
10 Weyl’s law

10.1 Description of the result

Let M be a compact smooth manifold. Let g be a Riemannian metric on M and
∆ the corresponding Laplace operator, equipped with a minus sign so that its
principal symbol equals

σ2
∆(x, ξx) = gx(ξx, ξx).

In the final sessions of our seminar we will aim at understanding a proof of Weyl’s
law for the asymptotic behavior of the eigenvalues of the Laplace operator.

Our first aim will be to describe the result. For this we will look at the
eigenvalues of the Laplace operator. We define Λ(∆) to be the set of λ ∈ C such
that

E(λ) := {f ∈ C∞(M) | ∆f = λf}
is non-trivial. We will show that Λ is a discrete subset of [0,∞[, that each E(λ)
is finite dimensional and that

⊕̂λ∈ΛE(λ) = L2(M).

Here the summands are mutually orthogonal, and the hat indicates that the
closure of the direct sum is taken. For each λ ∈ Λ, we put mλ := dimE(λ)
and call this the multiplicity of the eigenvalue λ. Let 0 ≤ λ1 ≤ λ2,≤ · · · be an
ordering of the eigenvalues, including multiplicities. For µ ≥ 0 we define

N(µ) := #{j | λj ≤ µ} = dim⊕λ≤µ E(λ).

Then Weyl’s law describes the asympotic behavior of N(µ), for µ→∞.
Theorem (Weyl’s law) The asymptotic behavior of N(µ), for µ → ∞ is given
by

N(µ) ∼ ωn
(2π)n

vol(M)µn/2,

where ωn denotes the volume of the n-dimensional unit ball.

Example. The simplest example is the unit circle S , with Laplace operator
−∂2/∂ϕ2. We know that the eigenvalues are k2, for k ∈ N. Furthermore, the
multiplicity of 0 is 1 and the multiplicity of the non-zero eigenvalues is 2, so that

N(µ) = 2bµ1/2c − 1 ∼ 2µ1/2.

On the other hand, n = 1, B1 = 2 and vol(S) = 2π, so that in this case

ωn
(2π)n

vol(S) = 2.

This confirms Weyl’s law for the unit circle.
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Second example. Let ∆ be the spherical Laplacian on the 2-dimensional
unit sphere. Then Weyl’s law predicts that

N(µ) ∼ π

(2π)2
4πµ = µ.

Check this by using spherical harmonics.

Our goal is to follow the proof in a set of Lecture Notes I found on the web

[2] http://www.math.univ-toulouse.fr/∼bouclet/Notes-de-cours-exo-exam/M2/
cours-2012.pdf

The proof makes heavy use of Pseudo-differential operators depending on param-
eters, which is just within our reach. The line of reasoning is inuitively appealing.

10.2 Spectrum of the Laplacian

In this section we assume that M is a compact manifold, E ↓ M a complex
vector bundle, equipped with a Hermitian structure. Then we have the following
natural sesquilinear pairing Γ∞(E)× Γ∞(E)→ C given by

〈f, g〉 =

∫
M

〈f(x), g(x)〉x dx.

Here dx denotes the Riemannian volume density on M. For each s ∈ R this
pairing is continuous with respect to the Sobolev topology of Hs(M,E) on the
first factor, and the similar topology of H−s(M,E) on the second factor and
therefore extends to a continuous sesquilinear pairing

Hs(M,E)×H−s(M,E)→ C.

By a local analysis, it is seen that the pairing is perfect. In particular, for s = 0
we obtain a Hermitian inner product on H0(M,E) ' L2(M,E) which induces
the Hilbert topology on L2(M,E) and thus turns L2(M,E) into a Hilbert space.

By compactness of M, each section f of Γ−∞(M,E) has a finite order as a
distribution, so that by local analysis it follows that f ∈ Hs(M,E) for some
s ∈ R. In other words,

Γ−∞(M,E) = ∪s∈RHs(M,E) = H−∞(M,E).

Definition 1 A pseudo-differential operator P ∈ Ψ(E,E) is said to be self-
adjoint if

〈Pf, g〉 = 〈f, Pg〉

for all f, g ∈ Γ∞(E).
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The Laplace operator ∆ may be viewed as a self-adjoint pseudodifferential
operator in Ψ2(CM ,CM). The Hodge-Laplacian of degree p is the operator ∆p :
Ωp(M)→ Ωp(M) given by ∆p = dd∗ + d∗d. It is a self-adjoint pseudodifferential
operator in Ψ2(∧pT ∗M,∧pT ∗M). Moreover, these operators form prime examples
of elliptic differential operators of order 2.

In the following we assume that L is a self-adjoint elliptic operator in Ψd(E,E),
where d > 0.

Lemma 2 Let s ∈ R. Then for the above pairing, the restricted operator Ls :
Hs(M,E)→ Hs−d(M,E) is adjoint to the restricted operator Ld−s : Hd−s(M,E)→
H−s(M,E).

Proof Since L is a pseudo-differential operator, Ls is continuous linear, and so
is Ld−s. It suffices to show that 〈Lsf, g〉 = 〈f, Ld−sg〉 for all f ∈ Hs(M,E) and
g ∈ Hd−s(M,E). By continuity and density, it suffices to show this equality for
all f, g ∈ Γ∞(M,E). This is an immediate consequence of the self-adjointness of
L. �

Let
HL := {f ∈ Γ−∞(M,E) | Lf = 0};

hereH stands for ‘Harmonic’. By the elliptic regularity theorem, HL ⊂ Γ∞(M,E).
By the results of Chapter 9, the space HL is finite dimensional.

We define

H⊥L := {f ∈ Γ−∞(M,E) | ∀g ∈ HL : 〈f, g〉 = 0}.

Lemma 3 We have
Γ−∞(M,E) = H⊥L ⊕HL.

The associated projection operator PL : Γ−∞(M,E)→ HL is a smoothing opera-
tor.

Proof There exists a basis ϕ1, . . . ϕn of HL which is orthonormal with respect to
the restriction of 〈 · , · 〉 to HL. We define the linear operator T : Γ−∞(M,E) →
HL by

T (f) =
n∑
j=1

〈f, ϕj〉ϕj.

Then, clearly, T 2 = T so that T is a projection operator. Clearly kerT = H⊥L
and im(T ) = H⊥L . This establishes the decomposition. Morever, PL = T. We
will finish the proof by showing that T is a smoothing operator. Indeed, let
K : M ×M → E � (E∗ ⊗DM) be defined by

K(x, y)(v∗ ⊗ (v ⊗ µ)) =
n∑
j=1

v∗(ϕj(x))〈v, ϕj(y)〉dm(µy),
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for v∗ ∈ E∗x, v ∈ Ey and µ ∈ D∗My. Then K is a smooth section of the bundle
E � (E∗ ⊗ DM) ↓ M × M. Moreover, it follows from the definitions that, for
f ∈ Γ∞(E) and g ∈ Γ∞(E∗),

(TK(f))(gdx) = K(gdx⊗ f) =
n∑
j=1

ϕj(gdx)

∫
M

〈f(y), ϕj(y)〉dy = T (f)(gdx).

Therefore, TK = T on Γ∞(M,E) and by density and continuity, we find that
TK = T on Γ−∞(M,E). �

Lemma 4 Let s ∈ R. Then

Hs(M,E) = (Hs(M,E) ∩H⊥L )⊕HL

is a direct sum of closed subspaces. The restricted map Ls : Hs(M,E) →
Hs−d(M,E) restricts to a topological linear isomorphism

Hs(M,E) ∩H⊥L
'−→ Hs−d(M,E) ∩H⊥L .

Proof The projection operator PL : Γ−∞(M,E) → Γ−∞(M,E) is smoothing,
with image HL. It follows that the restriction of PL defines a continuous linear
operator of Hs(M,E) with image equal to HL∩Hs(M,E) = HL. This establishes
the given decomposition of Hs(M,E) into closed subspaces.

The map Ls : Hs(M,E) → Hs−d(M,E) is Fredholm (see Lecture Notes, Ch.
9) hence has finite dimensional kernel and closed image of finite codimension. Ob-
viously the kernel equals HL. It follows that Ls restricts to an injective continuous
linear map Hs(M,E) ∩H⊥L → Hd−s(M,E).

By adjointness of Ls and Ls−d, the closure of im(Ls) equals the orthocomple-
ment of ker(Ls−d) in Hd−s. Since Ls has closed image, we see that Ls restricts
to a bijective continuous linear map Hs(M,E) ∩H⊥L → Hs−d(M,E) ∩H⊥L . The
result now follows by application of the closed graph theorem for Banach spaces.
�

Definition 5 Let L ∈ Ψd(E,E) be self-adjoint elliptic. We define the Green
operator G0 : L2(M,E)→ Hd(M,E) by

(a) G0 = 0 on HL

(b) on L2(M,E) ∩H⊥L , the operator G0 equals the inverse of

Ld : Hd(M,E) ⊥ H⊥L → H0(M,E) ∩H⊥L = L2(M,E) ∩H⊥L .

The following result shows that pseudo-differential operators naturally appear
in the theory of elliptic self-adjoint differential operators.
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Theorem 6 Suppose that L is a self-adjoint elliptic operator of order d ≥ 0. Let
G0 be its Green operator. Then there exists a unique pseudodifferential operator
G ∈ Ψ−d(E,E) whose restriction to L2(M,E) equals G0. This operator is self-
adjoint and satisfies

G ◦L = L ◦G = I − PL.
In particular, it is a parametrix for L.

Proof Uniqueness follows from the fact that Γ∞(M,E) is contained in L2(M,E).
Existence is established as follows. For s ∈ R we define the continuous linear
operator Gs : Hs(M,E) → Hs+d(M,E) as follows. The operator is zero on HL

and on Hs(M,E)∩H⊥L it is the inverse of the continuous linear operator Ls+d of
Lemma 4. Since L is self-adjoint, it is readily verified that the operators Gs and
G−s+d are adjoint to each other for the pairing 〈 · , · 〉s.

Each operator Gs is continuous linear Hs(M,E) → Γ−∞(M,E). If s, t ∈ R,
then clearly the operators Gs and Gt coincide on Γ∞(M,E). If in addition s < t
then Ht(M,E) ⊂ Hs(M,E) and we see that Gt equals the restriction of Gs by
density of Γ∞(M,E) in Ht(M,E). It follows that there is a unique linear operator
G−∞ : Γ−∞(M,E)→ Γ−∞(M,E).

On the other hand all operatorsGs have the same restrictionG∞ to Γ∞(M,E).
It follows that G∞ : Γ∞(M,E)→ Hs(M,E) is continuous linear for all s ∈ R. By
the Sobolev embedding theorem this implies that G∞ is continuous linear from
Γ∞(M,E) to itself. As G∞ and G−∞ are adjoint to each other for 〈 · , · 〉∞, it
follows that G−∞ is a continuous linear operator from Γ−∞(M,E) to itself. We
denote this operator by G. Obviously,

G ◦L = I − PL. (10.1)

By ellipticity, the operator L has a parametrix Q ∈ Ψ−d(M,E). Thus, LQ = I+T
with T a smoothing operator. It now follows from (10.1) that

G(I + T ) = GLQ = (I − PL)Q

so that G = Q − PLQ − GT. Now PLQ and GT are continuous linear oper-
ators Γ−∞(M,E) → Γ∞(M,E). By the Schwartz kernel theorem, such oper-
ators have a smooth kernel, hence are smoothing operators. It follows that
G − Q ∈ Ψ−∞(E,E), hence G is a pseudo-differential operator of order −d.
The remaining assertions have been established as well. �

Lemma 7 Let L ∈ Ψd(E,E) be elliptic and selfadjoint, d > 0. Let G be the
associated Green operator. Then G restricts to a compact self-adjoint operator
L2(M,E)→ L2(M,E).

Proof The embedding i : Hd(M,R) → L2(M,E) is compact by Rellich’s the-
orem. The described restricted operator is the composition i ◦G0 where G0 :
L2(M,E) = H0(M,E) → Hd(M,E) is continuous linear. This establishes the
compactness. The self-adjointness is readily checked on the dense subspace
Γ∞(M,E). �
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Let L ∈ Ψd(E,E) be elliptic and selfadjoint, d > 0. Then for each λ ∈ C
we the operator L − zI belongs to Ψd(E,E) and is elliptic, hence has finite
dimensional kernel E(L, λ), which consists of smooth functions. If E(L, λ) is
non-trivial, then λ is called an eigenvalue for L. The set of eigenvalues is denoted
by Λ(L).

Theorem 8 Let L ∈ Ψd(E,E) be elliptic and selfadjoint, d > 0. Then Λ(R)
is a subset of R which is discrete and has no accumulation points. For every
λ ∈ Λ(R) the associated eigenspace E(λ) is finite dimensional. If λ1 and λ2 are
distinct eigenvalues, then E(λ1) ⊥ E(λ2) in L2(M,E). Finally,

L2(M,E) = ⊕̂λ∈ΛE(λ),

where the hat indicates that the L2-closure of the algebraic direct sum is taken.

Proof Let G ∈ Ψ−d(M,E) be the associated Green operator. We write Λ(G) for
the set of eigenvalues of G. It follows readily from the definitions that E(L, 0) =
E(G, 0) so 0 ∈ Λ(G) if and only if 0 ∈ Λ(L). Furthermore, if λ ∈ C \ {0}, then

E(G, λ) = E(L, λ−1)

and we see that λ ∈ Λ(G) ⇐⇒ λ−1 ∈ Λ(L).
By elliptic regularity, E(G, λ) ⊂ Γ∞(M,E) ⊂ L2(M,E) and we see that

Λ(G) equals the set of eigenvalues of the compact self-adjoint restricted operator
G0 : L2(M,E)→ L2(M,E). Moreover, E(G, λ) = ker(G0 − λI). By the spectral
theorem of such operators, all assertions now follow. �

We define the increasing function N = NL : [0,∞[→ N by

N(µ) =
∑

λ∈Λ(L),|λ|≤µ

dimE(L, λ).

Then a Weyl type law for L should describe the top term asymptotic behavior
of N(µ), for µ → ∞. The aim of these notes is to guide the reader through the
proof of Weyl’s law for the case that L is the scalar Laplace operator ∆ for a
compact Riemannian manifold M.

Theorem 9 Let M be a compact Riemannian manifold of dimension n, ∆ the
associated Laplace operator and N = N∆. Then

N(µ) ∼ ωn
(2π)n

vol(M)µn/2, (µ→∞).

The symbol ∼ indicates that the quotient of the expression on the left hand
side by the expression on the right-hand side of the equation tends to 1, as µ→∞.
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11 Reformulation of Weyl’s law

The next step in our discussion is a reformulation of Weyl’s law in terms of
functional calculus. For this we refer the reader to the text [2], Chapter 2, pages
12 -17.

12 Hilbert–Schmidt and trace class operators

12.1 Hilbert–Schmidt operators

In this section all Hilbert spaces are assumed to be infinite dimensional separable
(i.e., of countable Hilbert dimension).

Let A : H1 → T2 be a bounded operator of Hilbert spaces.

Lemma 10 Let A∗ : H2 → H1 be the adjoint of A, Then for all orthonormal
bases (ej)j∈N of H1 and (fj)j∈N of H2 we have

∞∑
j=0

‖Aej‖2 =
∞∑
j=0

‖A∗fj‖2.

In particular, these sums are independent of the particular choices of bases (ej)
and (fj).

Proof Put Aij = 〈Aej, fi〉. Likewise, put A∗ij = 〈A∗fj, ei〉. Then A∗ij = Aji.
Hence, ∑

i

‖Aei‖2 =
∑
i,j

|Aij|2 =
∑
j

‖A∗fj‖2.

�

Definition 11 The operator A is said to be of Hilbert-Schmidt type if for some
(hence any) orthonormal basis (ej)j∈N of H1 we have

∞∑
j=0

‖Aej‖2 <∞.

The set of these Hilbert-Schmidt operators is a linear subspace of L(H1, H2),
which we denote by L2(H1, H2).

Let (ej) and (fj) be orthonormal bases for H1 and H2 and let A,B : H1 → H2

be Hilbert-Schmidt operators. Then by the Cauchy-Schwartz inequality, the sum∑
j

〈Aej, Bej〉 =
∑
ij

AijB̄ij
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is absolutely convergent. Clearly, it is independent of the choice of the basis (fj).
We denote the value of this sum by 〈A,B〉HS. It is clear that 〈 · , · 〉HS is a positive
definite Hermitian inner product on L2(H1, H2). Moreover, it is readily verified
that L2(H1, H2) is a Hilbert space for this inner product. The associated norm
is given by

‖A‖2
HS =

∑
j

‖Aej‖2

for any orthonormal basis (ej) of H1. As this norm is independent of the choice
of basis, it follows that 〈 · , · 〉HS is independent of the choice of the basis (ei).

Lemma 12 Let Uj be a unitary automorphism of Hj, for j = 1, 2. Then for all
A ∈ L2(H1, H2) we have U2AU1 ∈ L2(H1, H2). Moreover, if B ∈ L2(H1, H2) then

〈U2AU1, U2BU1〉 = 〈A,B〉HS.

Proof Straightforward. �

Lemma 13 On L2(H1, H2), the operator norm ‖ · ‖ is dominated by ‖ · ‖HS.

Proof Let (ej) be an orthonormal basis ofH1. For all x ∈ H1, we put xj = 〈x, ej〉.
Then by the Cauchy–Schwarz inequality,

‖Ax‖ ≤
∑
j

|xj|‖Aej‖ ≤ ‖x‖‖A‖HS.

The result follows. �

Corollary 14 Every A ∈ L2(H1, H2) is compact.

Proof Let (ej) and (fj) be orthonormal bases for H1 and H2. Define the linear
operator Eij : H1 → H2 by Eij(x) = 〈x, ej〉fi. Then Eij is a rank one operator.
Since

A =
∑
ij

AijEij

in the Hilbert space L2(H1, H2), it follows that A is the limit of a sequence of
finite rank operators with respect to the Hilbert-Schmidt norm, hece also for the
operator norm. Compactness follows. �

Lemma 15 If A : H1 → H2 is Hilbert-Schmidt and B : H2 → H a bounded
operator of Hilbert spaces, then BA : H1 → H is Hilbert-Schmidt. Likewise, if
C : H → H1 is bounded, then AC is Hilbert-Schmidt.

Proof The first assertion follows from the observation that

‖BAej‖2 ≤ ‖B‖2‖Aej‖2.

The second assertion now follows from (AC)∗ = C∗A∗, by application of Lemma
10. �
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12.2 Polar decomposition

Let D be the complex unit disk {z ∈ C | |z| < 1}. We consider the holomorphic
function ρ : D → C given by ρ(z) = −

√
1− z. Here the principal value of the

square root is taken, so that ρ(0) = −1. This function has the power series
expansion

ρ(z) =
∞∑
k=0

ckz
k, (|z| < 1), (12.2)

where ck = ρ(k)(0)/k! is readely checked to be a positive real number for k ≥ 1.
The radius of convergence is 1.

Lemma 16 The power series (12.2) converges uniformly absolutely on the closed
unit disk D̄ and defines a continuous extension of ρ to it.

Proof It follows from the positivity of the coefficients that for every n ≥ 1,

−1 +
n∑
k=1

ckx
k ≤ −

√
1− x (0 ≤ x < 1).

By taking limits for x ↑ 1 we see that this inequality remains valid for x = 1. As
this is true for all n, it follows that the series

∑n
k=1 ck converges. Therefore, the

power series (12.2) converges absolutely for z = 1, hence uniformly absolutely on
D̄. This implies the continuity statement. �

By a positive operator on a Hilbert space H we shall mean a Hermitian
operator T : H → H which is positive semidefinite, i.e., 〈Tv, v〉 ≥ 0 for all v ∈ H.
The above result allows us to define the square root of such an operator.

Lemma 17 Let T : H → H be a positive operator. Then there exists a unique
positive operator S : H → H such that S2 = T. The operator S has the following
properties,

(a) kerS = kerT ;

(b) if A ∈ L(H,H) then A commutes with S if and only if it commutes with T.

Proof We may assume that T 6= 0 so that ‖T‖ > 0. Dividing T by its norm if
necessary, we may arrange ‖T‖ ≤ 1. Clearly, I − T is symmetric and

〈(I − T )v, v〉 = ‖v‖2 − 〈Tv, v〉 ≥ ‖v‖2 − ‖T‖‖v‖2 ≥ 0,

so I − T is positive. On the other hand,

〈(I − T )v, v〉 = 〈v, v〉 − 〈Tv, v〉 ≤ ‖v‖2
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and we conclude that ‖I − T‖ ≤ 1. Therefore,

S :=
∞∑
k=0

cn(I − T )k

converges in operator norm and defines a Hermitian operator which commutes
with any operator that commutes with T. By the usual multiplication of abso-
lutely convergent series, we see that

∑n
k=0 ckcn−k = 0 for all n ≥ 2. Applying this

multiplication to the power series for S we obtain

S2 = c2
0I + 2c0c1(I − T ) = I − (I − T ) = T.

By positivity of the coefficients for S− I it follows that S− I is positive. On the
other hand, by straightforward estimation, it follows that ‖S‖ ≤

√
‖I − T‖ ≤ 1.

As in the above we conclude that S = I − (I − S) is positive. This establishes
existence and the commutant property.

We turn to uniqueness. Let R be a positive operator on H with square T.
Then obviously, kerR ⊂ kerT. Conversely, if v ∈ H and Tv = 0 then 〈Rv,Rv〉 =
〈Tv, v〉 = 0 so v ∈ kerR. We thus see that kerR = kerT. In particular, kerS =
kerT and we see that kerR = kerS. It follows that S = R = 0 on kerT and
R, T, S preserve (kerT )⊥. Passing to the latter subspace if necessary, we may as
well assume that kerT = 0, so that also kerS = kerR = 0.

By the first part of the proof, R = R2
0 for a positive operator R0 whose kernel

is zero. Thus,
〈Rv, v〉 = 0⇒ 〈R0v,R0v〉 = 0⇒ v = 0.

Likewise, 〈Sv, v〉 = 0⇒ v = 0. We now infer, by positivity of S and R, that

(R + S)(v) = 0⇒ 〈Rv, v〉+ 〈Sv, v〉 = 0⇒ 〈Sv, v〉 = 0⇒ v = 0.

Thus, R + S has trivial kernel. As this operator is Hermitian, it follows that it
has dense image.

We note that RT = R3 = TR so R commutes with S. It follows that S2−R2 =
(S − R)(S + R), so S − R is zero on the image of R + S which is dense. We
conclude that R = S. �

Definition 18 For T : H → H a positive operator on the Hilbert space we
define the square root

√
T to be the unique positive operator on H whose square

equals T.

If A : H1 → H2 is a bounded linear operator of Hilbert spaces, then A∗A is a
positive operator on H1.

Definition 19 In the setting just described, we define |A| =
√
A∗A.
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Thus, |A| is a positive operator on H1. We recall that a partial isometry is a
bounded linear map U : H1 → H2 of Hilbert spaces, such that U restricts to an
isometry (kerU)⊥ → H2. If U is a partial isometry, then so is its adjoint U∗. As
the image of a partial isometry is closed, it follows that

(kerU)⊥ = im(U∗), and (imU)⊥ = ker(U∗).

Lemma 20 Let U : H1 → H2 be a partial isometry. Then U∗U : H1 → H1

is the orthogonal projection onto im(U). In particular, if U is isometric, then
U∗U = I.

Proof Straightforward. �

The following may be viewed as a generalisation of the decomposition in polar
coordinates for C.

Theorem 21 (Polar decomposition) Let A : H1 → H2 be a bounded operator of
Hilbert spaces. Then there exists a partial isometry U : H1 → H2 such that

A = U |A|. (12.3)

(a) The restriction of U to (kerA)⊥ is unique and isometric with image im(A).

(b) The restriction of U to kerA is a partial isometry to im(A)⊥. If U0 : kerA→
im(A)⊥ is any given partial isometry, then U exists uniquely such that
U |kerA = U0.

(c) For any partial isometry U such that (12.3) we have |A| = U∗A.

Proof We start by observing that ker |A| = kerA∗A = kerA. Since |A| is
Hermitian, the image im|A| is dense in (kerA)⊥.

We define the linear map U1 : im|A| → H2 by U1|A|x = A(x), for x ∈ H1.
This definition is unambiguous, since ker |A| = kerA. It follows that

〈U1|A|x, U1|A|x〉 = 〈Ax,Ax〉 = 〈|A|2x, x〉 = 〈A|x|, A|x|〉,

so U1 is isometric, and uniquely extends to an isometry U1 : (kerA)⊥ → H2. The
image of U1 is closed, contains im(A) and is contained in the closure of im(A),
hence equal to the latter.

Let a partial isometry U0 kerA → (imA)⊥ be given. Let U be the map
H1 → H2 that restricts to U0 on kerA and to U1 on (kerA)⊥. Then U is a partial
isometry. Furthermore, it is obvious that U ◦ |A| = A. The first assertion and
(12.3) follow.

Given any partial isometry U ′ : H1 → H2 with A = U ′|A| we see that
U ′(|A|(x)) = Ax = U1(|A|(x)) so that U ′ = U1 on im(|A|) hence on its closure
(kerA)⊥. This implies (a). Since U ′ is a partial isometry, we see that U ′ must

11



restrict to a partial isometry on kerA with image contained in U((kerA)⊥)⊥ =
imU1)⊥ = (imA)⊥. This proves the first statement of (b). The second statement
of (b) has already been established above.

We finally turn to (c). Since U is isometric when restricted to (kerA)⊥ it
follows that kerU ⊂ kerA = ker |A|, hence

im|A| = (ker |A|)⊥ ⊂ (kerU)⊥.

Now U∗U equals the orthogonal projection onto ker(U)⊥, hence

U∗A = U∗U |A| = |A|.

�

Corollary 22

(a) Let A : H1 → H2 a bounded operator with trivial kernel. Then there exists
a unique isometry U : H1 → H2 such that A = U |A|.

(b) Let A : H → H be a bounded self-adjoint operator. Then there exists an
isometry U : H → H such that A = U |A|.

Proof (a) is immediate from the theorem. For (b) we note that by self-
adjointness, (kerA)⊥ = im(A), so U0 = I is an isometry. It now follows from
Theorem 21 (b) that U0 uniquely extends to a partial isometry U : H → H such
that A = U |A|. Since kerU ⊂ kerU0 = 0 it follows that U is an isometry. �

As a converse to Theorem 21, we have the following.

Lemma 23 Let A = US with S : H1 → H1 positive and U : H1 → H2 a partial
isometry with kernel contained in kerS. Then S = |A|.

Proof From the assumption it follows that A∗A = S∗U∗US. Now U∗U is the
orthogonal projection onto (kerU)⊥, which contains (kerS)⊥ = im(S). Hence
U∗US = S and we see that A∗A = S∗S = S2. By positivity, it follows that
S =
√
A∗A = |A|. �

The polar decomposition behaves well with respect to Hilbert–Schmidt oper-
ators.

Lemma 24 Let A : H1 → H2 be a bounded linear operator. Then the following
statements are equivalent,

(a) A is Hilbert–Schmidt,

(b) |A| is Hilbert–Schmidt.

12



Furthermore, if the above conditions are satisfied, then

‖A‖HS = ‖ |A| ‖HS.

Proof Let A = U |A| be a polar decomposition with U a partial isometry. Then
|A| = U∗A. Since U and U∗ are bounded, the equivalence of (a) and (b) follows.
The operator norms of U and U∗ are at most 1, hence

‖A‖HS = ‖U |A|‖HS ≤ ‖ |A| ‖HS = ‖U∗A‖HS ≤ ‖A‖HS.

�

12.3 Operators of trace class

By an orthonormal sequence in a Hilbert space H we shall mean a sequence (ei)i∈N
of unit vectors in H which are mutually perpendicular. Such a sequence need not
be a basis. More precisely, given such a sequence (ei) and an orthonormal basis
(fi)i∈N of H there is a unique isometry U : H → H which maps fi to ei for all
i ∈ N. The sequence (ei) is a basis if and only if U is surjective.

Let A : H1 → H2 be a bounded operator between Hilbert spaces.

Definition 25 The operator A is said to be of trace class if and only if for all
orthonormal sequences (ei) of H1 and (fi) of H2 we have∑

i

|〈Aei, fi〉| <∞.

Note that we do not assume that (ei) and (fi) are bases of H1 and H2, respec-
tively. If (ei) is a basis and (fi) is not, then the above estimate cannot be obtained
by extending (fi) to a basis, so that the present requirement with sequences is
stronger than the similar requirement with bases. This seems an essential feature
of the present definition.

In the literature one sees several characterisations of trace class operators.
The advantage of Definition 25 is that it allows the immediate conclusion that
the set of all trace class operators H1 → H2 is a linear subspace of L(H1, H2). It
is denoted by L1(H1, H2).

Lemma 26 Let A : H1 → H2 be a bounded operator of Hilbert spaces. Then A
is of trace class if and only if the adjoint A∗ is of trace class.

Proof Immediate from the definition. �
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The following result relates Hilbert–Schmidt operators to those of trace class.

Lemma 27 Let A : H1 → H2 and B : H2 → H3 be Hilbert–Schmidt operators.
Then for all orthonormal sequences (ei) in H1 and (gi) in H3 we have∑

i

|〈BAei, gi〉| ≤ ‖A‖HS‖B‖HS.

In particular, BA is of trace class.

Proof Let fj be an orthonormal basis of H2. Then for every i we have

〈BAei, gi〉 = 〈Aei, B∗gi〉 =
∑
j

〈Aei, fj〉〈fj, B∗gi〉.

By Cauchy–Schwartz, it follows that∑
i

|〈BAei, gi〉| ≤ (
∑
i,j

|〈Aei, fj〉|2)1/2(
∑
i,j

|〈fj, B∗gi〉|2)1/2 ≤ ‖A‖HS‖B∗‖HS.

The final estimate above follows since (ei) and (gi) can be extended to full or-
thonormal bases of H1 and H3, respectively. �

We can now give the following useful characterizations of trace class operators
by means of the polar decomposition.

Theorem 28 Let A : H1 → H2 be a bounded operator. Then the following
assertions are equivalent.

(a) A is of trace class.

(b)
√
|A| is a Hilbert–Schmidt operator on H1.

(c) A equals the composition BC of two Hilbert–Schmidt operators C : H1 →
H3 and B : H3 → H2.

Proof By the theorem of polar decomposition there exists a partial isometry
U : H1 → H2 such that

A = U |A|

and such that kerU = kerA. Then |A| = U∗A. First assume that (a) is valid. Let
(ei) be any orthonormal basis of (kerU)⊥ = (ker |A|)⊥ then (ei) is an orthonormal
sequence in H1 and (Uei) is an orthonormal sequence in H2. We may realise (ei)
as a subsequence of an orthonormal basis (fj) of H1. Then the complement of
(ei) in (fj) consists of vectors from ker |A|. Therefore,∑

j

〈|A|fj, fj〉 =
∑
i

〈|A|ei, ei〉 =
∑
i

|〈Aei, Uei〉| <∞.

14



It follows that ∑
j

〈|A|1/2fj, |A|1/2fj〉 =
∑
j

〈|A|fj, fj〉 <∞,

hence (b).
Now assume (b). Then B := U |A|1/2 is Hilbert-Schmidt as well. Now A is the

composition of this operator with C := |A|1/2 and we obtain (c) with H3 = H1

and the given B and C.
The implication ‘(c) ⇒ (a)’ has been established in Lemma 27. �

The following result explains the terminology trace class operator introduced
in Definition 25.

Lemma 29 Let A : H → H be an operator of trace class. Then there exists a
unique number tr (A) ∈ C such that for all orthonormal bases (ej) of H we have

tr (A) =
∑
j

〈Aej, ej〉,

with absolutely convergent sum.

Proof By the theorem of polar decomposition, there exists a partial isometry
U : H → H such that A = U |A|. Let (ej) be any orthonormal basis of H, then
for all j we have

〈Aej, ej〉 = 〈|A|1/2ej, |A|1/2U∗ej〉.

Since the operators |A|1/2 and |A|1/2U∗ are Hilbert–Schmidt, the sum over j is
absolutely convergent, with value given by∑

j

〈Aej, ej〉 = 〈|A|1/2, |A|1/2U∗〉HS.

�

Corollary 30 Let A,B ∈ L(H1, H2) be Hilbert–Schmidt operators. Then B∗A
is of trace class, and

tr (B∗A) = 〈A,B〉HS.

Proof Let (ei) be an orthonormal basis of H1. Then

tr (B∗A) =
∑
i

〈Aei, Bei〉 = 〈A,B〉HS.

�
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Corollary 31 Let A : H1 → H2 be an operator of trace class, and let H3

be a third Hilbert space. Then for all bounded operators B ∈ L(H2, H3) and
C ∈ L(H3, H2), the operators BA and AC are of trace class.

Proof By Theorem 28 there exists a Hilbert space H and two Hilbert–Schmidt
operators A1 ∈ L2(H1, H) and A2 ∈ L2(H,H2) so that A = A2A1. It follows that
BA2 ∈ L2(H,H3) so that BA = (BA2)A1 ∈ L1(H1, H3). The assertion for AC
follows in a similar manner. �

For bounded normal on a Hilbert space, Hilbert–Schmidt and trace class may
be characterized in terms of their eigenvalues as follows.

Let A : H → S be a compact self-adjoint operator on a Hilbert space. By
the spectral theorem for such operators, there exists an orthonormal basis of
eigenvectors (ei). Let λj ∈ C be the eigenvalues corresponding to this basis.
Thus, Aei = λiei.

Corollary 32 Let A : H → H be compact normal as above.

(a) A is a Hilbert-Schmidt if and only if
∑

i |λi|2 <∞.

(b) A is of trace class if and only if
∑

i |λi| <∞.

Proof By normality, A∗ei = λ̄iei. It follows that |A|ei = |λi|ei. Now (a) follows
in a straightforward way. We note that

√
|A| =

√
|λi| ei. Hence, by (a) this

operator is Hilbert–Schmidt if and only if
∑

i |λi| < ∞. The equivalence in (b)
now follows by application of Theorem 28 �

We will now show that for (separable) Hilbert spaces H1 and H2, the space
L1(H1, H2) has a natural Banach norm for which the inclusion L1(H1, H2) ↪→
L2(H1, H2) is continuous. We start with a lemma.

Lemma 33 Let A : H1 → H2 be of trace class. Then for all orthonormal
sequences (ei) in H1 and (fi) in H2 we have∑

i

|〈Aei, fi〉| ≤ tr (|A|).

Proof We use the polar decomposition A = U |A|. Put S =
√
|A|. Then A is

the product of the Hilbert–Schmidt operators US and S. It follows by Lemma 27
that ∑

i

|〈Aei, fi〉| ≤ ‖US‖HS‖S‖HS ≤ ‖U‖‖S‖2
HS ≤ ‖S‖2

HS = tr (S2).

�
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In view of the lemma, we can define the norm ‖ · ‖1 on L1(H1, H2) by

‖A‖ = sup
(ei),(fi)

∑
i

|〈Aei, fi〉|,

where the supremum is taken over all orthonormal sequences (ei) in H1 and (fi)
in H2. It is readily verified that ‖ ·‖1 is indeed a norm. Obviously ‖A‖1 ≤ tr (|A|)
for all A ∈ L1(H1, H2).

Lemma 34 Let A ∈ L1(H1, H2). Then

‖A‖1 = tr |A|.

Proof By the previous lemma it suffices to establish the existence of orthonormal
sequences (ei) of H1 and (fi) of H2 such that∑

i

|〈Aei, fi〉| = tr (|A|). (12.4)

For this we proceed as follows. Let A = U |A| be the polar decompostion, where
we have made sure that U is an isometry. Let (ei) a basis in H1 for which
|A| diagonalizes, say with eigenvalues λi. Since U∗ maps im(U) = (kerU∗)⊥

isometrically onto H1 we may fix an orthonormal basis (fi) in im(U) such that
U∗fi = ei, for all i ∈ N. For each i we have

〈Aei, fi〉 = 〈|A|ei, U∗fi〉 = 〈|A|ei, ei〉 = λi

hence (12.4). �

Corollary 35 Let A : H → H be a compact normal operator, and (µi) its
sequence of non-zero eigenvalues counted with multiplicities.

(a) If A is Hilbert–Schmid, then ‖H‖2
HS =

∑
i |µi|2;

(b) If A is of trace class, then ‖A‖1 =
∑

i |µi|.

Proof There exists an orthonormal basis (ei) of eigenvectors for A with Aei =
λiei such that (µi) is the subsequence of (λi) obtained from omitting the zeros.
Now (a) follows immediately from ‖A‖2

HS =
∑

j〈Aej, ej〉. For (b) we note that by
normality, |A|ej = |µ|ej. Hence ‖A‖1 = tr |A| =

∑
j |µj| and the result follows.

�

Theorem 36 Let H1, H2 and H3 be separable Hilbert spaces. Then

17



(a) L1(H1, H2) ⊂ L2(H1, H2) with continuous inclusion. More precisely,

‖A‖HS ≤ ‖A‖1 (12.5)

for all A ∈ L1(H1, H2).

(b) The space L1(H1, H2) equipped with ‖ · ‖1 is a Banach space.

(c) The bilinear map L2(H1, H2)× L2(H2, H3)→ L1(H1, H3), (A,B) 7→ BA is
continuous. More precisely, for A ∈ L2(H1, H2) and B ∈ L2(H2, H3),

‖BA‖1 ≤ ‖A‖HS‖B‖HS.

(d) Let A ∈ L1(H1, H2). Then the maps RA : B 7→ BA, L(H2, H3) 7→ L1(H1, H3)
and LA : C 7→ AC, L(H3, H1)→ L1(H3, H2) are continuous.

Proof We begin with (a). First, consider the case that H2 = H1 = H and
that A : H → H is a self-adjoint and positive semi-definite bounded operator.
Assume that A is of trace class, hence compact. Let (ei) be an orthonormal basis
of H consisting of eigenvectors for A, and let λi be the associated eigenvalues.
Then λ := (λi) is a sequence in l1(N) hence in l2(N) and it is well-known and
easy to verify that for the associated norms on these sequence spaces we have

‖λ‖HS ≤ ‖λ‖1.

This immediately implies the inequality12.5
Let now A ∈ L1(H1, H2) be arbitrary. Let U |A| be a polar decomposition,

with U : H1 → H1 a partial isometry. Then |A| = U∗A, with U∗ a partial
isometry, hence

‖A‖HS = ‖|A|‖HS ≤ ‖|A|‖1 = ‖A‖1.

We turn to (b). Then X := L2(H1, H2) is Hilbert space, X1 := L1(H1, H2) a
normed subspace such that the inclusion map is continuous.

Let Π be the set of pairs p = ((ei), (fi)) of orthononormal sequences of H1

and H2, respectively. For such a p we define the linear map ξp : X1 → CN by
ξp(A) = 〈Aei, fi〉. Then by definition ξp is a continuous linear map from X1 to
l1(N). It follows that νp = ‖ξp‖1 is a continuous seminorm on X1. Furthermore,
supp∈Π νp equals the norm ‖ · ‖1 on X1.

We will now show that X1 is Banach. Let (Ak) be a Cauchy sequence in
X1. Then (Ak) is Cauchy in X hence has a limit A ∈ X. Furthermore, for p =
((ei), (fi)) as above, ξp(Ak) is Cauchy in l1(N) hence has a limit Ap in l1(N).
For all i we have, by continuity of the maps l1(N) → C, b 7→ bi and X → C,
A 7→ 〈Aei, fi〉 that 〈Aei, fi〉 = (Ap)i. It follows that ξp(A) = Ap ∈ l1(N). As this
is valid for every p, we conclude that A ∈ X is trace class, hence belongs to X1.

18



It remains to be shown that Ak → A in ‖ · ‖1. Let ε > 0. Then there exists N
such that s, t > N ⇒ ‖As − At‖1 < ε. Fix p ∈ Π as above. Then for all s, t > N
we have

‖ξp(As − At)‖1 < ε.

Now ξp(At)→ ξp(A) in l1(N), for t→∞ and by taking the limit for t→∞, we
conclude that

‖ξp(As − At)‖1 ≤ ε, (s > N).

As this estimate holds for all p ∈ Π we conclude that ‖As−A‖ ≤ ε for all s > N.
This completes the proof of (b).

Assertion (c) follows from Lemma 27 and the definition of ‖ · ‖1. For assertion
(d) we use the notation of the proof of Cor. 31 and consider the decomposition
decompose A = A2A1, with A1 ∈ L2(H1, H) and A2 ∈ L2(H,H2). Then

‖BA‖1 ≤ ‖BA2‖HS‖A1‖HS ≤ ‖B‖‖A2‖HS‖A1‖HS.

Therefore, RA is continuous as stated. The assertions about LA are proved in a
similar fashion. �

13 Smoothing operators are of trace class

In this section we will show that smoothing operators with compactly supported
kernels are of trace class. We start by investigating such operators on Rn, and
will then extend the results to manifolds.

Given p ≥ 1, we denote by S(Np) the space of rapidly decreasing functions on
Np, i.e., the space of functions c : ν 7→ cν , Np → C such that for all N ∈ N,

sN(c) := sup
k∈Np

(1 + ‖k‖)N |ck| <∞.

Equipped with the seminorms sN this space is a Fréchet space. The space S(Zp)
is defined similarly, with everywhere Np replaced by Zp. Obviously, through ex-
tension by zero, S(Np) can be viewed as a closed subspace of S(Zp).

Let H1 and H2 be Hilbert spaces, with orthonormal basis (ei) and (fj), re-
spectively. For K ∈ S(N2), we denote by AK the unique bounded linear operator
H1 → H2 determined by 〈AK(ei), fj〉 = Ki,j.

Lemma 37 If K ∈ S(N2), then AK is of trace class. The map K 7→ AK ,S(N2)→
L1(H1, H2) is continuous linear.

Proof Let U : H1 → H1 and V : H2 → H2 be isometries. Put Uei =
∑

k Ukiek
and V fi =

∑
l Vliel. Then

∑
k |Uki|2 = 1 and

∑
l |Vli|2 = 1 so that by the Cauchy–

Schwartz inequality we have ∑
i

|UkiVli| ≤ 1.
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Then∑
i

|〈AUei, V fi〉| ≤
∑
i

∑
k,l

|〈Aek, fl〉||UkiVli| ≤
∑
k,l

∑
i

|〈Aek, fl〉||UkiVli|

≤
∑
k,l

|Kk,l| ≤ sN(K)
∑
k,l

(1 + k)−N/2(1 + l)−N/2 = CNsN(K)

with CN = (
∑

k(1 + k)−N/2)2 < ∞ for N > 2. As this estimate holds for all
isometries U and V, it follows that AK is of trace class and

‖AK‖1 ≤ CNsN(K).

The continuity statement follows. �

Lemma 38 Let p ≥ 1. There exists a bijection ϕ : N→ Zp such that the induced
map ϕ∗ : f 7→ f ◦ϕ is a continuous linear isomorphism S(Zp)→ S(N).

Proof We consider the norm ‖x‖m = max{|xj| | 1 ≤ j ≤ p} on Rp. For r ∈ N,
let B̄(r) := {k ∈ Zp | ‖k‖m ≤ r}. Then B̄(r) = (Z ∩ [−r, r])p has (2r + 1)p

elements. Take any bijection ϕ : N→ Zp such that ϕ({1, . . . , (2r + 1)p}) ⊂ B̄(r)
for all r ∈ N. Then for all r ∈ Z>0 we have for all j ∈ N that

‖ϕ(j)‖m = r ⇐⇒ (2r − 1)p < j ≤ (2r + 1)p.

Hence, for all j ∈ N,
2‖ϕ(j)‖m ≤ j + 1 ≤ (2r + 1)p.

Let ψ denote the inverse to ϕ. Then, by equivalence of norms

‖ϕ(j)‖m = O(1 + |j|), and ψ(k) = O(1 + ‖k‖m)p

for j ∈ N, |j| → ∞ and k ∈ Zp, |k| → ∞. By equivalence of norms, these estimates
are also valid with ‖ · ‖ in place of ‖ · ‖m. It is now straightforward to check that ϕ
and ψ induce continuous linear maps ϕ∗ : S(Zp)→ S(N) and ψ∗ : S(N)→ S(Zp)
which are each others inverses. �

Lemma 39 Let dm a smooth positive density on Rn. Then there exists an or-
thornormal basis (ϕi) of L2(Rn, dm) such that

(a) For each i ∈ N, the function ϕi : Rn → C is smooth.

(b) The functions {ϕi | i ∈ N} are locally uniformly bounded

(c) The map f 7→ (〈f, ϕi〉)i∈N is continuous linear from C∞c (Rn) to S(N).

20



Proof The proof goes by reduction to a similar result on the n-dimensional
torus, which in turn relies on the classical theory of Fourier series.

We consider the standard density on the n-dimensional torus T = (R/Z)n,
equipped with the n-fold power dt = dt1 · · · dtn of the unit density on R/Z. Thus,
for f ∈ C(Tn) we have∫

T
f(t) dt =

∫ 1

0

· · ·
∫ 1

0

f(t) dt1 · · · dtn.

For each ν ∈ Zn we consider the function χν : T → C given by

χν(t) = e2πi〈ν,t〉.

By the theory of Fourier series, these functions form an orthonormal basis for
L2(T ). For f ∈ C(T ) and ν ∈ 2πiZn we define the Fourier coefficent f̂(ν) =
〈f, χν〉L2 (the L2-inner product). From elementary considerations, involving
partial differentiation, we know that f 7→ f̂ defines a continuous linear map
C∞(T ) → S(Zn). We now fix a bijection N → Zn j 7→ νj which by pull-back
induces a continuous linear isomorphism S(Zn) → S(N). Put ej := χνj . Then
the functions (ej) form an orthonormal basis of L2(T). Furthermore, the map

f 7→ (f̂(νj))j∈N defines a continuous linear map f 7→ f̃ , C∞(T )→ S(N).
To relate the asserted result for Rn to the obtained result for T , we fix an

open embedding ι : Rn → T, with image Ω :=]0, 1[n+Zn, whose complement has
measure zero in T. For instance, we may take the n-fold power induced by any
diffeomorphism R ' ]0, 1[. The pull-back ι∗(dt) of dt under ι is an everywhere
positive density on Rn.

By positivity of the densities involved, there exists a unique positive smooth
function µ : Rn →]0,∞[ such that ι∗(dt) = µdm. Thus, the pull-back under ι
defines an isometric isomorphism

ι∗ : f 7→ f ◦ ι, L2(T, dt)→ L2(Rn, µdm).

We define the functions ϕj : Rn → C by ϕj = µ1/2ι∗χj and claim that these
satisfy the desired properties. First of all, their L2-inner products in L2(Rn, dm)
are given by

〈ϕi, ϕj〉 =

∫
Rn
ι∗(χi))ι

∗(χj)) µdm =

∫
Rn
ι∗(χi))ι

∗(χj)) ι
∗(dt) = 〈χi, χj〉,

from which one sees that the functions (ϕj) form an orthonormal basis. Next,
they are smooth and locally uniformly bounded, and we see that (a) and (b) are
valid.

Given a function f ∈ C∞c (Rn), we have

〈f, ϕj〉 =

∫
Rn
fϕjdm =

∫
Rn

(fµ−1/2)ι∗(χj)µdm

= 〈ι∗(fµ−1/2), χj〉 = [ι∗(µ
−1/2f)] (̃j).
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Since ι∗ ◦Mµ−1/2 defines a continuous linear map C∞c (Rn) → C∞(T ), condition
(c) follows. �

Lemma 40 Let dm and dm′ be a two smooth densities on Rn and let K ∈
C∞c (Rn × Rn). Then the integral operator T : L2(Rn, dm)→ L2(Rn, dm′) defined
by

TKf(x) :=

∫
Rn
K(x, y)f(y) dm(y)

is of trace class. The map

K 7→ TK , C∞c (R2n)→ L1(L2(Rn, dm), L2(Rn, dm′))

is continuous linear. Furthermore, if dm′ = dm, then

tr (TK) =

∫
Rn
K(x, x) dm(x).

Proof We fix an orthonormal basis (ϕi) for L2(Rn, dm) such that the condi-
tions of Lemma 39 such that the induced map C∞c (Rn) → S(N), f 7→ 〈f, ϕi〉 is
continuous linear. A similar basis (ψj) is fixed for L2(Rn, dm′). Then it follows
that the map

K 7→ Kj,i := 〈K,ψj ⊗ ϕ̄i〉
is continuous linear C∞c (Rn × Rn) → S(N2). We note that 〈TK(ϕi), ψj〉 = Kj,i.
By application of Lemma 37 we now see that K → TK is continuous linear from
C∞c (Rn,Rn) to L1(L2(Rn, dm), L2(Rn, dm′)).

For the final statement, assume that dm′ = dm. Then we may take ψi = ϕi
for all i, so that for a fixed K ∈ C∞c (Rn × Rn) we have

K(x, y) =
∑
i,j

Kj,i ϕj(x)ϕi(y),

with convergence in L2(Rn × Rn). Since K · ∈ S(N2) and the functions ϕi are
uniformly locally bounded, the equality holds with uniform convergence over
compact sets. This implies that

K(x, x) =
∑
i,j

Kj,iϕj(x)ϕi(x), (x ∈ Rn).

By the Cauchy-Schwartz inequality the functions x 7→ ϕj(x)ϕi(x) all have L1(Rn, dm)-
norm bounded by 1. It follows that the above equality holds with convergence
in L1(Rn, dm). This implies that integration of the sum may be done termwise.
Taking the orthonomality relations into account, we thus find∫

Rn
K(x, x) dm(x) =

∑
i,j

Kj,iδij = tr (TK).

�
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The above lemma has the following interesting corollary. We first recall the
idea of approximation by convolution. Let ϕ ∈ C∞(Rn). Given f ∈ L2(Rn) we
note that ϕ ∗ f ∈ L2(Rn). It is readily seen that C(ϕ) : f 7→ ϕ ∗ f is a bounded
operator on L2(Rn).

By an approximation of the identity on Rn we shall mean a sequence of
functions ϕk ∈ C∞c (Rn) with ϕk ≥ 0,

∫
Rn ϕkdx = 1 for all k and such that

suppϕk → {e} for k → ∞. It is well known that C(ϕk) → I in the strong
operator topology, i.e., pointwise.

Approximation principle. Let T : L2(Rn)→ L2(Rn) be an operator of trace
class. Let (ϕk) and (ψk) be two approximations of the identity on Rn. Then

C(ϕk)TC(ψk)→ T in L1(L2(Rn), L2(Rn)), (k →∞).

The proof of this principle will be given in an appendix.

Corollary 41 Let dm be a smooth density on Rn and let K ∈ Cc(Rn × Rn). If
the integral operator T : L2(Rn, dm)→ L2(Rn, dm) defined by

TKf(x) :=

∫
Rn
K(x, y)f(y) dm(y)

is of trace class then its trace is given by

tr (TK) =

∫
Rn
K(x, x) dm(x).

Proof We consider an approximation of the identity ϕj on Rn consisting of
smooth functions. Then it is clear that (ψj := ϕj ⊗ ϕj) is an approximation of
the identity on R2n. It follows that the functions Kj := ψj ∗K are smooth, and
Kj → K in Cc(R2n). Then by the previous lemma it follows that

tr (Tj) =

∫
Rn
Kj(x, x) dm(x).

The right-hand side of this equality has limit
∫
K(x, x) dm(x) for j →∞. Thus,

it suffices to prove the claim that TKj → TK in L1(L2(Rn, dm), L2(Rn, dm)).
It is readily checked that TKj = C(ϕj) ◦TK ◦Cj(ϕ

∨
j ), where (ϕ∨j ) is the ap-

proximation of the identity given by ϕ∨j (x) = ϕj(−x). The claim now follows by
application of the above approximation principle. �

We now turn to smoothing operators on manifolds. Let M be a manifold
of dimension n equipped with everywhere positive densites dm and E ↓ M as
smooth vector bundle. We equip Γc(M,E) with the Hermitian inner product
given by the formula

〈f, g〉 =

∫
M

〈f(x), g(x)〉 dm(x), (f, g ∈ Γc(M,E)).
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Then the completion L2(M,E) of this space is a separable Hilbert space, which
we may view as a subspace of L2

loc(M,E).
Let now M ′ be a second manifold, of dimension n′, equipped with an ev-

erywhere positive smooth density dm′. Let E ′ ↓ M be complex vector bundle,
equipped with a Hermitian structure.

Let pr1, pr2 denote the projection maps from M ′×M onto M ′ and M respec-
tively. We briefly write Hom(E,E ′) for the vectorbundle Hom(pr∗2E, pr∗1E

′) over
M ′⊗M, and equip it with the naturally induced Hermitian structure. Thus, for
(x, y) ∈M ′ ×M and A ∈ Hom(E,E ′)(x,y) = Hom(Ey, E

′
x) we have

‖A‖2
x,y = tr (A∗A).

Let K be an L2-section of Hom(E ′, E). Then we define the kernel operator TK :
L2(M,E)→ L2(M ′, E ′) by

〈TKf, g〉 =

∫
M

〈K(x, y)f(y), g(x)〉 dm(y), (13.6)

for f ∈ L2(M,E) and g ∈ L2(M ′, E ′).

Theorem 42 With notation as above, let K ∈ L2(M ′ ×M,Hom(E,E ′)). Then
the operator TK : L2(M,E)→ L2(M ′, E ′) is Hilbert-Schmidt, and

‖TK‖2
HS =

∫
M×M

‖K(x, y)‖2 dm(x) dm(y). (13.7)

Proof We select a locally finite collection (Uβ) of disjoint open sets of M , so
that the union has a complement of measure zero, such that each Uα has compact
closure and is contained in an open coordinate chart diffeomorphic to Rn on which
E allows a trivialisation.

Likewise, we select a locally finite collection (U ′α) of disjoint open subsets of
M ′ with similar properties relative to the bundle E ′.

The characteristic functions χβ = 1Uβ are mutually perpendicular and add
up to 1 in L2

loc(M). Similar remarks are valid for χ′α = 1U ′α . Put Kα,β(x, y) =
χ′α(x)χβ(y)K(x, y). Then K is the L2(M ′ ×M,E ′ � E)-orthogonal sum of the
functions Kα,β ∈ L2(U ′α × Uβ) and it suffices to prove the result for each Kα,β.

In other words, we have reduced to the situation that M ′ = Rn′ ,M = Rn,
E = M × Ck and E ′ = M × Ck′ , and K is a compactly supported L2

loc-function
on Rn × Rn with values in Hom(Ck,Ck′).

By using Gramm-Schmidt orthogonalisation, we may change the trivialisa-
tions of E and E ′ such that the Hermitian structure becomes the standard Her-
mitian inner products on Ck and Ck′ .

Let e1, . . . , ek be the standard basis of Ck, and e1, . . . , ek′ the similar basis of
Ck′ . Let (Es,t | 1 ≤ t ≤ k, 1 ≤ s ≤ k′) be the standard basis for Hom(Ck,Ck′).
We write

K =
∑
s,t

Ks,tEs,t
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with scalar compactly supported functions Ks,t ∈ L2
loc(Rn). Then

‖K(x, y)‖2 =
∑
s,t

|Ks,t(x, y)|2.

Let (ϕi) be an orthonormal basis for L2(Rn′ , dm′) and ψj a similar basis for
L2(Rn, dm). Then ϕi⊗es and ψj⊗et form orthonormal bases for L2(M,dm′)⊗Ck′

and L2(M,dm)⊗ Ck, respectively. We thus see that

‖TK‖2
HS =

∑
i,j,s,t

∣∣〈T (ψj ⊗ et), ϕi ⊗ es〉L2(Rn,dm′)
∣∣2

=
∑
i,j,s,t

∣∣∣∣∫
Rn′

∫
Rn
Ks,t(x, y)ϕi(x)ψj(y)dm(y)dm′(x)

∣∣∣∣2
=

∑
i,j,s,t

|〈Ks,t, ϕi ⊗ ψj〉L2(Rn′+n,dm′dm)|2

=
∑
s,t

‖Ks,t‖2
L2(Rn′+n)

,

where the equality follows from the fact that the functions ϕi ⊗ ψj form an
orthonormal basis for L2(Rn′+n, dm′dm). It follows that TK is Hilbert–Schmidt,
and that (13.7). �

Theorem 43 With notation as in Theorem 42 let K ∈ Γc(M
′×M,Hom(E,E ′)).

(a) If K is smooth, then TK is of trace class.

(b) Let M = M ′, E = E ′ and dm = dm′. Let K ∈ Γc(M × E,End(E)) and
assume that TK : L2(M,E)→ L2(M,E) is of trace class, then

tr (TK) =

∫
M

tr (K(x, x)) dm(x). (13.8)

Proof Let (Uβ) be a finite open cover of pr2(supp (K) and let (χβ) be a partition
of unity subordinate to it. Likewise, let (U ′α) be a finite open cover of pr1(suppK)
and let (χ′α) be a partition of unity subordinate to it. We may assume that each
U ′α is diffeomorphic to Rn′ and that E ′ has a trivialisation over it. Likewise,
we may assume that Uβ is diffeomorphic to Rn and that E has a trivialisation
over it. Define Kα,β(x, y) = χ′α(x)χβ(y)K(x, y). Then TK is the finite sum of the
operators Tα,β := TKα,β and for (a) it suffices to show that each Tα,β is of trace
class. Now this follows by application of Lemma 40.

We now turn to (b) and assume that M = M ′, E = E ′. Then we may assume
that the covers (Uα) and (Uβ) are equal finite covers of pr1(suppK)∪pr2(suppK)
and have the additional property that Uα ∩ Uβ 6= ∅ implies that Uα ∪ Uβ is

25



contained in an open subset Ωα,β of M which is diffeomorphic to Rn, and such
that E allows a trivialisation over Ωα,β.

Define Kα,β(x, y) = χα(x)χβ(y)K(x, y). Since TK is of trace class, and TKα,β =
Mχα ◦TK ◦Mχβ , where Mχα : f 7→ χαf are bounded operators on L2(M,E, dm),
it follows from Corollary 31 that each of the operators Tα,β is of trace class. Thus,
by linearity it suffices the result for each Kα,β.

We will first deal with the case that Uα ∩ Uβ = ∅. Then Kα,β is zero on the
diagonal of M so that the integral on the right-hand side of (13.8) vanishes.

On the other hand, we may use an orthonormal basis of L2(Uα, E), one of
L2(Uβ, E) and a basis of L2(M \ Uα ∩ Uβ). Together these form an orthonormal
basis of L2(M,E, dm). Moreover, it is clear that for each ϕ in this basis, we have
that (ϕ ⊗ 〈 · , ϕ〉) ⊥ Kα,β. This implies that 〈Tα,β(ϕ), ϕ〉 = 0. From this we see
that tr (Tα,β) = 0 in this case.

Thus, we have reduced to the situation that α = β. This is our original setting,
with the additional assumption that M = Rn that E allows a trivialisation over
M. By applying Gramm-Schmidt orthonormalisation to a choice of global frame,
we see that E allows a smooth trivialisation on which the Hermitian structure
attains the standard form. Thus, we may assume that E = M × Ck, equipped
with the standard Hermitian form of Ck. Let e1, . . . , ek be the standard basis
for Ck, and for 1 ≤ s ≤ k define is : C → Ck, z 7→ zes and ps : Ck → C,
w 7→ ws.For 1 ≤ s, t ≤ k we define the compactly supported continuous function
Ks,t : M ×M → C by

Ks,t(x, y) = ps ◦K(x, y) ◦ is.

Associated to this function we define the kernel operator Ts,t : L2(M)→ L2(M)
by

Ts,t(f)(x) =

∫
M

Ks,t(x, y)f(y) dm(y).

Then it is readily seen that

Ts,tf = ps ◦T (it ◦ f).

Now f 7→ is ◦ f is a bounded operator L2(M)→ L2(M,Ck). Likewise, g 7→ ps ◦ g
is a bounded operator L2(M,Ck)→ L2(M). It follows by application of Corollary
31 that each of the operators Ts,t is of trace class. Hence, by .... we find that

tr (Ts,t) =

∫
M

Ks,t(x, x) dx.

Let now (ϕj) be an orthonormal basis for L2(M,dm), then (ϕi ⊗ es | i ∈ N, 1 ≤
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s ≤ k) is an orthonormal basis for L2(M)⊗ Ck. It follows that

tr (TK) =
∑
i,s

〈T (ϕi ⊗ es), ϕi ⊗ es〉

=
∑
s

∑
i

〈Ts,sϕi, ϕi〉 =
∑
s

tr (Ts,s)

=
∑
s

∫
M

Ks,s(x, x) dm(x)

=

∫
M

tr (K(x, x)) dm(x).

�

14 Pseudo-differential operators of trace class

Let V and W be infinite topological linear spaces, whose topologies are separable
Hilbert. This means that there exist topological linear isomorphisms S : H → V
and T : H → W, where H = l2(N) with the standard Hilbert structure. A
continuous linear map A : V → W gives rise to a continuous linear map AH :
H → H such that the following diagram commutes:

V
A−→ W

S ↑ ↑ T
H

AH−→ H.

The operator A is said to be Hilbert–Schmidt or of trace class, if AH is Hilbert–
Schmidt or of trace class. This definition is independent of the choice of S, T as
it should. For assume that S ′ and T ′ are similar topological linear isomorphisms
H → V and H → W and A′H : H → H the similarly associated map, then
A′H = (T ′)−1TAHS

−1S ′ with (T ′)−1T and S−1S ′ bounded endomorphisms of H.
We are now ready for the following result, for M a compact manifold of

dimension n, and E and F vector bundles of rank k and l on M.
The spaces L2(M,E) and L2(M,F ) are well defined, with a Hilbert topology.
Any pseudo-differential operator P ∈ Ψr(E ⊗ DM , F ) with r ≤ 0 defines

a continuous linear operator P0 : L2(M,E) → L2(M,E). may be viewed as a
continuous

Theorem 44 Let P ∈ Ψr(E,F ), r ≤ 0, and let P0 : L2(M,E) → L2(M,F ) be
the associated continous linear operator.

(a) If r < −n/2, then P0 is Hilbert–Schmidt.

(b) If r < −n, then P0 is of trace class.
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Proof We first prove (a). For this it suffices to show that the kernel of P0 is
in L2(M ×M,E∨ � F ). As the kernel of P0 is smooth outside the diagonal, it
suffices to show that (Mϕ ◦P ◦Mϕ)0 is Hilbert-Schmidt for any ϕ ∈ C∞c (M) with
support in an open coordinate patch over which E and F trivialize. This reduces
the result to the lemma below.

We now turn to (b). Fix s < 0 such that r < 2s < −n. Then there exists an
elliptic operator Q ∈ Ψs(E,E). The operator Q has a parametrix R ∈ Ψ−s(E,E).
Now PQ ∈ Ψr−s(E,F ) with r− s < s < −n/2. Hence (PQ)0 is Hilbert-Schmidt.
Likewise, R0 is Hilbert-Schmidt, and we conclude that (PQ)0R0 is of trace class.
Now QR = I+T, with T a smoothing operator, hence PQR = P +PT. It follows
that

P0 + (PT )0 = (PQR)0 = (PQ)0R0

is of trace class. Since PT is smoothing, (PT )0 is of trace class, and we conclude
that P0 is of trace class. �

Lemma 45 Let P ∈ Ψr(Rn) with r < −n/2. Then for all ϕ, ψ ∈ C∞c (Rn) the
operator Mϕ ◦P ◦Mψ has kernel contained in L2

comp(Rn × Rn).

Proof Without loss of generality we may assume that P = Ψp, with p ∈ Sr(Rn).
The kernel KP of P is then given by

KP (x, y) = F2p(x, y − x)

(to be interpreted in distribution sense). Since r < −m/2, it follows that x 7→
p(x, · ) is a continuous function, with values in L2(Rn). It follows that F2p ∈
L2

loc(Rn,Rn). By substitution of variables, it follows that KP ∈ L2
loc(Rn × Rn).

The kernel K of Mϕ ◦P ◦Mψ is given by

K(x, y) = ϕ(x)KP (x, y)ψ(y),

hence belongs to L2
comp(Rn × Rn). �

15 Appendix: approximation by convolution

In order to avoid repetitions, we first work in the general setting of a Hilbert space
H. Let U(H) denote the group of unitary automorphisms of H. We consider Rn

as a group for the addition, and assume that a group homomorphism π : Rn →
U(H), x 7→ π(x) is given such that τ(0) = I.

This map π is said to be strongly continuous at 0 if limx→0 τxv = v, for all
v ∈ H. This readily seen to be equivalent to the condition that π : Rn → U(H) is
continuous for the strong operator topology. Such a group homorphism is called
a unitary representation of Rn in H.
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Lemma 46 Assume that there exists a dense subset D ⊂ H such that

lim
x→0

π(x)v = v

for all v ∈ D. Then π is strongly continuous at 0.

Proof Let v ∈ H. Let ε > 0. There exists an element v0 ∈ D such that

‖v − v0‖ < ε/3.

There exists a δ > 0 such that

x ∈ B(0; δ)⇒ ‖π(x)v0 − v0‖ < ε/3.

Then for x ∈ B(0; δ) we have

‖π(x)v − v‖ ≤ ‖π(x)(v − v0)‖+ ‖π(x)v0 − v0‖+ ‖v0 − v‖
= ‖π(x)v0 − v0‖+ 2‖v0 − v‖ < ε.

�

The group homomorphism π : Rn → U(H) gives rise to the group homomor-
phism Lπ : Rn → U(L2(H,H)) given by

Lπ(x)(A) = π(x)A, (x ∈ Rn, A ∈ L2(H,H).

Lemma 47 If π is strongly continuous at 0 then so is Lπ.

Proof Let (ej) be an orthonomormal basis for H. Given i, j we define ei ⊗ e∗j :
H → H by v 7→ 〈v, ej〉ei. Then the span F of the operators ei ⊗ e∗j is a dense
subspace of L2(H,H). Let A ∈ F. Then it suffices to show that π(x)A → A in
L2(H,H), for x→ 0. We may write

A =
∑
i,j

Aijei ⊗ e∗j ,

with finite sum. Then

‖π(x)A− A‖2
HS =

∑
i

‖π(x)Aej − Aej‖2

with finite sum. Since π is strongly continuous at 0, this sum tends to zero for
x→ 0. �
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Assume that π is a unitary representation of Rn in a Hilbert space H. Given
ϕ ∈ Cc(Rn), the map x 7→ ϕ(x)π(x),Rn → L(H,H) is compactly supported and
continuous for the strong operator topology. We define π(ϕ) : H → H by the
Riemann-integral

π(ϕ)v =

∫
Rn
ϕ(x)π(x)v dx.

Clearly, π(ϕ) is bounded with operator norm dominated by the L1-norm of ϕ.

Lemma 48 Let (ϕk) be an approximation of the identity on Rn. Then for every
v ∈ H we have

π(ϕk)v → v, (k →∞).

Proof Fix v ∈ H. We note that

π(ϕk)v − v =

∫
Rn
ϕj(x)(π(x)v − v) dx.

Let ε > 0. There exists δ > 0 such that ‖x‖ < δ ⇒ ‖π(x)v − v‖ < ε/2. Fix K
such that k > K ⇒ suppϕk ⊂ B(0; δ). Then for k > K we have

‖π(ϕk)v − v‖ ≤
∫
B(0;δ)

ϕk(x)‖π(x)v − v)‖ dx ≤ 1

2
ε

∫
B(0;δ)

ϕk(x) dx < ε.

�

Corollary 49 Let π be a unitary representation of Rn in H. Let (ϕk) be an
approximation of the identity on Rn. Then for every A ∈ L2(H,H),

π(ϕk) ◦ A→ A in L2(H,H).

Proof The representation Lπ of Rn in L2(H,H) is unitary by Lemma 47. Hence
Lπ(ϕk)A → A in L2(H,H) by the previous lemma. Now use that Lπ(ϕk)A =
π(ϕk) ◦ A. �

Corollary 50 Let π be a unitary representation of Rn in H. Let (ϕk) and (ψk)
be approximations of the identity on Rn. Then for all A ∈ L1(H,H) we have

π(ϕk) ◦ A ◦ π(ψk)→ A in L1(H,H), (15.9)

for k →∞.

Proof There exist B,C ∈ L2(H,H) such that A = BC∗. Define ψ∨k : x 7→
ψk(−x). Then it is readily seen that (ψ∨k ) is an approximation of the identity on
Rn. Moreover, π(ψk)

∗ = π(ψ∨k ). It follows from Corollary 49 that π(ϕk)B → B in
L2(H,H), and that

Cπ(ψk) = (π(ψ∨k )C∗)∗ → C∗∗ = C

in L2(H,H). The assertion (15.9) now follows by application of Theorem 36. �
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Given x ∈ Rn we define Tx : Rn → Rn, y 7→ y+x. Then T−x induces a unitary
map τ(x) = τx = T ∗−x : L2(Rn)→ L2(Rn), f 7→ f ◦T−x. Clearly τ defines a group
homomorphism Rn → U(L2(Rn)).

Lemma 51 τ is a unitary representation of Rn in L2(Rn).

Proof We fix f in the dense subspace Cc(Rn) of L2(Rn). Then by Lemma 46
it suffices to show that τx(f)→ f in L2(Rn) for x→ 0. For this we first observe
that f is uniformly continuous.

Let ε > 0. There exists a δ > 0 such that |f(y − x) − f(y)| < ε for all
x ∈ B(0; δ) and y ∈ Rn, hence

sup |τxf − f | < ε, (‖x‖ < δ).

It follows that τxf → f uniformly for x → 0. Since supp τxf = x + supp f, it
follows that τxf is supported in the compact set supp f + B̄(0; 1), for ‖x‖ ≤ 1.
Hence, τxf → f in L2(Rn) for x→ 0. �

It is readily checked that for ϕ ∈ Cc(Rn) and f ∈ L2(Rn) we have

C(ϕ)f = ϕ ∗ f = τ(ϕ)f.

We now obtain the desired approximation result in L1(L2(Rn), L2(Rn)).

Lemma 52 Let (ϕk) and (ψk) be approximations of the identity on Rn and let
T : L2(Rn)→ L2(Rn) be an operator of trace class. Then

C(ϕk)TC(ψk)→ T in L1(L2(Rn), L2(Rn)),

for k →∞.

Proof This follows from Corollary 50 applied to H = L2(Rn), π = τ and A = T.
�
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