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4.6 The Arzelà–Ascoli theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Pseudo-differential operators, local theory 95
5.1 The space of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Pseudo-differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Localization of pseudo-differential operators . . . . . . . . . . . . . . . . . 102
5.4 The full symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Expansions in symbol space . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Appendix: A special map in symbol space 111
6.4 The exponential of a differential operator . . . . . . . . . . . . . . . . . . . 111
6.5 The exponential of a differential operator in symbol space . . . . . . . . . . 116

7 Pseudo-differential operators, continued 123
7.1 The symbol of the composition . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Invariance of pseudo-differential operators . . . . . . . . . . . . . . . . . . 128
7.3 Pseudo-differential operators on a manifold, scalar case . . . . . . . . . . . 134
7.4 The principal symbol on a manifold . . . . . . . . . . . . . . . . . . . . . . 139
7.5 Symbol calculus on a manifold . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Operators between vector bundles 147
8.1 Operators on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 The principal symbol, vector bundle case . . . . . . . . . . . . . . . . . . . 150
8.3 Symbol of adjoint and composition . . . . . . . . . . . . . . . . . . . . . . 155
8.4 Elliptic operators, parametrices . . . . . . . . . . . . . . . . . . . . . . . . 162

9 The index of an elliptic operator 167
9.1 Pseudo-differential operators and Sobolev space . . . . . . . . . . . . . . . 167
9.2 Sobolev spaces on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3 The index of an elliptic operator . . . . . . . . . . . . . . . . . . . . . . . . 176

10 Characteristic classes 179
10.1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.3 Characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.4 Particular characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . 191
10.5 Proofs of the main properties . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.6 Some exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.7 Chern classes: the global description and the proof of Theorem 10.3.7 . . . 200

11 K-theoretical formulation of the Atiyah-Singer index theorem 207
11.1 K-theory and the Chern character . . . . . . . . . . . . . . . . . . . . . . . 207
11.2 K-theory and the Chern character with compact supports . . . . . . . . . 209
11.3 The K-theoretical formulation of the Atiyah-Singer index theorem . . . . . 211





Chapter 1

Differential operators

1.1 Differential operators I: trivial coefficients

In this section we discuss differential operators acting on spaces of functions on a manifold,
while in the next section we will move to those acting on spaces of sections of vector bundles.
We first discuss differential operators on an open subset U ⊂ Rn.

We use the following notation for multi-indices α ∈ Nn :

|α| =
n∑
j=1

αj; α! =
n∏
j=1

αj!.

Moreover, if β ∈ Nn we write α ≤ β if and only if αj ≤ βj for all 1 ≤ j ≤ n. If α ≤ β we
put (

β
α

)
:=

n∏
j=1

(
βj
αj

)
.

Finally, we put ∂j = ∂/∂xj and

xα =
n∏
j=1

x
αj
j , ∂α = ∂α1

1 · · · ∂αnn . (1.1.1)

Lemma 1.1.1 (Leibniz’ rule) Let f, g ∈ C∞(U) and α ∈ Nn. Then

∂α(fg) =
∑
β≤α

(
α
β

)
∂βf ∂α−βg.

Proof Exercise. �

In what follows, we will use the notation C∞(U) for the space of smooth complex-
valued function on U ; we denote by End(C∞(U)) the space of C-linear maps P : C∞(U)→
C∞(U), maps that we will also call “operators on U”.

1



2 CHAPTER 1. DIFFERENTIAL OPERATORS

Definition 1.1.2 A differential operator of order at most k ∈ N on U is an operator
P ∈ End(C∞(U)) of the form

P =
∑
|α|≤k

cα ∂
α, (1.1.2)

with cα ∈ C∞(U) for all α.

Hence such an operator acts on a function f = f(x) on U by

P (f)(x) =
∑
|α|≤k

cα(x) (∂αf)(x).

The linear space of differential operators on U of order at most k is denoted by Dk(U).
The union of these, for k ∈ N, is denoted by D(U). Via Leibniz’ rule one easily verifies that
the composition of two differential operators from Dk(U) and Dl(U) is again a differential
operator, in Dk+l(U). Accordingly, the set D(U) of differential operators is a (filtered)
algebra with unit.

To pass top general manifold, the most natural way to proceed is to first prove that the
spaces Dk(U) are invariant under coordinate changes (i.e. Exercise 1.1.7), then to “glue”
these spaces together. However, we will follow a shorter path which takes advantage of the
fact that differential operators are local.

Definition 1.1.3 Let M be a smooth manifold. A linear operator P ∈ End(C∞(M)) is
called local if

supp(P (f)) ⊂ supp(f) ∀ f ∈ C∞(M).

Exercise 1.1.4 Show that P is local if and only if for any f ∈ C∞(M) and any open
U ⊂M , one has the implication:

f |U = 0 =⇒ P (f)|U = 0.

Lemma 1.1.5 There is a unique way to associate to any local operator P ∈ End(C∞(M))
on a manifold M and any open U ⊂M , a “restricted operator”

PU = P |U ∈ End(C∞(U))

such that, for all f ∈ C∞(M) ,
PU(f |U) = P (f)|U

and, for V ⊂ U , (P |U)|V = P |V .

Proof For f ∈ C∞(U), let’s look at what the value of PU(f) ∈ C∞(U) at an arbitrary
point x ∈ U can be. We choose a function fx ∈ C∞(M) which coincides with f in an open
neighborhood Vx ⊂ U of x. From the condition in the statement, we must have

PU(f)(x) = P (fx)(x).

We are left with checking that this can be taken as definition of PU . All we have to check
is the independence of the choice of fx. But if gx is another one, then fx − gx vanishes on
a neighborhood of x; since P is local, we deduce that P (fx)−P (gx) = P (fx− gx) vanishes
on that neighborhood, hence also at x. �
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The main property of local operators can be represented in local charts: if (U, κ) is a
coordinate chart, then P |U can be moved to κ(U) using the pull-back map

κ∗ : C∞(κ(U))→ C∞(U), κ∗(f) = f ◦ κ,

C∞(U) P // C∞(U)

C∞(κ(U))
Pκ
//

κ∗

OO

C∞(κ(U))

κ∗

OO

to obtain an operator

Pκ : C∞(κ(U))→ C∞(κ(U)), Pκ = κ∗(P |U) = (κ∗)−1 ◦ P |U ◦ κ∗.

Definition 1.1.6 Let M be a smooth manifold. A differential operator of order at
most k on M is a local linear operator P ∈ End(C∞(M)) with the property that, for any
coordinate chart (U, κ), Pκ ∈ Dk(κ(U)).

The space of operators on M of order at most k is denoted by Dk(M).

Note that the condition on a coordinate chart (U, κ = (xκ1 , . . . , x
κ
n)) simply means that

P |U is of type

PU =
∑
|α|≤k

cα(x) ∂ακ ,

with cα ∈ C∞(U). Here ∂ακ act on C∞(U) and are defined analogous to ∂α but using
the derivative along the vector fields ∂/∂xκj induce by the chart. Note also that, in the
previous definition, it would have been enough to require the condition only for a family of
coordinate charts whose domains cover M . This follows from the invariance of the space
of differential operators under coordinate changes:

Exercise 1.1.7 Let h : U → U ′ be a diffeomorphism between two open subsets of Rn

and consider the induced map

h∗ : End(C∞(U))→ End(C∞(U ′)), h∗(P ) = (h∗)−1 ◦ P ◦ h∗.

Show that h∗ maps D(U) bijectively onto D(U ′).
Deduce that a local operator P ∈ End(C∞(M)) on a manifold M is a differential

operator of order at most k if and only if for each x ∈ M there exists a coordinate chart
(U, κ) around x such that Pκ ∈ Dk(κ(U)).

Exercise 1.1.8 Show that any differential operator P ∈ D1(M) can be written as

P (φ) = fφ+ LV (φ)

for some unique function f ∈ C∞(M) and vector field V on M , where LV (f) = V (f) =
df(V ) is the derivative of f along V .



4 CHAPTER 1. DIFFERENTIAL OPERATORS

Exercise 1.1.9 This exercise provides another possible (inductive) definition of the spaces
Dk(M). For each f ∈ C∞(M), let mf ∈ End(C∞(M)) be the “multiplication by f”
operator. The commutator of two operators P and Q is the new operator [P,Q] = P ◦Q−
Q ◦ P .

Starting with D−1(M) = 0, show that Dk(M) is the space of linear operators P with
the property that

[P,mf ] ∈ Dk−1(M) ∀f ∈ C∞(M).

Next, we discuss the symbols of differential operators.

Definition 1.1.10 Let U ⊂ Rn and let P ∈ Dk(U) be of the form (1.1.2). The full
symbol of the operator P is the function σ(P ) : U × Rn → C defined by

σ(P )(x, ξ) =
∑
|α|≤k

cα(x)(iξ)α.

The principal symbol of order k of P is the function σk(P ) : U × Rn → C,

σk(P )(x, ξ) =
∑
|α|=k

cα(x)(iξ)α.

A nice property of the principal symbol has, which fails for the total one is its multi-
plicativity property.

Exercise 1.1.11 Let P ∈ Dk(U) and Q ∈ Dl(U). Then the composition QP belongs to
Dk+l and

σk+l(QP ) = σl(Q)σk(P ).

It is not difficult to check the following formulas for the symbols:

σ(P )(x, ξ) = e−iξP (eiξ)(x), σk(P )(x, ξ) = lim
t→∞

t−ke−itξP (eitξ)(x).

Here we have identified ξ with the linear functional x 7→
∑
ξjxj. Accordingly, eiξ stands

for the function x 7→ eiξx. See also below.

Although the total symbol may look more natural then the principal one, the situation
is the other way around: it is the principal symbol that can be globalized to manifolds
(hence expressed coordinate free). Again, one natural way to proceed is to prove the
invariance of the principal symbol under coordinate changes (but first one has to interpret
the space U×Rn of variables (x, ξ) correctly- and that is to view it as the cotangent bundle
of U). However, we will follow a shorter path, based on the above formula for the symbol.
First of all, we need a version of this formula which is more coordinate free.
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Lemma 1.1.12 Let U ⊂ Rn, P ∈ Dk(U). For (x, ξ) ∈ U × Rn, choose ϕ ∈ C∞(U) such
that

(dϕ)x =
n∑
j=1

ξj(dxj)x

(hence ∂j(ϕ)(x) = ξj for all j). Then

σk(P )(x, ξ) = lim
t→∞

t−ke−itϕ(x)P (eitϕ)(x).

Proof Left to the reader. The proof follows by application of Leibniz’ rule. �

One advantage of the previous lemma is that it is most natural to view ξ as a variable
in the dual of Rn. Accordingly, U ×Rn should be viewed as the cotangent bundle T ∗U. In
other words, the principal symbol should be viewed as the function

σk(P ) : T ∗U → C, ξ1(dx1)x + . . .+ ξn(dxn)x 7→
∑
|α|=k

cα(x)(iξ)α.

Exercise 1.1.13 Check directly that the principal symbol behaves well under coordi-
nate changes. More precisely, let h : U → U ′ be a diffeomorphism between two opens
U,U ′ ⊂ Rn. It induces the map T ∗h : T ∗U → T ∗U ′ given by T ∗h(x, ξ) = (h(x), ξ ◦Txh

−1).
Accordingly we have the map h∗ : C∞(T ∗U) → C∞(T ∗U ′) given by h∗σ = σ ◦ (T ∗h)−1.
Thus,

h∗σ(x, ξ) = σ(h−1(x), ξ ◦Txh).

Show that, for all P ∈ Dk(U),

σk(h∗(P )) = h∗(σk(P )).

Moreover, the previous characterization of the principal symbol can be taken as defini-
tion when we pass to manifolds. More precisely, given P ∈ Dk(M) on a manifold M , one
defines the principal symbol (of order k) of P as the smooth function

σk(P ) : T ∗M → C

given by
σk(P )(ξx) = lim

t→∞
t−ke−itϕ(x)P (eitϕ)(x).

where, for x ∈ M , ξx ∈ T ∗xM , ϕ ∈ C∞(M) is chosen so that (dϕ)x = ξx. The fact that
this definition does not depend on the choice of ϕ follows from the local case (previous
lemma). Indeed, choosing a coordinate chart (U, κ = (xκ1 , . . . , x

κ
n)) around x, the data over

U consisting of x, ξx, P, ϕ is pushed forward by κ to similar data over κ(U):

xκ = κ(x), ξκ = ξx ◦ (dκ−1)κ(x), Pκ = (κ−1)∗ ◦ P ◦ κ∗, ϕκ = ϕ ◦ κ−1

and it is clear that, already before taking the limit,

t−ke−itϕκ(x)P (eitϕκ)(xκ) = t−ke−itϕ(x)P (eitϕ)(x).

In conclusion,
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Corollary 1.1.14 For P ∈ Dk(M), there is a well-defined smooth function

σk(P ) : T ∗M → C
such that, for any coordinate chart (U, κ = (xκ1 , . . . , x

κ
n)),

T ∗xM 3 ξ1(dxκ1)x + . . .+ ξn(dxκn)x
σk(P )−→ σk(Pκ)(κ(x), ξ1, . . . , ξn) ∈ C.

Definition 1.1.15 Let P ∈ Dk(M). The function σk(P ) : T ∗M → C is called the
principal symbol of order k of the operator P.

Exercise 1.1.16 Let V be a vector field on M , f ∈ C∞(M) and let P be the correspond-
ing differential operator from Exercise 1.1.8. Show that the principal symbol of P is given
by σ1(P )(x, ξ) = ξ(Vx).

Exercise 1.1.17 Let P ∈ Dk(M) and Q ∈ Dl(M). Show that QP ∈ Dk+l(M). Moreover,
σk+l(QP ) = σl(Q)σk(P ). Hint: use reduction to charts.

Exercise 1.1.18 Show that, for any P ∈ Dk(M) and any f ∈ C∞(M) and all ϕ ∈ C∞(M)

f(x)σk(P )((dϕ)x) = lim
t→∞

t−ke−itϕ(x)P (eitϕf)(x). (1.1.3)

Finally, here is another interpretation of the (principal) symbol, which takes into ac-
count the fact that σk(P )(x, ξ) is not only smooth in ξ, but actually polynomial. Recall
first the formalism that allows us to handle polynomials in a coordinate free manner. Let
V be a finite dimensional vector space real or complex). Recall that a function p : V → C
is called polynomial of degree k if, for some (or, equivalently, any) basis {e1, . . . , en} of V ,
p is of the type

p(v) =
∑
|α|=k

pαv
α =

∑
|α|=k

pαv
α1
1 . . . vαnn ,

where the sum is over multi-indices α = (α1, . . . , αn) and pα ∈ C. We denote by Polk(V )
the space of such functions. The key remark is that this space is canonically isomorphic
to the more intrinsic space SkV ∗ consisting of all multilinear symmetric maps

p : V × . . .× V︸ ︷︷ ︸
k timers

→ C.

The identification between SkV ∗ and Polk(V ) associates to the symmetric function p on
k-variables, the function

p(v) := p(v1, . . . , vk).

Exercise 1.1.19 Prove that, indeed, this defines a bijection between SkV ∗ and Polk(V ).

Passing to duals, one obtains an identification between Polk(V ∗) and SkV . As usual,
the operation V 7→ SkV extends to vector bundles so that, for any vector bundle E over a
manifold M , one forms a new vector bundle SkE over M whose fiber above x ∈M is SkEx.
By the discussion above, any section of SkE can be interpreted as a smooth function on
the manifold E∗. With these at hand, it should be clear now that the principal symbol of
an operator P ∈ Dk(M) becomes a section

σk(P ) ∈ Γ(SkTM).
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1.2 Differential operators II: arbitrary coefficients

We shall now introduce the notion of a differential operator between smooth vector bundles
E and F on a smooth manifold M , acting at the level of sections

P : Γ(E)→ Γ(F ). (1.2.4)

It is useful to have in mind that degree zero differential operators correspond to sections
C ∈ Γ(Hom (E,F )) i.e. smooth maps

M 3 x 7→ Cx ∈ Hom(Ex, Fx).

More precisely, any such C defines an operator C : Γ(E)→ Γ(F ) acting on sections by

C(s)(x) = Cx(s(x)).

Exercise 1.2.1 Show that this construction defines a 1-1 correspondence between sections
of Hom (E,F ) and maps from Γ(E) to Γ(F ) which are C∞(M)-linear.

As before, differential operators P : Γ(E)→ Γ(F ) will have the important property of
locality: for any s ∈ Γ(E),

supp(P (s)) ⊂ supp(s).

And, as in the previous section (and by a similar argument), any such local operator can
be restricted to opens U ⊂M to induce operators

PU = P |U : Γ(E|U)→ Γ(F |U)

so that P (s)|U = PU(s|U) and, for all V ⊂ U , (PU)V = PV .
For the precise definition of differential operators between sections of vector bundles

there are many different but equivalent ways to proceed. The most natural one is probably
to assume locality, discuss the local case first (over domains of charts and trivializations
of the bundles), prove that the outcome is independent of the choices, and then “glue”
the local pieces together. Here is a less natural but shorter way to proceed. The idea is
to pass right away to the case of of the trivial line bundles (i.e. to the previous section),
in a coordinate free manner. Given a linear operator (1.2.4), the key remark is that any
sections

e ∈ Γ(E), λ ∈ Γ(F ∗)

induce a linear operator

Pe,λ : C∞(M)→ C∞(M), Pe,λ(f) := λ(P (fs))

(where, as above, we interpret λ as a linear map Γ(F )→ C∞(M)). Note that, intuitively,
the choice of (arbitrary) e and λ allows us to avoid working with coordinates (with respect to
(local) frames of E and F ); however, Pe,λ can be thought of as “the (e, λ) global coordinate
of P”.
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Definition 1.2.2 We say that P : Γ(E) → Γ(F ) is a differential operator of order
at most k from E to F if

Pe,λ ∈ Dk(M) ∀ e ∈ Γ(E), λ ∈ Γ(F ∗).

.
The space of such operators is denoted by Dk(M ;E,F ), or simply Dk(E,F ).

With this definition, locality is a consequence.

Proposition 1.2.3 Given two vector bundles E and F over M ,

(i) any differential operator P ∈ Dk(E,F ) is local and, for any U ⊂ M open, the
restriction

PU = P |U : Γ(E|U)→ Γ(F |U)

belongs to Dk(E|U , F |U).

(ii) conversely, if P ∈ Γ(E) → Γ(F ) is a local operator with the property that each
point x ∈ M has an open neighborhood U such that P |U ∈ Dk(E|U , F |U), then
P ∈ Dk(M ;E,F ).

Proof Note first that, for any vector bundle E, there exists an integer l and sections

e1, . . . , el ∈ Γ(E), λ1, . . . , λl ∈ Γ(E∗)

such that, for any s ∈ Γ(E),

s = λ1(s)e1 + . . .+ λl(s)el.

Indeed, a basic property of vector bundles is that one can always find another vector bundle
E ′ such that E⊕E ′ is isomorphic to the trivial bundle M×Cl for some l. This isomorphism
is encoded in a global frame ẽ1, . . . , ẽl of E ⊕E ′. Define then ej to be the first component
of ẽj and λj(s) to be the j-th coordinate of (s, 0) ∈ E ⊕ E ′ with respect to this frame.

Returning to our proposition, assume that P ∈ Dk(E,F ), s ∈ Γ(E) vanishes on U ⊂M
and we show that also P (s) vanishes on U (i.e. we use a version of Exercise 1.1.4). But
the previous discussion shows that, if s|U = 0, then s can be written as a sum

s = f1e1 + . . .+ flel

with ej ∈ Γ(E), fj ∈ C∞(M) with fi|U = 0 (take fj = λj(s)). But then, for any λ ∈ Γ(F ∗),

λ(P (s)) = Pe1,λ(f1) + . . .+ Pel,λ(fl)

hence, from the locality of the operators Pe,λ, we deduce that P (s)|U is killed by all λ ∈
Γ(F ∗), hence P (s)|U = 0.
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Next, we postpone for the moment the proof of the fact that P |U ∈ Dk(E|U , F |U) and
we concentrate on the last part of the proposition. Hence assume that P ∈ Γ(E)→ Γ(F )
is local and satisfies the properties from the statement. We have to show that, for any
e ∈ Γ(E), λ ∈ Γ(F ∗), Pe,λ ∈ Dk(M). But note that, for any U ,

Pe,λ|U = (P |U)e|U ,λ|U

hence it suffices to combine the hypothesis with the last part of Exercise 1.1.7.
Finally, assume that P ∈ Dk(E,F ) and we prove that the restrictions P |U : Γ(E|U)→

Γ(F |U) are in Dk(E|U , F |U). Let e ∈ Γ(E|U), λ ∈ Γ(F ∗|U); we show that Q := (P |U)e,λ
belongs to Dk(U). As before, we have to make sure that any x ∈ U has an open neighbor-
hood Vx ⊂ U such that Q|V ∈ Dk(U). Just use Vx = V so that e|V and λ|V admit smooth
extensions ẽ, λ̃ to M , so that Q|V = Pẽ,f̃ |V will belong to Dk(U). �

Exercise 1.2.4 Show that, for any two vector bundles E and F over a manifold M , the
assignment

U 7→ Dk(E|U , F |U)

(U ⊂M open) is a sheaf on M .

Of course, with (ii) of the proposition in mind, we can go on and give slightly different
definitions, based on the local data. For instance, if U is an open on which E and F are
trivializable, with (fixed) trivialization frames

e = {e1, . . . , ep}, f = {f1, . . . , fq},

then the restriction to U of a local operator P : Γ(E)→ Γ(F ) is of type

P |U(ej) =
∑
k

P (e, f)kjfk,

i.e. it is determined by a matrix of operators acting on C∞(U):

(P (e, f)kj )1≤j≤p,1≤k≤q.

Exercise 1.2.5 Show that a linear operator P : Γ(E)→ Γ(F ) is in Dk(E,F ) if and only
if it is local and, for each x ∈ M , there is an open U containing x and local frames e and
f of E and F over U , such that all the components P (e, f)kj are in Dk(U).

To express differential operators in perms of partial derivatives, we have to restrict to
opens U ⊂M with

1. U is the domain of a (fixed) coordinate chart (U, κ = (xκ1 , . . . , x
κ
n)).

2. E is trivializable over U , with a (fixed) frame {s1, . . .} over U .
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Note that, in this case, we have “higher order derivatives operators”

∂ακ : Γ(E)→ Γ(E), f 1s1 + . . . 7→ ∂ακ (f 1)s1 + . . . .

Exercise 1.2.6 With the previous notations, show that a linear map P : Γ(E|U) →
Γ(F |U) is a differential operator of order at most k if and only if it is of the form

P =
∑
|α|≤k

Cα ◦ ∂α,

with Cα ∈ Γ(Hom (E|U , F |U)).

We extend the definition of principal symbol as follows. We denote by π : T ∗M → M
the canonical projection. For a vector bundle E over M , let π∗E be the pull-back of E to
T ∗M (whose fiber above ξx ∈ T ∗xM is Ex). For two vector bundles E and F over M , we
consider the vector bundle Hom (E,F ) over M (whose fiber above x ∈M is Hom(Ex, Fx))
and its pull-back to T ∗M ,

π∗Hom (E,F ) ∼= Hom (π∗E, π∗F )

whose fiber above ξx ∈ T ∗xM is Hom(Ex, Fx).

Lemma 1.2.7 Let E,F be smooth vector bundles on M and let P ∈ Dk(E,F ). There
exists a unique section σk(P ) of π∗Hom (E,F ) (called again the principal symbol of
P ), i.e. a smooth function

T ∗x 3 ξx 7→ σk(P )(ξx) ∈ Hom(Ex, Fx),

with the following property: for each x0 ∈M and all s ∈ Γ(E) and ϕ ∈ C∞(M),

σk(P )((dϕ)x0)(s(x0)) = lim
t→∞

t−ke−itϕ(x0)P (eitϕs)(x0). (1.2.5)

Moreover, for each x ∈ M the function ξ 7→ σk(P )(x, ξ) is a degree k homogeneous poly-
nomial function T ∗xM → Hom(Ex, Fx).

Proof Uniqueness follows from the fact that for every (x, ξ) ∈ T ∗M and v ∈ Ex there
exists a s ∈ Γ∞(E) such that s(x) = v and a function ϕ ∈ C∞(M) such that dϕ(x) = ξ.
We have to check that, fixing x0 ∈M , the right hand side of the formula only depends on
ξ := (dϕ)x0 and on s(x0), and the dependence is linear on s(x0) and polynomial in ξ. We
denote this formula by σ(ξ, s). Applying an arbitrary λ ∈ Γ(F ∗) we obtain

λ(σ(ξ, s)) = σk(Ps,λ)(ξ),

hence λ(σ(ξ, s)) only depends on ξ (and in a polynomial fashion) and s and not on the
choice of φ (for any λ!), from which it follows that the same is true for σ(ξ, s). Finally, for
any f ∈ C∞(M), multiplying s by fs gives:

λ(σ(ξ, fs)) = lim
t→∞

t−ke−itϕ(x0)λ(P (eitϕfs)(x0)),
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where λ(P (eitϕfs)(x0)) = Ps,λ(e
itϕf) hence (using Exercise 1.1.18 applied to Ps,λ) we find

λ(σ(ξ, fs)) = λ(f(x0)σ(ξ, s)).

Since this holds for all λ, it follows that σ(ξ, fs) = f(x0)σ(ξ, s); since σ(ξ, s) is C-linear in
s, we deduce that it only depends s(x0) and not on s(x0). �

Example 1.2.8 We consider the complexified version of the DeRham complex. I.e., we
define Ωk(M)C = Ωk(M) ⊗R C, which should be interpreted as the space of sections of
the complex vector bundle ΛCT

∗M whose fiber at x ∈ M consists of antisymmetric, k-
multilinear maps from TxM to C. The exterior differentiation clearly extends to a C-linear
map d = dk : Ωk(M)C → Ωk+1(M)C. Let U be a coordinate patch of M with local
coordinates x1, . . . , xn. Then for each a ∈ U, the one forms dx1(a), . . . , dxn(a) span the
cotangent space T ∗aM. Thus, ∧kT ∗aM has the basis

dxj1(a) ∧ · · · ∧ dxjk(a), withj1 < · · · < jk.

With respect to this basis, the restriction of a section s ∈ Ωk(M) to U may be expressed
as

s|U =
∑

j1<···<jk

sj1,...,jkdxj1 ∧ · · · ∧ dxjk .

Exterior differentiation is given by

ds|U =
∑

j1...<jk

d(sj1,...,jk) ∧ dxj1 ∧ · · · ∧ dxjk ,

where dsj1,...,jk =
∑

i ∂isj1,...,jk . From this we see that d is a differential operator of order
one from ∧kT ∗M to ∧k+1T ∗M.

Exercise 1.2.9 Show that the principal symbol of exterior differentiation d : Γ(ΛkT ∗M)→
Γ(Λk+1T ∗M) is given by

σ1(d)(x, ξ) : ∧kT ∗xM → ∧k+1T ∗xM, ω 7→ iξ ∧ ω.

For E1, E2 smooth vector bundles on M and P ∈ Dk(E1, E2), the principal symbol
σk(P ) is a section of the bundle Hom (π∗E1, π

∗E2). Equivalently, the symbol may be viewed
as a homomorphism from the bundle π∗E1 to π∗E2. Thus, if E3 is a third vector bundle
and Q ∈ Dl(E2, E3) then the composition σl(Q) ◦σk(P ) is a vector bundle homomorphism
from E1 to E3.

Lemma 1.2.10 Let E1, E2, E3 be smooth vector bundles on M. Let P ∈ Dk(E1, E2) and
Q ∈ Dl(E2, E3). Then the composition Q ◦P belongs to Dk+l(E1, E3) and

σk+l(Q ◦P ) = σl(Q) ◦σk(P ).
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Finally, we discuss the notion of formal adjoint. For this, and for later use, we need the
notion of density.

Reminder on densities: This is about the density bundle from the intensive reminder.
Given an n-dimensional real vector space V , one defines Dr(V ), the space of r-densities (for any
real number r > 0), as the set of all maps ω : ΛnV → R satisfying

ω(λξ) = |λ|rω(ξ), ∀ ξ ∈ ΛnV.

Equivalently (and maybe more intuitively), one can use the set Fr(V ) of all frames of V (i.e.
ordered sets (e1, . . . , en) of vectors of V which form a basis of V ). Then Dr(V ) can also be
described as the set of all functions

ω : Fr(V )→ R
with the property that, for any invertible n by n matrix A, and any frame e, for the new frame
A(e) one has

ω(A(e)) = |det(A)|rω(e).

Intuitively, one may think of an r-density on V as some rule of computing volumes of the hyper-
cubes (each frame determines such a hypercube). For each r, Dr(V ) is one dimensional (hence
isomorphic to C), but in a non-canonical way. Choosing a frame e of V , one has an induced
r-density denoted

ωe = |e1 ∧ . . . ∧ en|r
uniquely determined by the condition that ωe(e) = 1 (the ei’s in the notation stand for the dual
basis of V ∗).

For a manifold M , we apply this construction to all the tangent spaces to obtain a line bundle
Dr(M) over M , whose fiber at x ∈ M is Dr(TxM). For r = 1, D1(M) is simply denoted D, or
DM whenever it is necessary to remove ambiguities. The sections of D are called densities on M .

Any local chart (U, κ = (x1
κ, . . . , x

n
κ)) induces a frame (∂/∂xiκ)x for TxM with the dual frame

(dxiκ)x for T ∗xM , for all x ∈ U . Hence we obtain an induced trivialization of Dr(M) over U , with
trivializing section

|dx1
κ ∧ . . . ∧ dxnκ|r

(and, as usual, the smooth structure on D is so that these sections induced by the local charts
are smooth).

An r-density on M is a section ω of Dr(M). Hence, locally, with respect to a coordinate chart
as before, such a density can be written as

ω = fκ ◦ κ · |(dx1
κ ∧ . . . ∧ dxnκ|r

for some smooth function defined on κ(U). If we consider another coordinate chart κ′ on the
same U then, after a short (but instructive) computation, wee see that fκ changes according to
the rule:

fκ = |Jac(h)|rfκ′ ◦ h,
where h = κ′ ◦ κ−1 is the change of coordinates, and Jac(h) is the Jacobian of h. The case r = 1
reminds us of the usual integration and the change of variable formula: the usual integration of
compactly supported functions on an open Ω ⊂ Rn defines a map∫

Ω
: C∞c (Ω;R)→ R
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and, if we move via a diffeomorphism h : Ω→ Ω′, one has the change of variables formula∫
Ω
f =

∫
Ω
|Jac(h)| · f ◦ h.

Hence, for 1-densities on the domain U of a coordinate chart, one has an induced integration map∫
U

: Γc(U,D|U )→ R

(by sending ω to
∫
κ(U) fκ) which does not depend on the choice of the coordinates. For the global

integration map ∫
M

: Γc(M,D)→ R,

one decomposes an arbitrary compactly supported density Ω on M as a finite sum
∑

i ωi, where
each ωi is supported in the domain of a coordinate chart Ui (e.g. use partitions of unity) and put∫

M
ω =

∑
i

∫
Ui

ωi.

Of course, one has to prove that this does not depend on the way we decompose ω as such a sum,
but this basically follows from the additivity of the usual integral.

Note that one can clearly talk about positive/negative densities. Hence any metric on D
(and, in particular, any Riemannian metric on M) induces a no-where vanishing section of D
(the positive one, of length 1). In other words, D is trivializable (but not canonically). The
choice of a no-where zero density dµ induces an integration map:∫

M
· dµ : C∞c (M)→ C, f 7→

∫
M

(fdµ),

where the complex numbers show up because of the fact that C∞c (M) consists of complex valued
functions; of course,

∫
M (f+ig)dµ is defined as

∫
M fdµ+i

∫
M gdµ. Actually, to be consistent with

our convention of only considering complex vector bundles, we should complexify D, i.e. consider
D⊗RC = D⊕ i ·D; equivalently, in all the previous definitions we use C instead of R (i.e. we look
at complex-valued densities). We will continue to use the notation D for the resulting complex
line bundle; one obtaines the complex-valued version of the integration map∫

M
: Γc(M,D)→ C.

Assume now that E and F are two vector bundles over M equipped with hermitian
inner products 〈−,−〉E1 and 〈−,−〉F . We also choose a strictly positive density on M ,
call it dµ. One has an induced inner-product on the space Γc(E) of compactly supported
sections of E given by

〈s, s′〉E :=

∫
M

〈s(x), s′)〉Ex dµ,

1hence 〈−,−〉E is a family {〈−,−〉Ex : x ∈M} of inner products on the vector spaces Ex, which “varies
smoothly with respect to x”. The last part means, e.g., that for any s, s′ ∈ Γ(E), the function 〈s, s′〉E on
M , sending x to 〈s(x), s′(x)〉Ex is smooth; equivalently, it has the obvious meaning in local trivializations.
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and similarly an inner product on Γc(F ). Given P ∈ Dk(E,F ), a formal adjoint of P
(with respect to the hermitian metrics and the density) is an operator P ∗ ∈ Dk(F,E) with
the property that

〈P (s1), s2〉F = 〈s1, P
∗(s2)〉E, ∀ s1 ∈ Γc(E), s2 ∈ Γc(F ).

Proposition 1.2.11 For any P ∈ Dk(E,F ), the formal adjoint P ∗ ∈ Dk(F,E) exists
and is unique. Moreover, the principal symbol of P ∗ is σk(P

∗) = σk(P )∗, where σk(P )∗(ξx)
is the adjoint of the linear map

σk(P )(ξx) : Ex → Fx

(with respect to the inner products 〈−,−〉Ex and 〈−,−〉Fx ).2

Proof Due to the local property of differential operators it suffices to prove the statement
(both the existence as well as the uniqueness) locally. So assume that M = U ⊂ Rn, where
we can write P =

∑
|α|≤k Cα ◦ ∂α. We have dµ = ρ|dx| for some smooth function ρ on U .

Writing out 〈P (s1), s2〉F and integrating by parts |α| times (to move ∂α from s to s′), we
find the operator P ∗ which does the job:

P ∗(s′) =
∑
|α|≤k

1

ρ
∂α(ρC∗αs

′).

Clearly, this is a differential operator of order at most k. For the principal symbol, we see
that the only terms in this sum which matter are:∑

|α|=k

(−1)|α|
1

ρ
ρC∗α∂

α(s′) =
∑
|α|=k

(−1)|α|C∗α∂
α(s′),

i.e. the symbol is given by∑
|α|=k

(−1)|α|C∗α(iξ)α = (
∑
|α|=k

C∗α(iξ)α)∗.

The uniqueness follows from the non-degeneracy property of the integral: if
∫
U
fg = 0 for

all compactly supported smooth functions, then f = 0. �

1.3 Ellipticity; preliminary version of the Atiyah-Singer

index theorem

Definition 1.3.1 Let P ∈ Dk(E,F ) be a differential operator between two vector bundles
E and F over a manifold M . We say that P is an elliptic operator of order k if, for any
ξx ∈ T ∗xM non-zero,

σk(P )(ξx) : Ex → Fx

is an isomorphism.

2note that P ∗ depends both on the hermitian metrics on E and F as well as on the density, while it
principal symbol does not depend on the density.
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The aim of these lectures is to explain and complete the following theorem (a prelimi-
nary version of the Atiyah-Singer index theorem).

Theorem 1.3.2 Let M be a compact manifold and let P : Γ(E) → Γ(F ) be an elliptic
differential operator. Then P is Fredholm (i.e. Ker(P ) and Coker(P ) are finite dimen-
sional),

Index(P ) := dim(Ker(P ))− dim(Coker(P ))

depends only on the principal symbol σk(P ), and Index(P ) can be expressed in terms of
(precise) topological data associated to σk(P ).

Here are a few exercises about the notion of ellipticity and Fredholmness. In these
exercises we fix a a density on M and, on each vector bundle over M that we will be
considering, a hermitian inner product. So, for E over M , we can talk about the adjoint
D∗ of differential operators D : Γ(E)→ Γ(E); we will say that D is self-adjoint if D = D∗.
We will prove later on (as part of the theorem above) that, if D is elliptic, then

(Dec) Γ(E) = Ker(D) + Im(D).

(Fre) Ker(D) and Coker(D) are finite dimensional (i.e. D is Fredholm).

Exercise 1.3.3 Given a self-adjoint differential operator D : Γ(E)→ Γ(E), show that:

(i) Ker(D) ∩ Im(D) = {0}

(ii) If D satisfies condition (Dec), then

(Ker(D))⊥ = Im(D), (Im(D))⊥ = Ker(D).

(iii) If D satisfies both conditions (Dec) and (Fre), then Index(D) = 0.

Exercise 1.3.4 Given a self-adjoint differential operator Q : Γ(E) → Γ(E) and D =
Q ◦Q, then

(i) D is elliptic if and only if Q is.

(ii) D satisfies conditions (Dec) and (Fre) if and only if Q does.

Exercise 1.3.5 Let Q+ : Γ(E+) → Γ(E−) be a differential operator between two vector
bundles E+ and E− and we denote by Q− its adjoint:

Γ(E+)
Q+

// Γ(E−) .
Q−oo

(1.3.6)

We place ourselves in the situation of the previous exercise by taking

E = E+ ⊕ E−, Q(s+, s−) = (Q−(s−), Q+(s+)),

so that D = Q ◦Q has components D+ = Q− ◦Q+, D− = Q+ ◦Q− (acting on Γ(E+) and
Γ(E−), respectively). If D satisfies conditions (Dec) and (Fre), show that Q+ is Fredholm
and

Index(Q+) = Ker(D+)−Ker(D−).



16 CHAPTER 1. DIFFERENTIAL OPERATORS

Due to the the way that elliptic operators arise in geometry (via “elliptic complexes”),
it is worth giving a slightly different version of the Atiyah-Singer index theorem.

Definition 1.3.6 A differential complex over a manifold M ,

E : Γ(E0)
P0−→ Γ(E1)

P1−→ Γ(E2)
P2−→ . . .

consists of:

1. For each k ≥ 0, a vector bundle Ek over M , with Ek = 0 for k large enough.

2. For each k ≥ 0, a differential operator Pk from Ek to Ek+1, of some order d indepen-
dent of k

such that, for all k, Pk+1 ◦Pk = 0.

Example 1.3.7 Let dk : Ωk(M)→ Ωk+1(M) be exterior differentiation. Then dk+1 ◦ dk =
0 for all k. Therefore, the sequence of differential operators dk ∈ D1(∧kT ∗M,∧k+1T ∗M)
forms a complex; it is called the de Rham complex.

Note that, from Lemma 1.2.10 it follows that for a complex of differential operators as
above, the associated sequence σdk(Pk) of principal symbols is a complex of homomorphisms
of the vector bundles π∗Ek on M , i.e., for any ξx ∈ T ∗xM , the sequence

E0
x

σd(P0)(ξx)−→ E1
x

σd(P1)(ξx)−→ E2
x

σd(P2)(ξx)−→ . . .

is a complex of vector space. In turn, this means that the composition of any two consec-
utive maps in this sequence is zero. Equivalently,

Ker(σd(Pk+1)(ξx)) ⊂ Im(σd(Pk)(ξx)).

Definition 1.3.8 A differential complex E is called an elliptic complex if, for any
ξx ∈ T ∗xM non-zero, the sequence

E0
x

σd(P0)(ξx)−→ E1
x

σd(P1)(ξx)−→ E2
x

σd(P2)(ξx)−→ . . .

is exact, i.e.
Ker(σd(Pk+1)(ξx)) = Im(σd(Pk)(ξx)).

For a general differential complex E , one can define

Zk(E) = Ker(Pk), Bk(E) = Im(Pk1),

and the k-th cohomology groups

Hk(E) = Zk(E)/Bk(E).
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The space Hk(M,P∗) defined as above, is called the k-th cohomology group of the
elliptic complex. One says that E is a Fredholm complex if all these groups are finite
dimensional. In this case, one defines the Euler characteristic of E as

χ(E) :=
∑
k

(−1)kdim(Hk(E)).

Another version of the preliminary version of the Atiyah-Singer index theorem is the fol-
lowing:

Theorem 1.3.9 If E is an elliptic complex over a compact manifold M , then it is also
Fredholm, and the Euler characteristic χ(E) can be expressed in terms of topological in-
variants of the principal symbols associated to E.

Example 1.3.10 For the DeRham complex (Ω∗(M), d), the resulting cohomology in a
degree k is called the k-th de Rham cohomology of M, denoted Hk

dR(M). The ellipticity
of this complex (see the next exercise), together with the above result, implies that the
de Rham cohomology of a compact manifold is finite dimensional. For a simpler proof
of this result, involving Meyer-Vietoris sequences, we refer the reader to the book by
Thornehaeve-Madsen or the book by Bott and Tu.

Exercise 1.3.11 Let V be a finite dimensional complex vector space. Let ξ ∈ V ∗ \ {0}.
Show that the complex of linear maps Tk : ∧kV ∗ → ∧k+1V ∗, ω 7→ ξ ∧ ω, is exact.

Deduce that the DeRham complex a manifold is an elliptic complex.

Example 1.3.12 Any elliptic operator P ∈ Dk(E,F ) can be seen as an elliptic complex
with E0 = E, E1 = F and Ek = 0 for other k’s, P0 = P . Moreover, its Euler characteristic
is just the index of P . Hence the last theorem seems to be a generalization of Theorem
1.3.2. However, there is a simple trick to go the other way around. This the next exercises.

In these exercises, we fix a a density on M and, on each vector bundle over M that
we will be considering, a hermitian inner product. First we relate the notion of elliptic
complexes to that of elliptic operators. For a complex of differential operators

E : Γ(E0)
P0−→ Γ(E1)

P1−→ Γ(E2)
P2−→ . . .

(with hermitian inner products on each Ek) we form the total vector bundle

E = E0 ⊕ E1 ⊕ . . .

and the Laplacian
∆ := P ◦ P ∗ + P ∗ ◦ P : Γ(E)→ Γ(E).

Note that Delta is of type

∆ = (∆0,∆1, . . .) with ∆k : Γ(Ek)→ Γ(Ek).
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Exercise 1.3.13 For any complex of differential operators (E), show that Ker(∆) =
Ker(P ) ∩Ker(P ∗) and that the sum

Ker(∆) + Im(P ) + Im(P ∗) ⊂ Γ(E)

is a direct sum.

Exercise 1.3.14 Show that the complex (1.3.6) is elliptic if and only if the Laplacian ∆E
is an elliptic operator.

(Hint: translate this into an linear problem, in which you deal with a cochain complex
consisting of finite dimensional hermitian vector spaces

V 0 ∂→ V 1 ∂→ V 2 ∂→ . . . , (1.3.7)

and show that this is exact if and only if the associated “algebraic Laplacian”

∂ ◦ ∂∗ + ∂∗ ◦ ∂ : ⊕kV k → ⊕kV k

is an isomorphism. )

The next exercise is similar to the previous one but, instead of addressing ellipticity, it
addresses the Fredholmness condition together with the condition (Dec) mentioned before:

(Dec) Γ(E) = Ker(∆) + Im(∆).

The two exercises together will imply, once we show that elliptic differential operators are
Fredholm, that elliptic complexes are Fredholm.

Exercise 1.3.15 With the same notation as before, for an elliptic complex E , show that
the Laplacians Fredholm and satisfies (Dec) if and only if the complex E is Fredholm and
satisfies the following “Hodge decomposition”

Γ(E) = Ker(P ) ∩Ker(P ∗) + Im(P ) + Im(P ∗)

or, equivalently (by Exercise 1.3.13),

Γ(E) = Ker(∆)⊕ Im(P )⊕ Im(P ∗).

Moreover, in this case Ker(P ) = Ker(∆)⊕ Im(P ), so that Hk(E) is canonically isomorphic
to Ker(∆k).

Putting the previous exercises together, we consider

E+ := E0 ⊕ E2 ⊕ E4 ⊕ . . . , E− := E1 ⊕ E3 ⊕ E5,

Q+ := (P + P ∗)|Γ(E+) : Γ(E+)→ Γ(E−)

and you should deduce:

Exercise 1.3.16 If E is Fredholm and ∆ satisfies (Dec), then Q+ is an elliptic operator
and

χ(E) = Index(Q+).



1.4. FREDHOLM OPERATORS AS TOOLS- SUMMARY OF WHAT WE NEED 19

1.4 Fredholm operators as tools- summary of what we

need

As we have already mentioned, the aim of these lectures is to understand Theorem 1.3.2.
The first few lectures will be devoted to proving that the index of any elliptic operator (over
compact manifolds) is finite; after that we will spend some lectures to explain the precise
meaning of “topological data associated to the symbol” (and the last lectures will be de-
voted to some examples). The nature of these three parts is Analysis- Topology- Geometry.

For the first part- on the finiteness of the index, we will rely on the fact that indices of
operators are well behaved in the framework of Banach spaces. This is some very general
theory that belongs to Functional Analysis, which we recall in this section (for more details
and proofs, see the next section). In the next few lectures we will show how this theory
applies to our problem (on short, we have to pass from spaces of sections of vector bundles
to appropriate “Banach spaces of sections” and show that our operators have the desired
compactness properties).

So, for this section we fix two Banach spaces E and F and we discuss Fredholm operators
between them- i.e. operators which have a well-defined index. More formally, we denote
by L(E,F) the space of bounded (i.e. continuous) linear operators from E to F and we
take the following:

Definition 1.4.1 A bounded operator T : E → F is called Fredholm if Ker(A) and
Coker(A) are finite dimensional. We denote by F(E,F) the space of all Fredholm operators
from E to F.

The index of a Fredholm operator A is defined by

Index(A) := dim(Ker(A))− dim(Coker(A)).

Note that a consequence of the Fredholmness is the fact that R(A) = Im(A) is closed.
Here are the first properties of Fredholm operators.

Theorem 1.4.2 Let E, F, G be Banach spaces.

(i) If B : E → F and A : F → G are bounded, and two out of the three operators A, B
and AB are Fredholm, then so is the third, and

Index(A ◦B) = Index(A) + Index(B).

(ii) If A : E→ F is Fredholm, then so is A∗ : F∗ → E∗ and 3

Index(A∗) = −Index(A).

3here, A∗(ξ)(e) = ξ(A(e)))
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(iii) F(E,F) is an open subset of L(E,F), and

Index : F(E,F)→ Z

is locally constant.

What will be important for us is an equivalent description of Fredholm operators, in
terms of compact operators. First we recall the following:

Definition 1.4.3 A linear map T : E → F is said to be compact if for any bounded
sequence {xn} in E, {T (xn)} has a convergent subsequence.

Equivalently, compact operators are those linear maps T : E → F with the property
that T (BE) ⊂ F is relatively compact, where BE is the unit ball of E. Here are the first
properties of compact operators.

We point out the following improvement/consequence of the Fredholm alternative for
compact operators (discussed in the appendix- see Theorem 1.5.9 there).

Theorem 1.4.4 Compact perturbations do not change Fredholmness and do not change
the index, and zero index is achieved only by compact perturbations of invertible operators.

More precisely:

(i) If K ∈ K(E,F) and A ∈ F(E,F), then A + K ∈ F(E,F) and Index(A + K) =
Index(A).

(ii) If A ∈ F(E,F), then Index(A) = 0 if and only if A = A0 + K for some invertible
operator A0 and some compact operator K.

Finally, there is yet another relation between Fredholm and compact operators, know
as the Atkinson characterization of Fredholm operators:

Theorem 1.4.5 Fredholmness= invertible modulo compact operators.
More precisely, given a bounded operator A : E→ F, the following are equivalent:

(i) A is Fredholm.

(ii) A is invertible modulo compact operators, i.e. there exist and operator B ∈ L(F,E)
and compact operators K1 and K2 such that

BA = 1 +K1, AB = 1 +K2.

1.5 Appendix: Fredholm operators- more details and

proofs

Here, for the curious reader, we expand the previous section, providing more details and
proofs.
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1.5.1 Fredholm operators: basic properties

Let E and F be two Banach spaces. We denote by L(E,F) the space of bounded linear
operators from E to F.

Definition 1.5.1 A bounded operator T : E → F is called Fredholm if Ker(A) and
Coker(A) are finite dimensional. We denote by F(E,F) the space of all Fredholm operators
from E to F.

The index of a Fredholm operator A is defined by

Index(A) := dim(Ker(A))− dim(Coker(A)).

Note that a consequence of the Fredholmness is the fact that R(A) = Im(A) is closed.
Here are the first properties of Fredholm operators (stated already as Theorem 1.4.2 in the
previous section).

Theorem 1.5.2 Let E, F, G be Banach spaces.

(i) If B : E → F and A : F → G are bounded, and two out of the three operators A, B
and AB are Fredholm, then so is the third, and

Index(A ◦B) = Index(A) + Index(B).

(ii) If A is Fredholm, then so is A∗, and

Index(A∗) = −Index(A).

(iii) F(E,F) is an open subset of L(E,F), and

Index : F(E,F)→ Z

is locally constant.

Proof Part (i) is a purely algebraic result. We prove that if A and B are Fredholm,
then so is AB (the other cases following from the arguments bellow). First of all we have
a short exact sequence

0→ Ker(B)→ Ker(AB)
B→ Im(B) ∩Ker(A)→ 0,

and this proves that AB has finite dimensional kernel with

dim(Ker(AB)) = dim(Ker(B)) + dim(Ker(A) ∩ Im(B)).

Next, we have the exact sequence

0→ Im(B) + Ker(A)

Im(B)
→ F

Im(B)

A→ G
Im(AB)

→ G

Im(A)
→ 0,
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where the first map is the obvious inclusion, and the last one is the obvious projection.
All the spaces in this sequence, except maybe Coker(AB), are finite dimensional (the first
one is isomorphic to Ker(A)/Ker(A) ∩ Im(B), so we deduce that also Coker(AB) is finite
dimensional and

dim(Coker(AB)) = dim(Coker(A))+dim(Coker(B))−dim(Ker(A))+dim(Ker(A)∩Im(B)).

Combining the last two identities, we get the desired equation for the index.
Part (ii) is easy.
For (iii), let A ∈ F(E,F). We choose complements E1 of Ker(A) in E, and F2 of Im(A)

in F. This is possible because Ker(A) is finite dimensional, and because Im(A) is closed
of finite codimension, respectively. Denote by i1 : E1 → E the canonical inclusion and by
p : F → Im(A) the projection. To any operator S ∈ L(E,F) we associate the operator
S0 = pSi : E1 → Im(A). Since A0 is clearly an isomorphism, there exists ε > 0 so that, for
all S such that ||S − A|| < ε, S0 is an isomorphism. For such an S we can also say that
S0 = pSi is Fredholm of index zero. But p is Fredholm of index −dim(Ker(A)) while i is
Fredholm of index dim(Coker(A)). Using (i), S must be Fredholm and

0 = Index(S0) = −dim(Ker(A)) + Index(S) + dim(Coker(A)).

In conclusion, for ||S − A|| < ε, S is Fredholm of index equal to Index(A).

1.5.2 Compact operators: basic properties

Definition 1.5.3 A linear map T : E → F is said to be compact if for any bounded
sequence {xn} in E, {T (xn)} has a convergent subsequence.

We denote by K(E,F) the space of such compact operators.

Equivalently, compact operators are those linear maps T : E → F with the property
that T (BE) ⊂ F is relatively compact, where BE is the unit ball of E. Here are the first
properties of compact operators.

Proposition 1.5.4 Let E, F and G be Banach spaces.

(i) K(E,F) is a closed subspace of L(E,F).

(ii) given T ∈ L(E,F), S ∈ L(F,G), if T or S is compact, then so is T ◦ S.

(iii) T ∈ L(E,F) is compact if and only if T ∗ ∈ L(F∗,E∗) is.

In particular, K(E) is a closed two-sided ∗-ideal in L(E).

Note that, if E = H is a Hilbert space, then K(H) is the unique non-trivial (norm-
)closed ideal in L(H).
Proof We prove that, if Tn → T and Tn are all compact, then T is compact. Since T (BE)
is bounded and F is Banach, it suffices to show that T (BE) is precompact, i.e. that it can
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be covered by a finite number of balls of arbitrarily small radius ε. So, let ε > 0. Choose
n such that ||Tn−T || < ε/2 and cover Tn(BE) by a finite number of balls B(fi, ε/2). Then
the balls B(fi, ε) cover T (BE).

We now prove (iii) (the remaining statements are immediate). Assume first that T is
relatively compact, and let K ⊂ F be the closure of T (BE) (compact). Let vn be a sequence
in the unit ball of F∗. We want to prove that T ∗(vn) = vn◦T has a convergent subsequence.
We consider the space C(K) of continuous functions on K, and the subspace H consisting
of the restrictions φn = vn|K . We claim we can apply Ascoli to H. Equicontinuity: since
||vn|| ≤ 1, we have

|φn(x)− φn(y)| ≤ ||x− y||
for all x and y. Equiboundedness: since ||vn|| ≤ 1 and any y ∈ K has norm less then ||T ||,
we have

|φn(y)| ≤ ||T ||
for all y ∈ K and all n. By Ascoli, we find a subsequence of φn, which we may assume is
φn itself, which is convergent in norm. We use that it is Cauchy:

supy∈K |φn(y)− φm(y)| → 0.

Since T (BE) ⊂ K, this clearly implies that T ∗(vn) is Cauchy in E∗, hence convergent. For
the converse of (iii), we apply the first half to conclude that T ∗∗ : E∗∗ → F∗∗ is compact.
Viewing E ⊂ E∗∗ as a closed subspace, and similarly for F, we have T (BE) = T ∗∗(BE)-
relatively compact.

Next, we discuss the relationship with finite rank operators.

Definition 1.5.5 A linear map T : E → F is said to be of finite rank if it is continuous
and its image is a finite dimensional space. We denote by Kfin(E,F) the space of compact
operators from E to F.

Equivalently, Kfin(E,F) is the image of the canonical inclusion

E∗ ⊗ F→ L(E,F),
∑

e∗i ⊗ fi 7→
∑

e∗i (−)fi

i.e. the finite rank operators are those of type T (x) =
∑
e∗i (x)fi (finite sum) with e∗i ∈ E∗,

fi ∈ F. It is clear that
Kfin(E,F) ⊂ K(E,F) ⊂ L(E,F)

and Kfin(E,F) has all the properties of K(E,F) from the previous proposition, except from
being closed. All we can say in general is that

Kfin(E,F) ⊂ K(E,F),

and the next proposition4 gives conditions on F so that this inclusion becomes equality.
For this, we recall that a Schauder basis for F is a countable family {fk : k ≥ 1} of elements

4this proposition is just for your curiosity.
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of F with the property that each y ∈ F can be uniquely written as

y =
∞∑
k=1

tkfk

with tk-scalars. Clearly, any separable Hilbert space admits a Schauder basis, but also
spaces such as Lp with p ≥ 1 do.

Proposition 1.5.6 If F admits a Schauder basis then an operator T ∈ L(E,F) is compact
if and only if it is the limit of a sequence of finite rank operators; in other words,

K(E,F) = Kfin(E,F).

Proof We still have to show that any compact T is a limit of finite rank ones. Let
{fk : k ≥ 1} be a Schauder basis, and let fk : F → C be the coordinate functions. It
is known that the Schauder basis can be chosen such that fk are continuous. We put
Tk ∈ L(E,F),

Tk(x) =
k∑
i

f i(T (x))fi.

To prove Tk → T , let ε > 0. For any x of norm less then 1, we find N such that

∞∑
i=k

f i(T (x))fi|| < ε

for all k ≥ N . But since T (BE) is relatively compact, we can choose N uniform with
respect to x ∈ BE. Hence ||T − Tk|| < ε for all k ≥ N .

Finally, to give an alternative description of compact operators, we recall that a linear
map T : E→ F is said to be completely continuous if it carries weakly convergent sequences
into norm convergent sequences.

Proposition 1.5.7 Any compact operator T : E → F is completely continuous. The
converse is true if E is reflexive.

1.5.3 Compact operators: the Fredholm alternative

In this section, E = F (a Banach space). One of the versions of the Fredholm alternative
says that, if K is a compact operator on E, then the associated equation x = Kx + y
behaves like in the finite dimensional case: if the homogeneous equation x = Kx has only
the trivial solution x = 0, then the inhomogeneous equations

x = Kx+ y

has a unique solution x ∈ E, for every y ∈ E. More precisely, we have the following:
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Proposition 1.5.8 For K ∈ K(E), the following are equivalent:

(i) 1−K is injective.

(ii) 1−K is surjective.

(iii) 1−K is bijective.

The general version of the Fredholm alternative is best expressed in terms of Fredholm
operators.

Theorem 1.5.9 For any compact operator K on E, 1−K is a Fredholm operator of index
zero.

Before turning to the proofs, let us point out that these results are naturally cast as
properties of the spectrum of compact operators 5. Recall that, for an operator T : E→ E,
the spectrum σ(T ) consists of those complex numbers λ with the property that λ−T is not
invertible. A particular case of this is when the equation Tx = λx has a non-trivial solution
x ∈ E. In this case λ is called an eigenvalue of T , the space Nλ = {x ∈ E : Tx = λx} is
called the λ-eigenspace of T , and the set of all eigenvalues of T is denoted by σp(T ) (called
the point-spectrum of T ). With these, we have:

Theorem 1.5.10 Assume that E is infinite dimensional. For any compact operator K ∈
K(E),

(i) σ(K) = σp(K)∪{0}, and this is either finite or it is a countable sequence of complex
number converging to zero.

(ii) for any non-zero eigenvalue λ, the corresponding eigenspace Nλ(K) is finite dimen-
sional.

We now turn to the proofs of these results. We will use the Riesz lemma:

Lemma 1.5.11 If M ⊂ E is a closed subspace, M 6= E, then for every ε > 0, there exists
xε ∈ E such that

||xε|| = 1, d(xε,M) > 1− ε.

Proof Choose x ∈ E−M and put d = d(x,M) > 0. Since d(x,M) < d/(1− ε), we find
mε ∈M such that ||x−mε|| < d/(1− ε). Put

xε =
x−mε

||x−mε||
.

Let us also point out the following simple consequence, known as the Theorem of Riesz,
which is interesting on its own, and which immediately implies (ii) of Theorem 1.5.10.

5again, this (i.e. the next theorem) is just for your curiosity.
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Corollary 1.5.12 If the unit ball of a Banach space E is compact, then E is finite di-
mensional.

Proof Cover BE by a finite number of balls of radius 1/2. Denote by M the subspace
spanned by the centers of these balls; if M 6= E, we can apply the previous lemma with
ε = 1/2 and we obtain a contradiction. In conclusion, E = M is finite dimensional.
Proof [(of Proposition 1.5.8 and of Theorem 1.5.9)] We first claim that, for any compact
operator K, the image of 1−K is closed in E. Denote S = 1−K, N = Ker(S). Consider
y ∈ S(E), and write

y = lim
n→∞

S(xn)

for some sequence {xn} in E. We will show that {xn} may be chosen to be bounded. From
the compactness of K, this implies that {xn} may be assumed to converge to an element
x ∈ E, hence y = S(x) ∈ S(E). To achieve the boundedness of {xn}, it suffices to show
that d(xn, N) is bounded. Indeed, in this case we find an ∈ N such that {||xn − an||} is
bounded and we may replace xn by xn − an.

So, let us assume that {d(xn, N)} is unbounded and we will obtain a contradiction.
First of all, we may assume that this unbounded sequence converges to ∞. Put

zn =
1

d(xn, N)
xn.

This has the properties:
d(zn, N) = 1, lim

n→∞
S(zn) = 0.

We may assume that zn is bounded (otherwise, by the first property above we find z
′
n ∈

zn + N such that ||z′n|| ≤ 2 and {z′n} has the same properties). Since K is compact, we
may also assume that K(zn) converges to an element a ∈ E. From the properties of zn, we
find that d(a,N) = 1 and that zn = S(zn) +K(zn) converges to a. The last statement and
the definition of a imply that K(a) = a, i.e. a ∈ N , which contradicts d(a,N) = 1. This
finishes the proof of the fact that Im(1−K) is closed.

With this property proven, to finish the proof of Proposition 1.5.8, one can go on
with a “direct” argument that does not use any of the properties of Fredholm operators.
Alternatively, one can now prove Theorem 1.5.9, which clearly implies the proposition.
Proof [(end of proof of Proposition 1.5.8)] We now prove that (i) implies (ii). Hence,
let us assume that S is injective and S(E) 6= E. We consider the decreasing sequence of
subspaces of E:

. . . ⊂ E3 ⊂ E2 ⊂ E1 = E

where En = Sn(E). Note that K(En) ⊂ En. Since the restriction of K to each En is
compact, the first part of the proof implies that each En is a closed subspace of En−1, while
the injectivity of S implies that these inclusions are proper. From the Riesz Lemma we
find xn ∈ En with

||xn|| = 1, d(xn,En+1) ≥ 1

2
.
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However, for each n > m one has

Kxn −Kxm = Kxn − xm + Sxm ∈ En − xm + Em1 ⊂ Em1 − xm,

hence

||Kxn −Kxm|| >
1

2
,

and then {Kxn} cannot have a convergent subsequence, which contradicts the compactness
of K.

Finally, the inverse implication (ii) =⇒ (i) is a consequence of the direct implication
and the general fact that Ker(T ∗) = Im(T )⊥: if S = 1 − K is surjective, it follows that
Ker(S∗) = Im(S)⊥ = {0}, i.e. S∗ must be injective. Applying (i) =⇒ (ii) to K∗ (we do
know that K∗ is compact!), S∗ is surjective, hence Ker(S) = Im(S∗)⊥ = {0}, i.e. S is
injective.
Proof [(end of the proof of Theorem 1.5.9), hence also of proof 2 of Proposition 1.5.8)]
The Riesz Lemma immediately implies that Ker(1 − K) is finite dimensional. Applying
this to K∗, we deduce that also Im(1 − K)⊥ = Ker(1 − K∗) is finite dimensional. Since
Im(1−K) is closed (see the first part of the previous proof), we deduce Im(1−K) is of finite
codimension. Hence 1−K is Fredholm. We then have a continuous family {1−tK : t ∈ R}
of Fredholm operators. By the properties of the index, the index at t = 1 coincides with
the index at t = 0, which is zero.
Proof [(of Theorem 1.5.10)] The only thing still to be proven is that σp(K) is either
finite, or a countable sequence converging to zero. It suffices to show that for any sequence
{λn} of distinct eigenvalues of K which converge to λ (finite or infinite), λ = 0. Assume
that {λn} is such a sequence. Choose eigenvectors xn corresponding to λn, xn 6= 0 and put

En = span{x1, . . . , xn}.

Since the λi are distinct, it follows that

E1 ⊂ E2 ⊂ . . .

is a strictly increasing sequence of subspaces of E. From the Riesz Lemma with ε = 1/2
we find

un ∈ En, ||un|| = 1, d(un,En−1) >
1

2
.

Note also that
T (En) ⊂ En, (T − λmId)(Em) ⊂ Em−1.

We deduce that for m > n,

Tun
λn
− Tum

λm
∈ En + Em−1 − um = Em−1 − um,

hence

||Tun
λn
− Tum

λm
|| ≥ 1

2
,

and {Tun/λn} cannot have a convergent subsequence. But, since T is compact, {Tun}
does posses a convergent subsequence, so λ must equal 0.
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1.5.4 The relation between Fredholm and compact operators

We have already seen from the Fredholm alternative that, for any compact operator K ∈
K(E), 1 − K is a Fredholm operator of index zero. Much more precisely, we have the
following (stated as Theorem 1.4.4 in the previous section).

Theorem 1.5.13 Compact perturbations do not change Fredholmness and do not change
the index, and zero index is achieved only by compact perturbations of invertible operators.

More precisely:

(i) If K ∈ K(E,F) and A ∈ F(E,F), then A + K ∈ F(E,F) and Index(A + K) =
Index(A).

(ii) If A ∈ F(E,F), then Index(A) = 0 if and only if A = A0 + K for some invertible
operator A0 and some compact operator K.

There is yet another relation between Fredholm and compact operators, know as the
Atkinson characterization of Fredholm operators (Theorem 1.4.5 in the previous section).

Theorem 1.5.14 Fredholmness= invertible modulo compact operators.
More precisely, given a bounded operator A : E→ F, the following are equivalent:

(i) A is Fredholm.

(ii) A is invertible modulo compact operators, i.e. there exist and operator B ∈ L(F,E)
and compact operators K1 and K2

6 such that

BA = 1 +K1, AB = 1 +K2.

We now turn to the proofs of these results.
Proof [(of Theorem 1.5.14)] Assume first the existence of B, K1 and K2. Since identity
plus compact is Fredholm, we deduce that the kernel of A is finite dimensional (since is
included in the kernel of 1 + K1) and, similarly, the cokernel of A is finite dimensional.
Hence A is Fredholm.

Assume now that A is Fredholm. Choose a complement E1 of Ker(A) in E and a
complement F1 of Im(A) in F. Then A1 = A|E1 is an isomorphism from E1 into Im(A) and
we define B such that B = (A1)−1 on Im(A) and B = 0 on F2. Then the resulting K1 will
be a projection onto Ker(A) and 1 +K2 will be a projection onto Im(A); hence K1 and K2

will have the desired properties.
Proof [(of Theorem 1.5.13)] Part (i) follows easily from Atkinson’s characterization and
the Fredholm alternative: choose B, K1 and K2 as above. We deduce that B is itself
Fredholm of index −index(A) (here we used the additivity of the index and the Fredholm
alternative). We remark that (A + K)B = 1 + (K1 + KB) and BA = 1 + (K2 + BK),

6from the proof we will see that one can actually choose K1 and K2 to be finite rank operators, and B
so that ABA = A, BAB = B.
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where K1 + KB and K2 + BK are compact. We then deduce that A + K is Fredholm of
index equal to −index(B) = index(A).

We still have to prove that Index(A) = 0 can only happen for compact perturbations
of invertible operators. As above, we choose a complement E1 of the kernel of A and
a complement F1 of the image of A. With respect to these decompositions, A is just
(x, y) 7→ (A1(x), 0), where A1 : E1 → Im(A) is an isomorphism (the restriction of A to E1).
That A has zero index means that the dimension of Ker(A) equals to the dimension of F1

(bot finite!). Choosing an isomorphism φ : Ker(A) → F1, the map K : (x, y) 7→ (0, φ(y))
is compact and A+K = (A1, φ) is an isomorphism.
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Chapter 2

Distributions on manifolds

As explained in the previous lecture, to show that an elliptic operator between sections of
two vector bundles E and F ,

P : Γ(M,E)→ Γ(M,F )

has finite index, we plan to use the general theory of Fredholm operators between Banach
spaces. In doing so, we first have to interpret our P ’s as operators between certain “Banach
spaces of sections”. The problem is that the usual spaces of smooth sections Γ(M,E) have
no satisfactory Banach space structure. Given a vector bundle E over M , by a “Banach
space of sections of E”, B(M,E), one should understand (some) Banach space which
contains the space Γ(M,E) of all the smooth sections of E as a (dense) subspace. One way
to introduce such Banach spaces is to consider the completion of Γ(M,E) with respect to
various norms of interest. This can be carried out in detail, but the price to pay is the
fact that the resulting “Banach spaces of sections” have a rather abstract meaning (being
defined as completions). We will follow a different path, which is based on the following
remark: there is a very general (and natural!) notion of “generalized sections of a vector
bundle E over M”, hence a space Γgen(M ;E) of such generalized sections (namely the
space D′(M,E) of distributions, discussed in this lecture), so general that all the other
“Banach spaces of sections” are subspaces of Γgen(M ;E). The space Γgen(M ;E) itself will
not be a Banach space, but all the Banach spaces of sections which will be of interest for
us can be described as subspaces of Γgen(M ;E) satisfying certain conditions (and that is
how we will define them).

Implicit in our discussion is the fact that all the spaces we will be looking at will be
vector spaces endowed with a topology (t.v.s.’s= topological vector spaces). Although our
final aim is to deal with Banach spaces, the general t.v.s.’s will be needed along the way
(however, all the spaces we will be looking at will be l.c.v.s.’s= locally convex vector spaces,
i.e., similarly to Banach spaces, they can be defined using certain seminorms).

In this lecture, after recalling the notion of t.v.s. (topological vector space) and the
special case of l.c.v.s. (locally convex vector space), we will discuss the space of general-
ized functions (distributions) on opens in Rn and then their generalizations to functions on
manifolds or, more generally, to sections of vector bundles over manifolds. Since t.v.s.’s,
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l.c.v.s.’s and the local theory of generalized functions (distributions) on opens in Rn have al-
ready been discussed in the intensive reminder, our job will be to pass from local (functions
on opens in Rn) to global (sections of vector bundles over arbitrary manifolds). However,
these lecture notes also contain some of the local theory that has been discussed in the
“intensive reminder”.

2.1 Reminder: Locally convex vector spaces

We start by recalling some of the standard notions from functional analysis (which have
been discussed in the intensive reminder).

Topological vector spaces

First of all, a t.v.s. (topological vector space) is a vector space V (over C) together
with a topology T , such that the two structures are compatible, i.e. the vector space
operations

V × V, (v, w) 7→ v + w, C× V → V, (λ, v) 7→ λv

are continuous. Recall that associated to the topology T and to the origin 0 ∈ V , one has
the family of all open neighborhoods of 0:

T (0) = {D ∈ T : 0 ∈ D}.

Since the translations τx : V → V , y 7→ y + x are continuous, the topology T is uniquely
determined by T (0): for D ⊂ V , we have

D ∈ T ⇐⇒ ∀ x ∈ D ∃ B ∈ T (0) such that x+B ⊂ D. (2.1.1)

In this characterization of the opens inside V , one can replace T (0) by any basis of neigh-
borhoods of 0, i.e. by any family B(0) ⊂ T (0) with the property that

D ∈ T (0) =⇒ ∃ B ∈ B such that B ⊂ D.

In other words, if we knows a basis of neighborhoods B(0) of 0 ∈ V , then we know the
topology T .

Exercise 2.1.1 Given a family B(0) of subsets of a vector space V containing the origin,
what axioms should it satisfy to ensure that the resulting topology (defined by (2.1.1)) is
indeed a topology which makes (V, T ) into a t.v.s.?

Note that, in a t.v.s. (V, T ), also the convergence can be spelled out in terms of a
(any) basis of neighborhoods B(0) of 0: a sequence (vn)n≥1 of elements of V converges to
v ∈ V , written vn → v, if and only if:

∀ B ∈ B(0), ∃ nB ∈ N such that vn − v ∈ B ∀ n ≥ nB.
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Of course, this criterion can be used for B(0) = T (0), but often there are smaller bases
of neighborhoods B(0) at hand (after all, “b” is just the first letter of the word “ball”).
For instance, if (V, || − ||) is a normed space, then the resulting t.v.s. has as basis of
neighborhoods

B(0) = {B(0, r) : r ≥ 0},
where

B(0, r) = {v ∈ V : ||v|| < r}.
In a t.v.s. (V, T ), one can also talk about the notion of Cauchy sequence: a sequence

(vn)n≥1 in V is called a Cauchy sequence if:

∀ D ∈ T (0) ∃ nD ∈ N such that vn − vm ∈ D ∀ n,m ≥ nD.

Again, if we have a basis of neighborhoods B(0) at our disposal, it suffices to require this
condition for D = B ∈ B(0).

In particular, one can talk about completeness of a t.v.s: one says that (V, T ) is (se-
quentially) complete if any Cauchy sequence in V converges to some v ∈ V .

Locally convex vector spaces

Recall also that a l.c.v.s. (locally convex vector space) is a t.v.s. (V, T ) with the
property that “there are enough convex neighborhoods of the origin”. That means that

Tconvex(0) := {C ∈ T (0) : C is convex}

is a basis of neighborhoods of 0 ∈ V or, equivalently:

∀ D ∈ T (0) ∃ C ∈ T (0) convex, such that C ⊂ D.

In general, l.c.v.s.’s are associated to families of seminorms (and sometimes this is taken
as “working definition” for locally convex vector spaces). First recall that a seminorm on
a vector space V is a map p : V → [0,∞) satisfying

p(v + w) ≤ p(v) + p(w), p(λv) = |λ|p(v),

for all v, w ∈ V , λ ∈ C (and it is called a norm if p(v) = 0 happens only for v = 0).
Associated to any family

P = {pi}i∈I
of seminorms (on a vector space V ), one has a notion of balls:

Br
i1,...,in

:= {v ∈ V : pik(v) < r, ∀1 ≤ k ≤ n},

defined for all r > 0, i1, . . . , in ∈ I. The collection of all such balls form a family B(0),
which will induce a locally convex topology TP on V (convex because each ball is convex).
Note that, the convergence in the resulting topology is the expected one:

vn → v in (V, TP )⇐⇒ pi(vn − v)→ 0 ∀ i ∈ I.

(and there is a similar characterization for Cauchy sequences). The fact that, when it
comes to l.c.v.s.’s it suffices to work with families of seminorms, follows from the following:
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Theorem 2.1.2 A t.v.s. (V, T ) is a l.c.v.s. if and only if there exists a family of semi-
norms P such that T = TP .

Proof Idea of the proof: to produce seminorms, one associates to any C ⊂ V convex the
functional

pC(v) = inf {r > 0 : x ∈ rC}.

Choosing C “nice enough”, this will be a seminorm. One then shows that one can find a
basis of neighborhoods of the origin consisting of “nice enough” convex neighborhoods. �

By abuse of terminology, we also say that (V, P ) is a l.c.v.s. (but one should keep in
mind that all that matters is not the family of seminorms P but just the induced topology
TP ).

Remark 2.1.3 In most of the examples of l.c.v.s.’s, the seminorms come first (quite
naturally), and the topology is the associated one. However, there are some examples
in which the topology comes first and one may even not care about what the seminorms
actually are (see the general construction of inductive limit topologies at the end of this
section).

On the other hand, one should be aware that different sets of seminorms may induce
the same l.c.v.s. (i.e. the same topology). For instance, if P0 ⊂ P is a smaller family
of seminorms which has the property that for any p ∈ P , there exists p0 ∈ P0 such that
p0 ≤ p (i.e. p0(v) ≤ p(v) for all v ∈ V ), then P and P0 define the same topology. This
trick will be repeatedly used in the examples.

Exercise 2.1.4 Prove the last statement.

Next, it will be useful to have a criteria for continuity of linear maps between l.c.v.s.’s
in terms of the seminorms. The following is a very good exercise.

Proposition 2.1.5 Let (V, P ) and (W,Q) be two l.c.v.s.’s and let

A : V → W

be a linear map. Then T is continuous if and only if, for any q ∈ Q, there exist p1, . . . , pn ∈
P and a constant C > 0 such that

q(A(v)) ≤ C ·max{p1(v), . . . , pn(v)} ∀ v ∈ V.

Note that we will deal only with l.c.v.s.’s which are separated (Hausdorff).

Exercise 2.1.6 Let (V, P ) be a l.c.v.s., where P = {pi}i∈I is a family of seminorms on
V . Show that it is Hausdorff if and only if, for v ∈ V , one has the implication:

pi(v) = 0 ∀ i ∈ I =⇒ v = 0.
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Finally, recall that a Frechet space is a t.v.s. V with the following properties:

1. it is complete.

2. its topology is induced by a countable family of semi-norms {p1, p2, . . .}.

In this case, it follows that V is metrizable, i.e. the topology of V can also be induced
by a (complete) metric:

d(v, w) :=
∑
n≥1

1

2n
pn(v − w)

1 + pn(v − w)
.

Example 2.1.7 Of course, any Hilbert or Banach space is a l.c.v.s. This applies in
particular to all the familiar Banach spaces such as the Lp-spaces on an open Ω ⊂ Rn

Lp(Ω) = {f : Ω→ C : f is measurable ,

∫
Ω

|f |p <∞},

with the norm

||f ||Lp = (

∫
Ω

|f |p)1/p.

Recall that, for p = 2, this is a Hilbert space with inner product

〈f, g〉L2 =

∫
Ω

fg.

Example 2.1.8 Another class of examples come from functions of a certain order, even-
tually with restrictions on their support. For instance, for an open Ω ⊂ Rn, r ∈ N and
K ⊂ Ω compact, we consider the space

CrK(Ω) = {φ : Ω→ C : φ is of class Cr and supp(φ) ⊂ K}.

The norm which is naturally associated to this space is || · ||K,r defined by

||φ||r,K = sup{|∂αφ(x)| : x ∈ K, |α| ≤ r}.

With this norm, CrK(Ω) becomes a Banach space. Note that convergence in this space is
uniform convergence on K of all derivatives up to order r.

However, if we consider r = ∞, then C∞K (Ω) should be considered with the family of
seminorms {|| · ||K,r : r ∈ N}. The result is a Frechet space. Note that convergence in this
space is uniform convergence on K of all derivatives.

Yet another natural space is the space of all smooth functions C∞(Ω). A nice topology
on this space is the one induced by the family of seminorms

{|| · ||K,r : K ⊂ Ω compact, r ∈ N}.

Using an exhaustion of Ω by compacts, i.e. a sequence (Kn)n≥0 of compacts with

Ω = ∪nKn, Kn ⊂ Int(Kn+1),
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we see that the original family of seminorms can be replaced by a countable one:

{|| · ||Kn,r : n, r ∈ N}

(using Remark 2.1.3, check that the resulting topology is the same!). Hence C∞(Ω) with
this topology has the chance of being Frechet- which is actually the case.

Note that convergence in this space is uniform convergence on compacts of all deriva-
tives.

Example 2.1.9 As a very general construction: for any t.v.s. (locally convex or not),
there are (at least) two important l.c. topologies on the continuous dual:

V ∗ := {u : V → R : u is linear and continuous}.

The first topology, denoted Ts, is the one induced by the family of seminorms {pv}v∈V ,
where

pv : V ∗ → R, pv(u) = |u(v)|.
This topology is called the weak* topology on V ∗, or the topology of simple convergence.
Note that un → u in this topology if and only if un(v)→ u(v) for all v ∈ V .

The second topology, denoted Tb, called the strong topology (or of uniform convergence
on bounded sets) is defined as follows. First of all, recall that a subset B ⊂ V is called
bounded if, for any neighborhood of the origin, there exists λ > 0 such that B ⊂ λV . If
the topology of V is generated by a family of seminorms P , this means that for any p ∈ P
there exists λp > 0 such that

B ⊂ Bp(rp) = {v ∈ V : p(v) < rp}.

This implies (see also Proposition 2.1.5) that for any continuous linear functional u ∈ V ∗,

pB(u) := sup{|u(v)| : v ∈ B} <∞.

In this way we obtain a family {pB}B of seminorms (indexed by all the bounded sets B),
and Tb is defined as the induced topology.

A related topology on V ∗ is the topology Tc of uniform convergence on compacts,
induced by the family of seminorms {pC : C ⊂ V ∗ compact}.

Some explanations (for your curiosity): In this course, when dealing with a particular l.c.v.s.
V , what will be of interest to us is to understand the convergence in V , understand continuity
of linear maps defined on V or the continuity of maps with values in V (i.e., in practical terms,
one may forget the l.c. topology and just keep in mind convergence and continuity). From this
point of view, in almost all the cases in which we consider the dual V ∗ of a l.c.v.s. V (e.g. the
space of distributions), in this course we will be in the fortunate situation that it does not make
a difference if we use Ts or Tb on V ∗ (note: this does not mean that the two topologies coincide-
it just means that the specific topological aspects we are interested in are the same for the two).

What happens is that the spaces we will be dealing with in this course have some very special
properties. Axiomatising these properties, one ends up with particular classes of l.c.v.s.’s which
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can be understood as part of the general theory of l.c.v.s.’s. Here we give a few more details of
what is really going on (the references below send you to the book “Topological vector spaces,
distributions and kernels” by F. Treves).

First of all, as a very general fact: for any t.v.s. V , Ts and Tc induce the same topology on
any equicontinuous subset H ⊂ V ∗ (Prop. 32.5, pp. 340). Recall that H is called equicontinuous
if, for every ε > 0, there exists a neighborhood B of the origin such that

|u(v)| ≤ ε, ∀ v ∈ B, ∀ u ∈ H.

An important class of t.v.s.’s is the one of barreled space, which we now recall. A barrel in a
t.v.s. V is a non-empty closed subset A ⊂ V with the following properties:

1. A is absolutely convex: |α|A+ |β|A ⊂ A for all α, β ∈ C with |α|+ |β| = 1.

2. A is absorbing: ∀ v ∈ V, ∃ r > 0 such that v ∈ rA.

A t.v.s. V is said to be barreled if any barrel in V is a neighborhood of zero. For instance, all
Frechet spaces are barreled.

For a barreled space V , given H ⊂ V ∗, the following are equivalent (Theorem 33.2, pp. 349):

1. H is weakly bounded (i.e. bounded in the l.c.v.s. (V ∗, Ts)).

2. H is strongly bounded (i.e. bounded in the l.c.v.s. (V ∗, Tb)).

3. H is relatively compact in the weak topology (i.e. the closure of H in (V ∗, Ts) is compact
there).

4. H is equicontinuous.

Hence, for such spaces, the notion of “bounded” is the same in (V ∗, Ts) and (V ∗, Tb), and we talk
simply about “bounded subsets of V ∗. However, the notion of convergence of sequences may still
be different; of course, strong convergence implies weak convergence, but all we can say about a
weakly convergent sequence is that it is bounded in the strong topology. More can be said for a
more special class of t.v.s.’s.

A t.v.s. is called a Montel space if V is barreled and every closed bounded subset of E
is compact. Note that this notion is much more restrictive than that of barreled space. For
instance, while all Banach spaces are barreled, the only Banach spaces which are Montel are the
finite dimensional ones (because the unit ball is compact only in the finite dimensinal Banach
spaces). On the other hand, while all Frechet spaces are barreled, there are Frechet spaces which
are Montel, but also others which are not Montel. The main examples of Montel spaces which are
of interest for us are: the space of smooth functions, and the space of test functions (discussed
below).

For a Montel space V , it follows that the topologies Tc and Tb are the same (Prop. 34.5, pp.
357). From the general property of equicontinuous subsets H mentioned above, we deduce that
on such H’s,

Ts|H = Tb|H .

(also, by the last result we mentioned, H being equicontinuous is equivalent to being bounded).
Taking for H the set of elements of a weakly convergent sequence and its weak limit (clearly
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weakly bounded!), it follows that the sequence is also strongly convergent; hence convergence
w.r.t. Ts and w.r.t. Tb is the same. Note that this does not imply that the two topologies are the
same: we know from point-set topology that the notion of convergence w.r.t. a topology T does
not determine the topology uniquely unless the topology satisfies the first axiom of countability
(e.g. if it is metrizable).

As a summary, for Montel spaces V ,

1. the notion of boundedness in (V ∗, Ts) and in (V ∗, Tb) is the same (and coincides with
equicontinuity).

2. Ts and Tb induce the same topology on any bounded H ⊂ V ∗.

3. a sequence in V ∗ is weakly convergent if and only it is strongly convergent.

Inductive limits

As we saw in all examples (and we will see in almost all the other examples), l.c.v.s.’s
usually come with naturally associated seminorms and the topology is just the induced
one. However, there is an important example in which the topology comes first (and one
usually doesn’t even bother to find seminorms inducing it): the space of test functions (see
next section). This example fits into a general construction of l.c. topologies, known as
“the inductive limit”. The general framework is the following. Start with

X = vector space, Xα ⊂ X vector subspaces such that X = ∪αXα,

where α runs in an indexing set I. We also assume that, for each α, we have given:

Tα − locally convex topology on Xα.

One wants to associate to this data a topology T on X, so that

1. (X, T ) is a l.c.v.s.

2. all inclusions iα : Xα → X become continuous.

There are many such topologies (usually the “very small” ones, e.g. the one containing
just ∅ and X itself) and, in general, if T works, then any T ′ ⊂ T works as well. The
question is: is there “the best one” (i.e. the smallest one)? The answer is yes, and that is
what the inductive limit topology on X (associated to the initial data) is. In short, this is
induced by the following basis of neighborhoods:

B(0) := {B ⊂ X : B − convex such that B ∩Xα ∈ Tα(0) for all α ∈ I},

(show that one gets a l.c. topology and it is the largest one!). One should keep in mind
that what is important about (X, T ) is to recognize when a function on X is continuous,
and when a sequence in X converges. The first part is a rather easy exercise with the
following conclusion:
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Proposition 2.1.10 Let X be endowed with the inductive limit topology T , let Y be
another l.c.v.s. and let

A : X → Y

be a linear map. Then A is continuous if and only if each

Aα := A|Xα : Xα → Y

is.

The recognition of convergent subsequences is a bit more subtle and, in order to have
a more elegant statement, we place ourselves in the following situation: the indexing set I
is the set N of positive integers,

X1 ⊂ X2 ⊂ X3 ⊂ . . . , , Xn − closed in Xn+1, Tn = Tn+1|Xn

(i.e. each (Xn, Tn) is embedded in (Xn+1, Tn+1) as a closed subspace). We assume that all
the inclusions are strict. The following is a quite difficult exercise.

Theorem 2.1.11 In the case above, a sequence (xn)n≥1 of elements in X converges to
x ∈ X (in the inductive limit topology) if and only if the following two conditions hold:

1. ∃ n0 such that x, xm ∈ Xn0 for all m.

2. xm → x in Xn0.

(note: one can also show that (X, T ) cannot be metrizable).

2.2 Distributions: the local theory

In this section we recall the main functional spaces on Rn or, more generally, on any open
Ω ⊂ Rn. Recall that, for K ⊂ Rn and r ∈ N, one has the seminorm || · ||K,r on C∞(Ω)
given by:

||f ||r,K = sup{|∂αf(x)| : x ∈ K, |α| ≤ r}.

E(Ω): smooth functions:

One defines
E(Ω) := C∞(Ω),

endowed with the locally convex topology induced by the family of seminorms {||·||K,r}K⊂Ω compact,r∈N
(see also Example 2.1.8). Hence, in this space, convergence means: fn → f if and only if
for each multi- index α and each compact K ⊂ Ω, ∂αfn → ∂αf uniformly on K.

As a l.c.v.s, it is a Frechet space (and is also a Montel space).
Algebraically, E(Ω) is also a ring (or even an algebra over C), with respect to the usual

multiplication of functions. Note that this algebraic operation is continuous.
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D(Ω): compactly supported smooth functions (test functions):

One defines
D(Ω) := C∞c (Ω),

the space of smooth functions with compact support, with the following topology. First of
all, for each K ⊂ Ω, we consider

EK(Ω) := C∞K (Ω),

the space of smooth functions with support inside K, endowed with the topology induced
from the topology of E(Ω) (which is the same as the topology discussed in Example 2.1.8,
i.e. induced by the family of seminorms {|| · ||K,r}r∈N. While, set theoretically (or as vector
spaces),

D(Ω) = ∪KEK(Ω)

(union over all compacts K ⊂ Ω), we consider the inductive limit topology on D(Ω) (see
the end of the previous section).

Convergent sequences are easy to recognize here: fn → f in D(Ω) if and only if there
exist a compact K such that fn ∈ EK for all n, and fn → f in EK (indeed, using an
exhaustion of Ω by compacts (see again Example 2.1.8), we see that we can place ourselves
under the conditions which allow us to apply Theorem 2.1.11).

As a l.c.v.s., D(Ω) is complete but it is not Frechet (see the end of Theorem 2.1.11).
(However, it is a Montel space).

Algebraically, D(Ω) is also an algebra over C (with respect to pointwise multiplication),
which is actually an ideal in E(Ω) (the product between a compactly supported smooth
function and an arbitrary smooth function is again compactly supported).

D′(Ω): distributions:

The space of distributions on Rn is defined as the (topological) dual of the space of test
functions:

D′(Ω) := (D(Ω))∗

(see also Example 2.1.9). An element of this space is called a distribution on Ω. Unrav-
eling the inductive limit topology on D(Ω), one gets a more explicit description of these
space. More precisely, using Proposition 2.1.10 to recognize the continuous linear maps
by restricting to compacts, and using Proposition 2.1.5 to rewrite the resulting continuity
conditions in terms of seminorms, one finds the following:

Corollary 2.2.1 A distribution on Ω is a linear map

u : C∞c (Ω)→ C

with the following property: for any compact K ⊂ Ω, there exists C = CK > 0, r = rK ∈ N
such that

|u(φ)| ≤ C||φ||K,r ∀ φ ∈ C∞K (Ω).
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As a l.c.v.s., D′(U) will be endowed with the strong topology (the topology of uniform
convergence on bounded subsets- see Example 2.1.9). Note however, when it comes to
convergence of sequences (un) of distributions, the strong convergence is equivalent to
simple (pointwise) convergence. 1

In general, any smooth function f induces a distribution uf

φ 7→
∫
Rn
fφ,

and this correspondence defines a continuous inclusion of

i : E(Ω) ↪→ D′(Ω).

For this reason, distributions are often called “generalized functions”, and one often iden-
tifies f with the induced distribution uf .

Algebraically, the multiplication on E(Ω) extends to a E(Ω)-module structure on D′(Ω)

E(Ω)×D′(Ω)→ D′(Ω), (f, u) 7→ fu,

where
(fu)(φ) = u(fφ).

E ′(Ω): compactly supported distributions:

The space of compactly supported distributions on Ω is defined as the (topological) dual
of the space of all smooth functions

E ′(Ω) := (E(Ω))∗.

Using Proposition 2.1.5 to rewrite the continuity condition, we find:

1 Explanation (for your curiosity): When it comes to the following notions:

1. bounded subsets of D′(Ω),

2. convergence of sequences in D′(Ω),

3. continuity of a linear map A : V → D′(Ω) defined on a Frechet space V (e.g. V = E(Ω′)),

4. continuity of a linear map A : V → D′(Ω) defined on a l.c.v.s. V which is the inductive limit of
Frechet spaces (e.g. V = D(Ω′)).

(notions which depend on what topology we use on D′(Ω)), it does not matter whether we use the strong
topology Tb or the weak topology Ts on D′(Ω): the a priori different resulting notions will actually coincide.

For boundedness and convergence this follows from the fact that D(Ω) is a Montel space (Theorem 34.4,
pp. 357 in the book by Treves). For continuity of linear maps defined on a Frechet space, one just uses
that, because V is metrizable, continuity is equivalent to sequential continuity (i.e. the property of sending
convergent sequences to convergent sequences) and the previous part. If V is an inductive limit of Frechet
spaces one uses the characterization of continuity of linear maps defined on inductive limits (Proposition
2.1.10).
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Corollary 2.2.2 A compactly supported distribution on Ω is a linear map

u : C∞(Ω)→ C

with the following property: there exists a compact K ⊂ Ω, C > 0 and r ∈ N such that

|u(φ)| ≤ C||φ||K,r ∀ φ ∈ C∞(Ω).

Again, as in the case of D′(Ω), we endow E ′(Ω) with the strong topology.2

Note that the dual of the inclusion D(Ω) ↪→ E induces a continuous inclusion

E ′(Ω) ↪→ D′(Ω).

Explicitly, any linear functional on C∞(Ω) can be restricted to a linear functional on
C∞c (Ω), and the estimates for the compactly supported distributions imply the ones for
distributions.

Hence the four distributional spaces fit into a diagram

D //

��

E

��
E ′ // D′

,

in which all the arrows are (algebraic) inclusions which are continuous, and the spaces on
the left are (topologically) the compactly supported version of the spaces on the right.

Change of coordinates

In general, a change of coordinates (i.e. a diffeomorphism) χ : Ω1 → Ω2 induces maps χ∗
from the four distributional spaces of Ω1 to the ones of Ω2, in a way which is compatible
with the diagrams themselvs. At the level of sections it is simply

χ∗ : D(Ω1)→ D(Ω2), χ∗(φ) = φ ◦ χ−1

(and similarly for E). At the level of distributions, since we want χ∗ to be compatible
with the inclusion f 7→ uf of smooth functions into distributions, we would like to have
χ∗(uf ) = uχ∗(f) = uf◦χ−1 , i.e.

χ∗(uf )(φ) =

∫
Ω2

f ◦ χ−1 · φ =

∫
Ω1

|Jac(χ)|f · φ ◦ χ = uf (|Jac(χ) · φ ◦ χ).

This brings us to the definition of χ∗ on all distributions:

χ∗ : D′(Ω1)→ D′(Ω2), χ∗(u)(φ) = u(|Jac(χ)| · φ ◦ χ). (2.2.2)

2Explanation (for your curiosity): The same discussion as in the case of D′(Ω) applies also to E ′(Ω).
This is due to the fact that also E(Ω) is a Montel space (with the same reference as for D(Ω)). Hence,
when it comes to bounded subsets, convergent sequences, continuity of linear maps from a (inductive limit
of) Frechet space(s) to E ′(Ω), it does not matter whether we use the strong topology Tb or the simple
topology Ts on E ′(Ω).
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Supports of distributions

Next, we recall why E ′(Ω) is called the space of compactly supported distributions. The
main remark is that the assignment

Ω 7→ D′(Ω)

defines a sheaf and, as for any sheaf, one can talk about sections with compact support.
What happens is that the elements in D′(Ω) which have compact support in this sense,
are precisely the ones in the image of the inclusion E ′(Ω) ↪→ D′(Ω).

Here are some details. First of all, for any two opens Ω ⊂ Ω′, one has an inclusion
(“extension by zero”)

D(Ω) ↪→ D(Ω′), f 7→ f̃ ,

where f̃ is f on Ω and zero outside. Dualizing, we get a “restriction map”,

D′(Ω′)→ D′(Ω), u 7→ u|Ω.

The sheaf property of the distributions is the following property which follows immediately
from a partition of unity argument:

Lemma 2.2.3 Assume that Ω = ∪iΩi, with Ωi ⊂ Rn opens, and that ui are distributions
on Ωi such that, for all i and j,

ui|Ωi∩Ωj = uj|Ωi∩Ωj .

Then there exists a unique distribution u on Ω such that

u|Ωi = ui

for all i.

Proof Use partitions of unity. �

From this it follows that, for any u ∈ D′(Ω), there is a largest open Ωu ⊂ Ω on which
u vanishes (i.e. u|Ωu = 0).

Definition 2.2.4 For u ∈ D′(Ω), define its support

supp(u) = Ω− Ωu = {x ∈ Ω : u|Vx = 0 for any neighborhood Vx ⊂ Ω of x}.

We say that u is compactly supported if supp(f) is compact.

Example 2.2.5 For any x ∈ Ω, one has the distribution δx defined by

δx(φ) = φ(x).

It is not difficult to check that its support is precisely {x}.

Exercise 2.2.6 Show that u ∈ D′(Ω) has compact support if and only if it is in the image
of the inclusion

E ′(Ω) ↪→ D′(Ω).
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Derivatives of distributions and Sobolev spaces

Finally, we discuss one last property of distributions which is of capital importance: one
can talk about the partial derivatives of any distribution! The key (motivating) remark is
the following, which follows easily from integration by parts.

Lemma 2.2.7 Let f ∈ C∞(Ω) and let uf be the associated distribution.

Let ∂αf ∈ C∞(Ω) be the higher derivative of f associated to a multi-index α, and let
u∂αf be the associated distribution.

Then u∂αf can be expressed in terms of uf by:

u∂αf (φ) = (−1)|α|uf (∂
αf).

This shows that the action of the operator ∂α on smooth functions can be extended to
distributions.

Definition 2.2.8 For a distribution u on Ω and a multi-index α, one defines the new
distribution ∂αu on Ω, by

(∂αu)(φ) = (−1)|α|u(∂αφ), ∀ φ ∈ C∞c (Ω).

Example 2.2.9 The distribution uf makes sense not only for smooth functions on Ω,
but also for functions f : Ω → C with the property that φf ∈ L1(Ω) for all φ ∈ C∞c (Ω)
(so that the integral defining uf is absolutely convergent). In particular it makes sense for
any f ∈ L2(Ω) and, as before, this defines an inclusion

L2(Ω) ↪→ D′(Ω).

We now see one of the advantages of the distributions: any f ∈ L2, although it may
even not be continuous, has derivatives ∂αf of any order! Of course, they may fail to
be functions, but they are distributions. In particular, it is interesting to consider the
following spaces.

Definition 2.2.10 For any r ∈ N, Ω ⊂ Rn open, we define the Sobolev space on Ω of
order r as:

Hr(Ω) := {u ∈ D′(Ω) : ∂α(u) ∈ L2(Ω) whenever |α| ≤ r},

endowed with the inner product

〈u, u′〉Hr =
∑
|α|≤r

〈∂αu, ∂αu′〉L2 .

In this way, Hr(Ω) becomes a Hilbert space.
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2.3 Distributions: the global theory

The l.c.v.s.’s E(Ω), D(Ω), D′(Ω) and E ′(Ω) can be extended from opens Ω ⊂ Rn to arbitrary
manifold M (allowing us to talk about distributions on M , or generalized functions on M)
and, more generally, to arbitrary vector bundles E over a manifold M (allowing us to talk
about distributional sections of E, or generalized sections of E). To explain this extension,
we fix M to be an n-dimensional manifold, and let E be a complex vector bundle over M
of rank p.

E(M,E) (smooth sections):

One defines
E(M,E) := Γ(E),

the space of all smooth sections of E endowed with the following locally convex topology.
To define it, we choose a cover U = {Ui}i∈I of M by opens which are domains of “total
trivializations” of E, i.e. both of charts (Ui, κi) for M as well as of trivializations τi :
E|Ui → Ui × Cp for E. This data clearly induces an isomorphism of vector spaces

φi : Γ(E|Ui)→ C∞(κi(Ui))
p

(see also subsection 2.3 below). Altogether, and after restricting sections of E to the various
U ′is, these define an injection

φ : Γ(E)→ ΠiC
∞(κi(Ui))

p = ΠiE(κi(Ui))
p.

Endowing the right hand side with the product topology, the topology on Γ(E) is the
induced topology (via this inclusion). Equivalently, considering as indices γ = (i, l,K, r)
consisting of i ∈ I (to index the open Ui), 1 ≤ l ≤ p (to index the l-th component of
φ(s|Ui)), K ⊂ κ(Ui) compact and r- non-negative integer, one has seminorms || · ||γ on
Γ(E) as follows: for s ∈ Γ(E), restrict it to Ui, move it to E(κi(Ui))

p via φi, take its l-th
component, and apply the seminorm || · ||K,r of E(κi(Ui)):

||s||γ = ||φ(s|Ui)l||r,K .

Putting together all these seminorms will define the desired l.c. topology on Γ(E).

Exercise 2.3.1 Show that this topology does not depend on the choices involved.

Note that, since the cover U can be chosen to be countable (our manifolds are always
assumed to satisfy the second countability axiom!), it follows that our topology can be
defined by a countable family of seminorms. Using the similar local result, you can now
do the following:

Exercise 2.3.2 Show that E(M,E) is a Frechet space.
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Finally, note that a sequence (sm)m≥1 converges to s in this topology if and only if, for
any open U which is the domain of a local chart κ for M and of a local frame {s1, . . . , sp}
for E, and for any compact K ⊂ U , writing sm = (f 1

m, . . . , f
p
m), s = (f 1, . . . , f p) with

respect to the frame, all the derivatives ∂ακ (f im) converge uniformly on K to ∂ακ (f i) (when
m→∞).

When E = CM is the trivial line bundle over M , we simplify the notation to E(M).
As in the local theory, this is an algebra (with continuous multiplication). Also, the
multiplication of sections by functions makes E(M,E) into a module over E(M).

D(M,E) (compactly supported smooth sections):

One defines
D(M,E) := Γc(E),

the space of all compactly supported smooth sections endowed with the following l.c.
topology defined exactly as in the local case: one writes

D(M,E) = ∪KEK(M,E),

where the union is over all compacts K ⊂ M , and EK(M,E) ⊂ E(M,E) is the space of
smooth sections supported in K, endowed with the topology induced from E(M,E); on
D(M,E) we consider the inductive limit topology.

Exercise 2.3.3 Describe more explicitly the convergence in D(M,E).

Again, when E = CM is the trivial line bundle over M , we simplify the notation to
D(M).

D′(M,E) (generalized sections):

This is the space of distributional sections of E, or the space of generalized sections of E.
To define it, we do not just take the dual of D(M,E) as in the local case, but we first:

1. Consider the complexification of the density line bundle, still denoted by D = DM

on M (see the previous chapter). All we need to know about D is that its compactly
supported sections can be integrated over M without any further choice, i.e. there is
an integral ∫

M

: Γc(D)→ C.

If you are more familiar with integration of (top-degree) forms, you may assume
that M has an orientation, D = ΛnT ∗M ⊗ C- the space of C-valued n-forms (an
identification induced by the orientation), and

∫
M

is the integral that you already
know. Or, if you are more familiar with integration of functions on Riemannian
manifolds, you may assume that M is endowed with a metric, D is the trivial line
bundle (an identification induced by the metric) and that

∫
M

is the integral that you
already know.
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2. Consider the “functional dual” of E:

E∨ := E∗ ⊗D = Hom(E,D),

the bundle whose fiber at x ∈ M is the complex vector space consisting of all (C-
)linear maps Ex → Dx.

The main point about E∨ is that it comes with a “pairing” (pointwise the evaluation
map)

< −,− >: Γ(E∨)× Γ(E)→ Γ(D)

(and its versions with supports) and then, using the integration of sections of D, we
get canonical pairings

[−,−] : Γc(E
∨)× Γ(E)→ C, (s1, s2) 7→

∫
M

< s1, s2 > .

We now define

D′(M,E) := (D(M,E∨))∗

(endowed with the strong topology). Note that, it is precisely because of the way that E∨

was constructed, that we have canonical (i.e. independent of any choices, and completely
functorial) inclusions

E(M,E) ↪→ D′(M,E),

sending a section s to the functional us :=< ·, s >. And, as before, we identify s with the
induced distribution us.

When E = CM , we simplify the notation to D′(M).

As for the algebraic structure, as in the local case, D′(M,E) is a module over E(M),
with continuous multiplication

E(M)×D′(M,E)→ D′(M,E)

defined by

(fu)(s) = u(fs).

Example 2.3.4 Special care has to be taken when M = Ω is an open in Rn and E is a
trivial vector bundle. Strictly speaking, we have now two spaces represented by the same
notation D′(Ω):

1. the space from the local theory, which is the dual of D(Ω) = C∞c (Ω) - call it D′(Ω)old.

2. the space from the global theory, which is the dual of D(Ω, D) = Γc(Ω, D)- call it
D′(Ω)new (where D is the density line bundle of Ω, complexified).
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The two are identified by the canonical identification of D with the trivial line bundle. At
the level of distributions, the identification is

D′(Ω)old
∼←→ D′(Ω)new, ξ̂ ←→ ξ,

where
ξ̂(φ) := ξ(φ|dx1 . . . dxn|), for φ ∈ C∞c (Ω).

In what follows, when talking about D′(Ω) in the local case, we will still be thinking of
D′(Ω)old (which is more natural in the local context); one may choose any of the two models,
but one should stil keep in mind the identification between the two. A good illustration of
the need of being careful is the change of coordinates formula at the level of distributions
(see Example 2.3.9).

E ′(M,E) (compactly supported generalized sections):

This is the space of compactly supported distributional sections of E, or the space of
compactly supported generalized sections of E. It is defined as in the local case (but
making again use of E∨), as

E ′(M,E) := (E(M,E∨))∗.

Note that, by the same pairing as before, one obtains an inclusion

D(M,E) ↪→ E ′(M,E).

Hence, as in the local case, we obtain a diagram of inclusions

D(M,E) //

��

E(M,E)

��
E ′(M,E) // D′(M,E)

.

Example 2.3.5

1. when E = CM is the trivial line bundle over M , we have shortened the notations to
D(M), E(M) etc. Hence, as vector spaces,

D(M) = Γc(M), E(M) = C∞(M),

while the elements of D′(M) will be called distributions on M .

2. staying with the trivial line bundle, but assuming now that M = Ω is an open subset
of Rn, we recover the spaces discussed in the previous section. Note that, in the case
of distributions, we are using the identification of the density bundle with the trivial
bundle induced by the section |dx1 . . . dxn|.
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3. when E = Cp
M is the trivial bundle over M of rank p, then clearly

D(M,Cp
M) = D(M)p, E(M,M × Cp

M) = E(M)p.

On the other hand, using the canonical identification between E∗ and E, we also
obtain

D′(M,Cp
M) = D′(M)p, E ′(M,Cp

M) = E ′(M)p.

Note that, as in the local theory, distributions u ∈ D′(M,E) can be restricted to
arbitrary opens U ⊂ M , to give distributions u|U ∈ D′(U,E|U). More precisely, the
restriction map

D′(M,E)→ D′(U,E|U)

is defined as the dual of the map

D′(U,E∨|U)→ D(M,E∨)

which takes a compactly supported section defined on U and extends it by zero outside U .

Exercise 2.3.6 For a vector bundle E over M ,

1. Show that U 7→ D(U,E|U) forms a sheaf over M .

2. Define the support of any u ∈ D(M,E).

3. Show that the injection
E ′(M,E) ↪→ D′(M,E)

identifies E ′(M,E) with the space of compactly supported distributional sections (as
a vector space only!).

Exercise 2.3.7 Show that D(M,E) is dense in E(M,E), D′(M,E) and E ′(M,E) (you
are allowed to use the fact that this is known for trivial line bundles over opens in Rn).

Invariance under isomorphisms

Given two vector bundles, E over M and F over a manifold N , an isomorphism h between
E and F is a pair (h, h0), where h0 : M → N is a diffeomorphism and h : E → F is a map
which covers h0 (i.e. sends the fiber Ex to Fh0(x) or, equivalently, the diagram below is
commutative) and such that, for each x ∈M , it restricts to a linear isomorphism between
Ex and Fh0(x).

E

��

h // F

��
M

h0 // N

.

We now explain how such an isomorphism h induces isomorphisms between the four
functional spaces of E and those of F (really an isomorphism between the diagrams they fit
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in). The four isomorphisms from the functional spaces of E to those of F will be denoted
by the same letter h∗. At the level of smooth sections, this is simply

h∗ : E(M,E)→ E(N,F ), h∗(s)(y) = h(s(h−1
0 (y))),

which also restricts to the spaces D. At the level of generalized sections,

h∗ : D′(M,E)→ D′(N,F ),

is the dual of the map

h∨ : D(F∨)→ D(E∨)

defined by

h∨(u)(ex) = h∗0(u(h(ex))), (ex ∈ Ex),

where we have used the pull-back of densities, h∗0 : DN,h0(x) → DM,x.

The same formula defines h∗ on the spaces E ′.

Example 2.3.8 Given a rank p vector bundle E over M , one often has to choose opens
U ⊂M which are domains of both a coordinate chart (U, κ) for M as well as the domains
of a trivialization τ : E|U → U × Cp for E. We say that (U, κ, τ) is a total trivialization
for E over U . Note that such a data defines an isomorphism h between the vector bundle
E|U over U and the trivial bundle κ(U)× Cp:

h0 = κ, h(ex) = (κ(x), τ(ex)).

Hence any total trivialization (U, κ, τ) induces isomorphisms

hκ,τ : D(U,E|U)→ D(κ(U))p, hκ,τ : E(U,E|U)→ E(κ(U))p, etc.

(see also Example 2.3.5).

Example 2.3.9 Special care has to be taken in the case when M = Ω is an open in Rn,
E is the trivial line bundle and we work with distributions. See first our discussion from
Example 2.3.4. For a change of coordinates (diffeomorphism) χ : Ω1 → Ω2 between two
opens in Rn, if we choose to represent D′(Ωi) as the dual of D(Ωi) = C∞c (Ωi) (and we will
do so), going carefully through the idenitification of the density bundles with the trivial
ones (see again Example 2.3.4), we find that the change of coordinates from this section
becomes

χ∗ : D′(Ω1)→ D′(Ω2), χ∗(u)(φ) = u(|Jac(χ)| · φ ◦ χ),

i.e. precisely the one from the local theory ((2.2.2) in Section 2.2 from this chapter).



2.4. GENERAL OPERATORS AND KERNELS 51

2.4 General operators and kernels

Given two vector bundles, E over a manifold M and F over a manifold N , an operator
from E to F is, roughly speaking, a linear map which associates to a “section of E” a
“section of F”. The quotes refer to the fact that there are several different choices for the
meaning of sections: ranging from smooth sections to generalized sections, or versions with
compact supports (or other types of sections). The most general type of operators are is
following.

Definition 2.4.1 If E is a vector bundle over M and F is a vector bundle over N , a
general operator from E to F is a linear continuous map

P : D(M,E)→ D′(N,F ).

Remark 2.4.2 Note that general operators are often described with different domains
and codomains. For instance, if F1 and F2 is any of the symbols E , D, E ′ or D′ (or any
of the other functional spaces that will be discussed in the next lecture), one can look at
continuous linear operators

P : F1(M,E)→ F2(M,F ). (2.4.3)

But since in all cases D ⊂ F1 and F2 ⊂ D′ (with continuous inclusions), P does induce a
general operator

Pgen : D(M,E)→ D′(N,F ).

Conversely, since D(M,E) is dense in all the other functional spaces that we have discussed
(Exercise 2.3.7), Pgen determines P uniquely. Hence, saying that we have an operator (2.4.3)
is the same as saying that we have a general operator Pgen with the property that it extends
to F1(M,E), giving rise to a continuous operator taking values in F2(M,F ).

On the other extreme, one has the so-called smoothing operators, i.e. operators which
transforms generalized sections into smooth sections.

Definition 2.4.3 If E is a vector bundle over M and F is a vector bundle over F , a
smoothing operator from E to F is a linear continuous map

P : E ′(M,E)→ E(N,F ).

We denote by Ψ−∞(E,F ) the space of all such smoothing operators. When E and F are
the trivial line bundles, we will simplify the notation to Ψ−∞(M).

In other words, a smoothing operator is a general operator P : D(M,E) → D′(N,F )
which

1. takes values in E(N,F ).
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2. extends to a continuous linear map from E ′(M,E) to E(N,F ).

A very useful way of interpreting operators is in terms of their so-called “kernels”. The
idea of a kernel is quite simple- and to avoid (just some) notational complications, let us
first briefly describe what happens when M = U ⊂ Rm and N = V ⊂ Rn are two open,
and the bundles involved are the trivial line bundles. Then the idea is the following: any
K ∈ C∞(V × U) induces an operator

PK : D(U)→ E(V ), K(φ)(y) =

∫
U

K(y, x)φ(x)dx.

Even more: composing with the inclusion E(V ) ↪→ D′(V ), i.e. viewing PK as an application

PK : D(U)→ D′(V ),

this map does not depend on K as a smooth function, but just on K as a distribution (i.e.
on uK ∈ D′(V × U)). Indeed, for φ ∈ D(U), PK(φ), as a distribution on V , is

uPK(φ) : ψ 7→
∫
V

PK(φ)ψ =

∫
V×U

K(y, x)ψ(y)φ(x)dydx = uK(ψ ⊗ φ),

where ψ ⊗ φ ∈ C∞(V × U) is the map (y, x) 7→ ψ(y)φ(x)). In other words, any

K ∈ D′(V × U)

induces a linear operator

PK : D(U)→ D′(V ), PK(φ)(ψ) = K(ψ ⊗ φ)

which can be shown to be continuous. Moreover, this construction defines a bijection
between D′(V × U) and the set of all general operators (even more, when equipped with
the appropriate topologies, this becomes an isomorphism of l.c.v.s.’s).

The passing from the local picture to vector bundles over manifolds works as usual,
with some care to make the construction independent of any choices. Here are the details.
Given the vector bundles E over M and F over N , we consider the vector bundle over
N ×M :

F � E∨ := pr∗1(F )⊗ pr∗2(E∨),

where prj is the projection on the j-th component. Hence, the fiber over (y, x) ∈ N ×M
is

(F � E∨)(y,x) = Fy ⊗ E∗x ⊗DM,x.

Note that the functional dual of this bundle is canonically identified with:

(F � E∨)∨ ∼= F∨ � E.

Exercise 2.4.4 Work out this isomorphism. (Hints: the density bundle of N × M is
canonically identified with DN⊗DM ; D∗M⊗DM

∼= Hom(DM , DM) is canonically isomorphic
to the trivial line bundle.)
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As before, one may decide to use a fixed positive density on M and one on N , and then
replace F � E∨ by F � E∗ and F∨ � E by F ∗ � E.

Fix now a distribution
K ∈ D′(N ×M,F � E∨).

We will associate to K a general operator

PK : D(M,E)→ D′(N,F ).

Due to the definition of the space of distributions, and to the identification mentioned
above, K will be a continuous function

K : D(N ×M,F∨ � E)→ C.

For ψ ∈ D(M,F∨) and φ ∈ D(M,E) we denote by

ψ ⊗ φ ∈ D(N ×M,F∨ � E)

the induced section (y, x) 7→ ψ(y) ⊗ φ(x). To describe PK , let φ ∈ D(M,E) and we have
to specify PK(φ) ∈ D′(N,F ), i.e. the continuous functional

PK(φ) : D(N,F∨)→ C.

We define
PK(φ)(ψ) := K(ψ ⊗ φ).

The general operator PK is called the general operator associated to the kernel K. Highly
non-trivial is the fact that any general operator arises in this way (and then K will be
called the kernel of PK).

Theorem 2.4.5 The correspondence K 7→ PK defines a 1-1 correspondence between

1. distributions K ∈ D′(N ×M ;F � E∨).

2. general operators P : D(M,E)→ D′(N,F ).

Moreover, in this correspondence, one has

K ∈ E(N ×M ;F � E∨)⇐⇒ P is smoothing.

Note (for your curiosity): the 1-1 correspondence actually defines an isomorphism of l.c.v.s.’s
between

1. D′(N ×M ;F � E∨) with the strong topology.

2. the space L(D(M,E),D′(N,F )) of all linear continuous maps, endowed with the strong
topology.

Exercise 2.4.6 Let

P =
d

dx
: E(R)→ E(R).

Compute its kernel, and show that this is not a smoothing operator.
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Chapter 3

Functional spaces on manifolds

The aim of this section is to introduce Sobolev spaces on manifolds (or on vector bundles
over manifolds). These will be the Banach spaces of sections we were after (see the pre-
vious lectures). To define them, we will take advantage of the fact that we have already
introduced the very general spaces of sections (the generalized sections, or distributions),
and our Banach spaces of sections will be defined as subspaces of the distributional spaces.

It turns out that the Sobolev-type spaces associated to vector bundles can be built up
from smaller pieces and all we need to know are the Sobolev spaces Hr of the Euclidean
space Rn and their basic properties. Of course, it is not so important that we work with
the Sobolev spaces themselves, but only that they satisfy certain axioms (e.g. invariance
under changes of coordinates). Here we will follow an axiomatic approach and explain
that, starting with a subspace of D′(Rn) satisfying certain axioms, we can extend it to all
vector bundles over manifolds. Back to Sobolev spaces, there is a subtle point: to have
good behaved spaces, we will first have to replace the standard Sobolev spaces Hr, by their
“local versions”, denoted Hr,loc. Hence, strictly speaking, it will be these local versions that
will be extended to manifolds. The result will deserve the name “Sobolev space” (without
the adjective “local”) only on manifolds which are compact.

3.1 General functional spaces

When working on Rn, we shorten our notations to

E = E(Rn),D = D(Rn),D′ = . . .

and, similarly for the Sobolev space of order r:

Hr = Hr(Rn) = {u ∈ D′ : ∂αu ∈ L2 : ∀ |α| ≤ r}.

Definition 3.1.1 A functional space on Rn is a l.c.v.s. space F satisfying:

1. D ⊂ F ⊂ D′ and the inclusions are continuous linear maps.

55
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2. for all φ ∈ D, multiplication by φ defines a continuous map mφ : F → F .

Similarly, given a vector bundle E over a manifold M , one talks about functional spaces
on M with coefficients in E (or just functional spaces on (M,E)).

As in the case of smooth functions, one can talk about versions of F with supports.
Given a functional space F on Rn, we define for any compact K ⊂ Rn,

FK = {u ∈ F , supp(u) ⊂ K},

endowed with the topology induced from F , and we also define

Fcomp := ∪KFK

(union over all compacts in Rn), endowed with the inductive limit topology. In terms of
convergence, that means that a sequence (un) in Fcomp converges to u ∈ Fcomp if and only
if there exists a compact K such that

supp(un) ⊂ K ∀n, un → u in F .

Note that Fcomp is itself a functional space.
Finally, for any functional space F , one has another functional space (dual in some

sense to Fcom), defined by:

Floc = {u ∈ D′(Rn) : φu ∈ F ∀ φ ∈ C∞c (Rn)}.

This has a natural l.c. topology so that all the multiplication operators

mφ : Floc → F , u 7→ φu (u ∈ D)

are continuous- namely the smallest topology with this property. To define it, we use a
family P of seminorms defining the l.c. topology on F and, for every p ∈ P and φ ∈ C∞c (Rn)
we consider the seminorm qp,φ on Floc given by

qp,φ(u) = p(φu).

The l.c. topology that we use on Floc is the one induced by the family {qp,φ : p ∈ P, φ ∈ D.
Hence, un → u in this topology means φun → φu in F , for all φ’s.

Exercise 3.1.2 Show that, for any l.c.v.s. V , a linear map

A : V → Floc

is continuous if and only if , for any test function φ ∈ D, the composition with the
multiplication mφ by φ is a continuous map mφ ◦ A : V → F .
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Example 3.1.3 The four basic functional spaces D, E , E ′, D′ are functional spaces and

Dcomp = Ecomp = D, (D′)comp = (E ′)comp = E ′,

Dloc = Eloc = E , (D′)loc = (E ′)loc = D′.
The same holds in the general setting of vector bundles over manifolds.

Regarding the Sobolev spaces, they are functional spaces as well, but the inclusions

Hr,com ↪→ Hr ↪→ Hr,loc

are strict (and the same holds on any open Ω ⊂ Rn).

The local nature of the spaces FK is indicated by the following partition of unity
argument which will be very useful later on.

Lemma 3.1.4 Assume that K ⊂ Rn is compact, and let {ηj}j∈J a finite partition of unity
over K, i.e. a family of compactly supported smooth functions on Rn such that

∑
j ηj = 1

on K. Let Kj = K ∩ supp(ηj). Then the linear map

I : FK → Πj∈JFKj , u 7→ (ηju)j∈J

is a continuous embedding (i.e. it is an isomorphism between the l.c.v.s. FK and the image
of I, endowed with the subspace topology) and the image of I is closed.

Proof The fact that I is continuous follows from the fact that each component is multi-
plication by a compactly supported smooth function. The main observation is that there is
a continuous map R going backwards, namely the one which sends (uj)j∈J to

∑
j uj, such

that R ◦ I = Id. The rest is a general fact about t.v.s.’s: if I : X → Y , R : Y → X are
continuous linear maps between two t.v.s.’s such that R ◦ I = Id, then I is an embedding
and D(X) is closed in Y . Let’s check this. First, I is open from X to D(X): if B ⊂ X is
open then, remarking that

I(B) = I(X) ∩R−1(B)

and using the continuity of R, we see that I(B) is open in I(X). Secondly, to see that
I(X) is closed in Y , one remarks that

I(X) = Ker(Id− I ◦R).

�

Similar to Lemma 3.1.4, we have the following.

Lemma 3.1.5 Let F be a functional space on Rn and let {ηi}i∈I be a partition of unity,
with ηi ∈ D. Let Ki be the support of ηi. Then

I : Floc → Πi∈IFKi , u 7→ (µiu)i∈I

is a continuous embedding with closed image.
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Proof This is similar to Lemma 3.1.4 and the argument is identical. Denoting by X and
Y the domain and codomain of I, we have I : X → Y . On the other hand, we can consider
R : Y → X sending (ui)i∈I to

∑
i ui (which clearly satisfies R ◦ I = Id). What we have to

make sure is that, if {Ki}i∈I is a locally finite family of compact subsets of Rn, then one
has a well-defined continuous map

R : ΠiFKi → Floc, (ui)i∈I 7→
∑
i

ui.

First of all, u =
∑

i ui makes sense as a distribution: as a linear functional on test functions,

u(φ) :=
∑
i

ui(φ)

(this is a finite sum whenever φ ∈ D). Even more, when restricted to DK , one finds IK
finite such that the previous sum is a sum overall i ∈ IK for all φ ∈ DK . This shows that
u ∈ D′. To check that it is in Floc, we look at φu for φ ∈ D (and want to check that it is
in F). But, again, we will get a finite sum of φui’s, hence an element in F . Finally, to see
that the map is continuous, we have to check (see Exercise 3.1.2) that mφ ◦A is continuous
as a map to F , for all φ. But, again, this is just a finite sum of the projections composed
with mφ. �

3.2 The Banach axioms

Regarding the Sobolev spaces Hr on Rn, one of the properties that make them suitable
for various problems (and also for the index theorem) is that they are Hilbert spaces. On
the other hand, as we already mentioned, we will have to use variations of these spaces for
which this property is lost when we deal with manifolds which are not compact. So, it is
important to realize what remains of this property.

Definition 3.2.1 (Banach axiom) Let F be a functional space on Rn. We say that:

1. F is Banach if the topology of F is a Banach topology.

2. F is locally Banach if, for each compact K ⊂ Rn, the topology of FK is a Banach
topology.

Similarly, we talk about “Frechet”, “locally Frechet”, “Hilbert” and “locally Hilbert” func-
tional spaces on Rn, or, more generally, on a vector bundle E over a manifold M .

Of course, if F is Banach then it is also locally Banach (and similarly for Frechet and
Hilbert). However, the converse is not true.
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Example 3.2.2 E is Frechet (but not Banach- not even locally Banach). D is not Frechet,
but it is locally Frechet. The Sobolev spaces Hr are Hilbert. Their local versions Hr,loc are
just Frechet and locally Hilbert. The same applies for the same functional spaces on opens
Ω ⊂ Rn.

Proposition 3.2.3 A functional space F is locally Banach if and only if each x ∈ Rn

admits a compact neighborhood Kx such that FKx has a Banach topology (similarly for
Frechet and Hilbert).

Proof From the hypothesis it follows that we can find an open cover {Ui : i ∈ I} of Rn

such that each U i is compact and FU i is Banach. It follows that, for each compact K inside
one of these opens, FK is Banach. We choose a partition of unity {ηi}i∈I subordinated to
this cover. Hence each supp(η)i is compact inside Ui, {supp(η)i}i∈I is locally finite and∑

i ηi = 1.
Now, for an arbitrary compact K, J := {j ∈ I : ηj|K 6= 0} will be finite and then

{ηj}j∈J will be a finite partition of unity over K hence we can apply Lemma 3.1.4. There
Kj will be inside Uj, hence the spaces FKj have Banach topologies. The assertion follows
from the fact that a closed subspace of a Banach space (with the induced topology) is
Banach. �

Remark 3.2.4 If F is of locally Banach (or just locally Frechet), then Fcomp (with its
l.c. topology) is a complete l.c.v.s. which is not Frechet (hint: Theorem 2.1.11 ).

3.3 Invariance axiom

In general, a change of coordinates (diffeomorphism) χ : Rn → Rn induces a topological
isomorphism

χ∗ : D′ → D′

(See (2.2.2) and Example 2.3.9 for the precise formula and the explanations). To be able
to pass to manifolds, we need invariance of F under changes of coordinates. In order to
have a notion of local nature, we also consider a local version of invariance.

Definition 3.3.1 Let F be a functional space on Rn. We say that:

1. F is invariant if for any diffeomorphism χ of Rn, χ∗ restricts to a topological isomor-
phism

χ∗ : F ∼→ F .

2. F is locally invariant if for any diffeomorphism χ of Rn and any compact K ⊂ Rn,
χ∗ restricts to a topological isomorphism

χ∗ : FK
∼→ Fχ(K).
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Similarly, we talk about invariance and local invariance of functional spaces on vector
bundles over manifolds.

Clearly, invariant implies locally invariant (but not the other way around).

Example 3.3.2 Of course, the standard spacesD, E , D′, E ′ are all invariant (in general for
vector bundles over manifolds). However, Hr is not invariant but, fortunately, it is locally
invariant (this is a non-trivial result which will be proved later on using pseudo-differential
operators). As a consequence (see also below), the spaces Hr,loc are invariant.

Proposition 3.3.3 A functional space F is locally invariant if and only if for any diffeo-
morphism χ of Rn, any x ∈ Rn admits a compact neighborhood Kx such that χ∗ restricts
to a topological isomorphism

χ∗ : FKx
∼→ Fχ(Kx).

Proof We will use Lemma 3.1.4, in a way similar to the proof of Proposition 3.2.3. Let
K be an arbitrary compact and χ diffeomorphism. We will check the condition for K and
χ. As in the proof of Proposition 3.2.3, we find a finite partition of unity {ηj}j∈J over K
such that each Kj = K ∩ supp(ηj) has the property that

χ∗ : FKj
∼→ Fχ(Kj).

We apply Lemma 3.1.4 to K and the partition {ηj} (with map denoted by I) and also to
χ(K) and the partition {χ∗(ηi) = ηj ◦χ−1} (with the map denoted Iχ). Once we show that
χ∗(FK) = Fχ(K) set-theoretically, the lemma clearly implies that this is also a topological
equality. So, let u ∈ FK . Then ηju ∈ FKj hence

χ∗(ηi) · χ∗(u) = χ∗(ηj · u) ∈ Fχ(Kj) ⊂ FK ,

hence also
χ∗(u) =

∑
j

χ∗(ηi) · χ∗(u) ∈ FK .

�

3.4 Density axioms

We briefly mention also the following density axioms.

Definition 3.4.1 Let F be a functional space on Rn. We say that:

1. F is normal if D is dense in F .

2. F is locally normal if, for any compact K ⊂ Rn, FK is contained in the closure of D
in F .
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Similarly, we talk about normal and locally normal functional spaces on vector bundles
over manifolds.

Again, normal implies locally normal and one can prove a characterization of local
normality analogous to Proposition 3.2.3 and Proposition 3.3.3.

Example 3.4.2 All the four basic functional spaces D, E , D′ and E ′ are normal (also
with coefficients in vector bundles). Also the space Hr is normal. However, for arbitrary
opens Ω ⊂ Rn, the functional spaces Hr(Ω) (on Ω) are in general not normal (but they are
locally normal). The local spaces Hr,loc are always normal (see also the next section).

The normality axiom is important especially when we want to consider duals of func-
tional spaces. Indeed, in this case a continuous linear functional ξ : F → C is zero if
and only if its restriction to D is zero. It follows that the canonical inclusions dualize to
continuous injections

D ↪→ F∗ ↪→ D′.

The duality between Floc and Fcomp can then be made more precise- one has:

(Floc)
∗ = (F∗)comp, (Fcomp)∗ = (F∗)loc

(note: all these are viewed as vector subspaces of D′, each one endowed with its own
topology, and the equality is an equality of l.c.v.s.’s).

3.5 Locality axiom

In general, the invariance axiom is not enough for passing to manifolds. One also needs a
locality axiom which allows us to pass to opens Ω ⊂ Rn without loosing the properties of
the functional space (e.g. invariance).

Definition 3.5.1 (Locality axiom) We say that a functional space F is local if, as
l.c.v.s.’s,

F = Floc.

Similarly we talk about local functional spaces on vector bundles over manifolds.

Note that this condition implies that F is a module not only over D but also over E .

Example 3.5.2 From the four basic examples, E and D′ are local, while D and E ′ are
not. Unfortunately, Hr is not local- and we will soon replace it with Hr,loc (in general, for
any functional space F , Floc is local).

With the last example in mind, we also note that, in general, when passing to the
localized space, the property of being of Banach (or Hilbert, or Frechet) type does not
change.
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Exercise 3.5.3 Show that, for any functional space F and for any compact K ⊂ Rn

(Floc)K = FK ,
as l.c.v.s.’s. In particular, F is locally Banach (or locally Frechet, or locally Hilbert), or
locally invariant, or locally normal if and only if Floc is.

With the previous exercise in mind, when it comes to local spaces we have the following:

Theorem 3.5.4 Let F be a local functional space on Rn. Then one has the following
equivalences:

1. F is locally Frechet if and only if it is Frechet.

2. F is locally invariant if and only if it is invariant.

3. F is locally normal if and only if it is normal.

Note that in the previous theorem there is no statement about locally Banach. As we
have seen, this implies Frechet. However, local spaces cannot be Banach.
Proof (of Theorem 3.5.4) In each part, we still have to prove the direct implications. For
the first part, if F is locally Frechet, choosing a countable partition of unity and applying
the previous lemma, we find that Floc is Frechet since it is isomorphic to a closed subspace
of a Frechet space (a countable product of Frechet spaces is Frechet!). For the second part,
the argument is exactly as the one for the proof of Proposition 3.3.3, but using Lemma
3.1.5 instead of Lemma 3.1.4. For the last part, let us assume that F is locally normal. It
suffices to show that E is dense in F : then, for any open U ⊂ F , U ∩E 6= ∅; but U ∩E is an
open in E (because E ↪→ F is continuous) hence, since D is dense in E (with its canonical
topology), we find U ∩ D 6= ∅.

To show that E is dense in F , we will need the following variation of Lemma 3.1.5. We
choose a partition of unity ηi as there, but with ηi = µ2

i , µi ∈ D. Let

A = F , X = Πi∈IF ,
(X with the product topology). We define

i : A→ X, u 7→ (µiu)i, p : X → A, (ui)i 7→
∑

µiui.

As in the lemma, these make A into a closed subspace of X. Hence we can place ourselves
into the setting that we have a subspace A ⊂ X of a l.c.v.s. X, which has a projection
into A, p : X → A (not that we will omit writing i from now on). Consider the subset

Y = Πi∈ID ⊂ X.

Modulo the inclusion A ↪→ X, B = A ∩ Y becomes E and p(Y ) = B. Also, since A (or its
image by i) is inside the closed subspace of X which is ΠiFKi , we see that the hypothesis
of local normality implies that A ⊂ Y (all closures are w.r.t. the topology of X). We
have to prove that A is in the closure of B. Let a ∈ A, V an open neighborhood of a in
X. We have to show that V ∩ B 6= ∅. From V we make V ′ = p−1(A ∩ V )- another open
neighborhood of a in X. Since A ⊂ Y , we have V ′ ∩ Y 6= ∅. It now suffices to remark that
p(V ′) ⊂ V ∩B. �
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Finally, let us point out the following corollary which shows that, in the case of locally
Frechet spaces, locality can be checked directly, using test functions and without any
reference to Floc.

Corollary 3.5.5 If F is a functional space which is locally Frechet, then F is local if and
only if the following two (test-)conditions are satisfied:

1. u ∈ D′(Rn) belongs to F if and only if φu ∈ F for all φ ∈ C∞c (Rn).

2. un → u in F if and only if φun → φ in F , for all φ ∈ C∞c (Rn).

Proof The direct implication is clear. For the converse, assume that F is a functional
space which satisfies these conditions. The first one implies that F = Floc as sets and we
still have to show that the two topologies coincide. Let T be the original topology on F
and let Tloc be the topology coming from Floc. Since F ↪→ Floc is always continuous, in our
situation, this tells us that Tloc ⊂ T . On the other hand, Id : (F , Tloc)→ (F , T ) is clearly
sequentially continuous hence, since Floc is metrizable, the identity is also continuous,
hence T ⊂ Tloc. This concludes the proof. �

3.6 Restrictions to opens

The main consequence of the localization axiom is the fact that one can restrict to opens
Ω ⊂ Rn. The starting remark is that, for any such open Ω, there is a canonical inclusion

E ′(Ω) ⊂ E ′(Rn) ⊂ D′(Rn)

which should be thought of as “extension by zero outside Ω”, which comes from the inclu-
sion E ′(Ω) ⊂ E ′(Rn) (obtained by dualizing the restriction map C∞(Rn) → C∞(Ω)). In
other words, any compactly supported distribution on Ω can be viewed as a (compactly
supported) distribution on Rn. On the other hand,

φu ∈ E ′(Ω), ∀ φ ∈ C∞c (Ω), u ∈ D′(Ω).

Hence the following makes sense:

Definition 3.6.1 Given a local functional space F , for any open Ω ⊂ Rn, we define

F(Ω) := {u ∈ D′(Ω) : φu ∈ F ∀ φ ∈ C∞c (Ω)},

endowed with the following topology. Let P be a family of seminorms defining the l.c.
topology on F and, for every p ∈ P and φ ∈ C∞c (Ω) we consider the seminorm qp,φ on F
given by

qp,φ(u) = p(φu).

We endow F(Ω) with the topology associated to the family {qp,φ : p ∈ P, φ ∈ C∞c (Ω).
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Theorem 3.6.2 For any local functional space F and any open Ω ⊂ Rn, F(Ω) is a local
functional space on Ω and, as such,

1. F(Ω) is locally Banach (or Hilbert, or Frechet) if F is.

2. F(Ω) is invariant if F is.

3. F(Ω) is normal if F is.

Proof For the first part, one remarks that F(Ω)K = FK . For the second part, applying
Theorem 3.5.4 to the local functional space F(Ω) on Ω, it suffices to show local invariance.
I.e., it suffices to show that for any χ : Ω → Ω diffeomorphism and x ∈ Ω, we find a
compact neighborhood K = Kx such that χ∗ is an isomorphism between F(Ω)K(= FK)
and F(Ω)χ(K)(= Fχ(K)). The difficulty comes from the fact that χ is not defined on the
entire Rn. Fix χ and x. Then we can find a neighborhood Ωx of x ∈ Ω and a diffeomorphism
χ̃ on Rn such that

χ̃|Ωx = χ|Ωx
(this is not completely trivial, but it can be done using flows of vector fields, on any
manifold). Fix any compact neighborhood K ⊂ Ωx. Using the invariance of F , it suffices
to show that χ∗(u) = χ̃∗(u) for all u ∈ FK . But

χ∗(u), χ̃∗(u) ∈ F ⊂ D′

are two distributions whose restriction to χ(Ωx) is the same and whose restrictions to
Rn − χ(K) are both zero. Hence they must coincide. For the last part, since we deal
with local spaces, it suffices to show that F(Ω) is locally normal, i.e that for any compact
K ⊂ Ω, FK(Ω) = FK ⊂ F(Ω) is contained in the closure of D(Ω). I.e., for any u ∈ FK
and any open U ⊂ F(Ω) containing u, U ∩D(Ω) =6= ∅. But since F is locally normal and
the restriction map r : F → F(Ω) is continuous, we have r−1(U) ∩ D 6= ∅ and the claim
follows. �

Exercise 3.6.3 By a sheaf of distributions F̂ on Rn we mean an assignment

Ω 7→ F̂(Ω)

which associates to an open Ω ⊂ Rn a functional space F̂(Ω) on Ω (local or not) such that:

1. if Ω2 ⊂ Ω1 and u ∈ F̂(Ω1), then u|Ω2 is in F̂(Ω2). Moreover, the map

F̂(Ω1)→ F̂(Ω2), u 7→ u|Ω1 .

is continuous.
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2. If Ω = ∪i∈IΩi with Ωi ⊂ Rn opens (I some index set), then the map

F̂(Ω)→ Πi∈IF̂(Ωi), u 7→ (u|Ωi)i∈I

is a topological embedding which identifies the l.c.v.s. on the left with the closed
subspace of the product space consisting of elements (ui)i∈I with the property that
ui|Ωi∩Ωj = uj|Ωi∩Ωj for all i and j.

Show that

1. If F is a local functional space on Rn then Ω 7→ F(Ω) is a sheaf of distributions.

2. Conversely, if F̂ is a sheaf of distributions on Rn then

F := F̂(Rn)

is a local functional space on Rn and F̂(Ω) = F(Ω) for all Ω’s.

Below, for diffeomorphisms χ : Ω1 → Ω2 between two opens, we consider the induced
χ∗ : D′(Ω1)→ D′(Ω2) (see (2.2.2) and Example 2.3.9).

Corollary 3.6.4 Let F be a local functional space. If F is invariant then, for any dif-
feomorphism χ : Ω1 → Ω2 between two opens in Rn, χ∗ induces a topological isomorphism

χ∗ : F(Ω1)→ F(Ω2).

Proof The proof of 2. of Theorem 3.6.2, when showing invariance under diffeomorphisms
χ : Ω→ Ω clearly applies to general diffeomorphism between any two opens. �

3.7 Passing to manifolds

Throughout this section we fix

F = local, invariant functional space on Rn.

and we explain how to induce functional spaces F(M,E) (of “generalized sections of E of
type F”) for any vector bundle E over an n-dimensional manifold M .

To define them, we will use local total trivializations of E, i.e. triples (U, κ, τ) consisting
of a local chart (U, κ) for M and a trivialization τ : E|U → U × Cp of E over U . Recall
(see Example 2.3.8) that any such total trivialization induces an isomorphism

hκ,τ : D′(U,E|U)→ D′(Ωκ)
p (where Ωκ = κ(U) ⊂ Rn)1.

Definition 3.7.1 We define F(M,E) as the space of all u ∈ D′(M,E) with the property
that for any domain U of a total trivialization of E, hκ,τ (u|U) ∈ F(Ωκ)

p.

1 Let us make this more explicit. The total trivialization induces
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We still have to define the topology on F(M,E), but we make a few remarks first.
Since the previous definition applies to all n-dimensional manifolds:

1. when applied to an open Ω ⊂ Rn and to the trivial line bundle CΩ over Ω, one
recovers F(Ω)- and here we are using the invariance of F .

2. it also applies to all opens U ⊂ M , hence we can talk about the spaces F(U,E|U).
From the same invariance of F , when U is the domain of a total trivialization chart
(U, κ, τ), to check that u ∈ D′(U,E|U) is in F(U,E|U), it suffices to check that
hκ,τ (u) ∈ F(Ωκ)

p- i.e. we do not need to check the condition in the definition for all
total trivialization charts.

3. If {Ui}i∈I is one open cover of M and u ∈ D′(M,E), then

u ∈ F(M,E)⇐⇒ u|Ui ∈ F(Ui, E|Ui) ∀ i ∈ I.

This follows from the similar property of F on opens in Rn.

Exercise 3.7.2 Given a vector bundle E over M and U ⊂ M , F induces two subspaces
of D′(U,E|U):

1. F(U,E|U) just defined.

2. thinking of F(M,E) as a functional space on M (yes, we know, we still have to define
the topology, but that is irrelevant for this exercise), we have an induced space:

{u ∈ D′(U,E|U) : φu ∈ F(M,E), ∀ φ ∈ D(U)}.

1. a local frame s1, . . . , sp for E over U . Then, for any s ∈ Γ(E) we find (local) coefficients f is ∈
C∞(Ωκ), i.e. satisfying

s(x) =
∑
i

f is(κ(x))si(x) for x ∈ U.

2. the local dual frame s1, . . . , sp of E∗ and a local frame (i.e. non-zero section on U) of the density
bundle of M , |dx1κ ∧ . . . ∧ xnκ|. Then, for any ξ ∈ Γ(E∨) we find (local) coefficients ξi ∈ C∞(Ωκ),
i.e. satisfying

ξ(x) =
∑
i

ξi(κ(x))si(x)|dx1κ ∧ . . . ∧ xnκ|x (x ∈ U).

3. any u ∈ D′(M,E) has coefficients ui ∈ D′(Ωκ), i.e. satisfying

u(ξ) =
∑
i

ui(ξi) (ξ ∈ Γc(U,E
∨)).

The map hκ,τ sends u to (u1, . . . , un).
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Show that the two coincide.

Next, we take an open cover {Ui}i∈I by domains of total trivialization charts (Ui, κi, τi).
It follows that we have an inclusion

h : F(M,E)→ Πi∈IF(Ωκi)
p.

We endow F(M,E) with the induced topology.

Exercise 3.7.3 Show that the topology on F(M,E) does not depend on the choice of
the cover and of the total trivialization charts.

Theorem 3.7.4 For any vector bundle E over an n dimensional manifold M , F(M,E)
is a local functional space on (M,E).

Moreover, if F is locally Banach, or locally Hilbert, or Frechet (= locally Frechet since
F is local), or normal (= locally normal), then so is F(M,E).

Finally, if F is a vector bundle over another n-dimensional manifold N and (h, h0)
is an isomorphism between the vector bundles E and F , then h∗ : D′(M,E) → D′(N,F )
restricts to an isomorphism of l.c.v.s.’s

h∗ : F(M,E)→ F(N,F ).

Proof We just have to put together the various pieces that we already know (of course,
here we make use of the fact that all proofs that we have given so far work for vector
bundles over manifolds). To see that F(M,E) is a functional space we have to check that
we have continuous inclusions

D(M,E) ↪→ F(M,E) ↪→ D′(M,E).

We just have to remark that the map h used to define the topology of F(M,E) also
describes the topology for D and D′. To show that F(M,E) is local, one uses the sheaf
property of F(M,E)loc (see Exercise 3.6.3) where the Ui’s there are chosen as in the
construction of h above. This reduces the problem to a local one, i.e. to locality of F .

All the other properties follow from their local nature (i.e. Proposition 3.2.3 and the
similar result for normality, applied to manifolds) and the fact that, for K ⊂ M compact
inside a domain U of a total trivialization chart (U, κ, τ), FK(M,E) is isomorphic to
FK(Ωκ)

p. �

Corollary 3.7.5 If F is locally Banach (or Hilbert) and normal then, for any vector
bundle E over a compact n dimensional manifold M , F(M,E) is a Banach (or Hilbert)
space which contains D(M,E) as a dense subspace.
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Definition 3.7.6 Let F1 and F2 be local, invariant functional spaces on Rm and Rn,
respectively, and assume that F1 is normal. Let M be an m-dimensional manifold and N
an n-dimensional one, and let E and F be vector bundles over M and N , respectively. We
say that a general operator

P : D(M,E)→ D′(N,F )

is of type (F1, F2) if it takes values in F2 and extends to a continuous linear operator

PF1,F2 : F1(M,E)→ F2(N,E).

Note that, due to the normality axiom, the extension PF1,F2 will be unique, hence the
notation is un-ambiguous.

3.8 Back to Sobolev spaces

We apply the previous constructions to the Sobolev spaces Hr on Rn. Let us first recall
some of the standard properties of these spaces:

1. they are Hilbert spaces.

2. D is dense in Hr.

3. if s > n/2 + k then Hs ⊂ Ck(Rn) (with continuous injection) (Sobolev’s lemma).

4. for all r > s and all K ⊂ Rn compact, the inclusion Hs,K ↪→ Hs,K is compact
(Reillich’s lemma).

Also, as we shall prove later, Hr are locally invariant (using pseudo-differential operators
and Proposition 3.3.3). Assuming all these, we now consider the associated local spaces

Hr,loc = {u ∈ D′ : φu ∈ Hr, ∀ φ ∈ D}

and the theory we have developed imply that:

1. Hr,loc is a functional space which is locally Hilbert, invariant and normal.

2. ∩rHr,loc = E . Even better, for r > n/2 + k, any s ∈ Hr,loc is of class Ck.

Hence these spaces extend to manifolds.

Definition 3.8.1 For a vector bundle E over an n-dimensional manifold M ,

1. the resulting functional spaces Hr,loc(M,E) are called the local r-Sobolev spaces of
E.

2. for K ⊂M compact, the resulting K-supported spaces are denoted Hr,K(M,E).
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3. the resulting compactly supported spaces are denoted Hr,comp(M,E) (hence they are
∪KHr,K(M,E) with the inductive limit topology).

If M is compact, we define the r-Sobolev space of E as

Hr(M,E) := Hr,loc(M,E)(= Hr,comp(M,E)).

Corollary 3.8.2 For any vector bundle E over a manifold M ,

1. Hr,loc(M,E) are Frechet spaces.

2. D(M,E) is dense in Hr,loc(M,E).

3. if a distribution u ∈ D′(M,E) belongs to all the spaces Hr,loc(M,E), then it is smooth.

4. for K ⊂M compact, Hr,K(M,E) has a Hilbert topology and, for r > s, the inclusion

Hr,K(M,E) ↪→ Hs,K(M,E)

is compact.

Proof The only thing that may still need some explanation is the compactness of the
inclusion. But this follows from the Reillich’s lemma and the partition of unity argument,
i.e. Lemma 3.1.4 . �

Corollary 3.8.3 For any vector bundle E over a compact manifold M , Hr(M,E) has a
Hilbert topology, contains D(M,E) as a dense subspace,

∩rHr,loc(M,E) = Γ(E)

and, for r > s, the inclusion
Hr(M,E) ↪→ Hs(M,E)

is compact.

Finally, we point out the following immediate properties of operators. The first one
says that differential operators of order k are also operators of type (Hr, Hr−k).

Proposition 3.8.4 For r ≥ k ≥ 0, given a differential operator P ∈ Dk(E,F ) between
two vector bundles over M , the operator

P : D(M,E)→ D(M,F )

admits a unique extension to a continuous linear operator

Pr : Hr,loc(M,E)→ Hr−k,loc(M,F ).
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The second one says that smoothing operators on compact manifolds, viewed as oper-
ators of type (Hr, Hs), are compact.

Proposition 3.8.5 Let E and F be two vector bundles over a compact manifold M and
consider a smoothing operator P ∈ Ψ−∞(E,F ). Then for any r and s, P viewed as an
operator

P : Hr(M,E)→ Hs(M,F )

is compact.

Remark 3.8.6 Back to our strategy of proving that the index of an elliptic differential
operator P ∈ Dk(E,F ) (over a compact manifold) is well-defined, our plan was to use
the theory of Fredholm operators between Banach spaces. We have finally produced our
Banach spaces of sections on which our operator will act:

Pr : Hr(M,E)→ Hr−k(M,F ).

To prove that Pr is Fredholm, using Theorem 1.4.5 on the characterization of Fredholm
operators and the fact that all smoothing operators are compact, we would need some
kind of “inverse of Pr modulo smoothing operators”, i.e. some kind of operator “of order
−k” going backwards, such that PQ − Id and QP − Id are smoothing operators. Such
operators “of degree −k” cannot, of course, be differential. What we can do however is
to understand what make differential operators behave well w.r.t. (e.g.) Sobolev spaces-
and the outcome is: it is not important that their total symbols are polynomials (of some
degree k) in ξ, but only their symbols have a certain k-polynomial-like behaviour (in terms
of estimates). And this is a property which makes sense even for k-negative (and that is
where we have to look for our Q). This brings us to pseudo-differential operators ...

Exercise 3.8.7 Show that if such an operator Q : Hr−k(M,F ) → Hr(M,E) is found
(i.e. with the property that PQ− Id and QP − Id are smoothing), then the kernel of the
operator P : Γ(E)→ Γ(F ) is finite dimensional. What about the cokernel?



Chapter 4

Fourier transform

4.1 Schwartz functions

Recall that L1(Rn) denotes the Banach space of functions f : Rn → C that are absolutely
integrable, i.e., |f | is Lebesgue integrable over Rn. The norm on this space is given by

‖f‖1 =

∫
Rn
|f(x)| dx.

Given ξ ∈ Rn and x ∈ Rn, we put

ξx := ξ1x1 + · · ·+ ξnxn.

For each ξ ∈ Rn, the exponential function

eiξ : x 7→ eiξx, Rn → C,

has absolute value 1 everywhere. Thus, if f ∈ L1(Rn) then e−iξf ∈ L1(Rn) for all ξ ∈ Rn.

Definition 4.1.1 For a function f ∈ L1(Rn) we define its Fourier transform f̂ = Ff :
Rn → C by

Ff(ξ) =

∫
Rn
f(x)e−iξx dx. (4.1.1)

We will use the notation Cb(Rn) for the Banach space of bounded continuous functions
Rn → C equipped with the sup-norm.

Lemma 4.1.2 The Fourier transform maps L1(R) continuous linearly to the Banach
space Cb(Rn).

Proof Let f be any function in L1(Rn). The functions fe−iξ are all dominated by |f | in
the sense that |fe−iξ| ≤ |f | (almost) everywhere. Let ξ0 ∈ Rn; then it follows by Lebesgue’s
dominated convergence theorem that Ff(ξ) → Ff(ξ0) if ξ → ξ0. This implies that Ff is

71
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continuous. It follows that F defines a linear map from L1(R) to C(Rn). It remains to be
shown that F maps L1(R) continuously into Cb(R).

For this we note that for f ∈ L1(Rn) and ξ ∈ Rn,

|Ff(ξ)| = |
∫
Rn
f(x) e−iξx dx | ≤

∫
Rn
|f(x) e−iξx| dx = ‖f‖1.

Thus, sup |Ff | ≤ ‖f‖1. It follows that F is a linear map L1(R)→ Cb(Rn) which is bounded
for the Banach topologies, hence continuous. �

Remark 4.1.3 We denote by C0(Rn) the subspace of Cb(Rn) consisting of functions f
that vanish at infinity. By this we mean that for any ε > 0 there exists a compact set
K ⊂ Rn such that |f | < ε on the complement Rn \K. It is well known that C0(Rn) is a
closed subspace of Cb(Rn), thus a Banach space of its own right.

The well known Riemann-Lebesgue lemma asserts that, actually, F maps L1(Rn) into
C0(Rn).

The above amounts to the traditional way of introducing the Fourier transform. Unfor-
tunately, the source space L1(Rn) is very different from the target space Cb(Rn). We shall
now introduce a subspace of L1(Rn) which has the advantage that it is preserved under
the Fourier transform: the so-called Schwartz space.

Definition 4.1.4 A smooth function f : Rn → C is called rapidly decreasing, or Schwartz,
if for all α, β ∈ Nn,

sup
x∈Rn
|xβ∂αf(x)| <∞. (4.1.2)

The linear space of these functions is denoted by S(Rn).

Exercise 4.1.5 Show that the function

f(x) = e−‖x‖
2

belongs to S(x).

Condition (4.1.2) for all α, β is readily seen to be equivalent to the following condition,
for all N ∈ N, k ∈ N :

νN,k(f) := max
|α|≤k

sup
x∈Rn

(1 + ‖x‖)N |∂αf(x)| <∞.

We leave it to the reader to check that ν = νN,k defines a norm, hence in particular a
seminorm, on S(Rn). We equip S(Rn) with the locally convex topology generated by the
set of norms νN,k, for N, k ∈ N.

The Schwartz space behaves well with respect to the operators (multiplication by) xα

and ∂β.
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Exercise 4.1.6 Let α, β be multi-indices. Show that

xα : f 7→ xαf and ∂β : f 7→ ∂βf

define continuous linear endomorphisms of S(Rn).

Exercise 4.1.7

(a) Show that S(Rn) ⊂ L1(Rn), with continuous inclusion map.

(b) Show that

C∞c (Rn) ⊂ S(Rn) ⊂ C∞(Rn),

with continuous inclusion maps.

Lemma 4.1.8 The space S(Rn) is a Fréchet space.

Proof As the given collection of seminorms is countable it suffices to show completeness,
i.e., every Cauchy sequence in S(Rn) should be convergent. Let (fn) be a Cauchy sequence
in S(Rn). Then by continuity of the second inclusion in Exercise 4.1.7 (b), the sequence
is Cauchy in C∞(Rn). By completeness of the latter space, the sequence fn converges to
f , locally uniformly, in all derivatives. We will show that f ∈ S(Rn) and fn → f in
S(Rn). First, since (fn) is Cauchy, it is bounded in S(Rn). Let N, k ∈ N; then there exists
a constant CN,k > 0 such that νN,k(fn) ≤ CN,k, for all n ∈ N. Let x ∈ Rn, then from
∂αfn(x)→ ∂αf(x) it follows that

(1 + ‖x‖)N∂αfn(x)→ (1 + ‖x‖)N∂αf(x), as n→∞.

In view of the estimates νN,k(fn) ≤ CN,k, it follows that |(1 + ‖x‖)N∂αf(x)| ≤ CN,k, for all
α with |α| ≤ k. This being true for arbitrary x, we conclude that νN,k(f) ≤ CN,k. Hence f
belongs to the Schwartz space.

Finally, we turn to the convergence of the sequence fn in S(Rn). Let N, k ∈ N. Let
ε > 0. Then there exists a constant M such that

n,m > M ⇒ νN,k(fn − fm) ≤ ε/2.

Let |α| ≤ k and fix x ∈ Rn. Then it follows that

(1 + ‖x‖)N |∂αfn(x)− ∂αfm(x)| ≤ ε

2

As ∂αfn → ∂αf locally uniformly, hence in particular pointwise, we may pass to the limit
for m→∞ and obtain the above estimate with fm replaced by f, for all x ∈ Rn. It follows
that νN,k(fn − f) < ε for all n ≥M. �
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Another important property of the Schwartz space is the following.

Lemma 4.1.9 The space C∞c (Rn) is dense in S(Rn).

Proof Fix a function ϕ ∈ C∞c (Rn) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on the closed unit
ball in Rn. For k ∈ N we put

‖ϕ‖Ck := max
|α|≤k

sup
x∈Rn
|∂αϕ(x)|.

For j ∈ Z+ define the function ϕj ∈ C∞c (Rn) by

ϕj(x) = ϕ(x/j).

Let now f ∈ S(Rn). Then ϕjf ∈ C∞c (Rn) for all j ∈ Z+. We will complete the proof by
showing that ϕjf → f in S(Rn) as j →∞.

Fix N, k ∈ N. Our goal is to find an estimate for νN,k(ϕjf − f), independent of f. To
this end, we first note that for every multi-index β we have ∂βϕj(x) = (1/j)|β|∂βϕ(x/j). It
follows that

sup
Rn
|∂βϕj| ≤

1

j
‖ϕ‖Ck , (j ∈ Z+, 0 < |β| ≤ k).

Let |α| ≤ k. Then by application of Leibniz’ rule we obtain, for all x ∈ Rn, that

|∂α(ϕjf − f)(x)| ≤ |(ϕj(x)− 1) ∂αf(x)|+ 1

j
‖ϕ‖Ck

∑
06=β≤α

(
α
β

)
|∂α−βf(x)|.

The first term on the right-hand side is zero for ‖x‖ ≤ j. For ‖x‖ ≥ j it can be estimated
as follows:

|(ϕj(x)− 1)∂αf(x)| ≤ (1 + sup |ϕ|)(1 + j)−1(1 + ‖x‖)|∂αf(x)|
≤ 2j−1(1 + ‖x‖)|∂αf(x)|.

We derive that there exists a constant Ck > 0, only depending on k, such that for every
N ∈ N,

νN,k(ϕjf − f) ≤ Ck
j
νN+1,k(f).

It follows that ϕjf → f in S(Rn). �

The following lemma is a first confirmation of our claim that the Schwartz space provides
a suitable domain for the Fourier transform.

Lemma 4.1.10 The Fourier transform is a continuous linear map S(Rn) → S(Rn).
Moreover, for each f ∈ S(Rn) and all α ∈ Nn, the following hold.

(a) F(∂αf) = (iξ)αFf ;
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(b) F(xαf) = (i∂ξ)
αFf.

Proof Let f ∈ S(Rn) and let 1 ≤ j ≤ n. Then it follows by differentiation under the
integral sign that

∂

∂ξj

∫
Rn
f(x) e−iξx dx =

∫
Rn
f(x)(−ixj)e−iξx dx.

The interchange of integration and differentiation is justified by the observation that the
integrand on right-hand side is continuous and dominated by the integrable function (1 +
‖x‖)−n−1νn+1,0(f) (check this). It follows that F(−xjf) = ∂jFf. By repeated application
of this formula, we see that Ff is a smooth function and that (b) holds. Since the inclusion
map S(Rn) → L1(Rn) and the Fourier transform L1(Rn) → Cb(Rn) are continuous, it
follows that F is continuous from S(Rn) to Cb(Rn). As multiplication by xα is a continuous
endomorphism of the Schwartz space, it follows by application of (b) that F is a continuous
linear map S(Rn)→ C∞(Rn).

Let f ∈ C∞c (Rn) and 1 ≤ j ≤ n. Then by partial integration it follows that∫
Rn
∂jf(x)e−iξx dx = (iξj)

∫
Rn
f(x)e−iξx dx

so that F(∂jf) = (iξj)F(f)(ξ). By repeated application of this formula, it follows that (a)
holds for all f ∈ C∞c (Rn). By density of C∞c (Rn) in S(Rn) combined with continuity of the
endomorphism ∂α ∈ End(S) and continuity of F as a map S(Rn)→ C(Rn) it now follows
that (a) holds for all f ∈ S(Rn).

It remains to establish the continuity of F as an endomorphism of S(Rn). For this
it suffices to show that ξα∂βF is continuous linear as a map S(Rn) → Cb(Rn). This
follows from ξα∂βF = F ◦ (−i∂)α(−ix)β (by (a), (b)) and the fact that (−i∂)α ◦ (−ix)β

is a continuous linear endomorphism of S(Rn). �

Later on, we will see that it is convenient to write

Dα = (−i∂)α,

so that formula (a) of the above lemma becomes

F(Dαf) = ξαFf.

Given a ∈ Rn we write Ta for the translation Rn → Rn, x 7→ x+ a and T ∗a for the map
C∞(Rn)→ C∞(Rn) induced by pull-back. Thus, T ∗a f(x) = f(x+ a).

Lemma 4.1.11 The map T ∗a restricts to a continuous linear endomorphism of S(Rn).
Moreover, for all f ∈ S(Rn),

F(T ∗a f) = eiξaF(f); F(e−iaxf) = T ∗aFf.



76 CHAPTER 4. FOURIER TRANSFORM

Exercise 4.1.12 Prove the lemma.

We write S for the point reflection Rn → Rn, x 7→ −x and S∗ for the induced linear
endomorphism of C∞(Rn). It is readily seen that S∗ defines a continuous linear endomor-
phism of S(Rn).

Exercise 4.1.13 The map S∗ defines a continuous linear endomorphism of S(Rn) which
commutes with F .

We can now give the full justification for the introduction of the Schwartz space.

Theorem 4.1.14 (Fourier inversion)

(a) F is a topological linear isomorphism S(Rn)→ S(Rn).

(b) The endomorphism S∗FF of S(Rn) equals (2π)n times the identity operator. Equiv-
alently, for every f ∈ S(Rn) we have

f(x) =
1

(2π)n

∫
Rn
Ff(ξ) eiξx dξ, (x ∈ Rn).

Proof We consider the continuous linear operator T := S∗FF from S(Rn) to itself. By
Lemma 4.1.10 it follows that

T ◦xα = S∗F ◦ (i∂)α ◦F = S∗ ◦ (−x)α ◦FF = xα ◦ T .

In other words, T commutes with multiplication by xα, for every multi-index α. In a similar
fashion it is shown that T commutes with T ∗a , for every a ∈ Rn.

We will now show that any continuous linear endomorphism T of S(Rn) with these
properties must be equal to a constant times the identity. For this we use the Gaussian
function G(x) = exp(−‖x‖2/2). Let f ∈ C∞c (Rn) and put ϕ = G−1f. Then ϕ is smooth
compactly supported as well. Moreover, in view of the formula

ϕ(x) = ϕ(0) +

∫ 1

0

∂

∂t
ϕ(tx) dt

= ϕ(0) +

[∫ 1

0

Dϕ(tx) dt

]
x,

we see that there exists a smooth map L : Rn → L(Rn,C) such that ϕ(x) = ϕ(0) + L(x)x
for all x ∈ Rn. It is easily seen that each component Lj(x) is smooth with partial derivatives
that are all bounded on Rn. Hence, LjG ∈ S(Rn). It now follows that

T (f) = T (ϕG)

= T (ϕ(0)G) + T (
∑
j

xjLjG)

= ϕ(0)T (G) +
∑
j

xjT (LjG).
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Evaluating at x = 0 we find that T (f)(0) = cf(0), with c the constant T (G)(0).
We now use that T commutes with translation:

T (f)(x) = [T ∗xT (f)](0) = T (T ∗xf)(0) = c T ∗xf(0) = cf(x).

This proves the claim that T = cI. To complete the proof of (b) we must show that
c = (2π)n. This is the subject of the exercise below.

It follows from (b) and the fact that S∗ commutes with F that F has (2π)−nS∗F as
a continuous linear two-sided inverse. Hence, F is a topological linear automorphism of
S(Rn).

Exercise 4.1.15 We consider the Gaussian function g : R→ R given by g(x) = e−
1
2
x2 .

(a) Show that Fg satisfies the differential equation d
dx
Fg = −xFg.

(b) Determine the Fourier transform Fg.

(c) Prove that for the Gaussian function G : Rn → R we have T (G) = (2π)nG.

In order to get rid of the constant (2π)n in formulas involving Fourier inversion, we
change the normalization of the measures dx and dξ on Rn, by requiring both of these
measures to be equal to (2π)−n/2 times Lebesgue measure. The definition of F is now
changed by using formula (4.1.1) but with the new normalization of measures. Accordingly,
the Fourier inversion formula becomes, for f ∈ S(Rn),

f(x) =

∫
Rn
f̂(ξ) eiξx dξ. (4.1.3)

4.2 Convolution

The Schwartz space is also very natural with respect to convolution. In the following we
shall make frequent use of the following easy estimates, for x, y ∈ Rn

(1 + ‖x‖)(1 + ‖y‖)−1 ≤ (1 + ‖x+ y‖) ≤ (1 + ‖x‖)(1 + ‖y‖). (4.2.4)

The inequality on the right is an easy consequence of the triangle inequality. The inequality
on the left follows from the one on the right if we first substitute −y for y and then, in the
resulting inequality, x+ y for x.

Assume that f1, f2 : Rn → C are continuous functions with

νN(fj) := sup(1 + ‖x‖)N |fj(x)| <∞

for all N ∈ N (Schwartz functions are of this type). Then it follows that

|fj(x)| = (1 + ‖x‖)−N(1 + ‖x‖)N |fj(x)|
≤ (1 + ‖x‖)NνN(fj)
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for all x ∈ Rn. Therefore,

f1(y)f2(x− y) ≤ (1 + ‖y‖)−M(1 + ‖x− y‖)−NνM(f1)νN(f2)

≤ (1 + ‖y‖)N−M(1 + ‖x‖)−NνM(f1)νN(f2).

Choosing N = 0 and M > n we see that the function y 7→ f1(y)f2(x− y) is integrable for
every x ∈ Rn.

Definition 4.2.1 For f, g ∈ S(Rn) we define the convolution product f ∗ g : Rn → C by

(f ∗ g)(x) =

∫
Rn
f(y) g(x− y) dy.

Lemma 4.2.2

(a) The convolution product defines a continuous bilinear map

(f, g) 7→ f ∗ g, S(Rn)× S(Rn)→ S(Rn).

(b) For all f, g ∈ S(Rn),

F(f ∗ g) = FfFg and F(fg) = Ff ∗ Fg.

Proof Let f, g ∈ S(Rn) and let α be a multi-index of order at most k. Let K ∈ N. Then
it follows from the above estimates with f1 = f and f2 = ∂αg that

(1 + ‖x‖)K |f(y)∂αg(x− y)| ≤ (1 + ‖y‖)N−M(1 + ‖x‖)K−NνM,0(f)νN,k(g).

We now choose N = K and M > N + n. Then the function on the right-hand side is
integrable with respect to y. It now follows by differentiation under the integral sign that
the function f ∗ g is smooth and that for all α we have ∂α(f ∗ g) = f ∗ ∂αg. Moreover, it
follows from the estimate that

νK,k(f ∗ g) ≤ νM,0(f)νN,k(g)

∫
Rn

(1 + ‖y‖)N−M dy.

We thus see that the map (f, g) 7→ f ∗ g is continuous bilinear from S(Rn) × S(Rn) to
S(Rn).

Moreover, the above estimates justify the following application of Fubini’s theorem:

F(f ∗ g)(ξ) =

∫
Rn

∫
Rn
f(y)g(x− y)e−iξx dy dx

=

∫
Rn

∫
Rn
f(y)g(x− y)e−iξx dx dy

=

∫
Rn

∫
Rn
f(y)g(z)e−iξ(z+y) dz dy

= Ff(ξ)Fg(ξ).
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To obtain the second equality of (b), we use that S∗F = FS∗ is the inverse to F (by our new
normalization of measures). Put ϕ = FS∗f and ψ = FS∗g. Then fg = FϕFψ = F(ϕ∗ψ).
By application of F we now readily verify that

F(fg) = S∗(ϕ ∗ ψ) = S∗(ϕ) ∗ S∗(ψ) = Ff ∗ Fg.

�

Corollary 4.2.3 The convolution product ∗ on S(Rn) is continuous bilinear, associative
and commutative, turning S(Rn) into a commutative continuous algebra.

Proof This follows from the above lemma combined with the fact that F : S(Rn) →
S(Rn) is a topological linear isomorphism. �

Exercise 4.2.4 By using Fourier transform, show that the algebra (S(Rn),+, ∗) has no
unit element.

On S(Rn) we define the L2-inner product 〈 · , · 〉L2 by

〈f, g〉L2 =

∫
Rn
f(x) g(x) dx.

Accordingly, the space L2(Rn) may be identified with the Hilbert completion of S(Rn).

Proposition 4.2.5 Let f, g ∈ S(Rn). Then 〈Ff,Fg〉L2 = 〈f, g〉L2 . The Fourier transform
has a unique extension to a surjective isometry F : L2(Rn)→ L2(Rn).

Proof We define the function ǧ : Rn → C by

ǧ(x) = g(−x).

Then g belongs to the Schwartz space, and F(ǧ) = Fg. Moreover,

〈f, g〉L2 = f ∗ ǧ(0).

By the Fourier inversion formula it follows that the latter expression equals∫
Rn
F(f ∗ ǧ)(ξ) dξ =

∫
Rn
Ff(ξ)Fg(ξ) dξ = 〈Ff,Fg〉L2 .

Thus, F : S(Rn) → S(Rn) is an isometry for 〈 · , · 〉L2 . Since C∞c (Rn) is dense in L2(Rn),
so is S(Rn) and it follows that F has a unique continuous linear extension to an endomor-
phism of the Hilbert space L2(Rn); moreover, the extension is an isometry. Likewise, S∗ is
isometric hence extends to an isometric endomorphism of L2(Rn). By density of S(Rn) in
L2(Rn) the composition of extended maps S∗F is a two-sided inverse to the extended map
F : L2(Rn)→ L2(Rn). Therefore, F is surjective. �
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4.3 Tempered distributions and Sobolev spaces

By means of the Fourier transform we shall give a different characterization of Sobolev
spaces, which will turn out to be very useful in the context of pseudo-differential operators.
We start by introducing the notion of tempered distribution.

Definition 4.3.1 The elements of S ′(Rn), the continuous linear dual of the Fréchet space
S(Rn), are called tempered distributions.

Here we note that a linear functional u : S(Rn)→ C is continuous if and only if there exist
constants N, k ∈ N and C > 0 such that

|u(f)| ≤ C νN,k(f) for all f ∈ S(Rn).

The name distributions is justified by the following observation. By transposition the
continuous inclusions

C∞c (Rn) ⊂ S(Rn) ⊂ C∞(Rn)

give rise to continuous linear transposed maps between the continuous linear duals of these
spaces. Here we assume to have the duals equipped with the strong dual topologies (of
uniform convergence on bounded sets). Moreover, as C∞c (Rn) is dense in both S(Rn) and
C∞(Rn), it follows that the transposed maps are injective:

E ′(Rn) ↪→ S ′(Rn) ↪→ D′(Rn).

We note that the transposed maps are given by restriction. Thus, E ′(Rn) → S ′(Rn) is
given by u 7→ u|S(Rn). Moreover, the map S ′(Rn) → D′(Rn) is given by v 7→ v|C∞c (Rn). In
this sense tempered distributions may be viewed as distributions.

We recall that the operators xα· and ∂α on D′(Rn) are defined through transposition:

xαu = u ◦ (xα·), and ∂αu = u ◦ (−∂)α,

for u ∈ D′(Rn).

Exercise 4.3.2 Show that S ′(Rn) is stable under the operators ∂α and xα for all multi-
indices α.

We recall that there is a natural continuous linear injection L2
loc(Rn) ↪→ D′(Rn). If

ϕ ∈ L2
loc(Rn) then the associated distribution is given by

f 7→ 〈ϕ, f〉 :=

∫
Rn
ϕ(x)f(x) dx, C∞c (Rn)→ C.

Lemma 4.3.3 The continuous linear injection L2(Rn) ↪→ D′(Rn) maps L2(Rn) continu-
ously into S ′(Rn).
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Proof Denote the injection by j. Let ϕ ∈ L2(Rn) and f ∈ S(Rn). Fix N > n/2. Then

〈ϕ, f〉 =

∫
Rn
ϕ(x)f(x) dx

≤
∫
Rn
ϕ(x)(1 + ‖x‖)−NνN,0(f) dx

≤ C ‖ϕ‖2 νN,0(f)

where C is the L2-norm of (1 + ‖ξ‖)−N . It follows that the pairing (ϕ, f) 7→ 〈ϕ, f〉 is
continuous bilinear L2(Rn) × S(Rn) → C. This implies that j maps L2(Rn) continuously
into S ′(Rn). �

The inclusion S(Rn) ↪→ L2(Rn) is continuous. Accordingly, the natural injection
S(Rn)→ D′(Rn) maps S(Rn) continuous linearly into S ′(Rn).

Exercise 4.3.4 Let s ∈ R. We denote by L2
s(Rn) the space of f ∈ L2

loc(Rn) with (1 +
‖x‖)sf ∈ L2(Rn). Equipped with the inner product

〈f, g〉L2,s :=

∫
Rn
f(x)g(x)(1 + ‖x‖)2s dx

this space is a Hilbert space.
Show that the continuous linear injection L2

s(Rn)→ D′(Rn) maps L2
s(Rn) continuously

into S ′(Rn).

The following result will be very useful for our understanding of Sobolev spaces.

Proposition 4.3.5 The Fourier transform has a continuous linear extension to a contin-
uous linear map F : S ′(Rn)→ S ′(Rn). For all u ∈ S ′(Rn) and f ∈ S(Rn) we have

〈Fu, f〉 = 〈u,Ff〉.

The extension to S ′(Rn) is compatible with the previously defined extension to L2(Rn).

Remark 4.3.6 It can be shown that C∞0 (Rn), hence also S(Rn) is dense in S ′(Rn).
Therefore, the continuous linear extension is uniquely determined. However, we shall not
need this.

Proof The Fourier transform F : S(Rn) → S(Rn) is continuous linear. Therefore its
tranposed F t : u 7→ u ◦F is a continuous linear map S ′(Rn)→ S ′(Rn).

We claim that F t restricts to F on S(Rn). Indeed, let us view ϕ ∈ S(Rn) as a tempered
distribution. Then by a straightforward application of Fubini’s theorem, it follows that,
for all f ∈ S(Rn),

〈F tϕ, f〉 = 〈ϕ,Ff〉

=

∫
Rn
ϕ(ξ)

∫
Rn
f(x)e−iξx dx dξ

=

∫
Rn

∫
Rn
ϕ(ξ)e−iξx dξ f(x) dx

= 〈Fϕ, f〉.
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This establishes the claim. We have thus shown that F has F t as a continuous linear
extension to S ′(Rn).

It remains to prove the asserted compatibility. Let u ∈ L2(Rn). There exists a sequence
of Schwartz functions un ∈ S(Rn) such that un → u in L2(Rn) for n→∞. It follows that
Fun → Fu in L2(Rn), hence also in S ′(Rn), by Lemma 4.3.3. On the other hand, we also
have un → u in S ′(Rn) by the same lemma. Hence F tun → F tu by what we proved above.
Since F t = F on S(Rn) it follows that Fun = F tun for all n. Thus, Fu = F tu. �

From now on, we shall denote the extension of F to S ′(Rn) by the same symbol F . The
following lemma is proved in the same spirit as the lemma above. We leave the easy proof
to the reader.

Lemma 4.3.7 The operators ∂α, xα·, T ∗a and eia· have (unique) continuous linear exten-
sions to endomorphisms of S ′(Rn). For u ∈ S ′(Rn) we have

∂αu = u ◦ (−∂)α, xαu = u ◦xα, T ∗au = u ◦T ∗−a, eiau = u ◦ eia.

The formulas (a),(b) of Lemma 1.1.10 and the formulas of Lemma 1.1.11 are valid for
f ∈ S ′(Rn).

Lemma 4.3.8 Let u ∈ E ′(Rn). Then Fu is a smooth function. Moreover, for every
ξ ∈ Rn,

Fu(ξ) = 〈u, e−iξ〉.

Proof We sketch the proof. Not all details can be worked out because of time constraints.
Let f ∈ C∞c (Rn). Then the function ϕ : ξ 7→ f(ξ)e−iξ with values in the Fréchet space
C∞(Rn) is smooth and compactly supported. This implies that ξ 7→ u(ϕ(ξ)) is smooth
and compactly supported. Now

u(ϕ(ξ)) = f(ξ)u(e−iξ)

and since f was arbitrary, we see that û : ξ 7→ u(e−iξ) is a smooth function.
Furthermore, the integral for Ff may be viewed as an integral of the C∞(Rn)-valued

function ϕ. This means that in C∞(Rn) it can be approximated by C∞(Rn)-valued Riemann
sums. This in turn implies that

〈Fu, f〉 = 〈u,Ff〉

= u(

∫
Rn
ϕ(ξ) dξ)

=

∫
Rn
u(ϕ(ξ)) dξ

=

∫
Rn
f(ξ)u(e−iξ) dξ

= 〈û, f〉.

Since this is true for any f ∈ C∞c (Rn), it follows that û = Fu. �
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We recall from Definition 2.2.10 that for r ∈ N the Sobolev space Hr(Rn) is defined as
the space of distributions u ∈ D′(Rn) such that ∂αf ∈ L2(Rn) for each α ∈ Nn with |α| ≤ r.
In particular, taking α = 0 we see that Hr(Rn) ⊂ L2(Rn). Hence also Hr(Rn) ⊂ S ′(Rn).

Lemma 4.3.9 Let r ∈ N. Then

Hr(Rn) = {u ∈ S ′(Rn) | (1 + ‖ξ‖)rF(u) ∈ L2(Rn)}.

Proof Let u ∈ Hr(Rn) and let α be a multi-index of order at most r. Then ∂αu ∈ L2(Rn).
It follows that

(iξ)αFu = F(∂αu) ∈ L2(Rn).

In view of the lemma below this implies that (1 + ‖ξ‖)rFu ∈ L2(Rn).

Conversely, let u ∈ S ′(Rn) and assume that (1 +‖ξ‖)rFu ∈ L2(Rn). Then Fu is locally
square integrable, and in view of the obvious estimate

|ξα| ≤ (1 + ‖ξ‖)|α|, (ξ ∈ Rn)

it follows that (iξ)αFu ∈ L2(Rn). We conclude that

∂αu = S∗F((iξ)αFu) ∈ L2(Rn).

�

Lemma 4.3.10 Let r ∈ N. There exists a constant C > 0 such that for all ξ ∈ Rn,

(1 + ‖ξ‖)r ≤ C
∑
|α|≤r

|ξα|;

here ξ0 should be read as 1.

Proof It is readily seen that there exists a constant C > 0 such that

(1 +
√
n|t|)r ≤ C(1 + |t|r), (t ∈ R),

where |t|0 ≡ 1. Let ξ ∈ Rn and assume that k is an index such that |ξk| is maximal. Then
‖ξ‖ ≤

√
n|ξk|. Hence,

(1 + ‖ξ‖)r ≤ (1 +
√
n|ξk|)r ≤ C(1 + |ξk|r) ≤ C

∑
|α|≤r

|ξα|.

�
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Exercise 4.3.11 Show that the Fourier transform maps Hr(Rn) bijectively onto L2
r(Rn).

Thus, by transfer of structure, Hr(Rn) may be given the structure of a Hilbert space. Show
that this Hilbert structure is not the same as the one introduced in Definition 2.2.10, but
that the associated norms are equivalent.

The characterization of Hr(Rn) given above allows generalization to arbitrary real r.

Definition 4.3.12 Let s ∈ R. We define the Sobolev space Hs(Rn) of order s to be the
space of f ∈ S ′(Rn) such that (1 + ‖ξ‖)sFf ∈ L2(Rn), equipped with the inner product

〈f, g〉s =

∫
Rn
Ff(ξ)Fg(ξ) (1 + ‖ξ‖)2s dξ.

Equipped with this inner product, the Sobolev space Hs(Rn) is a Hilbert space. The
associated norm is denoted by ‖ · ‖s.

Exercise 4.3.13 The Heaviside function H : R → R is defined as the characteristic
function of the interval [0,∞). For R > 0 we define uR to be the characteristic function of
[0, R].

(a) Show that uR, H ∈ S ′(R) and that uR → H in S ′(R) (pointwise) as R→∞.

(b) Determine FuR for every R > 0.

(c) Show that uR ∈ Hs(R) for every s < 1
2
, but not for s = 1

2
.

(d) Determine FH and show that H /∈ Hs(Rn) for all s ∈ R.

Lemma 4.3.14 Let s ∈ R. Then S(Rn) ⊂ Hs(Rn), with continuous inclusion map. Fur-
thermore, C∞c (Rn) is dense in Hs(Rn).

Proof If f ∈ S(Rn) then Ff ∈ S(Rn). Moreover, let N ∈ N be such that N > s + n/2.
Then N = s+ n/2 + ε, with ε > 0, hence

|Ff(ξ)|2 (1 + ‖ξ‖)2s ≤ νN,0(Ff)2 (1 + ‖x‖)−n−2ε.

This implies that f ∈ Hs(Rn) and that

‖f‖s ≤ νN,0(Ff) ‖(1 + ‖x‖)−n−2ε‖1/2

L1 .

Since F : S → S is continuous, it follows from this estimate that the inclusion map S → Hs

is continuous.
For the assertion about density it suffices to show that the orthocomplement of C∞c (Rn)

in the Hilbert space Hs(Rn) is trivial. Let u ∈ Hs(Rn), and assume that 〈u, f〉s = 0 for all
f ∈ S(Rn). This means that∫

Rn
Fu(ξ)Ff(ξ) (1 + ‖ξ‖)2s dξ = 0, (f ∈ S(Rn)).

Therefore, the tempered distribution Fu(ξ) (1 + ‖ξ‖)2s vanishes on the space F(C∞c (Rn)).
The latter space is dense in F(Rn), since C∞c (Rn) is dense in S(Rn) and F is a topological
linear automorphism of S(Rn). We conclude that Fu = 0, hence u = 0. �
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We conclude this section with two results that will allow us to define the local versions
of the Sobolev spaces.

Lemma 4.3.15 Let s ∈ Rn. Then convolution (f, g) 7→ f ∗ g, S(Rn) → S(Rn) → S(Rn)
has a unique extension to a continuous bilinear map S(Rn) ∗ L2

s(Rn)→ L2
s(Rn).

In the proof we will need a particular type of estimate that will be useful at a later
stage as well. Specifically, for every s ∈ R the following estimate is valid for all x, y ∈ Rn :

(1 + ‖x+ y‖)s ≤ (1 + ‖x‖)|s|(1 + ‖y‖)s.

It suffices to check the estimate for s = rε, with r > 0 and ε = ±1. By monotonicity of the
function z 7→ zr on ] 0,∞ [ it suffices to check the estimate for s = ±1. In these cases, the
estimate follows from (4.2.4).

Proof Let f, g ∈ C∞c (Rn). Then for all x, y ∈ Rn we have

(1 + ‖x‖)s|f(y)g(x− y)| ≤ (1 + ‖y‖)|s||f(y)|(1 + ‖x− y‖)s|g(x− y)|.

Let ϕ ∈ C∞c (Rn). Then multiplying the above expression by |ϕ(y)|, followed by integration
against dxdy, application of Fubini’s theorem and of the Cauchy-Schwartz inequality for
the L2-inner product, we find

|〈(1 + ‖x‖)sf ∗ g, ϕ〉| ≤
∫
Rn

(1 + ‖y‖)|s||f(y)| dy ‖g‖L2,s ‖ϕ‖L2 .

Since this holds for arbitrary ϕ ∈ C∞c (Rn), we obtain

‖(1 + ‖x‖)s(f ∗ g)‖L2 ≤ ‖(1 + ‖y‖)|s|f‖L1 ‖g‖L2,s.

The expression on the left-hand side equals ‖f ∗g‖L2,s. Fix N ∈ N such that |s|−N < −n.
Then the L1-norm on the right-hand side is dominated by CνN,0(f), with C equal to the
L1-norm of the function (1 + ‖y‖)|s|−N . It follows that

‖f ∗ g‖L2,s ≤ CνN,0(f) ‖g‖L2,s.

As C∞c (Rn) is dense in both S(Rn) and L2
s(Rn), the result follows. �

Lemma 4.3.16 Let s ∈ R, ϕ ∈ S(Rn) and u ∈ Hs(Rn). Then ϕu ∈ Hs(Rn). Moreover,
the associated multiplication map S(Rn)×Hs(Rn)→ Hs(Rn) is continuous bilinear.

Proof We recall that by definition the Fourier transform F : S(Rn) → S(Rn) is an
isometry for the norms ‖ · ‖s (from Hs(Rn)) and ‖ · ‖L2,s. From the above lemma it now
follows that the multiplication map S(Rn)× S(Rn)→ S(Rn) has a unique extension to a
continuous bilinear map S(Rn)×Hs(Rn)→ Hs(Rn). We need to check that this extension
coincides with the restriction of the multiplication map S(Rn) × D′(Rn) → D′(Rn). Fix
f ∈ S(Rn) and ϕ ∈ C∞c (Rn). Then we must show that 〈fg, ϕ〉 = 〈g, fϕ〉 for all g ∈ Hs(Rn).
By continuity of the expressions on both sides in g (verify this!), it suffices to check this
on the dense subspace C∞c (Rn), where it is obvious. �
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In particular, it follows that C∞c (Rn)Hs(Rn) ⊂ Hs(Rn). Therefore, we may define local
Sobolev spaces.

Let U ⊂ Rn be open, and let s ∈ R. We define the local Sobolev space Hs,loc in the
usual way, as the space of distributions u ∈ D′(U) such that χu ∈ Hs(Rn) for every
χ ∈ C∞c (Rn). At a later stage we will prove invariance of the local Sobolev spaces under
diffeomorphisms, so that the notion of Hs,loc can be lifted to sections of a vector bundle on
a smooth manifold.

Exercise 4.3.17 This exercise is a continuation of Exercise 4.3.13. Show that the Heav-
iside function H = 1[0,∞) belongs to Hs,loc(Rn) for every s < 1

2
but not for s = 1

2
.

4.4 Some useful results for Sobolev spaces

We note that for s < t the estimate ‖f‖s ≤ ‖f‖t holds for all f ∈ Ht(Rn). Accordingly, we
see that

Ht(Rn) ⊂ Hs(Rn), for s < t,

with continuous inclusion map. We also note that, by the Plancherel theorem for the
Fourier transform, H0(Rn) = L2(Rn). Accordingly,

Hs(Rn) ⊂ L2(Rn) ⊂ H−s(Rn) (s ≥ 0). (4.4.5)

Lemma 4.4.1 Let α ∈ Nn. Then ∂α : S ′(Rn) → S ′(Rn) restricts to a continuous linear
map Hs(Rn)→ Hs−|α|(Rn), for every s ∈ R.

Proof This is an immediate consequence of the definitions. �

Given k ∈ N we define Ck
b (Rn) to be the space of Ck-functions f : Rn → C with

sk(f) := max
|α|≤k

sup
x∈Rn
|Dα

xf(x)| <∞.

Equipped with the norm sk, this space is a Banach space.

Lemma 4.4.2 (Sobolev lemma) Let k ∈ N and let s > k + n/2. Then

Hs(Rn) ⊂ Ck
b (Rn)

with continuous inclusion map.

Proof In view of the previous lemma, it suffices to prove this for k = 0. We then have
s = n/2 + ε, with ε > 0. Let u ∈ C∞c (Rn), then

u(x) =

∫
Rn
Fu(ξ)eiξx dx

=

∫
Rn
eiξxFu(ξ)(1 + ‖ξ‖)s(1 + ‖ξ‖)−n/2−ε dξ
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From this we read off that u is bounded continuous, and

sup |u| ≤ ‖u‖s ‖(1 + ‖ξ‖)−n/2−ε‖L2 .

It follows that the inclusion C∞c ⊂ Cb is continuous with respect to the Hs topology on
the first space. By density the inclusion has a unique extension to a continuous linear map
Hs → Cb. By testing with functions from S we see that the latter map coincides with the
inclusion of these spaces viewed as subspaces of S ′. �

In accordance with the above embedding, we shall view Hs(Rn), for s > k + n/2, as a
subspace of Ck

b (Rn). We observe that as an important consequence we have the following
result. Put

H∞(Rn) =
⋂
s∈R

Hs(Rn).

Corollary 4.4.3

(a) H∞(Rn) ⊂ C∞b (Rn).

(b) H∞(Rn) equals the space of smooth functions f ∈ C∞(Rn) with ∂αf ∈ L2(Rn), for
all α ∈ Rn.

Proof Assertion (a) is an immediate consequence of the previous lemma. For (b) we note
that Hr ⊂ Hs for s < r. We see that H∞(Rn) is the intersection of the spaces Hr(Rn), for
r ∈ N. Now use the original definition of Hr(Rn), Definition 2.2.10. �

Let V,W be topological linear spaces. Then a pairing of V and W is a continuous
bilinear map β : V ×W → C. The pairing induces a continuous map β1 : V → W ∗ by
β1(v) : w 7→ β(v, w) and similarly a map β2 : W → V ∗; the stars indicate the continuous
linear duals of the spaces involved. The pairing is called non-degenerate if both the maps β1

and β2 are injective. It is called perfect if it is non-degenerate, and if β1 is an isomorphism
V → W ∗, and β2 an isomorphism W → V ∗.

If V is a complex linear space, we denote by V̄ the conjugate space. This is the complex
space which equals V as a real linear space, whereas the complex scalar multiplication is
given by (z, v) 7→ z̄v.

If V is a Banach space, the continuous linear dual V ∗ is equipped with the dual norm
‖ · ‖∗, given by

‖u‖∗ = sup{|u(x)| | x ∈ V, ‖x‖ ≤ 1}.

This dual norm also defines a norm on the conjugate space V̄ ∗.
If H is a Hilbert space with inner product 〈 · , · 〉, then the associated norm ‖ · ‖ may

be characterized by
‖v‖ = sup

‖w‖≤1

|〈v, w〉|

It follows that v 7→ 〈v, · 〉 induces a linear isomorphism ϕ : H → H̄∗ which is an isometry
for the norm on H and the associated dual norm on H∗. The isometry ϕ may be used to
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transfer the Hilbert structure on H to a Hilbert structure on H̄∗, called the dual Hilbert
structure. It is readily seen that the norm associated with this dual Hilbert structure
equals the dual norm ‖ · ‖∗ defined above.

Lemma 4.4.4 Let s ∈ R. Then the L2-inner product 〈 · , · 〉 on C∞c (Rn) extends uniquely
to a continuous bilinear pairing Hs(Rn)×H̄−s(Rn)→ C. The pairing is perfect and induces
isometric isomorphisms Hs(Rn) ' H̄−s(Rn)∗ and H̄−s(Rn) ' Hs(Rn)∗.

Proof Let f, g ∈ C∞c (Rn). Then

〈f, g〉L2 =

∫
Rn
Ff(ξ)Fg(ξ) dξ

=

∫
Rn
Ff(ξ)(1 + ‖ξ‖)sFg(ξ)(1 + ‖ξ‖)−s dξ.

By the Cauchy-Schwartz inequality, it follows that the absolute value of the latter expres-
sion is at most ‖f‖s‖g‖−s. By density of C∞c (Rn) in Hs(Rn), this implies the assertion
about the extension of the pairing. The above formulas also imply that

sup
g∈C∞c (Rn),‖g‖−s=1

〈f, g〉 = ‖f‖s.

Thus, by density of C∞c (Rn), the induced map β1 : Hs(Rn) → H̄−s(Rn)∗ is an isometry.
Likewise, β2 : H−s(Rn) → H̄s(Rn)∗ is an isometry. From the injectivity of β1 it follows
that β2 has dense image. Being an isometry, β2 must then be surjective. Likewise, β1 is
surjective. �

4.5 Rellich’s lemma for Sobolev spaces

In this section we will give a proof of the Rellich lemma for Sobolev spaces, which will play
a crucial role in the proof of the Fredholm property for elliptic pseudo-differential operators
on compact manifolds.

Given s ∈ R and a compact subset K ⊂ Rn, we define

Hs,K(Rn) = {u ∈ Hs(R
n) | suppu ⊂ K}.

Lemma 4.5.1 Hs,K(Rn) is a closed subspace of Hs(Rn).

Proof Let f ∈ C∞c (Rn). Then the space

f⊥ := {u ∈ Hs(Rn) | 〈u, f〉 = 0}

has Fourier transform equal to the space of ϕ ∈ L2
s(Rn) with 〈ϕ,Ff〉 = 0, which is

the orthocomplement of (1 + ‖ξ‖)−2sFf in L2
s(Rn). As this orthocomplement is closed in

L2
s(Rn), it follows that f⊥ is closed in Hs(Rn).

We now observe that Hs,K(Rn) is the intersection of the spaces f⊥ for f ∈ C∞c (Rn)
with supp f ∩K = ∅. �
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Lemma 4.5.2 (Rellich) Let t < s. Then the inclusion map Hs,K(Rn) → Ht(Rn) is com-
pact.

To prepare for the proof, we first prove the following result, which is based on an
application of the Arzelà–Ascoli theorem.

Lemma 4.5.3 Let B be a bounded subset of the Fréchet space C1(Rn). Then B is relatively
compact (i.e., has compact closure) as a subset of the Fréchet space C(Rn).

Proof Boundedness of B means that every continuous semi-norm of C1(Rn) is bounded
on B. Let K ⊂ Rn be a compact ball. Then there exists a constant C > 0 such that
supK ‖df‖ ≤ C for all f ∈ B. Since

f(x)− f(y) =

∫ 1

0

df(y + t(x− y))(x− y) dt

for all y ∈ x, we see that

|f(y)− f(x)| ≤ C‖x− y‖, for all (x, y ∈ K).

It follows that the set of functions B|K = {f |K | f ∈ B} is equicontinuous and bounded
in C(K). By application of the Arzelà–Ascoli theorem (see next section), the set B|K
is relatively compact in C(K). In particular, if (fk) is a sequence in B, then there is a
subsequence (fkj) which converges uniformly on K.

Let (fk) be a sequence in B. We shall now apply the usual diagonal procedure to obtain
a subsequence that converges in C(Rn).

For r ∈ N let Kr denote the ball of center 0 and radius r in Rn. Then by repeated
application of the above there exists a sequence of subsequences (fk1,j) � (fk2,j) � · · · ...
such that (fkr,j) converges uniformly on Kr, for every r ∈ N.

The sequence (fkj,j)j∈N is a subsequence of all the above sequences. Hence, it converges
uniformly on each ball Kr. Therefore, it converges in C(Rn). �

Remark 4.5.4 By a slight modification of the proof above, one obtains a proof of the
compactness of each inclusion map Ck+1(Rn) ↪→ Ck(Rn). This implies that the identity
operator of C∞(Rn) is compact. Equivalently, each bounded subset of C∞(Rn) is relatively
compact. A locally convex topological vector space with this property is called Montel.

If B is a subset of L2
s(Rn) and ϕ ∈ S(Rn), we write

ϕ ∗B := {ϕ ∗ f | f ∈ B}.

Then ϕ ∗B is a subset of L2
s(Rn).

Lemma 4.5.5 Let s ∈ R and let B ⊂ L2
s(Rn) be bounded. If ϕ ∈ S(Rn), then the set

ϕ ∗B is a relatively compact subset of C(Rn).
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Proof In view of the previous lemma, it suffices to prove that ϕ∗B is bounded in C1(Rn).
For this we note that for each 1 ≤ j ≤ n,

| ∂
∂xj

[ϕ(x− y)f(y)]|

= |∂jϕ(x− y)|(1 + ‖y‖)−s(1 + ‖y‖)s|f(y)|
≤ (1 + ‖x‖)|s||(1 + ‖x− y‖)−s‖∂jϕ(x− y)‖(1 + ‖y‖)s|f(y)|.

The right-hand side can be dominated by an integrable function of y, locally uniformly
in x. It now follows by differentiation under the integral sign that ϕ ∗ f ∈ C1(Rn), that
∂j(ϕ ∗ f) = ∂jϕ ∗ f and that

‖∂j(ϕ ∗ f)(x)‖ ≤ (1 + ‖x‖)|s| ‖ϕ‖L2,−s ‖f‖L2,s.

This implies that the set ϕ ∗ B is bounded in C1(B), hence relatively compact in C(Rn).
�

Proposition 4.5.6 Let s > t and let B be a bounded subset of L2
s(Rn) which at the same

time is a relatively compact subset of C(Rn). Then B is relatively compact in L2
t (Rn).

Proof For R > 0 we denote by 1R the characteristic function of the closed ball B(R) :=
B̄(0;R). Then for each r ∈ R, the map f 7→ 1Rf gives the orthogonal projection from
L2
s(Rn) onto the closed subspace L2

s,B(R) of functions with support in B(R). We now observe

that the following estimate holds for every f ∈ L2
s(Rn) :

‖(1− 1R)f‖2
L2,t =

∫
‖x‖≥R

(1 + ‖x‖)2t−2s(1 + ‖x‖)2s‖f(x)‖2 dx

≤ (1 +R)2(t−s)‖f‖2
L2,s.

Fix M > 0 such that ‖f‖L2,s ≤M for all f ∈ B. Then we see that

‖(1− 1R)f‖L2,t ≤M (1 +R)t−s, (f ∈ B).

Let now (fk) be a sequence in B. Then (fk) has a subsequence (fkj) which converges in
C(Rn), i.e., there exists a function f ∈ C(Rn) such that fkj → f uniformly on each compact
set K ⊂ Rn. It easily follows from this that 1Rfkj is a Cauchy-sequence in L2

t (Rn), for each
R > 0. We will show that actually, fkj is a Cauchy sequence in L2

t (Rn). By completeness
of the latter space, this will complete the proof.

Let ε > 0. We fix R > 0 such that

M(1 +R)t−s <
ε

3
.

There exists a constant N > 0 such that

i, j ≥ N ⇒ ‖1Rfki − 1Rfkj‖L2,t <
ε

3
.
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It follows that for all i, j > N,

‖fki − fkj‖L2,t

≤ ‖1R(fki − fkj)‖L2,t + ‖(1− 1R)fki‖L2,t + ‖(1− 1R)fkj‖L2,t

≤ ε/3 + 2M(1 +R)t−s < ε.

�

Proof of Lemma 4.5.2 Let K ⊂ Rn be compact and let B be a bounded subset
of Hs,K(Rn). Fix a smooth compactly supported function χ ∈ C∞c (Rn) that is 1 on a
neighborhood of K. Then χf = f for all f ∈ B. It follows that

F(B) = ϕ ∗ F(B),

with ϕ = F(χ) ∈ S(Rn). By Lemma 4.5.5 it now follows that F(B) is both bounded in
L2
s(Rn) and a relatively compact subset of C(Rn). By the previous proposition, this implies

that F(B) is relatively compact in L2
t (Rn). As F is an isometry from Ht(Rn) to L2

t (Rn),
it follows that B is relatively compact in Ht(Rn). �

4.6 The Arzelà–Ascoli theorem

The Arzèla–Ascoli theorem gives a useful characterization for relative compactness of a
set of continuous functions on a locally compact metric space X, which in addition is σ-
compact, i.e., X is the union of countably many compact subsets. In the following we
assume X to be a such a metric space.

The space C(X) of continuous functions X → C, is equipped with the locally convex
topology of uniform convergence on compact subsets. More precisely, for K ⊂ X a compact
subset we define the seminorm ‖ · ‖K by

‖f‖K := sup
x∈K
|f(x)|, (f ∈ C(X).

The space C(X) is equipped with the topology induced by the seminorms ‖ · ‖K for K ⊂ X
compact. Note that C(X) is a Fréchet space with this topology. In the special case X
compact, the topology is induced by the sup-norm ‖ · ‖X , and C(X) is a Banach space.

Definition 4.6.1 Let F ⊂ C(X) be a set of continuous functions on the compact metric
space X. The set F is said to be equicontinuous at a point a ∈ X if for every ε > 0 there
exists a δ > 0 such that for all x ∈ X with d(x, a) < δ we have

|f(x)− f(a)| < ε, for all f ∈ F .

The set F is said to be equicontinuous if it is equicontinuous at every point of X.



92 CHAPTER 4. FOURIER TRANSFORM

Exercise 4.6.2 Assume that X is compact metric space and let F ⊂ C(X). Show that
F is equicontinuous if and only if F is uniformly equicontinuous, i.e., for every ε > 0 there
exists a δ > 0 such that for all f ∈ F and all x, y ∈ X,

d(x, y) < δ ⇒ |f(x)− f(y)| < ε.

Hint: use the open covering property.

A set F ⊂ C(X) is said to be relatively compact if its closure F̄ in C(X) is compact.
Since every Fréchet space is metrizable, the latter is equivalent to F̄ being sequentially
compact.

Theorem 4.6.3 (Arzelà–Ascoli) Let X be a locally compact and σ-compact metric space,
and F ⊂ C(X). Then the following assertions are equivalent.

(a) The set F is relatively compact in C(X).

(b) The set F is equicontinuous and pointwise bounded.

Proof We first assume that X is compact. Assume (a). Fix a ∈ X. Then the map
eva : C(X)→ C is continuous. Therefore, eva(F) = {f(a) | f ∈ F} is relatively compact,
hence bounded in C. This implies that F is pointwise bounded.

Let F̄ denote the closure of F in C(X). Let ε > 0. Then by compactness of F̄ there
exists a finite collection of functions fj ∈ F̄ , 1 ≤ j ≤ k, such that the balls B(fj; ε/2) in
C(X) cover F̄ . By compactness of X, each fj is uniformly continuous. Hence there exists
a δ > 0 such that for all x, y ∈ X with d(x, y) < δ and all j we have |fj(x)− fj(y)| < ε/3.
Let now f ∈ F̄ . Then there exists a j such that ‖f − fj‖X < ε/3. It follows that for all
x, y ∈ X with d(x, y) < δ we have

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|
≤ 2‖f − fj‖X + |fj(x)− fj(y)|
< ε.

This shows that F̄ , and hence F , is (uniformly) equicontinuous.
For the converse, assume (b). Then it is easily seen that the closure F̄ is equicontinuous

and pointwise bounded as well.
Since C(X) is metric, it suffices to show that F̄ is sequentially compact, or, equivalently,

that every sequence in F̄ has a converging subsequence.
We will first show the validity of the following claim. Let (fj) be any sequence in F̄

and ε > 0. Then by passing to a subsequence we may arrange that for all k, l we have
‖fk − fl‖X < ε.

To establish the claim, let ε > 0. Then for every a ∈ X there exists a δa > 0 such that
for for all x ∈ X with d(x, a) < δa and all f ∈ F̄ we have |f(x)− f(a)| < ε/4.

By compactness of X, there exist finitely many points a1, . . . , ar such that the open balls
BX(ai, δai) cover X. Fix i. Then the sequence (fj(ai)) is bounded, hence has a converging
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subsequence. We see that we may replace (fj) by a subsequence to arrange that (fj(ai))
converges, for every 1 ≤ i ≤ r. Thus we may pass to yet another subsequence of (fj) to
arrange that for all j, k, i we have

|fj(ai)− fk(ai)| < ε/4.

Let x ∈ X. Select i such that d(x, ai) < δai . Then we find that for all j, k,

|fj(x)− fk(x)| ≤ |fj(x)− fj(ai)|+ |fj(ai)− fk(ai)|+ |fk(ai)− fk(x)|
< 3ε/4.

It follows that the obtained subsequence satisfies ‖fj − fk‖X ≤ 3ε/4 < ε, for all j, k. This
establishes the claim.

Let now (fj) be a sequence in F̄ . Applying the above claim repeatedly we obtain a
sequence of subsequences

(fj) � (f1,j) � (f2,j) � · · ·
such that for all k, i, j we have

‖fk,i − fk,j‖ < 2−k.

The sequence (fk,k)k∈N is a subsequence of (fj) and satisfies ‖fk,k − fl,l‖X < 2−k for all
k < l. One now readily verifies that the sequence (fk,k) is Cauchy for the sup-norm on
C(X) hence converges to a function f ∈ C(X). Thus F̄ is sequentially compact, and (a)
follows.

The general situation can be reduced to the present one by application of a diagonal
argument, see the exercise below.

Exercise 4.6.4 Let the metric space X be locally compact and σ-compact. Let (fj) be
a sequence in X such that the set F := {fj | j ∈ N} is equicontinuous.

(a) Show that there exists a countable sequence (Kj) of compact subsets of X such that
Kj ⊂ int (Kj+1) and ∪jKj = X.

(b) Use a diagonal argument to show that (fj) has a subsequence (fjν ) which converges
uniformly on every set Kl, for l ∈ N.

(c) Show that the sequence (fjν ) converges in C(X).

(d) Complete the proof of Theorem 4.6.3.

Exercise 4.6.5 Let X be a locally compact metric space. Let Cb(X) denote the set of
bounded continuous functions X → C. Equipped with the supnorm ‖ · ‖X this space is a
Banach space.

Let F : X → [0,∞ [ be a continuous function which vanishes at infinity, i.e., for every
ε > 0 there exists a compact set K ⊂ X such that F (x) < ε for all x ∈ X \K.

Let F be an equicontinuous subset of Cb(X) which is dominated by F, i.e. |f(x)| ≤ F (x)
for all f ∈ F and x ∈ X.
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(a) Let (fj) be a sequence in F . Show that for every ε > 0 there exists a subsequence
(fjk) of (fj) such that

‖fjk − fjl‖X < ε

for all k, l.

(b) Show that F is relatively compact in Cb(X).



Chapter 5

Pseudo-differential operators, local
theory

5.1 The space of symbols

We consider a differential operator P on Rn of the form

P = p(x,Dx) =
∑
|α|≤d

cα(x)Dα
x ; (5.1.1)

here we recall that Dα
x = (−i∂x)α. The coefficients cα are assumed to be smooth functions

on Rn. The (full) symbol of P is the function p ∈ C∞(Rn × Rn) given by

p(x, ξ) =
∑
|α|≤d

cα(x)ξα.

If f ∈ C∞c (Rn), then F(Dαf) = ξαFf, so that by the Fourier inversion formula we have

Dαf(x) =

∫
Rn
ξαf̂(ξ) eiξx dξ,

where we have written f̂ = Ff. It follows that the action of P on C∞c (Rn) can be described
by

Pf(x) =

∫
Rn
p(x, ξ)f̂(ξ) eiξx dξ.

Pseudo-differential operators are going to be defined by the same formula, but with p from
a larger class of spaces of functions, the so-called symbol spaces. The idea is to make
the class large enough to allow a kind of division. This in turn will allow us to construct
inverses to elliptic operators modulo smoothing operators, the so-called parametrices.

We return to the full symbol p of the differential operator P of degree at most d
considered above. By the polynomial nature of the symbol p in the ξ-variable, there exists,
for every compact subset K ⊂ Rn and all α, β ∈ Nn, a constant C = CK,α,β > 0 such that

|∂αx∂
β
ξ p(x, ξ)| ≤ C(1 + ‖ξ‖)d−|β|, ((x, ξ) ∈ K × Rn).

95
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Exercise 5.1.1 Prove this.

These observations motivate the following definition of the space of symbols of order d,
for d a real number.

Definition 5.1.2 Let U ⊂ Rn be an open subset and let d ∈ R. The space of symbols on
U of order at most d is defined to be the space of functions q ∈ C∞(U ×Rn) such that for
each compact subset K ⊂ U and all multi-indices α, β, there exists a constant C = CK,α,β
such that

|∂αx∂
β
ξ q(x, ξ)| ≤ C(1 + ‖ξ‖)d−|β|, ((x, ξ) ∈ K × Rn).

This space is denoted by Sd(U).

We note that Sd(U) can be equipped with the locally convex topology induced by the
seminorms

µdK,k(q) := max
|α|,|β|≤k

sup
K×Rn

(1 + ‖ξ‖)|β|−d |∂αx∂
β
ξ q(x, ξ)|,

for K ⊂ U compact and k ∈ N. Moreover, Sm(U) is a Fréchet space for this topology.

Exercise 5.1.3 Show that d1 ≤ d2 implies Sd1(U) ⊂ Sd2(U) with continuous inclusion
map.

We agree to write

S∞(U) = ∪d∈RSd(U), S−∞(U) = ∩d∈RSd(U).

Then S−∞(U) equals the space of smooth functions f : U × Rn → C such that for all
K ⊂ U compact, N ∈ N and k ∈ N

νK,k,N(f) := max
|α|,|β|≤k

sup
K×Rn

(1 + ‖ξ‖)N |∂x∂βξ f(x, ξ)| <∞.

Moreover, the norms νK,k,N induce a locally convex topology on S−∞(U), which turn this
space into a Fréchet space. Here we note that a function ϕ in the usual Schwartz space
S(Rn) can be viewed as the function (x, ξ) 7→ ϕ(ξ) in S−∞(U). The corresponding natural
linear map S(Rn)→ S−∞(U) is a topological linear isomorphism onto the closed subspace
of functions in S−∞(U) that are constant in the x-variable. More generally, if f ∈ C∞(U)
and ϕ ∈ S(Rn) then the function

f ⊗ ϕ : (x, ξ) 7→ f(x)ϕ(ξ)

belongs to S−∞(U). It can be shown that S−∞(U) is the closure of the subspace C∞(U)⊗
S(Rn) generated by these elements. Accordingly, we may view S−∞(U) as a topological
tensor product; this is expressed by the notation

S−∞(U) = C∞(U) ⊗̂ S(Rn).
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Exercise 5.1.4 Show that the following functions are symbols on U = Rn. What can be
said about their orders?

(a) p(x, ξ) = ‖x‖2(1 + ‖ξ‖2)s, for s ∈ R.

(b) p(x, ξ) = (1 + ‖x‖2 + ‖ξ‖2)s, for s ∈ R.

Exercise 5.1.5 Let U ⊂ Rn be an open subset.

(a) Show that for each α ∈ Nn the operator ∂αx gives a continuous linear map Sd(U) →
Sd(U).

(b) Show that for each multi-index α as above the operator ∂αξ restricts to a continuous

linear map Sd(U)→ Sd−|α|(U), for every d ∈ R.

(c) Show that the product map (p, q) 7→ pq restricts to a continuous bilinear map Sd(U)×
Se(U)→ Sd+e(U), for all d, e ∈ N. Discuss what happens if d = −∞ or e = −∞.

Exercise 5.1.6 Let U ⊂ Rn be an open subset and let P be an elliptic differential
operator of order d on U. This means that its principal symbol σd(P ) does not vanish on
U × (Rn \ {0}). Let p the full symbol of P. The purpose of this exercise is to show that
there exists a q ∈ S−d(U) such that pq − 1 ∈ S−∞(U). We first address the local question.
Let V ⊂ U be an open subset with compact closure in U. We write pV for the restriction
of p to V × Rn.

(a) Show that there exists a constant R = RV > 0 such that p(x, ξ) 6= 0 for x ∈ V and
ξ ∈ Rn \B(0;R).

(b) Show that there exists a smooth function χV ∈ C∞c (Rn) such that the function
q : V × Rn → C defined by

q(x, ξ) := (1− χ(ξ))p(x, ξ)−1

if p(x, ξ) 6= 0 and by zero otherwise, is smooth.

(c) With χ and q as above, show that q ∈ S−d(V ).

(d) Show that pV q − 1 ∈ Ψ−∞(V ).

(e) Show that there exists a symbol q ∈ S−d(U) such that pq − 1 ∈ Ψ−∞(U).

The following invariance result will allow us to extend the definition of the symbol space
to an arbitrary smooth manifold. Let ϕ : U → V be diffeomorphism between open subsets
of Rn. We define the map ϕ∗ : C∞(U × Rn∗)→ C∞(V × Rn∗) by

ϕ∗f(y, η) = f(ϕ−1(y), η ◦ dϕ(ϕ−1(y))).

Identifying Rn with its dual Rn∗ by using the standard inner product, we may view Sd(U)
as a subspace of C∞(U × Rn∗).
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Lemma 5.1.7 For every d ∈ R, the map ϕ∗ restricts to a topological linear isomorphism
Sd(U)→ Sd(V ).

Proof Put ψ = ϕ−1. Then, for f ∈ Sd(M), the function ϕ∗f is given by ϕ∗f(y, η) =
f(ψ(y), η ◦ dϕ(ψ(y))). The continuity of ϕ∗ follows from checking that ∂αy ∂

β
η (ϕ∗f) satis-

fies the required estimates by a straightfoward but tedious application of the chain rule
combined with the Leibniz rule. Similarly, ψ∗ is seen to be continuous linear. �

We define the symbol spaces on a manifold as follows.

Definition 5.1.8 Let M be a smooth manifold and let d ∈ R. A symbol of order d is de-
fined to be smooth function σ : T ∗M → Rn such that for each x0 ∈M there exists a coordi-
nate patch Uκ containing x0 such that the natural map κ∗ : C∞(T ∗Uκ)→ C∞(κ(Uκ)×Rn∗)
maps σ|T ∗U to an element κ∗σ of Sd(κ(Uκ)). The space of these symbols is denoted by
Sd(M).

Remark 5.1.9 Let ϕ : M → N be a diffeomorphism of smooth manfolds. Then it follows
by application of Lemma 5.1.7 that the natural map ϕ∗ : C∞(T ∗M) → C∞(T ∗N), given
by

ϕ∗f(ηϕ(x)) = ηϕ(x) ◦Txϕ, (x ∈M, ηϕ(x) ∈ T ∗ϕ(x)N)

restricts to a linear isomorphism

ϕ∗ : Sd(M)
'−→ Sd(N).

In this lecture we will concentrate on the local theory of symbols and the associated
pseudo-differential operators. The extension to manifolds will be rather straightforward,
by using invariance and partitions of unity. In particular, one needs to localize on the
x-variable in the symbol space. Accordingly, given A ⊂ U compact and d ∈ R̂ we define

SdA(U) = {p ∈ Sd(U) | pr1(supp p) ⊂ A},

where pr1 : U × Rn → Rn is the natural projection map. The union of these spaces, for
A ⊂ U compact, is denoted by Sdc (U). Here we note that Sdc (U) ⊂ Sdc (Rn) naturally, by
extension by zero outside U × Rn.

5.2 Pseudo-differential operators

In this section we will give the definition of the space Ψ∞(U) of pseudo-differential operators
on an open subset U ⊂ Rn. For this, we first need to introduce the space Ψ−∞(U) of
smoothing operators on U. Given a smooth function K ∈ C∞(U×U), we define the integral
operator TK with integral kernel K to be the continuous linear operator C∞c (U)→ C∞(U)
given by

TKf(x) =

∫
U

K(x, y) f(y) dy.
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We define Ψ−∞ to be the subspace of Hom(C∞c (U), C∞(U)) consisting of all operators of
the form TK , with K ∈ C∞(U × U). It is readily seen that K → TK is injective, and thus
provides a linear isomorphism from C∞(U × U) onto Ψ−∞(U).

The name smoothing operator is derived from the following observation. We may
extend the definition of TK to the space E ′(U) of compactly supported distributions on U
by the formula

TKu(x) = u(K(x, · )).
Since x 7→ K(x, · ) is a smooth function on U with values in the Fréchet space C∞(U),
and since u : C∞(U)→ C is continuous linear, it follows that TK(u) is smooth. Moreover,
the map

TK : E ′(U)→ C∞(U)

is continuous linear. Conversely, by the Schwartz kernel theorem it follows that any con-
tinuous linear map T : E ′(U)→ C∞(U) is of the form TK , with K a uniquely determined
smooth function on U ×U. We define Ψ−∞(U) to be the space of all operators of the form
TK , for K ∈ C∞(U × U). Accordingly,

Ψ−∞(U) ' Hom(E ′(U), C∞(U)).

We proceed to the definition of pseudo-differential operators on U. For ϕ ∈ S−∞(U) =
C∞(U)) ⊗̂ S(Rn) the integral

W (ϕ)(x) :=

∫
Rn
eiξxϕ(x, ξ) dx

is absolutely convergent for every x ∈ U and is readily seen to define a function W (ϕ) ∈
C∞(U). More precisely, the following result holds.

Lemma 5.2.1 For all ϕ ∈ S−∞(U) and α ∈ Nn,

(a) ∂αW (ϕ) = W ((∂x + iξ)αϕ);

(b) (ix)αW (ϕ) = W (∂αξ ϕ).

The map W is continuous linear from S−∞(U) to C∞(U).

Proof The proof is an obvious adaptation of the proof that Fourier transform maps
S(Rn) continuously to C∞(Rn). �

If p ∈ Sd(U) and F ∈ S(Rn) then it follows by a straightforward application of the
Leibniz rule that the function pF : (x, ξ) 7→ p(x, ξ)F (ξ) belongs to S−∞(U). Moreover,
the map (p, F ) 7→ pF is continuous and bilinear. These observations justify the following
definition.

Definition 5.2.2 Let p ∈ Sd(U). Then we define the operator Ψp : C∞c (U)→ C∞(U) by

Ψpf(x) := W (pf̂)(x) =

∫
Rn
eiξxp(x, ξ)f̂(ξ) dξ. (5.2.2)
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We note that (p, f) 7→ Ψpf is continuous and bilinear Sd(U)× C∞c (U)→ C∞(U).

Lemma 5.2.3 The (linear) map p 7→ Ψp, S
d(Rn)→ Hom(C∞c (Rn), C∞(Rn)) is injective.

Proof Assume that p ∈ Sd(Rn) and Ψp = 0. Then for each x ∈ Rn the smooth function
eixpx given by ξ 7→ eiξxp(x, ξ) is perpendicular to all functions from F(C∞c (Rn)) ⊂ S(Rn).
By density of C∞c (Rn) in S(Rn) and the fact that F is a continuous linear automorphism of
S(Rn), it follows that F(C∞c (Rn)) is dense in S(Rn). Hence, ξ 7→ eiξxp(x, ξ) is perpendicular
to all functions from S(Rn). In particular, px is perpendicular to C∞c (Rn) and it follows
that px = 0. �

If P is a differential operator with smooth coefficients of order d on U then its full
symbol p belongs to Sd(U) and

P = Ψp.

We now generalize the notion of differential operator as follows.

Definition 5.2.4 Let U ⊂ Rn be an open subset and let d ∈ R. A pseudo-differential
operator of order d on U is a continuous linear operator P : C∞c (U)→ C∞(U) of the form

P = Ψp + T,

with p ∈ Sd(U) and T ∈ Ψ−∞(U). The space of these operators is denoted by Ψd(U).

Lemma 5.2.5 Let A ⊂ U be compact.

(a) Let p ∈ S−∞(U). Then there exists a unique K ∈ C∞c (U ×U) such that Ψp = TK . In
particular, Ψp ∈ Ψ−∞(U). If Ψp vanishes on C∞c (U \ A) then pr2 suppK ⊂ A.

(b) Let K ∈ C∞(U ×U) be such that pr2(suppK) ⊂ A. Then there exists a p ∈ S−∞(U)
such that the integral operator TK : C∞c (U)→ C∞(U) equals Ψp.

Proof Let F2F denote the Fourier transform of a function F ∈ C∞(U) ⊗̂ S(Rn) with
respect to the second component. By straightforward estimation it follows that F2 is a
continuous linear endomorphism of C∞(U) ⊗̂ S(Rn). By application of Theorem 4.1.14 with
respect to the second variable it follows that in fact F2 is a topogical linear automorphism.

We can now prove (a). Let p be as asserted and define

K̃(x, y) = F2p(x, y − x).

Then K̃ ∈ C∞(U) ⊗̂ S(Rn). Moreover, by the Fourier inversion theorem we see that
p(x, ξ) = e−iξxF2(K̃)(x,−ξ). We put K = K̃|U×U . Then for all f ∈ C∞c (U) and x ∈ U we
have

TKf(x) = TK̃f(x) =

∫
Rn
F2K(x,−ξ)f̂(ξ) dξ = Ψpf(x).

Uniqueness of K is obvious.
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Now assume that Ψp vanishes on C∞c (U \ A). Then TK vanishes on C∞c (U \ A). This
implies that K is zero when tested with functions from C∞c (U× (U \A)). Hence, suppK ⊂
U × A.

We turn to (b). Let K ∈ C∞(U × U) and assume suppK ⊂ U × A. Then K ∈
C∞(U) ⊗̂ S(Rn). Applying Proposition 4.2.5 with respect to the second variable, we see
that

TK = Ψp, p(x, ξ) = e−iξxF2(K)(x,−ξ).

It is clear that p ∈ S−∞(U) = S−∞(U).
�

Exercise 5.2.6 Let U ⊂ Rn be an open subset, and let K ∈ C∞(U × U). Show that TK
is a local operator if and only if K = 0.

In particular, it follows that pseudo-differential operators are not local in general, in
contrast to differential operators. In fact, in view of the following result, differential oper-
ators are precisely those pseudo-differential operators that are local.

Theorem 5.2.7 (Peetre’s theorem) Let P : C∞c (U)→ C∞(U) be a linear map such that
suppPf ⊂ supp f for all f ∈ C∞c (Rn). Then P is a differential operator (with bounded
degree on every compact subset of U).

It is remarkable that this result is true without any assumption of continuity for P.
The analogous result is much easier to prove if P is required to be continuous. From this
the above characterization of differential operators among the pseudo-differential operators
already follows. A proof is suggested in the following exercise.

Exercise 5.2.8 Let P : C∞c (U) → C∞(U) be a continuous linear operator such that for
all f ∈ C∞c (U) we have suppPf ⊂ supp f.

(a) Show that for every a ∈ U the map ua : f 7→ Pf(a) is a distribution supported by
{a}. Hint: use a suitable cut off function.

(b) Let V ⊂ U be an open subset whose closure is compact in U. Show that there exists a
constant d = dV ∈ N such that for every a ∈ V the distribution ua has order at most
d. This means that for every compact neighborhood K of a there exists a constant
CK > 0 such that

|ua(f)| ≤ CK max
|α|≤d

sup
K
|∂αf |.

(c) Show that there exist uniquely determined constants cα(a) ∈ C, for |α| ≤ d such that

ua =
∑
|α|≤d

cα(a)(−∂)αδa,

where δa denotes the Dirac measure at a (see the exercise below).
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(d) Show that the functions cα, for |α| ≤ k, are smooth on V.

(e) Show that the restriction of P to V is a differential operator of order at most dV .

Exercise 5.2.9 The purpose of this exercise is to show the following. Let a ∈ Rn and let
u ∈ E ′(Rn) be a distribution with suppu ⊂ {a}. Then there exists a constant k ∈ N and
constants cα ∈ C, for α ∈ Nn, such that

u =
∑
|α|≤k

cα∂
αδα.

(a) Show that without loss of generality we may assume that a = 0.

(b) Let χ ∈ C∞c (Rn) be identically 1 in a neighborhood of 0. Show that

u(χf) = u(f)

for all f ∈ C∞(Rn).

(c) Let f ∈ C∞(Rn). Let p be the k-th order (multivariable) Taylor polynomial of f at
0 and let R be the remainder term, so that f = p + R. Show that for all α with
|α| ≤ k, we have

lim
x→0
‖x‖|α|−k−1/2|∂αR(x)| = 0.

(d) For ε > 0 define χε(x) = χ(x/ε). Show that

u(χεR)→ 0 (ε→ 0).

(e) Show that u(f) = u(p).

(f) Conclude the proof.

5.3 Localization of pseudo-differential operators

We turn to the problem of localizing a pseudo-differential operator P ∈ Ψd(U), for U ⊂ Rn

open. More precisely, if χ ∈ C∞c (U) we denote by Mχ or simply χ, the operator in
End(C∞c (U)) given by multiplication by χ, i.e., Mχ(f) = χf. The problem is whether
Mχ ◦P ◦Mψ is a pseudo-differential operator again, for χ, ψ ∈ C∞c (U).

It is immediate from the definitions that

Mχ ◦Ψp = Ψ(χ⊗1)p, Mχ ◦TK = T(χ⊗1)K ,

for p ∈ Sd(U) and K ∈ C∞(U ×U). Moreover, it is also clear that TK ◦Mψ = TK(1⊗ψ). The
answer to the question whether Ψp ◦Mψ is pseudo-differential is provided by the following
result.
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Proposition 5.3.1 Let p ∈ Sd(U) and let ψ ∈ C∞c (U). Then there exists a q ∈ Cd(U)
such that

Ψp ◦Mψ = Ψq.

Proof Let f ∈ C∞c (U). Then F(ψf) = F(ψ) ∗ F(f) so that

Ψp ◦Mψf(x) =

∫
eiξxp(x, ξ)(ψ̂ ∗ f̂)(ξ) dξ

=

∫ ∫
eiξxp(x, ξ)ψ̂(ξ − ζ)f̂(ζ) dζ dξ

=

∫ ∫
eiξxp(x, ξ)ψ̂(ξ − ζ)f̂(ζ) dξ dζ

=

∫ ∫
eiζxeiξx p(x, ξ + ζ) ψ̂(ξ)f̂(ζ) dξ dζ

=

∫
eiζxq(x, ζ)f̂(ζ) dζ,

where

q(x, ζ) =

∫
Rn
eiξx p(x, ξ + ζ) ψ̂(ξ) dξ. (5.3.3)

Note that all of the above integrals are absolutely convergent, because ψ̂ and f̂ are Schwartz
functions. We will finish the proof by showing that q belongs to Sd(U). More precisely, we
will show that the map (p, ψ) 7→ q defined by (5.3.3) is continuous bilinear Sd(U)×S(Rn)→
Sd(U).

Let K ⊂ U be compact, and k ∈ N. Then for multi-indices α, β of order at most k, for
x ∈ K and ξ, ζ ∈ Rn we have

|∂αx∂
β
ζ [p(x, ξ + ζ)ψ̂(ξ)]| = |(∂αx∂

β
ξ p)(x, ξ + ζ)||ψ̂(ξ)|

≤ (1 + ‖ξ + ζ‖)d−|β|(1 + ‖ξ‖)−NµdK,k(p)νN,0(ψ̂)

≤ (1 + ‖ζ‖)d−|β|(1 + ‖ξ‖)k+|d|−NµdK,k(p)νN,0(ψ̂).

By application of the Leibniz rule, we now see that there exists a constant C > 0, only
depending on K, k,N, such that

|∂αx∂
β
ζ [eiξx p(x, ξ + ζ)ψ̂(ξ)]|

≤ C (1 + ‖ζ‖)d−|β|(1 + ‖ξ‖)2k+|d|−NµdK,k(p)νN,0(ψ̂).

Choosing N such that 2k + |d| −N < −n, we see that in (5.3.3) differentiation under the
integral sign is allowed, and leads to the estimate

µdK,k(q) ≤ C ′µdK,k(p)νN,0(ψ̂), ((x, ζ) ∈ K × Rn),

with C ′ a constant only depending on K, k and N. As ψ 7→ ψ̂ is continuous in S(Rn), the
result follows. �
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5.4 The full symbol

The formula (5.3.3) gives rise to an interesting characterization of q which we shall now
describe. We recall that U is an open subset of Rn.

If N is a countable set and ν 7→ dν a real-valued function on N , then by limν→∞ dν =
−∞ we mean that for every m ∈ R there exists a finite subset F ⊂ N such that ν ∈
N \ F ⇒ dν < m.

Definition 5.4.1 Let N be a countable set, and ν 7→ dν a real-valued function on N
with dν → −∞ for ν →∞. Let pν ∈ Sdν (U), for each ν ∈ N , and let p ∈ Sd′(U). Then

p ∼
∑
ν∈N

pν (5.4.4)

means that for every d ∈ R there exists a finite subset F0 ⊂ N such that for every finite
subset F ⊂ N with F ⊃ F0,

p−
∑
ν∈F

pν ∈ Sd(U).

We observe that if a symbol p′ ∈ S∞(U) has the same expansion, then it follows that
p−p′ ∈ Sd(U) for all d, hence p−p′ ∈ S−∞(U). We thus see that the asymptotic expansion
(5.4.4) determines p modulo S−∞(U).

The symbol q of (5.3.3) may now be characterized modulo S−∞(U) as follows. We note
that the operator ∂αξ maps Sd(U) continuous linearly to Sd−|α|(U).

Lemma 5.4.2 Let p ∈ Sd(U) let ψ ∈ C∞c (U) and let the symbol q ∈ Sd(U) be defined as
in (5.3.3). Then

q ∼
∑
α∈Nn

1

α!
Dα
xψ ∂

α
ξ p.

Proof By the multi-variable Taylor formula with remainder term, we have, for M ∈ N,

p(x, ξ + ζ) =
∑
|α|≤M

ξα

α!
∂αξ p(x, ζ) +RM(x, ξ, ζ),

with remainder term given by

RM(x, ξ, ζ) = − 1

M !

∫ 1

0

(1− t)M∂M+1
t [p(x, ζ + tξ)] dt. (5.4.5)

This leads to
q(x, ζ) =

∑
|α|≤M

qα(x, ζ) + qM(x, ζ),

where

qM(x, ζ) =

∫
Rn
RM(x, ξ, ζ)ψ̂(ξ) dξ,
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and where

α! qα(x, ζ) =

∫
eiξx ξα∂αξ p(x, ζ) ψ̂(ξ) dξ

= ∂αξ p(x, ζ)F−1(ξαF(ψ))(x)

= ∂αξ p(x, ζ)Dα
xψ(x).

Thus, to complete the proof, it suffices to show that

qM ∈ Sd−(M+1)(U). (5.4.6)

Let K ⊂ U be compact. Then by differentiation under the integral sign in (5.4.5), ap-
plication of the Leibniz rule, and a straightforward estimation of the resulting integrals
we see that there exists a constant C > 0 only depending on K,M, k such that for all
multi-indices α, β with |α|, |β| ≤ k and all x ∈ K < ξ, ζ ∈ Rn, we have

|∂αx∂
β
ζRM(x, ξ, ζ)|

≤ C(1 + ‖ξ‖)M+1 sup
0≤t≤1

(1 + ‖ζ + tξ‖)d−(M+1)−|β|µdK,k+M+1(p).

We now observe that for 0 ≤ t ≤ 1 we have

(1 + ‖ζ + tξ‖)d−(M+1)−|β| ≤ (1 + ‖ζ‖)d−(M+1)−|β|(1 + ‖ξ‖)|d|+M+1+|β|,

so that

|∂αx∂
β
ζRM(x, ξ, ζ)|

≤ C(1 + ‖ζ‖)d−(M+1)−|β| (1 + ‖ξ‖)|d|+2(M+1)+kµK,k+M+1(p).

Now put

qM(x, ζ) =

∫
Rn
RM(x, ξ, ζ)ψ̂(ξ) dξ

Fix N ∈ N such that |d| + 2(M + 1) + k − N < −n. Then by the usual method we infer
that there exists a constant C ′ > 0, only depending on K, k,N such that

µ
d−(M+1)
K,k (qM) ≤ C ′ µdK,k+M+1(p) νN,0(ψ̂)

The result follows.

Remark 5.4.3 From the estimate at the end of the proof we see that the map (p, ψ) 7→ qM
is continuous bilinear from Sd(U)× C∞c (U) to Sd−(M+1)(U). In this sense, the asymptotic
expansion for q depends on (p, ψ) in a continuous bilinear fashion.
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Using the asymptotic expansion above, we can now derive an important theorem. We
begin by a useful sharpening of Proposition 5.3.1 Given an open subsets V ⊂ U of Rn, we
define the restriction map p 7→ pV from Sd(U) to Sd(V ) by pV (x, ξ) = p(x, ξ), for x ∈ V
and ξ ∈ Rn. Thus,

pV := p|V×Rn .

In the following we will use the notation V b U to indicate that V has compact closure in
U.

Proposition 5.4.4 Let p ∈ Sd(U). Let U ′ b U be an open subset and let ψ ∈ C∞c (U) be
equal to 1 on an open neighborhood of cl (U ′). Then there exists a symbol q ∈ Sd(U) such
that

(a) Ψq = Ψp ◦Mψ;

(b) qU ′ − pU ′ ∈ S−∞(U ′).

Proof Define q as in (5.3.3). Then (a) is valid, and we have the asymptotic expansion
from Lemma 5.4.2. Since Dα

xψ = 0 on U ′, except when α = 0, we see that qU ′ ∼ pU ′ , or,
equivalently, that (b) holds. �

Theorem 5.4.5 The map p 7→ Ψp induces a linear isomorphism

Sd(U)/S−∞(U)
'−→ Ψd(U)/Ψ−∞(U).

Proof From the definition of Ψd(U) it follows that p 7→ Ψp induces a surjective linear
map Sd(U) → Ψd(U)/Ψ−∞(U). We must show that its kernel equals S−∞(U). Thus, let
p ∈ Sd(U) and assume that Ψp ∈ Ψ−∞(U). Then Ψp = TK for a smooth function K ∈
C∞(U × U). We must show that this implies that p ∈ S−∞(Rn). By using a partition
of unity we see that it suffices to show that χp ∈ S−∞(Rn) for all χ ∈ C∞c (U). Now
Ψχp = Mχ ◦Ψp = T(χ⊗1)K . Thus, to prove the theorem, we may assume from the start that
there exists a compact subset A ⊂ U such that supp p ⊂ A× U and suppK ⊂ A× U.

We now have that p ∈ Sdc (U) ⊂ Sdc (Rn), so that p also defines a pseudo-differential

operator Ψ̃p : C∞c (Rn)→ C∞A (Rn). Of course, Ψ̃p restricts to Ψp on C∞c (U).
Fix an open subset U ′ b U. Then it suffices to show that pU ′ ∈ S−∞(U ′). To prove this,

we select a cut off function ψ ∈ C∞c (U) which equals 1 on an open neighborhood of cl (U ′).
Then

Ψ̃p ◦Mψ = Ψp ◦Mψ = TK(1⊗ψ) ∈ Ψ−∞(Rn). (5.4.7)

As K(1⊗ ψ) is compactly supported with support in U × U, it follows that

TK(1⊗ψ) = Ψ̃r (5.4.8)

for a symbol r ∈ S−∞(Rn).
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On the other hand, by the above proposition applied with Rn in place of U, we see that

Ψ̃p ◦Mψ = Ψ̃q, (5.4.9)

with a symbol q ∈ Sd(Rn) that has the property that qU ′ − pU ′ ∈ S−∞(U ′).

From (5.4.7), (5.4.7) and (5.4.9) we see that Ψ̃r = Ψ̃q, so that r − q = 0, by Lemma
5.2.5. This implies that

pU ′ − rU ′ = pU ′ − qU ′ ∈ S−∞(U ′).

Hence pU ′ ∈ S−∞(U ′) and the proof is complete. �

Definition 5.4.6 The inverse of the linear isomorphism of Theorem 5.4.5, denoted

σ : Ψd(U)/Ψ−∞(U)→ Sd(U)/S−∞(U),

is called the (full) symbol map.

This symbol map is the appropriate generalization of the symbol map for differential oper-
ators. Just as the latter symbol map cannot be extended naturally to differential operators
on manifolds, the present symbol map does not allow a coordinate invariant extension to
manifolds either. Just as in the case of differential operators, there is an appropriate notion
of principal symbol of order d, which can be extended to the setting of manifolds.

Definition 5.4.7 The principal symbol map σd of order d is defined to be the following
map induced by the symbol map:

σd : Ψd(U)/Ψd−1(U) −→ Sd(U)/Sd−1(U). (5.4.10)

Corollary 5.4.8 The principal symbol map (5.4.10) is a linear isomorphism.

5.5 Expansions in symbol space

The construction of parametrices for elliptic pseudo-differential operators will make use of
a recurrence that is based on the following remarkable lemma.

Lemma 5.5.1 Let U ⊂ Rn be open. Let {dj}j≥0 be a sequence of real numbers with
dj → −∞ as j → ∞. Assume that for each j a symbol pj ∈ Sdj(U) is given. Then there
exists a symbol p ∈ Sd(U), where d = max dj, such that pr1(suppp) is contained in the
closure of the union of the sets pr1(supp pj), for j ≥ 0, and such that

p ∼
∞∑
j=0

pj in Sd(U). (5.5.11)

The symbol p is uniquely determined modulo S−∞(U).
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Proof The uniqueness assertion is an immediate consequence of the meaning of (5.5.11).
For the existence, we note that by using partitions of unity on U we can reduce to the

local situation where a compact subset A ⊂ U is given such that pj ∈ S
dj
A (U). It then

suffices to establish the existence of a symbol p ∈ SdA(U) such that (5.5.11) is valid.
Taking suitable groups of terms we readily see that it suffices to consider the case that

the sequence dj is strictly decreasing. Then d = d0.
Fix χ ∈ C∞c (Rn) with the property that χ(ξ) = 0 for ‖ξ‖ ≤ 1 and χ(ξ) = 1 for ‖ξ‖ ≥ 2.

For t > 0 we define the function χt : (x, ξ) 7→ χ(tξ) (constant in the x-variable). Note that
suppχt ∩ (U ×B(0; t−1)) = ∅.

We will select a sequence tj of positive real numbers with tj → 0 and define

p :=
∞∑
j=0

χtjpj.

The sum is locally finite with respect to the variable ξ, hence defines a smooth function
U×Rn → C. Moreover, pr1(supp p) is contained in A. We claim that it is possible to select
a sequence {tj} such that for every l ∈ N and all α, β ∈ Nn the series∑

j≥l

(1 + ‖ξ‖)|β|−dl∂αx∂
β
ξ [χtjpj]

converges uniformly on U × Rn. The proof of this claim is deferred to two lemmas below.
Let {tj} be as claimed, then the proof can be finished as follows. From the above claim
about convergence, it follows that the series

rl :=
∑
j≥l

χtjpj

convergences absolutely in the symbol space SdlA (U), relative to its continuous seminorms.
By completeness, this implies that rl ∈ SdlA (U). In particular it follows that p = r0 ∈ SdA(U).
Now

p−
l−1∑
j=0

pj =
l−1∑
j=0

(χtj − 1)pj + rl. (5.5.12)

The second sum defines a function with compact ξ-support, hence belongs to S−∞(U).
Since rl ∈ Sdl(U), it follows that the difference on the left-hand side of (5.5.12) belongs to
Sdl(U). This implies (5.5.11). �

To establish the claim of the above proof we need the following.

Lemma 5.5.2 Let j ≥ 0, α, β ∈ Nn. Then there exists a constant Cj,α,β > 0 such that

|∂αx∂
β
ξ [χtpj](x, ξ)| ≤ Cj,α,β(1 + ‖ξ‖)dj−‖β|, (5.5.13)

for all (x, ξ) ∈ U ′ × Rn and all 0 < t ≤ 1.
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Proof The estimate is trivially valid in the area ‖ξ‖ ≤ t−1, where χt = 0. By definition
of the symbol space, it is also valid in the area ‖ξ‖ ≥ 2t−1, where χt = 1. Thus, it remains
to establish an estimate of the above type in the area t−1 ≤ ‖ξ‖ ≤ 2t−1, with a constant
independent of t, x, ξ.

The estimate then follows by application of Leibniz’ formula and bookkeeping, as
follows. The expression on the left-hand side of (5.5.13) may be estimated by a sum
of binomial coefficients times the expression |∂αx ( ∂γξ χt∂

β−γ
ξ pj)(x, ξ)|. With the notation

(∂γξ χ)t(ξ) = (∂γξ χ)(tξ) the mentioned expression becomes, by application of the chain rule,

|∂αx ( ∂γξ χt∂
β−γ
ξ pj)(x, ξ)| = t|γ| | [ (∂γξ χ)t∂

α
x∂

β−γ
ξ pj](x, ξ) |

≤ C ′j,α,γ t
|γ| (1 + ‖ξ‖)dj−|β|+|γ|, (5.5.14)

with a constant independent of t, x, ξ. From t ≤ 1 and ‖ξ‖ ≤ 2t−1 it follows that

t|γ| = 3|γ|(3t−1)−|γ| ≤ 3|γ|(1 + 2t−1)−|γ| ≤ 3|γ|(1 + ‖ξ‖)−|γ|.

Substituting this in (5.5.14) we infer that the estimate (5.5.13) is valid in the area consid-
ered. �

Lemma 5.5.3 (Claim) There exists a sequence {tj} of real numbers with tj → 0 such
that for every l ∈ N and all α, β ∈ Nn the series∑

j≥l

(1 + ‖ξ‖)|β|−dl∂αx∂
β
ξ [χtjpj]

converges uniformly on U × Rn.

Proof Let j ≥ 0. Then we may select tj > 0 such that

Cj,α,β(1 + t−1
j )dj−dl < 2−j

for all α, β, l with |α|+ |β|+ l < j. It follows that, for all such α, β, l and all (x, ξ) ∈ U ′×Rn

with ‖ξ‖ ≥ t−1
j ,

|∂αx∂
β
ξ [χtpj](x, ξ)| ≤ Cj,α,β(1 + ‖ξ‖)dj−‖β|

≤ Cj,α,β(1 + ‖ξ‖)dj−dl(1 + ‖ξ‖)dl−‖β|

≤ Cj,α,β(1 + t−1
j )dj−dl(1 + ‖ξ‖)dl−‖β|

≤ 2−j(1 + ‖ξ‖)dl−‖β|.

On the other hand, if ‖ξ‖ ≤ t−1
j , then χtj(x, ξ) = χ(tjξ) = 0. We conclude that for all

α, β, l with |α|+ |β|+ l < j and all (x, ξ) ∈ U × Rn the following estimate is valid

|∂αx∂
β
ξ [χtpj](x, ξ)| ≤ 2−j(1 + ‖ξ‖)dl−‖β|.

This implies the claim. �
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Chapter 6

Appendix: A special map in symbol
space

6.4 The exponential of a differential operator

In these notes we assume that A is a symmetric n × n matrix with complex entries and
with Re 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ Rn. Here 〈 · , · 〉 denotes the standard bilinear pairing
Cn × Cn → C. The function

x 7→ e−〈Aξ,ξ〉 (6.4.5)

is bounded on Rn. Moreover, every derivative of (6.4.5) is polynomially bounded. Hence,
multiplication by the function (6.4.5) defines a continuous linear endomorphism M(A) of
the Schwartz space S(Rn). As the operator M(A) is symmetric with respect to the usual
pairing S(Rn) × S(Rn) → C defined by integration, it follows that M(A) has a unique
extension to a continuous linear endomorphism S ′(Rn)→ S ′(Rn).

Clearly, M(A) leaves each subspace L2
s(Rn), for s ∈ R, invariant and restricts to a

bounded linear endomorphism with operator norm at most 1 on it.

We define E(A) to be the unique continuous linear endomorphism of S ′(Rn) such that
the following diagram commutes

S ′(Rn)
M(A)−→ S ′(Rn)

F ↑ ↑ F
S ′(Rn)

E(A)−→ S ′(Rn)

As F restricts to a topological automorphism of S(Rn) and to an isometric automorphism
isomorphism from Hs(Rn) onto L2

s(Rn), it follows that E(A) restricts to a bounded en-
domorphism of Hs(Rn) of operator norm at most 1. Furthermore, E(A) restricts to a
continuous linear endomorphism of S(Rn).

If ϕ ∈ S(Rn), then clearly ∂tM(tA)ϕ + 〈Aξ, ξ〉M(tA)ϕ = 0. By application of the
inverse Fourier transform, we see that for a given function f ∈ S the function ft := E(tA)f

111
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satisfies:
∂tft = −〈AD,D〉ft, where − 〈AD,D〉 =

∑
ij

Aij∂j∂i.

We note that f0 = f, so that ft may be viewed as a solution to the associated Cauchy
problem with initial datum f.

For obvious reasons, we will write

E(tA) = E−t〈AD,D〉

from now on. The purpose of these notes is to derive estimates for E which are needed for
symbol calculus.

Lemma 6.4.1 The operator e〈AD,D〉 : S ′(Rn) → S ′(Rn) commutes with the translations
T ∗a translations and the partial differentiations ∂j, for a ∈ Rn and 1 ≤ j ≤ n.

Proof This is obvious from the fact that translation and partial differentiation become
multiplication with a function after Fourier transform; each such multiplication operator
commutes with M(A). �

Lemma 6.4.2 Assume that A is non-singular. Then the tempered function x 7→ e−〈Ax,x〉/2

has Fourier transform
F(e−〈Ax,x〉/2) = c(A)e−〈Bξ,ξ〉/2

with c(A) a non-zero constant.

Remark 6.4.3 It can be shown that c(A) = (detA)−1/2, where a suitable analytic branch
of the square root must be chosen. However, we shall not need this here.

Proof For v ∈ Rn let ∂v denote the directional derivative in the direction v. Thus,
∂vf(x) = df(x)v. Then the tempered distribution f given by the function x 7→ exp(−〈Ax, x〉/2)
satisfies the differential equations ∂vf = −〈Av, x〉f. It follows that the Fourier transform

f̂ satisfies the differential equations 〈v, ξ〉f̂ = −∂Avf̂ for all v ∈ Rn, or, equivalently,
∂vf = −〈Bv, ξ〉f. This implies that the tempered distribution

ϕ = e〈Bξ,ξ〉/2f̂

has all partial derivatives equal to zero, hence is the tempered distribution coming from a
constant function c(A). �

Proposition 6.4.4 For each k ∈ N there exists a positive constant Ck > 0 such that the
following holds. Let A be a complex symmetric n× n-matrix with ReA ≥ 0. Let f ∈ S(R)
and let x ∈ Rn be a point such that the distance d(x) from x to suppu is at least one. Then

|e−〈AD,D〉f(x)| ≤ Ckd(x)−k‖A‖s+k max
|α|≤2s+k

sup |Dαf |. (6.4.6)
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Proof The function e−〈Aξ,ξ〉f̂ in S(Rn) depends continuously on A and hence, so does
e〈AD,D〉f. We may therefore assume that A is non-singular.

As e−〈AD,D〉 commutes with translation, we may as well assume that x = 0. We assume
that f has support outside the unit ball B in Rn.

For each j let Ωj denote the set points y on the unit sphere S = ∂B with |〈y, ej〉| >
1/2
√
n. Then the Uj form an open cover of S. Let {ψj} be a partition of unity subordinate

to this covering and define χj : Rn \ {0} → R by χj(y) = ψj(y/‖y‖). Then each of the
functions fj = χjf satisfies the same hypotheses as f and in addition, |〈y, ej〉| ≥ |y|/2

√
n

for y ∈ supp fj. As f =
∑

j fj, it suffices to prove the estimate for each of the fj. Thus,
without loss of generality, we may assume from the start that there exists a unit vector
v ∈ Rn such that |〈y, v〉| ≥ |y|/2

√
n for all y ∈ supp f.

We now observe that

e−〈AD,D〉f(0) =

∫
e−〈Aξ,ξ〉f̂(ξ) dξ = c

∫
e−〈By,y〉/4 f(y) dy,

where B = A−1. The idea is to apply partial differentiation with the directional derivative
∂Av to this formula. For this we note that

e−〈By,y〉/4 = − 2

〈v, y〉
∂Ave

−〈By,y〉/4

on supp f, so that, for each j ≥ 0,

e−〈AD,D〉f(0) = c 2j
∫
e−〈By,y〉/4 [〈v, y〉−1∂Av]

jf(y) dy

= [e−〈AD,D〉(〈v, · 〉−1∂Av)
jf ](0).

By using the Sobolev lemma, we find, for each natural number s > n/2, that

|e−〈AD,D〉f(0)| ≤ C ′max
|α|≤s
‖Dαe−〈AD,D〉(〈v, · 〉−1∂Av)

jf‖L2

= C ′max
|α|≤s
‖e−〈AD,D〉Dα(〈v, · 〉−1∂Av)

jf‖L2

≤ C ′max
|α|≤s
‖Dα(〈v, · 〉−1∂Av)

jf‖L2 .

By application of the Leibniz rule and using that |〈v, y〉| ≥ ‖y‖/2
√
n and ‖y‖ ≥ d ≥ 1 for

y ∈ supp f, we see that, for j > 2n,

|e−〈AD,D〉f(0)| ≤ C ′j‖A‖jdn/2−j max
|α|≤s+j

sup |Dαf |.

We now take j = s+ k to obtain the desired estimate. �

Our next estimate is independent of supports.



114 CHAPTER 6. APPENDIX: A SPECIAL MAP IN SYMBOL SPACE

Lemma 6.4.5 Let s > n/2 be an integer. Then there exists a positive constant with the
following property. Let A ∈ Mn(C) be symmetric with ReA ≥ 0. Then for all f ∈ S(Rn)
and all x ∈ Rn,

|e−〈AD,D〉f(x)| ≤ C max
|α|≤s
‖Dαf‖L2 .

Proof By the Sobolev lemma we have

|e−〈AD,D〉f(x)| ≤ C max
|α|≤s
‖Dαe−〈AD,D〉f‖L2

= C max
|α|≤s
‖e−〈AD,D〉Dαf‖L2

≤ C max
|α|≤s
‖Dαf‖L2

�

Corollary 6.4.6 Let s > n/2 be an integer and let C > 0 be the constant of Lemma
6.4.5. Let K ⊂ Rn a compact subset. Let A ∈ Mn(C) be symmetric and ReA ≥ 0. Then
for every f ∈ Cs

K(Rn), the distribution e−〈AD,D〉f is a continuous function, and

|e−〈AD,D〉f(x)| ≤ C
√

vol (K) max
|α|≤s

sup |Dαf |, (x ∈ Rn).

Proof We first assume that f ∈ C∞K′(Rn) with K′ compact. Then by straightforward
estimation,

‖Dαf‖L2 ≤ vol (K′) sup |Dαf |
and the estimate follows with K′ instead of K. Let now f ∈ Cs

K(Rn). Then by regularization
there is a sequence fn ∈ C∞Kn(Rn), with Kn → K and fn → f in Cs(Rn). By the above
estimate, the sequence e−〈AD,D〉fn is Cauchy in C(Rn). By passing to a subsequence we
may arrange that the sequence already converges to a limit ϕ in C(Rn). By continuity of
e−〈AD,D〉 in S ′(Rn) it follows that ϕ = e−〈AD,D〉f. The required estimate for ϕ now follows
from the similar estimates for e−〈AD,D〉fn by passing to the limit for n→∞. �

In the sequel we shall frequently refer to a principle that is made explicit in the following
lemma.

Lemma 6.4.7 Let L : S ′(Rn)→ S ′(Rn) be a continuous linear endomorphism. Let V,W
be linear subspaces of S ′(Rn) equipped with locally convex topologies for which the inclusion
maps are continuous. Assume that C∞c (Rn) is dense in V and that W is complete. If L
maps C∞c (Rn) into W, and the restricted map L0 : C∞c (Rn)→ W is continuous with respect
to the V -topology on the first space, then L(V ) ⊂ W.

Proof The restricted map L0 has a unique extension to a continuous linear map L1 :
V → W. Thus, it suffices to show that L1 = L on V. Fix ϕ ∈ S(Rn). Then, the linear
functional 〈 · , ϕ〉 is continuous on W. It follows that the linear functional µ on C∞c (Rn)
given by µ(f) = 〈L1f, ϕ〉 is continuous linear for the V -topology.
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From the assumption about the continuity of L is follows that the functional ν : f 7→
〈Lf, ϕ〉 is continuous for the S ′(Rn) topology. In particular, this implies that ν is continuous
for the V -topology.

As µ = ν on C∞c (Rn) and C∞c (Rn) is dense in V it follows that L1 = L on V. �

If p ∈ N we denote by Cp
b (Rn) the Banach space of p times continuously differentiable

functions f : Rn → C with max|α|≤p sup |Dαf | <∞.

Proposition 6.4.8 Let s > n/2 be an integer. Then there exists a constant C > 0 with
the following property. For each symmetric A ∈ Mn(C) with ReA ≥ 0 and all f ∈ C2s

b (Rn)
the distribution e−〈AD,D〉f is continuous and

|e−〈AD,D〉f(x)| ≤ C‖A‖s max
|α|≤2s

sup |Dαf |.

For x with d(x) := d(x, supp f) ≥ 1 the stronger estimate (6.4.6) is valid.

Proof As in the proof of the previous corollary, we first prove the estimate for f ∈
C∞c (Rn). By translation invariance we may as well assume that x = 0.

We fix a function χ ∈ C∞c (Rn) which equals 1 on the unit ball and has support contained
in K = B(0; 2) and such that 0 ≤ χ ≤ 1. Then the desired estimate follows from combining
the estimate of Corollary 6.4.6 for χf with the estimate of Proposition 6.4.4 with k = 0
for (1− χ)f.

By density of C∞c (Rn) in Cs
c (Rn) it follows that e−〈AD,D〉 maps Cs

c (Rn) continuously
into Cb(Rn), with the desired estimate (apply Lemma 6.4.7). As Cs

c (Rn) is not dense in
Cs
b (Rn) we need an additional argument to pass to the latter space.

Let χ be as above, and put χn(x) = χ(x/n). Then it is readily seen that χnf → f
in S ′(Rn). Hence e−〈AD,D〉fn → e−〈AD,D〉f in S ′(Rn). It follows by application of Proposi-
tion 6.4.4 that for each compact subset K ⊂ Rn the sequence e−〈AD,D〉fn|K is Cauchy in
C(K). This implies that e−〈AD,D〉fn converges to a limit ϕ in the Fréchet space C(Rn). In
particular, ϕ is also the limit in S ′(Rn) so that e−〈AD,D〉f = ϕ is a continuous function.

We now note that by application of the Leibniz rule,

sup |Dαfn| ≤ sup |Dαf |+O(1/n).

Hence the desired estimate for f follows from the similar estimate for fn by passing to the
limit. �

Theorem 6.4.9 Let s > n/2 be an integer and let k ∈ N. Then there exists a constant
Ck > 0 with the following property. For each symmetric A ∈ Mn(C) with ReA ≥ 0 and all
f ∈ C2s+2k

b (Rn) the function e−〈AD,D〉f is continuous, and

|e−〈AD,D〉f(x)−
∑
j<k

1

j!
(−〈AD,D〉)jf(x)| ≤ Ck‖A‖s max

|α|≤2s
sup |Dα〈AD,D〉kf |.
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Proof Let Rk(A)f(x) denote the expression between absolute value signs on the left-hand
side of the above estimate. We first prove the estimate for a function f ∈ C∞c (Rn). The
function

ft(x) := e−〈tAD,D〉(x)

is smooth in (t, x) ∈ [0,∞)× Rn and satisfies the differential equation

∂tft(x) = −〈AD,D〉ft(x).

By application of Taylor’s formula with remainder term with respect to the variable t at
t = 0, we find that

f1(x) =
∑
j<k

∂jt ft(x)− 1

(k − 1)!

∫ 1

0

(1− t)k−1 ∂kt ft(x) dt.

This leads to

Rk(A)f(x) =
1

(k − 1)!

∫ 1

0

(1− t)k−1 (−〈AD,D〉)k ft(x) dt

=
1

(k − 1)!

∫ 1

0

(1− t)k−1 e−t〈AD,D〉(−〈AD,D〉)k f(x) dt.

By estimation under the integral sign, making use of Proposition 6.4.8, we now obtain the
desired estimate for f ∈ C∞c (Rn). For the extension of the estimate to C2s+2k

c (Rn) and
finally to C2s+2k

b (Rn) we proceed as in the proof of Proposition 6.4.8. �

6.5 The exponential of a differential operator in sym-

bol space

Let K be a compact subset of Rn and let d ∈ R. Then the space of symbols SdK(Rn) is a
subspace of the space of tempered distributions S ′(R2n) with continuous inclusion map.
Indeed, if p ∈ SdK(Rn), then for all ϕ ∈ S(Rn) we have

〈p, ϕ〉 =

∫
R2n

p(x, ξ) ϕ(x, ξ) dx dξ

≤
∫
R2n

(1 + ‖ξ‖)−d−n−1|p(x, ξ)|(1 + |(x, ξ)|)|d|+n+1|ϕ(x, ξ)| dx dξ

≤ C µdK,0(p) ν|d|+n+1,0(ϕ),

with C > 0 only depending on n,K and d.
We consider the second order differential operator

〈Dx, ∂ξ〉 = i

n∑
j=1

∂

∂xj

∂

∂ξj
.
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Thus, with notation as in the previous section, 〈Dx, ∂ξ〉 = −〈AD,D〉, where

A = i

(
0 In
In 0

)
,

with In the n× n identity matrix. The matrix A is complex, symmetric, and has real part
equal to zero, hence fulfills all conditions of the previous section. Moreover, its operator
norm ‖A‖ equals 1.

In the rest of this section we will discuss the action of e〈Dx,∂ξ〉 on SdK(Rn). The following
lemma is obvious.

Lemma 6.5.1 For each k ∈ N,

1

k!
〈Dx, ∂ξ〉 =

∑
|α|=k

1

α!
Dα
x∂

α
ξ .

In particular, 〈Dx, ∂ξ〉 defines a continuous linear map Sd(Rn) → Sd−k(Rn), preserving
supports.

Theorem 6.5.2 Let k ∈ N. Then

e〈Dx,∂ξ〉 −
∑
|α|<k

1

α!
Dα
x∂

α
ξ , (6.5.7)

originally defined as an endomorphism of S ′(Rn), maps SdK(Rn) continuous linearly into
Sd−k(Rn). In particular, e〈Dx,∂ξ〉 restricts to a continuous linear map SdK(Rn)→ Sd(Rn).

Before turning to the proof of the theorem, we list a corollary that will be important
for applications.

Corollary 6.5.3 Let p ∈ SdK(Rn). Then e〈Dx,∂ξ〉p ∈ Sd(Rn) and

e〈Dx,∂ξ〉p ∼
∑
α∈Nn

1

α!
Dα
x∂

α
ξ p.

We will prove Theorem 6.5.2 through a number of lemmas of a technical nature. The next
lemma will be used frequently for extension purposes.

Lemma 6.5.4 Let K ⊂ U be compact and let d < d′. Then the space C∞K,c(Rn) is dense

in SdK(U) for the topology of Sd
′
K (U).

Proof Let p ∈ SdK(U). Select ψ ∈ C∞c (Rn) such that ψ = 1 on a neighborhood of 0. Put
ψn(ξ) = ψ(ξ/n) and

pn(x, ξ) = ψn(ξ)p(x, ξ).

Then by an application of the Leibniz rule in a similar fashion as in the proof of Lemma
4.1.9, it follows that νd

′

K,k(pn − r)→ 0 as n→∞, for each k ∈ N. �
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The expression (6.5.7) is abbreviated by Rk(D). It will be convenient to use the notation

C∞K,c(R2n) := {f ∈ C∞c (R2n) | supp f ⊂ K × Rn}.

Lemma 6.5.5 Let k ∈ N. Then for each d < k the map Rk(D) maps SdK(Rn) continuous
linearly into Cb(R2n).

Proof Let s > n/2 be an integer. Let f ∈ C∞K,c(R2n). Then by Theorem 6.4.9,

|Rk(D)f(x, ξ)| ≤ Ck max
|α|+|β|≤2s

sup
K×Rn

|Dα
x∂

β
ξ 〈Dx, ∂ξ〉kf(x, ξ)|

≤ C ′k max
|α|+|β|≤2s,|γ|=k

sup
K×Rn

|Dα+γ
x ∂β+γ

ξ f(x, ξ)|

≤ C ′k max
|α|+|β|≤2s,|γ|=k

sup
K×Rn

(1 + ‖ξ‖)d−k νdK,2s+2k(f)

≤ C ′k ν
d
K,2s+2k(f).

It follows that the map Rk(D) is continuous C∞K,c(R2n) → Cb(R2n), with respect to the
SdK(Rn)-topology on the first space, for each d < k.

Let now d < k and fix d′ with d < d′ < k. Then by density of C∞K,c(R2n) in SdK(R2n) for

the Sd
′
K (R2n)-topology, it follows by application of Lemma 6.4.7 that Rk(D) maps SdK(Rn)

to Cb(Rn) with continuity relative to the Sd
′
K (Rn)-topology on the domain. As this topology

is weaker than the original topology on SdK(Rn), the result follows. �

Lemma 6.5.6 Let d ∈ R and assume that k > |d|. Let s be an integer > n/2. Then there
exists a constant C > 0 such that for all f ∈ C∞K,c(Rn) and all (x, ξ) ∈ R2n with ‖ξ‖ ≥ 4
we have

|Rk(D)f(x, ξ)| ≤ C(1 + ‖ξ‖)|d|−kνdK,2s+2k(f). (6.5.8)

Proof Let χ ∈ C∞c (Rn) be a smooth function which is identically 1 on the unit ball of
Rn, and has support inside the ball B(0; 2). For t > 0 we define the function χt ∈ C∞c (Rn)
by χt(ξ) = χ(t−1ξ). Then χt(ξ) is identically 1 on B(0; t) and has support inside the ball
B(0; 2t). We agree to write ψ = 1 − χ and ψt(ξ) = ψ(t−1ξ). In the following we will
frequently use the obvious equalities

sup |∂αξ χt| = t−|α| sup |∂αξ χ|, sup |∂αξ ψt| = t−|α| sup |∂αξ ψ|.

Let f ∈ C∞K,c(Rn). Then f is a Schwartz function, hence e〈Dx,∂ξ〉f is a Schwartz function as
well, and therefore, so is Rk(D)f. For t > 0 we agree to write ft(x, ξ) = χt(ξ)f(x, t) and
gt(x, ξ) = ψt(ξ))f(x, ξ). Then f = ft + gt. From now on we assume that (x, ξ) ∈ R2n, that
‖ξ‖ ≥ 4 and t = 1

4
‖ξ‖.

We will complete the proof by showing that both the values |Rk(D)ft(x, ξ)| and |Rk(D)gt(x, ξ)|
can be estimated by C ′νdK,2s+k(f) with C ′ > 0 a constant independent of f, x, ξ. We start
with the first of these functions. As ft has support inside B(0; 2t) = B(0; ‖ξ‖/2), it follows



6.5. THE EXPONENTIAL OF A DIFFERENTIAL OPERATOR IN SYMBOL SPACE119

that d(ξ, supp ft) ≥ ‖ξ‖/2 ≥ 2. In view of Proposition 6.4.4 it follows that there exists a
constant Ck > 0, only depending on k, such that

|Rk(D)f(x, ξ)| = |e〈Dx,∂ξ〉f(x, ξ)|
≤ Ck(‖ξ‖/2)−k max

|α|+|β|≤2s+k
sup |Dα

x∂
β
ξ (χtf)|

≤ C ′k(1 + ‖ξ‖)−k max
|α|+|β1+β2|≤2s+k

sup |∂β1ξ χtD
α
x∂

β2
ξ f |,

with C ′k > 0 independent of f, x and ξ. For η ∈ suppχt we have ‖η‖ ≤ ‖ξ‖/2, so that

|∂β1ξ χt(η)Dα
x∂

β2
ξ f(y, η)| ≤ C ′′k t

−|β1|(1 + ‖η‖)d−|β2|νdK,2s+k(f)

≤ C ′′k (1 + ‖ξ‖/2)|d|νdK,2s+k(f)

≤ C ′′′k (1 + ‖ξ‖)|d|νdK,2s+k(f).

It follows that
|Rk(D)ft(x, ξ)| ≤ C ′(1 + ‖ξ‖)|d|−kνdK,2s+2k(f).

We now turn to gt. By application of Theorem 6.4.9 it follows that

|Rk(D)(gt)(x, ξ)|
≤ Dk max

|α|+|β|≤2s
sup |Dα

x∂
β
ξ 〈Dx, ∂ξ〉k(ψtf)|

≤ D′k max
|α|+‖β‖≤2s,|γ|=k

sup |∂γ+β
ξ (ψtD

α+γ
x f)|

To estimate the latter expression, we concentrate on

|∂γ+β
ξ (ψtD

α+γ
x f)(y, η)|, (6.5.9)

for y ∈ K and η ∈ Rn. Since ψt(η) equals zero for ‖η‖ ≤ t = ‖ξ‖/4 and equals 1 for
‖η‖ ≥ 2t = ‖ξ‖/2, we distinguish two cases: (a) ‖ξ‖/4 ≤ ‖η‖ ≤ ‖ξ‖/2 and (b) ‖η‖ ≥ ‖ξ‖/2.
Case (a): the expression (6.5.9) can be estimated by a sum of derivatives of the form

|(∂γ1ξ ψt)D
α+γ
x ∂γ2ξ f(y, η)|, (γ1 + γ2 = γ + β),

with suitable binomial coefficients. Now

|(∂γ1ξ ψt)D
α+γ
x ∂γ2ξ f(y, η)| ≤ D′′kt

−|γ1|(1 + ‖η‖)d−‖γ2‖νdK,2s+2k(f)

≤ D′′′k (1 + ‖ξ‖)−|γ1|(1 + ‖ξ‖)d−|γ2|νdK,2s+2k(f)

≤ D′′′k (1 + ‖ξ‖)d−kνdK,2s+2k(f).

Case (b): we now have that (6.5.9) equals |Dα+γ
x ∂γ+β

ξ f(y, η)|, and can be estimated by

|Dα+γ
x ∂γ+β

ξ f)(y, η)| ≤ (1 + ‖η‖)d−|γ+β|νdK,2s+2k(f)

≤ (1 + ‖η‖)|d|−kνdK,2s+2k(f)

≤ (1 + ‖ξ‖/2)d−kνdK,2s+2k(f)

≤ D(1 + ‖ξ‖)d−kνdK,2s+2k(f).
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Collecting these estimates we see that

|Rk(D)gt(x, ξ)| ≤ D′(1 + ‖ξ‖)|d|−k νd2s+2k(f),

with D′ > 0 a constant independent of f, x and ξ. �

Corollary 6.5.7 Let d, k and s be as in the above lemma. With a suitable adaptation of
the constant C > 0, the estimate (6.5.8) holds for all (x, ξ) ∈ R2n.

Proof It follows from Lemma 6.5.5 and its proof that there exists a constant C1 > 0 such
that |Rk(D)f(x, ξ)| ≤ C1ν

d
K,2s+2k(f). We now use that

(1 + ‖ξ‖)|d|−k ≥ 5|d|−k

for all ξ with |ξ‖ ≤ 4. Hence, the estimate (6.5.8) holds with C = 5k−|d|C1 for ‖ξ‖ ≤ 4. �

Corollary 6.5.8 Let d ∈ R and m ∈ N. Then there exist constants C > 0 and l ∈ N such
that for all f ∈ C∞K,c(Rn) and all (x, ξ) ∈ R2n we have

|Rm(D)f(x, ξ)| ≤ C(1 + ‖ξ‖)d−mνdK,l(f). (6.5.10)

Proof Let s be as in the previous corollary. Fix k ∈ N such that |d| − k < d −m. Let
now C ′ > 0 be constant as in the previous corollary. Then for all f ∈ C∞K,c(Rn) we have

|Rk(D)f(x, ξ)| ≤ C ′(1 + ‖ξ‖)|d|−kνdK,2s+2m(f), ( (x, ξ) ∈ R2n).

On the other hand,

Rm(D)−Rk(D) =
∑

k≤j≤m

〈Dx, ∂ξ〉j

is a continuous linear operator SdK(Rn)→ Sd−kK (Rn). In fact, there exists a constant C ′′ > 0
such that

|Rm(D)f(f(x, ξ)−Rk(D)f(x, ξ)| ≤ C ′′(1 + ‖ξ‖)d−kνdK,2m−2(f)

for all f ∈ SdK(Rn) and (x, ξ) ∈ R2n. The result now follows with C = C ′ + C ′′ and with
l = max(2s+ 2m, 2m− 2). �

After these technicalities we can now finally complete the proof of the main theorem of
this section.
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Completion of the proof of Theorem 6.5.2 Let k ∈ N, let α, β ∈ Nn and put
m = k − |β|. Then by the previous corollary, applied with d− |β| in place of d there exist
constants C > 0 and l ∈ N such that for all f ∈ C∞K,c(Rn) and all (x, ξ) ∈ R2n,

|Rk(D)f(x, ξ)| ≤ (1 + ‖ξ‖)d−|β|νd−|β|K,l (f).

Moreover, by definition of the seminorms,

ν
d−|β|
K,l (Dα

x∂
β
ξ f) ≤ νdK,l+|α|+|β|(f)

for all f ∈ C∞K,c(Rn). Combining these estimates and using that Rk(D) commutes with

Dα
x∂

β
ξ , we find that

|Dα
x∂

β
ξRk(D)f(x, ξ)| = Rk(D)[Dα

x∂
β
ξ f ](x, ξ)

≤ CνdK,l+|α|+|β|(f),

for all f ∈ C∞K,c(Rn) and (x, ξ) ∈ R2n.
It follows from the above that for each d′ ∈ R the map

Rk+1(D) : C∞K,c(Rn)→ Sd
′−(k+1)(Rn)

is continuous with respect to the Sd
′
K (Rn)-topology on C∞K,c(Rn). In particular, this is valid

for d′ = d + 1. As C∞K,c(Rn) is dense in SdK(Rn) with respect to the topology of Sd+1
K (Rn),

it follows by application of Lemma 6.4.7 that Rk+1(D) maps SdK(Rn) into Sd−k(Rn) with
continuity relative to the Sd+1

K (Rn)-topology on the first space. As this topology is weaker
than the usual one, we conclude that Rk+1(D) : SdK(Rn)→ Sd−k(Rn) is continuous. Now

Rk+1(D)−Rk(D) = 〈Dx, ∂ξ〉k

is continuous SdK(Rn)→ Sd−k(Rn) as well, and the result follows. �
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Chapter 7

Pseudo-differential operators,
continued

7.1 The symbol of the composition

In this section we will investigate the composition P ◦Q of two pseudo-differential operators
P,Q ∈ Ψ(U); here U ⊂ Rn is an open subset. We first assume that P = Ψp and Q = Ψq,
with p ∈ Sd(U) and q ∈ Se(U), where d, e ∈ R. In general the operator Q maps C∞c (U)
to C∞(U), but not to C∞c (U). For the composition to exist we therefore require that the
projection pr1(supp q) has compact closure A in U. Then Ψq maps C∞c (U) to C∞A (U) and
P ◦Q is a well-defined continuous linear operator C∞c (U)→ C∞(U).

Proposition 7.1.1 Let p ∈ Sd(U) and q ∈ Sec (U). Then Ψp ◦Ψq = Ψr, with r ∈ Sd+e(U)
given by

r(x, ξ) = e〈Dy ,∂ξ〉p(x, ξ)q(y, η)|y=x,η=ξ. (7.1.1)

In particular, pr1(supp r) ⊂ pr1(supp p) and

r ∼
∑
α∈Nn

1

α!
∂αξ p(x, ξ)D

α
xq(x, ξ).

As a preparation we prove the following result.

Lemma 7.1.2 The Fourier transform of the function u : R2n → C, (x, ξ) 7→ eiξx (which

defines a tempered distribution) is given by Fu(x̂, ξ̂) = e−iξ̂x̂.

Proof Let Ω := {z ∈ C | Re z > 0}. For z ∈ Ω the function vz : x 7→ e−zx
2/2 defines a

function in S(R). By checking the Cauchy-Riemann equations relative to the variable z,
using differentiation under the integral sign, we see that for x̂ ∈ R, the Fourier transform

Fvz(x̂) =

∫
R
e−zx

2/2 e−ix̂x dx

123



124 CHAPTER 7. PSEUDO-DIFFERENTIAL OPERATORS, CONTINUED

depends holomorphically on z ∈ Ω. For z ∈ R∩Ω we find, by the substitution of variables
x→ z−1/2x, that Fvz(x̂) = z−1/2Fv1(z−1/2x̂), hence

Fvz(x̂) = z−1/2e−x̂
2/2z. (7.1.2)

By analytic continuation in z the latter formula is valid for all z ∈ Ω, provided the branch
of z 7→ z1/2 over Ω which is positive on R ∩ Ω is taken. If f ∈ S(R) then by continuity of
z 7→ 〈Fvz, f〉 = 〈vz,Ff〉 we conclude that formula (7.1.2) remains valid for z ∈ Ω \ {0},
provided the continuous extension of the fixed branch of the square root is taken. In
particular we find that

Fvi(x̂) = e−πi/4 eix̂
2/2, Fv−i(x̂) = eπi/4 e−ix̂

2/2.

We now turn to the function u. Let a : R2n → R2n be the linear map defined by a(x, ξ) =
(x+ ξ, x− ξ)/

√
2. Then

[a∗u](x, ξ) = ei(x
2−ξ2)/2 =

n∏
j=1

vi(ξj)v−i(xj).

Therefore,

F [a∗u](x̂, ξ̂) =
n∏
j=1

ei(ξ̂
2
j−x̂2j )/2 = [a∗u](−x̂, ξ̂).

By orthogonality of a we have that F ◦ a∗ = a∗ ◦F on S(R), hence also on S ′(R), and the
result follows. �

We also need an extension of the convolution product in order to be able to convolve
tempered distributions with Schwartz functions.

Lemma 7.1.3 The convolution product ∗ : S(Rn)×S(Rn)→ S(Rn) has a unique exten-
sion to a continuous bilinear map S(Rn) × S ′(Rn) → S ′(Rn). For this extension, denoted
by ∗ again,

F(f ∗ u) = Ff Fu, (f ∈ S(Rn), u ∈ S ′(Rn)).

Proof The multiplication map (f, u) → fu, S(Rn) × S ′(Rn) → S ′(Rn) is readily seen
to be continuous bilinear. Define ∗̃ = F−1 ◦ ∗ ◦ (F × F). Then ∗̃ is continuous bilinear
and extends the convolution product on S(Rn), by Lemma 4.2.2(b). Uniqueness of the
extension follows by density of S(Rn) in S ′(Rn). �

As a final preparation for the proof of Proposition 7.1.1 we need the following lemma.

Lemma 7.1.4 Let u ∈ C∞(R2n) be defined by u(x, ξ) := e−iξx. Then

e〈Dx,∂ξ〉f = u ∗ f for all f ∈ S(Rn).

Proof In view of the definition of the operator e〈Dx,∂ξ〉 ∈ End(S(R2n)) (see Section 6.4),
this follows immediately by applicaton of Lemmas 7.1.3 and 7.1.2. �
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Proof of Proposition 7.1.1 We will first prove the result under the assumption that
both p and q are smooth and compactly supported. Then p, q ∈ C∞c (R2n). Let f ∈ C∞c (U).
Then

[ΨpΨqf ](x) =

∫ ∫
eiξ(x−y)p(x, ξ) [Ψqf ](y) dy dξ

=

∫ ∫ ∫
eiξ(x−y)eiyη p(x, ξ) q(y, η)f̂(η) dη dy dξ

=

∫
eiηxr(x, η)f̂(η) dη,

where

r(x, η) =

∫ ∫
ei(ξ−η)(x−y) p(x, ξ) q(y, η) dξdy. (7.1.3)

Here we note that all integrands are compactly supported and continuous, so all integrals
are convergent, and the order of the integrations is immaterial. For each (x, η) ∈ R2n we
define Rx,η : R2n → C by

Rx,η(y, ξ) = p(x, ξ)q(y, η).

Then Rx,η is smooth and compactly supported. Moreover, (7.1.3) can be rewritten as
r(x, η) = [u ∗ Rx,η](x, η), with u(y, ξ) = e−iξy. In view of Lemma 7.1.4 above, this implies
that

r(x, η) = [e〈Dy ,∂ξ〉Rx,η](x, η) = e〈Dy ,∂ξ〉p(x, ξ)q(y, η)|y=x,ξ=η,

which in turn gives (7.1.1).
Fix a compact subset K ⊂ U. Our next step is to extend the validity of (7.1.1) to

(p, q) ∈ SdK(U)×SeK(U). We will do this by using a continuity argument. For p, q ∈ S∞K (U)
we observe that, for each (x, η) ∈ Rn × Rn, the function (y, ξ) 7→ p(x, ξ)q(y, η) belongs to
S∞K (U) again, and we define the function ρ(p, q) : U × Rn → C by

ρ(p, q)(x, ξ) = e〈Dy ,∂ξ〉p(x, ξ)q(y, η)|y=x,η=ξ. (7.1.4)

In view of the lemma below, ρ has values in S∞(U) and maps SdK(U)× SeK(U) continuous
bi-linearly to Sd+e(U). Fix f ∈ C∞c (U). Then in view of the remark below Definition 5.2.2
follows that

(p, q) 7→ Ψρ(p,q)(f) (7.1.5)

maps SdK(U)× SeK(U) continuous bi-linearly to C∞(U), for all d, e ∈ N.
On the other hand, for all d ∈ N the map (r, g) 7→ Ψr(g) is continuous bilinear from

SdK(U)× C∞c (U) to C∞K (U) and by composition it follows that for all d, e ∈ N the map

(p, q) 7→ ΨpΨq(f) (7.1.6)

is continuous bilinear from SdK(U) × SeK(U) to C∞K (U). By the first part of the proof the
maps (7.1.5) and (7.1.6) are equal on C∞K,c(U)×C∞K,c(U). By density of C∞K,c(U) in SdK(U) for
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the Sd+1-topology and in SeK(U) for the Se+1-topology, it follows that the equality extends
to SdK(U)× SeK(U).

It follows that Ψp ◦Ψq = Ψρ(p,q) on C∞c (U), for all p ∈ SdK(U) and q ∈ SeK(U).
Now assume more generally that p ∈ Sd(U) and that q ∈ Sec (U). Then by using a

partition of unity we may write p as a locally finite sum p =
∑

j pj, with pj ∈ Sdc (U), and
pr1(supp pj) a locally finite collection of subsets of U. For each j we have Ψpj ◦Ψq = Ψrj with
rj given in terms of pj and q as in (7.1.3). In particular this implies that pr1(supp rj) ⊂
pr1(supp pj). It follows that {pr1(supp rj)} is a locally finite collection of subsets of U.
Therefore, r =

∑
j rj defines a symbol in Sd+e(U). Clearly, r satisfies (7.1.3), and Ψp ◦Ψq =

Ψr. �

Lemma 7.1.5 Let K ⊂ U be a compact subset. Then the map ρ defined by (7.1.4) maps
SdK(U)× SeK(U) continuous bilinearly to Sd+e

K (U).

Proof By continuity of the map e〈Dy ,∂ξ〉 : SdK(U) → Sd(Rn) (see Theorem 6.5.2 there
exist constants C > 0, k ∈ N, such that

(1 + ‖ξ‖)−d|[eDx∂ξf ](x, ξ)| ≤ CνdK,k(f),

for all f ∈ SdK(U), x ∈ K and ξ ∈ Rn. Let p ∈ SdK(U) and q ∈ SeK(U). Then by application
of the above estimate to f = fx,η : (y, ξ) 7→ p(x, ξ)q(y, η), and observing that

(1 + ‖η‖)−eνdK,k(fx,η) ≤ νdK,k(p)ν
e
K,k(q),

we find the estimate

(1 + ‖ξ‖)−d−e|ρ(p, q)(x, ξ)| ≤ CνdK,k(p)ν
e
K,k(q), (7.1.7)

for all (x, ξ) ∈ U×Rn. (Note that the expression on the left-hand side vanishes for x ∈ U\K.
) We now observe that for α, β ∈ Nn we have

∂αx∂
β
ξ ρ(p, q) =

∑
α1+α2=α
β1+β2=β

(
α
α1

)(
β
β1

)
ρ(∂α1

x ∂
β1
ξ p, ∂

α2
x ∂

β2
ξ q).

Combining this with (7.1.7) we find that for every l ∈ N there exists a constant Cl > 0,
only depending on l, such that

νd+e
K,l ρ(p, q) ≤ C Cl ν

d
K,k+l(p) ν

e
K,k+l(q).

The asserted continuity follows. �

Exercise 7.1.6 Give a proof of Proposition 6.2.2 based on the idea of continuous exten-
sion used in the above proof.
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We recall that a pseudo-differential operator Q ∈ Ψe(U) has an operator kernel KQ ∈
D′(U ×U) and is said to be properly supported if and only if the projection maps pr1, pr2 :
supp (KQ)→ Rn are proper.

If B ⊂ U is compact then so is A := pr1(KQ ∩ pr−1
2 (B)) and it is easily verified that

Q maps C∞B (U) into C∞A (U). Hence, Q is a continuous linear endomorphism of C∞c (U).
Thus, for any P ∈ Ψd(U) the composition P ◦Q is a well defined continuous linear operator
C∞c (U)→ C∞(U).

Theorem 7.1.7 Let P ∈ Ψd(U) and Q ∈ Ψe(U) be properly supported. Then P ◦Q
belongs to Ψd+e(U). Moreover, the full symbol of P ◦Q is given by

σ(P ◦Q) ∼
∑
α∈Nn

1

α!
∂αξ σ(P )Dα

xσ(Q).

Proof In view of Lemma 7.1.9 below, there exist symbols p ∈ Sd(U) and q ∈ Se(U) such
that P = Ψp and Q = Ψq. Let KP ∈ D′(U×U) be the distribution kernel of P. Let {ψj} be
a partition of unity on U. Let pj = ψjp; then P =

∑
j Pj, with Pj = Ψpj . For each j the set

Aj := pr2(pr−1
1 (suppψj) ∩ suppKP ) is compact and contained in U. Hence, there exists a

χj ∈ C∞c (U) with χj = 1 on Aj. It follows that Pj ◦Mχj has kernel (ψj⊗χj)KP = (ψj⊗1)KP

hence equals Pj. Therefore, Pj ◦Q = Pj ◦Qj, where Q = Mχj ◦Q = Ψqj , with qj = χjq. It
follows that Pj ◦Q = Ψrj , with rj ∈ Sd+e(U) expressed in terms of pj and qj as in formula
(7.1.3). In particular, pr1(supp (rj)) ⊂ suppψj, so that r =

∑
j rj is a locally finite sum

defining an element of Sd+e(U). We now have that

Ψr =
∑
j

Pj ◦Qj =
∑
j

Pj ◦Q = P ◦Q.

on C∞c (U). From the construction, it follows that qj = q on an open neighborhood of
suppψj, so that for all α ∈ Nn we have

∂αξ pj D
α
xqj = ∂αξ pjD

α
xq.

This implies that

r ∼
∑
α∈Nn

∑
j

1

α!
∂αξ pj D

α
xqj =

∑
α∈Nn

∑
j

1

α!
∂αξ pj D

α
xq

=
∑
α∈Nn

1

α!
∂αξ pD

α
xq.

The result follows. �

Lemma 7.1.8 Let T ∈ Ψ−∞(U) be properly supported. Then there exists a r ∈ S−∞(U)
such that T = Ψr.
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Proof Let K be the integral kernel of T. Fix a partition of unity {ψj} on U. Then
Kj(x, y) = ψj(x)K(x, y) defines a smooth function with compact support contained in
pr−1

1 (suppψj) ∩ suppK. By Lemma 5.2.5 (see also its proof) there exists a p ∈ S−∞(U)
with pr1(supp p) ⊂ pr1(ψj) such that TKj = Ψpj . The locally finite sum

∑
j pj defines an

element p ∈ S−∞(U), and it is clear that Ψp =
∑

j Ψpj =
∑

j TKj = TK on C∞c (U). �

Lemma 7.1.9 Let d ∈ R ∪ {∞} and let P ∈ Ψd(U) be properly supported. Then there
exists a p ∈ Sd(U) such that P = Ψp.

Proof In view of the above lemma we may assume that d > −∞. Then by Lemma 6.1.6
we may rewrite P as P = Ψq + T, with q ∈ Sd(U) and T ∈ Ψ−∞ and with Ψq and hence
also T properly supported. By the previous lemma there exists a r ∈ S−∞(U) such that
T = Ψr. The lemma now follows with p = q + r. �

We can now deduce the important result that the principal symbol behaves multiplica-
tively.

Corollary 7.1.10 Let P ∈ Ψd(U) and Q ∈ Ψe(U) be properly supported. Then P ◦Q
belongs to Ψd+e(U). Moreover, the principal symbol of P ◦Q of order d+ e is given by

σd+e(P ◦Q) = σd(P )σe(Q).

7.2 Invariance of pseudo-differential operators

In order to be able to lift pseudo-differential operators to manifolds, we need to establish
invariance under diffeomorphisms. For this it will turn out to be useful to have a different
characterization of properly supported pseudo-differential operators.

We recall the definition of the (Fréchet) space C∞(Rn) ⊗̂ S(Rn) = S−∞(Rn) given in the
text before Exercise 5.1.4. Note that S(Rn) may be identified with the (closed) subspace
of functions in C∞(Rn) ⊗̂ S(Rn) that are constant in the x-variable.

For ϕ ∈ C∞(Rn) ⊗̂ S(Rn) the integral

W (ϕ)(x) :=

∫
Rn
eiξxϕ(x, ξ) dx

is absolutely convergent for every x ∈ X and defines a function W (ϕ) ∈ C∞(Rn). Moreover,
by Lemma 5.2.1 the transform W is continuous linear from C∞(Rn) ⊗̂ S(Rn) to C∞(Rn).

We now define a more general symbol space as follows. We write (x, ξ, y) for points in
R3n ' Rn × Rn × Rn and denote by Σd the space of smooth functions R3n → C such that
for all compact K ⊂ Rn and all k ∈ N,

νdK,k(r) := max
|α|,|β|,|γ|≤k

sup
K×Rn×K

(1 + |ξ|)|β|−d|∂αx∂
β
ξ ∂

β
y r(x, ξ, y)| <∞. (7.2.8)
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Note that the symbol space Sd(Rn) may be viewed as the subspace of Σd consisting of
functions that are constant in the y-variable.

Let now r ∈ Σd. Then for each f ∈ S(Rn) the integral

r(x, ξ, f) :=

∫
Rn
e−iξyr(x, ξ, y)f(y) dy

converges absolutely and defines a function in C∞(Rn) ⊗̂ S(Rn). Moreover, the map f 7→
r( · , f) is continuous for the obvious topologies.

The definition of pseudo-differential operator may now be extended to symbols in Σd

by putting

Ψr(f)(x) := W (r( · , · , f)) =

∫
Rn

∫
Rn
eiξ(x−y)r(x, ξ, y)f(y) dy dξ. (7.2.9)

Note that if r is independent of the variable y, then r ∈ Sd(Rn) and by carrying out the
integration over y we see that (7.2.9) equals∫

Rn
eiξxr(x, ξ)f̂(ξ) dξ,

which is compatible with the definition given before. In fact, we have not really extended
our class of operators. For K ⊂ Rn a compact subset, let Σd

K be the closed subspace of Σd

consisting of all functions r ∈ Σd with supp r ⊂ K×Rn×K. Moreover, let Σd
c be the union

of the spaces Σd
K, for K ⊂ Rn compact.

Proposition 7.2.1 Let r ∈ Σd
K. Then

p(x, ξ) = e〈Dy ,∂ξ〉r(x, ξ, y)|y=x

belongs to Sd(Rn), and Ψr = Ψp. In particular, Ψr belongs to Ψd(Rn) and its full symbol is
given by

σd(Ψr) ∼
∑
α∈Nn

1

α!
Dα
y ∂

α
ξ r(x, ξ, y)|y=x.

To prepare for the proof we introduce the space

C∞K,c(R3n) := {ϕ ∈ C∞c (R3n) | suppϕ ⊂ K × Rn ×K}.

The following lemma is proved in the same fashion as Lemma 4.1.9.

Lemma 7.2.2 Let d′ > d. Then C∞K,c(R3n) is dense in Σd
K for the Σd′-topology.

Proof of Proposition 7.2.1 For r ∈ Σd
K and fixed x ∈ Rn the function rx : (y, ξ) 7→

r(x, ξ, y) belongs to Sd(Rn). Moreover, x 7→ rx is a smooth map Rn → SdK(Rn), supported
by K and it follows that

x 7→ e〈Dy ,∂ξ〉(rx)
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is a smooth map Rn → SdK(Rn). The function p = p(r) is given by the formula

p(r)(x, ξ) = e〈Dy ,∂ξ〉(rx)(x, ξ).

It is readily seen that r 7→ p(r) is a continuous linear map Σd
K → SdK(Rn). Fix f ∈ C∞c (Rn).

Then both r 7→ Ψr(f) and r 7→ Ψr(p)(f) are continuous linear maps Σd
K → C∞(Rn), for

every d ∈ R. As C∞K,c(R3n) is dense in Σd
K for the Σd+1-topology, it suffices to prove the

identity Ψr(f) = Ψp(r)(f) for every p ∈ C∞K,c(R3n).

Thus, let p ∈ C∞K,c(R3n) be fixed. Then

Ψr(f) =

∫ ∫
eiξ(x−y)r(x, ξ, y)f(y) dy dξ

=

∫ ∫
eiξ(x−y)rx(y, ξ)

∫
eiyηf̂(η) dη dy dξ

=

∫
eiηx p(x, η)f̂(η) dη,

with

p(x, η) =

∫ ∫
e−i(η−ξ)(x−y)rx(y, ξ)dydξ.

Write u(y, ξ) = e−iξy, then it follows that

p(x, η) = (u ∗ rx)(x, η)

= e〈Dy ,∂ξ〉rx(y, η)|y=x

= p(r)(x, η).

All assertions now follow. �

Corollary 7.2.3 Let p ∈ Sc(Rn). Then Ψp is properly supported if and only if there exists
a r ∈ Σd

K such that

Ψp = Ψr on C∞c (Rn).

For any such r the d-th order principal symbol of p is represented by the symbol (x, ξ) 7→
r(x, ξ, x).

Proof The only if part as well as the statement about the principal symbol follows
from Proposition 7.2.1 above. For the if part, assume that Ψp is properly supported. Let
K be a compact subset of Rn such that supp p ⊂ K × Rn. Let Kp be the distribution
kernel of Ψp. Then K×Rn∩ suppKp is compact, hence contained in a product of the form
K ×K′, with K′ ⊂ Rn compact. Let V be any open neighborhood of K′ in Rn. Then there
exists a χ ∈ C∞c (U) which is identically one on a neighborhood of K′. It follows that the
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Ψp = Ψp ◦Mχ on C∞c (Rn). This implies that for all f ∈ C∞c (Rn),

Ψp(f)(x) = Ψp(χf(x))

=

∫
eiξxp(x, ξ)F(χf)(ξ) dξ

=

∫
eiξxp(x, ξ)

∫
e−iξyχ(y)f(y) dy dξ

= Ψr(f)(x),

with r(x, ξ, y) = p(x, ξ)χ(y). �

We now turn to the actual proof of the invariance. Given two points x, y ∈ Rn, we
denote the line segment from x to y by [x, y]. Thus,

[x, y] = {x+ t(y − x) | t ∈ [0, 1]}.
We agree to write Mn(R) for the space of n× n-matrices with real entries, and GL (n,R)
for the subset of invertible matrices.

Lemma 7.2.4 Let U be an open subset of Rn.

(a) There exists an open neighborhood Ω of the diagonal diag (U) in U × U such that
(x, y) ∈ Ω⇒ [x, y] ⊂ U.

(b) If Ω is any such neighborhood, and if f : U → Rn is a smooth map, then there exists
a smooth map T : Ω→ Mn(R) such that

f(y)− f(x) = T (x, y)(y − x), (x, y ∈ Ω).

(c) Any continuous map T : Ω → Mn(R) with property (b) satisfies T (x, x) = df(x) for
all x ∈ U.

Proof The map a : [0, 1]× (U ×U)→ Rn given by a(t, x, y) = x+ t(y− x) is continuous
and maps [0, 1]×diag (U) to U. The preimage a−1(U) of U under a is open in [0, 1]×U×U
and contains [0, 1] × diag (U). By compactness of [0, 1] it contains a subset of the form
[0, 1] × Ω with Ω an open neighborhood of diag (U) in U × U. For (x, y) ∈ Ω we have
[x, y] = a([0, 1]× {(x, y)}) ⊂ U.

Let f be as in (b). Then

f(y)− f(x) =

∫ 1

0

∂tf(x+ t(y − x)) dt = T (x, y)(y − x),

with

T (x, y) =

∫ 1

0

df(x+ t(y − x)) dt.

Clearly, T is a smooth map Ω→ Mn(R).
Let now T : Ω→ Mn(R) be any continuous map satisfying property (b). Then for each

v ∈ Rn we have

df(x)v = lim
t→0

t−1[f(x+ tv)− f(x)] = lim
t→0

T (x, x+ tv)v = T (x, x)v.

�
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If ϕ : M → N is a diffeomorphism of smooth manifolds, and P : C∞c (M)→ C∞(M) a
continuous linear operator, then the push-forward of P by ϕ, denoted ϕ∗(P ), is defined to
be the continuous linear operator ϕ∗(P ) : C∞c (N)→ C∞(N) given by

ϕ∗(P )(f) = P (f ◦ϕ) ◦ϕ−1.

Proposition 7.2.5 Let ϕ : U → V be a smooth diffeomorphism between open subsets of
Rn, with inverse ψ. Let Ω be an open neighborhood of diag (V ) in V × V and assume that
T : Ω→ GL (n,R) is a smooth map such that ψ(y)−ψ(x) = T (x, y)(y−x) for all (x, y) ∈ Ω
(such a pair Ω, T exists). Let K be a compact subset of U such that ϕ(K)× ϕ(K) ⊂ Ω.

(a) For every d ∈ N and r ∈ Σd
K, the function ϕ∗(r) : R3n → C defined by

(x, η, y) 7→ r(ψ(x), T (x, y)−1tη, ψ(y)) | det dψ(y)| | detT (x, y)|−1

on K × Rn ×K, and by ϕ∗(r) = 0 elsewhere, belongs to Σd
ϕ(K).

(b) For every d ∈ N, the map r 7→ ϕ∗(r) is continuous linear Σd
K → Σd

ϕ(K).

(c) For every d ∈ N and all r ∈ Σd
K,

ϕ∗(Ψr) = Ψϕ∗(r).

(d) The principal symbol of ϕ∗(Ψr) is represented by the symbol

(x, ξ) 7→ r(ψ(x), dϕ(ψ(x))tξ, ψ(x)).

Proof The proof of (a) and (b) is straightforward, be it somewhat tedious. Fix f ∈
C∞c (V ). Then the equality ϕ∗(Ψr)(f) = Ψϕ∗(r)(f) is equivalent to

Ψr(f ◦ϕ) ◦ψ = Ψϕ∗(r)(f). (7.2.10)

The map r 7→ Ψr(f ◦ϕ) ◦ψ is continuous linear Σd
K → C∞K (U) and so is the map r 7→

ϕ∗(Ψϕ∗(r)), for every d ∈ N. Now C∞K,c(R3n) is dense in Σd
K for the Σd+1-topology. Therefore,

it suffices to prove the equality (7.2.10) for all r ∈ C∞K,c(R3n).
Fix r ∈ C∞K,c(R3n) and let x ∈ U. Then

Ψ(f ◦ϕ)(ψ(x)) =

∫ ∫
eiξψ(x)−iξz r(ψ(x), ξ, z) f(ϕ(z)) dz dξ

=

∫ ∫
eiξ(ψ(x)−ψ(y)) r(ψ(x), ξ, ψ(y)) f(y) | det dψ(y)| dy dξ

=

∫ ∫
ei[T (x,y)tξ](x−y) r(ψ(x), ξ, ψ(y)) f(y) | det dψ(y)| dξ dy

=

∫ ∫
eiη(x−y)ϕ∗(r)(x, η, y) f(y) dη dy

= Ψϕ∗(r)(f)(x).
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This establishes (c).
For (d) we note that T (x, x) = dψ(x) so that the principal symbol of Ψϕ∗(r) is given by

(x, ξ) 7→ ϕ∗(r)(x, ξ, x) = ϕ(ψ(x), dψ(x)−1tξ, ψ(x)).

Now use that dψ(x)−1 = dh(ψ(x)). �

Theorem 7.2.6 Let ϕ : U → V be a diffeomorphism of open subsets of Rn. Then the
following assertions are valid.

(a) For each d ∈ R ∪ {−∞} and all P ∈ Ψd(U) the operator ϕ∗(P ) belongs to Ψd(V ).

(b) Let the principal symbol of P be represented by p ∈ Sd(U). Then the principal symbol
of ϕ∗(P ) is represented by

ϕ∗(p) : (x, ξ) 7→ p(ϕ−1(x), dϕ(ϕ−1(x))tξ).

Proof Let ψ : V → U be the inverse to ϕ and let Ω, T be as in the statement of
Proposition 7.2.5. First, assume that d = −∞ and let P ∈ Ψ−∞(U). Then P is an integral
operator TK with integral kernel K ∈ C∞(U × U). Let f ∈ C∞c (V ) and x ∈ V, then by
substitution of variables

ϕ∗(P )(f)(x) =

∫
U

K(ψ(x), z)f(ϕ(z)) dz

=

∫
V

K(ψ(x), ψ(y))| det dψ(y)| f(y)dy

from which we see that ϕ∗(P ) is the integral transformation with smooth integral kernel
K̃ ∈ C∞(V × V ) given by

K̃(x, y) = K(ψ(x), ψ(y)) | det dψ(y)|.

We now assume that d ∈ R and that P ∈ Ψd(U). Then by Lemma 6.1.6 we may write
P = Ψp +T, with T ∈ Ψ−∞(U) and p ∈ Sd(U) such that Ψp is properly supported and has
distribution kernel Kp supported inside ΩU := (ϕ × ϕ)−1(Ω). Since ϕ∗(T ) is a smoothing
operator by the first part of the proof, it suffices to show that ϕ∗(Ψp) ∈ Ψd(V ). For this
we proceed as follows.

Let {χj} be a partition of unity on U such that suppχj × suppχj ⊂ ΩU for every
j. For each j we select an open neighborhood Uj of suppχj with Uj × Uj ⊂ ΩU and
a function χ′j ∈ C∞c (Uj) which is identically 1 on suppχj. Then Pj = Pj ◦Mχ′j

+ Tj,
with Tj a smoothing operator supported in suppχj × Uj and with Pj ◦Mξj = Ψrj , where
rj(x, ξ, y) = χj(x)p(x, ξ)χ′j(y).

We now observe that Kj = suppχ′j is compact and that ϕ(Kj)× ϕ(Kj) ⊂ Ω. Morover,
rj ∈ Σd

Kj . It follows that ϕ∗(Ψrj) = Ψϕ∗(rj). The supports of the kernels of the operators Tj
form a locally finite set, so that T =

∑
j Tj is a smoothing operator. Hence, so is ϕ∗(T ).
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The sum
∑

j Prj is locally finite, and therefore so is Q =
∑

j ϕ∗(Prj). Hence Q ∈ Ψd(V ).
We conclude that ϕ∗(P ) = Q + ϕ∗(T ) is a pseudo-differential operator on V of order d.
Its principal symbol equals the principal symbol of Q, which is represented by the symbol
q ∈ Sd(V ) given by

q(x, ξ) =
∑
j

ϕ∗(rj)(x, ξ, x)

=
∑
j

rj(ψ(x), dϕ(ψ(x))tξ, ψ(x))

=
∑
j

pj(ψ(x), dϕ(ψ(x))tξ)

= p(ψ(x), dϕ(ψ(x))tξ) = ϕ∗(p)(x, ξ).

�

7.3 Pseudo-differential operators on a manifold, scalar

case

In view of the results of the previous section we can now extend the notion of a pseudo-
differential operator to a smooth manifold M of dimension n.

Definition 7.3.1 Let d ∈ R ∪ {−∞}. A pseudo-differential operator P of order d on M
is a continuous linear operator C∞c (M) → C∞(M) given by a distribution kernel KP ∈
D′(M ×M,CM �DM) such that the following conditions are fulfilled.

(a) The kernel KP is smooth outside the diagonal of M ×M.

(b) For each a ∈ M there exists a chart (Uκ, κ) containing a such that the operator
Pκ : C∞c (κ(U))→ C∞(κ(U)) given by

Pκ(f)(κ(x)) = P (f ◦κ)(x), (x ∈ U)

belongs to Ψd(κ(U)).

Remark 7.3.2 Of course, by the Schwartz kernel theorem, each continuous linear oper-
ator P : C∞c (M) → C∞(M) is in particular continuous linear C∞c (M) → D′(M), hence
given by a distribution kernel KP ∈ D′(M ×M,DM ⊗CM). In the above formulation, the
existence of the kernel is demanded in order not to rely on the kernel theorem.

Condition (a) asserts that KP has singular support contained in the diagonal of M,
whereas condition (b) stipulates that the singularity along the diagonal is of the same type
as that of the kernel of a pseudo-differential operator on Rn.
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If ϕ : M → N is a diffeomorphism then by the nature of the definition the map
ϕ∗ : Ψd(M) → Ψd(N) is readily seen to be a linear isomorphism. Before proceeding we
will show that the definition of pseudo-differential operator coincides with the old one in
case M is an open subset of Rn.

Lemma 7.3.3 Let M be an open subset of Rn and let P : C∞c (M) → C∞(M) be a
continuous linear operator with distribution kernel KP . Then the following statements are
equivalent.

(1) Conditions (a) and (b) of the above definition are fulfilled.

(2) P is a pseudo-differential operator in the sense of Definition 5.2.4.

Proof Clearly (2) implies (1), since M can be taken as the coordinate patch. We assume
(1) and will prove (2).

We first assume that d = −∞. Then requirements (a) and (b) of Definition 7.3.1
guarantee that KP is smooth on all of M, hence that P is an integral operator with
smooth kernel KP ∈ Γ∞(M ×M,CM �DM). Thus, P is an operator in Ψ−∞ in the sense
of Definition 7.3.1.

We now assume that d ∈ R. By Lemma 6.1.6 each a ∈ M has an open neighborhood
Ua in M such that the operator Pa : C∞c (Ua) → C∞(Ua) given by f 7→ (Pf)|Ua may be
written as Pa = Ψpa +Ta, with pa a symbol in Ψd(Ua) and with Ta ∈ Ψ−∞(Ua) a smoothing
operator.

By paracompactness of M there exists a partition of unity {χj} on M such that for
each j the support of χj is contained in some set Uaj as above. We put Pj = Paj , pj = paj
and Tj = Taj . Then Pj = Ψpj + Tj. For each j we choose a χ′j ∈ C∞c (Uj) such that χ′j = 1
on an open neighborhood of suppχj. Then χj(1 − χ′j) = 0 so T ′j := MχjPM(1−χ′j) has

kernel [χj ⊗ (1 − χ′j)]KP which is smooth. The supports of these kernels form a locally
finite collection, so that T ′ =

∑
j T
′
j is a smoothing operator.

Moreover, we may write

Mχj ◦P ◦Mχ′j
= Ψqj +Mχj ◦Tj ◦Mχ′j

,

with qj ∈ Sd(M) supported by suppψj. It follows that q =
∑

j qj is a locally finite sum and

defines an element of Sd(M). Moreover, the smooth kernels of the operators Mχj ◦Tj ◦Mχ′j
are locally finitely supported in M × M so that the operators sum up to a smoothing
operator T. For f ∈ C∞c (M) we now have that

Pf =
∑
j

χjP (χ′jf) + T ′(f) = Ψq(f) + T (f) + T ′(f)

and (2) follows. �
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If M is a smooth manifold, P : C∞c (M) → C∞(M) a continuous linear operator, and
U ⊂M an open subset, we agree to write PU for the operator C∞c (U)→ C∞(U) given by

PUf = (Pf)|U , (f ∈ C∞c (U)).

The following results are now easy consequences of the definitions.

Exercise 7.3.4 If K ∈ D′(M ×M) is the distribution kernel of P, then the restriction
K|U×U is the distribution kernel of PU .

Exercise 7.3.5 Let M be a smooth manifold, and U ⊂M an open subset. Then for each
P ∈ Ψd(M), the operator PU belongs to Ψd(U).

In the sequel we shall make frequent use of the following results.

Lemma 7.3.6 Let P ∈ Ψd(M) and let χ ∈ C∞(M).

(a) Let ψ ∈ C∞(M) be such that suppψ ∩ suppχ = ∅. Then

Mχ ◦P ◦Mψ ∈ Ψ−∞(M).

(b) Let χ′ ∈ C∞c (M) be such that χ′ = 1 on an open neighborhood of supp χ. Then

Mχ ◦P −Mχ ◦P ◦Mχ′ ∈ Ψ−∞(M).

Likewise, P ◦Mχ −Mχ′ ◦P ◦Mχ ∈ Ψ−∞(M).

(c) Let {Pj} is a collection of operators from Ψd(M) such that the supports suppKPj of
the distribution kernels form a locally finite collection of subsets of M ×M. Then∑

j

Pj ∈ Ψd(M).

Proof Let KP denote the distribution kernel of P. The distribution kernel K ′ of the
operator Mχ ◦P ◦Mψ equals K ′ = (χ⊗ ψ)KP . Since χ⊗ ψ = 0 on an open neighborhood
of the diagonal in M ×M, the kernel K ′ is smooth. Hence (a).

We turn to (b). There exists a function ϕ ∈ C∞(M) such that ϕ = 1 on an open
neighborhood of suppχ and such that χ′ = 1 on an open neighborhood of suppϕ. It
follows that (1− χ) and ϕ have disjoint supports. Hence

Mχ ◦P −Mψ ◦Mχ = Mψ ◦ (Mϕ ◦P ◦M1−χ) ∈ Ψ−∞(M).

The second statement of (b) is proved in a similar way.
It remains to prove (c). Let Q =

∑
j Pj. Then Q is a well defined continuous linear

operator C∞c (M) → C∞(M) with distribution kernel KQ =
∑
KPj . On the complement

of the diagonal in M ×M the kernel KQ is a locally finite sum of smooth functions, hence
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a smooth function. Let a ∈M. There exists a coordinate patch U 3 a whose closure in M
is compact. The collection J of indices j for which suppKPj ∩ (U × U) 6= ∅ is finite. It
follows that the kernel of QU equals

KQ|U×U =
∑
j∈J

KPj |U×U =
∑
j∈J

KPjU .

Hence, QU equals the finite sum
∑

j∈J PjU and belongs to Ψd(U). It follows that Q ∈
Ψd(M). �

Exercise 7.3.7 Let M be a smooth manifold, and P : C∞c (M) → C∞(M) a continuous
linear operator with a distribution kernel that it smooth outside the diagonal in M ×M.
Let {Uj} be an open covering of M. If PUj ∈ Ψd(Uj) for each j, then P ∈ Ψd(M).

The following result indicates that pseudo-differential operators modulo smoothing op-
erators behave like sections of a sheaf.

Lemma 7.3.8 Let {Uj} be an open covering of the manifold M.

(a) Let P,Q ∈ Ψd(M) be such that PUj = QUj for all j. Then P −Q ∈ Ψ−∞(M).

(b) Assume that for each j a pseudo-differential operator Pj ∈ Ψd(Uj) is given. Assume
furthermore that Pi = Pj on C∞c (Ui ∩ Uj) for all indices i, j with Ui ∩ Uj 6= ∅. Then
there exist a P ∈ Ψd(M) such that PUj − Pj ∈ Ψ−∞(Uj) for all j. The operator P is
uniquely determined modulo Ψ−∞(M).

Proof Let KP and KQ denote the distribution kernels of P and Q, respectively. Then
KP |Uj×Uj and KQ|Uj×Uj are the distribution kernels of PUj and QUj , respectively. It follows
that KP−Q = KP − KQ is smooth on each of the sets Uj × Uj, hence on the diagonal of
M ×M. As KP−Q is already smooth outside the diagonal, it follows that KP−Q is smooth
on M ×M. Hence, P −Q ∈ Ψ−∞(M).

We turn to (b). Let Ω = ∪jUj×Uj. Then Ω is an open neighborhood of the diagonal in
M ×M. Let Kj ∈ D′(Uj ×Uj) denote the distribution kernel of Pj. Let Uij := Ui ∩Uj 6= ∅.
Then from the assumption it follows that Ki = Kj on (Ui × Ui) ∩ (Uj × Uj) = Uij × Uij.
From the gluing property of the sheaf D′ on Ω it follows that there exists a K ∈ D′(Ω)
such that K = Kj on Uj × Uj for all j.

We will now use a cut off function to extend K to all of M×M, leaving it unchanged on
an open neighborhood of the diagonal. Let {χν} be a partition of unity of M, subordinate
to the covering {Uj}. For each ν we select j(ν) such that suppχν ⊂ Uj(ν) and we fix a
function χ′ν ∈ C∞c (Uj(ν)) which is identically 1 on an open neighborhood of suppχν . The
functions χν ⊗ χ′ν form a locally finitely supported family of functions in C∞c (Ω). Put

ψ :=
∑
ν

χν ⊗ χ′ν .
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Let x ∈ M and let Nx be the finite collection of indices ν with x ∈ suppψν . Then the
functions χ′ν , for ν ∈ Nx are all 1 on a common open neighborhood Vx of x in M. Moreover,∑

ν∈Nx χν equals 1 on an open neighborhood Ux of x in M. It follows that ψ = 1 on
Ux × Vx. Hence, ψ = 1 on an open neighborhood of the diagonal in M ×M. Put P =∑

νMχν ◦Pj(ν) ◦Mχ′ν . Then P is a pseudo-differential operator on M with kernel equal to

KP =
∑
ν

(χν ⊗ χ′ν)KPj = ψK.

For each j ∈ U we have that PUj has kernel

KP |Uj×Uj = ψK|Uj×Uj = ψKj.

It follows that KP −KPj is smooth on Uj×Uj, hence PUj −Pj ∈ Ψ−∞(Uj). The uniqueness
statement follows from (a). �

In fact, with a bit more effort it can be shown that Ψd/Ψ−∞ defines a sheaf of vector
spaces on M. More precisely, for two open subsets U ⊂ V of M the map P 7→ PU ,
Ψd(V ) → Ψd(U) induces a restriction map Ψd(V )/Ψ−∞(V ) → Ψd(U)/Ψ−∞(U) which we
claim to define a sheaf. The following exercise prepares for the proof of this fact.

Exercise 7.3.9 Let Ω be smooth manifold, and let {Ωj}j∈J be an open cover of Ω. Assume
that for each pair of indices (i, j) with Ωij := Ωi∩Ωj 6= ∅ a smooth function gij ∈ C∞(Ωij)
is given such that

gij + gjk + gkj = 0 on Ωijk := Ωi ∩ Ωj ∩ Ωk

for all i, j, k with Ωijk 6= ∅. Show that there exist functions gj ∈ C∞(Uj) such that gi−gj =
gij for all i, j. Hint: select a partition of unity {ψα}α∈A on Ω which is subordinate to the
covering {Ωj}. Thus, a map j : A → J is given such that suppψα ⊂ Uj(α). Now consider
gj :=

∑
α ψαgjj(α).

Exercise 7.3.10

(a) Show that with the restriction maps defined above the assignment U 7→ Ψd(U)/Ψ−∞(U)
defines a presheaf on M.

(b) Show that U 7→ Ψd(U)/Ψ−∞(U) satisfies the restriction properety of a sheaf.

(c) Use the previous exercise combined with the arguments of the proof of Lemma 7.3.8
to show that U 7→ Ψd(U)/Ψ−∞(U) has the gluing property.
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7.4 The principal symbol on a manifold

We will now extend the definition of principal symbol of a pseudo-differential operator to
the setting of a manifold M. Let π : T ∗M →M denote the cotangent bundle of M.

First we consider a coordinate patch U of M. Let κ : U → U ′ be a diffeomorphism
onto an open subset U ′ of Rn. We consider the induced diffeomorphism T ∗κ : T ∗U →
U × (Rn)∗ ' U ′ × Rn given by

T ∗κ(ξx) = (κ(x) , ξx ◦Txκ
−1), (x ∈ U, ξx ∈ T ∗xM).

Pull-back by the inverse of T ∗κ induces a linear isomorphism

κ∗ : C∞(T ∗U)→ C∞(U ′ × Rn).

For d ∈ R ∪ {−∞} we define

Sd(U) = {p ∈ C∞(T ∗U) | κ∗(p) ∈ Sd(U ′)}.

It follows from Lemma 5.1.6 that this space is independent of the choice of κ.

Definition 7.4.1 We define Sd(M) to be the space of smooth functions p : T ∗M → C
with the property that for each a ∈M there exists a coordinate patch U containing a such
that p|T ∗U ∈ Sd(U).

If ϕ : M → N is a diffeomorphism of manifolds, then it follows from the above definition
that the induced linear isomorphism ϕ∗ : C∞(T ∗M)→ C∞(T ∗N) maps Sd(M) onto Sd(N).
Moreover, if Ω ⊂ M is an open subset then the restriction map C∞(T ∗M) → C∞(T ∗Ω),
p 7→ p|T ∗Ω maps Sd(M) to Sd(Ω).

If Ω is an open subset of M, and K ⊂ Ω a compact subset, we define SdK(Ω) to be the
space of p ∈ Sd(Ω) with supp p ⊂ π−1(K). Finally, we define SdK(Ω) to be the union of
the spaces SdK(Ω), for K ⊂ Ω compact. We note that elements of Sdc (Ω) may be viewed as
elements of Sdc (M) by defining them to be zero on T ∗M \ T ∗Ω.

If (U, κ) is a chart of M, then the map κ∗ : C∞(T ∗U) → C∞(κ(U) × Rn) induces a
linear bijection

κ∗ : Sd(U)/Sd−1(U)
'−→ Sd(κ(U))/Sd−1(κ(U)).

The following definition is justified by Theorem 7.2.6 (b).

Definition 7.4.2 Let U be a coordinate patch of M. We define the map σdU : Ψ(U) →
Sd(U)/Sd−1(U) by

κ∗σ
d
U(P ) = σdκ(U)(κ∗P ),

for κ a coordinate system on U. (Here σdκ(U) denotes the principal symbol map of Sd(κ(U)),

defined in Definition 5.4.7.)
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If U ⊂M is open, then the restriction map p 7→ p|T ∗Ω induces a map Sd(M)/Sd−1(M)→
Sd(Ω)/Sd−1(Ω), which we shall denote by σ 7→ σΩ. The support of an element σ ∈
Sd(M)/Sd−1(M) is defined to be the complement of the largest open subset Ω ⊂ M such
that σΩ = 0.

Lemma 7.4.3 Let d ∈ R. There exists a unique linear map σd : Ψd(M)→ Sd(M)/Sd−1(M)
such that for every coordinate patch U ⊂M we have

σd(P )U = σdU(PU).

Proof Uniqueness of the map follows from the fact that an element σ ∈ Sd(M)/Sd−1(M)
is completely determined by its restrictions to the sets of an open covering of M. We will
establish existence by using a partition of unity.

Let χj be a partition of unity on M such that for each j, the support Kj of χj is
contained in a coordinate patch Uj. We define

σ̃d : P 7→
∑
j

σdUj((Mψj ◦P )Uj)

Here we note that the term corresponding to j may be viewed as an element of Sd(M)/Sd−1(M)
with support contained in Kj. In particular, the sum is locally finite and defines an element
of Sd(M)/Sd−1(M). Let P ∈ Ψd(M) and let (U, κ) be a chart of M. We will show that
σ̃d(P )U = σdU(PU).

Let ψ ∈ C∞c (U). Then it suffices to show that ψσ̃d(P )U = ψσdU(PU). From the definition
given above it follows that ψσ̃d(P )U = σ̃d(ψP )U . Let J be the finite collection of indices
for which suppψj ∩ suppψ 6= ∅. For each j ∈ J we fix a function χj ∈ C∞c (Uj ∩ U) which
equals one on suppψψj. Then it follows that

ψσ̃d(P )U =
∑
j∈J

σdUj(Mψψj ◦PUj)

=
∑
j∈J

σdUj(Mψψj ◦PUj ◦Mχj)

= σdU(
∑
j∈J

Mψψj ◦PUj ◦Mχj).

Now modulo smoothing operators from Ψ−∞(U) we have∑
j∈J

Mψψj ◦PUj ◦Mχj =
∑
j∈J

MψMψj ◦PU = Mψ ◦PU .

Hence,
ψσ̃d(P )U = σdU(Mψ ◦PU) = ψσdU(PU).

The result follows. �
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Theorem 7.4.4 The principal symbol map σd : Ψd(M) → Sd(M)/Sd−1(M) induces a
linear isomorphism

σd : Ψd(M)/Ψd−1(M)
'−→ Sd(M)/Sd−1(M).

Proof We will first establish surjectivity. Let p ∈ Sd(M). Let χj be a partition of unity
on M such that for each j the support of χj is contained in a coordinate patch Uj. For
each j there exists an operator Pj ∈ Ψd(Uj) such that σdUj(Pj) = pUj + Sd−1(Uj). For each
j we select a function χ′j ∈ C∞c (Uj) such that χ′j = 1 on an open neighborhood of suppχj.
Then

P =
∑
j

Mχj ◦Pj ◦Mχ′j

defines an element of Ψd(M).We will show that σd(P ) = p+Sd−1(M). Let ψ ∈ C∞c (M) have
support inside a coordinate patch U. Then it suffices to show that ψσd(P ) = ψp+Sd−1(M).
Let ψ′ ∈ C∞c (U) be identically one on a neighborhood of suppψ. Then

ψσd(P ) = ψσdU(PU) = σdU(Mψ ◦PU ◦Mψ′)

=
∑
j

σdU(Mψχj ◦PU ◦Mψ′)

=
∑
j

σdU(Mψχj ◦PU ◦Mψ′χ′j
)

=
∑
j

σdUj(Mψχj ◦PUj ◦Mψ′χ′j
)

=
∑
j

ψχjp+ Sd−1(M) = ψp+ Sd−1(M).

It remains to be established that σd : Ψd(M) → Sd(M)/Sd−1(M) has kernel equal to
Ψd−1(M). Clearly, the latter space is contained in the kernel. Conversely, let P ∈ Ψd(M)
and assume that σd(P ) = 0. Then it follows that σdU(PU) = 0 for each coordinate patch U.
In view of Corollary 5.4.8 it follows that PU ∈ Ψd−1(U) for each coordinate patch U. This
in turn implies that P ∈ Ψd−1(M) by Definition 7.3.1. �

7.5 Symbol calculus on a manifold

In this section we will discuss results concerning the principal symbols of adjoints and
products of pseudo-differential operators on the manifold M. The proofs of these results
will consist of reduction to the analogous local results.

Our first goal is to understand the behavior of the principal symbol under left and right
composition with multiplication by smooth functions. Let χ ∈ C∞(M) and p ∈ Sd(M),
then the function π∗(χ)p : T ∗xM 3 ξx 7→ χ(x)p(ξx) belongs to Sd(M) again. Indeed, this
is an easy consequence of the analogous property in the local case. Accordingly, the space
Sd(M) becomes a C∞(M)-module and we write χp for π∗(χ)p. As Sd−1(M) is a submodule,
it follows that the quotient Sd(M)/Sd−1(M) is a C∞(M)-module in a natural way.
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Lemma 7.5.1 Let P ∈ Ψd(M) and χ, ψ ∈ C∞(M). Then Mχ ◦P ◦Mψ ∈ Ψd(M) and

σd(Mχ ◦P ◦Mψ) = χψσd(P ).

Proof The first assertion is a straightforward consequence of the definition and the fact
that

(Mχ ◦P ◦Mψ)U = Mχ|U ◦PU ◦Mψ|U

for every open subset U ⊂M.
Let now U ⊂M be a coordinate patch. Then

σd(Mχ ◦P ◦Mψ)U = σdU((Mχ ◦P ◦Mψ)U)

= σdU(Mχ|U ◦PU ◦Mψ|U)

= (χψ)|UσdU(PU) = [χψσd(P )]U .

The result follows. �

Our next goal is to understand the symbol of the adjoint of a pseudo-differential oper-
ator relative to a smooth positive density dm on M. We assume such a density to be fixed
for the rest of this section.

Given two smooth functions f ∈ C∞c (M) and g ∈ C∞(M), we agree to write

( f , g ) =

∫
M

f(x)g(x) dm(x).

The above pairing has a unique extension to a continuous bilinear pairing C∞c (M) ×
D′(M)→ C.

Lemma 7.5.2 Let P ∈ Ψd(M). Then there exists a unique continuous linear operator
R : E ′(M)→ D′(M) such that

(Pf , g ) = ( f , Rg ), for all f, g ∈ C∞c (M).

The operator R belongs to Ψd(M) and has principal symbol given by

σd(R)(ξx) = σd(P )(−ξx), (x ∈M, ξx ∈ T ∗xM).

Proof The operator P̃ : f 7→ (Pf) dm is continuous linear from C∞c (M) to Γ∞(DM),
where DM denotes the density bundle on M. It follows that the transposed P̃ t : E ′(M)→
D′(M,DM) is continuous linear, hence of the form u 7→ R(u) dm with R a uniquely deter-
mined continuous linear operator E ′(M)→ D′(M). Clearly the operator R satisfies

(Pf , g ) = 〈(Pf) dm, g〉 = 〈f, P̃ tg〉 = 〈f, (Rg)dm〉 = ( f , Rg ).

Moreover, the operator R is uniquely determined by this property. It remains to be shown
that R ∈ Ψd(M). For this we first note that R has the distribution kernel KR ∈ D′(M ×
M,CM �DM) given by

KR(x, y)(dm(x)⊗ 1) = KP (y, x)(dm(y)⊗ 1),
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with KP ∈ D′(M×M,CM�DM) the distribution kernel of P. Of course this equality should
be interpreted in distribution sense. From the smoothness of KP outside the diagonal, it
follows that KR is smooth outside the diagonal. Let now U ⊂ M be a coordinate patch,
with associated coordinate system κ : U → U ′ ⊂ Rn. Then there exists a unique strictly
positive function J ∈ C∞(U ′) such that κ∗(dm) = J dx. Let f, g ∈ C∞c (U), then it follows
that

〈fdm,Rg〉 = (Pf , g )

= 〈κ∗(Pf), κ∗g κ∗(dm)〉
= 〈κ∗(PU)κ∗f, Jκ∗g dx〉
= 〈κ∗f, κ∗(PU)t[Jκ∗g] dx〉
= 〈κ∗(f dm), J−1κ∗(PU)t[Jκ∗(g)]〉.

From this we conclude that

κ∗(RU) = MJ−1 ◦κ∗(PU)t ◦MJ .

In view of Lemma 5.4.2 and Proposition 6.2.2 it now follows that κ∗(RU) ∈ Ψd(U ′) with
principal symbol given by

σd(κ∗(RU))(x, ξ) = σd(MJ−1 ◦κ∗(PU)t ◦MJ)(x, ξ)

= J(x)−1J(x)σd(κ∗(PU))(x,−ξ) = σd(κ∗(PU))(x,−ξ).

We conclude that RU ∈ Ψd(U) with principal symbol given by

σdU(RU)([Tmκ]tξ) = σd(κ∗(RU))(κ(m), ξ)

= σd(κ∗(PU))(κ(m),−ξ) = σdU(PU)(−[Tmκ]tξ),

for all m ∈ U, ξ ∈ Rn. �

We will end this section by discussing the principal symbol of the composition of two
properly supported pseudo-differential operators.

From the similar local property of principal symbols, it follows that multiplication
induces a bilinear map

Sd(M)/Sd−1(M)× Se(M)/Se−1(M)→ Sd+e(M)/Sd+e−1(M)

for all d, e ∈ R ∪ {−∞}.

Theorem 7.5.3 Let P ∈ Ψd(M) and Q ∈ Ψe(M) be properly supported. Then P ◦Q
belongs to Ψd+e(M) and has principal symbol given by

σd+e(P ◦Q) = σd(P )σe(Q). (7.5.11)
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Proof We first consider the case that e = −∞, i.e., Q is a smoothing operator. We
will show that in this case P ◦Q is smoothing. Let K ∈ D′(M ×M,CM � DM) be the
distribution kernel of P ◦Q. Let a be a point of M, U a coordinate patch containing a and
ψ ∈ C∞c (U) a function with ψ(a) 6= 0. Then it suffices to show that (1⊗ψ)K is smooth. The
latter requirement is equivalent to the requirement that P ◦Q ◦Mψ be smoothing. Now this
can be seen as follows. Since Q is proper, there exists a compact subset K ⊂M such that
the supp (1⊗ ψ)K ⊂ K× suppψ. Fix a non-vanishing smooth density dm on M. We may

write KQ = K̃Q(1⊗ dm), with K̃Q ∈ D′(M ×M). Then the map kQ : z 7→ K̃Q( · , z)ψ(z) is
smooth from M to C∞K (M). It follows that the map k : z 7→ P (kQ(z)) is smooth from M
to C∞(M). For each f ∈ C∞c (M) we have

P ◦Q(ψf) = P [

∫
M

K̃Q( · , z)ψ(z)f(z)dz]

=

∫
M

P [K̃Q( · , z)ψ(z)]f(z) dz

=

∫
M

k(z)f(z) dz

which implies that P ◦Q ◦Mψ has the smooth integral kernel (x, y) 7→ k(z)(x)(1⊗dm). We
conclude that P ◦Q is smoothing whenever Q is.

Combining the above with Lemma 7.5.2 we see that P ◦Q is also a smoothing operator
whenever P is.

It remains to consider the case of arbitrary d, e ∈ R. We will first show that P ◦Q is a
pseudo-differential operator of order d + e. Let K ⊂ M be compact. Then there exists a
compact subset K′ ⊂ M such that suppKQ ∩ (M × K) ⊂ K′ × K and a compact subset
K′′ ⊂ M such that suppKP ∩ (M × K′) ⊂ K′′ × K′. Then Q maps C∞K (M) continuous
linearly into C∞K′(M) and P maps the latter space continuous linearly into C∞K′′(M). It
follows that the composition P ◦Q is continuous linear C∞K (M) → C∞K′′(M). This implies
that R = P ◦Q is a continuous linear map C∞c (M)→ C∞c (M).

Let ψj be a partition of unity on M such that each ψj is supported in a coordinate
patch. Then by Lemma 7.3.6 (c) it suffices to show that each operator Rj = R ◦Mψj

belongs to Ψd+e(M). We fix j for the moment, put ψ = ψj and let U = Uj be a coordinate
patch containing suppψ. There exists a compactly supported function χ ∈ C∞c (U) such
that χ = 1 on an open neighborhood of suppψ. Now M(1−χ) ◦Q ◦Mψ is smoothing, so by
the first part of the proof its left composition with P is smoothing as well. Put

Qj = Mχ ◦Q ◦Mψ.

Then it suffices to show that P ◦Qj belongs to Ψd+e(M). We select ψ′ ∈ C∞c (U) such that
ψ′ = 1 on an open neighborhood of suppχ and χ′ ∈ C∞c (U) such that χ′ = 1 on an open
neighborhood of suppψ′. Then M1−χ′ ◦P ◦Mψ′ is smoothing, and by the first part of the
proof, so is [M1−χ′ ◦P ◦Mψ′ ]Qj. Put

Pj = Mχ′ ◦P ◦Mψ′ .
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Then P = Pj+M1−χ′ ◦P ◦Mψ′ hence it suffices to show that Pj ◦Qj belongs to Ψd+e(M). As
the distribution kernels of the operators Pj, Qj are contained in suppχ′× suppψ′ ⊂ U ×U,
this result follows from the local result, Theorem 7.1.7. We conclude that P ◦Q ∈ Ψd+e(M).
By application of Corollary 7.1.10 we obtain that

σd+e(Pj ◦Qj) = σd(Pj)σ
d(Qj).

From the above it follows furthermore that P ◦Q ◦Mψj = Pj ◦Qj modulo a smoothing
operator, hence

ψjσ
d+e(P ◦Q) = σd+e(Pj ◦Qj) = σd(Pj)σ

e(Qj)

= χ′jψ
′
jχjψjσ

d(P )σd(Q) = ψjσ
d(P )σe(Q).

This holds for every j. The identity (7.5.11) follows. �

Exercise 7.5.4 Let P ∈ Ψd(M).

(a) Show that P has a unique extension to a continuous linear map E ′(M)→ D′(M).

(b) Show that the extension is pseudo-local.

Exercise 7.5.5 Let dm be positive smooth density on M and let P ∈ Ψd(M).

(a) Show that there exists a unique P ∗ ∈ Ψd(M) such that

(Pf , g ) = ( f , P ∗g ) for all f, g ∈ C∞c (M).

(b) Show that the principal symbol of P ∗ is given by

σd(P ∗) = σd(P ).
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Chapter 8

Operators between vector bundles

8.1 Operators on manifolds

In this section we shall extend the definition of pseudo-differential operator to sections of
vector bundles on a smooth manifold M. We start by recalling the notion of a smooth
kernel or smoothing operator between vector bundles on manifolds.

Let M and N be smooth manifolds, and let πE : E → M and πF : F → N be smooth
complex vector bundles over M and N respectively.

We fix a positive smooth density dy on M, i.e., a smooth section of the density bundle
DM on M that is positive at every point of M. For the definition of the density bundle
and the integration of its sections, see Lecture 2.

The exterior tensor product F � E is the vector bundle on N ×M defined by

F � E := pr∗1(F )⊗ pr∗2(E);

here pr1, pr2 denote the projections of N×M to N and M, respectively. Let k be a smooth
section of the bundle F � E∗ on N ×M and let f ∈ Γ∞c (M,E). For every x ∈ N we may
view y 7→ k(x, y)f(y) dy as a compactly supported density on M with values in the finite
dimensional linear space Fx. By using a partition of unity it is readily seen that the integral
of the mentioned density depends smoothly on x. Accordingly, we define the complex linear
operator T : Γ∞c (M,E)→ Γ∞(N,F ) by

Tf(x) =

∫
M

k(x, y) f(y) dy (y ∈M).

Any T of the above form is called a smooth kernel operator or smoothing operator from
Γ∞c (M,E) to Γ∞(N,F ). Obviously, for such an operator the Schwartz kernel KT ∈ D′(N×
M,F � E∨) is smooth and given by the formula

KT (x, y) = k(x, y)pr∗2(dy).

In terms of local trivializations of the bundles, T is given by matrices of scalar smoothing
operators. More precisely, this may be described as follows.

147
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We recall that a trivialization of E over an open subset U of M is defined to be a vector
bundle isomorphism τ : EU → U × Ck, with k the rank of E.

A frame of E over an open subset U of M is an ordered set s1, . . . , sk of sections in
Γ∞(U,E) such that s1(x), . . . , sk(x) is an ordered basis of the fiber Ex, for every x ∈ U.
Given a choice of frame s1, . . . , sk, we have a vector bundle isomorphism σ : U ×Ck → EU
given by (x, v) 7→ a1s1(x)+ · · ·+aksk(x). The inverse τ of σ is a vector bundle isomorphism
EU → U × Ck, i.e., a trivialization of E over U.

Conversely, if τ : EU → U × Ck is a trivialization of the bundle, then there exists a
unique frame s1, . . . , sk of E over U, to which τ is associated in the above manner, i.e.,

τ [ a1s1(x) + · · ·+ aksk(x) ] = (x, a), ((x, a) ∈ U × Ck).

Assume that E trivializes over the open subset U ⊂M and that F trivializes over the
open subset V ⊂ N. Then the operator TV,U : Γ∞c (U,E)→ Γ∞(V, F ) given by

TV,U(f) = (Tf)|V , (f ∈ Γ∞c (U,E)),

has Schwartz kernel equal to Kpr∗2(dy)|V×U . Let s1, . . . , sk be a local frame for E over U
and t1, . . . , tl a local frame for F over V, then TV,U is given by

TU,V
(∑

j

f jsj
)

= T ij (f
j)ti,

with T ij uniquely determined smoothing operators C∞c (U) → C∞(V ). Conversely, any
such collection of smoothing operators defines a smoothing operator from Γ∞c (U,E) to
C∞(V, F ). Let t1, . . . , tl be the frame of F ∗ over U dual to t1, . . . , tl, i.e., 〈ti(y), tj(y)〉 = δij
for all y ∈ V. Then we note that the Schwartz kernel of T ij equals

〈K(x, y), ti(x)⊗ sj(y)〉 pr2(dy)(x,y).

The space of smooth kernel operators from E to F is denoted by Ψ−∞(E,F ). Since any
positive smooth density on M is of the form c(y)dy, with c a strictly positive smooth
function, the space Ψ−∞(E,F ) is independent of the particular choice of the density dy.

Let CM denote the trivial line bundle M × C. Then the space Ψ−∞(CM ,CM) may be
identified with the space of smoothing operators C∞c (M)→ C∞(M), which we previously
denoted by Ψ−∞(M).

We shall now give the definition of a pseudo-differential operator between smooth com-
plex vector bundles E,F → M. We first deal with the case that E and F are trivial
bundles on an open subset U ⊂ M. Thus, E = U × Ck and F = U × Cl. Then we have
natural identifications Γ∞c (U,E) ' C∞c (U,Ck) ' C∞c (U)k, and similar identifications for
F. Accordingly, we define Ψd(U,E, F ) = Ψd(EU , FU) ⊂ Hom(Γ∞c (U,E),Γ∞(U, F )) by

Ψd(EU , FU) := Ml,k(Ψ
d(U)),



8.1. OPERATORS ON MANIFOLDS 149

the linear space of l × k matrices with entries in Ψd(U). With these identifications, the
action of an element P ∈ Ψd(EU , FU) on a section f ∈ Γ∞c (U,E) is given by

(Pf)i =
∑

1≤j≤k

Pijfj.

Assume that τE and τF are bundle automorphisms of the trivial bundles E = U × Ck

and F = U × Cl, respectively. Thus, τE is a map of the form (x, v) 7→ (x, γE(x)v) with
γE : U → GL (k,C) a smooth map, and τF is similarly given in terms of smooth map γF :
U → GL (l,C). Then we have an induced linear automorphism τE∗ of Γ∞c (U,E) ' C∞c (U)k

given by
(τE∗f)(x) = γE(x)f(x), (x ∈ U).

Likewise, we have an induced linear automorphism τ ∗F of Γ∞(U, F ), and, accordingly,
an induced linear automorphism τ∗ of Hom(Γ∞c (U,E),Γ∞c (U, F )). The latter is given by
τ∗(Q) = τF∗ ◦Q ◦ τ

−1
E∗ , or

τ∗(Q)(f) = γFQ(γ−1
E f), (f ∈ Γ∞c (U,E) ' C∞c (U)k).

It follows by component wise application of Lemma 7.5.1 that τ∗ maps the linear space
Ψd(EU , FU) isomorphically onto itself.

The last observation paves the way for the definition of Ψd(U,E, F ) = Ψd(EU , FU) when
E and F are smooth complex vector bundles on M that admit trivializations over an open
subset U ⊂ M. Let τE : E → E ′ = U × Ck and τF : F → F ′ = U × Cl be trivializations;
let τE∗ : Γ∞c (U,E)→ Γ∞c (U,E ′) be the induced map, and let τF∗ : Γ∞(U, F )→ Γ∞(U, F ′)
be defined similarly. Then we define Ψd(U,E, F ) to be the space of linear maps Q :
Γ∞c (U,E)→ Γ∞(U, F ) such that

τ∗(Q) := τ ∗F ◦Q ◦ τ
−1
E∗ ∈ Ψd(U,E ′, F ′). (8.1.1)

This definition is independent of the particular choice of the trivializations for EU and FU ,
by the observation made above.

Definition 8.1.1 Let E,F be smooth vector bundles on a manifold M and let d ∈ R. A
pseudo-differential operator of order at most d from E to F is a continuous linear operator
P : Γ∞c (E) → Γ∞(F ) with distribution kernel KP ∈ D′(M ×M,F � E∨) such that the
following conditions are fulfilled.

(a) The kernel KP is smooth outside the diagonal of M ×M.

(b) For each a ∈M there exists an open neighborhood U ⊂M on which E and F admit
trivializations and such that the operator PU : Γ∞c (U,E) → Γ∞(U, F ), f 7→ Pf |U
belongs to Ψd(EU , FU).

The space of such pseudo-differential operators is denoted by Ψd(E,F ).
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It follows from the above definition that the space Ψd(E,F ) transforms naturally under
isomorphisms of vector bundles. More precisely, let ϕ : M1 → M2 be an isomorphism of
smooth manifolds, and let ϕE : E1 → E2 be a compatible isomorphism of smooth complex
vector bundles πE1 : E1 → M1 and πE2 : E2 → M2. Here the requirement of compatibility
means that the pair (ϕE, ϕ) is an isomorphism of E1 and E2 in the sense of Lecture 2,
§3. The isomorphism ϕE induces a linear isomorphism ϕE∗ : Γ∞c (M1, E1) → Γ∞c (M2, E2),
given by ϕE∗f = ϕE ◦ f ◦ϕ

−1.
Likewise, let ϕF : F1 → F2 be an isomorphism of vector bundles Fj → Mj which is

compatible with ϕ. Then we have an induced linear isomorphism ϕF∗ : Γ∞(M1, F1) →
Γ∞(M2, F2). Moreover, the map

ϕ∗ : Hom(Γ∞c (M1, E1),Γ∞(M1, F1))→ Hom(Γ∞c (M2, E2),Γ∞(M2, F2))

given by ϕ∗(Q) = ϕF∗ ◦Q ◦ϕ
−1
E∗ restricts to a linear isomorphism

ϕ∗ : Ψd(M1, E1, F1)
'−→ Ψd(M2, E2, F2).

We note that it also follows from the above definition that if E and F admit trivializations
τE : E → E ′ = U ×Ck and τF : F → F ′ = U ×Ck, respectively, then τ∗ maps Ψd(U,E, F )
linearly isomorphically onto Ψd(U,E ′, F ′) ' Ml,k(Ψ

d(U)). Indeed, by the previous remark
and the remark below (8.1.1), it suffices to prove this for E = M × Ck and F = M × Cl.
In this case

Hom(Γ∞c (E), C∞(F )) ' Ml,k(Hom(C∞c (M), C∞(M))).

If P ∈ Hom(Γ∞c (E), C∞(F )), then P ∈ Ψd(E,F ) in the sense of Definition 8.1.1 if and
only if all its components Pij belong to Ψd(M) in the sense of Definition 7.3.1.

Remark 8.1.2 The straightforward analogues of Exercise 7.3.4 and 7.3.5, Lemma 7.3.6,
Exercise 7.3.7, Lemma 7.3.8, Exercise 7.3.10 are valid for operators from Ψd(E,F ), by
reduction to trivial bundles and the scalar case, along the lines discussed above. We leave
it to the reader to check the details.

It follows from Definition 8.1.1 and the corresponding fact for scalar operators that
Ψ−∞(E,F ) equals the intersection of the spaces Ψd(E,F ), for d ∈ R.

8.2 The principal symbol, vector bundle case

In this section we shall discuss the definition and basic properties of the principal symbol
for a pseudo-differential operator between smooth complex vector bundles πE : E → M
and πF : F →M. We first concentrate on the definition of the appropriate symbol space.

Let πH : H →M be a vector bundle. We agree to write

Γ∞(T ∗M,H) = {f ∈ C∞(T ∗M,H) | ∀x ∈M : f(T ∗xM) ⊂ Hx}.
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There is a natural identification of this space with the space of sections of the pull-back
π∗H of the vector bundle H under the map π : T ∗M → M, so that Γ∞(T ∗M,H) '
Γ∞(T ∗M,π∗H), but we shall not need this. If H is trivial of the form H = M ×CN , then
the elements of Γ∞(T ∗M,H) are precisely the functions of the form ξx 7→ (x, f(ξx)) with
f ∈ C∞(T ∗M,CN). It follows that Γ∞(T ∗M,H) ' C∞(T ∗M,CN). Accordingly, we define

Sd(M,H) := {f ∈ Γ∞(T ∗M,V ) | ∀j : fj ∈ Sd(M) } ' Sd(M)N .

Let τ : H1 → H2 be an isomorphism of two vector bundles on M. Then the map

τ∗ : Γ∞(T ∗M,H1)→ Γ∞(T ∗M,H2),

defined by

τ∗(f)(ξx) = τx(f(ξx)), (x ∈M, ξx ∈ T ∗xM),

is a linear isomorphism. Assume now that τ is a bundle automorphism of the trivial
bundle H = M ×CN . Then τ has the form τ(x, v) = (x, τx(v)), with x 7→ τx a smooth map
M → GL (N,C). It follows that the linear automorphism τ∗ of Γ∞(T ∗M,H) ' C∞(T ∗M)N

is given by

τ∗(f)(ξx) = τx(f(ξx)).

It is readily checked that this map restricts to a linear automorphism of the symbol space
Sd(T ∗M,H).

Now assume the bundle H is trivializable and let τ ′ : H → H ′ = M × CN be a
trivialization. Then we define Sd(M,H) := τ−1

∗ Sd(M,H ′). This definition is independent
of the particular choice of the trivialization τ, in view of the preceding discussion.

Definition 8.2.1 Let H →M be a complex vector bundle. For d ∈ R∪{−∞}, we define
the symbol space Sd(M,H) to be the space of sections p ∈ Γ∞(T ∗M,H) such that for
every open neighborhood U on which H admits a trivialization, the restriction pU := p|T ∗U
belongs to Sd(U,HU).

Clearly, for p ∈ Γ∞(T ∗M,H) to belong to Sd(M,H) is suffices that for every a ∈ M
there exists an open trivializing neighborhood U such that pU ∈ Sd(U,HU).

We also note that for ϕ ∈ C∞(M) multiplication by π∗ϕ ∈ C∞(T ∗M) maps Sd(T ∗M,H)
linear isomorphically to itself. Accordingly, Sd(M,H) becomes a C∞(M)-module. It fol-
lows that the quotient

Sd/Sd−1(M,H) := Sd(M,H)/Sd−1(M,H)

is a C∞(M)-module as well.
Let U ⊂ M be open and let K ⊂ U be compact. Then we write SdK(U,HU) for the

subspace of Sd(U,HU) consisting of p with support in K in the sense that pU\K = 0.
Equivalently, this means that the function p : T ∗U → HU vanishes on π∗(U \ K). The



152 CHAPTER 8. OPERATORS BETWEEN VECTOR BUNDLES

extension of such a function to T ∗M by the requirement u(ξx) = 0x ∈ Hx for every
ξx ∈ T ∗M \ T ∗U belongs to SdK(M,H). Accordingly, we have a linear injection

SdK(U,HU) ↪→ SdK(M,H).

Let Sdc (U,HU) denote the union of the spaces SdK(U,HU), for K ⊂ U compact. Then
Sdc (U,HU) ↪→ Sdc (M,H). Accordingly, we have an induced linear injection

Sdc (U,HU)/Sd−1
c (U,HU) ↪→ Sdc (M,H)/Sd−1

c (M,H).

We will now see that the definition of the principal symbol map can be generalized
to the context of bundles. Let E,F be two complex vector bundles on M. The principal
symbol map associated with Ψd(E,F ) will be a map

σd : Ψd(M,E, F )→ Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )).

Here Hom (E,F ) is the vector bundle on M whose fiber at x ∈M is given by

Hom (E,F )x = HomC(Ex, Fx).

If U ⊂M is an open subset on which both E and F admit trivializations τU : EU → U×Ck

and τF : FU → U × Cl, then the bundle Hom (E,F ) admits the trivialization

τ : Hom (E,F )U → U × Hom(Ck,Cl)

given by
τx(T ) = (τF )x ◦T ◦ (τE)−1

x .

Let ϕ : E → F be a vector bundle homomorphism. Then the map ϕ : x 7→ ϕx ∈
Hom(Ex, Fx) defines a smooth section of the bundle Hom (E,F ). Using trivializations we
readily see that the map ϕ 7→ ϕ defines a linear isomorphism

Hom(E,F )
'−→ Γ∞(Hom (E,F )).

Initially we will give the definition of principal symbol for trivial bundles. Assume that
E = M × Ck and F = M × Cl so that Hom (E,F ) = M × Hom(Ck,Cl) ' Ml,k(C). Then

Sd(M,Hom (E,F )) ' Ml,k(S
d(M))

and, accordingly,

Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )) ' Ml,k(S
d(M)/Sd−1(M))

In this setting of trivial bundles, we define the principal symbol map σd = σdE,F component
wise by

σd(P )ij := σd(Pij), (1 ≤ i ≤ l, 1 ≤ j ≤ k).

Assume now that τE and τF are automorphisms of the trivial bundles E and F, respectively
and let τ be the induced automorphism of Hom (E,F ). We denote by τ∗ the induced auto-
morphisms of Ψd(E,F ) and of the quotient space Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )).
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Lemma 8.2.2 For every P ∈ Ψd(E,F ),

σd(τ∗(P )) = τ∗(σ
d(P )).

Proof We observe that for f ∈ Γ∞(E) ' C∞(M)k we have

(τ∗(P )f)i =
∑
r,s,j

(τFx)irPrs(τ
−1
Ex)sjfj

so that by Lemma 7.5.1

σd(τ∗(P )ij) =
∑
r,s

(τF )ir(τ
−1
E )sjσ

d(Prs)

=
∑
r,s

(τF )ir(τ
−1
E )sjσ

d(P )rs

= (τ∗σ
d(P ))ij.

This implies that σd(τ∗(P ))ij = σd(τ∗(P )ij) = (τ∗σ
d(P ))ij. �

If E and F admit trivializations τE : E → E ′ = M × Ck and τF : F → F ′ = M × Cl

we define the principal symbol map σdE,F on Ψd(E,F ) by requiring the following diagram
to be commutative

Ψd(E,F )
τ∗−→ Ψd(E ′, F ′)

σdE,F ↓ ↓ σd
E′,F ′

Sd/Sd−1(M,Hom (E,F ))
τ∗−→ Sd/Sd−1(M,Hom (E ′, F ′)).

(8.2.2)

Finally, we come to the case that E → M and F → M are arbitrary complex vector
bundles of rank k and l respectively.

Lemma 8.2.3 Let P ∈ Ψd(E,F ). Then there exists a unique

σd(P ) = σdE,F ∈ Sd(M,Hom (E,F ))/Sd−1(Hom (E,F ))

such that for every open subset U ⊂M on which both E and F admit trivializations,

σd(P )U = σdEU ,FU (PU). (8.2.3)

Proof Uniqueness is obvious. We will establish existence. Let {Uj} be an open cover of
M consisting of open subsets on which both E and F admit trivializations. We may assume
that {Uj} is locally finite and that {ψj} is a partition of unity on M with suppψj ⊂ Uj
for all j. Given P ∈ Ψd(E,F ) we define σd(P ) by

σd(P ) =
∑
j

ψjσ
d
EUj ,FUj

(PUj).
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As this is a locally finite sum, it defines an element of Sd(M,H)/Sd−1(M,H). It remains
to verify (8.2.3) for an open subset U on which E and F admit trivializations τU . With
σd(P ) as just defined we have

σd(P )U =
∑
j

ψj|U σdEUj ,FUj (PUj)U∩Uj

=
∑
j

ψj|U σdEU ,FU (PU)U∩Uj

=
∑
j

ψj|U σdEU ,FU (PU)

= σdEU ,FU
(∑

j

Mψj |U ◦PU
)

= σdEU ,FU (PU).

�

Definition 8.2.4 Let P ∈ Ψd(E,F ). The d-th order principal symbol of P is defined
to be the unique element σd(P ) ∈ Sd/Sd−1(M,Hom (E,F )) satisfying the properties of
Lemma 8.2.3.

Obviously, P 7→ σd(P ) is a linear map. As should be expected, it follows from the
above definition that the principal symbol map behaves well under bundle isomorphisms.
Consider isomorphisms τE : E1 → E2 and τF : F1 → F2 of vector bundles on M. Then the
definitions have been given in such a way that the following diagram commutes

Ψd(M,E1, F1)
σd−→ Sd(M,Hom (E1, F1))/Sd−1(M,Hom (E1, F1))

τ∗ ↓ ↓ τ∗
Ψd(M,E2, F2)

σd−→ Sd(M,Hom (E2, F2))/Sd−1(M,Hom (E2, F2))

(8.2.4)

The local version of this result is true because of the local requirement (8.2.2). The global
validity follows by the uniqueness part of the characterization of the symbol map in Lemma
8.2.3.

Lemma 8.2.5 Let ψ, χ ∈ C∞(M). Then, for all P ∈ Ψd(E,F ),

σd(Mψ ◦P ◦Mχ) = ψχσd(P ).

Proof For trivializable bundles E and F the result is a straightforward consequence of
the analogous result in the scalar case. Let U be any open subset of M on which both E
and F admit trivializations. Then

σd(Mψ ◦P ◦Mχ)U = σdU(Mψ|U ◦PU ◦Mχ|U)

=
(
ψ|Uχ|UσdU(PU)

=
(
ψχσd(P )

)
U
.

The result follows. �
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Theorem 8.2.6 The principal symbol map σd induces a linear isomorphism

Ψd(E,F )/Ψd−1(E,F )
'−→ Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )).

Proof If E,F are trivial, then the result is an immediate consequence of the analogous
result in the scalar case. If E,F are trivializable, the result is still true in view of the
commutativity of the diagram (8.2.4). Let now E,F be arbitrary complex vector bundles
on M and put H = Hom (E,F ). We must show that the principal symbol map σd :
Ψd(E,F ) → Sd(M,H)/Sd−1(M,H) has kernel Ψd−1(E,F ) and is surjective. Let P ∈
Ψd(E,F ), then σd(P ) = 0 if and only if for every open subset U ⊂ M on which both E
and F admit a trivialization, σd(P )U = 0. The latter condition is equivalent to σdU(PU) =
0, hence by the first part of the proof to PU ∈ Ψd−1(EU , FU). It follows that kerσd =
Ψd−1(E,F ).

To establish the surjectivity, let p ∈ Sd(M,H) and let [p] denote its class in the quotient
Sd(M,H)/Sd−1(M,H). Let {Uj} be an open cover of M such that both E and F admit
trivializations over Uj, for all j. We may choose the covering such that there exists a
partition of one, {ψj}, with suppψj ⊂ Uj for all j. By the first part of the proof, there
exists for each j a pseudo-differential operator Pj ∈ Ψd(EUj , FUj), such that

σd(Pj) = [p]Uj ∈ Sd(Uj, HUj)/S
d−1(Uj, HUj).

For each j we fix χj ∈ C∞c (Uj) such that χj = 1 on suppψj. Then Mψj ◦Pj ◦Mχj is a pseudo-
differential operator in Ψd(E,F ) with distribution kernel supported by suppψj × suppχj.
It follows that the distribution kernels are locally finitely supported. Hence

P :=
∑
j

Mψj ◦Pj ◦Mχj

is a well-defined pseudo-differential operator in ψd(E,F ). Let U be any relatively compact
open subset of M on which both E and F admit trivializations, then

σd(P )U =
∑
j

(
ψjσ

d(Pj)
)
U

=
∑
j

ψj|U [p]U = [p]U ,

with only finitely many terms of the sums different from zero. It follows that σd(P ) = [p].
We have established the surjectivity of the principal symbol map. �

8.3 Symbol of adjoint and composition

We now turn to the behavior of the principal symbol when passing to adjoints. Let E →M
and F → M be complex vector bundles on M of rank k and l, respectively. Let E∗ and
F ∗ be the dual bundles of E and F respectively. We recall that E∨ := E∗ ⊗ DM and
F∨ = F ∗ ⊗DM , with DM the density bundle on M.
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Lemma 8.3.1 Let V,W be finite dimensional complex linear spaces, and let L be a one-
dimensional complex linear space. Then the map T 7→ T⊗IL defines a natural isomorphism

HomC(V,W ) ' HomC(V ⊗ L,W ⊗ L).

Proof Straightforward. �

Corollary 8.3.2 The map

Hom (F ∗, E∗)x 3 Tx 7→ Tx ⊗ IDMx
∈ Hom (F∨, E∨)x

defines a natural isomorphism of vector bundles.

Given p ∈ Sd(M,Hom (E,F )), we define p∨ : T ∗M → Hom (F∨, E∨) by

p∨(ξx) = p(−ξx)∗ ⊗ IDMx
,

for x ∈ M and ξx ∈ T ∗xM. Then clearly, p∨ ∈ Sd(M,Hom (F∨, E∨)). The map p → p∨ is
readily seen to define a linear isomorphism

Sd(M,Hom (E,F ))→ Sd(M,Hom (F∨, E∨),

for every d ∈ R ∪ {−∞}. Moreover, p∨∨ = p for all p. Accordingly, we have an induced
linear isomorphism

Sd/Sd−1(M,Hom (E,F ))
'−→ Sd/Sd−1(M,Hom (F∨, E∨)),

denoted by σ 7→ σ∨.
Let P ∈ Ψd(E,F ). As P is a continuous linear operator Γ∞c (E) → Γ∞(F ), its adjoint

P t is a continuous linear operator from the topological linear dual Γ∞(F )′ = E ′(F∨) to the
topological linear dual Γ∞c (E)′ = D′(E∨). We recall that the natural continuous bilinear
pairing Γ∞(E∨)× Γ∞c (E)→ C defined by

〈f, g〉 =

∫
M

(f, g)

induces a natural continuous linear embedding Γ∞(E∨) ↪→ D′(E∨). Likewise, we have a
natural continuous linear embedding Γ∞c (F∨) ↪→ E ′(F∨).

Lemma 8.3.3 Let P ∈ Ψd(E,F ). The adjoint P t restricts to a continuous linear map
Γ∞c (F∨) → Γ∞(E∨). The restricted map is a pseudo-differential operator in Ψd(F∨, E∨)
with principal symbol given by

σd(P t) = σd(P )∨.
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Proof Let U ⊂ M be an open subset. Then it is readily seen from the definitions
that (P t)U = (PU)t and that (σd(P )∨)U = (σd(P )U)∨ = σd(PU)∨. Therefore the result is
of a local nature, and we may as well assume that E and F admit trivializations on M.
Let e1, . . . , ek be a frame for E and let f1, . . . , fl be a frame for F. Let e1, . . . , ek be the
dual frame for the dual bundle E∗; i.e., (ei, ej) = δij, for all 1 ≤ i, j ≤ k. Similarly, let
f 1, . . . , f l be the dual frame for the dual bundle F ∗. Let dm be choice of smooth positive
density on M, then {dm} constitutes a frame for the density bundle DM . It follows that
e1dm, . . . , ekdm is a frame for E∨ and f 1dm, . . . , f ldm a frame for F∨.

Let P ∈ Ψd(E,F ). The operator P has components Pij relative to the frames {ej} and
{fi}. Given ϕ, ψ ∈ C∞c (M), we have

ψPijϕ = (ψf i, P (ϕej)).

The components of the adjoint operator P t are given by

ϕ(P t)ji(ψ)dm = (ϕej, P t(ψf idm)).

Integrating the densities on both sides of the equality over M we find that

〈ϕdm, (P t)jiψ〉 = 〈P (ϕej), ψf idm〉 = 〈Pij(ϕ), ψdm〉.

This implies that (P t)ji equals the adjoint of Pij in the sense of Lemma 7.5.2. Hence,
P t ∈ Ψd(F∨, E∨) and

σd(P t)ji(ξx) = σd(P )ij(−ξx) =
(
σd(P )∨(ξx)

)
ji
.

The result follows. �

Let P ∈ Ψd(E,F ). Then it follows by application of the lemma above that P extends
to a continuous linear map E ′(E)→ D′(F ). Indeed, the extension equals the adjoint of the
map P t : Γ∞c (F∨)→ Γ∞(E∨). The extension is unique by density of Γ∞c (E) in E ′(E).

It follows from the definitions that if the distributional kernel KP has support S ⊂
M×M, then the distributional kernel of the adjoint operator P t has support St = {(y, x) ∈
M ×M | (x, y) ∈ S}. In analogy with the scalar case, the operator P is said to be properly
supported if the restricted projection maps prj|S : S →M are proper, for j = 1, 2. Thus, if
P is properly supported, then so is P t. In this case P t maps Γ∞c (F∨) continuous linearly
into Γ∞c (E∨), and we see that P extends to a continuous linear operator D′(E)→ D′(F ).

Lemma 8.3.4 Let P ∈ Ψd(E,F ) be properly supported. Then the continuous linear
operator P : D′(E)→ D′(F ) is pseudo-local, i.e., for all u ∈ D′(E) we have

singsupp (Pu) ⊂ singsuppu.

Proof Let a ∈ M \ suppu. Then there exists an open neighborhood O 3 a with O ∩
suppu = ∅. Let ψ ∈ C∞c (O) be equal to 1 on a neighborhood of a. By paracompactness of
suppu there exists a smooth functions χ ∈ C∞(M) such that χ = 1 on a neighborhood of
suppu and such that suppψ ∩ suppχ = ∅. It follows that T := Mψ ◦P ◦Mχ is a properly
supported smoothing operator. Hence ψPu = ψP (χu) = Tu is smooth. It follows that Pu
is smooth in a neighborhood of a. �
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As in the scalar case, modulo a smoothing operator each pseudo-differential operator
can be represented by a properly supported one.

Lemma 8.3.5 Let Ω ⊂ M ×M be an open neighborhood of the diagonal. Then for each
P ∈ Ψd(E,F ) there exists a properly supported P0 ∈ Ψd(E,F ) with suppKP0 ⊂ Ω such
that P − P0 ∈ Ψ−∞(E,F ).

Proof The proof is an obvious adaptation of the proof of Lemma 6.1.6. By Lemma
6.1.7 there exists a locally finite open covering {Uj}j∈J of M such that for all i, j ∈ J,
Ui ∩ Uj 6= ∅ ⇒ Ui × Uj ⊂ Ω. There exists a partition of unity {ψj} with ψj ∈ C∞c (Uj). For
each j we choose a χj ∈ C∞c (Uj) which equals 1 on an open neighborhood of suppψj. We
now define

P0 =
∑
j∈J

Mψj ◦P ◦Mχj .

The j-th term in the above sum is a pseudo-differential operator of order d with distribution
kernel supported in suppψj× suppχj. As this is a locally finite collection of sets, it follows
that P0 ∈ Ψd(E,F ). Moreover, the distribution kernel of P0 has support contained in the
union of the sets Uj × Uj which is contained in Ω.

Since suppψj ∩ supp (1− χj) = ∅, the operator

Tj := Mψj ◦P ◦M1−χj

is a smooth kernel operator, with smooth kernel supported inside the set Uj ×M. Since
these sets form a locally finite collection in M ×M, the sum T =

∑
j Tj is a well defined

smoothing operator in Ψ−∞(E,F ). It is now readily checked that P − P0 = T. �

We end this section with a discussion of the composition of two properly supported
pseudo-differential operators. To prepare for this, we will first study the product of
bundle-valued symbols. Let E1, E2, E3 be complex vector bundles on M. Given p ∈
Sd(M,Hom (E1, E2) and q ∈ Se(M,Hom (E2, E3) we define qp : T ∗M → Hom(E1, E3)
by

qp : T ∗xM 3 ξx 7→ q(ξx) ◦x p(ξx) ∈ Hom (E1, E3)x,

where ◦x denotes the composition map from Hom (E1, E2)x×Hom (E2, E3)x to Hom (E1, E3)x.

Lemma 8.3.6 The assignment (p, q) 7→ qp defines a bilinear map

Sd(M,Hom (E1, E2))× Se(M,Hom (E2, E3))→ Sd+e(M,Hom (E1, E3)).

Proof The bilinearity of the assignment as a map into Γ∞(T ∗M,Hom (E1, E3)) is obvious.
We will prove the remaining assertion that the assignment has image contained in Sd+e.

If U is an open subset ofM, then for p ∈ Sd(M,Hom (E1, E2)) and q ∈ Se(M,Hom (E2, E3))
we have (qp)U = qUpU . Therefore, the result is of a local nature, and we may as well assume
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that each Ej admits a trivialization, for j = 1, 2, 3. For each such j, let ej1, . . . , ejkj be a
frame for Ej. Then the symbol p has components pβα ∈ Sd(M) given by

p(ξx)(e1α(x)) =

k2∑
β=1

pβα(ξx)e2β(x)

for all x ∈ M and ξx ∈ T ∗xM. Likewise, the symbol q has components qγβ ∈ Se(M) given
by

q(ξx)(e2β(x)) =

k3∑
γ=1

qγβ(ξx)e3γ(x).

It follows that the γ-component of q(ξx)p(ξx)(e1α(x)) relative to the basis {e3γ(x)} of E3x

is given by

(qp)γα =

k2∑
β=1

qγβpβα.

This shows that qp ∈ Sd+e(M,Hom (E1, E3)). �

It follow from this lemma that the product map induces a bilinear map

Sd/Sd−1(M,Hom (E1, E2))× Se/Se−1(M,Hom (E2, E3))

−→ Sd+e/Sd+e−1(M,Hom (E1, E3))

denoted (σ1, σ2) 7→ σ2σ1.
We now turn to the composition of pseudo-differential operators. If P ∈ Ψd(E1, E2) is

a properly supported pseudo-differential operator then P maps Γ∞c (E1) continuous linearly
to Γ∞c (E2). Thus, if Q ∈ Ψe(E2, E3) then the composition Q ◦P is a well-defined continuous
linear operator Γ∞c (E1)→ Γ∞(E3).

Theorem 8.3.7 Let P ∈ Ψd(E1, E2) and Q ∈ Ψe(E2, E3) be properly supported. Then
the composition Q ◦P is a properly supported pseudo-differential operator in Ψd+e(E1, E3)
with principal symbol given by

σd+e(Q ◦P ) = σe(Q)σd(P ). (8.3.5)

Proof We first assume that d = e = −∞ so that both P and Q are smoothing operators
and will show that Q ◦P is a smoothing operator. For this it suffices to be shown that
the kernel of Q ◦P is smooth at each point (a, b) ∈ M ×M. Let U and W be relatively
compact open neighborhoods of a and b on which both E and F admit trivializations. Let
χ ∈ C∞c (U) be equal to 1 on an open neighborhood of a and let χ′ ∈ C∞c (W ) be equal to
1 on an open neighborhood of b. Then the kernel of Mχ′ ◦Q ◦P ◦Mχ equals the kernel of
Q ◦P on an open neighborhood of (b, a), so that it suffices to show that Mχ′ ◦Q ◦P ◦Mχ is
a smoothing operator.
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Let A be a compact subset of M such that suppKP ⊂ A×U, and suppKQ ⊂ W×A. Let
{Vj} be a finite cover of A by open subsets of M on which each of the bundles E,F admits a
trivialization. Let ψj ∈ C∞c (Vj) be functions such that

∑
j ψj = 1 on an open neighborhood

of A. For each j, let ψ′j ∈ C∞c (Vj) be such that ψ′j = 1 on an open neighborhood of suppψj.
Then

Mχ′ ◦Q ◦P ◦Mχ =
∑
j

Qj ◦Pj,

where Qj = Mχ′ ◦Q ◦Mψ′j
and Pj = Mψj ◦P ◦Mχ. It suffices to show that each of the

operators Qj ◦Pj is smoothing. Fix j. Let e11, . . . , e1k1 be a frame of E1 on U, e21, . . . , e2k2

a frame of E2 on Vj and e31, . . . , e3k3 a frame of E3 on W. Let Pjβα be the components
of Pj : Γ∞c (U,E1) → Γ∞c (Vj, E2) relative to the first two frames, and let Qjγβ be the
components of Qj : Γ∞c (Vj, E2)→ Γ∞c (W,E3) relative to the second pair of frames. These
components are scalar smoothing operators. The components of Qj ◦Pj : Γ∞c (U)→ Γ∞c (W )
are given by

(Qj ◦Pj)γα =
∑
β

Qjγβ ◦Pjβα.

As all operators in this sum are smoothing, it follows that Qj ◦Pj : Γ∞c (U,E1)→ Γ∞c (W,E3)
is smoothing. As Qj ◦Pj vanishes on the complement of suppχ and has image contained
in C∞c (W ), it follows that Qj ◦Pj is a smoothing operator.

We now assume that d ∈ R and e = −∞ and will show that Q ◦P is smoothing.
Let U ⊂ M be a relatively compact open subset on which each of the bundles Ej, for
j = 1, 2, 3 admits a trivialization. Let χ ∈ C∞c (U) then it suffices to show that Mχ ◦Q ◦P
is smoothing. Let ψ ∈ C∞c (U) be such that ψ = 1 on an open neighborhood of suppχ.
Then Mχ ◦Q differs from Mχ ◦Q ◦Mψ by a smoothing operator, hence, by the first part of
the proof it suffices to show that Mχ ◦Q ◦Mψ ◦P is smoothing. Let χ′ ∈ C∞c (U) be such
that χ′ = 1 on an open neighborhood of suppχ. Then Mχ ◦Q ◦Mψ ◦P = Q0 ◦P0, where
Q0 = Mχ ◦Q ◦Mψ and P0 = Mχ′ ◦P. As P is properly supported, there exists a compact
subset B ⊂ M such that suppKP ∩ U ⊂ M ⊂ U × B. Let {Vj} be a finite open cover of
B such that the bundle E1 admits a trivialization on each of the sets Vj. Let ψj ∈ C∞c (Vj)
be such that

∑
j ψj = 1 on an open neighborhood of B. Then P0 =

∑
j Pj, where Pj =

P0 ◦Mψj . It suffices to show that each operator Q0 ◦Pj is smoothing. Fix j, let e11, . . . , e1,k1

be a frame of E1 on Vj, let e21, . . . e2k2 be a frame of E2 on U and e31, . . . , e3k3 a frame
of E3 on U. Then in terms of components of the operators Q0 : Γ∞c (U,E2) → Γ∞c (U,E3)
and Pj : Γ∞c (Vj, E1) → Γ∞c (U,E2) the operator Q0 ◦Pj : Γ∞c (Vj, E1) → Γ∞c (U,E3) has
components given by

(Q0 ◦Pj)γα =

k2∑
β=1

(Q0)γβ ◦ (Pj)βα (8.3.6)

The operators (Pj)βα are smoothing with kernels whose compact supports are contained in
U × Vj. Extending these kernels with value zero outside their supports, we obtain kernels
on M ×M such that the identities (8.3.6) still hold for the associated scalar operators. As
(Q0)γβ ∈ Ψe(M) for all γ, β and (Pj)βα ∈ Ψ−∞(M) for all α, β, it follows from Theorem
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7.5.3 that all components of Q0 ◦Pj are smoothing operators. Hence, Q0 ◦P is smoothing.
We conclude that Q ◦P is smoothing.

Likewise, if e = −∞ and d ∈ R, then Q ◦P is a smoothing operator. To see this we
may either imitate the argument in the previous part of the proof, or combine the result
of that part with Lemma 8.3.3.

Finally, we discuss the case that e, d are arbitrary. We will show thatQ ◦P ∈ Ψd+e(E1, E3).
Let U be an open subset of M on which each of the bundles Ej, for j = 1, 2, 3 trivializes.
Let χ ∈ C∞c (U); then it suffices to show that Mχ ◦Q ◦P ∈ Ψd+e. Let χ′ ∈ C∞c (U) be such
that χ′ = 1 on suppχ. Then Mχ ◦Q equals Q0 := Mχ ◦Q ◦Mχ′ modulo a smoothing opera-
tor, hence by the first part of the proof it suffices to show that Q0 ◦P belongs to Ψd+e. The
latter operator equals Q0 ◦Mψ ◦P for ψ ∈ C∞c (U) such that ψ = 1 on an open neighbor-
hood of suppχ′. Let ψ′ ∈ C∞c (U) be equal to 1 on an open neighborhood of suppψ, then
Mψ ◦P equals P0 := Mψ ◦P ◦Mψ′ modulo a smoothing operator, hence it suffices to show
that Q0 ◦P0 ∈ Ψd+e(E1, E3). As the supports of the kernels of Q0 and P0 are contained in
U × U, it suffices to show that (Q0)U ◦ (P0)U ∈ Ψd+e((E1)U , (E3)U).

Thus, to show that Q ◦P belongs to Ψd+e(E1, E3) we may as well assume that E1, E2, E3

are trivial on M from the start. In this situation, Ψd(E1, E2) ' Mk2,k1(Ψ
d(M)) and

Ψe(E2, E3) 'Mk3k2(Ψ
e(M)). Moreover, the composition Q ◦P has components

(Q ◦P )γα =
∑
β

Qγβ ◦Pβα.

It follows by application of Theorem 7.5.3 that these components belong to Ψd+e(M) and
have principal symbols given by

σd+e((Q ◦P )γα) =
∑
β

σe(Qγβ) ◦σd(Pβα).

It follows that
σd+e(Q ◦P )γα =

(
σe(Q)σd(P )

)
γα

whence (8.3.5).
We now assume to be in the general situation again. It remains to be shown that

R := Q ◦P is properly supported. Let A ⊂ M be compact. Then there exists a compact
subset B ⊂M such that suppKP∩(M×A) ⊂ B×A. There exists a compact subset C ⊂M
such that suppKQ∩(M×B) ⊂ C×B. It now easily follows that suppKR∩(M×A) ⊂ C×A.
Thus, pr2|suppKR : suppKR →M is proper. The properness of pr1|suppKR is established in
a similar way. �

Exercise 8.3.8 Let P ∈ Ψd(E,F ). Show that the following two assertions are equivalent.

(a) The operator P is properly supported.

(b) The operator P maps Γ∞c (E) continuous linearly to Γ∞c (F ) and its adjoint P t maps
Γ∞c (F∨) continuous linearly to Γ∞c (E∨).
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8.4 Elliptic operators, parametrices

We assume that E → M and F → M are complex vector bundles on M of rank k and l,
respectively.

The symbol space S0(M,End (E)) has a distinguished element 1E given by

1E : T ∗xM 3 ξx 7→ IEx ∈ End (E)x, (x ∈M).

Likewise, S0(M,End (F )) has a distinguished element 1F .
A symbol p ∈ Sd(M,Hom (E,F )) is said to be elliptic (of order d) if there exists a

symbol q ∈ S−d(M,Hom (F,E) such that

pq − 1F ∈ S−1(M,End (F )), and qp− 1E ∈ S−1(M,End (E)).

For the classes [p] ∈ Sd/Sd−1 and [q] ∈ S−d/S−d−1 this means precisely that

[p][q] = [1F ], and [q][p] = [1E].

Thus, the notion of ellipticity factors to the quotient space Sd/Sd−1.

Definition 8.4.1 A pseudo-differential operator P ∈ Ψd(E,F ) is said to be elliptic if its
principal symbol σd(P ) ∈ Sd/Sd−1(M,Hom (E,F )) is elliptic.

The notion of ellipticity of a pseudo-differential operator generalizes the similar notion
for a differential operator.

Lemma 8.4.2 Let d ∈ N and let P be a differential operator of order d from E to F.
Then the following assertions are equivalent.

(a) P is elliptic as differential operator;

(b) P is elliptic as a pseudo-differential operator in Ψd(E,F ).

Proof Let p be the principal symbol of P as a differential operator. Then p ∈ Γ∞(T ∗M,Hom (E,F ))
and for each x ∈ M, the map ξ 7→ p(x, ξ) is a Hom(Ex, Fx)-valued polynomial function
on TxM

∗ that is homogeneous of degree d. By using local trivializations of E and F one
sees that p is a symbol in Sd(M,Hom (E,F )), and that its class in Sd/Sd−1 is the principal
symbol of P in the sense of pseudo-differential operators.

Now assume (a). This means that p(x, ξx) is an invertible homomorphism Ex → Fx
for every x ∈ M, ξx ∈ T ∗xM \ {0}. Let χ : T ∗M → R be a smooth function such that
π : suppχ → M is proper and such that χ = 1 on a neighborhood of M ; as usual we
identify M with the image of the zero section in T ∗M. The existence of such a function
can be established locally (relative to M) by using an atlas of M, and globally by using a
partition of unity subordinate to this atlas.

We define the smooth function q ∈ Γ∞(T ∗M,Hom (F,E)) by

q(ξx) := (1− χ(ξx))p(ξx)
−1, (x ∈M, ξx ∈ T ∗xM).
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By a local analysis we readily see that q ∈ S−d(M,Hom (F,E)). Moreover, from the defi-
nition of q it follows that

q(ξx)p(ξx)− IEx = χ(ξx)IEx , and p(ξx)q(ξx)− IFx = χ(ξx)IFx .

This implies that qp− 1E ∈ S−∞(E,E) and pq − 1F ∈ S−∞(F, F ). Hence (b) follows.
Conversely, assume that (b) holds. Let p be the principal symbol of the differential op-

erator P introduced above. Then [p] = σd(P ) in the sense of pseudo-differential operators,
hence there exists a q ∈ S−d(M,Hom (F,E)) such that [q][p] = [1E] and [p][q] = [1F ]. It
follows that there exists a r ∈ S−1(M,End (E)) such that

q(ξx)p(ξx) = IEx + r(ξx), (x ∈M, ξx ∈ T ∗xM).

Fix x ∈ M, and choose norms on the finite dimensional spaces T ∗xM and End(Ex). Then
it follows that

q(ξx)p(ξx)− IEx = O(1 + ‖ξx‖)−1 (‖ξx‖ → ∞).

This implies that det(q(ξx)p(ξx))→ 1 for ‖ξx‖ → ∞. Hence, p(ξx) is an invertible element
of Hom(Ex, Fx) for ‖ξx‖ sufficiently large. By homogeneity of p|T ∗xM this implies that p(ξx)
is invertible for all ξ ∈ T ∗xM \ {0}. As this holds for any x ∈ M, the operator P is elliptic
as a differential operator. �

Corollary 8.4.3 Let P ∈ Ψd(E,F ) be properly supported and elliptic. Then there exists a
properly supported Q ∈ Ψ−d(F,E) such that QP−I ∈ Ψ−1(E,E) and PQ−I ∈ Ψ−1(F, F ).

Proof By Definition 8.4.1 there exists a q ∈ S−d/S−d−1(M,Hom (F,E)) such that
σd(P )q = [1E] and σd(p)q = [1F ]. By Theorem 8.2.6 there exists a Q ∈ Ψ−d(F,E) with
σ−d(Q) = q. By Lemma 8.3.5 there exists such a Q such that in addition Q is properly
supported. It now follows from Theorem 8.3.7 that σ0(Q ◦P ) = [1E] and σ0(P ◦Q) = [1F ].
As [1E] is the principal symbol of the identity operator IE : Γ∞c (E) → Γ∞c (E), it follows
that Q ◦P − IE ∈ Ψ−1(E,E), by Theorem 8.2.6. Likewise, P ◦Q− IF ∈ Ψ−∞(F, F ). �

The above corollary has the remarkable improvement that Q may be adapted in such
a way that QP − I and PQ − I become smooth kernel operators. The proof of this fact
is based on the following principle involving series of pseudo-differential operators. That
principle in turn is the appropriate generalization of the similar principle for symbols, as
formulated in Lemma 5.5.1.

We put

Ψ(E,F ) =
⋃
d∈R

Ψd(E,F ).

Definition 8.4.4 Let {dj} be a sequence of real numbers with limj→∞ dj = −∞. Let
Qj ∈ Ψdj(E,F ), for j ∈ N. Let Q ∈ Ψ(E,F ). Then

Q ∼
∞∑
j=0

Qj
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means that for each d ∈ R there exists an N ∈ N such that for all k ≥ N

Q−
k∑
j=0

Qj ∈ Ψd(E,F ).

Theorem 8.4.5 Let {dν}ν∈N be a sequence of real numbers with limν→∞ dν = −∞ and let
for each ν ∈ N a pseudo-differential operator Qν ∈ Ψdν (E,F ) be given. Then there exists
a properly supported Q ∈ Ψ(E,F ) such that

Q ∼
∞∑
ν=0

Qν . (8.4.1)

The operator Q is uniquely determined modulo Ψ−∞(E,F ).

Proof If Q′ is a second pseudo-differential operator with this property, then it follows from
the definition of ∼ that Q−Q′ belongs to Ψd(E,F ) for every d. Hence, Q−Q′ ∈ Ψ−∞(E,F )
and uniqueness follows.

Let d = maxν dν . In view of Lemma 8.3.5 it suffices to establish the existence of an
operator Q ∈ Ψd(E,F ) such that (8.4.1).

First we consider the case that M is an open subset of Rn and that E and F are trivial
of the form E = M × Ck and F = M × Cl. Then Ψ(E,F ) = Ml,k(Ψ(M)). Let 1 ≤ i ≤ l
and 1 ≤ j ≤ k. For every ν ∈ N there exists a symbol (qν)ij ∈ Sdν (M) such that

(Qν)ij = Ψ(qν)ij .

By Lemma 5.5.1 there exists a symbol qij ∈ Sd(M) such that

qij ∼
∑
ν∈N

(qν)ij.

Let Q ∈ Ψd(E,F ) be the pseudo-differential operator with Qij = Ψqij for all 1 ≤ i ≤ l, 1 ≤
j ≤ k. Then Q satisfies (8.4.1).

We now turn to the case that both E and F admit trivializations τE : E → E ′ = M×Ck

and τF : F → F ′ = M×Cl. Then by the first part of the proof there exists a P ∈ Ψ(E ′, F ′)
such that

P ∼
∑
ν∈N

τ∗(Qν).

Put Q = τ−1
∗ (P ), then Q satisfies (8.4.1). It remains to establish the general case.

Let {Uj}j∈J be an open cover ofM such that both bundles E and F admit trivializations
on Uj, for every j ∈ J. We may select such a cover with the additional property that it is
locally finite and that there exists a partition of unity {ψj}j∈J such that suppψj ⊂ Uj for
all j ∈ J. By the first part of the proof there exists for each j an operator Qj ∈ Ψd(EUj , FUj)
such that

Qj ∼
∑
ν∈N

(Qν)Uj .
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Clearly, for all i, j such that Uij := Ui ∩ Uj 6= ∅, both operators (Qi)Uij and (Qj)Uij have
the expansion

∑
ν(Qν)Uij . This implies that the difference of these operators belongs to

Ψ−∞(Uij). By the gluing property for Ψd/Ψ−∞, see Exercise 7.3.10 and Remark 8.1.2, it
follows that there exists a Q ∈ Ψd(E,F ) such that QUj −Qj ∈ Ψ−∞(EUj , FUj) for all j. It
follows that for all j we have

QUj ∼
∑
ν∈N

(Qν)Uj .

This implies (8.4.1). �

Theorem 8.4.6 Let E,F be two complex vector bundles on a manifold M. Let P ∈
Ψd(E,F ) be a properly supported elliptic pseudo-differential operator. Then there exists a
properly supported pseudo-differential operator Q ∈ Ψ−d(F,E) such that

QP − I ∈ Ψ−∞(E,E). (8.4.2)

The operator Q is uniquely determined modulo Ψ−∞(F,E) and satisfies

PQ− I ∈ Ψ−∞(F, F ). (8.4.3)

Remark 8.4.7 An operator Q with the above properties is called a parametrix for P.

Proof It follows from Corollary 8.4.3 that there exists a properly supported operator
Q0 ∈ Ψ−d(F,E) such that Q0P − I ∈ Ψ−1(E,E) and PQ0 − I ∈ Ψ−1(E,E). Put R =
I − Q0P. Then R is properly supported. It follows that Rk ∈ Ψ−k(E,E). Hence, there
exists a pseudo-differential operator A ∈ Ψ0(E,E) such that

A ∼
∞∑
k=0

Rk.

It is now a straightforward matter to verify that A(I−R)−I ∈ Ψ−n for all n ∈ N. It follows
that A(I −R)− I ∈ Ψ−∞. Put Q = AQ0. Then Q ∈ Ψ−d(F,E) is properly supported and

QP − I = AQ0P − I = A(I −R)− I ∈ Ψ−∞(E,E).

This shows the existence of Q such that (8.4.2). We will show that Q also satisfies (8.4.3).
Put B = QP − I. Then B is a properly supported smoothing operator in Ψ−∞(E,E). By
what we proved so far there exists a properly supported operator P1 ∈ Ψd(E,F ) such that
P1Q− I ∈ Ψ−∞(F, F ). The operator C := P1Q− I is properly supported. We now observe
that P1QP = P (I + B) = P + PB, and that P1QP = (I + C)P1 = P1 + CP1. Hence
P − P1 ∈ Ψ−∞(E,F ) and we conclude that D := PQ − I ∈ Ψ−∞(F, F ). This establishes
the existence of Q.

To establish uniqueness, let Q′ ∈ Ψ−d(F,E) be a properly supported operator with the
same property as Q. Then E := Q′P − I is smoothing. It follows that

Q′ −Q = Q′(PQ)−Q′D −Q = EQ−Q′D

is a smoothing operator. �
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Corollary 8.4.8 Let P ∈ Ψd(M,E, F ) be a properly supported elliptic pseudo-differential
operator. Then for all u ∈ D′(E) we have

singsuppu = singsuppPu.

In particular, if Pu is smooth, then u is smooth.

Proof Since P is pseudo-local, singsuppPu ⊂ singsuppu. Let Q ∈ Ψ−d be a properly sup-
ported parametrix for P. Then QP − I is a properly supported smoothing operator, hence
QPu−u is smooth. Since Q is pseudo-local, it follows that singsuppu ⊂ singsupp (QPu) ⊂
singsuppPu. �

Remark 8.4.9 Let P : Γ∞(E) → Γ∞(F ) be a differential operator of order d. Then by
locality of P is follows that 〈Pf, g〉 = 0 for all f ∈ Γ∞c (E) and g ∈ Γ∞c (F∨) such that
supp f ∩ supp g = ∅. This implies that the distribution kernel of P is supported by the
diagonal of M × M. In particular, P is properly supported. It follows that the above
corollary applies to elliptic differential operators.



Chapter 9

The index of an elliptic operator

9.1 Pseudo-differential operators and Sobolev space

We recall the definition of the Sobolev space Hs(Rn), for every s ∈ R, from Definition
4.3.12, The Sobolev space Hs(Rn) comes equipped with the inner product that makes F
an isometry from Hs(Rn) to L2

s(Rn). The associated norm on Hs(Rn) is denoted by ‖ · ‖s.
Since Fourier transform is an isometry from L2(Rn) to itself, we see that

H0(Rn) = L2(Rn) (9.1.1)

as Hilbert spaces. We recall that for s < t we have Ht(Rn) ⊂ Hs(Rn) with continuous
inclusion. The intersection of these spaces, denoted H∞(Rn), and equipped with all Sobolev
norms ‖ · ‖s, is a Fréchet space.

We note that for all s ∈ R∪{∞} we have C∞c (Rn) ⊂ Hs(R
n) ⊂ D′(Rn) with continuous

inclusion maps. Thus, the following lemma implies that Hs(Rn) is a local space in the sense
of Lecture 3, Definition 3.1.1.

Lemma 9.1.1 Let s ∈ R ∪ {∞}. Then the multiplication map (ϕ, f) 7→Mϕ(f), S(Rn)×
S ′(Rn)→ S ′(Rn), restricts to a continuous bilinear map S(Rn)×Hs(Rn)→ Hs(Rn).

Remark 9.1.2 This should have been the statement of Lemma 4.3.19, at least for s <∞,
and a proof should have been inserted.

Proof It suffices to prove this for finite s. It follows from Lemma 7.1.3 that F(Mϕ(f)) =
F(ϕ) ∗ F(f). Since F is a topological linear isomorphism from S(Rn) onto itself, and
from Hs(Rn) onto L2

s(Rn), the result of the lemma is equivalent to the statement that
convolution defines a continuous bilinear map S(Rn)×L2

s(Rn)→ L2
s(Rn). This is what we

will prove.
Let ϕ, f, g ∈ S(Rn). Then for all ξ, η ∈ Rn we have

(1 + ‖ξ − η‖)−s(1 + ‖ξ‖)s ≤ (1 + ‖η‖)|s|, (9.1.2)

167
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hence

|〈g, ϕ ∗ f〉|

≤
∫ ∫

| g(ξ)ϕ(η)f(ξ − η) | dηdξ

≤
∫
|ϕ(η)|(1 + ‖η‖)|s|

∫
|g(ξ)|(1 + ‖ξ‖)−s|f(ξ − η)|(1 + ‖ξ − η‖)s dξdη

≤
∫
|ϕ(η)| (1 + ‖η‖)|s| dη ‖f‖L2

s
‖g‖L2

−s
,

by the Cauchy-Schwartz inequality for the L2-inner product. Let N ∈ N be such that
|s| − N < −n; then there exists a continuous seminorm νN on S(Rn) such that for all
ϕ ∈ S(Rn),

|ϕ(η)| (1 + ‖η‖)|s| ≤ νN(ϕ)(1 + ‖η‖)−N+|s|, (η ∈ Rn).

We conclude that
|〈g, ϕ ∗ f〉‖ ≤ CνN(ϕ)‖f‖L2

s
‖g‖L2

−s
,

with C =
∫

(1 +‖η‖)|s|−N dη a positive real number. Now this is valid for all g in the dense
subspace S(Rn) of the space L2

−s(Rn), whose dual is isometrically isomorphic to L2
s(Rn).

Therefore,
‖ϕ ∗ f‖L2

s
≤ CνN(ϕ)‖f‖L2

s
, (ϕ, f ∈ S(Rn)).

By density of S(Rn) in L2
s(Rn) it now follows that the convolution product has a continuous

bilinear extension to a map S(Rn) × L2
s(Rn) → L2

s(Rn). The latter space is included in
S ′(Rn) with continuous inclusion map. Hence the present extension of the convolution
product must be the restriction of the convolution product S(Rn)× S ′(Rn)→ S ′(Rn). �

As said, it follows from the above lemma that Hs(Rn) is a functional space. In view of
the general discussion in Lecture 3 we may now define the local Sobolev space as follows.

Definition 9.1.3 Let U ⊂ Rn be open and let s ∈ R ∪ ∞. The local Sobolev space
Hs, loc(U) is defined to be the space of f ∈ D′(U) with the property that ψf ∈ Hs(Rn) for
all ψ ∈ C∞c (Rn). The space Hs(Rn) is equipped with the locally convex topology induced
by the collection of seminorms νψ : f 7→ ‖ψf‖s, for ψ ∈ C∞c (U).

The space L2
loc(U) is defined in a similar fashion. In view of (9.1.1),

L2
loc(U) = H0,loc(U),

including topologies. Since Hs(Rn) is a Hilbert space, if follows from the theory developed
in Lecture 3 that Hs, loc(U) (with the specified topology) is a Fréchet space.

It follows from the Sobolev lemma, Lemma 4.3.16, that C∞c (Rn) ⊂ H∞ ⊂ C∞(Rn) with
continuous inclusion maps. This in turn implies that

H∞,loc(U) = C∞(U),
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including topologies.
The Sobolev spaces behave very naturally under the action of pseudo-differential oper-

ators.

Lemma 9.1.4 Let K ⊂ Rn be a compact subset, and let −d, s ∈ R∪ {∞}. Then the map

(p, f) 7→ Ψp(f), SdK(Rn)× C∞c (Rn)→ C∞K (Rn),

has a unique extension to a continuous bilinear map

SdK(Rn)×Hs(Rn)→ Hs−d,K(Rn)

Proof It suffices to prove this for s, d finite, which we will now assume to be the
case. Uniqueness follows from density of C∞c (Rn) in Hs(Rn). Thus, it suffices to estab-
lish existence. Given p ∈ SdK(Rn), let F1p denote the Fourier transform of the function
(x, ξ) 7→ p(x, ξ) with respect to the first variable. If α ∈ Nn, then

(1 + ‖ξ‖)−d|ηαF1p(η, ξ)| = |F1((1 + ‖ξ‖)−d∂αx p)(η, ξ)|
≤ vol(K) sup

[
(1 + ‖ξ‖)−d|∂αx p(x, ξ)|

]
.

It follows that for every N ∈ N there exists a continuous seminorm µN on SdK(Rn) such
that

(1 + ‖η‖)N(1 + ‖ξ‖)−d|F1p(η, ξ)| ≤ µN(p), ((η, ξ) ∈ R2n),

for all p ∈ SdK(Rn).
Let now p ∈ SdK(Rn) and f, g ∈ C∞c (Rn). Then it follows that

〈g,Ψpf〉 =

∫ ∫
eiξxg(x)p(x, ξ)f̂(ξ) dξ dx

=

∫ ∫
eiξxg(x)p(x, ξ)f̂(ξ) dx dξ

=

∫ ∫
ĝ(ξ − η)F1p(η, ξ)f̂(ξ) dη dξ.

We obtain

|〈g,Ψpf〉|

≤
∫ ∫

Fp(η, ξ) (1 + ‖ξ − η‖)d−s|ĝ(ξ − η)| (1 + ‖ξ‖)s|f̂(ξ)| dξ dη

≤
∫

sup
ξ∈Rn

Fp(η, ξ) dη ‖g‖d−s‖f‖s, (9.1.3)

where

Fp(η, ξ) = |F1p(η, ξ)|(1 + ‖ξ − η‖)s−d(1 + ‖ξ‖−s

≤ |F1p(η, ξ)|(1 + ‖ξ‖)−d(1 + ‖η‖)|s−d|

≤ (1 + ‖η‖)|s−d|−N µN(p).
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In the above estimation we have used (9.1.2) with s − d in place of s. Fix N such that
|s− d| −N < −n. Then combining the last estimate with (9.1.3) we see that there exists
a constant C > 0 such that for all f, g ∈ C∞c (Rn) and p ∈ SdK(Rn),

|〈g,Ψpf〉| ≤ C µN(p)‖g‖d−s‖f‖s.

The space C∞c (Rn) is dense in the Hilbert space Hd−s(Rn) whose dual is isometrically
isomorphic with Hs−d(Rn). This implies that

‖Ψp(f)‖s−d ≤ C µN(p)‖f‖s, (p ∈ SdK(Rn), f ∈ C∞c (Rn)).

it follows that the map (p, f) 7→ Ψp(f) has a continuous bilinear extension β : SdK(Rn) ×
Hs(Rn)→ Hs−d(Rn). Since β maps the dense subspace SdK(Rn)× C∞c (Rn) into the closed
subspace Hs−d,K(Rn) it follows that β maps continuous bilinearly into this closed subspace
as well. �

The local Sobolev spaces behave very naturally under the action of pseudo-differential
operators as well.

Proposition 9.1.5 Let P ∈ Ψd(U) be properly supported, d ∈ R∪{−∞}. Then for every
s ∈ R ∪ {∞} the operator P : D′(U) → D′(U) restricts to a continuous linear operator
Ps : Hs, loc(U)→ Hs−d, loc(U).

Proof By Lemma 7.1.9 there exists a p ∈ Sd(U) such that P = Ψp. Let ψ ∈ C∞c (U)
and put B = suppψ. Then it suffices to show that the operator Q := Mψ ◦P is continuous
linear from Hs, loc(U) to Hs−d(Rn). We note that Q = Ψq, where q ∈ Sdc (U) ⊂ Sdc (Rn) is
given by q = ψp. Since P is properly supported, there exists a compact subset K of U
such that the kernel of Q has support contained in B × K. Let χ ∈ C∞c (U) be such that
χ = 1 on an open neighborhood of K. Then Q = Q ◦Mχ on C∞c (U), hence on D′(U),
hence on Hs, loc(U). Put A = suppχ. Then Mχ is continuous linear Hs, loc(Rn)→ Hs,A(Rn).
Moreover, by Lemma 9.1.4 Ψq is continuous linear Hs,A(Rn) → Hs−d,B(Rn). Therefore,
Q = Ψq ◦Mχ is continuous linear Hs, loc(Rn)→ Hs−d(Rn). �

9.2 Sobolev spaces on manifolds

In the previous section we have seen that the local Sobolev spaces are functional in the
sense of Lecture 3. In order to be able to extend these spaces to manifolds, we need to
establish their invariance under diffeomorphims. We will do this through characterizing
them by elliptic pseudo-differential operators, which are already known to behave well
under diffeomorphisms. A first result in this direction is the following.

Proposition 9.2.1 Let s ∈ R, and let P ∈ Ψs(U) be a properly supported elliptic pseudo-
differential operator. Then

Hs, loc(U) = {f ∈ D′(U) | Pf ∈ L2
loc(U)}.
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Proof If f ∈ Hs,loc(U) then f ∈ D′(U) and Pf ∈ H0,loc(U) = L2
loc(U). This proves one

inclusion. To prove the converse inclusion, we use that by Theorem 8.4.6 applied with
M = U and E = F = CU , there exists a properly supported Q ∈ Ψ−s(U) such that
Q ◦P = I + T, with T ∈ Ψ−∞(U) a properly supported smoothing operator. If f ∈ D′(U)
and Pf ∈ L2

loc(U) = H0,loc(U), then QPf ∈ Hs, loc(U) and Tf ∈ C∞(U) ⊂ Hs, loc(U).
Hence, f = QPf − Tf ∈ Hs, loc(U). �

By combination of the above result with the following lemma, it can be shown that the
local Sobolev spaces behave well under diffeomorphisms.

Lemma 9.2.2 Let U ⊂ Rn be an open subset and let d ∈ R. There exists a properly
supported elliptic operator in Ψd(U).

Proof Let d be finite. Then the function p = pd : R2n → C defined by p(x, ξ) =
(1 + ‖ξ‖2)d/2 belongs to the symbol space Sd(Rn). Since pdp−d = 1, the operator R =
Ψpd ∈ Ψd(Rn) is elliptic. Its restriction P = RU to U belongs to Ψd(U) and has principal
symbol [(pd)U ] hence is elliptic as well. By Lemma 8.3.5 there exists a properly supported
P0 ∈ Ψd(U) such that P − P0 is a smoothing operator. Hence, P0 has the same principal
symbol as P and we see that P0 is elliptic. �

Let ϕ : U → V be a diffeomorphism of open subsets of Rn. This diffeomorphism induces
a topological linear isomorphism

ϕ∗ : D′(U)→ D′(V ). (9.2.4)

Theorem 9.2.3 Let ϕ : U → V be a diffeomorphism of open subsets of Rn and let
s ∈ R ∪ {∞}.

(a) The map (9.2.4) restricts to a linear isomorphism

ϕ∗s : Hs, loc(U)→ Hs, loc(V ).

(b) The isomorphism ϕ∗s is topological.

Proof It suffices to prove the result for finite s, the result for s =∞ is then a consequence.
We will first obtain (a) as a consequence of Proposition 9.2.1 and Lemma 9.2.2. By

the latter lemma there exists a properly supported elliptic operator P ∈ Ψd(U). Let P ′ =
ϕ∗(P ). Then P ′ ∈ Ψd(V ) and P ′ϕ∗(f) = ϕ∗(Pf) for all f ∈ D′(U). The principal symbol
of P ′ is given by σd(P ′) = ϕ∗(σ

d(P )), hence elliptic. Therefore, P ′ is elliptic. The kernel
of P ′ has support contained in (ϕ× ϕ)(suppKP ), hence is properly supported.

By a straightforward application of the substitution of variables formula, it follows that
ϕ∗ restricts to a topological linear isomorphism L2

loc(U) → L2
loc(V ). Let now f ∈ D′(U).

Then

f ∈ Hs, loc(U) ⇐⇒ Pf ∈ L2
loc(U) ⇐⇒ ϕ∗(Pf) ∈ L2

loc(V )

⇐⇒ P ′ϕ∗(f) ∈ L2
loc(V ) ⇐⇒ ϕ∗(f) ∈ Hs, loc(V ).

This proves (a). In order to prove (b) we need characterizations of the topology on Hs, loc

that behave well under diffeomorphisms. These will first be given in two lemmas below.
The present proof will be completed right after those lemmas. �
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Lemma 9.2.4 Let s ≥ 0 and let P ∈ Ψs(U) be properly supported and elliptic. Then the
topology on Hs, loc(U) is the weakest locally convex topology for which both the inclusion
map j : Hs, loc(U)→ L2

loc(U) and the map P : Hs, loc(U)→ L2
loc(U) are continuous.

Proof For the topology on Hs, loc(U) the mentioned maps j and P are continuous with
values in L2

loc(U). Let V be equal to Hs, loc(U) equipped with the weakest locally convex
topology for which j and P are continuous. Then we must show that the identity map
V → Hs, loc(U) is continuous. Let ϕ ∈ C∞c (U); then it suffices to show that the map
Mϕ : V → Hs(Rn) is continuous.

Let Q ∈ Ψ−s(U) be a properly supported parametrix for P. Then

I = QP + T,

with T ∈ Ψ−∞(U) a properly supported smoothing operator. Let A = suppϕ. There
exists a compact subset B ⊂ U such that the intersections of both suppKQ and suppKT

with A × U are contained in A × B. Let ψ ∈ C∞c (U) be such that ψ = 1 on an open
neighborhood of B. Then Mϕ ◦Q = Mϕ ◦Q ◦Mψ and Mϕ ◦T = Mϕ ◦T ◦Mψ. We now see
that, for all f ∈ Hs, loc(U),

ϕf = Mϕ(QP + T )(f) = MϕQMψPf +MϕTMψf.

As Mϕ ◦Q and Mϕ ◦T define continuous linear maps H0(Rn) = L2(Rn) → Hs(Rn), by
Lemma 9.1.4, it follows that there exists a constant C > 0 such that

‖ϕf‖s ≤ C(‖ϕPf‖0 + ‖ψf‖0),

for all f ∈ Hs, loc(U). The seminorms f 7→ ‖ϕPf‖0 and f 7→ ‖ψf‖0 are continuous on V.
Hence, Mϕ : V → Hs(Rn) is continuous. �

We will also need a characterization of the topology of Hs,loc by duality, which is invari-
ant under diffeomorphisms for all negative s. LetD = DRn denote the density bundle on Rn.
Then we have the natural continuous bilinear pairing 〈 · , · 〉 : C∞c (Rn) × Γ∞c (Rn, D) → C
given by

〈f, γ〉 =

∫
Rn

fγ.

This pairing induces a continuous injection of the space C∞c (Rn) into the topological
dual D′(Rn) of Γ∞c (Rn, D). This pairing also induces a continuous injection of Γ∞c (Rn, D)
into D′(Rn, D) ' C∞c (Rn)′. We note that the map g 7→ gdx defines a topological lin-
ear isomorphism C∞c (Rn) → Γ∞c (Rn, D) and extends to a continuous linear isomorphism
D′(Rn) → D′(Rn, D). For s ∈ R, the image of the Sobolev space Hs(Rn) under this iso-
morphism, equipped with the transferred Hilbert structure, is denoted by Hs(Rn, D).

By transposition, the inclusion Γ∞c (Rn, D) → Hs(Rn, D) induces a continuous linear
map Hs(Rn, D)′ → D′(Rn) which is injective by density of Γ∞c (Rn, D) in Hs(Rn, D). Of
course the induced map is given by u 7→ u|Γ∞c (Rn,D).

The perfectness of the pairing of Lemma 4.3.18 can now be expressed as follows.
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Lemma 9.2.5 Let s ∈ R. The image of the injection Hs(Rn, D)′ → D′(Rn) equals
H−s(Rn). The associated bijection Hs(Rn, D)′ → H−s(Rn) is a topological linear isomor-
phism.

More generally, if U ⊂ Rn is an open subset, we define Hs,comp(U,D) to be the image of
Hs,comp(U) in D′(U,D) under the map f 7→ fdm, equipped with the topology that makes
this map a topological isomorphism. The natural inclusion Γ∞c (U,D) → Hs,comp(U,D)
induces a continuous linear injection

Hs,comp(U,D)′ ↪→ D′(U).

Here, the space on the left is equipped with the strong dual topology.

Corollary 9.2.6 Let s ∈ R. Then the image of Hs,comp(U,D)′ in D′(U) equals H−s,loc(U).
The associated bijection Hs,comp(U,D)′ → H−s,loc(U) is a topological linear isomorphism.

Proof Let j : Hs,comp(U)′ → D′(U) denote the natural linear injection. Let ϕ ∈ C∞c (M).
Then for all u ∈ Hs,comp(U)′ we have

Mϕ ◦ j(u) = j(u ◦Mϕ).

The map u 7→ u ◦Mϕ is continuous linear Hs,comp(U)′ → Hs(Rn)′. It follows that u 7→
Mϕ ◦ j(u) = j(Mϕu) is continuous linear Hs,comp(U)′ → H−s(Rn). Since this holds for all
ϕ, it follows that j is continuous linear Hs,comp(U)′ → H−s,loc(U) as stated.

Conversely, let K ⊂ U be compact. Let K′ be a compact neighborhood of K in U.
Then Hs,K(Rn) is contained in the closure of C∞K′(Rn) in Hs(Rn). Let v ∈ H−s,loc(U) and
let ϕ ∈ C∞c (U) be such that ϕ = 1 on a neighborhood of K′. Then Mϕv ∈ H−s(Rn), hence,
Mϕv = j(kϕ(v)) for a unique kϕ(v) ∈ Hs(Rn)′. Moreover, the map kϕ : H−s,loc(Rn) →
Hs(Rn)′ is continuous linear by the above lemma. The restriction of kϕ(v) to C∞K′(Rn) is
independent of the choice of ϕ, and therefore so is the map kK : v 7→ kϕ(v)|Hs,K . The map
kK is continuous linear. Moreover, if K1 ⊂ K2 are compact subsets of U then kK1(v) =
kK2(v)|K1. It follows that there exists a unique linear map k : H−s,loc(U) → Hs,comp(U)′

such that kA(v) = k(v)|A for all v ∈ H−s,loc(U) and all A ⊂ U compact. As all the kA are
continuous, it follows that k is continuous. Now j ◦ k = I and it follows that j defines a
continuous linear isomorphism from Hs,comp(U)′ onto H−s,loc(U). �

Completion of the proof of Theorem 9.2.3. First assume that s ≥ 0. Let
P ∈ Ψs(U) be a properly supported elliptic operator, and let P ′ = ϕ∗(P ) be as in part (a)
of the proof. Then by Lemma 9.2.4 the topology of Hs(U) is the weakest locally convex
topology for which both the inclusion jU : Hs(U) → L2

loc(U) and the map P : Hs(U) →
L2

loc(U) are continuous. Likewise, the topology on Hs(V ) is the weakest for which both
the inclusion map jV : Hs(V ) → L2

loc(V ) and P ′ : Hs(V ) → L2
loc(V ) are continuous. The

map ϕ∗ : L2
loc(U)→ L2

loc(V ) is a topological linear isomorphism and the following diagrams
commute:

Hs(U)
jU−→ L2

loc(U)
ϕ∗s ↓ ↓ ϕ∗
Hs(V )

jV−→ L2
loc(V )

Hs(U)
P−→ L2

loc(U)
ϕ∗s ↓ ↓ ϕ∗
Hs(V )

P ′−→ L2
loc(V )
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It follows that ϕ∗s is a topological linear isomorphism.
This proves (b) for s ≥ 0. We will complete the proof by proving (b) for s ≤ 0, using

the duality expressed in Lemma 9.2.5. We put t = −s, so that t ≥ 0. By the validity
of (b) for s ≥ 0 it follows that the map ϕ∗ : D′(U) → D′(V ), restricts to a topological
linear isomorphism ϕ∗t : Ht,comp(U)→ Ht,comp(V ). On the other hand, the map ϕ∗ restricts
to the topological linear isomorphism ϕ∗ : C∞c (U) → C∞c (V ) given by f 7→ f ◦ϕ−1. The
map f 7→ fdx defines a topological linear isomorphism from D′(U) to D′(U,D). Likewise,
g 7→ gdy defines a topological linear isomorphism from D′(V ) to D′(V,D). Now

ϕ∗(fdx) = ϕ∗(f)ϕ∗(dx) = MJϕ∗(f)dy,

where J : V → (0,∞) is the positive smooth function given by

J(y) = | detDϕ(ϕ−1)|−1.

The map MJ defines a topological linear automorphism of D′(V ) and restricts to a topo-
logical linear isomorphism of Ht(V ). We conclude that ϕ∗ defines a topological linear
isomorphism D′(U,D) → D′(V,D) and restricts to a topological linear isomorphism ϕ∗t :
Ht,comp(U,D)→ Ht,comp(V,D). Its restriction to Γ∞c (U,D) is given by fdx 7→MJ(ϕ−1)∗(f)dy,
hence defines a topological linear isomorphism Γ∞c (U,D) → Γ∞c (V,D). By taking trans-
posed maps in the commutative diagram

Ht,comp(U,D) −→ Ht,comp(V,D)
↑ ↑

Γ∞c (U,D) −→ Γ∞c (V,D)

we obtain the commutative diagram

D′(U)
ϕ−1
∗←− D′(V )

↑ ↑
Ht,comp(U,D)′

'←− Ht,comp(V,D)′.

Here the bottom arrow is the transpose of a topological linear isomorphism, hence a topo-
logical linear isomorphism of its own right.

In view of Lemma 9.2.5, and using s = −t, we see that ϕ∗ : D′(U) → D′(V ) restricts
to a topological linear isomorphism ϕ∗s : Hs,loc(U)→ Hs,loc(V ). �

In particular, it follows from Theorem 9.2.3 that Hs,loc is an invariant local functional
space in the terminology of Lecture 3. It follows that for E a complex vector bundle on
a smooth manifold the spaces of sections Hs,comp(M,E) and Hs,loc(M,E) are well defined
locally convex topological vector spaces. Moreover, the first of these spaces is contained in
the second with continuous inclusion map, and the second space is a Fréchet space.

Lemma 9.2.7 Let s, t ∈ R and let s < t. Then Ht,loc(M,E) ⊂ Hs,loc(M,E) with contin-
uous inclusion map. If M is compact, this inclusion map is compact.
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Proof Let {Uj}j∈J be a cover of M by relatively compact open coordinate patches on
which the bundle E admits a trivialization. Passing to a locally finite refinement, we may
assume that the index set J is countable. Let ϕj be a partition of unity subordinate to
the cover. For each j ∈ J we write Kj = suppϕj. Then the map f 7→ (ϕjf)j∈J defines a
continuous linear embedding

Hs,loc(M,E) −→
∏
j∈J

Hs,Kj(Uj, E),

for every s ∈ R. Via a trivialization of E over Uj we may identifyHs,Kj(Uj, E) ' Hs,Kj(Uj)
k.

As Ht,Kj(Uj)
k ⊂ Hs,Kj(Uj)

k, for s < t, with continuous inclusion map, the first assertion
of the lemma follows.

If M is compact, we may take the covering such that the index set J is finite. Then
by the above reasoning and application of Rellich’s lemma, Lemma 4.5.2, it follows that
the following diagram commutes, and that the inclusion map represented by the vertical
arrow on the right is the finite direct product of compact maps:

Hs(M,E) −→
∏

j∈J Hs,Kj(Uj, E)

↑ ↑
Ht(M,E) −→

∏
j∈J Ht,Kj(Uj, E).

As the maps represented by the horizontal arrows are embeddings, it follows that the
inclusion Ht(M,E)→ Hs(M,E), represented by the vertical arrow on the left, is compact
as well. �

We define

H∞,loc(M,E) = ∪s∈RHs,loc(M,E)

equipped with the weakest topology for which all inclusion mapsH∞,loc(M,E)→ Hs,loc(M,E)
are continuous. Then by an argument similar to the one used in the proof of the above
lemma, it follows from the corresponding local statement (see 9.1.5), that H∞,loc(M,E) =
Γ∞(M,E), as topological linear (Fréchet) spaces.

Theorem 9.2.8 Let E,F be vector bundles on the smooth manifold M. Let d ∈ R∪{−∞}
and s ∈ R ∪ {∞}. Finally, let P ∈ Ψd(E,F ) be properly supported. Then P : D′(M,E)→
D′(M,F ) restricts to a continuous linear operator Ps : Hs,loc(M,E)→ Hs−d,loc(M,F ).

Proof First assume that d = −∞, so that P is a properly supported smoothing operator.
Then P is continuous linear D′(M,E) → Γ∞(M,F ). Since the inclusion Hs,loc(M,E) →
D′(M,E) is continuous linear, it follows that the restriction Ps : Hs,loc(M,E)→ Γ∞(M,F ) =
H∞,loc(M,F ) is continuous linear.

Now assume that {Uj}j∈J is a cover of M with relatively compact open coordinate
patches. By paracompactness, we may assume that J is countable and that the cover is
locally finite. Let {ψj} be a partition of unity subordinate to this cover. For each j ∈ J
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we select a function χj ∈ C∞c (Uj) such that χj = 1 on an open neighborhood of suppψj.
Put Pj := Mψ ◦P ◦Mχj . Then it follows that

Tj = Mψj ◦P − Pj

is a properly supported smoothing operator. The supports of the kernels of Tj form a locally
finite set, hence T =

∑
j Tj is a well-defined smoothing operator. Moreover, P∗ =

∑
j Pj is

a well-defined operator in Ψd(E,F ), which is properly supported by local finiteness of the
cover {Uj}. Moreover,

P = P∗ + T,

so T is properly supported. By the first part of the proof, T maps Hs,loc(M,E) continuously
into C∞(M,F ), hence also continuously into Hs−d(M,F ). Thus, it suffices to show that P∗
is continuous linear Hs, loc(M,E) → Hs−d,loc(M,F ). Let ϕ ∈ C∞c (M). Then it suffices to
show that Mϕ ◦P∗ is continuous linear Hs, loc(M,E) → Hs−d,B(M,F ), where B = suppϕ.
Now Mϕ ◦P∗ =

∑
jMϕ ◦Pj, the sum extending over the finite set of j for which suppψj ∩

B 6= ∅. Thus, it suffices to establish the continuity of (Pj)s : Hs,loc(M,E)→ Hs−d,loc(M,F ).
This is equivalent to the continuity of (Pj)Uj : Hs,loc(Uj, E) → Hs−d,loc(Uj, F ) which by
triviality of the bundles EUj and FUj follows from the local scalar result, Proposition 9.1.5.
�

Lemma 9.2.9 Let M be a smooth manifold, and E → M be a vector bundle. For every
s ∈ R the natural pairing Γ∞c (M,E) × Γ∞(M,E∨) → C has a unique extension to a
continuous bilinear pairing

Hs,comp(M,E)×H−s,loc(M,E∨)→ C.

Moreover, the pairing is perfect, i.e., the induced maps

Hs,comp(M,E)→ H−s,loc(M,E∨)′, H−s,loc(M,E∨)→ Hs,comp(M,E)′

are topological linear isomorphisms.

Proof The proof will be given in an appendix. �

9.3 The index of an elliptic operator

We are now finally prepared to show that every elliptic operator between vector bundles
E,F over a compact manifold M has a well defined index.

Theorem 9.3.1 Let E,F be vector bundles over a compact manifold M. Let d ∈ R and
let P ∈ Ψd(E,F ) be elliptic. Then the transpose P t ∈ Ψd(F∨, E∨) is elliptic as well.

The operator P∞ : Γ∞(M,E)→ Γ∞(M,F ) has a finite dimensional kernel, and closed
image of finite codimension.
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For all s ∈ R the operator Ps : Hs(m,E)→ Hs−d(M,F ) is Fredholm and has index

indexPs = index (P∞).

In particular, the index is independent of s.

Proof Let p ∈ Sd(M,Hom (E,F )) be a representative of the principal symbol σd(P ).
Then the principal symbol of P t is represented by

p∨ : (x, ξ) 7→ p(x,−ξ)∗ ⊗ IDx .

Since p is elliptic, p∨ is elliptic as well, and we conclude that P t is elliptic.
Since M is compact, the spaces Hs(M,E) and Hs(M,F ) carry a Banach topology.

Let Q ∈ Ψ−d(F,E) be a parametrix. Then QP = IE + T, with T ∈ Ψ−∞(E,E) a
smoothing operator. The operator T is continuous Hs(M,E) → C∞(M,E), hence con-
tinuous Hs(M,E) → Hs+1(M,E). As Hs+1(M,E) → Hs(M,E) with compact inclu-
sion map, it follows that Ts : Hs(E) → Hs(E) is a compact operator. It follows that
Qs−d ◦Ps = (IE)s + Ts, hence Ps has left inverse Qs−d modulo a compact operator. Like-
wise, from PQ− IF = T ′ ∈ Ψ−∞(F, F ) we see that the operator Ps has right inverse Qs−d
modulo a compact operator. This implies that Ps is Fredholm. In particular, kerPs is
finite dimensional.

Since kerP∞ ⊂ kerPs and kerPs ⊂ Γ∞(M,E) by the elliptic regularity theorem, Corol-
lary 8.4.8, it follows that kerPs = kerP∞, for all s ∈ R. In particular, kerP∞ is finite
dimensional.

Likewise, (P t)s : Hs(M,F∨) → Hs−d(M,E∨) is Fredholm, (kerP t)∞ is finite dimen-
sional and ker(P t)s = ker(P t)∞ for all s.

We consider the natural continuous bilinear pairing

(f, g) 7→ 〈f, g〉, Γ∞(M,E)× Γ∞(M,E∨)→ C. (9.3.5)

The operator P t : Γ∞(M,F∨))→ Γ∞(M,E∨) satisfies

〈Pf, h〉 = 〈f, P th〉 (9.3.6)

for all f ∈ Γ∞(M,E) and h ∈ Γ∞(M,F∨). The natural bilinear pairing (9.3.5) extends
uniquely to a continuous bilinear pairing Hs(M,E)×H−s(M,E∨)→ C, which is perfect by
Lemma 9.2.9. The map Ps is the continuous linear extension of P : Γ∞(M,E)→ Γ∞(M,F )
to a map Hs(M,E) → Hs−d(M,F ). Similarly, P t extends to a continuous linear map
(P t)d−s : Hd−s(M,F∨) → H−s(M,E∨). By density and continuity, the identity (9.3.6)
implies that more generally,

〈(P t)d−sf, g〉 = 〈f, Psg〉

for all f ∈ Hd−s(M,F∨) and g ∈ Hs(M,E). In other words,

(Ps)
t = (P t)d−s.
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This implies that ker(Ps)
t = ker(P t)d−s = ker(P t)∞.

The annihilator of imPs in Hd−s(M,F∨) relative to the natural pairing

Hs−d(M,F )×Hd−s(M,F∨)→ C

equals ker(Ps)
t hence ker(P t)∞. By perfectness of the pairing, it follows that

(kerP t)∞ ' {u ∈ Hd−s(M,F )′ | u = 0 on imPs}
' [Hd−s(M,F )/im (Ps)]

′.

Since Ps is Fredholm, its image is closed and of finite codimension. Hence ker(P t)∞ '
coker (Ps)

∗ and it follows that

index (Ps) = dim kerP∞ − dim ker(P t)∞.

We will complete the proof by showing that ker(P t)∞ ' (cokerP∞)∗, naturally. For this
we note that by the elliptic regularity theorem, Theorem 8.4.8,

im (Ps) ∩ Γ∞(M,F ) = imP∞.

Since Γ∞(M,F ) ⊂ Hs−d(M,F ) with continuous inclusion map, and since im (Ps) is closed
in Hs−d(M,F ), it follows that im (P∞) is closed in Γ∞(M,F ). The annihilator of imP in
Γ∞(M,F )′ = D′(M,F∨) equals the kernel of (P t)−∞ : D′(M,F∨) → D′(M,E∨), which in
turn equals ker(P t)∞ by the elliptic regularity theorem. This implies that

ker(P t)∞ ' [Γ∞(M,F )/im (P∞)]′.

As the first of these spaces is finite dimensional, P∞ has finite dimensional cokernel, and
ker(P t)∞ ' [Γ∞(M,F )/im (P∞)]∗. �

For obvious reasons, the integer index (P∞) is called the index of P and will more briefly
be denoted by index (P ). The following result asserts that the index depends on P through
its principal symbol.

Lemma 9.3.2 Let M be compact, and E,F complex vector bundles on M. Let P, P ′ ∈
Ψd(E,F ) be elliptic operators. Then

σd(P ) = σd(P ′)⇒ index (P ) = index (P ′).

Proof From the equality of the principal symbols, it follows that P − P ′ = Q ∈
Ψd−1(E,F ). Let s ∈ R. The operator Q maps Hs(M,E) to Hs−d+1(M,F ). The latter
space is contained in Hs−d(M,F ), with compact inclusion map. It follows that Q is com-
pact as an operator Hs(M,E)→ Hs−d(M,F ). We conclude that Ps−P ′s is compact, hence
index (Ps) = index (P ′s). �



Chapter 10

Characteristic classes

At this point we know that, for an elliptic differential operator of order d,

P : Γ(E)→ Γ(F )

its analytical index

Index(P ) = dim(Ker(P ))− dim(Coker(P ))

is well-defined (finite) and only depends on the principal symbol

σd(P ) : π∗E → π∗F

(where π : T ∗M →M is the projection). The Atiyah-Singer index theorem gives a precise
formula for Index(P ) in terms of topological data associated to σd(P ),

Index(P ) = (−1)n
∫
TM

ch(σd(P ))Td(TM ⊗ C).

The right hand side, usually called the topological index, will be explained in the next
two lectures. On short, the two terms “ch” and “Td” are particular characteristic classes
associated to vector bundles. So our aim is to give a short introduction into the theory of
characteristic classes.

The idea is to associate to vector bundles E over a manifold M certain algebraic in-
variants which are cohomology classes in H∗(M) which “measure how non-trivial E is”,
and which can distinguish non-isomorphic vector bundles. There are various approaches
possible. Here we will present the geometric one, which is probably also the simplest, based
on the notion of connection and curvature. The price to pay is that we need to stay in the
context of smooth manifolds, but that is enough for our purposes.

Conventions: Although our main interest is on complex vector bundles, for the theory
of characteristic classes it does not make a difference (for a large part of the theory) whether
we work with complex or real vector bundles. So, we will fix a generic ground field F (which
is either R or C) and, unless a clear specification is made, by vector bundle we will mean
a vector bundle over the generic field F.

179



180 CHAPTER 10. CHARACTERISTIC CLASSES

Accordingly, when referring to C∞(M), TM , Ωp(M), X (M), H∗(M) without further
specifications, we mean in this lecture the versions which take into account F; i.e., when F =
C, then they denote the algebra of C-valued smooth functions on M , the complexification
of the real tangent bundle, complex-valued forms, complex vector fields (sections of the
complexified real tangent bundle), DeRham cohomology with coefficients in C. Also, when
referring to linearity (of a map), we mean linearity over F.

10.1 Connections

Throughout this section E is a vector bundle over a manifold M . Unlike the case of smooth
functions on manifolds (which are sections of the trivial line bundle!), there is no canonical
way of taking derivatives of sections of (an arbitrary) E along vector fields. That is where
connections come in.

Definition 10.1.1 A connection on E is a bilinear map ∇

X (M)× Γ(E)→ Γ(E), (X, s) 7→ ∇X(s),

satisfying
∇fX(s) = f∇X(s), ∇X(fs) = f∇X(s) + LX(f)s,

for all f ∈ C∞(M), X ∈ X (M), s ∈ Γ(E).

Remark 10.1.2 In the case when E is trivial, with trivialization frame

e = {e1, . . . , er},

giving a connection on E is the same thing as giving an r by r matrix whose entries are
1-forms on M :

ω := (ωji )i,j ∈Mr(Ω
1(U)).

Given ∇, ω is define by

∇U
X(ei) =

r∑
j=1

ωji (X)ej.

Conversely, for any matrix ω, one has a unique connection ∇ on E for which the previous
formula holds: this follows from the Leibniz identity.

Remark 10.1.3 Connections are local in the sense that, for a connection ∇ and x ∈M ,

∇X(s)(x) = 0

for any X ∈ X (M), s ∈ Γ(E) such that X = 0 or s = 0 in a neighborhood U of x. This
can be checked directly, or can be derived from the remark that ∇ is a differential operator
of order one in X and of order zero in f .
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Locality implies that, for U ⊂ M open, ∇ induces a connection ∇U on the vector
bundle E|U over U , uniquely determined by the condition

∇X(s)|U = ∇U
X|U (sU).

Choosing U the domain of a trivialization of E, with corresponding local frame e =
{e1, . . . , er}, the previous remark shows that, over U , ∇ is uniquely determined by a matrix

θ := (θji )i,j ∈Mr(Ω
1(U)).

This matrix is called the connection matrix of ∇ over U , with respect to the local frame e
(hence a more appropriate notation would be θ(∇, U, e)).

Proposition 10.1.4 Any vector bundle E admits a connection.

Proof Start with a partition of unity ηi subordinated to an open cover {Ui} such that
E|Ui is trivializable. On each E|Ui we consider a connection∇i (e.g., in the previous remark
consider the zero matrix). Define ∇ by

∇X(s) :=
∑
i

∇X|Ui )(ηis).

Next, we point out s slightly different way of looking at connections, in terms of differ-
ential forms on M . Recall that the elements ω ∈ Ωp(M) (p-forms) can be written locally,
with respect to coordinates (x1, . . . , xn) in M , as

ω =
∑
i1,...,ip

f i1,...,ipdxi1 . . . dxip , (10.1.1)

with f i1,...,ip-smooth functions while globally, they are the same thing as C∞(M)-multilinear,
antisymmetric maps

ω : X (M)× . . .×X (M)︸ ︷︷ ︸
p times

→ C∞(M),

where X (M) is the space of vector fields on M .
Similarly, for a vector bundle E over M , we define the space of E-valued p-differential

forms on M
Ωp(M ;E) = Γ(ΛpT ∗M ⊗ E).

As before, its elements can be written locally, with respect to coordinates (x1, . . . , xn) in
M ,

η =
∑
i1,...,ip

dxi1 . . . dxip ⊗ ei1,...,ip . (10.1.2)

with ei1,...,ip local sections of E. Using also a local frame e = {e1, . . . , er} for E, we obtain
expressions of type ∑

i1,...,ip,i

f
i1,...,ip
i dxi1 . . . dxip ⊗ ei.



182 CHAPTER 10. CHARACTERISTIC CLASSES

Globally, such an η is a C∞(M)-multilinear antisymmetric maps

ω : X (M)× . . .×X (M)︸ ︷︷ ︸
p times

→ Γ(E).

Recall also that

Ω(M) =
⊕
p

Ωp(M)

is an algebra with respect to the wedge product: given ω ∈ Ωp(M), η ∈ Ωq(M), their
wedge product ω ∧ η ∈ Ωp+q(M), also denoted ωη, is given by

(ω ∧ η)(X1, . . . , Xp+q) =
∑
σ

sign(σ)ω(Xσ(1), . . . , Xσ(p)) · η(Xσ(p+1), . . . , Xσ(p+q)), (10.1.3)

where the sum is over all (p, q)-shuffles σ, i.e. all permutations σ with σ(1) < . . . < σ(p)
and σ(p + 1) < . . . < σ(p + q). Although this formula no longer makes sense when ω and
η are both E-valued differential forms, it does make sense when one of them is E-valued
and the other one is a usual form. The resulting operation makes

Ω(M,E) =
⊕
p

Ωp(M,E)

into a (left and right) module over Ω(M). Keeping in mind the fact that the spaces Ω
are graded (i.e are direct sums indexed by integers) and the fact that the wedge products
involved are compatible with the grading (i.e. Ωp ∧ Ωq ⊂ Ωp+q), we say that Ω(M) is a
graded algebra and Ω(M,E) is a graded bimodule over Ω(M). As for the usual wedge
product of forms, the left and right actions are related by1

ω ∧ η = (−1)pqη ∧ ω ∀ ω ∈ Ωp(M), η ∈ Ωq(M,E).

In what follows we will be mainly using the left action.
Finally, recall that Ω(M) also comes with DeRham differential d, which increases the

degree by one, satisfies the Leibniz identity

d(ω ∧ η) = d(ω) ∧ η + (−1)|ω|ω ∧ d(η),

where |ω| is the degree of ω2, and is a differential (i.e. d ◦ d = 0). We say that (Ω(M) is a
DGA (differential graded algebra). However, in the case of Ω(M,E) there is no analogue
of the DeRham operator.

1Important: this is the first manifestation of what is known as the “graded sign rule”: in an formula
that involves graded elements, if two elements a and b of degrees p and q are interchanged, then the sign
(−1)pq is introduced

2Note: the sign in the formula agrees with the graded sign rule: we interchange d which has degree 1
and ω
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Proposition 10.1.5 Given a vector bundle E over M , a connection ∇ on E induces a
linear operator which increases the degree by one,

d∇ : Ω•(M,E)→ Ω•+1(M,E)

which satisfies the Leibniz identity

d∇(ω ∧ η) = d(ω) ∧ η + (−1)|ω|ω ∧ d∇(η)

for all ω ∈ Ω(M), η ∈ Ω(M,E). The operator ∇ is uniquely determined by these conditions
and

d∇(s)(X) = ∇X(s)

for all s ∈ Ω0(M,E) = Γ(E), X ∈ X (M).
Moreover, the correspondence ∇ ↔ d∇ is a bijection between connections on E and

operators d∇ as above.

Instead of giving a formal proof (which is completely analogous to the proof of the
basic properties of the DeRham differential), let us point out the explicit formulas for d∇,
both global and local. The global one is completely similar to the global description of the
DeRham differential- the so called Koszul formula: for ω ∈ Ωp(M), dω ∈ Ωp+1(M) is given
by

d(η)(X1, . . . , Xp+1) =
∑
i<j

(−1)i+jη([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . Xp+1))

+

p+1∑
i=1

(−1)i+1LXi(η(X1, . . . , X̂i, . . . , Xp+1)). (10.1.4)

Replacing the Lie derivatives LXi by ∇Xi , the same formula makes sense for η ∈ Ω(M,E);
the outcome is precisely d∇(η) ∈ Ωp+1(M,E). For the local description we fix coordinates
(x1, . . . , xn) in M and a local frame e = {e1, . . . , er} for E. We have to look at elements of
form (10.1.2). The Leibniz rule for d∇ implies that

d∇(η) =
∑
i1,...,ip

(−1)pdxi1 . . . dxip ⊗ d∇(ei1,...,ip)

hence it suffices to describe d∇ on sections of E. The same Leibniz formula implies that it
suffices to describe d∇ on the frame e. Unraveling the last equation in the proposition, we
find

d∇(ei) =
r∑
j=1

ωji ej, (10.1.5)

where θ = (θij)i,j is the connection matrix of ∇ with respect to e.
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Exercise 10.1.6 Let ∇ be a connection on E, X ∈ X (M), s ∈ Γ(E), x ∈ M and
γ : (−ε, ε)→M a curve with γ(0) = x, γ′(0) = Xx. Show that if Xx = 0 or s = 0 along γ,
then

∇X(s)(x) = 0.

Deduce that, for any Xx ∈ TxM and any section s defined around x, it makes sense to talk
about ∇Xx(s)(x) ∈ Ex.

10.2 Curvature

Recall that, for the standard Lie derivatives of functions along vector fields,

L[X,Y ] = LXLY (f)− LYLX(f).

Of course, this can be seen just as the definition of the Lie bracket [X, Y ] of vector fields
but, even so, it still says something: the right hand side is a derivation on f (i.e., indeed, it
comes from a vector field). The similar formula for connections fails dramatically (i.e. there
are few vector bundles which admit a connection for which the analogue of this formula
holds). The failure is measured by the curvature of the connection.

Proposition 10.2.1 For any connection ∇, the expression

k∇(X, Y )s = ∇X∇Y (s)−∇Y∇X(s)−∇[X,Y ](s), (10.2.6)

is C∞(M)-linear in the entries X, Y ∈ X (M), s ∈ Γ(E). Hence it defines an element

k∇ ∈ Γ(Λ2T ∗M ⊗ End(E)) = Ω2(M ;End(E)),

called the curvature of ∇.

Proof It follows from the properties of ∇. For instance, we have

∇X∇Y (fs) = ∇X(f∇Y (s) + LY (f)s)

= f∇X∇Y (s) + LX(f)∇Y (s) + LX(f)∇Y (s) + LXLY (f)s,

and the similar formula for ∇X∇Y (fs), while

∇[X,Y ](fs) = f∇[X,Y ](s) + L[X,Y ](f)s.

Hence, using L[X,Y ] = LXLY − LYLX , we deduce that

k∇(X, Y )(fs) = fk∇(X, Y )(s),

and similarly the others.
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Remark 10.2.2 One can express the curvature locally, with respect to a local frame
e = {e1, . . . , er} of E over an open U , as

k∇(X, Y )ei =
r∑
j=1

kji (X, Y )ej,

where kji (X, Y ) ∈ C∞(U) are smooth functions on U depending on X, Y ∈ X (M). The
previous proposition implies that each kji is a differential form (of degree two). Hence k∇
is locally determined by a matrix

k = (kji )i,j ∈Mn(Ω2(U)),

called the curvature matrix of ∇ over U , with respect to the local frame e. Of course, we
should be able to compute k in terms of the connection matrix θ. This will be done as bit
later.

There is another interpretation of the curvature, in terms of forms with values in E.
While ∇ defines the operator d∇ which is a generalization of the DeRham operator d, it is
very rarely that it squares to zero (as d does). Again, k∇ measure this failure. To explain
this, we first look more closely to elements

K ∈ Ωp(M,End(E)).

The wedge product formula (10.1.3) has a version when ω = K and η ∈ Ωq(M,E):

(K ∧ η)(X1, . . . , Xp+q) =
∑
σ

sign(σ)K(Xσ(1), . . . , Xσ(p))(η(Xσ(p+1), . . . , Xσ(p+q))),

Any such K induces a linear map

K̂ : Ω•(M,E)→ Ω•+p(M,E), K̂(η) = K ∧ η.

For the later use not also that the same formula for the wedge product has an obvious
version also when applied to elements K ∈ Ωp(M,End(E)) and K ′ ∈ Ωq(M,End(E)),
giving rise to operations

∧ : Ωp(M,End(E))× Ωq(M,End(E))→ Ωp+q(M,End(E)) (10.2.7)

which make Ω(M,End(E)) into a (graded) algebra.

Exercise 10.2.3 Show that K̂ is an endomorphism of the graded (left) Ω(M)-module
Ω(M,E) i.e., according to the graded sign rule (see the previous footnotes):

K̂(ω ∧ η) = (−1)pqω ∧K(η),



186 CHAPTER 10. CHARACTERISTIC CLASSES

for all ω ∈ Ωq(M).
Moreover, the correspondence K 7→ K̂ defines a bijection

Ωp(M,End(E)) ∼= EndpΩ(M)(Ω(M,E))

between Ωp(M,End(E)) and the space of all endomorphisms of the graded (left) Ω(M)-
module Ω(M,E) which rise the degree by p.

Finally, via this bijection, the wedge operation (10.2.7) becomes the composition of
operators, i.e.

K̂ ∧K ′ = K̂ ◦ K̂ ′

for all K,K ′ ∈ Ω(M,End(E)).

Due to the previous exercise, we will tacitly identify the element K with the induced
operator mK . For curvature of connections we have

Proposition 10.2.4 If ∇ is a connection on E, then

d2
∇ = d∇ ◦ d∇ : Ω•(M,E)→ Ω•+2(M,E)

is given by

d2
∇(η) = k∇ ∧ η

for all η ∈ Ω∗(M ;E), and this determines k∇ uniquely.

Proof Firs of all, d∇ is Ω(M)-linear: for ω ∈ Ωp(M) and η ∈ Ωp(M,E),

d2
∇(ω ∧ η) = d∇(d(ω) ∧ η + (−1)pω ∧ d∇(η)

= [d2(ω) ∧ η + (−1)p+1d(ω) ∧ d∇(η)] + (−1)p[d(ω) ∧ d∇(η) + (−1)pω ∧ d2
∇(η)

= ω ∧ d∇(η).

Hence, by the previous exercise, it comes from multiplication by an element k ∈ Ω2(M).
Using the explicit Koszul-formula for d∇ to compute d2

∇ on Γ(E), we see that d2
∇(s) = k∇∧s

for all s ∈ Γ(E). We deduce that k = k∇.

Exercise 10.2.5 Let θ and k be the connection and curvature matrices of ∇ with respect
to a local frame e. Using the local formula (10.1.5) for d∇ and the previous interpretation
of the curvature, show that

kji = dθji −
∑
k

θki ∧ θ
j
k,

or, in a more compact form,

k = dθ − θ ∧ θ . (10.2.8)
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10.3 Characteristic classes

The local construction of characteristic classes is obtained by gluing together expressions
built out of connection matrices associated to a connection. Hence it is important to
understand how connection matrices change when the frame is changed.

Lemma 10.3.1 Let ∇ be a connection on E. Let e = {e1, . . . , er} be a local frame of E
over an open U and let θ and k be the associated connection matrix and curvature matrix,
respectively. Let e′ = {e′1, . . . , e′r} be another local frame of E over some open U ′ and let
θ′ and k′ be the associated connection and curvature matrix of ∇. Let

g = (gji ) ∈Mn(C∞(U ∩ U ′))

be the matrix of coordinate changes from e to e′, i.e. defined by:

e
′

i =
r∑
j=1

gji ej

over U ∩ U ′. Then, on U ∩ U ′,

θ′ = (dg)g−1 + gθg−1.

k′ = gkg−1.

Proof Using formula (10.1.5 ) for d∇ we have:

d∇(e′i) = d∇(
∑
l

gliel)

=
∑
l

d(gli)el +
∑
l,m

gliθ
m
l em,

where for the last equality we have used the Leibniz rule and the formulas defining θ. Using
the inverse matrix g−1 = (gij)i,j we change back from the frame e to e′ by ej =

∑
i g

i
jωi and

we obtain
d∇(e′i) =

∑
l,j

d(gli)g
j
l e
′
j +

∑
l,m,j

gliθ
m
l g

j
me
′
j.

Hence
(θ′)ji =

∑
l

d(gli)g
j
l +
∑
l,m

gliθ
m
l g

j
m,

i.e. the first formula in the statement. To prove the second equation, we will use the
formula (refinvariance) which expresses k in terms of θ. We have

dθ′ = d(dg · g−1 + gθg−1) = −dgd(g−1) + d(g)θg−1 + gd(θ)g−1 − gθd(g−1).
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For θ′ ∧ θ′ we find

dgg−1 ∧ d(g)g−1 + dgg−1 ∧ gθg−1 + gθg−1 ∧ dgg−1 + gθg−1 ∧ gθg−1.

Since

g−1dg = d(g−1g)− d(g−1)g = −d(g−1)g,

the expression above equals to

−dgd(g−1) + d(g)θg−1 − gθd(g−1) + gωωg−1.

Comparing with the expression for dθ′, we find

k′ = dθ′ − θ′ ∧ θ′ = g(dθ − θ ∧ θ)g−1 = gkg−1.

Since the curvature matrix stays the same “up to conjugation”, it follows that any
expression that is invariant under conjugation will produce a globally defined form on M .
The simplest such expression is obtained by applying the trace:

Tr(k) =
∑
i

kii ∈ Ω2(U).

Indeed, it follows immediately that, if k′ corresponds to another local frame e′ over U ′,
then Tr(k) = Tr(k′) on the overlap U ∩ U ′. Hence all these pieces glue to a global 2-form
on M :

Tr(k∇) ∈ Ω2(M).

As we will see later, this form is closed, and the induced cohomology class in H2(M) does
not depend on the choice of the connection (and this will be, up to a constant, the first
Chern class of E). More generally, one can use other “invariant polynomials” instead of
the trace. We recall that we are working over the field F ∈ {R,C}.

Definition 10.3.2 We denote by Ir(F) the space of all functions

P : Mr(F)→ F

which are polynomial (in the sense that P (A) is a polynomial in the entries of A), and
which are invariant under the conjugation, i.e.

P (gAg−1) = P (A)

for all A ∈Mr(F), g ∈ Glr(F).

Note that Ir(F) is an algebra (the product of two invariant polynomials is invariant).
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Example 10.3.3 For each p ≥ 0,

Σp : Mr(F)→ F, Σp(A) = Tr(Ap)

is invariant. One can actually show that the elements with 0 ≤ p ≤ r generate the entire
algebra Ir(F): any P ∈ Ir(F) is a polynomial combination of the Σp’s. Even more, one has
an isomorphism of algebras

Ir(F) = F[Σ0,Σ1, . . . ,Σp].

Example 10.3.4 Another set of generators are obtained using the polynomial functions

σp : Mr(F)→ F

defined by the equation

det(I + tA) =
r∑
p=0

σp(A)tp.

For instance, σ1 = Σ1 is just the trace while σp(A) = det(A). One can also prove that

Ir(F) = F[σ0, σ1, . . . , σp].

Remark 10.3.5 But probably the best way to think about the invariant polynomials is
by interpreting them as symmetric polynomials, over the base field F, in r variables x1,
. . .xr which play the role of the eigenvalues of a generic matrix A. More precisely, one has
an isomorphism of algebras

Ir(F) ∼= SymF[x1, . . . , xr]

which associates to a symmetric polynomial S the invariant function (still denoted by S)
given by

S(A) = S(x1(A), . . . , xr(A)),

where xi(A) are the eigenvalues of A. Conversely, any P ∈ Ir(F) can be viewed as a
symmetric polynomial by evaluating it on diagonal matrices:

P (x1, . . . , xr) := P (diag(x1, . . . , xr)).

For instance, via this bijection, the Σp’s correspond to the polynomials

Σp(x1, . . . , xr) =
∑
i

(xi)
p,

while the σp’s correspond to

σp(x1, . . . , xr) =
∑

i1<...<ip

xi1 . . . xip ,

With this it is now easier to express the Σ’s in term of the σ’s and the other way around
(using “Newton’s formulas”: Σ1 = σ1, Σ2 = (σ1)2 − 2σ2, Σ3 = (σ1)3 − 3σ1σ2 + 3σ3, etc.).
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From the previous lemma we deduce:

Corollary 10.3.6 Let P ∈ Ir(F) be an invariant polynomial of degree p. Then for any
vector bundle E over M of rank r and any connection ∇ on E, there exists a unique
differential form of degree 2p,

P (E,∇) ∈ Ω2p(M)

with the property that, for any local frame e of E over some open U ,

P (E,∇)|U = P (k) ∈ Ω2p(U),

where k ∈Mr(Ω
2(U)) is the connection matrix of ∇ with respect to e.

The following summarizes the construction of the characteristic classes.

Theorem 10.3.7 Let P ∈ Ir(F) be an invariant polynomial of degree p. Then for any
vector bundle E over M of rank r and any connection ∇ on E, P (E,∇) is a closed form
and the resulting cohomology class

P (E) := [P (E,∇)] ∈ H2p(M)

does not depend on the choice of the connection ∇. It is called the P -characteristic class
of E.

This theorem can be proven directly, using local connection matrices. Also, it suffices
to prove the theorem for the polynomials P = Σp. This follows from the fact that these
polynomials generate Ir(F) and the fact that the construction

Ir(F) 3 P 7→ P (E,∇) ∈ Ω(M)

is compatible with the products. In the next lecture we will give a detailed global proof
for the Σp’s; the price we will have to pay for having a coordinate-free proof is some
heavier algebraic language. What we gain is a better understanding on one hand, but
also a framework that allows us to generalize the construction of characteristic classes to
“virtual vector bundles with compact support”. Here we mention the main properties of
the resulting cohomology classes (proven at the end of this lecture).

Theorem 10.3.8 For any P ∈ Ir(F), the construction E 7→ P (E) is natural, i.e.

1. If two vector bundles E and F over M , of rank r, are isomorphic, then P (E) = P (F ).

2. If f : N →M is a smooth map and

f ∗ : H•(M)→ H•(N)

is the pull-back map induced in cohomology, then for the pull-back vector bundle f ∗E,

P (f ∗E) = f ∗P (E).
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10.4 Particular characteristic classes

Particular characteristic classes are obtained by applying the constructions of the previous
section to specific polynomials. Of course, since the polynomials Σp (and similarly the
σp’s) generate I(F), we do not loose any information if we restrict ourselves to these
polynomials and the resulting classes. Why don’t we do that? First, one would have to
make a choice between the Σp’s or σp’s. But, most importantly, it is the properties that we
want from the resulting characteristic classes that often dictate the choice of the invariant
polynomials (e.g. their behaviour with respect to the direct sum of vector bundles- see
below). Sometimes the Σp’s are better, sometimes the σp’s, and sometimes others. On top,
there are situations when the relevant characteristic classes are not even a matter of choice:
they are invariants that show up by themselves in a specific context (as is the case with
the Todd class which really shows up naturally when comparing the “Thom isomorphism”
in DeRham cohomology with the one in K-theory- but that goes beyond this course).

Here are some of the standard characteristic classes that one considers. We first spe-
cialize to the complex case F = C.

1. Chern classes: They correspond to the invariant polynomials

cp =

(
1

2πi

)p
σp,

with 0 ≤ p ≤ r. Hence they associate to complex vector bundle E rank r a cohomology
class, called the p-th Chern class of E:

cp(E) ∈ H2p(M) (0 ≤ p ≤ r).

The total Chern class of E is defined as

c(E) = c0(E) + c1(E) + . . .+ cr(E) ∈ Heven(M);

it corresponds to the inhomogeneous polynomial

c(A) = det(I +
1

2πi
A).

For the purpose of this lecture, the rather ugly constants in front of σp (and the similar
constants below) are not so important. Their role will be to “normalize” some formulas
so that the outcome (the components of the Chern character) are real, or even integral
(they come from the cohomology with integral coefficients; alternatively, one may think
that they produce integrals which are integers). If you solve the following exercise you will
find out precisely such constants showing up.

Exercise 10.4.1 Let M = CP1 be the complex projective space, consisting of complex
lines in C2 (i.e. 1-dimensional complex vector subspaces) in C2. Let L ⊂ CP1 ×C2 be the
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tautological line bundle over M (whose fiber above l ∈ CP1 is l viewed as a complex vector
space). Show that

c1(L) ∈ H2(CP1)

is non-trivial. What is its integral? (the element a := −c1(L) ∈ H2(CP1) will be called
the canonical generator).

Here are the main properties of the Chern classes (the proofs will be given at the end
of the section).

Proposition 10.4.2 The Chern classes of a complex vector bundle, priory cohomology
classes with coefficients in C, are actually real (cohomology classes with coefficients in R).
Moreover,

1. The total Chern class has an exponential behaviour with respect to the direct sum of
vector bundles i.e., for any two complex vector bundles E and F over M ,

c(E ⊕ F ) = c(E)c(F )

or, component-wise,

cp(E ⊕ F ) =
∑
i+j=p

ci(E)cj(F ).

2. If E is the conjugated of the complex vector bundle E, then

ck(E) = (−1)kck(E).

Remark 10.4.3 One can show that the following properties of the Chern classes actually
determines them uniquely:

C1: Naturality (see Theorem 10.3.8).

C2: The behaviour with respect to the direct sum (see the previous proposition).

C3: For the tautological line bundle L, c1(L) = −a ∈ H2(CP1) (see the previous exercise).

2. Chern character: The Chern character classes correspond to the invariant poly-
nomials

Chp =
1

p!

(
− 1

2πi

)p
Σp.

Hence Chp associates to a complex vector bundle E a cohomology class, called the p-th
component of the Chern character of E:

Chp(E) ∈ H2p(M).
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They assemble together into the full Chern character of E, defined as

Ch(E) =
∑
p≥0

Chp(E) ∈ Heven(M);

it corresponds to the expression (which, strictly speaking is a powers series and not a
polynomial, but which when evaluated on a curvature matrix produces a finite sum):

Ch(A) = Tr(e−
1

2πi
A).

Note that Ch(E) are always real cohomology classes; this follows e.g. from the similar
property for the Chern classes, and the fact that the relationship between the Σ’s and the
σ’s involve only real coefficients (even rational!). Here is the main property of the Chern
character.

Proposition 10.4.4 The Chern character is additive and multiplicative i.e., for any two
complex vector bundles E and F over M ,

Ch(E ⊕ F ) = Ch(E) + Ch(F ), Ch(E ⊗ F ) = Ch(E)Ch(F ).

3. Todd class: Another important characteristic class is the Todd class of a complex
vector bundle. To define it, we first expand formally

t

1− e−t
= B0 +B1t+B2t

2 + . . . .

(the coefficients Bk are known as the Bernoulli numbers). For instance,

B0 = 1, B1 =
1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, etc,

(and they have the property that Bk = 0 for k-odd, k ≥ 3 and they have various other
interesting interpretations). For r-variables, we expand the resulting product

T := Πr
i=1

xi
1− e−xi

= T0 + T1(x1, . . . , xr) + T2(x1, . . . , xr) + . . .

where each Tk is a symmetric polynomial of degree k. We proceed as before and define

Tdk(E) =

(
1

2πi

)k
Tk(E) ∈ H2k(M),

The Todd class of a vector bundle E is the resulting total characteristic class

Td(E) =
∑
k

Tdk(E) ∈ Heven(M).
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Again, Td(E) are real cohomology classes and Td is multiplicative.

4. Pontryagin classes: We now pass to the case F = R. The Pontryagin classes
are the analogues for real vector bundles of the Chern classes. They correspond to the
polynomials

pk =

(
1

2π

)2k

σ2k,

for 2k ≤ r. The reason we restrict to the σ’s of even degree (2k) is simple: the odd
dimensional degree produce zero forms (see below). Hence pk associates to a real vector
bundle E of rank r a cohomology class, called the k-th Pontryagin class of E:

pk(E) ∈ H4k(M) (0 ≤ k ≤ r/2).

They assemble together into the full Pontryagin class of E, defined as

p(E) = p0(E) + p1(E) + . . .+ p[ r2 ] ∈ H
•(M).

The Pontryagin class has the same property as the Chern class: for any two real vector
bundles,

p(E ⊕ F ) = p(E)p(F ).

The relationship between the two is actually much stronger (which is expected due to
their definitions). To make this precise, we associate to any real vector bundle E its
complexification

E ⊗ C := E ⊗R C = {e1 + ie2 : e1, e2 ∈ E, }.

Proposition 10.4.5 For any real vector bundle E,

cl(E ⊗ C) =

{
(−1)kpk(E) if l = 2k
0 if l = 2k + 1

Finally, one can go from a complex vector bundle E to a real one, denoted ER, which
is just E vied as a real vector bundle. One has:

Proposition 10.4.6 For any complex vector bundle E,

p0(ER)− p1(ER) + p2(ER)− . . . = (c0(E) + c1(E) + . . .)(c0(E)− c1(E) + . . .).

5. The Euler classs: There are other characteristic classes which are, strictly speak-
ing, not immediate application of the construction from the previous section, but are similar
in spirit (but they fit into the general theory of characteristic classes with structural group
smaller then GLn). That is the case e.g. with the Euler class, which is defined for real,
oriented vector bundles E of even rank r = 2l. The outcome is a cohomology class over
the base manifold M :

e(E) ∈ H2l(M).

To construct it, there are two key remarks:
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1. For real vector bundles, connection matrices can also be achived to be antisymmetric.
To see this, one choose a metric 〈·, ·〉 on E (fiberwise an inner product) and, by
a partition of unity, one can show that one can choose a connection ∇ which is
compatible with the metric, in the sense that

Lx〈s1, s2〉 = 〈∇X(s1), s2〉+ 〈s1,∇X(s2)〉

for all s1, s2 ∈ Γ(E). Choosing orthonormal frames e, one can easily show that this
compatibility implies that the connection matrix θ with respect to e is antisymmetric.

2. With the inner product and ∇ as above, concentrating on positively oriented frames,
the change of frame matrix, denoted g in the previous section, has positive determi-
nant.

3. In general, for for skew symmetric matrices A of even order 2l, det(A) is naturally a
square of another expression, denoted Pf(A) (polynomial of degree l):

det(A) = Pf(A)2.

For instance,

det


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = (af + cd− be)2.

Moreover, for g with positive determinant,

Pf(gAg−1) = Pf(A).

It follows that, evaluating Pf on connection matrices associated to positive orthonormal
frames, we obtain a globvally defined form

Pf(E,∇) ∈ Ω2l(M).

As before, this form is closed and the resulting cohomology class does not depend on the
choice of the connection. The Euler class is

e(E) =

[(
1

2π

)l
Pf(E,∇)

]
∈ H2l(M).

Note that, since det is used in the construction of pl(E), it follows that

pl(E) = e(E)2.
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10.5 Proofs of the main properties

The proofs of the main properties of the characteristic classes (Theorem 10.3.8, Proposition
10.4.2, Proposition 10.4.4 and Proposition 10.4.5 ) are based on some basic constructions
of connections: pull-back, direct sum, dual, tensor product.

Pullback of connections and the proof of Theorem 10.3.8: For Theorem 10.3.8
we need the construction of pull-back of connections: given a vector bundle E over M and
a smooth map f : N →M then for any connection ∇ on E, there is an induced connection
f ∗∇ on f ∗E. This can be described locally as follows: if e is a local frame e of E over
U and θ is determined by the connection matrix (with respect to e) θ then, using the
induced local frame f ∗e of f ∗E over f−1(U), the resulting connection matrix of f ∗∇ is f ∗θ
(pull back all the one-forms which are the entries in the matrix θ). Of course, one has to
check that these connection matrices glue together (which should be quite clear due to the
naturality of the construction); alternatively, one can describe f ∗∇ globally, by requiring

(f ∗∇)X(f ∗s)(x) = ∇(df)x(Xx)(s)(f(x)), x ∈ N (10.5.9)

where, for s ∈ Γ(E), we denoted by f ∗s ∈ Γ(f ∗E) the section x 7→ s(f(x)); for the right
hand side, see also Exercise 10.1.6.

Exercise 10.5.1 Show that there is a unique connection f ∗∇ on f ∗E which has the
property (10.5.9). Then show that its connection matrices can be computed as indicated
above.

With this construction, the second part of Theorem 10.3.8 is immediate: locally,
the connection matrix of f ∗∇ is just the pull-back of the one of ∇, hence we obtain
P (E, f ∗∇) = f ∗P (E,∇) as differential forms. The first part of the theorem is easier
(exercise!).

Direct sum of connections and the proof of Proposition 10.4.2: For the proof
of the behaviour of c with respect to direct sums (and similarly for the Pontryagin class)
we need the construction of the direct sum of two connections: given connections ∇0 and
∇1 on E and F , respectively, we can form a new connection ∇ on E ⊕ F :

∇X(s0, s1) = (∇0
X(s0),∇1

X(s1)).

To compute its connection matrices, we will use a local frame of E ⊗ F which comes by
putting together a local frame e for E and a local frame f for F (over the same open). It
is then clear that the connection matrix θ for ∇ with respect to this frame, and similarly
the curvature matrix, can be written in terms as the curvature matrices θi, i ∈ {0, 1} for
E and F (with respect to e and f) as

θ =

(
θ0 0
0 θ1

)
, k =

(
k0 0
0 k1

)
.
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Combined with the remark that

det(I + t

(
A0 0
0 A1

)
) = det(I + tA0) det(I + tA1)

for any two matrices A0 and A1, we find that

c(E ⊕ F,∇) = c(E,∇0)c(F,∇1)

(as differential forms!) from which the statement follows.

Duals/conjugations of connections and end proof of Prop. 10.4.2: For the
rest of the proposition we need the dual and the conjugate of a connection. First of all, a
connection ∇ on E induces a connection ∇∗ on E∗ by:

∇X(s∗)(s) :=  LX(s∗(s))− s∗(∇X(s)), ∀ s ∈ Γ(E), s∗ ∈ Γ(E∗).

(why this formula?).

Exercise 10.5.2 Show that this is, indeed, a connection on E∗.

Starting with a local frame e of E, it is not difficult to compute the connection matrix
of ∇∗ with respect to the induced dual frame θ∗, in terms of the connection matrix θ of ∇
with respect to e:

θ∗ = −θt

(minus the transpose of θ). Hence the same holds for the curvature matrix. Since for any
matrix A

det(I + t(−At)) = det(I − tA) =
∑

(−1)ktkσk(A),

we have σk(−At) = (−1)kσk(A) from which we deduce

ck(E
∗) = (−1)kck(E).

Similarly, any connection ∇ on E induces a conjugated connection ∇ on E. While E
is really just E but with the structure of complex multiplication changed to:

z · v := zv, (z ∈ C, v ∈ E)

∇ is just ∇ but interpreted as a connection on E. It is then easy to see that the resulting
connection matrix of ∇ is precisely θ. Since for any matrix A,

det(I +
1

2πi
A) = det(I − 1

2πi
A),

we have ck(A) = (−1)kck(A) and then

ck(E) = (−1)kck(E).
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Finally, note that for any complex vector bundle E, E∗ and E are isomorphic (the
isomorphism is not canonical- one uses a hermitian metric on E to produce one). Hence
ck(E

∗) = ck(E). Comparing with the previous two formulas, we obtain

ck(E) = (−1)kck(E) = (−1)kck(E)

which shows both that ck(E) is real as well as the last formula in the proposition.

Tensor product of connections and the proof of Proposition 10.4.2: The
additivity is proven, as above, using the direct sum of connections and the fact that for
any two matrices A (r by r) and A′ (r′ by r′),

Tr

(
A 0
0 A′

)k
= Tr(Ak) + Tr(A

′k).

For the multiplicativity we need the construction of the tensor product of two connections:
given ∇0 on E and ∇1 on F , one produces ∇ on E ⊗ F by requiring

∇X(s0 ⊗ s1) = ∇0
X(s0)⊗ s1 + s0 ⊗∇1

X(s1)

for all s0 ∈ Γ(E), s1 ∈ Γ(F ). Frames e and f for E and F induce a frame e⊗f = {ei⊗fp :
1 ≤ i ≤ r, 1 ≤ p ≤ r′} for E ⊗ F (r is the rank of E and r′ of F ). After a straightforward
computation, we obtain as resulting curvature matrix

k = k0 ⊗ Ir′ + Ir ⊗ k1

where Ir is the identity matrix and, for two matrices A and B, one of size r and one of
size r′, A⊗B denotes the matrix of size rr′ (whose columns and rows are indexed by pairs
with (i, p) as before)

(A⊗B)j,qi,p = AjiB
q
p.

Remarking that Tr(A⊗B) = Tr(A)Tr(B), we immediately find

Tr(eA⊗I+I⊗B) = Tr(eA)Tr(eB)

from which the desired formula follows.

Complexifications of connections and the proof of Proposition 10.4.5: For
this second part, i.e. when l is odd, it suffices to remark that, for E ⊗ C, it is isomorphic
to its conjugation then just apply the last part of Proposition 10.4.2. For l even we have to
go again to connections and to remark that a connection ∇ on a real vector bundle E can
be complexified to give a connection ∇C on E⊗C: just extend ∇ by requiring C-linearity.
Comparing the connection matrices we immediately find that

c2k(E ⊗ C) =

(
1

i

)2k

pk(E) = (−1)kpk(E).
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Proof of Proposition 10.4.6: The main observation is that, for any complex vector
bundle E, one has a canonical isomorphism

ER ⊗ C ∼= E ⊕ E

defined fiberwise by
v +
√
−1w 7→ (v + iw, v − iw),

where
√
−1 is “the i used to complexify ER). Hence

c(ER ⊗ C) = c(E)c(E)

and, using the formulas from Proposition 10.4.5 and from end of Proposition 10.4.2, the
desired formula follows.

10.6 Some exercises

Here are some more exercises to get used with these classes but also to see some of their
use (some of which are rather difficult!).

Exercise 10.6.1 Show that, for any trivial complex vector bundle T (of arbitrary rank)
and any other complex vector bundle E,

c(E ⊕ T ) = c(E).

Exercise 10.6.2 (the normal bundle trick). Assume that a manifold N is embedded in
the manifold M , with normal bundle ν. Let τM be the tangent bundle of M and τN the
one of N . Show that

c(τM)|N = c(τN)c(ν).

Exercise 10.6.3 For the tangent bundle τ of Sn show that

p(τ) = 1.

Exercise 10.6.4 Show that the the tautological line bundle L over CP1 (see Exercise
10.4.1) is not isomorphic to the trivial line bundle. Actually, show that over CP1 one can
find an infinite family of non-isomorphic line bundles.

Exercise 10.6.5 Let L ⊂ CPn×Cn+1 be the tautological line bundle over CPn (general-
izing the one from Exercise 10.4.1) and let

a := −c1(L) ∈ H2(CPn).

Show that ∫
CPn

an = 1.

Deduce that all the cohomology classes a, a2, . . . , an are non-zero.
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Exercise 10.6.6 This is a continuation of the previous exercise. Let τ be the tangent
bundle of CPn- a complex vector bundle (why?), and let τR be the underlying real vector
bundle. We want to compute c(τ) and p(τR).

Let L⊥ ⊂ CPn×Cn+1 be the (complex) vector bundle over CPn whose fiber at l ∈ CPn
is the orthogonal l⊥ ⊂ Cn+1 of l (with respect to the standard hermitian metric).

1. Show that
Hom(L,L) ∼= T 1, Hom(L,L⊥)⊕ T 1 ∼= L∗ ⊕ . . .⊕ L∗︸ ︷︷ ︸

n+1

,

where T k stands for the trivial complex vector bundle of rank k.

2. Show that
τ ∼= Hom(L,L⊥).

3. Deduce that
c(τ) = (1 + a)n+1, p(τR) = (1 + a2)n+1.

4. Compute Ch(τ).

Exercise 10.6.7 Show that CP4 cannot be embedded in R11.
(Hint: use the previous computation and the normal bundle trick).

Exercise 10.6.8 Show that CP2010 cannot be written as the boundary of a compact,
oriented (real) manifold.

(Hint: first, using Stokes’ formula, show that if a manifold M of dimension 4l can be
written as the boundary of a compact oriented manifold then

∫
M
pl(τM)) = 0).

Exercise 10.6.9 Show that CP2010 can not be written as the product of two complex
manifolds of non-zero dimension.

(Hint: for two complex manifolds M and N of complex dimensions m and n, respec-
tively, what happens to Chm+n(τM×N) ∈ H2m+2n(M ×N)?).

10.7 Chern classes: the global description and the

proof of Theorem 10.3.7

In this section we look closer at the Chern character, which shows up naturally in the
context of the Atiyah-Singer index theorem. We start by giving a slightly different dress
(of a more global flavour) to the discussion of characteristic classes from the previous
lecture and we prove Theorem 10.3.7. The algebraic formalism that we use is known as
“Quillen’s formalism”. It has the advantage that it applies (with very litlle changes) to
other settings (in particular, it can be addapted easily to non-commutative geometry).

Although we concentrate on the Chern character (which uses the invariant polynomi-
als Σp), most of what we say in this section can be carried out for arbitrary invariant
polynomials (see also the comments which follow Theorem 10.3.7).
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This section can (and should) be viewed as a global presentation of the Chern classes
already discussed (including proofs). There are three ingredients that we need. The first
two have already been discussed

• the algebra Ω∗(M,End(E)) of differential forms on M with coefficients in End(E),
and the wedge product (10.2.7) which makes it into a (graded) algebra.

• a connection ∇ on E and the associated curvature, interpreted globally as an element

k∇ ∈ Ω2(M,End(E)).

The last ingredient is a global version of the trace map. Due to the invariance of the
usual trace map of matrices, it follows that it does not really depend on the choice of the
basis; hence any finite dimensional (complex) vector space V comes with a trace map

TrV : End(V )→ C

which can be computed via a (any) basis ei of V ; the any T ∈ End(V ) has a matrix
representation T = (tji ) and TrV (T ) =

∑
i t
i
i. This map has “the trace property” (an

infinitesimal version of invariance):

TrV ([A,B]) = 0, (10.7.10)

for all A,B ∈ End(V ), where [A,B] = AB −BA.
Since TrV is intrinsec to V , it can be applied also to vector bundles: for any vector

bundle E, the trace map (applied fiberwise) is a vector bundle map from End(E) to the
trivial line bundle. In particular, one has an induced map, which is the final ingredient:

• The trace map:
Tr : Ω•(M ;End(E))→ Ω•(M). (10.7.11)

Exercise 10.7.1 Show that Tr has the graded trace property:

Tr([A,B]) = 0,

for all A ∈ Ωp(M ;End(E)), B ∈ Ωq(M ;End(E)), where [A,B] are the graded commuta-
tors:

[A,B] = A ∧B − (−1)pqB ∧ A.
and ∧ is here the wedge operation on Ω(M,End(E)) (see (10.2.7)).

Putting things together we find immediately:

Proposition 10.7.2 For a connection ∇ on E,

Chp(E,∇) =
1

p!

(
− 1

2πi

)p
Tr(kp∇) ∈ Ω2p(M).
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Hence, using the wedge product and the usual power seria development to define for-
mally the exponential map

exp : Ω(M,End(E))→ Ω(M,End(E)),

the Chern character can be written as

Ch(E,∇) = Tr(e
− 1

2π
√
−1
k∇).

Next, we explain the relationship between these ingredients; putting everything to-
gether, we will obtain the proof of Theorem 10.3.7 (for the Chern classes). The plan is as
follows:

• show that the connection ∇ on E induces a connection ∇̃ on End(E).

• show that Tr : Ω•(M ;End(E))→ Ω•(M) is compatible with d∇̃ and d.

• show that k∇ is d∇̃-closed.

Lemma 10.7.3 Given a connection ∇ on E, there is an induced connection ∇̃ on End(E),
given by

∇̃X(T )(s) = ∇X(T (s))− T (∇X(s)),

for all X ∈ X (M), T ∈ Γ(End(E)), s ∈ Γ(E). Moreover, the induced operator

d∇̃ : Ωp(M ;End(E))→ Ωp+1(M ;End(E))

is given by
d∇̃(K) = [d∇, K] (10.7.12)

where, as in Exercise 10.2.3, we identify the elements in K ∈ Ω∗(M ;End(E)) with the
induced operators K̂ and we use the graded commutators

[d∇, K] = d∇ ◦K − (−1)pK ◦ d∇

In particular, d∇̃ also satisfies the Leibniz identity with respect to the wedge product (10.2.7)
on Ω(M,End(E)).

Proof First one has to check that, forX ∈ X (M), T ∈ Γ(End(E)), ∇̃X(T ) ∈ Γ(End(E)),
i.e. the defininig formula is C∞(M)-linear on s ∈ Γ(E):

∇̃X(T )(fs) = ∇X(T (fs))− T (∇X(fs))

= [f∇X(T (s)) + LX(f)T (s)]− [fT (∇X(s)) + LX(f)T (s)]

= f∇̃X(T )(s).

The identities that ∇̃ have to satisfy to be a connection are proven similarly. For the
second part, we first have to show (similar to what we have just checked) that, for K ∈
Ωp(M,End(E)),

K ′ := [d∇, K] ∈ Ωp+1(M,End(E)).
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More porecisely, unraveling the identifications between the elements K and the operators
K̂, we have to show that

K̂ ′ := d∇ ◦ K̂ − (−1)pK̂ ◦ d∇ : Ω•(M,E)→ Ω•+p+1(M,E)

is Ω(M)-linear, i.e.

K̂ ′(ω ∧ η) = (−1)(p+1)|ω|ω ∧ K̂ ′(η)

for all ω ∈ Ωp(M), η ∈ Ω(M,E). writing out the left hand side we find

d∇(K̂(ω ∧ η))− (−1)pk(d∇(ω ∧ η))

which is (using the Ω(M)-linearity of K̂ and the Leibniz identity for d∇):

[(−1)p|ω|d(ω) ∧ K̂(η) + (−1)(p+1)|ω|ω ∧ d∇(K̂(η))]−

−[(−1)p|ω|d(ω) ∧ K̂(η) + (−1)p+(p+1)|ω|ω ∧K(d∇(η))]

which equals to

(−1)(p+1)|ω|ω ∧ [d∇(K̂(η))− (−1)pK̂(d∇(η)),

i.e. the right hand side of the formula to be proven. Hence we obtain an operator

D : Ωp(M ;End(E))→ Ωp+1(M ;End(E)), D(K) = [d∇, K],

and we have to prove that it coincides with d∇̃. By a computation similar to the one
above, one shows that D satisfies the Leibniz identity. Hence it suffices to show that the
two coincide on elements T ∈ Γ(End(E)). They are both elements of Ω1(M,End(E))
hence they act on X ∈ X (M), s ∈ Γ(E) and produce sections of E. For d∇̃(T ) we obtain

d∇̃(T )(X)s = ∇X(T (s))− T (∇X(s))

while for D(T ) we obtain

D̂(T )(s)(X) = (d∇ ◦ T̂ − T̂ ◦ d∇)(X)(s)]

= d∇(T (s))(X)− T (d∇(s)(X))

= ∇X(T (s))− T (∇X(s)).

From the second part of the proposition we immediately deduce:

Corollary 10.7.4 (Bianchi identity) d∇̃(k∇) = 0.

We can now return to the issue of the relationship between the trace map and the
DeRham differential.
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Proposition 10.7.5 For any connection ∇, the trace map Tr : Ω∗(M ;End(E)) →
Ω∗(M) satisfies

Tr ◦ d∇̃ = d ◦ Tr.

Proof Consider

Φ := Tr ◦ d∇̃ − d ◦ Tr : Ω•(M,End(E))→ Ω•+1(M,End(E)).

By a computations similar to the previous ones (but simpler), one check the graded Ω(M)-
linearity of Φ:

Φ(ω ∧K) = (−1)|ω|ω ∧ Φ(K).

Hence to show that Φ is zero, it suffices to show that it vanishes on elements T ∈
Γ(End(E)). I.e., we have to show that, for all such T ’s and all X ∈ X (M),

Tr(∇̃X(T ))− LX(Tr(T )) = 0.

This can be checked locall, using a local frame e = {ei} for E. Such a local frame induces
a local frame {eij} for End(E) given by eij(ei) = ej and zero on the other ek’s. If the matrix

corresopnding to T is {tji} (T (ei) =
∑

j t
j
iej), for T̃ := ∇̃X(T ) we have:

T̃ (ei) =
∑
j

∇X(tjiej)−
∑
j

T (θji (X)ej),

where {θji } is the connection matrix. Writing this out, we find the matrix corresponing to
T̃ :

t̃ki =
∑
j

tjiθ
k
j (X)−

∑
j

θji (X)tkj + LX(tki ).

We deduce that
Tr(∇̃X(T )) = LX(

∑
i

tii) = LX(Tr(T )).

Corollary 10.7.6 For any connection ∇ on E,

Tr(kp∇) ∈ Ω2p(M)

is closed.

Proof From the previous proposition,

dTr(kp∇) = Tr(d∇̃(kp∇)).

Due to the Leibniz rule for d∇̃ and the Bianchi identity (the previous corollary) we find
d∇̃(kp∇) = 0.

Finally, we prove the independence of the connection.
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Proposition 10.7.7 For any vector bundle E over M , the cohomology class

[Tr(kp∇)] ∈ H2p(M)

does not depend on the choice of the connection ∇.

Proof Let ∇′ be another connection. The expression

R(X)s = ∇′X(s)−∇X(s)

is then C∞(M)-linear in X and s, hence defines an element

R ∈ Ω1(M,End(E)).

Related to this is the fact that the difference

R̂ = d∇′ − d∇ : Ω•(M,E)→ Ω•+1(M,E)

is Ω(M)-linear (in the graded sense). This follows immediately from the Leibniz rule for
d∇ and d∇′ . Our notation is not accidental: R and R̂ correspond to each other by the
bijection of Exercise 10.2.3 (why?). In what follows we will not distinguish between the
two.

The idea is to join the two connections by a path (of connections): for each t ∈ [0, 1]
we consider

∇t := ∇+ tR

and the induced operators
d∇t = d∇ + tR.

Computing the square of this operator, we find

k∇t = k∇ + t[d∇, R] + t2R2 = k∇ + td∇̃(R) + t2
1

2
[R,R]

from which we deduce

d

dt
(k∇t) = d∇̃(R) + t[R,R] = d∇̃t(R).

Using the Leibniz identity,

d

dt
(kp∇t) =

∑
i

ki−1
∇t d∇̃t(R)kp−i∇t

hence, using the fact that Tr is a graded trace,

d

dt
(Tr(kp∇t)) = pTr(kp−1

∇t d∇̃t(R)).
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Using again the Leibniz and Bianchi identity,

d

dt
(Tr(kp∇t)) = pd[Tr(kp−1

∇t R)].

Integrating from 0 to 1 we find

Tr(kp∇′ )− Tr(k
p
∇) = d[p

∫ 1

0

Tr(kp−1
∇t R)],

i.e. the two terms in the left hand side differ by an exact form, hence they represent the
same element in the cohomology group.



Chapter 11

K-theoretical formulation of the
Atiyah-Singer index theorem

11.1 K-theory and the Chern character

For a manifold M we denote by V b(M) the set of isomorphism classes of vector bundles
over M . Together with the direct sum of vector bundles, is an abelian semi-group, with
the trvial 0-dimensional bundle as the zero-element.

In general, one can associate to any semi-group (S,+) a group G(S), called the Grothen-
dick group of S, which is the “smallest group which can be made out of S”. For instance,
applied to the semigroup (N,+) of positive integers, one recovers (Z,+). Or, if S is already
a group, then G(S) = S.

Given an arbitrary semi-group (S,+), G(S) consists of formal differences

[x]− [y]

with x, y ∈ S, where two such formal differences [x] − [y] and [x′] − [y′] are equal if and
only if there exists z ∈ S such that

x+ y′ + z = x′ + y + z. (11.1.1)

More formally, one defines
G(S) = S × S/ ∼,

where ∼ is the equivalence relation given by: (x, y) ∼ (x′, y′) if and only if there exists
a z ∈ S such that (11.1.1) holds. Denote by [x, y] the equivalence class of (x, y). The
componentwise addition in S×S descends to a group structure on G(S): the zero element
is [0, 0], and the inverse of [x, y] is [y, x]. For x ∈ S, we define

[x] := [x, 0] ∈ G(S),

and this defines a morphism of semigroups S 7→ G(S) (find the universal property of
G(S)!). Also, since

[x, y] = [(x, 0)]− [(y, 0)] = [x]− [y],

207
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we obtain the representation of G(S) mentioned at the beginning. Note that there is a
canonical map:

i : S → G(S), x 7→ [x],

which is a morphisms of semi-groups.

Exercise 11.1.1 Show that G(S) has the following universal property: for any other
group G and any morphism iG : S → G of semi-groups, there is a unique morphism of
groups, φ : G(S)→ G such that iG = φ ◦ i.

Definition 11.1.2 Define the K-theory group of M as the group associated to the semi-
group V b(M) of (isomorphism classes) of vector bundles over M .

Exercise 11.1.3 Is the map i : V b(M) → K(M) injective? (hint: you can use that the
tangent bundle of S2 is not trivial).

One may think of K(M) as “integers over M”. Indeed, natural numbers are in bijection
with isomorphism classes of finite dimensional vector spaces. Since vector bundles can be
viewed as families of vector spaces indexed by the base manifold M , isomorphism classes of
vector bundles play the role of “natural numbers over M”, and K(M) the one of “integers
over M”.

Note also that the tensor product of vector bundles induces a product on K(M), and
K(M) becomes a ring.

Theorem 11.1.4 The Chern character induces a ring homomorphism

Ch : K(M)→ Heven(M), [E]− [F ] 7→ Ch(E)− Ch(F ).

Proof The compatibility By the additive property of the Chern character,

Ch : V b(M)→ Heven(M)

is a morphism of semi-groups hence by the universality of K(M) (see Exercise 11.1.1),
it induces a morphism of groups K(M) → Heven(M). This is precisely the map in the
statement. The compatibility with the produtcs follows from the multiplicativity of the
Chern character.

Remark 11.1.5 One can show that, after tensoring with R,

Ch⊗Z R : K(M)⊗Z R→ Heven(M)

becomes an isomorphism.
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11.2 K-theory and the Chern character with compact

supports

Next, we discuss K-theory with compact supports. We consider triples

C = (E,α, F ) (11.2.2)

where E and F are vector bundles over M and

α : E → F

is a vector bundle morphism with compact support, i.e. with the property that

supp(C) := {x ∈M : αx : Ex → Fx is not an isomorphism}

is a compact subset of M . We denote by L1(M) the set of equivalence classes of such
triples. If C ′ = (E ′, α′, F ′) is another one, we say that C and C are homotopic, and we
write

C ≡ C ′

if there exists a smooth family Ct = (Et, αt, Ft), indexed by t ∈ [0, 1], of triples (still with
compact supports), such that

C0 = C,C1 = C ′.

More precisely, we require the existence of a triple C̃ = (Ẽ, α̃, F̃ ) over M × [0, 1] (with
compact support), such that C is the restriction of C̃ via i0 : M ↪→M×[0, 1], i0(x) = (x, 0)
and C ′ is the restriction of C̃ via i1 : M ↪→M × [0, 1], i1(x) = (x, 1).

Finally, we introduce a new equivalence relation ∼ on L1(M):

C ∼ C ′ ⇐⇒ C ⊕ T ≡ C ′ ⊕ T ′

for some triples T and T ′ with empty support.

Definition 11.2.1 Define the K-theory of M with compact supports as the quotient

Kcpct(M) = L1(M)/ ∼ .

For C ∈ L1(M), we denote by [C] the induced element in Kcpct(M).

With respect to the direct sum of vector bundles and morphisms of vector bundles,
Kcpct(M) becomes a semi-group.

Exercise 11.2.2 Show that Kcpct(M) is a group. Also, when M is compact, show that

Kcpct(M)→ K(M), [(E,α, F )] 7→ [E]− [F ]

is an isomorphism of groups.
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Example 11.2.3 Given an elliptic operator P : Γ(E)→ Γ(F ) of order d over a compact
manifold M , its principal symbol

σd(P ) : π∗E → π∗F

(where π : T ∗M →M is the projection) will induce an element

[(π∗E, σd(P ), π∗F )] ∈ Kcpct(T
∗M).

Next, we discuss the Chern character on Kcpct(M). We start with an element

C = (E,α, F ) ∈ L1(M).

Lemma 11.2.4 There exists a connection ∇E onb E and ∇F on F and a compact L ⊂M
such that α is an isomorpism outside L and

α∗(∇F ) = ∇E on M − L.

Note that, here,

α∗(∇F )X(s) = α−1∇F
X(α(s)).

Proof Let ∇F be any connection on F . We will construct ∇E. For that we first fix an
arbitrary connection ∇ on E (to be changed). Let K be the support of α and L a compact
in M with

K ⊂ Int(L) ⊂ L.

Then α∗(∇F ) is well-defined as a connection on U := M −K. The difference

∇X(s)− α∗(∇F )X(s)

is C∞(U)-linear in X and s, hence defines a section

θ ∈ Γ(U, T ∗M ⊗ End(E)).

From the general properties of sections of vector bundles, for any closed (in M) A ⊂ U ,
we find a smooth section

θ̃ ∈ Γ(M,T ∗M ⊗ End(E))

such that

θ̃|A = θ|A.

We apply this to A = M − Int(L) and we define ∇E by

∇E
X(s) = ∇X(s)− θ̃(X)s.
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Theorem 11.2.5 For any pair of connections ∇E and ∇F as in Lemma 11.2.4,

Ch(C,∇E,∇F ) := Ch(E,∇E)− Ch(F,∇F ) ∈ Ωcpct(M)

is a closed differential form on M with compact support and the induced cohomology class

Ch(C) := [Ch(C,∇E,∇F )] ∈ Heven
cpct (M)

does not depend on the choice of the connections. Moreover, Ch induces a group homo-
morphism

Ch : Kcpct(M)→ Heven
cpct (M), [C] 7→ Ch(C).

Proof The naturality of the Chern character implies that

Ch(C,∇E,∇F )|M−L = Ch(E|M−L, α∗(∇F |M−L))− Ch(F |M−L,∇F |M−L) = 0.

Hence Ch(C,∇E,∇F ) is a closed from with compact support. To see that the cohomology
class does not depend on the choice of the connections, we addapt the argument for the
similar statement for the Chern character of vector bundles; see the proof of Proposition
10.7.7. With the same notations as there, another pair of connections as in Lemma 11.2.4
will be of type

∇E +RE,∇F +RF

with
RE ∈ Ω1(M,End(E)), RF ∈ Ω1(M,End(F ))

and the two new connections correspond to each other via α outise some compact L′ (which
may be different from L). Let K = L ∪ L′. We apply the construction in the proof of
Proposition 10.7.7 and we obtain

Chp(E,∇E)− Chp(E,∇E +RE) = d(ωE)

for some form ωE which has compact support, and similarly for F . Looking at the explicit
formulas for ωE and ωF , we see immediately that ωE − ωF has compact support.

Finally, to see that Ch induces a map in the K-theory with compact support, we still
have to show that if (E,α, F ) ≡ (E ′, α′, F ′) then they have the sama Chern character
(in cohomology). But this follows by an argument simialr to the last one, because the
equivalence ≡ means that the two triples can be joined by a smooth family of triple
(Et, αt, Ft), t ∈ [0, 1] (fill in the details!).

11.3 The K-theoretical formulation of the Atiyah-Singer

index theorem

Next, we give an outline of the K-theoretical formulation of the index theorem. First of
all
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Definition 11.3.1 Let M be a compact n-dimensional manifold. The topological index
map is defined as

Indt : Kcpt(T
∗M)→ R, Indext([C]) = (−1)n

∫
T ∗M

Ch(C)π∗(Td(TCM)),

where π : T ∗M →M is the projection.

A few explanations are in order. First of all, TCM is the complexification of the tangent
bundle of M . Secondly,

Ch(C) ∈ Hcpt(T
∗M), π∗(Td(T ∗CM)) ∈ H(T ∗M)

hence their product is a cohomology class with compact support. Finally, T ∗M has a
canonical orientation: any coordinate chart (U, χ = (x1, . . . , xn)) on M induces a coordi-
nate chart on T ∗M :

T ∗U 3 y1(dx1)x + . . .+ yn(dxn)x 7→ (x1, . . . , x,y1, . . . , yn);

moreover, the resulting atlas for T ∗M is oriented and defines the canonical orientation of
T ∗M . In particular, we have an integration map∫

T ∗M

: H∗cpt(T
∗M)→ R,

which kills all the cohomology classes except the ones in the top degree 2n (dim(T ∗M) =
2n).

Next, we discuss the analytic index. We have already seen that the index of an elliptic
pseudo-differential operator only depends on its principal symbol. However, what happens
is the following:

1. For an elliptic pseudo-differential operator P of degree d, Index(P ) only depends on

[σd(P )] ∈ Kcpt(T
∗M).

2. Any element in Kcpt(T
∗M) can be represented by the principal symbol of an elliptic

operator.

Hence there is a unique map

Inda : Kcpt(T
∗M)→ Z

with the property that, for any elliptic pseudo-differential operator of degree d,

Inda([σd(P )]) = Index(P ).

Definition 11.3.2 The map Inda is called the analytic index map.

With these, we have the following formulation of the Atiyah-Singer index theorem.

Theorem 11.3.3 On any compact manifold M , Indt = Inda.
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