ Y such that p|Vi : Vi → U is a homeomorphism for every i.

Lemma 3.5 Let E be a rank n-vector bundle on a connected manifold M . Then the orien-
tation cover oc(E) has either one or two connected components. Moreover, the following two
assertions are equivalent.

(a) The bundle E is orientable.
(b) The manifold oc(M) is not connected.

Proof: Let q : oc(E) →M be the canonical projection. Then q is a two-fold smooth covering
projection.

Fix a point a ∈ M. Then the fiber of q−1(a) consists of two points α1, α2. Let Oj be the
connected component of oc(E) containing αj . Let β be any point of oc(M). Then there exist
a continuous curve γ : [0, 1] →M with initial point b := q(β) and end point a. By the lifting
theorem, the curve has a unique lift to a curve γ̃ : [0, 1] → oc(E) with γ̃(0) = β. The end
point γ̃(1) belongs to q−1(a) hence equals α1 or α2. Therefore, oc(E) is the union of O1 and
O2. As O1,O2 are connected components, it follows that either O1 = O2 or O1 6= O2. This
establishes the first assertion.

Assume (a). Then there exists a smooth section ε1 : M → oc(E). Now ε2 = −ε1 is a
smooth section as well, and oc(E) is the disjoint union of ε1(M) and ε2(M). As q is a local
diffeomorphism, each εj is a local diffeomorphism, hence εj(M) are non-empty connected
open subsets of oc(E). This implies that oc(E) has two connected components.

Now assume (b). Then oc(E) has two connected components, O1 andO2. By the reasoning
of the first part of the proof, the components O1 and O2 intersect each fiber of q in different
points. Moreover, since the sets have union o(E) and q is a two-fold covering, it follows
that Oj intersects each fiber of q in precisely one point. It follows that qj := q|Oj is local
diffeomorphism which is both injective and surjective, hence a global diffeomorphism onto M.
Let εj : M → o(E) be the inverses to qj . Then ε1 is a global smooth section of oc(E). Note
that ε2 = −ε1. �

Lemma 3.6 Let E be a non-orientable vector bundle on M. Let q : oc(E) → M be the
associated covering projection. Then the pull-back bundle q∗E on oc(E) is orientable.

Proof: Put M̃ = oc(E). We recall that q∗E may be realized as the submanifold of M̃ × E
consisting of (m, ξ) with ξ ∈ Eq(m̃).

Accordingly, it is readily checked that oc(q∗(E)) is the submanifold of M̃×oc(E) consisting
of the points (m̃, ε) with q(m̃) = q(ε). The identity map I : M̃ → oc(E) is thus seen to be a
global smooth section of oc(q∗(E)). Hence, q∗(E) is orientable. �

Corollary 3.7 Let M be a non-orientable connected manifold. Then oc(TM) → M is a
double smooth covering of M by an orientable connected manifold.

Exercise 3.8 Let M be a non-orientable smooth connected manifold, and let q : M̃ :=
oc(TM) →M be the associated two-fold covering by an orientable connected manifold.

For every m ∈ M we define the map Sm : oc(TmM) → oc(TmM) by Sm(ε) = −ε.
Moreover, we define the map S : M̃ → M̃ by S = Sm on oc(TmM). Show that S is a
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diffeomorphism of order 2 (i.e., S2 = 2) without fixed points. Show that S reverses every
choice of orientation for M.

Conversely, let N be an oriented smooth connected manifold, and let S be a diffeomor-
phism of N of order 2, which reverses orientation and has no fixed points. Let ∼ be the
relation on N defined by x ∼ y ⇐⇒ y ∈ {x, Sx}. Show that ∼ is an equivalence relation and
that M = N/ ∼ has a unique structure of smooth manifold for which the canonical projection
N →M is a submersion. Show that M is not orientable and that N ' oc(M).
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