Notes: Orientations on vector bundles

Erik van den Ban

Fall 2006

1 Orientation on a linear space

Let V be a finite dimensional real linear space, of dimension n. By a frame in V we mean an ordered basis f_1, \ldots, f_n of V. Let F(V) denote the set of frames in V. Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . Then given a frame $(f_i) \in F$, there is a unique linear map $f : \mathbb{R}^n \to V$ such that $f(e_i) = f_i$ for all $1 \leq i \leq n$. Clearly, the linear map f is an isomorphism of linear spaces. Conversely, every linear isomorphism $f : \mathbb{R}^n \to V$ gives rise to the frame $(f_i = f(e_i))$. Let $L(\mathbb{R}^n, V)$ denote the (finite dimensional linear) space of linear maps $\mathbb{R}^n \to V$ and let $L_{iso}(\mathbb{R}^n, V)$ denote the subset of invertible ones. Then the map $f \mapsto (f(e_i))$ gives a bijection from $L_{iso}(\mathbb{R}^n, V)$ onto F(M). We will use this bijection to identify the two sets. In particular, since $L_{iso}(\mathbb{R}^n, V)$ is an open subset of the finite dimensional linear space $L(\mathbb{R}^n, V)$ we obtain a structure of smooth manifold on F(M).

Given two frames $f, g \in F(M)$, the linear map $A = g^{-1}f : \mathbb{R}^n \to \mathbb{R}^n$ is invertible, hence has a non-zero determinant. We will say that f and g have the same orientation, notation $f \sim g$ if and only if this determinant is positive. Clearly, \sim is an equivalence relation on F(M), and $F(M)/\sim$ consists of two elements. The elements of $F(M)/\sim$ are called *orientations* of V. An oriented finite dimensional real linear space is a finite dimensional real linear space Vtogether with a fixed choice of an orientation.

Exercise 1.1 Let $A: V \to V$ be linear map and let $f \in F(V)$. Let (A_{ij}) be the matrix of A with respect to the frame f. Thus,

$$Af_j = \sum_i A_{ij}f_i.$$

- (a) Show that A is the matrix of $f^{-1} \circ A \circ f \in L(\mathbb{R}^n, \mathbb{R}^n)$ with respect to the standard basis of \mathbb{R}^n .
- (b) Show that $det(A_{ij})$ is independent of the choice of f. Therefore, we may as well write det A for $det(A_{ij})$.
- (c) Given two frames f, g let $A = A_g^f$ be the unique linear map $V \to V$ such that $Af_j = g_j$ for all j = 1, ..., n. Show that f and g have the same orientation if and only if det $A_g^f > 0$.

In the following it will be convenient to view the set of orientations on V somewhat differently. Given an orientation $o \in F(M) / \sim$ we define a map $\epsilon = \epsilon_o : F(M) \to \{\pm 1\}$ by $\epsilon(f) = +1$ if $f \in o$ and by $\epsilon(f) = -1$ if $f \notin o$. Then $\epsilon : F(V) \to \{-1, 1\}$ is a surjective map which is constant on the classes for \sim . The set of such maps is denoted by or(V). It is easily checked that the map $o \mapsto \epsilon_o$ is a bijection from $F(M)/\sim$ onto $\operatorname{or}(V)$. Indeed, the inverse map is given by $\epsilon \mapsto o_{\epsilon}$, where $o_{\epsilon} = \{f \in F(M) \mid \epsilon(f) = 1\}$. In particular, it follows that $\operatorname{or}(V)$ consists of two elements. If $\epsilon \in \operatorname{or}(V)$ then $\operatorname{or}(V) = \{-\epsilon, \epsilon\}$. In the following we shall identify the elements of $\operatorname{or}(V)$ with the classes for \sim in F(V) in the above fashion. Given a choice $\epsilon \in \operatorname{or}(V)$ we say that a frame f is positively oriented if $\epsilon(f) = 1$ and that it is negatively orientend if $\epsilon(f) = -1$.

Yet another view on orientation is obtained by using alternating *n*-forms. Let $\bigwedge^n V^*$ be the (1-dimensional) space of alternating *n*-forms on *V*. Given a non-zero element $\omega \in \bigwedge^n V^* \setminus \{0\}$ we obtain a non-zero function $F(M) \to \mathbb{R}$ given by $f \mapsto \omega(f) = \omega(f_1, \ldots, f_n)$. We note that $f \sim g$ if and only if $\omega(f)$ and $\omega(g)$ have the same sign. Indeed, $\omega(f) = f^*\omega(e_1, \ldots, e_n)$ and a similar formula for $\omega(g)$, so that

$$\omega(g) = \omega(gf^{-1}f) = \det(gf^{-1})\omega(f).$$

Given a non-zero *n*-form ω we define the orientation $\epsilon_{\omega} \in \operatorname{or}(V)$ by $\epsilon_{\omega}(f) = \operatorname{sign} \omega(f)$. The map $\omega \mapsto \epsilon_{\omega}$ is surjective to $\operatorname{or}(V)$. Two forms belong to the same fiber for this map if and only if they differ by a positive scalar factor. Accordingly, the map induces a bijection

$$(\bigwedge^{n} V^* \setminus \{0\}) / \mathbb{R}^+ \xrightarrow{\simeq} \operatorname{or}(V).$$

We will use this bijection to identify the elements of the spaces on both sides.

2 Orientation on vector bundles

Let M be a smooth manifold and let $\pi : E \to M$ be a vector bundle of rank n on M. If U is an open subset of M, then by a (smooth) frame f of E on U we mean an n-tuple $f = (f_1, \ldots, f_n)$ of smooth sections $f_j : U \to E$ such that for every $x \in M$ the tuple $(f_1(x), \ldots, f_n(x))$ is a frame for E_x . Given such a frame f, we define the map $\hat{f} : U \times \mathbb{R}^n \to E|_U$ by $\hat{f}(x,\xi) = f(x)(\xi) = \sum_{j=1}^n \xi_j f_j$. Then it is readily seen that $\tau_f = \hat{f}^{-1}$ is a trivialization of the bundle $E|_U$. Conversely, if $\tau : E|_U \to U \times \mathbb{R}^n$ is a trivialization, then the functions $f_j(x) = \tau^{-1}(x, e_j)$ define a smooth frame for E on U. It follows that giving a local frame is equivalent to giving a local trivialization of the bundle.

An orientation ϵ on E is the choice of an element $\epsilon_m \in \operatorname{or}(E_m)$ for every $m \in M$. An orientation is said to be smooth at a point a if there exists an open neighborhood U of a and a smooth frame f of $E|_U$ such that $m \mapsto \epsilon_m(f(m))$ is a smooth function $U \to \{-1, 1\}$. Note that a function $U \to \{\pm 1\}$ is smooth if and only if it is locally constant. The orientation is said to be smooth on an open set U if it is smooth at every point of U.

Exercise 2.1 Show that the orientation ϵ is smooth on U if and only if for every frame f defined on an open subset $V \subset U$ the function $m \mapsto \epsilon_m(f(m))$ is smooth on V.

Definition 2.2 The vector bundle $\pi : E \to M$ is said to be orientable if and only if there exists a smooth orientation for E

Definition 2.3 The manifold M is said to be orientable if and only if the tangent bundle TM is orientable.

Exercise 2.4 Let $\pi : E \to M$ be a vector bundle. Assume that M is connected. Show that there exist either no or two smooth orientations on E. Hint: show that given two orientations ϵ_1 and ϵ_2 there exists a unique smooth scalar function $\chi \in C^{\infty}(M)$ such that $(\epsilon_1)_m = \chi(m)(\epsilon_2)_m$ for all $m \in M$. Investigate χ .

Lemma 2.5 Let $\pi : E \to M$ be a vector bundle on the manifold M. Then the following assertions are equivalent.

- (a) The vector bundle E is orientable.
- (b) There exists a smooth non-vanishing section ω of the line bundle $\bigwedge^n E^* = \prod_{m \in M} \bigwedge^n E^*_m$.

Proof: Assume (b). Let ω be a non-vanishing section. Then we define $\epsilon_m \in \text{or}(E_m)$ by $\epsilon_m(f) = \text{sign } \omega_m(f)$ for $f \in F(E_m)$. By smoothness of ω , it follows that ϵ is smooth.

Assume (a). Let $a \in M$ and let f_1, \ldots, f_n be a local frame for $E|_U$ on some open neighborhood $U = U_a$ of a. Then $\epsilon(f)$ is a locally constant function with values in $\{\pm 1\}$. Replacing f_1 by $-f_1$ if necessary, we may assume that $\epsilon_a(f(a)) = 1$. Replacing U by a smaller neighborhood if necessary, we may assume that $\epsilon(f) = 1$ on U. In other words, f is a positively oriented local frame with respect to the smooth orientation ϵ . Let $f^1 \ldots f^n$ be the dual frame for E^* . Then $\omega = f^1 \wedge \cdots \wedge f^n$ is a non-vanishing smooth section of $\bigwedge^n E^*$ over U. Moreover, for every $m \in U$, the form ω_m is positively oriented with respect to ϵ_m .

In view of the above, there exists an open cover U_i , $i \in I$, of M together with nonvanishing sections ω_i of $\bigwedge^n E^*|_{U_i}$ such that $\omega_i(m)$ is ϵ_m -positively oriented for every $i \in I$ and $m \in U_i$. There exists a partition of unity $\{\psi_k\}$ subordinate to U_i . This means that $\psi_k \in C_c^{\infty}(M), 0 \leq \psi_k \leq 1$, for every k there exists a $i_k \in I$ such that $\sup \psi_k \subset U_{i_k}$, and finally, $\sum_k \psi_k = 1$, with locally finite sum.

We now claim that $\omega = \sum_k \psi_k \psi_k \omega_{i_k}$ is a smooth non-vanishing section of $\bigwedge^n E^*$ which is everywhere positively oriented with respect to ϵ . The proof of this claim is left as an exercise to the reader.

Remark 2.6 Note that in the above proof we have actually shown that the form ω may be chosen such that it is everywhere positively oriented with respect to the orientation ϵ .

Exercise 2.7 Show that a vector bundle is orientable if and only if there exists an open covering of M by open sets U_{α} with frames f_{α} of E on U_{α} such that for all α, β such that for all α, β and all $m \in U_{\alpha} \cap U_{\beta}$ the frames $f_{\alpha}(m)$ and $f_{\beta}(m)$ of E_m have the same orientation.

3 The orientation cover of a vector bundle

Let $\pi : E \to M$ be a rank *n* vector bundle on the smooth manifold *M*. We consider the disjoint union

$$\operatorname{oc}(E) = \prod_{m \in M} \operatorname{or}(E_m).$$

In the previous section we defined an orientation ϵ on E to be section $\epsilon : M \to oc(E)$. The purpose of this section is to put a manifold structure on oc(E) such that the natural map $oc(E) \to M$ becomes a fiber bundle (with fiber diffeomorphic to $\{\pm 1\}$) and such that smoothness of an orientation corresponds to smoothness of the orientation viewed as a section. Consider the line bundle $L = \bigwedge^n E^*$, viewed as a manifold. Let 0_L denote the image of the zero section in L. Then $\mathcal{O} := L \setminus 0_L$ is an open subset of L hence a smooth manifold of its own right. The canonical map $p : \mathcal{O} \to M$, obtained by restriction of the projection $L \to M$ gives \mathcal{O} the structure of a fiber bundle with fiber diffeomorphic to $\mathbb{R} \setminus \{0\}$.

Recall that for every $m \in M$ we have a natural map $\eta_m : L_m \setminus \{0\} \to \operatorname{or}(E_m)$ given by $\eta_m(\omega)(f) = |\omega(f)|^{-1}\omega(f)$. Let $\eta : \mathcal{O} \to \operatorname{oc}(E)$ be defined by $\eta = \eta_m$ on \mathcal{O}_m . Then η is surjective.

Lemma 3.1 The set oc(E) has a unique structure of smooth manifold for which $\eta : \mathcal{O} \to oc(E)$ is a submersion. For this manifold structure, the natural projection $q : oc(E) \to M$ is a two-fold smooth covering projection.

Let $\epsilon : M \to oc(E)$ a section. Then ϵ is smooth at a if and only if there exists a frame f of E defined in an open neighborhood of a such that $m \mapsto \epsilon_m(f(m))$ is locally constant.

Remark 3.2 The last assertion implies that the new notion of smoothness of an orientation coincides with the old one.

Proof: We have to show that such a manifold structure exists. It is then necessarily unique.

First of all, we equip oc(E) with the quotient topology. The natural projection map $p : \mathcal{O} \to M$ factors to the natural projection map $q : oc(E) \to M$. Since p is continuous, q is continuous for the quotient topology on oc(E). We will first show that q is a covering projection.

To see this, let $a \in M$. There exists an open neighborhood U of a in M together with a smooth local frame f of $E|_U$. Let $f^* = (f_1^*, \ldots, f_n^*)$ be the dual frame, and put $\omega = f_1^* \wedge \cdots \wedge f_n^*$. Then $\omega_1 := \omega$ is a smooth section of $\mathcal{O}|_U$. Similarly, $\omega_2 := -\omega$ is a smooth section of $\mathcal{O}|_U$.

The map $s: U \times \mathbb{R} \setminus \{0\} \to \mathcal{O}|_U$ given by $s(x,t) = t\omega(x)$ is readily seen to be a diffeomorphism. We define $V_j = \text{image}(\eta \circ \omega_j)$, for j = 1, 2. Then the preimage of V_j in \mathcal{O} equals $s(U \times \mathbb{R}^+)$ hence V_1 is open in oc(E). Similarly, V_2 is open in oc(E).

Furthermore, $q^{-1}(U)$ is the disjoint union of V_1 and V_2 and $q|_{V_j} : V_j \to U$ is a homeomorphism with inverse $\eta \circ \omega_j$. It follows that $q : \operatorname{oc}(E) \to M$ is a (two-fold) covering projection. By the lemma below, $\operatorname{oc}(E)$ has a unique structure of smooth manifold for which q becomes a local diffeomorphism. Since $p = q \circ \eta$ is a submersion $\mathcal{O} \to M$, it follows that $\eta : \mathcal{O} \to \operatorname{oc}(E)$ is a submersion.

To establish the final assertion, let $\epsilon : M \to \operatorname{oc}(E)$ be a section. Assume that ϵ is smooth at the point $a \in M$. Let f be any local frame of E defined on an open neighborhood U of a. Let f^* and ω be associated to f as above. Then $\epsilon_m(f(m)) = \eta \circ \omega(m)(f(m)) = \operatorname{sign} \omega_m(f(m)) = +1$ and (b) follows for any local section.

Conversely, let f be a frame as in (b), defined on an open neighborhood U of a. Then replacing U by a smaller neighborhood if necessary, we may assume that $m \mapsto \epsilon_m(f(m))$ is constant on U, and replacing f by $(-f_1, f_2, \ldots, f_n)$ if necessary, we may assume that $\epsilon(f) = 1$ on U. Let f^* and ω be associated to f as before. Then $\omega(f_1, \ldots, f_n) = 1$ on U, hence $\eta_m(\omega(m)) = \epsilon_m$ on f(m) from which it follows that $\epsilon = \eta \circ \omega$ is smooth. \Box

Lemma 3.3 Let $p : Y \to X$ be a continuous covering projection of topological spaces. Assume that X has the structure of a smooth manifold, and that $p^{-1}(\{x\})$ is at most countable for every x. Then Y has a unique manifold structure for which p is a local diffeomorphism.

Proof: Exercise for the reader.

Remark 3.4 Recall that a continuous map $p: Y \to X$ is called a covering projection if for every $a \in X$ there exists an open neighborhood U such that $p^{-1}(U)$ is the disjoint union of open sets $V_i \subset Y$ such that $p|_{V_i}: V_i \to U$ is a homeomorphism for every i.

Lemma 3.5 Let E be a rank n-vector bundle on a connected manifold M. Then the orientation cover oc(E) has either one or two connected components. Moreover, the following two assertions are equivalent.

- (a) The bundle E is orientable.
- (b) The manifold oc(M) is not connected.

Proof: Let $q : oc(E) \to M$ be the canonical projection. Then q is a two-fold smooth covering projection.

Fix a point $a \in M$. Then the fiber of $q^{-1}(a)$ consists of two points α_1, α_2 . Let O_j be the connected component of oc(E) containing α_j . Let β be any point of oc(M). Then there exist a continuous curve $\gamma : [0,1] \to M$ with initial point $b := q(\beta)$ and end point a. By the lifting theorem, the curve has a unique lift to a curve $\tilde{\gamma} : [0,1] \to oc(E)$ with $\tilde{\gamma}(0) = \beta$. The end point $\tilde{\gamma}(1)$ belongs to $q^{-1}(a)$ hence equals α_1 or α_2 . Therefore, oc(E) is the union of \mathcal{O}_1 and \mathcal{O}_2 . As $\mathcal{O}_1, \mathcal{O}_2$ are connected components, it follows that either $\mathcal{O}_1 = \mathcal{O}_2$ or $\mathcal{O}_1 \neq \mathcal{O}_2$. This establishes the first assertion.

Assume (a). Then there exists a smooth section $\epsilon_1 : M \to \operatorname{oc}(E)$. Now $\epsilon_2 = -\epsilon_1$ is a smooth section as well, and $\operatorname{oc}(E)$ is the disjoint union of $\epsilon_1(M)$ and $\epsilon_2(M)$. As q is a local diffeomorphism, each ϵ_j is a local diffeomorphism, hence $\epsilon_j(M)$ are non-empty connected open subsets of $\operatorname{oc}(E)$. This implies that $\operatorname{oc}(E)$ has two connected components.

Now assume (b). Then oc(E) has two connected components, \mathcal{O}_1 and \mathcal{O}_2 . By the reasoning of the first part of the proof, the components \mathcal{O}_1 and \mathcal{O}_2 intersect each fiber of q in different points. Moreover, since the sets have union o(E) and q is a two-fold covering, it follows that \mathcal{O}_j intersects each fiber of q in precisely one point. It follows that $q_j := q|_{\mathcal{O}_j}$ is local diffeomorphism which is both injective and surjective, hence a global diffeomorphism onto M. Let $\epsilon_j : M \to o(E)$ be the inverses to q_j . Then ϵ_1 is a global smooth section of oc(E). Note that $\epsilon_2 = -\epsilon_1$.

Lemma 3.6 Let E be a non-orientable vector bundle on M. Let $q : oc(E) \to M$ be the associated covering projection. Then the pull-back bundle q^*E on oc(E) is orientable.

Proof: Put $\tilde{M} = oc(E)$. We recall that q^*E may be realized as the submanifold of $\tilde{M} \times E$ consisting of (m, ξ) with $\xi \in E_{q(\tilde{m})}$.

Accordingly, it is readily checked that $oc(q^*(E))$ is the submanifold of $\tilde{M} \times oc(E)$ consisting of the points (\tilde{m}, ϵ) with $q(\tilde{m}) = q(\epsilon)$. The identity map $I : \tilde{M} \to oc(E)$ is thus seen to be a global smooth section of $oc(q^*(E))$. Hence, $q^*(E)$ is orientable.

Corollary 3.7 Let M be a non-orientable connected manifold. Then $oc(TM) \rightarrow M$ is a double smooth covering of M by an orientable connected manifold.

Exercise 3.8 Let M be a non-orientable smooth connected manifold, and let $q : M := oc(TM) \to M$ be the associated two-fold covering by an orientable connected manifold.

For every $m \in M$ we define the map $S_m : oc(T_m M) \to oc(T_m M)$ by $S_m(\epsilon) = -\epsilon$. Moreover, we define the map $S : \tilde{M} \to \tilde{M}$ by $S = S_m$ on $oc(T_m M)$. Show that S is a diffeomorphism of order 2 (i.e., $S^2 = 2$) without fixed points. Show that S reverses every choice of orientation for M.

Conversely, let N be an oriented smooth connected manifold, and let S be a diffeomorphism of N of order 2, which reverses orientation and has no fixed points. Let \sim be the relation on N defined by $x \sim y \iff y \in \{x, Sx\}$. Show that \sim is an equivalence relation and that $M = N/\sim$ has a unique structure of smooth manifold for which the canonical projection $N \to M$ is a submersion. Show that M is not orientable and that $N \simeq \operatorname{oc}(M)$.