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1 Prerequisites on locally convex spaces
In these lecture notes, G will be a Lie group, and dx a choice of left Haar measure on G.

The group G is said to be unimodular if |detAd(x)|= 1 for all x ∈G. If G is unimodular, then
dx is a right Haar measure as well.

If G is compact, then it is unimodular, so that dx is bi-invariant. Moreover, by adapting the
normalization, we may determine dx uniquely by the requirement that

∫
G dx = 1. This particular

choice of measure is called normalized Haar measure on G.
In harmonic analysis on G, the theory of representations plays an important role. Such rep-

resentations will always be defined in terms of a (complex) topological linear space. By this we
mean a linear space V equipped with a topology such that

(a) the addition map (v1,v2) 7→ v1 + v2 is continuous V ×V →V ;

(b) the scalar multiplication map (λ ,v) 7→ λv is continuous C×V →V.

It is easy to see that a topological linear space V is Hausdorff if and only if {0} is closed.
Let V be a topological linear Hausdorff space. By a Cauchy sequence in V we mean a

sequence (v j) j≥0 in V such that for every neighborhood O of 0 in V there exists an index n≥ 0
such that vi− v j ∈ O for all i, j > n. The space V is said to be sequentially complete if every
Cauchy sequence converges.

If the topology on V does not satisfy the first countability axiom (i.e. 0 does not have a
countable fundamental system of neighborhoods) then this notion of sequential completeness is
not strong enough. The suitable notion requires the concept of a net, which generalizes the notion
of a sequence.

Recall that a directed set is a partially ordered set (I,≤) such that for all i, j ∈ I there exists
k ∈ I such that i, j ≤ k. A net in V is a map i→ vi, I→ V, with I a directed set. The net (vi)i∈I
is said to converge with limit v ∈ V if for every open neighborhood O of v in V there exists an
index n∈ I such that i≥ n⇒ vi ∈O. The net is said to be a Cauchy net if for every neighborhood
O of the origin there exists n ∈ I such that i, j ≥ n⇒ vi−v j ∈O. The topological linear space V
is said to be complete ini V if every Cauchy net in V converges (has a limit).

The notion of a complete topological linear Hausdorff space V is still too general to develop
a sufficiently rich theory, which allows for instance integration of functions in the space Cc(G,V )
of compactly supported continuous functions G→V. On the other hand, for representation theory
we definitely want to include the spaces C(G) and Cc(G) of continuous functions and compactly
supported continuous functions G→ C. Because of this, the class of Banach spaces is not large
enough.

The appropriate subtype of topological linear space we need for representation theory is
that of a locally convex space. By this we mean a topological linear space V (always assumed
complex and Hausdorff) whose topology has certain convexity properties. This can be stated in
terms of the existence of certain systems of seminorms.

To be precise, let V be a complex linear space. By a fundamental system of seminorms on V
we mean a set P of seminorms on V such that

(a) for every pair p1, p2 ∈P there exists a q ∈P such that p1, p2 ≤ q;

1



(b) if v ∈V and p(v) = 0 for all p ∈P, then v = 0.

For every seminorm p on V, every point a ∈ V and every constant r > 0 we define the p-ball of
center a and radius r by

Bp(a;r) = {v ∈V | p(v− v0)< r}.

Condition (a) guarantees that the collection of all these balls, for p ∈P, a ∈ V and r > 0,
together with the empty set, is a basis for a topology on V, turning V into a topological linear
space. Condition (b) guarantees that the topology is Hausdorff.

By a locally convex space we mean a topological linear space whose topology can be de-
scribed as above by a fundamental system P of seminorms. Obviously, this system is not
uniquely determined. However, all seminorms in the system are continuous for the topology.
More generally, the following lemma is immediate from the definitions.

Lemma 1.1. Let V be a locally convex space, and P a fundamental system of seminorms
determining the topology of V. Let q be a seminorm on V. Then the following conditions are
equivalent.

(a) q is continuous on V ;

(b) there exist p ∈P and C > 0 such that q≤Cp.

Clearly, the system NV of all continuous seminorms on V is a fundamental system which
determines the topology. In fact, it is the maximal fundamental system for V.

Let (vi)i∈I be a net in the locally convex space V. Convergence of the net now means that
there exists a v ∈ V such that for every continuous seminorm p on V and every ε > 0 there
exists an index n ∈ I such that i ≥ n⇒ p(vi− v) < ε. The net is a Cauchy net if and only if
for every continuous seminorm p on V and every ε > 0 there exists an index n ∈ I such that
i, j ≥ n⇒ p(vi− v j)< ε.

Before proceeding we mention the following characterization of continuity of a linear map.
The proof is easy and left to the reader.

Lemma 1.2. Let T : V →W be a linear map between locally convex spaces. Then the following
conditions are equivalent.

(a) the map T is continuous;

(b) the map T is continuous at 0;

(c) for every continuous seminorm q on W there exists a continuous seminorm p on V such
that q(T v)≤ p(v) for all v ∈V.

We will sometimes briefly write T ◦q≤ p for the estimate in (c).
We are now finally prepared for the definition of the notion of continuous representation of

G. If V is a locally convex (Hausdorff) space (over the base field C) we denote by End(V ) the
space of continuous linear endomorphisms of V, and by GL(V ) the subset of End(V ) consisting
of bijective A ∈ End(V ) for which A−1 ∈ End(V ).
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Definition 1.3. By a continuous representation (π,V ) of G in a complete locally convex space
V we mean a group homomorphism π : G→ GL(V ) for which the action map (x,v) 7→ π(x)v,
G×V →V is continuous.

Remark 1.4. If V is finite dimensional, then the above continuity implies that π : G→ GL(V )
is a continuous group homomorphism. As G and GL(V ) are Lie groups, this implies that π is
smooth, i.e. C∞ (it is even analytic).

Let (π,V ) be a continuous representation of G is a locally convex space V. By a closed
invariant subspace of this representation we mean a closed subspace W ⊂ V which is invariant
for π(x), for all x ∈ G.

Definition 1.5. A continuous representation (π,V ) is said to be irreducible if 0 and V are the
only closed invariant subspaces of V.

We recall that a Fréchet space is a complete locally convex space V whose topology can be
generated by a countable fundamental system of continuous seminorms. Equivalently, this means
that there exists a countable set N of continuous seminorms on V such that for each continuous
seminorm q on V there exists a p ∈N such that q ≤ Cp for some C > 0. Note that a Banach
space is Fréchet; hence, so is a Hilbert space.

A Fréchet space satisfies the following principle of uniform boundedness. Let W be a locally
convex space and T := {Ti | i ∈ I} a family of continuous linear maps V →W. If T is pointwise
bounded, i.e., {Ti(v) | i ∈ I} is bounded in W for every v ∈ V, then T is equicontinuous. The
latter means that for every continuous seminorm q on V there exists a continuous seminorm p
such that q◦Ti ≤ p for all i ∈ I.

The principle of uniform boundedness, which more generally is valid for the larger class of
so-called barrelled spaces, implies a useful criterion for determining whether a group homomor-
phism π : G→ GL(V ) defines a continuous action.

The strong topology on End(V ) is defined to be the locally convex topology determined by
the seminorms

A 7→max
v∈F

p(Av),

with F ⊂V a finite subset, and p a continuous seminorm on V.
The restriction of the strong topology to GL(V ) is said to be the strong topology on GL(V ).

Proposition 1.6. Let V be a Fréchet (or more generally a barrelled) space and let π : G→
GL(V ) be a group homomorphism. Then the following assertions are equivalent.

(a) For each v ∈V we have limx→e π(x)v = v.

(b) The map π : G→ GL(V ) is continuous for the strong topology on GL(V ).

(c) (π,V ) is a continuous representation of G.

Proof. It is clear that (c) implies (a). We will establish the implications ‘(a)⇒ (b)⇒ (c)’. For
the first implication, assume that (a) holds. Then by homogeneity, for (b) to be valid it suffices
to show that π is strongly continuous at e. Let ω be an open neighborhood of I = π(e) in GL(V )
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for the strong topology. Then there exists a finite set F ⊂V, a continuous seminorm p on V and
a constant ε > 0 so that the set Ω = {T ∈ GL(V ) | ∀v ∈ F : p(T v− v) < ε} is contained in ω.
Condition (a) implies that for each v ∈ F there exists an open neighborhood Uv of e in G such
that p(π(x)v− v) < ε for all x ∈Uv. Let U = ∩v∈FUv. Then U is an open neighborhood of e in
G and π(U)⊂Ω⊂ ω. This implies (b).

We turn to the second implication. Assume that (b) is valid. Let K be a compact neighbor-
hood of e in G. Then by (b) the family {π(k)|k ∈K } is pointwise bounded. By the principle of
uniform boundedness, the family is equicontinuous.

Fix v0 ∈V. Then by homogeneity it suffices to prove the continuity of the action map G×V →
V in (e,v0). Let ω be an open neighborhood of v0 in V. We will show that there exist open
neighborhoods U of e in G and O of v0 in V such that π(x)vinω for all (x,v) ∈U ×O. Without
loss of generality we may assume that ω = {v∈V | p(v−v0)< ε}, for p a continuous seminorm
on V and ε > 0. We now note that

p(π(x)v− v0)≤ p(π(x)(v− v0))+ p(π(x)v0− v0).

By equicontinuity, there exists a continous seminorm q on V such that p◦π(x)≤ q for all x∈K .
This leads to the estimate

p(π(x)v− v0)≤ q(v− v0))+ p(π(x)v0− v0), (x ∈K ).

There exists an open neighborhood U of e in G contained in K such that p(π(x)v0− v0)< ε/2
for all x ∈U. Furthermore, O = Bq(v0;ε/2) is an open neighborhood of v0 in V. For x ∈U and
v ∈V we have

p(π(x)v− v0)< ε/2+ ε/2 = ε.

Therefore, the action map π maps U×O into ω.

Of particular interest will be the class of unitary representations.

Definition 1.7. By a unitary representation of G we mean a continuous representation (π,H )
of G in a (complex) Hilbert space H such that π(x) ∈ U(H ) for all x ∈ G.

The following criterion is useful for determining whether a representation is unitary.

Lemma 1.8. Let H be a Hilbert space and π : G→ U(H ) a group homomorphism. Let D be
a dense subset of H . Then the following conditions are equivalent.

(a) For each v ∈D we have limx→e π(x)v = v.

(b) The representation π is continuous.

Proof. It is clear that (b) implies (a). For the conversed implication, assume (a). Let v0 ∈H and
ε > 0. Then there exists a v1 ∈ D such that ‖v1− v0‖ < ε/3. Furthermore, there exists an open
neighborhood U of e in G such that ‖π(x)v1− v1‖< ε/3 for x ∈U. Let x ∈U, then by unitarity
of π(x) we find that

‖π(x)v0− v0‖ ≤ ‖π(x)(v0− v1)‖+‖π(x)v1− v1‖+‖v1− v0‖
≤ ‖π(x)v1− v1‖+2‖v1− v0‖< ε.
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It follows that π satisfies the hypothesis and condition (a) of Proposition 1.6, hence is continuous.

The above result has a nice application to the left regular representation L of the group G in
the Hilbert space L2(G) = L2(G,dx) of square integrable functions G→ C. The inner product
on L2(G) is given by

〈 f , g〉=
∫

G
f (x)g(x) dx, ( f ,g ∈ L2(G)).

The left regular representation is given by the formula

Lx f (y) := f (x−1y), ( f ∈ L2(G),x,y ∈ G).

By left invariance of the measure dx, one readily verifies that Lx is unitary for every x ∈ G.

Lemma 1.9. Let f ∈Cc(G). Then the following assertions are valid.

(a) limx→e Lx f = f relative to the sup-norm on G.

(b) limx→e Lx f = f in the Hilbert space L2(G).

Proof. The support S := supp f is compact. Select a compact subset K of G whose interior
contains S. Then by compactness there exists an open neighborhood U0 of e in G such that
U−1

0 S⊂K .
Let ε > 0. By compactness, the function f is uniformly continuous on K in the sense that

there exists an open neighborhood Uε of e in G such that for a,b ∈K we have

ab−1 ∈Uε ⇒ | f (a)− f (b)|< ε.

Let now x ∈U := U0 ∩U−1
ε and y ∈ S. Then it follows that x−1y and y belong to K , whereas

x−1yy−1 = x−1 ∈Uε , so that
| f (x−1y)− f (y)|< ε.

This implies that supG |Lx f − f |= supS |Lx f − f |< ε for all x ∈U. Assertion (a) follows. Asser-
tion (b) now follows from the estimate

‖L f
x − f‖2

L2 =
∫

G
|Lx f (y)− f (y)|2 dy≤ sup

G
|Lx f − f |

∫
S

dy.

Corollary 1.10. The left regular representation (L,L2(G)) is continuous (and unitary).

Proof. The space Cc(G) is dense in the Hilbert space L2(G). Now apply Lemma 1.8.
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2 Integration and approximation
Let V be a complete locally convex space. Then it is possible to give a natural extension of the
notion of Riemann integral to the space of continuous compactly supported functions f :Rn→V.
More precisely, we have the following. We denote by V ′ the topological linear dual of V, i.e.,
the space of continous linear functionals V → C. Let A⊂ Rn be compact, then by CA(Rn,V ) we
indicate the Banach space of functions f ∈C(Rn,V ) which vanish outside A, equipped with the
supnorm ‖ · ‖∞.

Lemma 2.1. Let A⊂Rn be compact. There exists a unique continuous linear map IA :CA(Rn,V )→
V such that for every ξ ∈V ′ we have

ξ ◦ IA( f ) =
∫
Rn

ξ ( f (x)) dx, ( f ∈CA(Rn,V )).

Proof. By the Hahn-Banach theorem for locally convex spaces, if v ∈ V and ξ (v) = 0 for all
ξ ∈V ′ then v = 0. This implies that I is uniquely determined by the above conditions.

We will now indicate how to prove existence. By a block in Rn we mean a product of
segments of the form X j[a j,b j]. Without loss of generality, we may assume that A is such a
block. Let P denote the set of partitions of A in subblocks. The set of partitions carries the
partial ordering � given by P1 � P2 if P2 is a refinement of P1.

For each partition P∈P and every B∈P, we fix a choice of a point ξB ∈B. For f ∈CA(Rn,V )
and P ∈P, we define the Riemann sum

S( f ,P) := ∑
B∈P

f (ξB)vol(B).

Then by using uniform continuity of q◦ f with respect to every continuous seminorm q of V, one
sees that (S( f ,P))P∈P is a Cauchy filter in V, hence convergent. The limit is denoted by I( f ). It
is now easily verified that I is continuous linear and satisfies the requirement.

By uniqueness, it follows that IA and IB coincide on CA∩B(Rn,V ). It follows that there exists
a unique linear map I : Cc(Rn,V ) which restricts to IA on CA(Rn,V ) for every block A⊂ Rn. For
obvious reasons we will call I( f ) the integral of f ∈Cc(Rn,V ) and agree to write∫

Rn
f (x) dx = I( f ).

By using partitions of unity, one may extend the above result to compactly supported contin-
uous functions on manifolds, in case a positive density is given.

Lemma 2.2. Let M be a manifold, and dm a positive density on M. Let V be a complete locally
convex space. Then there exists a unique linear map I : Cc(M,V )→V such that

ξ ◦ I( f ) =
∫

M
ξ ( f (x)) dx, ( f ∈Cc(M,V ),ξ ∈V ′).

The map I is continuous linear in the sense that it restricts to a continuous linear map CA(M,V )→
V for every compact set A⊂M.
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In the setting of this lemma, we write I( f ) =
∫

M f (m) dm and call this the integral of f over
M. For future application, we also need the following lemma.

Lemma 2.3. Let M be a manifold, and dm a positive density on M. Let p be a continuous
seminorm on V and let A be a continuous linear operator from V to a second complete locally
convex space W. Then the following hold, for all f ∈Cc(M,V ) :

(a) p(
∫

M f (m) dm)≤
∫

M p( f (m)) dm;

(b) A(
∫

M f (m) dm) =
∫

M A( f (m)) dm.

Proof. This follows straightforwardly from the constructions indicated above.

The above results are in particular valid for a Lie group G equipped with a left (or right) Haar
measure dx (which is a positive density). This yields an important tool for representation theory.

Let (π,V ) be a continuous representation of G in a locally convex space. Given f ∈Cc(G)
we define the operator π( f ) : V →V by

π( f )v =
∫

G
f (x)π(x)v dx;

note that the integrand belongs to Cc(G,V ). It is readily seen that π( f ) is linear.

Lemma 2.4. Let V be Fréchet (or, more generally, barrelled). Then π( f ) is continuous linear
for every f ∈Cc(G).

Proof. Let q be a continuous seminorm on V. Then by the principle of uniform boundedness,
there exists a continuous seminorm p on V such that q◦π(x) ≤ p for all x ∈ supp f . It follows
that

q(π( f )v)≤
∫

G
| f (x)|q(π(x)v) dx≤

∫
G
| f (x)|dxp(v),

showing that π( f ) is continuous.

The structure of the group is reflected by the relation of π : Cc(G)→ End(V ) with convolu-
tion.

The convolution product of two functions f ,g ∈ Cc(G) is defined by f ∗ g = L( f )g, with L
the left regular representation. Thus,

f ∗g(x) =
∫

G
f (y)g(y−1x) dy.

Lemma 2.5. Let (π,V ) be a representation of G in a complete locally convex space. Then

π( f ∗g) = π( f )◦π(g), ( f ,g ∈Cc(G)).
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Proof. From the definitions it follows that, for v ∈V,

π( f ∗g)v =
∫

G
f ∗g(x)π(x)v dx

=
∫

G

∫
G

f (y)g(y−1x)π(x)v dydx

=
∫

G

∫
G

f (y)g(y−1x)π(x)v dxdy

where the interchange of integration is an application of the Fubini theorem. By left invariance
of dx we now obtain

π( f ∗g)(x)v =
∫

G

∫
G

f (y)g(x)π(yx)v dxdy

=
∫

G
f (y)π(y)[

∫
G

g(x)π(x)v dx]dy

= π( f )◦π(g)v.

The above technique can be used in convolution type approximation arguments as follows.

Definition 2.6. An approximation of the identity on G is a sequence of functions (ψ j) j ≥ 0 in
Cc(G) such that the following conditions are fulfilled.

(a) for every j we have ψ j ≥ 0 and
∫

G ψ j(x) dx = 1.

(b) for every neighborhood U of e in G there exists an index n such that j≥ n⇒ suppψ j ⊂U.

The existence of an approximation of the identity is obvious. In fact, it exists under the
additional requirement that each of the functions ψ j is smooth.

Lemma 2.7. Let (ψ j) j≥0 be an approximation of the identity on G, and let (π,V ) be a contin-
uous representation of G in a complete locally compact space. Then π(ψ j)→ I ( j→ ∞), with
respect to the strong topology on End(V ), i.e., pointwise.

Proof. We note that

π(ψ j)v− v =
∫

G
ψ j(x)π(x)v dx−

∫
G

ψ j(x)v dx =
∫

G
ψ j(x)[π(x)v− v] dx.

Let q be a continuous seminorm on V. Then we obtain the estimate

q(π(ψ j)v− v)≤
∫

G
ψ j(x)q(π(x)v− v) dx.

Let ε > 0. There exists a neighborhood U of e in G such that

q(π(x)v− v)< ε (x ∈U).

There exists n as in (b) of Definition 2.6. For j ≥ n we now have

q(π(ψ j)v− v)≤
∫

G
ψ j(x)ε dx = ε.

It follows that lim j→∞ q(π(ψ j)v− v) = 0.
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Corollary 2.8. Let (π,V ) be a continuous finite dimensional representation of G. Then there
exists a function f ∈Cc(G) such that π( f ) = IV .

Proof. Let (ψ j) be an approximation of the identity. Then, by finite dimensionality of V, it
follows that π(ψ j)→ I in the finite dimensional space End(V ). This implies that I belongs to
the closure of the linear subspace π(Cc(G)) in End(V ). By finite dimensionality, this subspace is
closed. Hence I ∈Cc(G).

For later use, we also need the following result.

Lemma 2.9. Let f ∈Cc(G) and g ∈ L2(G). Then f ∗g ∈C(G).

Proof. By right homogeneity it suffices to prove the continuity at e. Let K be a compact subset
of G whose interior contains supp f . Then for x sufficiently close to e we have suppLx f ⊂K .
We now note that

f ∗g(x) =
∫

G
f (y)g(y−1x) dy =

∫
G

f (xy)g∨(y) dy,

where g∨(y) := g(y−1). For x ∈ G sufficiently close to e we find

| f ∗g(x)− f ∗g(e)| ≤
∫

G
| f (xy)− f (y)||g∨(y)| dy

≤ ‖Lx−1 f − f‖∞

∫
G

1K (y)|g∨(y)| dy

≤ C‖Lx−1 f − f‖∞

with C = ‖1K ‖2‖1K g∨‖2, by the Cauchy-Schwartz inequality. By uniform continuity, it follows
that

lim
x→e
‖Lx f − f‖∞ = 0.

We conclude that f ∗g(x)→ f ∗g(e) for x→ e. This establishes the result.

3 K-finite vectors
We assume that K is a compact Lie group, and that dk is a choice of left Haar measure on K. By
compactness we may fix the measure uniquely by requiring that it is normalized, i.e.,

∫
K dk = 1.

As K is compact, hence unimodular, the measure dk is also right invariant. Henceforth, the
present choice of measure will be called the normalized Haar measure on K.

We denote by K̂ the set of (equivalence classes of) irreducible continuous finite dimensional
representations of K.

Let δ ∈ K̂, with representation space Vδ . If m is a positive integer, then by mδ we denote the
direct sum of m copies of δ . A nice way to realize the representation space is by

Vmδ =Vδ ⊗Cm,

with the K-action on the first component of the tensor product.
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Lemma 3.1. Let δ1,δ2 be inequivalent irreducible representations of K and let m1,m2 be posi-
tive integers. Then HomK(m1δ1,m2δ2) = 0.

Proof. It is clear that it suffices to show this for m1 = 1. Let V1 :=Vδ1 , let V2 :=Vδ2⊕·· ·⊕Vδ2 (m2
copies) and let Pj : V2→ Vδ2 the projection onto the j-th component. Then Pj is K-equivariant.
Thus if T ∈ HomK(V1,V2), then Pj ◦T ∈ HomK(Vδ1,Vδ2). The latter space is zero by Schur’s
lemma. As this holds for every T and j the result follows.

If (π,V ) is any finite dimensional continuous representation of K, then V admits a decompo-
sition into a direct sum V =V1⊕·· ·⊕Vm such that each π j := π|V j is irreducible. We know that
the decomposition into irreducibles is not unique. However, the so-called decomposition into
isotypical components is unique.

If v ∈ V we denote by span(π(K)v) the linear span of all vectors π(k)v, for k ∈ K. Clearly,
this is an invariant subspace for π. Let δ ∈ K̂ and denote by V [δ ] the set of v ∈V for which the
linear span span(π(K)v) admits a decomposition into irreducibles which are all equivalent to δ .
The set V [δ ] is readily seen to be a linear subspace of V which is K-invariant. It is called the
isotypical component of π of type δ

Lemma 3.2. Let W ⊂ V [δ ] a K-invariant subspace. Then π|W admits a decomposition into a
direct sum of copies of δ .

Proof. If W is trivial, there is nothing to prove. Thus assume that W 6= 0 and fix w ∈W \ {0}.
Then W0 := span(Ad(K)w)⊂W admits a decomposition into a direct sum of copies of δ . As K
is compact, and W0 invariant, there exists an invariant subspace W1 of W such that W =W0⊕W1.
Applying induction on the dimension of W, we may assume that W1 admits a decomposition of
the required sort. Hence, W does.

Lemma 3.3. The set F := {δ ∈ K̂ |V [δ ] 6= 0} is finite. Furthermore,

V =
⊕
δ∈F

V [δ ].

Proof. Consider a finite set S ⊂ K̂. We will first establish the claim that the sum ∑δ∈SV [δ ] is
direct. We proceed by induction on the cardinality of S. For |S|= 1 the assertion is obvious. Let
now m > 1 and assume that the claim has been established for S with |S|< m. Let δ1, . . . ,δm be
distinct elements of K̂. Then the sum W := V [δ1]⊕ ·· · ⊕V [δm−1] is direct. We will complete
the proof by showing that U := W ∩V [δm] is trivial. Arguing by contradiction, assume this is
not the case. Then U ⊂V [δm], hence by Lemma 3.2 the space U decomposes as a direct sum of
copies of δm. It follows that there exists a non-trivial K-equivariant embedding ϕ : Vδm ↪→U. For
each 1≤ j ≤ m−1 let Pj : W →V [δ j] be the projection along the other components. Then Pj is
K-equivariant, hence so is Pj ◦ϕ. Furthermore, V [δ j] is equivalent to a direct sum of copies of δ j
so by application of Lemma 3.1 it follows that Pj ◦ϕ = 0. This shows that ϕ = 0, contradiction.
This establishes the claim.

From the claim it follows that V = ⊕
δ∈K̂V [δ ]. By finite dimensionality it follows that F is

finite.
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Lemma 3.4. Let (π,V ) be a continuous finite dimensional representation of K and δ ∈ K̂. Then

(a) the natural linear map ϕδ : Vδ ⊗HomK(Vδ ,V )→V given by v⊗T 7→ T (v) intertwines the
representation δ ⊗1 with π.

(b) The map ϕw is a linear isomorphism with image V [δ ].

(c) In particular, π|V [δ ] decomposes as a direct sum of dimC(HomK(Vδ ,V )) copies of δ .

Proof. Assertion (a) is obvious. As δ⊗1 is a direct sum of copies of δ , ϕw maps into V [δ ]. Let W
be the sum of the remaining isotypical components in V. Then V =V [δ ]⊕W and HomK(Vδ ,W )=
0. Thus, the inclusion V [δ ]→V induces an isomorphism

HomK(Vδ ,V )' HomK(Vδ ,V [δ ]).

We thus see that it suffices to prove (b) and (c) under the assumption that V =V [δ ]. Thus, we may
as well assume that π = mδ and V = Vδ ⊗Cm. By Schur’s lemma, EndK(Vδ ) = CI. It follows
that

HomK(Vδ ,Vδ ⊗Cm)' (CI)⊗Cm,

naturally. With this identification, the map ϕw is given by

v⊗ (I⊗ z) 7→ v⊗ z.

Clearly, this defines a linear isomorphism from Vδ ⊗HomK(Vδ ,Vδ ⊗Cm) onto V [δ ] =Vδ ⊗Cm.
This establishes (b) and (c).

We now consider more generally a continuous representation (π,V ) of K in a complete lo-
cally convex space V. A vector v ∈ V is said to be K-finite if the linear span of π(K)v is finite
dimensional. The space of K-finite vectors in V is denoted by VK. For each δ ∈ K̂ we may now
define V [δ ] as the space of vectors v ∈ V such that the linear span of π(K)v decomposes as
a finite direct sum of copies of the K-module Vδ . Then obviously, V [δ ] ⊂ VK. As in the finite
dimensional case, V [δ ] is called the isotypical component of type δ .

Proposition 3.5. Let (π,V ) be a continuous representation of K in a complete locally convex
space V. Then

(a) For each δ ∈ K̂, the natural map ϕδ : Vδ ⊗HomK(Vδ ,V )→V is a linear isomorphism with
image V [δ ], which intertwines the K representations δ ⊗1 and π|V [δ ].

(b) The space VK of K-finite vectors decomposes as a direct sum,

VK =
⊕
δ∈K̂

V [δ ];

Proof. Each vector of VK belongs to a finite dimensional K-invariant space to which the isotyp-
ical decomposition of Lemma 3.4 applies. The isotypical decompositions of two finite dimen-
sional K-invariant subspaces are compatible on the intersection. From this, (b) follows.
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We turn to (a). The asserted intertwining property of the map in (a) is obvious. From the
equivariance one sees it maps into V [δ ]. As every element of V [δ ] is contained in a finite dimen-
sional K-invariant subspace, it follows from Lemma 3.4 that the map is surjective.

We will complete the proof by showing that the kernel of ϕδ is trivial. Let κ ∈ ker(ϕδ )
be an element in the kernel. Then κ can be written as a finite sum of the form ∑ j v j ⊗ Tj ∈
Vδ ⊗HomK(Vδ ,V ), with v j ∈Vδ and Tj ∈HomK(Vδ ,V ). The vector sum V0 of the images Tj(Vδ )
is a finite dimensional K-invariant subspace of V. Viewing κ as an element of Vδ⊗HomK(Vδ ,V0),
we see that its canonical image in V0 is zero. In view of Lemma 3.4, it follows that κ = 0.

4 The ring of representative functions
In this section we assume that K is a compact Lie group.

Definition 4.1. We define the space R(K) of representative functions to be the space L2(K)K of
K-finite functions for the left regular representation (L,L2(K)).

Remark 4.2. We leave it to the reader to verify that, equipped with the pointwise addition and
multiplication of functions, R(K) is an algebra over C with unit. It therefore also called the ring
of representative functions.

We write R(K)δ for L2(K)[δ ], the isotypical component of type δ in L2(K), with respect to
the left regular representation.

It follows by application of Proposition 3.5 that the space R(K) admits the following direct
sum decomposition

R(K) =
⊕
δ∈K̂

R(K)δ . (1)

Lemma 4.3. The space R(K) consists of continuous functions.

Proof. Let δ ∈ K̂. It suffices to show that R(K)δ ⊂ C(K). By Corollary 2.8 there exists a
continous function f ∈ C(K) such that δ ( f ) = I. By equivariance of the isomorphism ϕw it
now follows that L( f ) is the identity on R(K)δ . Thus, if g belongs to the latter space, then
g = L( f )g = f ∗g ∈C(K), in view of Lemma 2.9.

Corollary 4.4. Let δ ∈ K̂ and T ∈ HomK(Vδ ,L2(K)), then im(T )⊂C(K).

Proof. Immediate.

If k ∈ K, then the map Rk : L2(K)→ L2(K) commutes with Lk′, for every k′ ∈ K. Thus, Rk is
intertwines the left regular representation (L,L2(K)) with itself. It follows that Rk leaves R(K)
and the decomposition (1) invariant. The restriction R[δ ] of R to R(k)δ is a continuous unitary
representation of K on R(K)δ equipped with the restriction of the L2-inner product.

We note that HomK(Vδ ,L2(K)) may naturally be viewed as a closed subspace of V ∗
δ
⊗L2(K),

which is invariant for the representation 1⊗ R of K. Accordingly, the restriction of 1⊗ R to
this space becomes a continuous representation of K in HomK(Vδ ,L2(K)). This representation is
given by (k,T ) 7→ Rk ◦T.
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We consider the map ε : HomK(Vδ ,L2(K))→V ∗
δ

given by

ε(T ) := eve ◦T, (T ∈ HomK(Vδ ,L
2(K)),

where eve : C(K)→ C, f 7→ f (e) denotes evaluation at the identity e of the group K.

Lemma 4.5. Let δ ∈ K̂. The map ε : HomK(Vδ ,L2(K))→ V ∗
δ

introduced above is a linear
isomorphism which is K-intertwining for the restriction of 1⊗R on the domain and the contra-
gredient δ∨ on the codomain.

Proof. Clearly, ε is a linear map. We will first establish the mentioned intertwining property. Let
T ∈ HomK(Vδ ,L2(K)), v ∈Vδ and k ∈ K. Then

ε(Rk ◦T )(v) = eve ◦Rk ◦T (v)
= T (v)(ek) = Lk−1T (v)(e)
= T (δ (k−1)v)(e) = ε(T )◦δ (k)−1(v)
= [δ∨(k)ε(T )](v).

Therefore, ε(Rk ◦T ) = δ∨(k)ε(T ) and we obtain the mentioned intertwining property.
We will now show that ε is injective. Assume that ε(T ) = 0. Let v ∈Vδ . Then it follows that

T (v)(k) = T (δ (k)−1v)(e) = ε(T )◦δ (k)−1(v) = 0, hence T v = 0. As this holds for every v ∈Vδ ,
we see that T = 0. Thus, ε is injective.

To see that ε is surjective, let η ∈V ∗
δ
. Define Tη ∈Hom(Vδ ,C(K)) by Tη(v)(k)=η(δ (k−1)v).

Then it follows that Tη intertwines δ and L, hence belongs to HomK(Vδ ,C(K)). It is now imme-
diate that ε(Tη) = η . The surjectivity follows.

It follows from Lemma 4.5 that the map ϕδ composed with I⊗ ε−1 yields a linear isomor-
phism mδ : Vδ ⊗V ∗

δ
→R(K)[δ ], which intertwines the K-representations δ ×1 and L. Explictly,

we have
mδ (v⊗η)(k) = ϕw(v⊗ ε

−1(η))(k) = η(δ (k−1)v).

Thus, up to inversion, mδ equals the matrix coefficient map Vδ ⊗V ∗
δ
→C(K). The space Vδ ⊗V ∗

δ

carries the natural representation δ ⊗̂δ∨ of K×K given by

δ ⊗̂δ
∨(k1,k2) := δ (k1)⊗δ

∨(k2), ((k1,k2) ∈ K×K). (2)

On the other hand, the space L2(K) carries the natural representation L×R of K×K given by

(L×R)(k1,k2)ϕ = Lk1Rk2ϕ, (ϕ ∈ L2(K), (k1,k2) ∈ K×K).

It is readily seen that R(K) and its decomposition (1) are invariant for the representation L×R.

Lemma 4.6. The map mδ : Vδ ⊗V ∗
δ
→ R(K)δ is a linear isomorphism which intertwines the

representations δ ⊗δ∨ and L×R of K×K.

Proof. Only the intertwining property remains to be proven. We leave the easy verification to
the reader.
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For v ∈ Vδ and η ∈ V ∗
δ

we define the linear map Lv,η : Vδ → Vδ by Lv,η : u 7→ η(v)(u).
Then the bilinear map (v,η) 7→ Lv,η induces a linear isomorphism L : Vδ ⊗V ∗

δ
→ End(Vδ ). This

isomorphism will also be called the canonical isomorphism between these spaces. From now on
we will use it to identify

Vδ ⊗V∨
δ
' End(Vδ ). (3)

We observe that the contraction map v⊗η 7→ η(v) defines a linear functional on the first of
the spaces in (3). It is easily checked that η(v) = tr(Lv,η). Thus, through the isomorphism (3)
the contraction map becomes identified with the trace map A 7→ tr(A) on the second space in
(3). It follows that under the natural identification (3) the linear map mδ becomes the map
Tδ : End(Vδ )→R(K)δ given by

Tδ (A)(x) = tr(δ (x)−1A), (A ∈ End(Vδ ), x ∈ K).

Via the natural identification (3) through L, the represention δ ⊗̂δ∨ becomes a representation on
End(Vδ ), given by

δ ⊗̂δ
∗(k1,k2)(T ) = δ (k1)◦T ◦δ (k2)

−1, (T ∈ End(Vδ ), (k1,k2) ∈ K×K).

Corollary 4.7. The map Tδ : End(Vδ )→R(K)δ is a linear isomorphism intertwining the K×K
representations δ ⊗̂δ∨ and L×R.

Proof. In view of the identification (3) this is an immediate consequence of Lemma 4.6.

5 The Schur orthogonality relations
We recall that the Haar measure dx of K is invariant under the substitution x 7→ x−1. It follow
that for every f ∈ L2(G) we may define the function f ∗ ∈ L2(G) by

f ∗(x) = f (x−1).

Lemma 5.1. Let Vδ be equipped with an inner product for which δ is unitary. Then for all
A ∈ End(Vδ ) we have

Tδ (A)
∗ = Tδ (A

∗).

Proof. Let x ∈ K. Then

Tδ (A)
∗(x) = tr(δ (x)A) = tr(A∗δ (x)∗) = tr(A∗δ (x−1)) = Tδ (A

∗)(x).

Corollary 5.2. The map f 7→ f ∗ preserves R(K) and its decomposition (1) into isotypical
components.

Proof. This is an immediate consequence of Lemma 5.1 and Corollary 4.7.
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Lemma 5.3. Let f ,g ∈C(K). Then

(a) ( f ∗g)∗ = g∗ ∗ f ∗;

(b) 〈 f , g〉L2(K) = ( f ∗g∗)(e).

Proof. The proof is straightforward, and left to the reader.

Corollary 5.4. Let δ1,δ2 ∈ K̂ and f j ∈R(G)δ j , for j = 1,2. If δ1 6∼ δ2 then

f1 ∗ f2 = 0 and f1 ⊥ f2.

In particular, the decomposition (1) is orthogonal for the L2-inner product.

Proof. Since f2 ∈R(K)δ2, we have f1 ∗ f2 = L( f1) f2 ∈R(K)δ2. Likewise, we have ( f1 ∗ f2)
∗ =

f ∗2 ∗ f ∗1 ∈R(K)δ1 , so that
f1 ∗ f2 ∈R(K)δ1 ∩R(K)δ2 = 0.

Since f ∗2 ∈R(K)δ2 it also follows that

〈 f1 , f2〉L2(K) = ( f1 ∗ f ∗2 )(e) = 0.

The orthogonality of the direct sum (1) is known as part of the Schur orthogonality relations.
The full orthogonality relations express the L2-inner product on the isotypical components in
terms of the Hilbert-Schmid inner product on End(Vδ ). To derive those, we will firt compare the
map Tδ with the map f 7→ δ ( f ) from R(K)δ to End(Vδ ).

Lemma 5.5. Let (π,H ) be a unitary representation of the unimodular Lie group G. Then for
all f ∈Cc(G) we have

π( f )∗ = π( f ∗). (4)

Proof. Easy and left to the reader.

In particular, if δ ∈ K̂ then Vδ can be equipped with a Hermitian positive definite inner
product for which δ is unitary, and then we have δ ( f )∗ = δ ( f ∗). If Vδ is equipped with such an
inner product, then the associated Hilbert-Schmid inner product on End(Vδ ) is given by

〈A , B〉HS = tr(AB∗).

Lemma 5.6. Let Vδ be equipped with an inner product for which δ is unitary, and let End(Vδ )
be equipped with the associated Hilbert-Schmid inner product. Then the maps Tδ : End(Vδ )→
R(G)δ and δ : R(G)δ → End(Vδ ) are adjoint. In particular, δ is a linear isomorphism.
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Proof. Let f ∈R(G)δ and A ∈ End(Vδ ). Then

〈A , δ ( f )〉HS = tr(Aδ ( f )∗)

= tr
(

A
∫

K
[ f (x)π(x)]∗dx

)
= tr

∫
K

f (x)Aπ(x)−1 dx

=
∫

K
f (x) tr(Aπ(x)−1) dx

= 〈Tδ (A) , f 〉L2(K).

This completes the proof.

We will now show that up to a positive scalar, the maps Tδ and δ will turn out to be inverse
to each other. A crucial step in the proof is the following.

Lemma 5.7. Let f ∈R(K)δ . Then f ∗R(K)⊂R(K)δ . Furthermore, the convolution operator
C f : R(K)δ →R(K)δ , g 7→ f ∗g has trace given by

tr C f = f (e).

Proof. Let g ∈C(K). Then by left invariance of the Haar measure, we have

f ∗g(x) =
∫

K
f (y)g(y−1x) dy =

∫
K

f (xy)g(y−1) dy = R(g∨) f , (x ∈ K),

where g∨ : y 7→ g(y−1). Since R(K)δ is invariant under the right regular representation, it follows
that f ∗g ∈R(K)δ .

Through the substitution y 7→ y−1, which preserves the normalized Haar measure on By bi-
invariance of the Haar measure, we may rewrite the above as

f ∗g(x) =
∫

K
A(x,y)g(y) dy, (x ∈ K),

with A ∈C(K×K) given by A(x,y) = f (xy−1). Thus, f∗ : L2(K)→ L2(K) may be viewed as an
integral operator with kernel A ∈ C(K×K). By compactness of K it is a general principle that
such an operator is of trace class, with trace given by the diagonal integral

∫
K A(k,k) dk. In the

present context f∗ has image contained in R(G)δ , and we will give an elementary proof of the
claim that

tr (C f ) =
∫

K
A(y,y) dy. (5)

Indeed, let h1, . . . ,hm be an orthonormal basis of R(K)δ with respect to the L2-inner product.
The functions hi are continuous. For each y ∈ K the function x 7→ A(x,y) = f (xy−1) belongs to
R(K)δ , hence admits a decomposition of the form

A(x,y) =
m

∑
i=1

Ai(y)hi(x),
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with
Ai(x) =

∫
K

A(x,y)hi(x) dx.

It is clear that Ai ∈C(K). We now observe that∫
K

A(y,y)dy =
m

∑
i=1

∫
K

Ai(y)hi(y) dy

=
m

∑
i=1

∫
K

∫
K

A(x,y)hi(x)hi(y) dxdy

=
m

∑
i=1

∫
K

∫
K

A(x,y)hi(y)dy hi(x) dx

=
m

∑
i=1

∫
K

C f (hi)(x)hi(x) dx

= ∑
i=1
〈C f (hi) , hi〉

and the claim (5) follows.
To complete the proof, we observe that∫

K
A(x,x) dx =

∫
K

f (xx−1) dy =
∫

K
f (e)dy = f (e).

Theorem 5.8.
(a) The map dimδ ·Tδ is the inverse to δ : Rδ (K)→ End(Vδ ).

(b) The map
√

dimδ ·Tδ : End(Vδ )→Rδ (K) is an isometric isomorphism.

Proof. For A ∈ End(Vδ ) let LA denote the linear map End(Vδ )→ End(Vδ ) given by X 7→ AX .
Via the canonical isomorphism () we may identify LA with the linear endomorphism A⊗ IV ∗

δ
of

Vδ ⊗V ∗
δ
. It follows that

tr(LA) = tr(A)tr(IV ∗
δ
) = dim(δ ) tr(A).

Let now f ∈ R(K)δ . Then for g ∈ R(K)δ we have δ ( f ∗ g) = δ ( f )δ (g). Therefore, δ ◦C f =
Lδ ( f ) ◦δ . Thus δ : R(K)δ → End(Vδ ) is a linear isomorphism, intertwining C f and Lδ ( f ). It
follows that

tr(C f ) = dim(δ ) · tr(δ ( f )) = dim(δ ) ·Tδ (δ ( f ))(e),

hence
f (e) = dim(δ ) ·Tδ (δ ( f ))(e).

Applying this result to Lx−1 f and using that Tδ ◦δ is intertwining for L, it follows that

f (x) = dim(δ ) ·Tδ (δ ( f ))(x), (x ∈ G).

This completes the proof of (a).
We turn to (b). The map

√
dim(δ ) ·Tδ is both the transpose and inverse of

√
dim(δ ) ·δ . This

implies that the map is unitary, hence an isometry.
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We recall that every finite dimensional continuous representation (π,V ) of K has a character
χπ ∈C(K) defined by

χπ(x) = tr(π(x)), (x ∈ K).

If δ ∈ K̂ then it follows that χδ∨ = Tδ (IVδ
).

Lemma 5.9. Let δ ,δ ′ ∈ K̂. Then the following orthogonality relations are valid.

(a) If δ 6∼ δ ′, then χδ ⊥ χδ ′.

(b) ‖χδ‖L2(K) = 1.

Proof. Since χδ ∈ R(G)δ∨, the orthogonality in (a) follows from the orthogonality of the de-
composition (1). For (b) we use that

√
dim(δ ) ·Tδ∨ is an isometry. Therefore,

‖χδ‖L2(K) = ‖Tδ∨(IV ∗
δ
)‖L2(K) =

√
dim(δ )

−1
· ‖IV ∗

δ
‖HS = 1.

Finally, we note that the irreducible characters behave as follows with respect to convolution.

Lemma 5.10. Let δ ,δ ′ ∈ K̂. Then

(a) If δ 6∼ δ ′, then χδ∨ ∗ f = 0 for all f ∈R(K)δ ′.

(b) dimδ ·χδ∨ ∗ f = f , for all f ∈R(K)δ .

Proof. Since χδ∨ = Tδ (IVδ
) ∈R(K)δ , assertion (a) follows from Corollary 5.4. For (b) we note

that dim(δ ) ·χδ∨ = dim(δ ) ·Tδ (IVδ
), so that

δ (dim(δ ) ·χδ∨) = IVδ
.

If f ∈R(K)δ then it follows that

δ (dim(δ ) ·χδ∨ ∗ f ) = IVδ
◦δ ( f ) = δ ( f ).

The assertion follows from the injectivity of f 7→ δ ( f ) on R(K)δ .

Corollary 5.11. The convolution operator dim(δ ) · χδ∨ ∗ · : R(K)→R(K) equals the projec-
tion operator R(K)→R(K)δ determined by the decomposition (1).

6 The Peter-Weyl Theorem
We will now concentrate on the Peter-Weyl theorem. The main step towards it consists of show-
ing that the subspace R(K) is dense in L2(K). Equivalently, this means that the orthocomplement
R(K)⊥ in L2(K) is trivial. A final tool for this is the following result.

Lemma 6.1. Let f ∈ Cc(K) be such that f ∗ = f . Then the continuous linear operator R( f ) :
L2(K)→ L2(K) is left K-equivariant, compact and self-adjoint.
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Proof. If k ∈ K then Lk commutes with Rx for all x ∈ K. This implies that Lk commutes with
R( f ). Thus, R( f ) is left K-equivariant.

Given g ∈ L2(G) we have

[R( f )g](x) =
∫

K
f (y)g(xy) dy =

∫
K

f (x−1y)g(y) dy, (x ∈ K).

Thus R( f ) is continuous linear integral operator L2(K)→ L2(K) with integral kernel K (x,y) :=
f (x−1y). It follows that the integral kernel is continuous, hence also K ∈ L2(K×K). Such an
integral operator is compact as a continuous linear operator on L2(K), see the remark below.

Finally, the self-adjointness follows from the fact that R is a unitary representation of K in
L2(K), so that, by application of Lemma 5.5,

R( f )∗ = R( f ∗) = R( f ).

Remark. Let M be a smooth manifold and dm a positive density on M. Let K ∈ L2(M×
M,dm⊗dm) and let T be the associated integral operator L2(K)→ L2(K) given by

T g(x) =
∫

K
K (x,y)g(y) dm(y),

for g ∈ L2(K) and for almost every x ∈M. Then for h ∈ L2(M) we have

〈T g , h〉=
∫

K

∫
K

K (x,y)g(y)h(x) dm(x)dm(y) = 〈K , h̄⊗g〉

so that, by the Cauchy-Schwartz inequality,

‖〈T g , h〉‖ ≤ ‖K ‖2‖g‖2‖h‖2

where index 2 indicates that the appropriate L2-norm has been taken. By the Riesz representation
theorem this implies that ‖T g‖2 ≤ ‖cK‖2‖g‖2, so that the operator norm of T is estimated by

‖T‖op ≤ ‖K ‖2.

Compactness of the operator T may be established as follows. Let {ψ j} j≥1 be an orthonormal
basis of L2(K). For ν ≥ 1 let Pν denote the orthogonal projection onto the span of the first ν

basis vectors ψ1, . . . ,ψν . Then Tν = Pν ◦T has rank at most ν , and is the integral operator with
integral kernel given by

Kν(x,y) :=
m

∑
j=1

∫
K

K (z,y)ψ j(z)ψ j(x) dz.

We have that Kν→K in L2(K×K). By the above it follows that ‖T−Tν‖op≤‖K −Kν‖2→ 0
for ν → ∞. Thus, T is a limit of finite rank operators with respect to the operator norm. This
implies that T is compact.
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Proposition 6.2. The space R(K) is dense in L2(K).

Proof. Since both L and R are unitary representations, the orthocomplement H := R(K)⊥ is a
closed bi-K-invariant subspace of L2(K). In particular, it is a Hilbert space of its own right. We
will complete the proof by showing that H is trivial.

Let f ∈ Cc(K) be as in Lemma 6.1. Then the operator R( f ) leaves H invariant and the
restriction T :=R( f )|H is a compact self-adjoint operator on H . Let λ be a non-zero eigenvalue
of T. Then the associated eigenspace Hλ is finite dimensional. Since T commutes with the left
action of K on H , it follows that Hλ is finite dimensional and K-invariant, hence contained in
R(K). This implies that Hλ ⊂R(K)∩H = 0. Hence, T has no non-zero eigenvalues.

By the spectral theorem for compact self-adjoint operators, we now conclude that T = 0. It
follows from this reasoning that R( f ) = 0 on H for all f ∈Cc(G) satisfying f = f ∗.

Let {ψ j} be an approximation of the identity in Cc(G). Then it is readily verified that f j :=
1
2(ψ j+ψ∗j ) is an approximation of the identity as well. As H is right K-invariant, we may apply
Lemma 2.7 to conclude that 0=R( f j)v→ v ( j→∞) for all v∈H . We thus see that H = 0.

We now obtain the following result.

Theorem 6.3. (Peter–Weyl) The space L2(K) admits the following orthogonal direct sum de-
composition of finite dimensional Hilbert spaces

L2(K) =
⊕̂
δ∈K̂

R(K)δ . (6)

This direct sum is bi-K-invariant, i.e., invariant under both the left regular representation L
and the right regular representation R. For each δ ∈ K̂ the corresponding orthogonal projection
Pδ : L2(K)→R(K)δ is bi-K-equivariant, and given by

Pδ ( f ) = dim(δ )χδ∨ ∗ f , ( f ∈ L2(K)).

Proof. The components R(K)δ , for δ ∈ K̂, are orthogonal by Corollary 5.4. Their algebraic
direct sum equals R(K), by (1). The latter space is dense in L2(K), by Proposition 6.2. This
implies that (6) is an orthogonal direct sum decomposition of Hilbert spaces. The summands are
finite dimensional, and both left and right K-invariant, by Lemma 4.6. The orthogonal projection
Pδ : L2(K)→R(K)δ and the convolution operator dim(δ )χδ∨∗ are continuous linear endomor-
phisms of L2(K). Furthermore, in view of Corollary 5.11, they are equal to each other on the sub-
space R(K). As the latter subspace is dense in L2(K), it follows that the two operators are equal
on L2(K). By bi-K-invariance of the decomposition (6), the operator Pδ is bi-K-invariant.

Motivated by the theory developed above, we define the direct sum of linear spaces

HK :=
⊕
δ∈K̂

End(Vδ )

and equip this space with the pre-Hilbert structure given by

〈ϕ , ψ〉 := ∑
δ∈K̂

dim(δ )〈ϕδ , ψδ 〉HS,
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where the index HS indicates that the Hilbert-Schmid inner product on End(Vδ ) is taken. Let

H :=
⊕̂

δ∈K̂
End(Vδ )

be the Hilbert completion with respect to this inner product. This Hilbert completion may be
equipped with the unitary representation of π of K×K given by

[π(x,y)ϕ]δ := δ (x)◦ϕδ ◦δ (y)
−1.

Thus, π is the Hilbert direct sum of the representations δ ⊗δ∨.
For f ∈C(K) we define the operator valued Fourier coefficients f̂ (δ ) ∈ End(Vδ ), for δ ∈ K̂,

by
f̂ (δ ) := δ ( f ) ∈ End(Vδ ).

The assignment f̂ : δ 7→ f̂ (δ ) is also called the Fourier transform of f . In terms of this Fourier
transform, we have the following decomposition theorem for the unitary representation (L×
R,L2(K)) of K×K.

Theorem 6.4. For each f ∈C(K) the associated sequence f̂ of Fourier coefficients belongs to
H. Furthermore,

(a) The map f 7→ f̂ extends to an isometric isomorphism L2(K)
'→H, also denoted by f 7→ f̂ .

(b) The inverse of the Fourier transform equals the map I : H→ L2(K) given by

I (A) = ∑
δ∈K̂

dim(δ )Tδ (Aδ ),

with the sum converging in L2(K).

(c) The extended map f 7→ f̂ is a unitary equivalence of the representations (L×R,L2(K))
and (π,H) of K×K.

In particular, Fourier transform induces a unitary equivalence

(L×R,L2(K))
'−→

⊕̂
δ∈K̂

δ ⊗δ
∨,

establishing the decomposition of the unitary representation L×R,L2(K) into irreducible unitary
representations of K×K.

Proof. Let δ ∈ K̂. Then for (a) it suffices to show that f 7→ f̂ (δ ) is an isometric isomorphism
from R(K)δ onto End(Vδ ), equipped with the inner product dim(δ )〈 · , · 〉HS. Since f̂ (δ )= δ ( f ),
this follows from Theorem 5.8.

From the same theorem, it follows that the inverse of f 7→ f̂ on End(Vδ ) is given by I . For
a given A ∈H, the sum ∑δ dim(δ )‖Aδ‖2

HS converges, and by the isometric property of I , this in
turn implies implies that the sum ∑δ (dim(δ )2‖Tδ (Aδ )‖2 converges. It follows that the sum for
I (A) converges in L2(K), and (b) follows.
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For (c) it now suffices to establish the intertwining property. Let f ∈R(K), δ ∈ K̂, then for
(k1,k2) ∈ K×K we have

(π(k1,k2) f̂ )δ = δ (k1)◦δ ( f )◦δ (k2)
−1 = δ (Lk1Rk2 f ) = (Lk1Rk2 f )ˆ(δ ).

It follows that F : f 7→ f̂ intertwines (R(K),L×R) with (HK,π). As F is an isometry, the rep-
resentations are unitary and R(K) is dense in L2(K), it follows by a standard approximation
argument that F : L2(K)→ H is an intertwining operator.

In harmonic analysis, the above isometric decomposition of L×R into irreducible represen-
tation for K×K is also known as the Plancherel decomposition for the compact group K. We
note that condition (a) implies that for f ∈ L2(K) we have the following Parseval identity:

‖ f‖2
2 = ∑

δ∈K̂

dim(δ ) ‖ f̂ (δ )‖2
HS.

Here we recall that HS refers to the Hilbert-Schmid inner product on End(Vδ ) induced by any
choice of inner product on Vδ which makes δ unitary. In particular, this inner product does not
depend on the choice of unitarizing inner product on Vδ , see also one of the exercises.

We now equip HK with the direct sum algebra structure

Proposition 6.5. The Fourier transform F : f 7→ f̂ restricts to an isomorphism of the convolution
algebra (R(K),∗) with the algebra HK.

Proof. By equivariance, it follows from the result above, that f 7→ f̂ maps the space R(K) of
left K-finite functions in L2(K) onto the space of K×{e}-finite functions in H. That image space
equals HK. Let δ ∈ K̂ and let f ,g ∈R(K). Then it follows from

F( f ∗g))δ = δ ( f ∗g) = δ ( f )δ (g) = (F( f )F(g))δ .

This shows that F( f ∗g) = F( f )F(g). Hence, F is an isomorphism of algebras.

Let
∆K := {(k,k) | k ∈ K}

be the diagonal subgroup of the group K×K. A function f ∈ C(G) is said to be conjugation
invariant if

f (k−1xk) = f (x), (x,k ∈ K).

Equivalently, this means that f is invariant under (L×R)(∆K). Functions with this type of invari-
ance are also called class functions, since they may be viewed as functions on the set of conjuga-
tion classes. Similarly, we define R(K)class and L2(K)class to be the subspaces of (L×R)(∆K)-
invariantes in R(K) and L2(K). Given δ ∈ K̂, let Iδ denote the identity element of End(Vδ ). Note
that

(Vδ ⊗V ∗
δ
)∆K ' EndK(Vδ ) = CIδ ,

by Schur’s lemma. We consider the closed subspace

Hclass := {A ∈ H | ∀δ ∈ K̂ : Aδ ∈ CIδ},
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of H, which is a Hilbert space of its own right. Then Hclass equals the space of ∆K-invariants in
H.

Proposition 6.6. Fourier transform F maps L2(K)class isometrically onto Hclass. Furthermore,
this map restricts to a linear isomorphism from R(K)class onto the algebraic direct sum⊕

δ∈K̂CIδ .

Proof. By equivariance of F combined with the Plancherel decomposition for L2(K), it follows
that F maps L2(K)class isometrically onto the space of ∆K-invariants in H. The latter equals Hclass.
Restriction to the K×{e}-finite elements gives the second assertion, again by equivariance.

We finally mention the following version of the Parseval identity.

Proposition 6.7. The characters χδ , for δ ∈ K̂ form an orthonormal basis of L2(K)class. In
particular, if f ∈ L2(K)class, then

‖ f‖2
2 = ∑

δ∈K̂

|〈 f , χδ 〉|2.

Proof. It follows from the previous result that R(K)class,δ is one dimensional, hence equals the
span of χδ∨. It now follows from the Plancherel decomposition that L2(K)class decomposes as the
orthogonal direct sum of the spaces R(K)class,δ . As each character χδ∨ has L2-norm 1, it follows
that these characters form an orthonormal basis in L2(K)class. The result follows.

7 Application to K-representations
In this section we assume that K is a compact group, and that (π,V ) is a continuous representation
of K in a Fréchet space V.

Lemma 7.1. Let δ ∈ K̂. Then the operator

Pδ := dim(δ )π(χδ∨). (7)

is a K-equivariant continuous linear projection with image V [δ ]. In particular, V [δ ] is a closed
subspace of V.

Proof. Write αδ := dim(δ )χδ∨. Then the convolution operator αδ ∗( ·) restricts to the projection
R(K)→R(K)δ , by Corollary 5.11. In particular, since αδ ∈R(K)δ it follows that

αδ ∗αδ = αδ .

We claim that Pδ = π(αδ ) satisfies all assertions. The continuity of this operator follows by
application of Lemma 2.4. Furthermore, in view of Lemma 2.5 the above equation implies that
P2

δ
= Pδ . It follows that Pδ is a continuous projection operator, hence has closed image. We will

finish the proof by showing that V [δ ] = im(Pδ ). For this, let ϕδ : Vδ ⊗HomK(Vδ ,V )→ V [δ ] be
the canonical isomorphism. Then by equivariance, it follows that

π(αδ )◦ϕδ = ϕδ ◦ [δ (αδ )⊗1].
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Since δ (αδ ) = Iδ , it follows that π(αδ ) = I on R[δ ] so that R[δ ] is contained in the image of
Pδ . For the converse inclusion, let v ∈V. Then the map f 7→ π( f )v from R(K) to V intertwines
the K-representations L and π, hence maps R(K)δ = R(K)[δ ] into V [δ ]. In particular, Pδ v =
π(αδ )v ∈V [δ ].

Using the Peter-Weyl theorem we will be able to show that the space VK of K-finite vectors
is dense in V. The following lemma will be needed in the proof.

Lemma 7.2. Let K be a compact group, equipped with a choice of Haar measure. Then

C(K)⊂ L2(K)⊂ L1(K).

Each of the inclusion maps is continuous, with dense image.

Proof. Without loss of generality we may assume that the Haar measure dx on K is normalized.
We will first prove the claim that for all f ∈C(K) we have

‖ f‖1 ≤ ‖ f‖2 ≤ sup
K
| f |. (8)

Indeed, the first inequality follows from

‖ f‖1 =
∫

K
| f (x)|dx = 〈| f | , 1K〉 ≤ ‖ f‖2‖1K‖2 = ‖ f‖2

by the Cauchy-Schwartz inequality. For the second inequality, we note that

‖ f‖2
2 =

∫
K
| f (x)|2 dx≤ (sup

K
| f |)2

∫
K

dx = (sup
K
| f |)2.

These estimates imply the continuity of the inclusion maps of C(K) into L1(K) and L2(K). Fur-
thermore, if f ∈ L2(K), then there exists a sequence ( f j) j≥1 in C(K) such that ‖ f j− f‖2→ 0.
Then f j → f in measure. The sequence ( f j) is Cauchy for the L2-norm hence also for the L1-
norm, and we see that there exists a g ∈ L1(K) such that f j→ g in L1(K). In particular, it follows
that f j→ g in measure, so that f = g almost everywhere. Thus, we see that f ∈ L1(K). Further-
more, from the inequalities ‖ f j‖1 ≤ ‖ f j‖2 we find ‖ f‖1 ≤ ‖ f‖2, by taking the limit for j→ ∞.
It follows that L1(K) ⊂ L2(K), with continuous inclusion map. Finally, since C(K) is dense in
both L1(K) and L2(K), all density assertions follow.

Corollary 7.3. The space R(K) of representative functions is dense in L1(K).

Proof. This follows from combining Proposition 6.2 with the previous lemma.

Proposition 7.4. Let (π,V ) be a continuous representation of K in a Fréchet space. The space
VK of K-finite vectors is dense in V.
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Proof. Let v0 ∈ V, p a continuous seminorm on V and ε > 0. We will complete the proof by
showing that there exists v ∈VK such that p(v− v0)< ε.

As x 7→ π(x)v is continuous, and K compact, there exists a constant C > 0 such that p(π(x)v0)<
C for all x ∈ K. From this estimate it follows that

p(π( f )v0)≤C‖ f‖1

for all f ∈C(K). There exists g∈C(K) such that p(π( f )v0−v0)< ε/2, see Lemma 2.7. Further-
more, by Corollary 7.3, there exists a function f ∈R(G) such that ‖ f − g‖1 ≤ ε/2(C+ 1). By
equivariance of the map h 7→ π(h)v0 the vector v := π( f )v0 is K-finite in V, and by the previous
estimates we have

p(v− v0) = p(π( f )v0−π(g)v0)+ p(π(g)v0− v0)<C‖ f −g‖1 + ε/2 < ε.

Corollary 7.5. Let (π,V ) be a continuous representation of K in a Fréchet space. Let δ ∈ K̂.
Then there exists a unique K-equivariant continuous linear projection operator V → V with
image V [δ ]. This operator is given by (7).

Proof. We leave this as an exercise to the reader.

8 Application to compact homogeneous spaces
In this section we assume that K is a compact Lie group, and that H is a closed subgroup. Then
the coset space K/H carries a unique structure of smooth manifold, which turns the canonical
projection π : K → K/H into a submersion. Let π∗ : C(K/H)→ C(K) be the map defined by
pull-back under π, i.e., p∗( f ) = f ◦π, for f ∈C(K/H). Then π∗ is an injective linear map with
image consisting of the closed subspace C(K)R(H) of functions in C(K) that are invariant for the
right regular representation restricted to H. That is, a function f ∈C(K) belongs to π∗(C(K/M))
if and only if

Rh f = f , (h ∈ H).

Accordingly, we shall identify the elements of C(K/H) with the subspace C(K)R(H) ⊂C(K) via
the linear embedding π∗.

If (π,V ) is a continuous finite dimensional representation of a Lie group G, and H a closed
subgroup, a vector v ∈ V is called H-invariant if and only if π(h)v = v for all h ∈ H. The space
of all such vectors in V is denoted by V H .

Lemma 8.1. Let (π,V ) be a continuous finite dimensional representation of a Lie group G and
let H be a compact subgroup. Let p : V →V H be the unique H-equivariant projection operator.
Then its transpose p∗ is an injection (V H)∗ → V ∗ with image (V ∗)H . Accordingly, η 7→ η ◦ p
gives a linear isomorphism

(V H)∗
'−→ (V ∗)H . (9)
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Remark 8.2. In particular it follows that V H 6= 0 if and only if (V ∗)H 6= 0.

Proof. The map p∗ : (V H)∗ → V ∗ is H-equivariant and injective. It follows that p∗ maps into
(V ∗)H . Let η ∈ V ∗ be H-invariant. We will complete the proof by showing that η belongs to
the image of p∗. Let P : V →V be the unique H-equivariant projection map with image V H . Let
ι : V H →V be the inclusion map. Then ι ◦ p = P.

By Corollary 7.5, applied for the compact group H, the map P : V → V is given by P =∫
H π(h) dh. This implies that

P∗(η) = η ◦P =
∫

H
η ◦π(h) dh = η .

Hence,
η = P∗(η) = p∗ι∗(η) ∈ im(p∗).

We define R(K/H) to be the space of left K-finite functions in C(K/H). Since π∗ is left K-
equivariant, it then follows that π∗ embeds R(K/H) into R(K); its image is obviously equal to
the space of right H-invariant elements in R(K). By using the bi-K-equivariance of the Fourier
transform

F : R(K)
'−→ HK

of the previous section, we see that

F(R(K/H)) =
⊕

δ∈K̂H

Vδ ⊗ (V ∗
δ
)H ,

Let C(H\K/H) denote the space of bi-H-invariant functions in C(K). Let R(H\K/H) denote
the space bi-H-invariant functions in R(K). Then by left equivariance of the Fourier transform,
it follows that

F(R(H\K/H)) =
⊕

δ∈K̂H

V H
δ
⊗ (V ∗

δ
)H

From Lemma 8.1, we see that (V ∗
δ
)H ' (V H

δ
)∗ naturally. This implies that

V H
δ
⊗ (V ∗

δ
)H ' End(V H

δ
)

naturally. Through this natural isomorphism, the inclusion

V H
δ
⊗ (V ∗

δ
)H ↪→ Vδ ⊗V ∗

δ

corresponds to a natural linear embedding

End(V H
δ
) ↪→ End(Vδ ). (10)

We leave it to the reader to check that this embedding is given by

A 7→ ι ◦A◦ p,

where ι : V H
δ
→ Vδ is the inclusion map, and where p : Vδ → V H

δ
is the unique H-equivariant

projection operator. Since p◦ ι is the identity of V H
δ
, it is readily seen that the embedding (10) is

an embedding of algebras.
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Lemma 8.3. The subspaces R(H\K/H) and C(H\K/H) of C(K) are closed under the oper-
ation of convolution. Accordingly, these subspaces are subalgebras of the convolution algebra
(C(K),∗).

Proof. Let f ,g ∈C(K). Then for k ∈ K we have

Lk( f ∗g) = LkL( f )g = L(Lk f )g = (Lk f )∗g.

On the other hand,
Rk( f ∗g) = RkL( f )g = L( f )Rkg = f ∗ (Rkg).

From this we see that C(H\K/H) is closed under convolution. Since also R(K) is closed under
convolution, it follows that R(H\K/H) = R(K)∩C(H\K/H) is closed under convolution.

Proposition 8.4. Let K be compact group and H a closed subgroup. Then the following asser-
tions are equivalent:

(a) the algebra (R(H\K/H),∗) is commutative;

(b) the algebra (C(H\K/H),∗) is commutative;

(c) for all δ ∈ K̂, the space V H
δ

has dimension at most 1.

Proof. ‘(a)⇒ (b)’: The map β : ( f ,g) 7→ f ∗g is continuous bilinear from C(K)×C(K) to C(K),
hence from C(H\K/H)×C(H\K/H) to C(H\K/H). Since R(H\K/H) is dense in C(H\K/H),
we see that (a) implies (b).

‘(b)⇒ (c)’: Assume (b) and let δ ∈ K̂. Let ι : V H
δ
→ Vδ be the inclusion map, and let p :

Vδ →V H
δ

be the H-equivariant projection map. Then f 7→ δ ( f ) is a non-zero K×K equivariant
map from C(K) to End(Vδ ). Since δ ⊗δ∨ is an irreducible representation, this map is surjective.
It follows that

T : C(K)→ End(V H
δ
), f 7→ P◦δ ( f )◦ ι

is a surjective linear map. Let P : C(K)→ C(H\K/H) the unique H ×H-equivariant projec-
tion, which may be defined by P = L(1H)R(1H). Then it readily seen that T ◦P = T. Hence, T
maps C(H\K/H) onto End(Vδ )

H . We now note that for f ∈C(H\K/H) the endomorphism δ ( f )
leaves V H

δ
invariant, so that the restriction T0 of T to C(H\K/H) is given by

T0( f ) = δ ( f )|VH
δ

.

This implies that T0 is a surjective algebra homomorphism. From (b) we now conclude that
End(V H

δ
) is commutative. This implies that dim(V H

δ
)≤ 1.

‘(c)⇒ (a)’: Assume that (c) is valid and let f ,g ∈ R(H\K/H). Then it suffices to show
that F( f ∗ g) = F(g ∗ f ). For this it suffices to show that δ ( f ) and δ (g) commute for any given
δ ∈ Vδ . Let p : Vδ → V H

δ
be the H-equivariant projection operator. Then it is readily seen that

p◦δ ( f )◦ p = δ ( f ), so that δ ( f ) maps into V H
δ

and restricts to zero on the kernel of p. By condi-
tion (c) it follows that δ ( f ) = c1 p and δ (g) = c2 p, for constants c1,c2 ∈ C. It follows that δ ( f )
and δ (g) commute.
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Let G be a unimodular Lie group, and H a compact subgroup, hence unimodular as well.
We fix a choice of Haar measure dx on G and normalized Haar measure dh on H. The quotient
manifold G/H carries a positive G-invariant density, unique up to a positive scalar. We denote
it by dx̄. Let π : G→ G/H denote the natural projection. For f ∈Cc(G) we define the function
π∗ f : G→ C by

π∗( f )(x) =
∫

H
f (xh) dh

Then it is readily verified that π∗ f ∈Cc(G/H).

Lemma 8.5. The normalization of dx̄ may be fixed so that∫
G

f (x) dx =
∫

G/H
π∗( f )(x̄) dx̄ ( f ∈Cc(G/H)).

If G is compact, then dx̄ equals the normalized density.

Proof. First, let dx̄ be chosen arbitrarily. Let A ⊂ G be a compact subset. Then B := AH is
compact and right H-invariant. Let B̄ be its compact image in G/H. Let CA(G) denote the space
of functions f ∈ C(G) with supp f ⊂ A. Then it is readily seen that for f ∈ CA(G) we have
π∗( f ) ∈CB̄(G/H) and sup |π∗( f )| ≤ sup | f |. It follows that π∗ maps CB(G) continuous linearly
into CB̄(G/H). Likewise, it is readily checked that the map

I : Cc(G/H)→ C, ϕ 7→
∫

G/H
ϕ(x̄) dx̄

maps CB(G/H) continuous linearly into C. Thus, the composition µ := I ◦π∗ defines a Radon
measure on G. It is readily seen that π∗ intertwines the left regular representation L of G on
Cc(G) with the similar representation L of G in Cc(G/H). Furthermore, for every x ∈ G we have
I ◦Lx = I, by left invariance of dx̄. It follows that the Radon measure µ is left invariant. It is
readily verified that µ is positive, i.e., µ( f )> 0 for f ≥ 0, f 6= 0 hence corresponds to a positive
multiple of dx. This means that there exists a positive c > 0 such that µ( f ) = c

∫
G f (x)dx for all

f ∈Cc(G). Therefore, the density c−1dx̄ satisfies our requirements.
If G is compact, then π∗(1G) = 1G/H and it is readily seen that the c−1dx̄ is normalized.

In the same setting, with dx̄ normalized as in the above lemma, we define L2(G/H) as the
corresponding space of L2-functions on G/H.

Corollary 8.6. The map π∗ : ϕ 7→ ϕ ◦π is an isometry from L2(G/H) onto the space of right
H-invariant functions in L2(G).

Proof. By compactness of H, it follows that π∗ maps Cc(G/H) onto the space Cc(G)R(H) of right
H-invariant functions on G. For ϕ ∈Cc(G/H) it is readily seen that π∗π

∗ϕ = ϕ. Therefore,

‖ϕ‖2
L2(G/H) =

∫
G/H
|ϕ(x̄)|2 dx̄ =

∫
G/H

π∗π
∗(|ϕ|2)(x̄) dx̄ =

∫
G
|π∗ϕ(x)|2dx = ‖π∗ϕ‖L2(G).

It follows that π∗ : Cc(G/H)→Cc(G)R(H) is an isometric isomorphism for the L2-norms. As the
given spaces are in dense in L2(G/H) and L2(G)R(H), the result follows.
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In the above setting we shall use the isometry π∗ : L2(G/H)→ L2(G)R(H) to identify the
functions in these spaces. Then the following result is a consequence of the Peter-Weyl theorem
for compact groups and the results of this section.

Proposition 8.7. Let K be a compact group and H a closed subgroup. The Fourier transform
F : f 7→ f̂ restricts to a isometric isomorphism

L2(K/H)
'−→ ⊕̂

δ∈K̂H
Vδ ⊗ (V ∗

δ
)H ,

which is equivariant for the left regular representation of K in L2(K/H) and the direct sum of
the K-representations δ ⊗1V ∗H

δ

. In particular,

(L2(K/H),L)'
⊕̂

δ∈K̂H
dim(V H

δ
) ·δ .

This decomposition into irreducibles is multiplicity free if and only if the convolution algebra
C(H\K/H) is commutative.

There is an interesting setting in which the above Plancherel decomposition is multiplicity
free. If G is a Lie group, then by an involution of G we mean a Lie group automorphism σ ∈
Aut(G) with σ2 = IG. The associated set of fixed points,

Gσ := {x ∈ G | σ(x) = x},

is readily seen to be a closed subgroup of G, hence a Lie group of its own right. We recall that an
open subgroup H of Gσ is automatically closed in Gσ , hence in G. Such a subgroup H contains
the component of the identity (Gσ )e. Hence,

(Gσ )e ⊂ H ⊂ Gσ . (11)

Conversely, if H is a subgroup of G with (11), then H is a union of (Gσ )e-cosets, hence open in
Gσ , hence a closed subgroup of G.

We recall that a real Lie group G is called semisimple if and only if its Lie algebra g is
semisimple. This is equivalent to the condition that the Killing form B of g is non-degenerate.

Proposition 8.8. Let K be a compact connected semisimple Lie group, and σ an involution
of K. Let H be an open subgroup of Kσ (hence closed in K). Then the convolution algebra
(C(H\K/H),∗) is commutative.

The proof of this result will be given in the next section. It involves an application of the
universal enveloping algebra.

The situation of the above proposition is geometrically interesting as the space K/H can be
equipped with the structure of a compact Riemannian symmetric space on which K acts transi-
tively by isometries.

Definition 8.9. A Riemannian symmetric space is defined to be Riemannian manifold (M,g)
satisfying the following condition. For every point a ∈ M the local point reflection Sa,loc :
Expa(X) 7→ Expa(−X) extends to a global isometry Sa : M→M.
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Remark 8.10. A Riemannian locally symmetric space is defined as above, but with the weaker
condition that for every a ∈M the local reflection Sa,loc is an isometry in some neighborhood of
a. The condition of local symmetry can be shown to be equivalent to the requirement that the
associated Levi Civita connection ∇ has curvature R which is covariantly locally constant, i.e.,
∇R = 0. It is known that a locally symmetric space is globally symmetric if and only if it is
geodesically complete.

Let K,σ ,H be as in Proposition 8.8. We will indicate why K/H carries the structure of a
symmetric space. Then Killing form B is negative definite on k, the Lie algebra of K. 1

The differential σ∗ := dσ(e) is an automorphism of k. Furthermore, by using the commutative
diagram

K σ−→ K
exp ↑ ↑ exp

k
σ∗−→ k

we see that σ(expX) = exp(σ∗X) for all X ∈ k. For this reason, we will briefly write σ for σ∗, if
no confusion is caused.

We leave it as an exercise to the reader to check that Kσ has the fixed point set kσ as its Lie
algebra.

Since H is an open subgroup of Gσ , its Lie algebra h equals kσ . Let q be the minus one
eigenspace of σ in k. We leave it to the reader to check that

[h,h]⊂ h, [h,q]⊂ q en [q,q]⊂ k (12)

and that we have the following Ad(H)-invariant direct sum decomposition.

k= h⊕q. (13)

As the Killing form is σ -invariant, it follows that the decomposition (13) is perpendicular for the
Killing form. Let ge =−B|q. Then ge is a positive definite inner product on q' TeH(K/H) which
is invariant under the action of Ad(H). This implies that ge extends to a K-invariant Riemannian
structure g on K/H which is given by the formula

gxH = dlx(e)∗−1ge, (x ∈ K).

For this structure, K acts by isometries on K/H. We leave it to the reader to check that σ induces
an isometry σ̄ : K/K→K/H. It can be shown that the Riemannian exponential map ExpeH : q→
K/H is given by

ExpeH(X) = exp(X)H, (X ∈ q).

We leave it to the reader to check that the local geodesic reflection at e is given by σ̄ , hence ex-
tends to a global isometry. By homogeneity, it now follows that K/H is a Riemannian symmetric
space.

1Lie groups will be denoted by Roman capitals, and their Lie algebras with the corresponding Gothic lower cases
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Example 8.11. We consider the unit sphere Sn ⊂ Rn+1, equipped with the restriction of the
Euclidean metric. Then the natural action of SO(n+ 1) on Sn is transitive and isometric. We
leave it to the reader to prove that the map

S : x 7→ (x1,−x2,−x3, . . . ,−xn+1)

restricts to an isometry of Sn, which equals the local geodesic reflection at the point e1 =
(1,0, . . . ,0) of Sn. By homogeity this implies that Sn is a Riemannian symmetric space.

The stabilizer of e1 in SO(n+1) is equal to the subgroup H consisting of the matrices of the
form

ϕ(a) :=
(

1 0
0 a

)
, (a ∈ SO(n)).

Using ϕ to identify SO(n) with the closed subgroup H of SO(n+1), we see that

Sn ' SO(n+1)/SO(n).

We leave it to the reader to show that conjugation by the matrix of S defines an involution σ of
SO(n+1) such that SO(n) is the connected component of SO(n+1)σ and such that the induced
diffeomorphism σ̄ of SO(n+1)/SO(n) corresponds to S|Sn. Finally, we leave it to the reader to
check that the Riemannian metric on Sn constructed from the Killing form of SO(n+1) coincides
with a scalar multiple of the Euclidean metric on Sn.

More generally, it can be shown that every compact Riemannian symmetric space can be
realized as a quotient of the form K/H as above, with K compact and H compact. Furthermore, K
is compact semisimple if and only if K/H has finite fundamental group. For this and other details
on the geometry of compact symmetric spaces, we refer the reader to the standard reference
[Hel78].
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9 The universal enveloping algebra
For a given complex linear space V, we denote by T (V ) the tensor algebra of V. For the precise
definition of this algebra, see for instance [Lan02]. Let ν : V → T (V ) be the canonical linear
map, then the tensor algebra has the following universal property.

Universal property T (V ): Let A be any associative algebra (over C) with unit, and let ϕ : V →A
be any linear map. Then there exists a unique algebra homomorphism ϕ̄ : T (V )→ A such that
the following diagram commutes:

V
ϕ−→ A

ν ↓ ↗ ϕ̄

T (V )

(14)

In fact, the universal property characterizes the tensor algebra up to isomorphism. More pre-
cisely, let T ′ be an associative algebra with unit and ν ′ : V → T ′ a linear map such that (ν ′,T ′)
satisfies the above universal property, then there exists a unique isomorphism ψ : T (V )→ T ′ of
algebras such that the following diagram commutes:

V ν ′−→ T ′

ν ↓ ↗ ψ

T (V )

(15)

We recall the precise argument. A homomorphism ψ : T (V )→ T ′ exists by the universal property
of (ν ,T (V )). By the universal property of (ν ′,T ′) there exists a similar algebra homomorphism
ψ ′ : T ′→ T (V ) in the opposite direction. The composition ψ ′ ◦ψ must be the identity on T (V )
in view of the uniqueness assertion in the universal property for T (V ). Likewise, ψ ◦ψ ′ is the
identity on T ′. Therefore, ψ is an isomorphism of associative algebras.

We list some properties of the tensor algebra. The product in T (V ) is denoted by ⊗. The
map V → T (V ) is injective, and allows us to identify V with a subspace of T (V ). This subspace
generates the algebra T (V ). More precisely, if {vi}i∈I is a basis for V, then a basis for T (V ) may
be described as follows. Let B be the disjoint union of the Cartesian products In for n≥ 1. Then
1 together with the elements

v j1⊗·· ·⊗ v jn, (( j1, . . . , jn) ∈B)

form a basis of T (V ).
Let T 0(V ) = C1 and for a fixed n ≥ 1 let T n(V ) be the span of the elements of the form

v1⊗·· ·⊗ vn, with v j ∈V. Then
T (V ) =

⊕
n≥0

T n(V )

and T p(V )⊗T q(V )⊂ T p+q(V ), so that T (V ) is a graded algebra.
In terms of the tensor algebra, we may define the symmetric algebra S(V ) as follows. Let I

be the two sided ideal of T (V ) generated by the elements v⊗w−w⊗ v for v,w ∈ V. The sym-
metric algebra S(V ) is defined to be the quotient algebra T (V )/I . The ideal I is homogeneous
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in the sense that I = ⊕n≥0(I ∩T n(X)). It follows that S(X) inherits a gradation from T (V ).
As I ⊂ ⊕n≥2T n(V ), the natural map V → S(V ) is an injective linear map, via which we shall
view V as a subspace. Clearly, the algebra S(V ) is commutative.

From the universal property of T (V ) we immediately obtain the following universal property
of S(V ) with respect to the category of commutative associative algebras with unit. Let A be in
this category, and let ϕ : V → A be linear. Then the unique algebra homomorphism ϕ̄ as in (15)
factors through an algebra homomorphism ¯̄ϕ : S(V )→ A, which makes the following diagram
commutative

V
ϕ−→ A

↓ ↗ ¯̄ϕ

S(V )

(16)

From the uniqueness of ϕ̄ it follows that ¯̄ϕ is uniquely determined as well. By a similar argument
as for the tensor algebra, the universal property determines V → S(V ) up to isomorphism.

For us, the case that V is finite dimensional of dimension d will be of particular interest. If
v1, . . . ,vd is a basis of V then it is easily verified that the elements

vα := vα1
1 · · ·v

αd
d (17)

for α ∈ Nn, |α| := α1 + · · ·+αn = n, form a basis for the homogeneous component Sn(V ).
Let P(V ∗) be the graded algebra of polynomial functions V ∗→ C. Then we have the linear

map ι : V →P(V ∗) given by ι(v) : η 7→η(v),V ∗→C. By the universal property of S(V ) this map
gives rise to an algebra homomorphism ¯̄ι : S(V )→ P(V ∗). On the basis (17) this homomorphism
is given by

¯̄ι(vα) : η 7→ η
α1
1 · · ·η

αd
d .

As these images form a basis of P(V ∗) we see that ¯̄ι defines a canonical algebra isomorphism

S(v) '−→ P(V ∗).

Let now g be a finite dimensional complex Lie algebra. Then we define the universal Lie
algebra U(g) to be the quotient of T (g) by the two sided ideal J generated by all elements of
the form X ⊗Y −Y ⊗X − [X ,Y ], for X ,Y ∈ g. Then U(g) is an associative algebra with unit.
The product of two elements u,v ∈ U(g) is denoted by uv. We note that the ideal J is not
homogeneous, so that U(g) does in general not carry a natural gradation. However we may
define a filtration on U(g) by

U(g)n := image
(
⊕n

j=0T j(g)
)

The universal algebra has the following universal property. Let j : g→U(g) be the composition
of the canonical maps g→ T (g) and T (g)→U(g).

Lemma 9.1. (Universal property). Let A be any associative algebra with unit, and let ϕ : g→A
be a linear map such that

ϕ(X)ϕ(Y )−ϕ(Y )ϕ(X) = ϕ([X ,Y ]), (X ,Y ∈ g). (18)
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Then there exists a unique algebra homomorphism ¯̄ϕ : U(g)→ A such that the following diagram
commutes

g
ϕ−→ A

j ↓ ↗ ¯̄ϕ

U(g)

(19)

Remark. The associative algebra carries the commutator bracket given by [a,b] = ab− ba
for a,b ∈ A. Equipped with this bracket, A becomes a Lie algebra. The above requirement on
ϕ is equivalent to the requirement that ϕ is a Lie algebra homomorphism for this Lie algebra
structure on A.

Proof. Let ϕ be as given. Then by the universal property of T (g), the map ϕ has a unique
lift to an algebra homomorphism ϕ̄ : T (g)→ A. By the condition on ϕ, we see that ϕ̄(X ⊗
Y −Y ⊗X − [X ,Y ]) = ϕ(X)ϕ(Y )−ϕ(Y )ϕ(X)−ϕ([X ,Y ]) = 0. Hence J ⊂ ker ϕ̄ and we see
that ϕ̄ factors through an algebra homomorphism ¯̄ϕ : U(g)→ A. This homomorphism makes
the diagram (19) commutative. Let p : T (g) → U(g) denote the canonical projection. If ¯̄ϕ
is an algebra homomorphism U(g)→ A making the diagram (19) commutative, then ¯̄ϕ ◦ p =
ϕ̄ by the uniqueness part of the universal property of T (g). This implies that ¯̄ϕ is uniquely
determined.

As before, the universal property determines g→U(g) up to isomorphism.
The following Poincaré – Birkhoff – Witt (or PBW) theorem will turn out to be an important

tool.

Theorem 9.2. Let X1, · · · ,Xd be a basis of g. Then the elements

j(Xν1) · · · j(Xνk) (20)

with k ≥ 0 and 1≤ ν1 ≤ ·· ·νk ≤ d form a basis of U(g).

Proof. Inductively, we will prove that the elements (20) for k ≤ n span U(g)n. For n = 0 this
statement is clear. Assume that the assertion has been established for all n < m, with m a positive
integer. Let i1, . . . , im+1 be a sequence of indices from {1, . . . ,d}. Since every product j(Xν) j(Xµ)
may be rewritten as a j(Xµ) j(Xν) modulo j([Xν ,Xµ ]), which is an element of U(g)1, it follows
that for every permutation σ ∈ Sm+1 we have

j(Xi1) · · · j(Xim+1)− j(Xiσ(1)) · · · j(Xiσ(m+1)) ∈U(g)m. (21)

In particular this is valid for a permutation with

iσ(1) ≤ ·· · ≤ iσ(m+1)

so that j(Xiσ1) · · · j(Xiσ(m+1)) is a basis element. Applying the induction hypothesis we see that
the difference in (21) is a linear combination of basis elements. Hence, so is the first term in (21).
This establishes the spanning property for the elements (20).

The proof of their linear independence is more tricky. We refer to [Ser06] for a very clear
account. See also [Hum78].
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Remark 9.3. In particular it follows from the above result that the map j : g→U(g) is injective.
From now on we will use j to view g as a subspace of U(g). Accordingly, given X ∈ g we will
write X for j(X), and we will use the notation Xν1 · · ·Xνk for the element (20).

Corollary 9.4. Let g1, . . . ,gr be a subalgebras of g such that g= g1⊕·· ·⊕gr as a linear space.
Then the natural map

U(g1)⊗·· ·⊗U(gr)−→U(g)

determined by u1⊗·· ·⊗ur 7→ u1 · · ·ur is a linear isomorphism.

Proof. Fix a basis of g subordinate to the decomposition g = g1⊕·· ·⊕ gr and apply the PBW
theorem to each g j and to g.

We will now explain why the universal enveloping algebra is so important for the represen-
tation theory of Lie algebras. Let π be a Lie algebra representation of g in a (possibly infinite
dimensional) complex linear space V. Thus, π is a linear map from g to the associative algebra
End(V ) of linear endomorphisms of V, satisfying π(X)π(Y )− π(Y )π(X) = π([X ,Y ]). By the
universal property, the representation π extends to an algebra homomorphism U(g)→ End(V ),
which is also called a representation of the algebra U(g) in V. It is tradition to say that π turns V
into a module for the Lie algebra g, and that this module structure extends to a module structure
for the associative algebra U(g). Accordingly, given x ∈ U(g) and v ∈ V we will write xv for
π(x)v.

If V is a U(g)-module, then the map π : g→ End(V ) defined by π(x)v = xv satisfies

π(x)π(y)v−π(y)π(x)v = x(yv)− y(xv)
= (xy)v− (yx)v
= xy− yx)v = [x,y]v = π([x,y])v,

so that π is a representation of g in V. Thus, V is a g-module in this way. The original U(g)-
module structure is retrieved by invoking the universal property of U(g). A linear map T : V →W
to a second g-module is equivariant for the g-action if and only if it is so for the U(g)-action. We
thus see that the category of g-modules is isomorphic to the category of U(g)-modules.

In the above we used that by the homomorphism property of π : U(g)→ End(V ) we have
x(yv) = (xy)v for x,y ∈U(g) and v ∈V. From now on we will ignore the brackets and just write
xyv.

We note that a subspace of a g-module V is g-invariant if and only if it is U(g)-invariant.
Thus, the g-module V is irreducible if and only if it is so as a U(g)-module.

Given a (possible infinite dimensional) g-module V and a vector v ∈ V we denote by U(g)v
the image of U(g) in V under the map x 7→ xv.

Lemma 9.5. Let V be a finite dimensional g-module, and v ∈ V. Then U(g)v is the smallest
g-submodule of V containing v.

Proof. First of all, it is readily verified that U(g)v is a submodule of V. Let W be any submodule
of g containing v. Then by induction on n one sees that W ⊃U(g)nv. Hence W ⊃U(g)v.
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A vector v ∈V is said to be cyclic if U(g)v =V.

Corollary 9.6. Let V be an irreducible g-module. Then every vector v ∈V \{0} is cyclic.

Proof. Let v ∈ V be a non-zero vector. Then U(g)v contains 1 · v = v hence is different from 0.
By irreducibility of V is follows that the g-invariant subspace U(g)v is V.

Let g be a compact semisimple Lie algebra, t ⊂ g a maximal torus, R the associated root
system and R+ a choice of positive roots. We put

g+C :=
⊕

α∈R+

gCα .

Then g+C is a nilpotent subalgebra of gC. It is normalized by tC, hence,

b := tC⊕g+C

is a subalgebra of gC. This subalgebra is called the Borel subalgebra associated with the positive
system R+. Let now λ ∈ t∗C. We extend λ to a linear functional in b∗ which is trivial on g+C. We
define Jλ to be the left ideal of U(g) generated by the elements of the form X−λ (X), for X ∈ b.
Then 1λ := 1+ Jλ is a cyclic vector in the natural left U(g)-module

Z(λ ) :=U(g)/Jλ .

We note that for X ∈ b we have X1λ = λ (X)1λ . In particular, 1λ is annihilated by g+C. Thus, 1λ

is a cyclic highest-weight vector of weight λ .
From the basic master math course on Lie groups as well as that on Lie algebras, we recall

the following result. If g is a compact semisimple Lie algebra, then gC is complex semisimple
Lie algebra. It can be shown that every complex semisimple Lie algebra has a compact real form,
hence arises in this way.

Theorem 9.7. Let g be compact semisimple as above. Let V and W be (not necessarily finite
dimensional) gC-modules. Then the following are valid.

(a) If V has a cyclic highest weight vector, then it has a unique maximal proper submodule
and a unique irreducible quotient. Furthermore, its highest weight is uniquely determined.

(b) If V is finite dimensional and irreducible, then V has a cyclic highest weight vector.

(c) If V and W are irreducible and have cyclic highest weight vectors of the same weight, then
they are isomorphic.

The module Z(λ ) defined above has a cyclic highest weight vector of weight λ . It follows
that Z(λ ) has a unique maximal proper ideal Mλ /Z(λ ). The associated quotient

Vλ := Z(λ )/Mλ

is irreducible.
We will now show that all gC-modules with a cyclic highest weight vectors can be obtained

as quotients of these.
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Proposition 9.8. Let V be a non-trivial gC-module with a cyclic highest weight vector.

(a) There exists a unique λ ∈ t∗C and a unique ideal IV / Z(λ ) such that V ' Z(λ )/IV . Fur-
thermore, λ is the highest weight of V.

(b) The module V is irreducible if and only if V 'Vλ .

Proof. Let v ∈V be a cyclic highest weight vector. We know that the associated highest weight
λ is uniquely determined. The map ϕ : x 7→ xv is a surjective U(gC)-morphism from U(g)
onto V, by cyclicity of v. Furthermore, by the highest weight property, Xv = λ (X)v for X ∈ t and
Y v = 0 for Y ∈ g+C. It follows that the left ideal kerϕ /U(gC) contains the elements X−λ (X), for
X ∈ b. Hence, kerϕ ⊃ Jλ and we see that ϕ factors through a surjective U(gC)-homomorphism
ϕ̄ : Z(λ )→V. Let IV be the kernel of ϕ̄, then V ' Z(λ )/IV .

We now turn to the uniqueness. Let λ ∈ t∗C and IV /Z(λ ) be such that V ' Z(λ )/IV . Then
there exists a surjective U(gC-module homomorphism Z(λ )→V whose kernel equals IV . As V
is non-trivial, it follows that IV is proper hence does not contain the image [1λ ] of 1λ in Z(λ ),
which is a cyclic vector. It follows that vλ := ϕ([1λ ]) is a cyclic highest weight vector of weight
λ . Thus, λ is the (unique) highest weight of V. Let aλ be the annihilator of vλ in U(g). Then IV
equals the image of aλ in Z(λ ), hence is uniquely determined. This establishes (a).

We turn to (b). The module V is irreducible if and only if the quotient Z(λ )/IV is irreducible.
The latter is equivalent to the assertion that IV equals the unique maximal ideal M)λ of Z(λ ).

It follows from the above that the Vλ form a complete set of representatives for the equiv-
alence classes of irreducible highest weight modules. The finite dimensional modules among
them form a complete set of representatives for the equivalence classes of irreducible finite di-
mensional g-modules. Thus, the following important result amounts to the classification of the
irreducible finite dimensional g-modules.

Definition 9.9.

(a) We say that λ ∈ tC is an integral weight if and only if

2
〈λ , α〉
〈α , α〉

∈ Z for all α ∈ R.

(b) A weight λ is said to be dominant (relative to R+) if in addition 〈λ , α〉 ≥ 0 for all α ∈ R+.

(c) The set of weights (which is a lattice) is denoted by Λ, the subset of dominant weights by
Λ+.

Theorem 9.10. Let λ ∈ t∗C. Then the irreducible highest weight module Vλ is finite dimensional
if and only if λ is dominant integral.

Proof. For the proof, which is based on the representation theory of sl(2,C), we refer to [Hum78],
Section 21.

37



We will now apply the universal enveloping algebra to the setting of compact symmetric
spaces introduced at the end of Section 8. In view of notation to be introduced later on, we
change notation slightly.

Let u be a compact semisimple Lie algebra, σ an involution of u and

u= k⊕q

the associated decomposition into the +1 and −1 eigenspaces. Given a u-module V we denote
by V k the subspace of vectors v ∈V which are annihilated by k, i.e., Xv = 0 for all X ∈ k.

Lemma 9.11. Let V be a finite dimensional irreducible u-module. Then dimCV k ≤ 1.

To prepare for the proof, we fix a maximal abelian subspace

b⊂ q.

Furthermore, we define m to be the centralizer of b ∈ k. We fix a maximal torus t of u which
contains b. Then t∩ k= t∩m obviously.

We claim that t is stable under σ . Indeed, if X ∈ t then X−σ(X) ∈ q. For Y ∈ b we have

[X−σX ,Y ] = [X ,Y ]− [σX ,Y ] = [X ,Y ]−σ [X ,σY ] = [X ,Y ]+σ [X ,Y ] = 0,

since t centralizes b. It follows that X−σ(X) belongs to q and centralizes b. Since b is maximal
abelian it follows that X −σ(X) ∈ b. Hence σ(X) centralizes t and we conclude that σ(X) ∈ t.
This shows that σ leaves t invariant, so that t=(t∩k)⊕(t∩q). The second summand is contained
in q and centralizes b, hence is contained in b. It follows that

t= (t∩ k)⊕b= (t∩m)⊕b.

Let R denote the set of roots of tC in uC, and let Rb denote the subset of roots that do not
vanish on b. We recall that all roots of R belong to it∗. Hence the roots of Rb restrict to non-zero
elements of ib∗. For each α ∈ Rb, the intersection kerα ∩b is the kernel of α|b. Let breg denote
the complement of these hyperplanes in b and let b+ be a connected component of b+. Let R+

b
denote the set of roots α ∈ Rb such that −iβ is strictly positive on b+. Then it follows that

Rb = R+
b ∪ (−R+

b ), (disjoint union).

We define
nC :=

⊕
α∈R+

b

uCα , and n̄C :=
⊕

α∈−R+
a

uCα .

Lemma 9.12. The spaces nC and nC are subalgebras of uC. Furthermore,

uC = n̄C⊕mC⊕bC⊕nC.
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Proof. Let α,β ∈ R+
b . If α +β is a root then α +β ∈ R+

b . Hence

[uCα ,uCβ ]⊂ uC(α+β ) ⊂ nC.

If α +β is not a root, then [uCα ,uCβ ] = 0. In all cases, [uCα ,uCβ ]⊂ nC. Hence, nC is a subalge-
bra. Likewise, n̄C is a subalgebra.

From the root space decomposition of uC we see that

uC = n̄C⊕ zC⊕nC, (22)

where
zC = tC⊕

⊕
α∈R\Rb

uCα .

Since R \Rb consists of the roots vanishing on b, it follows that zC equals the centralizer of b
in kC. Let τ : uC→ C be the conjugation map determined by the real form u of uC. As τ is an
automorphism of uC viewed as a real Lie algebra, and τ = I on b, it follows that zC is τ-invariant,
hence equals the complexification of the centralizer z of b in g. As σ =−I on b, this centralizer
is σ -invariant and decomposes as

z= (z∩u)⊕ (z∩q).

By definition the first summand equals m. Since b is maximal abelian in q, the second summand
equals a. Thus, z=m⊕a and the result follows from (22).

Lemma 9.13. The complex linear extension σC of σ restricts to a linear isomorphism of nC
onto n̄C. Furthermore,

uC = kC⊕bC⊕nC

as a direct sum of linear spaces.

Proof. The map σC is an automorphism of uC which leaves t invariant. Write σ for the map R→
R,α 7→ σ−1∗α. Since σ =−1 on b, we see that σ maps R+

b bijectively onto −R+
b . Furthermore,

for α ∈ R+
b , we have

σC(uCα) = uCσ(α).

Taking the direct sum over the roots α ∈ R+
b , we find that σC maps nC bijectively onto n̄C.

We consider the linear map ϕ : nC+mC→ kC given by ϕ(X) = X +σ(X) for X ∈ n̄C and
by ϕ|mC = I|mC . We claim that ϕ is bijective. If X ∈ nC, Y ∈ mC and ϕ(X +Y ) = 0 then
X +Y +σC(X) = 0 and we see that X = 0 and Y = 0 by directness of the sum (22). Thus, ϕ

is injective. To see it is surjective, let Z ∈ uC and decompose Z = X +Y +U according to the
decomposition (22). From σC(Z) = Z, σC(Y ) = Y, and the first part of the proof, we conclude
that U = σ(X), hence Z = ϕ(X +Y ) and we see that ϕ is surjective, so that the claim holds. In
particular, it follows that the spaces kC and n̄C⊕mC are of equal dimension.

By Lemma 9.12, the linear space n̄C⊕mC is complementary to bC⊕nC in uC. Since ϕ is an
isomorphism from this space onto kC and ϕ− I maps into nC, it follows the kC is complementary
to bC⊕nC. The result follows.

39



From the above lemma combined with Lemma 9.11 it follows that

U(uC) =U(hC)U(bC)U(nC).

Here the space on the right-hand side is defined to be the linear span of all products of the form
uvw with u ∈U(hC),v ∈U(bC) and w ∈U(nC). In other words, the space equals the image of
U(hC)⊗U(bC)⊗U(nC) in U(gC).

We need a final preparation for the proof of Lemma 9.11.

Lemma 9.14. There exists a positive system R+ which contains R+
b .

Proof. Fix X ∈ b+. There exists a Y ∈ t∩k such that the roots from R\Rb do not vanish on Y. For
t > 0 sufficiently small, the roots of R+

b are positive on i(X + tY ). If α ∈ R\Rb then α(X) = 0,
so α does not vanish on i(X + tY ). Let R+ denote the set of roots that are positive on i(X + tY ),
then R+

b ⊂ R+.

Proof of Lemma 9.11. The module V ∗ is irreducible as well and has a unique highest
weight λ ∈ t∗C. Let η be a non-zero highest weight vector. Then for X ∈ a we have η ◦X =
−Xη = −λ (X). Since nC is a sum of positive root spaces, it follows that η ◦Y = −Y η = 0 for
Y ∈ nC.

We will complete the proof by establishing the claim that the map v 7→ η(v) is injective from
V h to C. Indeed, assume that η(v) = 0. Then U(h)v ∈ Cv so η = 0 on U(h)v. By the first part
of the proof it follows that η = 0 on U(a)U(h)v hence also on U(n)U(a)U(h)v =U(g)v.

Since η 6= 0 it follows that U(g)v is a proper invariant subspace of V and since V is irre-
ducible, we see that U(g)v = 0. Since v is contained in the latter space, it follows that v = 0.

We now come to the proof of Proposition 8.8, which we recall in different notation.

Proposition 9.15. Let U be a connected compact semisimple Lie group, σ an involution of U
and K an open subgroup of Uσ . Then the convolution algebra (C(K\U/K),∗) is commutative.

Proof. Let (π,V ) be an irreducible finite dimensional (continuous) representation of U. Then
π : U→GL(V ) is a continuous homomorphism of Lie groups, hence smooth. Its derivative π∗ :=
dπ(e),u→ End(V ) is a Lie algebra homomorphism, turning V into a u-module. By complex
linear extension, V becomes a uC-module.

Since U is connected, V is in fact an irreducible u-module, hence also an irreducible uC
module. The Lie algebra of K equals the fixed point set k of the infinitesimal involution σ .
Hence, V K is contained in the space V k which by Lemma 9.11 has dimension at most one. Now
apply Proposition 8.4 to conclude that the convolution algebra is commutative.
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10 Symmetrization
In this section we will discuss an important linear map from the symmetric algebra to the univer-
sal enveloping algebra of a Lie algebra, called symmetrisation.

To prepare for this we first assume that V is a finite dimensional complex linear space. We
will discuss symmetrisation of elements of the associated tensor algebra T (V ).

Let n be a positive integer. For σ an element of the permutation group Sn we define π(σ) :
T n(V )→ T n(V ) to be the linear map given by

X1⊗·· ·⊗Xn 7→ Xσ−1(1)⊗·· ·⊗Xσ−1(n).

Then π defines a representation of Sn in the linear space T n(V ). The associated subspace of Sn-
invariants is called the space of symmetric tensors of order s and is denoted by T n

s (V ) . By the
theory of isotypical components, this subspace of T n(V ) has a unique Sn-invariant complement,
which we denote by T n

c (V ). Then

T n(V ) = T n
s (V )⊕T n

c (V ) (23)

is a direct sum decomposition into Sn-invariant subspaces. The associated projection onto T n
s (V )

is given by

P :=
1
n! ∑

σ∈Sn

π(σ).

The kernel I of the canonical homomorphism T (V )→ S(V ) is homogeneous. The intersection
In := I∩T n(X) is equal to the linear span of the tensors of the form

π(( j j+1))T, (1≤ j < n, T ∈ T n(V ).

Here ( j j+1) denotes the transposition of the neighboring elements j and j+1. Such transposi-
tions of neighboring elements will be called simple permutations. From now on we agree to also
use the abbreviation σT := π(σ)(T ), for T ∈ T n(V ) and σ ∈ Sn.

Lemma 10.1. Let σ ∈ Sn and T ∈ T n(V ). Then σT −T ∈ In. In particular, In is Sn-invariant.

Proof. The permutation σ admits a decomposition σ = sk · · ·s1 into simple permutations. We
agree to write σr = sr · · ·s1, then

σT −T =
k

∑
r=1

sr+1σr−1T −σr−1T ∈ In.

This proves the first assertion. The second assertion follows immediately from the first.

Lemma 10.2. Let I be the kernel of the canonical homomorphism p : T (V )→ S(V ). Then
In = I∩T n(V ) equals the kernel of the projection P : T n(V )→ T n

s (V ). The map p restricts to a
linear isomorphism pn : T n

s (V )→ Sn(V ).
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Proof. Let τ ∈ Sn then clearly
P◦τ = P on T n(V ).

This implies that P = 0 on the generators of In, so that In ⊂ kerP. On the other hand, if T is in
T n(V ) then

σT −T ∈ In, (σ ∈ Sn).

Summing over all σ and dividing by n! we find that PT −T ∈ In, so that

kerP = im(P− I)⊂ In.

This establishes the first assertion. From (23) we now find that

T n(X) = T n
s (V )⊕ In. (24)

Since In equals the kernel of p|T n(V ), the final assertion follows.

We now assume that g is a finite dimensional complex Lie algebra and use the above notation
and results with g in place of V.

Lemma 10.3. Let π : T (g)→U(g) denote the canonical projection. Let T ∈ T n(g) and σ ∈ Sn.
Then

π(σT −T ) ∈U(g)n−1.

Proof. The result is trivial for n = 0,1. We may therefore assume that n ≥ 2. As in the proof of
Lemma 10.1 the element σT −T may be rewritten as a sum of tensors of the form sS−S, with
S ∈ T n(g) and s a simple permutation. Thus, it suffices to prove the result for σ = ( j j+1) and
for T of the form T = X1⊗·· ·⊗Xn. Then

T −σT −X1⊗·· ·⊗ [X j,X j+1]⊗·· ·Xn ∈ ker(π)

so that
π(σT −T ) =−X1 · · ·X j−1[X j,X j+1]X j+1 · · ·Xn ∈U(g)n−1.

Let j : g→U(g) denote the inclusion map. We recall that T (g) is graded, and carries the
associated filtration given by T (g)n = ⊕k≤n T k(g). This gradation induces a gradation on S(g)
and an induced image filtration on U(g), denoted U(g)n, n ≥ 0. Thus, the space U(g)n consists
of the linear span of all products of at most n elements from g. We will refer to these gradations
and associated filtrations as the standard ones.

Theorem 10.4. There exists a unique linear map s : S(g)→U(g) such that

s(Xm) = j(X)m, for all X ∈ g.

This map is an isomorphism of filtered spaces (relative to the standard filtrations).
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Remark. The uniquely defined map s : S(g)→U(g) is called the symmetrisation map.
We will give the proof of Theorem 10.4 by establishing a number of lemmas. In particular,

the uniqueness assertion is an immediate consequence of the following lemma, applied to g in
place of V.

Lemma 10.5. Let V be a finite dimensional complex linear space and let n ≥ 1. Then the
elements Xn, for X ∈V, span Sn(V ) as a linear space.

Proof. Let X1, . . . ,Xd be a basis of V as a linear space. For c ∈ Cd we write Yc := (c1X1 + · · ·+
cdXd)

n. Then we may write
Yc = ∑

α

cα Xα1
1 · · ·X

αd
d ,

where the sum extends over the multi-indices α = (α1, . . .αd) with |α| := ∑ j α j equal to n. As
the appearing functions c 7→ cα are linearly independent over C, we see that the Yc, for c ∈ Cd,
span Sn(g).

The proof of the existence part of Theorem 10.4 will be given further on, based on a sequence
of lemmas.

Let n ∈ N. Then the canonical algebra homomorphism T (g)→ U(g) restricts to a linear
map T n(g)→U(g)n which by composition with the natural projection U(g)n→U(g)n/U(g)n−1
induces a linear map

T n(g)→U(g)n/U(g)n−1. (25)

Lemma 10.6. For each n ∈ N, the map (25) restricts to a linear isomorphism

πn : T n
s (g)→U(g)n/U(g)n−1.

Proof. Let π ′n denote the map (25). By definition, the map T (g)n→U(g)n is surjective for every
n. This implies that the map π ′n is surjective. It follows from Lemma 10.3 that π ′n(σT −T ) = 0
for every T ∈ T n(g) and σ ∈ Sn. Hence, π ′n = 0 on In by Lemma 10.1, and in view of the
decomposition (24) it follows that πn is surjective.

In particular, dimU(g)n/U(g)n−1 ≤ dimT n
s (g) = dimSn(g). Summing over n we find that

dimU(g)n ≥ dimS(g)n for all n.
On the other hand, from the PBW theorem it follows that dimUn(g)≥ dimS(g)n for all n≥ 0,

so that U(g)n and S(g)n have the same dimension for all n. This in turn implies that domain and
codomain of πn have the same finite dimension. As πn is linear and surjective, it must be injective
as well.

Completion of the proof of Theorem 10.4. It remains to establish existence of the map s :
T (g)→U(g).

For n ∈ N, we define sn : Sn(g)→U(g) by sn = π ◦ p−1
n . Furthermore, we define the linear

map s : Sn(g)→U(g) by s = sn on Sn(g). If X ∈ g, then the element T := X⊗·· ·⊗X (n factors)
belongs to T n

s (g) and has image Xn in Sn(g). Furthermore, the element T has image j(X)n in
U(g). It follows that s(Xn) = j(X)n. Thus, s satisfies the requirements.

43



It is clear that s preserves the filtrations. For s to be an isomorphism of filtered spaces, it
suffices that grs : S(g)→ grU(n) be a linear isomorphism. Let n ∈ N, then (grs)n = πn ◦ p−1

n ,
which is a linear isomorphism from Sn(g) onto U(g)n/U(g)n−1 = (grU(g))n.

Corollary 10.7. The symmetrisation map s : S(g)→U(g) preserves the standard filtrations and
induces an isomorphism of graded spaces S(g)' grU(g).

Lemma 10.8. Let ϕ : g→ h be a homomorphism of Lie algebras. Then the diagram

S(g)
S(ϕ)−→ S(g)

s ↓ ↓ s

U(h)
U(ϕ)−→ U(h)

commutes.

Proof. Exercise for the reader.

Of particular interest is the situation that ϕ is an automorphism.
For instance, let L be a real Lie group with Lie algebra l. If x∈ L, then the complexification of

Ad(x) defines an automorphism of lC, which induces automorphisms of S(lC) and U(lC) These
induced automorphisms will be denoted by Ad(x) as well. It follows from the above lemma that
the following diagram commutes:

S(lC)
Ad(x)−→ S(lC)

s ↓ ↓ s

U(lC)
Ad(x)−→ U(lC)

(26)

In the above setting, let X ∈ l and write ad(X) for the induced derivations of S(lC) and U(lC).
Then from the above diagram with x = Ad(exp tX) we find, by differentiating with respect to t
at t = 0, that the following diagram commutes:

S(lC)
ad(X)−→ S(lC)

s ↓ ↓ s

U(lC)
ad(X)−→ U(lC)

(27)

More generally, such a commutative diagram is induced by any derivation δ of l. See exer-
cises.
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11 Invariant differential operators
In this section we will assume that G is a real Lie group, with Lie algebra g. The theory of the
previous section will be used for the complexified Lie algebra gC.

By a linear partial differential operator of order at most k ∈ N on a smooth manifold M we
mean a linear operator P : C∞(M)→C∞(M) such that in local coordinates x1 . . . ,xm, the operator
P takes the form

P = ∑
α∈Nm

|α|≤k

cα∂
α ,

with cα smooth functions. Here we have used the multi-index notation

∂
α = ∂

α1
1 · · ·∂

αm
m =

∂ |α|

∂xα1
1 · · ·x

αm
m

.

More precisely, for (U,κ) a chart of M, the pull-back map f 7→ κ∗ f yields a (continuous) linear
isomorphism from C∞(κ(U)) onto C∞(U), which maps C∞

c (κ(U)) onto C∞
c (U). By the above

characterization of P we mean that for every coordinate chart (U,κ) of M, the operator P maps
C∞

c (U) into itself, and that κ∗(P) := κ−1∗ ◦P◦κ∗ takes the form

κ∗(P) = ∑
α∈Nm

|α|≤k

cα∂
α ,

on C∞
c (κ(U)), with smooth coefficients cα ∈C∞(κ(U)).

We denote the complex vector space of such differential operators of order at most k on M by
D(M)k. The union of these spaces of operators in End(C∞(M)) is denoted by D(M). It is readily
seen that with the indicated filtration by order, D(M) is a filtered algebra.

Given a vector field v on M, we define the first order differential operator ∂v by

∂v( f )(x) = d f (x)(vx),

for f ∈C∞(M), x ∈M.
Let now M be equipped with a smooth left G-action l : G×M→M, (g,m) 7→ lg(m) = gm.

A differential operator P ∈ D(M) is said to be G-invariant for this left action if and only if P
commutes with the pull-back l∗x : C∞(M)→C∞(M) for every x ∈G. An equivalent way of saying
this is that P is equivariant for the representation L of G in C∞(M) defined by

Lx f = l∗x−1 : m 7→ f (x−1m)

for f ∈C∞(M) and x ∈ G.
Yet another way of saying this is that P is G-fixed for the representation of G in D(M) defined

by
(x,P) 7→ lx∗(P) := l−1∗

x ◦P◦ l∗x .
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We will now consider the situation with M = G, the action given by the usual left multipli-
cation. Let g be the Lie algebra of G. Then for a given X ∈ g we define the vector field vX on G
by

vX(x) =
d
dt

∣∣∣∣
t=0

x exp tX

Then vX(e) = X and by an easy application of the chain rule it follows that

vX(yx) =
d
dt

∣∣∣∣
t=0

ly(x exp tX) = dly(x)vX(x),

for all x,y ∈ G. In other words, the vector field vX is left invariant. The associated first order
differential operator is denoted by ∂vX . Let D(G) denote the space of left invariant differential
operators in D(G). It is readily verified that D(G) is a subalgebra of D(G). We equip it with the
induced filtration by order. Then D(G) becomes a filtered algebra.

Lemma 11.1. Let X ∈ g. Then the operator ∂vX belongs to D(G)1.

Proof. It suffices to show that ∂ := ∂vX is left invariant. Let f ∈C∞(G), and x,y ∈ G. Then

∂ f (yx) = d f (yx)vX(yx) = d f (yx)◦dly(x)vX(x) = d( f ◦ ly)(x)vX(x) = ∂ (l∗y f )(x)

and the left invariance follows.

For the introduction of the above left invariant first order differential operator we can also
follow the following more direct representation theoretic approach.

For this we recall the following formula, in the settingof a continuous finite dimensional
representation (π,V ) of G. In this setting the map π : G→GL(V ) is a continuous homomorphism
of Lie groups, hence smooth. The derived map π∗ = dπ(e) is a Lie algebra homomorphism

π∗ : g→ End(V ),

where the associative algebra End(V ) is equipped with the commutator bracket. We also say
that π∗ is the Lie algebra representation associated with π. By using the chain rule one readily
verifies that

π∗(X) =
∂

∂ t

∣∣∣∣
t=0

π(exp tX), (X ∈ g).

From now on we will write π for π∗ unless confusion arises.
We now consider the right regular representation of G on C∞(G) given by

Rx f (y) = f (yx).

In line with the above formula for π∗(X), we define

RX =
∂

∂ t

∣∣∣∣
t=0

Rexp tX , (X ∈ g),
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which can be interpreted pointwise when applied to a function f ∈C∞(G), i.e.

RX f (y) =
∂

∂ t

∣∣∣∣
t=0

f (yexp tX), (y ∈ G).

By an easy application of the chain rule we see that

RX f (y) = d f (y)[vX(y)] = ∂vx f (y).

From now on we shall use the notation RX for the differential operator ∂vX . In analogy with the
above case of a finite dimensional representation, we now have the following result.

Lemma 11.2. The map X 7→ RX is a Lie algebra homomorphism from g to D(X) equipped with
the commutator bracket.

Proof. First, let x ∈ G and Y ∈ g. Then it is easily verified that

RxRexp tY = Rxexp tY = Rexp tAd(x)Y Rx.

Applying this to functions from C∞(G) and differentiating pointwise at t = 0 we find

RxRY = RAd(x)Y Rx.

Substituting x = expsX and differentiating at s = 0 (again interpreted pointwise when applied to
functions) we find that

RX RY =
∂

∂ s

∣∣∣∣
t=0

RAd(expsX)Y +
∂

∂ t

∣∣∣∣
s=0

RY RexpsX = R[X ,Y ]+RY RX .

This result follows.

Remark. We will later review the above calculation in the more general context of a contin-
uous representation in a Fréchet space, involving the notion of a smooth vector.

Corollary 11.3. The map X 7→ RX from g to D(X) has a unique extension to a homomorphism
of associative algebras U(gC)→ D(X). This homomorphism preserves the filtrations.

Proof. The map X 7→ RX has a unique extension to a complex linear map gC→ D(G) which is
also a Lie algebra homomorphism.

The existence and uniqueness of the extension to U(gC) now follows from the universal
property of U(gC). The preservation of the filtrations follows from the fact that D(G) is a filtered
algebra, and that X 7→ RX maps g into D(G)1.

We now have following result.

Theorem 11.4. The extended map

u 7→ Ru, U(g)→ D(G).

is an isomorphism of filtered algebras.
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The proof will make use of the symmetrizer s : S(gC)→ U(gC), and the interpretation of
S(gC) as constant coefficient partial differential operators on g which we will first explain.

Let V be a finite dimensional real vector space. Then by D(V ) we denote the algebra of
translation invariant differential operators on V. Choosing a basis e1, . . . ,ed of V and using the
associated coordinate functions x j : V →R the partial differential operators on V of order at most
k have a unique form

P = ∑
|α|≤k

cα∂
α ,

with cα ∈C∞(V ). It is readily seen that such an operator P is translation invariant if and only if
each coefficient cα is a constant function. We thus see that the algebra D(V ) is a commutative
associative algebra with unit.

Given X ∈V we define the first order differential operator ∂X by

∂X f (x) = d f (x)X

for f ∈ C∞(V ) and x ∈ V. We note that ∂e j = ∂ j with respect to the given basis and coordinate
functions. By the universal property of S(VC), the map X 7→ ∂X has a unique extension to a
homomorphism of algebras, denoted u 7→ ∂u. By using that the operators ∂ α form a basis for
D(V ), we obtain the following result.

Lemma 11.5. The extended homomorphism u 7→ ∂u is an isomorphism of filtered algebras

S(VC)
'−→ D(V ).

We return to the setting of the Lie group G with Lie algebra g. If f ∈C∞(G) then exp∗ f =
f ◦ exp is a smooth function on g.

Theorem 11.6. Let u ∈ S(gC). Then for all f ∈C∞(G) we have

Rs(u) f (e) = ∂u(exp∗ f )(0).

Proof. The expressions at both left and right hand side of the above equality depend linearly on
u ∈ S(gC). The elements Xn, for X ∈ g span the linear space S(gC), see the uniqueness part of
the proof of Theorem 10.4. Therefore, it suffices to establish the identity for u = Xn. In this case,
we have s(u) = j(X)n so that

Rs(u) f (e) =
∂ n

∂ t1 · · ·∂ tn
f (exp t1X · · ·exp tnX)

∣∣∣∣
t j=0

=
∂ n

∂ t1 · · ·∂ tn
(exp∗ f )[(t1 + · · ·+ tn)X ])

∣∣∣∣
t j=0

.

This implies that
Rs(u) f (e) = (∂X)

n(exp∗ f )(0) = ∂u(exp∗ f )(0). (28)
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Proof of Theorem 11.4. There exists an open neighborhood Ω of 0 in g which exp maps
diffeomorphically onto an open neighborhood U of e in G. Let κ : U → Ω be the inverse to this
diffeomorphism.

For a differential operator D ∈D(G) the push-forward κ∗(D) is a differential operator on Ω.
There exists a unique element u = λ (D) ∈ S(g) such that for all ϕ ∈C∞

c (Ω),

κ∗(D)ϕ(0) = ∂uϕ(0). (29)

This element u = λ (D) is called the local expression of D at e. Substituting exp∗ f for ϕ, we
obtain

D f (e) = ∂λ (D)(exp∗ f )(0), ( f ∈C∞(G)). (30)

If D ∈ D(G), then for every f ∈C∞(G) and x ∈ G we have

D f (x) = l∗x D f (e) = D(l∗x f ) = ∂λ (D)(exp∗(l∗x f ))(e),

by left invariance of D. It follows that the map D 7→ λ (D) is injective D(G)→ S(g). On the other
hand, if u ∈ S(g) then clearly the operator Du ∈D(G) defined by

Du f (x) = ∂u[ f (xexp( ·))]

is left invariant, and λ (Du) = u. It follows that D 7→ λ (D) is a linear isomorphism from D(G)
onto S(gC).

From formulas (28) and (30) it follows that

λ (Rs(u)) = u (31)

for all u ∈ S(gC). Since λ : D(G) → S(gC) is a filtered linear isomorphism, it follows that
u 7→ Rs(u) is a filtered linear isomorphism S(gC)→ D(G). Since s : S(gC)→ U(gC) is a fil-
tered linear isomorphism, it follows that the algebra homomorphism U(gC)→D(G) is a filtered
linear isomorphism, hence an isomorphism of filtered algebras.

Remark. It is good to notice that the map D 7→ λ (D) of the above proof defines a linear
isomorphism D(G)→ S(gC), but is not an algebra homomorphism in general.
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12 Invariant differential operators on a homogeneous space
In this section we assume that G is a real Lie group, and H a closed subgroup.

We assume that there exists an Ad(H) invariant linear subspace q⊂ g which is complemen-
tary to the Lie algebra h of H, i.e.,

g= h⊕q

as a real linear space. Note that the above decomposition is Ad(H)-invariant.

Exercise 12.1. Show that such a subspace q exists if H is compact.

Let π : G→ G/H denote the canonical projection and put [e] = π(e). Then the derivative
π∗ = dπ(e) : g → T[e](G/H) is surjective with kernel h hence induces a linear isomorphism
g/h→ T[e](G/H) through which we shall identify these spaces.

The inclusion map q→ g induces a linear isomorphism ι : q→ g/h. Let Exp : q→ G/H be
the map X 7→ π ◦ exp(X). Then via the mentioned identification, the tangent map of Exp at 0
equals ι : q→ g/h. From now on we shall use ι to identify q with g/h. Then T0Exp corresponds
to the identity map q→ q.

Lemma 12.2. Let h ∈ H and let lh : G/H → G/H denote left multiplication by h. Then the
tangent map T[e]lh : g/h→ g/h equals the map induced by Ad(h) : g→ g.

Exercise 12.3. Derive this by differentiating the maps in the following commutative diagram

G
Ch−→ G

π ↓ ↓ π

G/H
lh−→ G/H.

Here Ch : x 7→ hxh−1.

It follows that the identifications q ' g/h ' T[e](G/H) are equivariant for the given actions
by H.

We denote by D(G/H) the algebra of left G-invariant differential operators on G/H. The
associated filtration by order is denoted by D(G/H)k := D(G/H)∩D(G/H)k. We will proceed
in analogy with the definition of local expression in the previous section.

The following lemma serves as a preparation. Let V be a finite dimensional real linear space.
If ϕ : V → V is an invertible linear map, we define ϕ∗ : C∞(V )→ C∞(V ) by ϕ∗ f = f ◦ϕ. Fur-
thermore, we define ϕ∗ : D(V )→D(V ) by ϕ∗(P) = ϕ∗−1 ◦P◦ϕ∗. Then clearly, ϕ∗ preserves the
filtration by order. On the other hand, ϕ induces a linear automorphism S(ϕ) of S(VC), for which
we shall use the abbreviated notation ϕ.

Lemma 12.4. The map ϕ∗ is an isomorphism of filtered algebras, which preservers the subal-
gebra D(V ) of translation invariant differential operators. Furthermore, if u ∈ S(g) then

∂ϕ(u) = ϕ∗(∂u).
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Proof. It is readily seen ϕ∗ preservers the filtration and has inverse equal to (ϕ−1)∗. This implies
that ϕ∗ is an isomorphism of filtered algebras.

Let X ∈ g. Then for f ∈C∞(V ) and v ∈V we have

[ϕ∗∂X f ](v) = ∂X( f ◦ϕ)(ϕ−1(v)) = d( f ◦ϕ)(ϕ−1v)X
= d f (v)dϕ(ϕ−1(v))X = d f (v)ϕ(X)

= ∂ϕ(X) f (v).

Since u 7→ ∂u is an algebra isomorphism from S(VC) onto D(V ), whereas the elements of V
generate the algebra S(V ), the equation follows. In particular this implies that ϕ∗ preserves
D(V ).

Lemma 12.5. Let D ∈D(G/H)k. Then there exists a unique element u ∈ S(q)H
k such that for all

f ∈C∞(G/H) we have
D( f )([e]) = ∂u(Exp∗ f )(0) (32)

Proof. Since Exp : q→ G/H is a local diffeomorphism at 0, there exists an open neighborhood
Ω of 0 such that Exp|Ω is a diffeomorphism from Ω to an open neighbourhood U of [e] in G/H.
Let κ : U →Ω be the inverse to this diffeomorphism, then κ∗(D) is a differential operator on Ω.
There exists a unique u ∈ S(q) such that

κ∗(D)(g)(0) = ∂ug(0), (g ∈C∞(Ω)).

It follows that
D( f )([e]) = κ∗(D)[Exp∗( f )](0) = ∂u(Exp∗ f )(0).

Clearly, u∈ S(q) is uniquely determined by this property. We now observe that D is left invariant
under G hence under H, so that for all h ∈ H we have

∂u(Exp∗ f )(0) = D f ([e]) = D f (lh[e])
= l∗hD f ([e]) = D◦(l∗h f )([e]
= ∂u(Exp∗l∗h f )(0) = ∂u(Ad(h)∗Exp∗ f )(0)
= (Ad(h)∗∂u)(Exp∗ f )(0) = ∂Ad(h)u(Exp∗ f )(0).

By the uniqueness assertion above, it follows that Ad(h)u = u for all h∈ u, hence u∈ S(q)H .

The element u specified in Lemma 12.5 will be denoted by λ (D). Thus,

λ : D 7→ λ (D), D(G/H)→ S(q)H (33)

is a linear map of filtered spaces.

Lemma 12.6. The map (33) is injective.

Proof. Let D ∈ kerλ . Then for f ∈C∞(G/H) and x ∈ G we have

D f ([x]) = D f (x[e]) = l∗x (D f )([e]) = D(l∗x f )([e]) = ∂λ (D)(Exp∗ f )(0) = 0.

Hence D = 0.
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Conversely, let u ∈ S(qC)H . Then we define the operator Du : C∞(G/H)→C∞(G) by

Du f (x) = ∂u[(l∗x f )◦Exp](0), (34)

for f ∈C∞(G/H). From the definition we see that the operator is left equivariant. Furthermore,
for all x ∈ G and h ∈ H,

Du f (xh) = ∂u[(l∗x f )◦ lh ◦Exp](0) = ∂u[[(l∗x f )◦Exp]◦Ad(h)](0) = Du f (x)

by H-invariance of u, so that Du maps into C∞(G/H). Finally, Exp : q→ G/H is a local dif-
feomorphism at 0. There exists a smooth map F : q× q→ q, locally defined at (0,0) such that
F(0,0) = 0 and

exp(X)Exp(Y ) = ExpF(X ,Y )

for X and Y sufficiently close to 0. Thus, for X in a suitable neighborhood of 0 in q, we have

Du f (ExpX) = ∂u[(l∗expX f )exp](0) = ∂u[ f ◦Exp(X , ·)](0)

from which we see that Du defines a linear partial differential operator on an open neighborhood
of [e] in G/H. By left equivariance it follows that Du is a globally defined operator on G/H and
that Du ∈ D(G/H). Clearly, Du ∈ D(G/H)k if u ∈ Sk(qC)

H .

Corollary 12.7. The map u 7→ Du defines an isomorphism S(qC)H → D(G/H) of filtered linear
spaces. Its inverse is the map λ given by (33).

Proof. Since λ is an injective homomorphism of filtered linear spaces, it suffices to show that
λ (Du) = u for all u ∈ S(qC)H . This is seen from (34) with x = e, combined with (32).

In the following lemma, s denotes the symmetrizer map S(gC)→U(gC).

Lemma 12.8. The linear map ϕ : S(qC)⊗S(hC)→U(gC), given by u⊗v 7→ s(u)s(v) is a linear
isomorphism.

Proof. Let S(qC)⊗S(hC be equipped with the tensor product gradation. Then the multiplication
map m : S(qiC)⊗ S(hC)→ S(gC) is a graded isomorphism. It is an easy matter to verify that
m = gr(ϕ).

Corollary 12.9. The map S(qC)⊗U(hC)→U(gC) given by (u,v) 7→ s(u)v is a linear isomor-
phism. It maps S(qC)⊗U(hC) onto U(gC)h.

Proof. The first assertion follows from the previous lemma, since s maps S(hC) linearly isomor-
phically onto U(hC). The second assertion is an immediate consequence of the first one.

Corollary 12.10. The symmetrizer s : S(q)→U(g) induces a linear isomorphism

s̄ : S(qC)H '−→ U(gC)
H/U(gC)

H ∩U(gC)h. (35)
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Proof. Let ψ denote the linear isomorphism of the previous corollary. We observe that by the
PBW theorem

U(hC)' C⊕U(hC)hC.

This decomposition is stable under the adjoint action by H so that

[S(qC)⊗U(h)]H = [S(qC)H⊗C]⊕ [S(qC)⊗U(h)h]H

Since ψ is a linear isomorphism, with intertwines the adjoint H-actions, it maps the above sum
isomorphically onto U(g)H and the second summand onto U(gC)

H ∩U(gC)h. Thus ψ induces a
linear isomorphism from S(qC)H ⊗C onto the space U(gC)

H/U(gC)
H ∩U(gC)h and the result

follows.

Clearly, U(g)H is a subalgebra of U(g), with unit.

Lemma 12.11. The space U(gC)
H ∩U(gC)h is a two-sided ideal in U(gC)

H .

Proof. This follows from the fact that h and U(gC)
H are commuting subspaces of U(gC).

In particular, it follows that the quotient on the right-hand side of (35) is an associative algebra
with unit. We will show that in fact it is isomorphic to the algebra D(G/H).

Lemma 12.12. Let Z ∈ U(g)H
k . Then there exists a unique partial differential operator rZ ∈

D(G/H)k such that π∗ ◦rZ = RZ ◦π
∗ on C∞(G/H). The map Z 7→ rZ defines an algebra homo-

morphism from U(g)H into D(G/H).

Proof. Uniqueness is obvious. We will establish existence. Let Z ∈U(gC)
H
k . Then there exists

an element u ∈ S(qC)H
k such that s(u)− Z ∈ U(g)h. It follows that Rs(u) = RZ on the space

π∗C∞(G/H) of right H-invariant functions in C∞(G). Let f ∈C∞(G/H), then we find that

RZπ
∗( f )(e) = Rs(u)π

∗( f )(e) = ∂u[exp∗π
∗]( f )(0) = Du f ([e]).

By left-invariance it now follows that RZπ∗ f (x) = Du f (π(x)) for all x ∈ G. This establishes the
result with rZ = Du. By the uniqueness of rZ the final assertion follows from the fact that Z 7→ RZ
is an algebra homomorphism U(gC)→ D(G).

It is immediate from the characterisation in Lemma 12.12 that the algebra homomorphism
Z 7→ rZ factors through an algebra homomorphism

r : U(gC)
H/U(gC)

H ∩U(gC)h→ D(G/H). (36)

Theorem 12.13. The map (36) is an isomorphism of algebras. Furthermore,

rs(u) = Du (37)

for all u ∈ S(qC)H .
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Proof. The equation follows from the proof of the previous lemma. Let D denote the algebra on
the left-hand side of (36). Then s̄ : S(qC)H → D is a linear isomorphism by Corollary 12.10 and
D : u 7→ Du is linear isomorphism S(qC)H → D(G/H) by Corollary 12.7. From the equation it
now follows that the algebra homomorphism r is bijective, hence an isomorphism of algebras.

We now specialize further to the case of Riemannian homogeneous space G/H on which G
acts by isometries. Here q ' T[e](G/H) is equipped with an Ad(H)-invariant positive definite
inner product β . We leave it to the reader to check that for x ∈ G the metric gx := dlx([e])−1∗β
on T[x](G/H) depends on x through its class [x] in G/H. Accordingly, we denote this metric by
g[x]. It is clear that [x] 7→ g[x] defines a G-invariant smooth Riemannian metric on G/H.

Lemma 12.14. Let X1, . . . ,Xn be an orthonormal basis for q relative to the inner product β .
Then the Laplace operator on G/H is given by

∆ = r(X2
1 + · · ·+X2

n ).

Proof. This is a somewhat elaborate exercise for the reader, see the exercise collection.

We finally consider the setting of a compact symmetric space K/H. Here K is a compact
Lie group and H is an open subgroup of the fixed point group Kσ of an involution σ of K. Let
q be the minus one eigenspace of the infinitesimal involution σ of g. Then the decomposition
k= h⊕q is Ad(H)-invariant so that the theory of this section applies.

We fix a positive definite inner product β on q which is Ad(H)-invariant and extend it to
a Riemannian metric on K/H. Then K/H with this metric is a compact symmetric space. We
consider the linear isomorphism u 7→ Du from S(qC)H onto D(K/H), see Corollary 12.7.

Lemma 12.15. Let K/H be a compact symmetric space as just specified.

(a) For each δ ∈ K̂ such that V H
δ
6= 0 there exists a character ξδ : D(G/H)→ C such that

D = ξδ (D) on R(K/H)[δ ].

(b) The algebra D(K/H) is commutative.

Proof. Let δ be as in (a). Then (V ∗
δ
)H is one dimensional, and is preserved by U(g)H . It follows

that there exists a unique algebra homomorphism ξδ : U(g)H → C such that

u = ξδ (u)I on (V ∗
δ
)H .

Let f ∈R(K/H)[δ ] then it follows that there exist elements v ∈Vδ and η ∈ (V ∗
δ
)H such that

f (x) = Tδ (v⊗η)(x) = (δ∨(x)η)(v), (x ∈ G).

We now note that η 7→ Tδ (v⊗η) intertwines δ∨ with R so that Ry f = Tδ (v⊗yη). Differentiating
with respect to y at y = e we find that RY f = Tδ (v⊗Y η), for Y ∈ g. Replying this principle
repeatedly, we see that this holds for Y ∈U(kC), hence for Y ∈U(kC)

H . This implies that

RY f = ξδ (Y )Tδ (v⊗η) = ξδ (Y ) f .
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Clearly, the character ξλ factors through a character ξλ of D and we find that rZ = ξλ (Z)I on
R(K/H)[δ ] for all Z ∈ D. Put ξλ = ξλ ◦r. Using that r is an isomorphism D→ D(G/H), we
obtain assertion (a).

Since R(K/H) is the direct sum of the spaces R(K/H)[δ ] on which D(G/H) acts by a
character, it follows that PQ = QP on R(K/H) for all P,Q ∈ D(/H). This identity extends to
P,Q ∈C∞(K/H) by density of R(K/H) in the latter space. 2 We thus obtain assertion (b).

Remark 12.16. In particular, it follows that all invariant differential operators on K/H commute
with the Laplace operator ∆.

13 The Harish-Chandra isomorphism
If g is a complex Lie algebra, we denote by Z(g) the center of the universal enveloping algebra
U(g). We note that

Z(g) =U(g)g := {Z ∈U(g) | [X ,Z] = 0 (∀X ∈ g)}.

Furthermore, if g is the complexification of the Lie algebra g0 of a connected real Lie group G0,
then it is readily seen that

Z(g) =U(g)G0 := {Z ∈U(g) | Ad(x)Z = 0 (∀x ∈ G0)}

In the rest of this section we assume that g is semisimple. Our goal is to determine the structure
of Z(g).

Lemma 13.1. Let V be an irreducible finite dimensional g-module. Then there exists a unique
character χ : Z(g)→ C such that Z acts by the scalar χ(Z) on V , for every Z ∈ Z(g).

Remark 13.2. The character χ = χV is called the infinitesimal character of V. We will later see
that V is completely determined by χ.

Proof. Let Z ∈ Z(g). Then for X ∈ g and v ∈V we have

ZXv−XZv = [Z,X ]v = 0.

Thus, the linear operator MZ : V → V,v 7→ Zv is equivariant. By Schur’s lemma, there exists a
unique scaler χ(Z) such that MZ = χ(Z)IV . The map Z 7→MZ is an algebra homomorphism from
Z(g) to End(V ). This implies that χ : Z(g)→C is an algebra homomorphism, i.e., a character of
Z( f g).

We will now determine the action of Z(g) on g-modules with a cyclic highest weight vector.
Let h⊂ g be a Cartan subalgebra, R = R(g,h) the associated root system, R+ a positive system.

2this will be proved at a later stage
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Let S denote the associated set of simple roots, and W the Weyl group of R. We write g+ for the
sum of the positive root spaces and g− for the sum of the negative root spaces. Then

g= g−⊕h⊕g+. (38)

The subalgebra b := h⊕ g+ is called the standard Borel subgroup determined by R+. From the
direct sum decomposition it follows by the PBW theorem that

U(g)'U(g−)⊗U(h)⊗U(g+).

Lemma 13.3. Let Z ∈ Z(g). Then there exists a unique element Z0 ∈U(h) such that Z−Z0 ∈
U(g)g+.

Proof. From the given decomposition of the universal enveloping algebra, it follows that there
exists a unique element Z0 ∈U(h) such that

Z−Z0 =U⊕V ∈ g−U(g−)U(h)⊕U(g)g+. (39)

Since h centralizes Z and Z0 if follows that h centralizes Z−Z0. The adjoint action by h leaves
the decomposition (38) and hence also the decomposition in (39) invariant. It follows that h
centralizes U. By applying the PBW we see that each non-zero element of U(g−)g− can be
written as a sum of linearly independent terms X1 · · ·Xn with n ≥ 1, X j ∈ gα j and α j ∈ −R+.
Such a term is a weight vector for h with non-zero weight α1 + · · ·+αn. From this we conclude
that the centralizer of h in g−U(g−)U(h) equals 0. Hence, U = 0.

Since h is abelian we may use the symmetrizer to canonically identify S(h) with U(h). In
view of the above lemma, we may now define the map

8
γ : Z(g)→ S(h) (40)

by Z− 8γ(Z) ∈U(g)g+, for Z ∈ Z(g).

Lemma 13.4. The map (40) is a homomorphism of algebras.

Proof. Let Z,W ∈ Z(g) and write Z = Z0 + Z1 and W = W0 +W1, with Z0 = 8γ(Z) and W0 =
8γ(W ). Then Z1W =WZ1 ∈U(g)g+ so that

ZW = (Z0 +Z1)W ∈ Z0W +U(g)g+.

We thus find that ZW ∈ Z0W0 +Z0W1 +U(g)g+ ⊂ Z0W0 +U(g)g+. This implies that 8γ(ZW ) =
Z0W0 =

8γ(Z)8γ(W ).

If λ ∈ h∗ then λ : h→ C is linear hence extends to an algebra homomorphism (or character)
λ : S(h)→ C. Under the canonical embedding h ⊂ P(h∗) the linear functional λ is given by
the evaluation map H 7→ H(λ ). It follows that the character λ : S(h)→ C corresponds to the
evaluation map p 7→ p(λ ), P(h∗)→ C.

In view of the canonical identification S(h) ' P(h∗) we may thus view 8γ(Z), for Z ∈ Z(g),
as a polynomial function on h∗. This polynomial function is denoted by λ 7→ 8γ(Z,λ ).
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Lemma 13.5. Let V be a g-module with cyclic highest weight vector of weight λ . Then each
Z ∈ Z(g) acts on V by the scalar 8γ(Z,λ ).

Proof. Let vλ be a non-zero highest weight vector. If H ∈ h then Hv = λ (H)v. This equality
extends to all H ∈ S(h). In particular, for Z ∈ Z(g) we have 8γ(Z)v = 8γ(Z,λ )v. Since Z− 8γ(Z)∈
U(g)g+ and g+v = 0 the result follows.

Remark 13.6. In particular, the above lemma describes the action of Z(g) on the standard cyclic
module Z(λ ).

If α ∈ R then by Hα we denote the unique element in [gα ,g−α ] such that α(Hα) = 2. In
terms of this element, the reflection sα : h∗→ h∗ is given by λ 7→ λ −λ (Hα)α. It follows that
the weight lattice is characterised by

Λ = {λ ∈ h∗ | λ (Hα) ∈ Z,(∀α ∈ R)}.

For every simple root α ∈ S we define the element λα ∈ h∗ by by

λα(Hα) = 1, λα(Hβ ) = 0 for β ∈ S\{α}. (41)

Then λα ∈ Λ+, and it is readily seen that

Λ
+ =

⊕
α∈S

Nλα .

In terms of the elements Hα we define the following real form of h,

hR := ∑
α∈R

RHα .

It is readily seen that hR equals the space of points in h on which all roots of R attain a real value.
If α ∈ R there exist Xα ∈ gα and Yα ∈ g−α such that Hα ,Xα ,Yα is a standard sl(2)-triple. The

linear span of these elements constitutes the subalgebra

sα := g−α ⊕CHα ⊕gα

of g. We recall that there exists a interior automorphism ϕα of g that normalizes h and satisfies

ϕ|h = sα .

Lemma 13.7. Let π : g→ End(V ) be a finite dimensional irreducible representation of π. Then
for each ϕ ∈ Aut(g)e the representation ϕ∗π = π ◦ϕ is equivalent to π.

Proof. The representation ϕ∗π is irreducible and depends continuously on g. For each H ∈ h
the eigenvalues of π(ϕ(H)) depend continuously on ϕ and belong to the at most countable set
{λ (H) | λ ∈ Λ}. It follows that the set of these eigenvalues is independent of ϕ ∈ Aut(ϕ). This
implies that the set Λϕ of weights of ϕ∗π is independent of ϕ. It follows that the highest weight
of ϕ∗π is independent of ϕ. As ϕ∗π is irreducible, this implies that all ϕ∗π are equivalent.
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Lemma 13.8. Let V be a finite dimensional irreducible representation of g. Then the set ΛV of
weights of V is invariant under the Weyl group W. Furthermore, if µ ∈ΛV then the weight spaces
Vµ and Vwµ have the same dimension.

Proof. The equivalence class of V is determined by the highest weight λ of V.
Denote by π : g→ End(V ) be the Lie algebra homomorphism given by π(X)v = Xv for X ∈ g

and v ∈V. Let α ∈ R and let ϕα be an interior automorphism of g such that ϕα normalizes h and
restricts to sα on it (for its existence, see [Ban10, Lemma 36.7]. Let Λ(π ′) denote the set of
weights for the representation π ′ = ϕ∗π(H). For µ ∈ Λ(π ′) we denote the associated π ′-weight
space by V ′µ . The representation π ′ is equivalent to π. Hence Λ(π ′) = ΛV and if µ ∈ ΛV then
dim(Vµ) = dim(V ′µ).

On the other hand, π ′(H) = π(sα(H)) for H ∈ h. Let µ ∈ ΛV then it follows that Vµ =V ′sα µ .
Hence sσ µ ∈ Λ(π ′) = ΛV and

dim(Vsα µ) = dim(V ′sα µ) = dim(Vµ).

As the reflections sα generate the Weyl group, the result now follows.

Lemma 13.9. Let λ ∈ Λ+, α a simple root and µ := sα(λ )−α. Then there exists a non-zero
g-equivariant map Z(µ)→ Z(λ ).

Proof. Let v̄λ denote the image of 1 in Z(λ ) and let vλ denote the image of 1 in V (λ ), the unique
irreducible quotient of Z(λ ).

The irreducible quotient V (λ ) is finite dimensional and of highest weight λ . Let Hα ,Xα ,Yα

be a standard triple as above. Then vλ is a weight vector for Hα of weight λ (Hα). Since Xαvλ =
0, it follows from the representation theory of sα that the vectors Y k

αvλ are non-trivial for k =
0, . . . ,m where m= λ (Hα); furthermore, these vectors become trivial for k≥m+1. The h-weight
of Y m

α vλ equals λ −mα = sα(λ ).
By application of the PBW theorem one sees that the elements Y k

α v̄λ are non-zero in Z(λ ).
By induction one can show that XαY k+1

α v̄λ = ckY k
α v̄λ for uniquely determined constants ck ∈ C.

Taking the images for k = m in V (λ ) one sees that cm = 0. This implies that

XβY m+1
α v̄λ = 0

for β = α. If β is a simple root different from α it follows that β −α is not a root so that Xβ

and Yα commute. This implies that the above equation is true for every simple root β . Therefore,
the vector v̄µ := Y m+1

α v̄λ in Z(λ ) is non-zero, of weight µ and annihilated by g+. It follows that
the map U(g)→ Z(λ ), U 7→ Uv̄µ factors through a non-zero U(g)-intertwining map Z(µ)→
Z(λ ).

We define δ ∈ h∗ to be half the sum of the positive roots, i.e.,

δ := ∑
α∈R+

α. (42)

Lemma 13.10. Let α be a simple root in R+. Then sαδ = δ −α.
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Proof. As sα is simple, kerα is a highest dimensional wall of the positive Weyl chamber C+

associated with R+. Therefore the set of roots positive on the neighboring chamber sα(C+)
equals (R+ \{α})∪{−α}. It follows that sα(R+) = (R+ \{α})∪{−α}. Hence,

sαδ =
1
2 ∑

α∈sα (R+)

α = δ −α.

Corollary 13.11. In terms of the fundamental weights, δ is given by

δ = ∑
α∈S

λα . (43)

In particular, δ ∈ Λ+.

Proof. Let α ∈ S. Then δ −δ (Hα) = sα(δ ) = δ −α by Lemma 13.10. We deduce that δ (Hα) =
−1 for each α ∈ S. In view of (41) this implies (43).

Corollary 13.12. Let Z ∈ Z(g). Then the polynomial function λ 7→ 8γ(Z,λ −δ ) is W-invariant.

Proof. Denote the polynomial function by q and let α be a simple root. We will complete the
proof by showing that q(sαν) = q(ν) for all ν ∈ h∗ (recall that W is generated by the simple
reflections).

Let λ ∈ Λ+ and put µ = sαλ −α. Then it follows that Z acts on Y (µ) by the same scalar as
on Y (λ ). Hence, 8γ(Z,λ ) = 8γ(Z,µ). This implies that

8
γ(Z,(λ +δ )−δ ) = 8

γ(Z,sα(λ +δ )− sα(δ )−α) = 8
γ(Z,sα(λ +δ )−δ ).

Hence, q(ν) = q(sαν) for all ν ∈Λ++δ . It follows that the polynomial Q : ν 7→ q(ν)−q(sαν) is
zero on Λ++δ . Via the basis {λα | α ∈ S} of fundamental weights, we may identify h∗ with Cr,
where r = |S|. Then Λ++δ corresponds to Zr

+ and consequently, Q corresponds to a polynomial
which vanishes on Λ+. This implies that Q = 0. Hence, q(ν) = q(sαν) for all ν ∈ h∗.

We define the homomorphism γ : Z → S(h) by γ(Z,λ ) = 8γ(Z,λ − δ ) for all Z ∈ Z(g) and
λ ∈ h∗. Then it follows that γ is an algebra homomorphism from Z(g) to S(g)W .

Our first goal is to prove that γ is surjective. In the proof of this result we will compare γ

with its analogue for S(g).
Let

S(g)g := {u ∈ S(g) | ad(X)u = 0,∀X ∈ g}.

Since ad(g) preserves the gradation of S(g) we see that S(g)g is a graded subalgebra of S(g).
Furthermore, by ad(g)-equivariance, the symmetrizer s restricts to an isomorphism s̄ : I(g)→
Z(g) of filtered linear spaces. Here Z(g) is equipped with the filtration by order from U(g).
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In view of the decomposition (38) we may define a projection map p : g→ h with kernel
g−⊕g+. This map has a unique extension to an algebra homomorphism p : S(g)→ S(h). From
the decomposition (38) we see that

S(g)' S(g−)⊗S(h)⊗S(g+).

This implies
S(g)' S(h)⊕S(g)(g−⊕g+). (44)

It is now readily seen that p equals the projection S(g)→ S(h) for this decomposition.
Any linear automorphism ϕ : g→ g extends to an algebra automorphism S(ϕ) : S(g)→ S(g).

Lemma 13.13. Let ϕ be an interior automorphism of g. Then

(a) the induced automorphism S(ϕ) centralizes S(g)g;

(b) the algebra homomorphism p maps S(g)g into S(h)W .

Proof. If X ∈ g then it follows that

S(eadX) = eS(adX) = I on I(g).

The group Int(g) of interior automorphisms is generated by the automorphisms eadX . Hence, (a)
is valid.

For (b) assume that w ∈W. There exists an interior automorphism ϕw of g which restricts to
w on h, see [Ban10, Lemma 36.7]. It follows that ϕw preserves the decomposition (44) so that

p◦S(ϕw) = S(ϕw)◦ p = S(w)◦ p.

Since S(ϕw) equals the identity on I(g), it follows that

p = S(w)◦ p

on I(g). This proves (b).

Lemma 13.14. The algebra homomorphism p : S(g)g→ S(h)W is bijective.

Proof. We consider the algebra P(g) of polynomial functions g→ C and the algebra P(h) of
polynomial functions h→C. The restriction map r : f 7→ f |h defines an algebra homomorphism
P(g) → P(h). Let G denote the group of interior automorphisms of g. Then by Chevalley’s
restriction theorem, see the appendix to this section, the map r maps P(g)G isomorphically onto
P(h)W .

The Killing form B of g is non-degenerate and G-invariant, hence B : X 7→ B(X , ·) defines a
linear isomorphism g→ g∗. This isomorphism lifts to an isomorphism B : S(g)→ S(g∗)' P(g).
The restriction of B to h is non-degenerate as well, hence defines a linear isomorphism b : h→ h∗,
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which in turn lifts to a linear isomorphism b : S(h)→ S(h∗)' P(h). We claim that the following
diagram commutes,

S(g) B−→ P(g)
p ↓ ↓ r

S(h) b−→ P(h)

To establish the claim, let X ∈ g and write X = X0 +X1, with X0 ∈ h and X1 ∈ g−+ g+. Then
rB(X) = rB(X0) since B(X1,h) = 0. Furthermore, rB(X0) = b(X0) = b(p(X)) so that rB(X) =
Bp(X) and the claim follows.

By G-equivariance of the Killing form and W -equivariance of its restriction to h, it follows
that B maps S(g)G isomorphically onto P(g)G and that b maps S(h)W isomorphically onto P(h)W .
It now follows from the first part of the proof that p maps S(g)g = S(g)G bijectively onto S(h)W .

We now come to the main result of this section, which is due to Harish-Chandra.

Theorem 13.15. The map γ : Z(g)→ S(a)W is an isomorphism of filtered algebras.

Proof. We equip S(g) and U(g) with the standard filtrations. Then the symmetrizer s : S(g)→
U(g) becomes an isomorphism of filtered linear spaces. The subspaces S(g)g ⊂ S(g) and Z(g)⊂
U(g) are equipped with the induced filtrations. Then by ad(g)-equivariance of the symmetrizer it
follows that s restricts to an isomorphism s : S(g)g→ Z(g) of filtered linear spaces. We consider
the following diagram, which need not commute,

Z(g)
γ−→ S(h)W

s ↑ ↑ I

S(g)g
p−→ S(h)W

All maps in the diagram preserve the filtrations. Furthermore, the vertical maps are isomorphisms
of filtered spaces, whereas the map p at the bottom is surjective.

Let k ≥ 0 and U ∈ S(g)gk . We claim that we have γ ◦s(U)− p(U) ∈ S(h)Wk−1 (we agree that
the latter space is zero for k = 0). If k = 0,U is constant, and the claim is obvious. Thus, assume
k ≥ 1.

In accordance with the decomposition (44) we write U = U0 +U1, with U0 ∈ S(h)k and
U1 ∈ g−S(g−)k−1⊕U(g)k−1g

+. If Y ∈ g− and X ∈ S(g−) then s(Y X)− s(Y )s(X) ∈U(g)k−1 and
we see that s(Y X) ∈ g−U(g−)k−1 +U(g−)k−1. Thus

s(g−S(g−)k−1)⊂ g−U(g−)+U(g−)k−1

By a similar argument we see that

s(S(g)k−1g
+)⊂U(g)g++U(g)k−1.

It follows from these inclusions that

s(U) = s(U0)+ s(U1) ∈ s(U0)+g−U(g−)+U(g)g++U(g)k−1.
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This implies that
8
γ(s(U)) ∈U0 +S(h)k−1.

Since γ = T−δ ◦
8γ, where T−δ : S(h)→ S(h) preserves the filtrations it follows that

γ(s(U)) ∈U0 +S(h)k−1 = p(U)+S(h)k−1.

This establishes the claim.
The bottom map in the above diagram is an isomorphism of graded linear spaces. It now

follows from the claim that the diagram leads to the following commutative diagram of graded
maps and graded linear spaces

grZ(g)
grγ−→ S(h)W

grs ↑ ↑ I

S(g)g
p−→ S(h)W

Since the left, right and bottom maps are linear isomorphisms, it follows that grγ is a linear
isomorphism. This implies that γ is an isomorphism of filtered linear spaces. If we combine this
with the established fact that γ is a homomorphism of algebras, the result follows.

Lemma 13.16. The isomorphism map γ : Z(g)→ S(h)W is independent of the choice of positive
roots.

Proof. We leave the proof to the reader, see exercises.

The map γ is both called the canonical isomorphism and the Harish-Chandra isomorphism.
It plays a fundamental role in the representation theory of real semisimple Lie groups.

A character of S(h∗)W is by definition a homomorphism S(h)W → C of algebras with unit.
The set of such homomorphisms is denoted by [S(h)W ]∧.

For λ ∈ h∗ we define the character ελ of S(h)W ' P(h∗)W by ελ (p) = p(λ ), for p ∈ P(h∗)W .

Lemma 13.17. The map λ 7→ ελ induces a bijection

h∗/W '−→ [S(h)W ]∧. (45)

Proof. We will first show that ε : h∗→ [S(h)W ]∧ is surjective. Let ξ : P(h∗)W → C be a char-
acter. Then M := kerξ is a maximal ideal in P(h∗)W . It is now readily seen that I := P(h∗)M
is an ideal in P(h∗). From 1 ∈ I it would follow from averaging over the W -action that 1 ∈
P(h∗)WM⊂M, contradiction. We conclude that I is a proper ideal, hence contained in a max-
imal ideal M′ of P(h∗). It is well known that such a maximal ideal corresponds to a point λ of
the affine space h∗, i.e, M′ = {p ∈ P(h∗) | p(λ ) = 0}. It follows that M ⊂ kerελ . Since M is
maximal, and ελ proper, we see that M= kerελ . It follows that ελ and ξ have the same kernel,
hence both factor to a character of the unital algebra C. Since C has only one character, it follows
that ξ = ελ .

It is now clear that ε defines a surjective map h∗ → [S(h∗)]H , which factors through the
canonical projection h∗→ h∗/W. We will finish the proof by showing that the resulting map is
injective. For this, assume that λ ,µ ∈ h∗ and assume that ελ = εµ . Assume that µ 6=Wλ . Then
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there exists a X ∈ h such that µ(X) = 0 and wλ (X) 6= 0 for all w ∈W. Define P := ∏w∈W (wX),
then it follows that P ∈ S(h)W and P(µ) = 0 6= P(λ ), contradiction. Hence, W µ =Wλ and the
injectivity of the map (45) follows.

For λ ∈ h∗ define the character χλ of Z(g) by

χλ (Z) = γ(Z,λ ) (Z ∈ Z(g).

Corollary 13.18. The map λ 7→ χλ induces a bijection

h∗/W '−→ Z(g)∧. (46)

Proof. This follows from combining Lemma 13.17 with Theorem 13.15.

We recall the definition of infinitesimal character from Remark 13.2.

Corollary 13.19. Let V,V ′ be irreducible g-modules with infinitesimal characters χV and χV ′ .
Then

V 'V ′ ⇐⇒ χV = χV ′

Proof. The implication from left to right is obvious. Conversely, assume that V has highest
weight λ and that V ′ has highest weight λ ′. Then it follows that χV (Z) = γ(Z,λ + δ ) and that
χV ′(Z) = γ(Z,λ ′+ δ ) for all Z ∈ Z(g). From the previous corollary, it now follows that λ + δ

and λ ′+δ are conjugate under the Weyl group. Since both elements are strictly positive on Hα

for α simple in R+, it follows that λ +δ = λ ′+δ hence λ = λ ′. This implies that V 'V ′.

Finally, we consider the situation of a connected compact semisimple group K with Lie
algebra k. We consider the algebra isomorphism X 7→ RX from U(kC) onto the algebra D(K)
of left invariant differential operators on K. It is readily checked that K acts on D(K) by

xḊ = r∗x ◦D◦r
−1∗
x , (D ∈ D(K), x ∈ K).

Furthermore, the isomorphism R : U(kC)→D(K) is equivariant for this action of K on the image
space and the adjoint action of K on U(kC) (we leave it to the reader to prove this, see exercises).
Since Z(kC) =U(kC)

K, it follows that R maps Z(kC) isomorphically onto the algebra D(K)K of
bi-invariant differential operators on K.

For a character χ ∈ Z(kC)∧ we define the joint eigenspace

E (K,χ) := { f ∈C∞(K) | RZ f = χ(Z) f , ∀Z ∈ Z(g)}.

Lemma 13.20. Let δ ∈ K̂ and let χ be the infinitesimal character of δ∨ (i.e., of the associated
infinitesimal representation of kC ). Then

E (K,χ) = R(K)δ . (47)
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Proof. We recall that R(K)δ is equal to the image of the map Tδ : Vδ ⊗V ∗
δ
→C∞(K) given by

Tδ (A)(x) = tr(δ (x)−1A)(x),

for A ∈ End(Vδ ) ' Vδ ⊗Vδ ∗. This map intertwines the K×K representations δ ⊗̂δ∨ and L⊗R.
From for A ∈ End(Vδ ) it follows that

RZTδ (A) = Tδ ([1⊗δ
∨(Z)]A) = χ(Z)Tδ (A), (Z ∈ Z(kC)),

hence Tδ (A) ∈ E (K,χ). If δ ′ ∈ K̂ is not equivalent to δ , then the associated infinitesimal char-
acter χ ′ of (δ ′)∨ is different from χ, in view of Corollary 13.19. It follows that E (K,χ)∩
E (K,χ ′) = 0. Hence,

R(K)K ∩E (K,χ) = R(K)δ .

We will finish the proof by showing that the first of these spaces is dense in E (K,χ) for the
supnorm on K. Then by finite dimensionality of R(K)δ it follows that (47). To establish the
density, let f ∈ E (K,χ). Then for all ϕ ∈R(K)K and Z ∈ Z(kC) we have

RZ(ϕ ∗ f ) = RZ ◦L(ϕ) f = L(ϕ)◦RZ f = χ(Z)ϕ ∗ f

so that ϕ ∗ f ∈ E (K,χ). There exists a sequence ϕ j in R(K) such that ϕ j ∗ f → f uniformly on
K, for j→ ∞. Since ϕ j ∗ f ∈R(K)K ∩E (K,χ), density follows.
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14 Appendix: Chevalley’s theorem
In this section we assume that g is a complex semisimple Lie algebra, and that h is a Cartan
subalgebra. Let P(g) denote the algebra of polynomial functions g→C. Then the natural action
of Int(g) on g induces a representation π of Int(g) in P(g) given by

π(ϕ)p = p◦ϕ−1, (p ∈ P(g),ϕ ∈ Int(g)).

The homogeneous components Pk(h) are finite dimensional subspaces, on which the represena-
tion π restricts to a smooth representation πk. Moreover, for each ϕ ∈ Int(g), the map π(ϕ) is an
automorphism of the graded algebra P(g).

Let π∗ be the associated representation of Der(g) = Lie(Int(g)) in P(g) defined by π∗ =
dπk(I) on Pk(g). Then π∗(δ ) is a derivation of P(g)k, for every δ ∈Der(g). It follows that π∗ ◦ ad
is a representation of g in P(g) by derivations. Since ad : g→ Der(g) is an isomorphism of Lie
algebras, it follows from considering the representations on the finite dimensional homogeneous
components that

P(g)g = P(g)Int(g).

Before we proceed, we note that on each element ξ ∈ h∗ the representation π∗ ◦ ad is given by

[π∗ ◦ ad](X) =−ξ ◦ ad(X) = ad∨(X)ξ .

Thus, the representation π∗ ◦ ad on P(g)' S(g∗) is induced by the coadjoint representation of g
in g∗.

The action of the Weyl group W = W (g,h) on h naturally induces a representation of W in
P(h), for which each homogeneous component Pk(h), for k≥ 0, is invariant. This action is given
by the formula

wp(H) = p(w−1H), (H ∈ h),

for w ∈W and p ∈ P(h).
If w ∈W, then there exists a ϕ ∈ Int(g) which normalizes h and restricts to w on this space.

It follows that
p ∈ P(g)g⇒ p|h ∈ P(h)W .

Our goal in this section is to prove the following result, due to Chevalley.

Theorem 14.1. The restriction map p 7→ p|h defines a isomorphism of algebras

P(g)g '−→ P(h)W .

Proof. Clearly, the given restriction map is a homomorphism of algebras. We will show that the
map is bijective, and start with the injectivity.

Let R be the root system of h in g, and let hreg be the associated set of regular points of h.
Thus,

hreg = {H ∈ h | α(H) 6= 0,∀α ∈ R}.
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We will first establish the claim that the natural action map F : Int(g)×hreg→ g, given by

F(ϕ,H) = ϕ(H)

has surjective differential everywhere. By equivariance, it suffices to prove this at each point
(I,H0), for H0 ∈ hreg. Since g is semisimple, the map ad : g→ End(g) is a linear isomorphism
from g onto the Lie algebra Der(g) of Int(g). Let X ∈ g and H ∈ h, then

dF(I,H0)(ad(X),H) =
d
dt

∣∣∣∣
t=0

et ad(X)(H0 + tH) = [X ,H0]+H = H− ad(H0)(X).

Since H0 is regular, the map ad(H0) maps the direct sum⊕
α∈R

gα

bijectively onto itself. Hence h+ ad(H0)(g) = g by the root space decomposition. This shows
that dF(I,H0) is surjective.

It follows from the above claim that the image Ω := F(g×hreg) is a non-empty open subset
of g. Now assume that p ∈ P(g)g has zero restriction to h. Then p is invariant under Int(g) and it
follows that p = 0 on the non-empty open set Ω. This implies that p = 0.

Next, we turn to the surjectivity. We fix a choice R+ of positive roots for R := R(g,h). Let
λ1, . . . ,λr be an ordering of the corresponding fundamental weights. Then the elements λ1, . . . ,λr
of P(h) are algebraicially independent over C and we have

P(h) = C[λ1, . . . ,λr]. (48)

It is readily verified that the polyomials of the form (∑ j c jλ j)
k, with c j ∈ N and k ∈ N span (48)

as a linear space. Equivalently, this means that the polyomial functions λ k, for λ ∈Λ+ and k∈N,
span P(h) as a linear space. Now consider the W -equivariant projection pr : P(h)→ P(h)W . Then
it follows that the polynomials pr(λ k) span P(h)W . Evidently, the projection map pr : P(h)→
P(h)W is given by averaging over the action of W so that

pr(λ k) =
1
|W | ∑

w∈W
(wλ )k.

Fix k≥ 0. Then it suffices to show that for every λ ∈Λ+ there exists a polynomial p ∈ Pk(g)g so
that

p|h = pr(λ k).

We will prove this by induction on the partial ordering � on Λ+ given by

µ � λ ⇐⇒ λ −µ ∈ NR+.

Here NR+ denotes the subset of h∗ consisting of elements given by a sum of the form ∑α∈R+ nαα,
with coefficients nα ∈ N.
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Let λ ∈Λ+, and assume the assertion has already been established for elements µ ∈Λ+ with
µ ≺ λ . Let V :=V (λ ) be the irreducible finite dimensional representation of g of highest weight
λ and let ΛV be its set of weights. Then the function P : g→ C given by

P(X) = tr(Xk : V →V )

is readily seen to belong to P(g)g. Furthermore, using the decomposition of V into weight spaces,
we see that its restriction to h is given by

P|h = ∑
µ∈ΛV

dim(Vµ)µ
k.

If µ ∈ ΛV then wµ ∈ ΛV and dim(Vwµ) = dimVµ for every w ∈W. Since W (Λ+) = Λ, it follows
that

P|h = ∑
µ∈λV∩Λ+\{λ}

dim(Vµ)pr(µk)+pr(λ k). (49)

We now observe that all elements µ ∈ΛV ∩Λ+ \{λ} satisfy µ ≺ λ . By the induction hypothesis
it follows that the sum on the right-hand side of (49) is a polynomial of the form Q|h, with
Q ∈ P(g)g. It follows that pr(λ k) equals the restriction to h of the polynomial P−Q ∈ P(g)g.
The proof is complete.
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15 Real groups and Cartan involutions
We assume that g is a real semisimple Lie algebra. By an involution of g we mean an automor-
phism of g such that σ2 = I. If σ is an involution of g, then

g= g+⊕g−, (50)

where g± are the plus and minus one eigenspaces, respectively. Since σ is an automorphism, it
follows that the Killing form B of g is invariant under σ , i.e.,

B(σX ,σY ) = B(X ,Y ), (X ,Y ∈ g).

This implies that g+ ⊥ g−, relative to the Killing form. Furthermore, since σ preserves the Lie
brackets, it is readily seen that

[g+,g+]⊂ g+, [g+,g−]⊂ g−, [g−,g−]⊂ g+.

In particular, g+ is a subalgebra which stabilizes the decomposition (50). The following notion
will turn out to be crucial for understanding the structure of g and Aut(g).

Definition 15.1. A Cartan involution of g is an involution σ : g→ g such that the Killing form
B is positive definite on g+ and negative definite on g−.

Traditionally, a Cartan involution is denoted by θ . The associated eigenspaces are denoted
by k := g+ and p := g−. Then k⊥ p relative to the Killing form and k is a subalgebra of g which
stabilizes the decomposition

g= k⊕p.

The following exhibits the standard example of a Cartan involution.

Example 15.2. Let n ≥ 2. The Lie algebra sl(n,R) of the special linear group SL(n,R) equals
the space of A∈Mn(R) with trA= 0, equipped with the commutator bracket. It is readily verified
that the map

θ : X 7→ −XT

is an automorphism of sl(n,R). The associated eigenspaces are given by

k= {X ∈ sl(n,R) | XT =−X}= so(n,R), p= {X ∈ sl(n,R) | XT = X}.

We note that
u := k⊕ ip

is the compact real form su(n) of the complexified Lie algebra sl(n,C). The complex Killing
form BC restricts to the Killing form Bu of u which is negative definite. On the other hand, BC
restricts to the Killing form B on sl(n,R). Thus, for X ∈ k\{0} we have

B(X ,X) = BC(X ,X) = Bu(X ,X)< 0.

On the other hand, for Y ∈ p\{0} we have

−B(Y,Y ) = BC(iY, iY ) = Bu(iY, iY )< 0.

It follows that B < 0 on k and B > 0 on p. Hence, θ is a Cartan involution.
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Another related example comes from the theory of compact symmetric spaces.

Example 15.3. Let u be a compact semisimple Lie algebra, and σ an involution of u. Let
u= k⊕q the associated eigenspace decomposition for the eigenvalues +1 and −1, respectively.
It is now readily verified that

g := k⊕ iq

is a real form of uC. The complex linear extension σC of σ to uC restricts to an involution θ of
g. By a similar reasoning as in the previous example, it follows that θ is a Cartan involution. In
particular, we see that the −1-eigenspace p of θ is given by p= iq.

On the other hand, if g is a real semisimple Lie algebra with Cartan involution θ and associ-
ated decomposition g= k⊕p, then it is readily verified that

u := k⊕ ip

is a real form of the complex semisimple algebra gC, on which the Killing form is negative
definite. Thus u is compact, and equipped with the involution σ = θC|u. The associated decom-
position into eigenspaces is given by u= k⊕q, where q= ip.

The one to one correspondence (u,k)↔ (g,k) leads to the so called duality of Riemannian
symmetric spaces of the compact type and those of the non-compact type.

If θ is a Cartan involution of g and ϕ ∈ Aut(g), then the conjugate ϕ ◦θ ◦ϕ−1 is a Cartan
involution as well. The following result ensures that every real semisimple Lie algebra has a
Cartan involution.

Proposition 15.4. Let g be a real semisimple Lie algebra. Then g has a Cartan involution. Any
two Cartan involutions are conjugate by an element of Int(g).

Proof. For a proof we refer the reader to [Kna02, Cor. 6.18].

From now on we will assume that g is a real semisimple Lie algebra, equipped with a Cartan
involution θ . We define the bilinear form 〈 · , · 〉 on g by

〈X , Y 〉=−B(X ,θY ). (51)

Lemma 15.5. The form (51) is a positive definite inner product, for which the decomposition
g= k⊕p is orthogonal. Furthermore, with respect to this inner product,

(a) ad(X) ∈ End(g) is anti-symmetric for X ∈ k;

(b) ad(X) ∈ End(g) is symmetric for X ∈ p;

Proof. Since B is invariant for the involution θ , the defined form is symmetric. Let X ∈ k and
Y ∈ p, then

〈X +Y , X +Y 〉=−B(X +Y,X−Y ) =−B(X ,X)+B(Y,Y ).

Since B is negative definite on k and positive definite on p, it follows that 〈 · , · 〉 is positive definite
on g. The orthogonality of k and p follow from the similar orthogonality for B. It remains to show
(a) and (b). Let X ∈ g, then for Y,Z ∈ g we have

〈ad(X)Y , Z〉=−B(ad(X)Y,θZ) = B(Y, ad(X)θZ) =−〈Y , ad(θX)Z〉
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so that
(adX)T =−ad(θX). (52)

Assertion (a) and (b) now follow.

Assume that G is a connected semisimple Lie group with Lie algebra g. Let K be the con-
nected Lie subgroup of G with Lie algebra k.

Lemma 15.6. The map K×p→ G, (k,X) 7→ k exp(X) has bijective differential everywhere.

Proof. Denote the given map by ϕ, let X ∈ p and put x = expX . Then by left K-equivariance, it
suffices to prove that S := drx(e)−1dϕ(e,X) : k×p→ g is bijective. Let Y ∈ p and U ∈ k. Then

S(U,Y ) =
d
dt

∣∣∣∣
t=0

exp(tU)exp(X + tY )exp(−X) =U +TX(Y ),

where

TX =
eadX − I
ad(X)

:=
∞

∑
k=1

1
k!

ad(X)k−1.

Indeed, this follows by application of [Ban10, Lemma 8.2] It suffices to show that S is injective
k×p→ g. For this it suffices to show that the composition

prp ◦TX |p : p→ p

is injective, with prp : g→ p the projection along k. Since the odd powers in the power series for
TX map p to k it follows that

prp ◦TX |p =
∞

∑
n=0

1
(2n+1)!

An,

where A = (adX)2|p. Since ad(X) is symmetric, it follows that ad(X)2 is symmetric with non-
negative eigenvalues. As ad(X)2 leaves p invariant, it follows that A|p is an endomorphism of
p which diagonalizes with non-negative eigenvalues. Let a≥ 0 be such an eigenvalue, and p(a)
the corresponding eigenspace for A, then prp ◦TX = t(a)I on p(a), with

t(a) =
∞

∑
n=0

1
(2n+1)!

an ≥ 1.

This implies that prp ◦TX |p : p→ p diagonalizes with non-zero eigenvalues, hence is bijective.

Let sn be the space of symmetric matrices in sl(n,R), and let P denote the set of positive
definite symmetric matrices in SL(n,R).

Lemma 15.7. The set P is a closed submanifold of SL(n,R) and exp : sn → SL(n,R) is an
embedding onto P.
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Proof. If X is a symmetric matrix in Mn(R), then the set σ(X) of eigenvalues of X is contained
in R. For every λ ∈ σ(X) we denote by PX ,λ the orthogonal projection onto the eigenspace
ker(X−λ I). Then

X = ∑
λ∈σ(X)

λPX ,λ .

The exponential of X is given by

expX = eX = ∑
λ∈σ(X)

eλ PX ,λ .

If Y ∈Mn(R) is symmetric, then exp(X) = exp(Y ) implies

∑
λ∈σ(X)

eλ PX ,λ = ∑
µ∈σ(Y )

eµPY,µ .

Since the exponential function t 7→ et is injective, this is readily seen to imply that X = Y. It
follows from this that the map exp : sn → SL(n,R) maps sn injectively into P. If x ∈ P, then
spec(x)⊂]0,∞[. Put

X := ∑
λ∈σ(x)

log(λ )Px,λ ,

then it follows that X ∈ sn and exp(X) = x. Thus, exp : sn → P is a bijection. It follows from
Lemma 15.6 that exp is an immersion. If ‖X‖op→∞, then it follows that maxσ(X)→∞, so that
maxσ(expX) = emaxσ(X)→ ∞ and ‖x‖op→ ∞. This implies that the map exp : sn→ SL(n,R)
is proper. It follows that exp : sn→ SL(n,R) is an embedding onto a closed submanifold. This
submanifold is exp(sn) = P.

Lemma 15.8. Let sn denote the space of n×n symmetric matrices of trace zero. Then the map

ϕ : SO(n)× sn→ SL(n,R), (k,X) 7→ k expX

is a diffeomorphism onto.

Proof. It follows from Lemma 15.6 that ϕ is a local diffeomorphism. Thus, it suffices to show
that ϕ is bijective.

We first show that ϕ is injective. Assume that x = k1 exp(X1) = k2 exp(X2), for k j ∈ SO(n)
and X j ∈ sn. Then xTx = exp(2X1) = exp(2X2), and from Lemma 15.7 we conclude that X1 = X2
and hence also k1 = k2. This establishes the injectivity.

For the surjectivity, let x ∈ SL(n,R). Then xTx belongs to the set P of positive definite sym-
metric matrices in SL(n,R) hence can be written as exp(2X) for some X ∈ sn(R). It follows
that

exp(−X)xT = expXx−1.

Put k = xexp(−X), then kT = exp(−X)xT, whereas k−1 = exp(X)x−1, and we see that k−1 = kT.
Hence, k∈O(n). Since x and expX have determinant one, so has k and we see that x= k exp(X)=
ϕ(k,X). This establishes the surjectivity.
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Corollary 15.9. Let G ⊂ SL(n,R) be a connected closed subgroup, invariant under transposi-
tion. Then

g= (g∩ so(n))⊕ (g∩ sn) (53)

and the map (k,X) 7→ k exp(X) defines a diffeomorphism

(G∩SO(n))× (g∩ sn)
'−→ G.

Proof. The map Θ : x 7→ (xT)−1 is readily checked to be an involution of the group SL(n,R)
which leaves G invariant. The associated infinitesimal involution is the standard Cartan involu-
tion θ : X 7→−XT, sl(n,R)→ sl(n,R), see Example 15.2. If X ∈ g then exp(tθX) =Θ(exp tX)∈
G for all t ∈ R. By differentiating at t = 0 we find that θ(X) ∈ g, hence g is invariant under θ

and (53) follows.
Since G is closed, G∩SO(n) is a compact subgroup, with Lie algebra g∩ so(n). In partic-

ular, G∩ SO(n) is a closed submanifold of SO(n). It follows from Lemma 15.8 that the map
(k,X) 7→ k expX defines an embedding of (G∩SO(n))× (g∩ sn) onto a closed submanifold of
S of SL(n,R). The submanifold S contained in the submanifold G of SL(n,R), hence a closed
submanifold of G. Since dim(S) = dim(g) by (53) it follows that S is an open subset of G. Since
G is connected, we infer that S = G. The result follows.

From now on we assume that G is a connected semisimple Lie group with Lie algebra g.

Lemma 15.10. Ad(G) = Aut(g)e.

Proof. The image Ad(G) is the connected Lie subgroup of GL(g), with Lie algebra ad(g) =
Der(g). The latter is the Lie algebra of Aut(g). The result follows.

Lemma 15.11. The algebra Der(g) is contained in sl(g). The group Aut(g)e is contained in
SL(g).

Proof. The map trad : g→ R satisfies trad([X ,Y ]) = tr[ad(X)ad(Y )− ad(Y )ad(X)] = 0. Since
[g,g] = g, it follows that tr◦ ad = 0. Since Der(g) = ad(g), the first assertion now follows. Since
Aut(g) has Lie algebra Der(g) which is contained in sl(g) it follows that Aut(g)e is contained in
SL(g).

We assume that θ is a Cartan involution of g, that g= k⊕p is the corresponding decomposi-
tion into eigenspaces and that K is the connected Lie subgroup of G with Lie algebra k.

Theorem 15.12. The group K is closed in G. Furthermore, the map

ϕ : K×p→ G, (k,X) 7→ k exp(X)

is diffeomorphism onto.
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Proof. In Lemma 15.6 we already proved that ϕ is a local diffeomorphism. It therefore suffices
to show that ϕ is bijective.

By semisimplicity, G has discrete kernel, so that so that Ad : G → Ad(G) is a covering
homomorphism, i.e., a surjective Lie group homomorphism which is a covering. Now Ad(G) =
Aut(g)e ⊂ SL(g) and we see that Ad(G) is a connected closed subgroup of SL(g).

We equip g with the inner product (51) and denote the corresponding transposition map
End(g)→ End(g) by X 7→ XT. We now note that for all X ∈ g we have

ad(X)T =−ad(θX), (54)

by (52). It follows that ad(g) is stable under transposition. From this it immediately follows that
the subgroup generated by eadX , for X ∈ g, is stable under transposition. This subgroup equals
Int(g) = Aut(g)e = Ad(G). From Corollary 15.9 we now conclude that the map (k,Y )→ keY

defines a diffeomorphism

(Ad(G)∩SO(n))× (ad(g)∩ sn)
'−→ Ad(G). (55)

Since Ad(G) is connected, we infer that Ad(G)∩SO(n) is connected as well. We now claim that

ad(g)∩ so(n) = ad(k) and ad(g)∩ sn = ad(p). (56)

To see this, let X ∈ g. Then from (54) and the injectivity of ad, it follows that X ∈ k ⇐⇒ ad(X)∈
so(n) and X ∈ p ⇐⇒ ad(X) ∈ sg. This implies the claim.

It follows from (56) that Ad(K) is an open subgroup of Ad(G)∩SO(n). Since the latter group
is connected, we find that

Ad(G)∩SO(n) = Ad(K).

It thus follows that the map (55) coincides with the multiplication map ψ : (k,Y ) 7→ keY , Ad(K)×
ad(p)→ Ad(G) which is therefore a diffeomorphism.

If k ∈ K and X ∈ p, then Ad(k expX) = Ad(k)ead(X) and we see that the following diagram
commutes

K×p
ϕ−→ G

Ad×ad ↓ ↓ Ad

Ad(K)× ad(p)
ψ−→ Ad(G)

If (k,X),(k′,X ′) ∈ K×p and k exp(X) = k′ exp(X ′) then it follows from the commutativity of the
diagram that

Ad(k)ead(X) = Ad(k′)ead(X ′)

and since the bottom horizontal map is injective, this implies that ad(X) = ad(X ′). Since ad is
injective, this implies that X = X ′, hence also k = k′. We conclude that ϕ is injective as well.

The surjectivity of ϕ follows from a covering argument as follows. Ad : G→ Ad(G) is a
covering homomorphism, and so is Ad|K : K → Ad(K). Put X = K× p, then the composition
p : ψ ◦(Ad× ad) : X → Ad(G) is a covering. We thus have a diagram

X
ϕ−→ G

p↘ ↓ Ad

Ad(G)
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where p and Ad are coverings. We claim that this implies that ϕ must be surjective. Indeed,
consider the basepoints x0 = (e,0)∈ X , e∈G and I ∈Ad(G). Then ϕ(x0) = e and p(x0) = I. Let
g ∈ G. Then the exists a continuous curve γ : [0,1]→ G with γ(0) = e and γ(1) = g. The image
Ad◦γ in Ad(G) connects I with Ad(g). It has a unique lift to a continuous curve γ̃ : [0,1]→ X
with γ̃(0) = x0. By commutativity of the diagram, ϕ ◦ γ̃ is a lift of q◦γ with initial point e. By
uniqueness of lifting, we conclude that ϕ ◦ γ̃ = γ. Hence, ϕ is surjective.

We can now show that any Cartan involution on g comes from a unique involution on G.

Lemma 15.13. There exists a unique involution Θ on G such that dΘ(e) = θ . Furthermore, K
is the fixed point group of Θ.

Proof. We will first establish uniqueness. If Θ fulfills the condition, then locally at e, Θ◦ exp =
exp ◦θ . Since exp : g→ G is a local diffeomorphism at 0, this implies that Θ is uniquely deter-
mined at e. If Θ′ is a second involution with the stated property, then the set H := {x∈G |Θ(x) =
Θ′(x)} contains an open neighborhood of e in G. On the other hand, H is a subgroup of G, and
we see that H is an open subgroup. Since G is connected, it follows that H = G hence Θ = Θ′.

For the existence, we define Θ : G→ G by

Θ(k expX) := k exp(−X)

for k ∈K and X ∈ p. Then Θ is a diffeomorphism of G with Θ2 = I and dΘ(e) = θ . Furthermore,
K is the set of fixed points for Θ. To finish the proof, it suffices to show that Θ is a group
homomorphism. Since Θ(e) = e, it suffices to show that Θ(xy) = Θ(x)Θ(y) for all x,y ∈ G.
Define

F : G×G→ G, (x,y) 7→Θ(x)−1
Θ(xy)Θ(y)−1.

Since G is connected and F(e,e) = e, it suffices to show that F is locally constant.
Let ϑ : SL(g)→ SL(g) be the standard Cartain involution relative to (51), defined by ϑ(ϕ) =

ϕ−1T. Then ϑ restricts to an involution of Ad(G) and it is readily checked that for all k ∈ K and
X ∈ p we have

Ad(Θ(k expX)) = Ad(k exp(−X)) = Ad(k)Ad(exp(X))−1

= [Ad(k)Ad(expX)]−1T = ϑAd(k expX).

Thus, Ad(θ(x)) = ϑAd(x), for all x ∈ G. Since ϑ ◦Ad is a group homorphism, it now follows
that

AdF(x,y) = I

for all (x,y) ∈ G×G. Since F is continuous and Ad a covering, it follows that F is locally
constant.

An involution Θ of G that arises from a Cartan involution of its Lie algebra g in the above
fashion, is called a Cartan involution of G. From now on we will denote it by the symbol θ as
well.
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Lemma 15.14. Let G be a connected semisimple Lie group, θ a Cartan involution of G, and
K := Gθ . Then K is connected and the center of G is contained in K. Furthermore, the following
assertions are equivalent.

(a) The group K is compact.

(b) The center of G is finite.

Proof. Let g∈G be an element of the center Z(G) of G. Write g= k expX , with k ∈K and X ∈ p.
Then it follows that I = Ad(g) = Ad(k)ead(X). By the Cartan decomposition of Ad(G) it follows
that adX = 0 hence X = 0 and we see that g ∈ K.

Since Ad(K) = Ad(G)∩ SO(g) = Aut(g)e ∩ SO(g) as in the proof of Theorem 15.12, it
follows that Ad(K) is compact. Since Ad : K→ Ad(K) is a covering, we see that K is compact
if and only if ker(Ad)∩K is finite. The latter group equals Z(G)∩K = Z(G).

Corollary 15.15. Let G be a connected semisimple Lie group with finite center. Let θ be a
Cartan involution of G and K the associated group of fixed points. Then K is a maximal compact
subgroup of G.

Proof. Let K′ be a compact subgroup of G containing K. Then K′ is left K-invariant, hence equal
to K expS where S is the set of points X ∈ p such that expX ∈ K′. Let X ∈ S. Then it follows that
the set of points expnX = (expX)n, for n ∈ Z is contained in the compact subset K′ of G. This
implies that the set of points

enad(X) = Ad(expnX)

is contained in a compact subset of Ad(G), hence is bounded in SL(g). Since ad(X) is symmetric
for the Cartan inner product on SL(g), it follows that the eigenvalues of ad(X) are real. If λ is
such an eigenvalue, then it follows that enλ must be a bounded function of n ∈ Z. This implies
that λ = 0, hence adX = 0 and we see that X = 0. We conclude that S = {0}, so that K′ = K.
The maximality follows.

Remark 15.16. Let G be a connected semisimple Lie group with finite center. It can be shown
that every maximal compact subgroup of G comes from a Cartan involution in the above fashion.
In particular, this implies that all maximal compact subgroups of G are conjugate.

Let G be a connected semisimple Lie group with finite center, θ a Cartan involution of G and
K = Gθ . The derivative of θ , denoted by the same symbol, is an involution of g. As before, we
write

g= k⊕p

for the associated decomposition into eigenspaces for θ . This decomposition is invariant under
Ad(K). Let β be any Ad(K)-invariant positive definite inner product on p (we could take β =
B|p×p). Then β may be viewed as a metric on T[e](G/K)' g/k' p which extends to a G-invariant
measure on G/K. It can be shown as before that G/K thus becomes equipped with the structure
of a Riemannian symmetric space (and has non-positive sectional curvature).
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From the Cartan decomposition it follows by inversion that the map p×K → G given by
(X ,k) 7→ expXk is a diffeomorphism onto G. This implies that the map

Exp : X 7→ exp(X)K, p→ G/K

is a diffeomorphism onto. Thus, G/K is diffeomorphic to a finite dimensional vector space. It can
be shown that the map Exp coincides with the Riemannian exponential map T[e](G/K)→G/K if
we use the identification T[e](G/K)' g/k' p induced by the direct sum decomposition g= k⊕p.

Lemma 15.17. The algebra D(G/K) of invariant differential operators is commutative.

Proof. The proof is based on the duality of symmetric spaces of the non-compact type, with
those of the compact type.

First, we recall from Theorem 12.13 that the map U(gC)
k → D(G/K) induces an isomor-

phism of algebras
r : U(gC)

k/U(gC)
k∩U(gC)k

'−→ D(G/K).

We will now compare with the algebra of invariant differential operators for the dual compact
symmetric space. Let u := k⊕ ip, then u is a compact semisimple Lie algebra. Let U be a con-
nected compact group with Lie algebra (isomorphic to) u (e.g. we may take the group Aut(u)e).
Let K be the connected subgroup of U with Lie algebra k. Then U/K is a compact symmetric
space, and we have seen that D(U/K) is commutative. On the other hand,

D(U/K)'U(uC)
k/U(uC)

k∩U(uC)k.

Since uC = gC, we see that D(G/K) ' D(U/K), as algebras. The result now follows from the
commutativity of D(U/K), see Lemma 12.15 (b).
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16 The restricted root system
Throughout this section, we assume that g is a real semisimple Lie algebra, equipped with a
Cartan involution θ . As before, the associated Cartan decomposition is denoted by g= k⊕p.

If H ∈ p, then ad(H) : g→ g is symmetric with respect to the associated positive definite
inner product 〈 · , · 〉, defined by (51). This implies that ad(H) has real eigenvalues, and admits
a diagonalization with respect to a suitable orthonormal basis of g. Using this fact, we will
introduce a kind of root space decomposition as follows.

By a maximal abelian subspace of p we mean a commutative subalgebra a of g which is
maximal subject to the condition that a ⊂ p. We fix such a maximal abelian subspace a ⊂ p.
Given λ ∈ a∗ := HomR(a,R) we define

gλ := {X ∈ g | [H,X ] = λ (H)X , ∀H ∈ a}.

Lemma 16.1. Let λ ,µ ∈ a∗. Then [gλ ,gµ ]⊂ gλ+µ .

The proof, based on the fact that ad(H) is a derivation of g for every H ∈ a, is standard and
left to the reader.

Lemma 16.2. Let λ ,µ ∈ a∗ be such that λ +µ 6= 0. Then gλ ⊥ gµ relative to the Killing form.

Proof. There exists H ∈ a such that λ (H) 6=−µ(H). Let X ∈ gλ and Y ∈ gµ . Then

λ (H)B(X ,Y ) = B(ad(H)X ,Y ) =−B(X , ad(H)Y ) =−µ(H)B(X ,Y ).

It follows that B(X ,Y ) = 0.

Definition 16.3. A root of a in g is a real linear functional α ∈ a∗ such that α 6= 0 and gα 6= 0.
The set of these roots is denoted by Σ = Σ(g,a).

The following result amounts to the mentioned root space decomposition.

Lemma 16.4. The set Σ is finite. Furthermore,

g= g0⊕
⊕
α∈Σ

gα . (57)

as a direct sum of real linear spaces.

Proof. If H1,H2 then the endomorphisms ad(H1) and ad(H2) of g are diagonalizable with real
eigenvalues, and commute with each other, hence preserve each others eigenspaces. It follows
that g admits a decomposition as a finite direct sum of spaces g[ j], 1 ≤ j ≤ k, such that ad(H)
acts by a scalar on g[ j] for each j and every H ∈ a. Hence, for each j there exists a unique linear
functional λ j ∈ a∗ sucht that ad(H) = λ j(H)I on g[ j]. Let Σ′ := {λ j | 1 ≤ j ≤ k} \ {0}. Then
Σ = Σ′ and we obtain (57) with gα =⊕λ j=αg[ j], for α ∈ Σ∪{0}.

One may now wonder whether the pair (a∗,Σ) is a root system according to the definition
given before in the context of the theory of compact (or complex) semisimple Lie algebras. At a
later stage will see that this is almost true, but not completely.
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Definition 16.5. A possibly non-reduced root system is a pair (E,Σ) consting of a finite di-
mensional real linear space E together with a finite subset Σ ⊂ E \ {0} such that the following
assertions are valid.

(a) The set Σ spans E.

(b) For every α ∈ Σ there exists a (necessarily unique) reflection sα : E→ E with sα(α) =−α

and sα(Σ)⊂ Σ.

(c) For all α,β ∈ Σ we have sα(β ) ∈ β +Zα.

Remark 16.6. We recall that a reflection in E in a point α ∈ E \{0} is a linear map s : E → E
such that s(α) =−α and Rα⊕ker(s− I) = E.

Let F be the group of ϕ ∈ GL(E) with ϕ(Σ) ⊂ ϕ. Since Σ spans E, the map ϕ 7→ ϕ|Σ is an
embedding of F into the finite group of permutations of Σ. In particular, F is finite, and there
exists a positive definite inner product on E for which the elements of F are orthogonal. It
follows that every reflection of E which preserves Σ is orthogonal, hence completely determined
by its −1-eigenspace. Accordingly, there is at most one reflection s in a point α ∈ E \{0} with
s(Σ)⊂ Σ.

Lemma 16.7. Let (E,Σ) be a possibly non-reduced root system and let α ∈ Σ. Then −α ∈ Σ.
Furthermore, there exists a β ∈ Σ such that

Rα ∩Σ⊂ {±1
2

β ,±β}.

Proof. Let sα be the uniquely determined reflection of condition (b) of Definition 16.5. Then
−α = sα(α) ∈ Σ. Thus we see that Σ is invariant under the map γ 7→ −γ.

Let β ∈ R>0α ∩ Σ be such that tβ /∈ Σ for t > 1. Then sβ = −I on Rβ = Rα. Thus, if
γ ∈ Rα ∩Σ then −γ = sβ (γ) ∈ γ +Zβ from which we infer that γ ∈ 1

2Zβ hence γ ∈ {1
2β ,β}.

We thus see that R>0α ∩Σ⊂ {1
2β ,β}. The result follows.

Remark 16.8. A possibly non-reduced root system in the above sense is said to be reduced if it
satisfies the following familiar additional condition

(d) For every α ∈ Σ we have Rα ∩Σ = {−α,α}.

The system Σ is said to be non-reduced if it is not reduced. It is clear that the above definition of
reduced root system coincides with the old definition of root system, that we encountered in the
contex of compact semisimple Lie algebras.

In the course of this section, we will show that (a∗,Σ) (with (Σ = Σ(g,a)) is a possibly non-
reduced root system in the above sense. In the exercises, we will encounter examples which
show that Σ need not be reduced.

Given α ∈ Σ we define the associated root hyperplane kerα ⊂ a by

kerα := {H ∈ a | α(H) = 0}.
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Lemma 16.9.

(a) ∩α∈Σ kerα = {0};

(b) the set Σ spans a∗;

(c) if α ∈ Σ then −α ∈ Σ and θ(gα) = g−α .

Proof. Let H ∈ a be such that α(H) = 0 for all α ∈ Σ. Then adH is zero on each of the root
spaces gα , for α ∈ Σ. In view of the root space decomposition this implies that ad(H) = 0. Since
g has trivial center, it follows that H = 0. Thus, (a) is valid.

We turn to (b). Assume to the contrary the span s of Σ is a proper subspace of a∗. Then
there exists a non-zero linear functional ξ ∈ a∗∗ such that ξ = 0 on s. Let H ∈ a be the canonical
image of ξ for the canonical isomorphism a ' a∗∗. Then H 6= 0 and α(H) = 0 for all α ∈ Σ,
contradicting (a).

Let α ∈ Σ. Then for every H ∈ a and Xα ∈ gα we have

[H,θ(Xα)] = θ [θ(H),Xα ] =−θ [H,Xα ] =−α(H)θ(Xα).

This implies that {0} ( θ(gα) ⊂ g−α . Hence −α ∈ Σ. By the same reasoning it follows that
θ(g−α)⊂ gα and the result follows.

Corollary 16.10. The root space decomposition (57) is orthogonal with respect to the Cartan
inner product 〈 · , · 〉.

Proof. Let λ ,µ ∈ a∗, λ 6= µ. Let X ∈ gλ and Y ∈ gµ . Then θY ∈ g−µ by Lemma 16.9 (c), hence
it follows from Lemma 16.2 that 〈X , Y 〉=−B(X ,θY ) = 0.

Lemma 16.11. a= g0∩p.

Proof. Let Z ∈ g0∩p. Then b= a⊕RZ is an abelian subspace of p containing a. By maximality
of a it follows that b = a hence Z ∈ a and we see that g0 ∩ p ⊂ a. The converse inclusion is
obvious.

We define m to be the centralizer of a in k, i.e.,

m := k∩g0.

Lemma 16.12. g0 =m⊕a.

Proof. Since θ preserves a, it follows that θ(g0) = g0. This implies that

g0 = (g0∩ k)⊕ (g0∩p) =m⊕a.

Lemma 16.13. Let α ∈ Σ, X ∈ gα and Y ∈ g−α . Then [X ,Y ] ∈m⊕a and

B([X ,Y ],H) = α(H)B(X ,Y ), (H ∈ a). (58)
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Remark 16.14. Only in case m = 0 it can be concluded that [X ,Y ] ∈ a, so that [X ,Y ] is com-
pletely determined by (58).

Proof. We have [X ,Y ] ∈ g0 =m⊕a. Let H ∈ a. Then

B([X ,Y ],H) =−B(Y, [X ,H]) = B(Y, [H,X ]) = α(H)B(Y,X) = α(H)B(X ,Y ).

Given α ∈ Σ we denote by Hα the element of a characterized by the properties

Hα ⊥ kerα and α(Hα) = 2.

Lemma 16.15. Let X ∈ gα \{0} then there exists Xα ∈R+X such that Hα ,Xα and Yα :=−θXα

form a standard sl(2)-triple.

Proof. Put Y =−θX . Then [X ,Y ] ∈ g0∩p= a. For H ∈ kerα we have, by (58),

B([X ,Y ],H) = α(H)B(X ,Y ) = 0,

so that [X ,Y ]⊥ kerα. It follows that [X ,Y ] = cHα for a constant c ∈ R. Substituting H = Hα in
(58) we find

cB(Hα ,Hα) =−2B(X ,θX)> 0

so that c > 0. Taking Xα = c−1/2Xα , we find [Xα ,Yα ] = Hα . The remaining commutator relations
are obvious.

Lemma 16.16. Let ϕ ∈ Aut(g) be such that ϕ(a) ⊂ a. Then ϕ∗−1 : a∗→ a∗ preserves Σ. Fur-
thermore, writing ϕ(α) := ϕ∗−1α = α ◦ϕ−1, we have

ϕ(gα) = gϕα (59)

Proof. This is a straightforward consequence of the definitions.

Because of the obvious notational convenience of (59), we agree to use the notation ϕ for
(ϕ|a)∗−1 : a∗→ a∗ is ϕ is an automorphism of g that leaves a invariant.

Lemma 16.17. Let α ∈ Σ. Then there exists an interior automorphism ϕ = ϕα ∈ Int(g) such
that

(a) ϕ(a)⊂ a;

(b) ϕ(α) =−α.

(c) ϕ = I on kerα.
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Proof. Let Xα ∈ gα be such that Hα ,Xα and Yα = −θXα form a standard sl2-triple. Then as in
the theory of root systems for a compact semisimple algebra, we put

Uα =
π

2
(Xα +Yα), ϕα := ead(Uα ).

As in the mentioned theory it is verified that ϕα satisfies all assertions. For details, including
motivation, see [Ban10, Lemma 36.7].

Corollary 16.18. There exists a reflection sα : a∗ → a∗ in α such that sα(Σ) = Σ. If ϕ is an
automorphism as in Lemma 16.17 then sα = ϕ on a∗.

Remark 16.19. Since Σ spans a∗, the reflection sα is uniquely determined by the mentioned
property. For details, see Remark 16.6 or [Ban10, Lemma 36.10].

Lemma 16.20. Let α,β ∈ Σ. Then sα(β ) ∈ β +Zα.

Proof. Let Xα ∈ gα be such that Hα ,Xα and Yα = −θXα form a standard sl2-triple. Let sα be
the linear span of Hα ,Xα and Yα , then sα is a subalgebra of g, isomorphic to sl(2,R). Put

V :=
⊕
k∈Z

gβ+kα

Then V is a ad(sα -invariant, and thus becomes a sα module. Define Uα and ϕ := ϕα as in
the proof of Lemma 16.17. Then sα(β ) = ϕ(β ). The endomorphism ad(Uα) preserves V and
therefore, so does ϕ := ϕα . Hence,

gsα (β ) = gϕβ = ϕ(ϕβ )⊂V

and we see that sα(β ) ∈ β +Zα.

In the course of this section we have shown that the pair (a∗,Σ) satisfies all conditions of
Definition 16.5, hence is a (possibly non-reduced) root system.

We end this section with some remarks that show for possibly non-reduced root systems, how
the associated theory of positive systems, fundamental systems and Weyl groups can immediately
be obtained from the analogous theory for reduced root systems.

Let (E,Σ) be a possibly non-reduced root system.

Lemma 16.21. Let α,2α ∈ Σ. Then sα = s2α .

Proof. The linear map sα : E→ E is uniquely determined by the requirements that it is a reflec-
tion which preserves Σ and maps α to −α. By linearity, sα maps 2α to 2α hence is a reflection
in 2α as well. By uniqueness we see that sα = s2α .

A root α ∈ Σ is said to be reduced if α/2 /∈ Σ. The set of reduced roots is denoted by Σ◦. The
easy proof of the following result is left to the reader.

Lemma 16.22. The pair (E,Σ◦) is a reduced root system.
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We define the Weyl group W =W (Σ) of the pair (E,Σ) to be the subgroup of GL(E) gener-
ated by the reflections sα for α ∈ Σ. It follows from Lemmas 16.21 and 16.7 that W is already
generated by the reflections sα for α ∈ Σ◦, hence equal to the Weyl group W (Σ◦) of the reduced
system (E,Σ0). In particular, W is finite.

Definition 16.23. A system of positive roots for Σ is a subset Π ⊂ Σ such that Σ = Π∩ (−Π)
and such that the Π and −Π are separated by a hyperplane in E.

The following lemma is obvious.

Lemma 16.24. Let Π be a positive system for Σ. Then Π◦ := Π∩Σ+ is a positive system for Σ◦.
The map Π 7→ Π◦ is a bijection of the set of positive systems for Σ to the set of positive systems
for Σ◦.

Finally, a fundamental system of Σ is a subset ∆ ⊂ Σ such that ∆ is a basis of the real linear
space E and such that

Σ⊂ N∆∪ (−N∆).

Here NΣ denotes the set of linear combinations of the form ∑α∈∆ kαα with coefficients kα ∈N=
{0,1, . . .}. Clearly, the fundamental systems of Σ coincide with the fundamental systems of Σ◦.

17 The Iwasawa decomposition
We retain the notation of the previous section. A point in a is said to be regular, if it is not
contained in any of the root hyperplanes kerα, for α ∈ Σ. The set of regular points is denoted by
areg. Being the complement of a finite union of hyperplanes, areg is an open dense subset of a. Its
connected components are called the (open) Weyl chambers in a.

If C is such a Weyl chamber, then every root α ∈ Σ is either positive or negative on the entire
chamber C. We put

ΠC := {α ∈ Σ | α > 0 on C}.
Clearly, Σ = ΠC∪ (−ΠC). Furthermore, if H ∈C, then

ΠC = {α ∈ Σ | α(H)> 0}, and −ΠC = {α ∈ Σ | α(H)< 0}.

Viewing H as an element of a∗∗ we see that the sets ΠC and−ΠC are separated by the hyperplane
kerH. Thus, ΠC is a system of positive roots. Conversely, if Π is a system of positive roots, then

CΠ := {H ∈ a | α(H)> 0, ∀α ∈Π}

is a Weyl chamber. We thus see that the set of Weyl chambers is finite and that the map C→ΠC
is a bijection from the set of Weyl chambers to the set of positive systems for Σ. Furthermore,
we see that each Weyl chamber is the intersection of a finite number of open half spaces, hence
an open polyhedral cone.

We fix a positive system Σ+ for Σ. The associated Weyl chamber is referred to as the positive
Weyl chamber and is denoted by a+. Thus, a+ equals the set of H ∈ a such that α(H)> 0 for all
α ∈ Σ+.
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Lemma 17.1. The space ⊕α∈Σ+ gα a subalgebra of g.

Proof. We denote the above space by v. Let α,β ∈ Σ+ and let Xα ∈ gα and Xβ ∈ gβ . Then by
linearity it suffices to show that Y := [Xα ,Xβ ] ∈ v. From Lemma 16.2 we see that Y ∈ gα+β . If
α +β /∈ Σ then Y = 0 ∈ v. On the other hand, if α +β ∈ Σ then α +β > 0 on a+ and we see that
α +β ∈ Σ+. Hence Y ∈ v.

We define the following subalgebras of g,

n :=
⊕

α∈Σ+

gα , n̄=
⊕

α∈−Σ+

g−α .

The in view of Lemma 16.9 (c) it follows that n̄ = θ(n). Furthermore, from the root space
decomposition it follows that

g= n̄⊕m⊕a⊕n, (60)

as a direct sum of real linear spaces. Finally, this decomposition is orthogonal in view of Corol-
lary 16.10.

Lemma 17.2. The map ϕ : n̄→ k, Y 7→ Y +θ(Y ) induces a linear isomorphism ϕ̄ : n̄→ k/m.

Proof. Let Y ∈ n̄. Then Y + θY ∈ gθ = k, so that ϕ is indeed a linear map n̄ → k. Assume
ϕ(Y ) = X0 ∈m. Then

0 = Y −X0 +θ(Y ), with Y ∈ n̄, X0 ∈m, θ(Y ) ∈ n.

By directness of the sum in (60) it follows that Y = 0. Thus, the induced map ϕ̄ is injective. For
its surjectivity, assume that U ∈ k. Then we may decompose U = Y +V +H +X with Y ∈ n̄,
V ∈m, H ∈ a, X ∈ n. From U = θU it follows that

Y +V +H +X = θ(X)+V −H +θ(Y ), with θ(X) ∈ n̄, θ(Y ) ∈ n.

By directness of the sum in (60) we infer that H = 0 and X = θY. It follows that

U +m= Y +θ(Y )+V +m= ϕ̄(Y ),

whence the surjectivity.

The decomposition described in the following lemma is known as the infinitesimal Iwasawa
decomposition.

Lemma 17.3. The Lie algebra g admits the following decomposition as a direct sum of real
linear spaces,

g= k⊕a⊕n (61)
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Proof. Let U ∈ g. Then according to (60) we may write

U = Y +V +H +X , with Y ∈ n̄, V ∈m, H ∈ a, X ∈ n.

It follows that
U = (Y +θ(Y ))+V +H +(X−θY )

with Y +θ(Y )+V ∈ gθ = k, H ∈ a and X −θ(Y ) ∈ n. This implies that (61) holds as a vector
sum, i.e., with everywhere + in place of ⊕. We will conclude the proof by counting dimensions.

It follows from Lemma 17.2 that dim(k) = dim(n̄)+dim(m). Using directness of the sum in
(60) we now infer that

dim(g) = dim(k)+dim(a)+dim(n)

The proof is complete.

In the remainder of this section we will show that the infinitesimal Iwasawa decomposition
(61) has a global version. Let G be a connected semisimple Lie group with algebra g. Let K be
the connected Lie subgroup of G with algebra k. From the Cartan decomposition for G it follows
that K is a closed subgroup. We have seen it is compact if and only if G has finite center.

Let A be the connected Lie subgroup of G with Lie algebra a. Since a is abelian it follows
that A = exp(a).

Lemma 17.4. The group A is closed in G and exp : a→ A is a diffeomorphism.

Proof. According to the Cartan decomposition (k,X) 7→ k expX is a diffeomorphism of K× p
onto G. Since {e}× a is a closed submanifold of K× p it follows that exp : a→ G is a diffeo-
morphism onto a closed submanifold of G. The result follows.

Since a is abelian, the map exp : a→ A is in fact an isomorphism of the additive Lie group
(a,+,0) onto A. We define log : A→ a to be inverse to this isomorphism. Let λ ∈ a∗. The we
define

aλ := eλ (loga), (a ∈ A).

Since λ : a→ R is a character of (a,+,0), it follows that ( ·)λ is a character A→]0,∞[.

Lemma 17.5. The adjoint action of A on g preserves the root space decomposition. Further-
more, if α ∈ Σ∪{0}, then

Ad(a) = aα I on gα .

In particular, Ad(a) preserves the subalgebra n.

Proof. Let H ∈ a. Then Ad(expH) = ead(H). Since ad(H) preserves the root space decomposi-
tion, so does a = exp(H). Furthermore, ad(H) acts on gα by the scalar λ (H). It follows that on
gα we have

Ad(a) = ead(H) = eα(H)I = eα(loga)I = aα I.

The result follows.

Let N be the connected Lie subgroup with G with Lie algebra n.
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Theorem 17.6. The map

ϕ : (k,a,n) 7→ kan, K×A×N→ G (62)

is a diffeomorphism.

Remark 17.7. In particular, the theorem implies that N is a closed subgroup of G.

The first important step towards the proof is presented by the following lemma.

Lemma 17.8. The map (62) has bijective derivative everywhere.

Proof. By left K-equivariance, and right N-equivariance, it suffices to show that dϕ(e,a,e) :
k×TaA×n→ g is bijective. Let U ∈ k, H ∈ a and V ∈ n. Then for t ∈ R we have

ϕ(exp tU,exp tHa,exp tV )a−1 = exp(tU)exp(tH)exp(tAd(a)V )

Differentiating at t = 0 we find

dra−1(a)◦dϕ(U,dra(e)H,V ) =U +H +Ad(a)V.

We thus see that it suffices to show that the map (U,H,V ) 7→U +H+Ad(a)V is a linear isomor-
phism from k× a×n onto g. Since Ad(a)|n : n→ n is a linear isomorphism, this follows from
the infinitesimal Iwasawa decomposition.

Our next step will be to prove Theorem 17.6 for the group G = SL(n,R), n ≥ 2. To prepare
for this, we need the following result.

Lemma 17.9. Let n ≥ 1 and let u be the space of upper triangular matrices in M(n,R) with
diagonal entries equal to zero. Let U be the subset of upper triangular matrices in M(n,R) with
diagonal entries equal to 1. Then the following assertions are valid.

(a) U is a closed subgroup of GL(n,R) with Lie algebra equal to u.

(b) The exponentional map exp : X 7→ eX maps u diffeomorphically onto (the submanifold) U.

(c) There exists a polynomial map µ : u× u→ u such that exp µ(X ,Y ) = exp(X)exp(Y ) for
all X ,Y ∈ u.

(d) Let n⊂ u be a sub Lie algebra. Then N := exp(n) is a connected closed subgroup of U. Its
Lie algebra equals n.

Proof. We note that u is a subalgebra of M(n,R), equipped with matrix multiplication. Hence,
it is also a Lie subalgebra for the commutator bracket. Furthermore, u is nilpotent in the sense
that Xn = 0 for all X ∈ u. The set U ⊂M(n,R) may be viewed as the translate I + u of u. In
particular, U is a closed submanifold of M(n,R), with tangent space everywhere equal to u.

If x1,x2 ∈U then x j = I+X j, with X j ∈ u and we see that x1x2 = I+X1+X2+X1X2 ∈ I+u=
U. Furthermore, if x ∈U then x = I− (I− x), so that

x−1 = I + ∑
k≥1

(I− x)k.
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By nilpotency of I− x the terms become zero for k ≥ 0 and we see that x−1 ∈U. It follows that
U is a closed subgroup of GL(n,R). We observed already that its tangent space at I equals u, so
that u equipped with the commutator bracket is the Lie algebra of U. This establishes (a).

We turn to (b). By the usual power series expansion for exp we see that exp(u)⊂ I +u=U,
and the exponential map is given by

expX =
n−1

∑
k=0

1
k!

Xk, (X ∈ u).

In particular, exp |u is polynomial with respect to the (associative) algebra structure of u.
Let F : u→ u be the polynomial map given by

F(Y ) =
n

∑
k=1

(−1)k−1 1
k

Y k,

and define the map L : U → u by L(x) = F(x− I). We will show that the smooth map L is the
two sided inverse to exp : u→U.

First, we claim that L(expX) = X for X ∈ u. To see this, let X ∈ u. Then

d
dt

L(exp(tX)) =
d
dt

n

∑
k=1

(−1)k−1 1
k
(etX − I)k

=
n

∑
k=1

(−1)k−1(etX − I)k−1etX X

=
n

∑
k=1

(I− etX)k−1etX X

Write Y = I− etX , then Y n = 0, hence

n

∑
k=1

Y k−1 = (I−Y n)(I−Y )−1 = e−tX

and we see that
d
dt

L(exp(tX)) = X .

As L(I) = F(0) = 0, this implies that L(exp tX) = tX for all X ∈ u and t ∈ R. We conclude that
L ◦ exp = I on u. This implies that exp is injective on u and a local diffeomorphism everywhere.
Furthermore, L is a local inverse to exp at I and we find that exp ◦L = I in an open neighborhood
of I in U. Equivalently,

exp(F(Z)) = I +Z (63)

for Z in an open neighborhood of 0 in u. As both F and exp are polynomial maps, (63) is an
identity of polynomials in Y ∈ u. Being valid in an open neighborhood of 0 in u, it must be valid
for all Y ∈ u. This implies that exp ◦L = I and establishes (b).
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We turn to (c). If X ,Y ∈ u then µ(X ,Y ) = L(exp(X)exp(Y )) depends in a polynomial fashion
on (X ,Y ) and exp(µ(X ,Y )) = exp(X)exp(Y ).

For (d), assume that n is as stated, and let N be the connected Lie subgroup of U with Lie
algebra n. Then since exp |n : n→ N is a local diffeomorphism at 0 we infer that there exists
an open neighborhood Ω of 0 in n such that exp(Ω)exp(Ω) ⊂ exp(n). By definition of µ this
implies that µ maps Ω×Ω to n. Since µ is polynomial it follows that µ maps n× n into n. It
follows that exp : n→ N maps onto a subgroup of N containing exp(n) hence Ne = N and we
conclude that N = exp(n). Finally, since exp : u→U is a diffeomorphism and n a closed subset
of u, it follows that N is closed in U hence in GL(n,R).

Example 17.10. We consider the group G = SL(n,R). Its Lie algebra g = sl(n,R) of consists
of the matrices X ∈M(n,R) of trace 0. The standard Cartan involution of sl(n,R) is given by
θ : X 7→ −XT. Accordingly, k= so(n) and p equals sn, the space of X ∈ sl(n,R) with XT =−X .

The space a of traceless diagonal matrices is abelian and contained in p. Let E j
i be the matrix

with every entry equal to zero, except for the entry in the j-th column and i-th row, which equals
1. Then it it readily seen that

[H,E j
i ] = (Hii−H j j)E

j
i ,

for all 1 ≤ i, j ≤ n and H ∈ a. It follows that a is maximal abelian in p and that the associated
root space decomposition is given by

sl(n,R) := a ⊕
⊕
i 6= j

RE j
i .

Furthermore, the associated set Σ = Σ(g,a) of roots equals Σ = {αi j | 1 leqi, j ≤ n, i 6= j}, where
αi j ∈ a∗ is given by

αi j(H) = Hii−H j j, (H ∈ a).

The set Σ+ = {αi j | 1≤ i < j≤ n} is readily seen to be a positive system for Σ, and the associated
subalgebra n of g is the linear span of the matrices E j

i with j > i, i.e., the set of upper triangular
matrices, with zero diagonal entries.

On the level of the group, K = SO(n) and A = expa consists of the diagonal matrices with
positive entries and determinant 1. The group N of upper triangular matrices with diagonal en-
tries equal to one is the connected Lie subgroup of SL(n,R) with Lie algebra n. In fact, it is a
connected closed subgroup, and the exponential map exp : n→ N is given by exp : X 7→ eX . By
Lemma 17.9 this map is a diffeomorphism from n onto N.

Example 17.11. Flag manifold. By a (full) flag in Rn we mean an increasing sequence 0 ⊂
F1 ⊂ ·· · ⊂ Fn = Rn of linear subspaces in Rn with dim(Fj) = j, for 1 ≤ j ≤ n. The set of these
flags is denoted by F . The group SL(n,R) acts on F in a natural way; if x ∈ SL(n,R) and
F = (Fj) ∈F , then

xF := (x(F1), . . . ,x(Fn)).

We claim that this action is transitive. Indeed, let E be the standard flag in F , i.e., E = (E j),
where E j is spanned by the first j standard basisvectors e1, . . . ,e j. Indeed, let F = (Fj) ∈ F ,
then we may chose an orthonormal and positively oriented basis f1, . . . , fn of Rn such that Fj is
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spanned by f1, . . . , f j. Let k : Rn→ Rn be the unique linear map determined by ke j = f j for all
1 ≤ j ≤ n. Then k ∈ K = SO(n) and we see that F = k(E) for a suitable element k ∈ SO(n).
Thus SO(n) acts hence the bigger group SL(n,R) acts transitively on F . Let P be the stabilizer
of E in SL(n,R). Then P is a closed subgroup. Furthermore, the action map x 7→ xE induces a
bijection

SL(n,R)/P '−→ F

through which we equip F with the structure of a smooth manifold. This manifold is called the
manifold of full flags in Rn.

We observe that P exists of all upper triangular matrices with determinant 1. Let M be the
group of diagonal matrices with determinant 1 all of whose diagonal matrices are ±1. Then it is
readily seen that P = MAN, with A and N as in Example 17.10.

From the above it follows that SO(n) acts smoothly and transitively on F . We now note that
the stabilizer in SO(n) of the standard flag E equals SO(n)∩P = M.

Accordingly, the action map k 7→ kE induces a diffeomorphism

SO(n)/M '−→ F .

In particular we see that the flag manifold is compact.

Lemma 17.12. Let K = SO(n), A ⊂ SL(n,R) the group of diagonal matrices with positive en-
tries and determinant 1 and N ⊂ SL(n,R) the group of upper triangular matrices with diagonal
entries equal to 1. Then the map ϕ : K×A×N→ SL(n,R), (k,a,n) 7→ kan is a diffeomorphism.

Proof. According to Example 17.10 the groups K, A and N are the connected Lie subgroups
with algebras k, a and n such that g = k⊕ a⊕n is an infinitesimal Iwasawa decomposition. By
Lemma 17.8 it follows that ϕ is a local diffeomorphism everywhere, so that it suffices to show
that ϕ is bijective.

To establish the surjectivity, we will relate the above groups to the manifold F of (full)
flags in Rn, defined in Example 17.11. Let E be the standard flag in Rn. Then SL(n,R)E =
F = SO(n)E. Thus, if x ∈ SL(n,R), there exists k ∈ SO(n) such that xE = kE. This implies
k−1xE = E from which we see that k−1x ∈ P. We infer that

SL(n,R) = KP⊂ KMAN = KAN.

Hence the map ϕ is surjective.
To see that the map is injective, assume that k j ∈ K, a j ∈ A and n j ∈ N, for j = 1,2 and

that k1a1n1 = k2a2n2. The set T of upper triangular matrices with positive diagonal entries and
determinant 1 is a subgroup of SL(n,R) to which both a1n1 and a2n2 belong. It follows that

k−1
2 k1 = a2n2(a1n1)

−1 ∈ SO(n)∩T.

By the orthogonality relations the latter intersection consists of only the identity matrix, and we
find that k1 = k2 and a1n1 = a2n2. From the latter identity, we find that

a−1
2 a1 = n2n−1

1 ∈ A∩N = {I},

hence a1 = a2 and n1 = n2. We infer that ϕ is injective.
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We are now prepared to prove Theorem 17.6. Let G be a connected real semisimple Lie
group and let notation be as in the mentioned theorem.

Proof of Theorem 17.6. We equip g with the Cartan inner product defined by (51). In the
proof of Theorem 15.12 we have seen that Ad : G→Aut(g)e is a surjective homomorphism with
discrete kernel, hence a covering. Its restriction to K has the same kernel and defines a covering
homomorphism onto Ad(K) = Aut(g)e∩SO(g).

We fix an element H0 ∈ a in the positive Weyl chamber and in the complement of the finitely
many hyperplanes ker(α − β ), for α,β distinct elements of Σ∪ {0}. There is now a unique
numbering α1, . . . ,αd of the elements of Σ∪{0} such that α1(H) < · · · < αd(H). We agree to
write g j := gα j , so that

g= g1⊕g2⊕·· ·⊕gd. (64)

Then for all U ∈ a the endomorphism ad(X) preserves the decomposition (64) and acts by a real
scalar on each summand. Furthermore, if α ∈ Σ+, X ∈ gα , and Y ∈ gk, then

[X ,gk]⊂ gα+αk ⊂
⊕
j>k

g j,

since (α +αk)(H0)> αk(H0). It follows that

ad(n)gk ⊂
⊕
j>k

g j, (1≤ k ≤ d).

We now fix an orthonormal basis e1, . . .en of g which is subordinate to the decomposition (64).
Let k be the algebra of elements in sl(g) whose matrix is skew symmetric with respect to this
basis. Let a be the subalgebra of elements of sl(g) which diagonalize with respect to this basis.
Finally, let n be the subalgebra of elements of sl(g) whose basis is strict upper triangular with
respect to this basis. Then

sl(g) = k⊕a⊕n (65)

is an infinitesimal Iwasawa decomposition for sl(g), see Example 17.10 for details. It follows
from the above that

ad(k)⊂ ad(g)∩ k, ad(a)⊂ ad(g)∩a, ad(n)⊂ ad(g)∩n. (66)

Since ad is injective, it follows from the infinitesimal Iwasawa decomposition of g that

ad(g) = ad(k)⊕ ad(a)⊕ ad(n). (67)

Combining this with (65) and (66) we see that the decompositions (67) and (65) are compatible,
and that the inclusions of (66) are in fact equalities.

Let K = SO(g), let A be the group of x ∈ SL(g) with xe j ∈ R>0e j for all j, and let N be
the group of x ∈ SL(g) such that x− I is strict upper triangular with respect to this basis. Then
the groups K, A and N are connected closed subgroups of SL(n,R) with Lie algebras k,a and
n, respectively. Since he inclusions (66) are equalities, it follows that Ad(K),Ad(A) and Ad(N)
equal the connected components of Ad(G)∩K, Ad(G)∩ A and Ad(G)∩N respectively. As
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Ad(G = Aut(g)e is closed in SL(g), it follows that Ad(K), Ad(A) and Ad(N) are closed sub-
groups of K, A and N, respectively. By Lemma 17.12 it follows that the multiplication map

ϕ : K×A×N→ SL(g)

is a diffeomorphism. Its restriction to the product Ad(K)×Ad(A)×Ad(N) is an embedding onto
a closed submanifold of SL(g) hence of Ad(G). On the other hand, by Lemma 17.8 it follows
that KAN is open in G and since Ad : G→Ad(G) is a covering we see that Ad(K)Ad(A)Ad(N) =
Ad(KAN) is open in Ad(G). Since Ad(G) is connected, we conclude that

Ad(G) = Ad(K)Ad(A)Ad(N).

Thus, the restriction of ϕ maps Ad(K)×Ad(A)×Ad(N) diffeomorphically onto the closed sub-
manifold Ad(G) of SL(g).

To complete the proof, we look at the commutative diagram

K×A×N
ϕ−→ G

Ad×Ad×Ad ↓ ↓ Ad

Ad(K)×Ad(A)×Ad(N)
ϕ

−→ Ad(G)

In this diagram, the vertical maps and the bottom horizontal map are coverings. From this we
infer that ϕ is surjective, using unique lifting of curves in a similar fashion as in the proof of
Theorem 15.12.

It remains to be shown that ϕ is injective.
For this we first note that by Lemma 17.9 the exponential map exp : n→ N maps ad(n)

diffeomorphically onto an open subgroup of Ad(N), hence onto the connected group Ad(N).
In particular, it follows that Ad(N) is simply connected. Since Ad : N → Ad(N) is a covering
homomorphism, it now follows that Ad : N → Ad(N) is a diffeomorphism. In particular, this
map is injective.

Furthermore, since exp : a→ A a diffeomorphism exp : a→ A is a diffeomorphism, and
Ad◦ exp = exp ◦ ad, it follows that Ad : A→ Ad(A) is a diffeomorphism.

Finally, for the injectivity of ϕ, let (k j,a j,n j) ∈ K×A×N have the same image under ϕ, for
j = 1,2. Then it follows that Ad(k j)Ad(a j)Ad(n j) is independent of j = 1,2. By the injectivity
of the map ϕ of () it follows that Ad(a1) = Ad(a2) and Ad(n1) = Ad(n2) so that a1 = a2 and
n1 = n2. Since k1a1n1 = k2a2n2, it follows that also k1 = k2. Hence, ϕ is injective.

From the final part of the above proof, we can deduce the following result.

Lemma 17.13. Let G be a connected real semisimple Lie group and g= k⊕a⊕n an infinitesimal
Iwasawa decomposition. Let N be the connected Lie subgroup of G with Lie algebra n. Then N
is a closed subgroup and exp : n→ N is a diffeomorphism.

Proof. Since N is the image of the closed subset {e}×{e}×N of K×A×N under the diffeo-
morphism given by the Iwasawa product map, it follows that N is closed in G. For the remaining
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statement, we consider the following commutative diagram

N Ad−→ Ad(N)
exp ↑ ↑ exp

n
ad−→ ad(n)

where the bottom horizontal map is a diffeomorphism. In the above proof of Theorem 17.6 we
proved that Ad : N→ Ad(N) and exp : ad(n)→ Ad(N) are diffeomorphisms as well. It follows
that exp : n→ N is a diffeomorphism onto.
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18 Harmonic analysis on real semisimple groups
Let G be a real semisimple Lie group with finite center. We have seen that Ad(G) ⊂ SL(g), so
that G is unimodular. It follows that G can be equipped with a bi-invariant Haar measure dx.
Furthermore, the left times right regular action L×R of G×G on L2(G,dx) is unitary. Harmonic
analysis on G deals with the problem of decomposing this represention into a superposition of
irreducible unitary representations, which is intuitively formulated in integral notation as follows:

L×R'
∫ ⊕

Ĝ
π⊗π

∨ dµ(π). (68)

Here Ĝ denotes the unitary dual of G, i.e., the set of equivalence classes of irreducible unitary
representations of G. This set carries a particular locally compact Hausdorff topology. The
formula involves an (essentially unique) Borel measure dµ on Ĝ, called the Plancherel measure.
Generalizing the Peter-Weyl formula, the given decomposition for a function f ∈ C∞

c (G) goes
accompagnied with a Fourier transform

π 7→ f̂ (π) ∈ End(π)HS

such that the following Parseval identity is valid

‖ f‖2
L2(G) =

∫
Ĝ
‖π( f )‖2

HS dµ(π).

The precise description of this Plancherel formula was obtained by the Indian mathematician
Harish-Chandra (1923 - 1983).

A fundamental difficulty in the theory of unitary representations of G is that finite dimen-
sional ones are all supported by the compact normal subgroups of G. We can express this as
follows.

Lemma 18.1. Let π be a finite dimensional continuous unitary representation of G. Then G0 :=
ker(π) is a closed normal subgroup of G and G=KG0. In particular, the group G/G0 is compact.

Remark 18.2. It follows from the lemma that for g simple and not compact, the group G has no
finite dimensional unitary representations besides the trivial one. Thus, the Plancherel formula
must contain infinite dimensional irreducible representation of G. In order to create sufficiently
many, we will use the process of induction, described in the next section.

Proof. Let H be the finite dimensional complex Hilbert space in which π is realized. Then the
map π : G→ GL(H ) is continuous, hence a smooth homomorphism of Lie groups. It maps G
into the compact group U(H ). The kernel G0 of π is a closed normal subgroup of G.

Let π∗ := dπ(e) : g→ u(H ) be the associated Lie algebra representation of g. Then the Lie
algebra g0 of G0 equals the kernel of π∗. This kernel is an ideal of g, hence a direct sum of a
collection of simple ideals of g. Let c be the unique complementary ideal, consisting of the direct
sum of the remaining simple ideals. We claim that c⊂ k.
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To see that the claim is valid, let c0 be a simple ideal contained in c. Then

c0 = (c0∩ k)⊕ (c0∩p) (69)

by the lemma below. The trace form τ : (S,T ) 7→ tr(ST ) is real valued, symmetric, negative
definite and U(H )-conjugation invariant on the algebra u(H ). Its pull-back b to c0 under the
map π∗|c0 is therefore symmetric and negative definite. Furtheremore, it is under Ad(G) hence
under ad(c0). The Killing form of c0 equals the restriction B0 := B|c0×c0 of the Killing form of
g. Consider B0 and b as linear maps c0 → c∗0. Then b−1B0 is an invertible map c0 → c0 which
intertwines the ad(c0)-actions. As c0 is simple, it follows that b−1B0 is a non-zero real scalar.
Since b is definite, this implies that B0 is definite as well. From B0 > 0 it would follow that
c0 ⊂ p, hence c0 = [c0,c0] ⊂ k∩p = 0, contradicting that c0 is simple. Therefore, we must have
that B0 < 0 and infer that c0 ⊂ k. This establishes the claim. Let C be the connected subgroup of
G with Lie algebra c. Then the natural map j : C→G/G0 is a smooth Lie group homomorphism
whose differential is bijective. Since G/G0 is connected, it follows that j(C) = G/G0 hence
G =CG0. Since c⊂ k, it follows that C ⊂ K.

Lemma 18.3. Let σ be a Cartan involution of g. Then θ leaves each ideal of g invariant.

Proof. As every ideal is a sum of simple ones, it suffices to establish the assertion for the simple
ideals. Let s be such a simple ideal, and let g1, . . . ,gs be a numbering of the simple ideals such
that s = g1. Then g = g1⊕ ·· · ⊕ gs, as a Lie algebra. The Lie algebra u = k⊕ ip is compact
semisimple, hence a direct sum of its simple ideals u1, . . . ,ut . Now u jC are the simple ideals
of the complex semisimple Lie algebra gC, and so are g jC. It follows that s = t and after a
renumbering we may assume that u j and g j have the same complexification.

We will finish the proof by showing that

g1 = (g1∩ k)⊕ (g1∩p). (70)

θ leaves g1 invariant. Let X ∈ g1. Then X =U +V with U ∈ k and V ∈ p. Now U ∈ u and V ∈ iu
whereas U +V ∈ g1 ⊂ u1C. It follows that U ∈ u1 and V ∈ iu1. Hence U ∈ u1∩ k= u1∩g∩ k⊂
g1∩ k and, likewise, V ∈ g1∩p. This establishes (70).

19 Induced representations
In this section we assume that G is an arbitrary Lie group, and that H is a closed subgroup. We
assume that ξ is a finite dimensional continuous representation of H in a (finite dimensional)
complex vector space Vξ . In terms of these data, we define the so called induced representation
of G, denoted

πξ = indG
H(ξ ).

The representation space is defined to be the space of continuous functions ϕ : G→ Vξ trans-
forming according to the rule

ϕ(xh) = ξ (h)−1
ϕ(x), (x ∈ G, h ∈ H). (71)
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The space of these functions is denoted by C(G : H : ξ ). It is a closed linear subspaceof C(G,Vξ ),
relative to the usual Fréchet topology. Accordingly, C(G : H : ξ ) is a Fréchet space for the
restricted topology. The induced representation of G in this space is defined by restriction of the
left regular representation. Thus,

[πξ (g)ϕ](x) = ϕ(g−1x), (ϕ ∈C(G : H : ξ ), x,g ∈ G).

There is a natural way to view (πξ ,C(G : H : ξ )) as represenation of G in the space of continuous
sections of a vector bundle on G/H. To be able to give a transparent definition of this vector
bundle, we will first discuss the general notion of an equivariant vector bundle.

Let M be a smooth manifold equipped with a smooth left action by the Lie group G. By a
G-equivariant vector bundle on M, we mean a vector bundle p : V →M together with a smooth
left action of G on V such that the following diagram commutes, for every g ∈ G,

V
g·−→ V

p ↓ ↓ p

M
g·−→ M

(72)

The requirement that the above diagram be commutative for all g ∈ G is equivalent to the re-
quirement that G acts by vector bundle automorphisms, consistent with the action on M. Another
way to say this, is that the action map g· : V → V maps each fiber Vm, for m ∈ M, linearly
isomorphically onto Vgm.

Now assume that p : V → G/H is an equivariant vector bundle over the quotient manifold
G/H, where the latter space is equipped with the natural G-action by left translation. Then the
group H fixes the origin [e] := eH, hence its action on V retricts to the smooth action on the
fiber V := V[e] by linear automorphisms. In other words, this action of H on V corresponds to a
representation ξ of H in V.

Lemma 19.1. The map ψ : G×V →V defined by (g,v) 7→ gv is a smooth surjective submersion.
Its fibers are the orbits of the right H-action on G×V defined by (g,v)h = (gh,ξ (h)−1v). The
induced map ψ̄ : (G×V )/H→ V is a diffeomorphism.

Proof. The map ψ is obviously smooth. To establish its surjectivity, let v∈ V . Then v belongs to
the fiber Vm where m = p(v) ∈G/H. Let g ∈G be such that m = [g]. Then w := g−1v ∈ V[e] =V
and v = gw = ψ(g,w). Hence, ψ is surjective, and (g,w) is an element of the fiber ψ−1(v).
Clearly, every element of the form (gh,ξ (h)−1w) belongs to the same fiber. Conversely, if (g′,w′)
belongs to the fiber, then [g′] = p(ψ(g′,w′)) = p(v) = [g], so that g′ = gh for a unique element
h ∈ H. From gw = g′w′ = ghw′ we now conclude that w = hw′, hence (g′,w′) = (g,w)h.

We will now show that ψ is a submersion. By left G-equivariance, it suffices to do this at
the point (e,v), for every v ∈ V. For this we note that the map u 7→ ψ(e,v+ u) is a translation
V →V =V[e], so that im(dψ(e,v)) contains TvV[e] = kerd p(v). Since p◦ψ(g,v) = [g], for g∈G,
it follows d p(v)◦dψ(e,v) is surjective, and we find that dψ(e,v) is surjective.

It follows from the above arguments that the induced map ψ̄ is a bijection. Furthermore, since
ψ is submersive, it follows that ψ̄ is a smooth submersion as well. For dimensional reasons, it
now follows that ψ̄ is a local diffeomorphism, hence a diffeomorphism.
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Example 19.2. Typical examples of equivariant vector bundles on the homogeous manifold
G/H are the various geometric vector bundles over this manifold. Let us first consider the tangent
bundle T (G/H). The action l : G×G/H → G/H given by lg(m) = gm lifts to a smooth map
G×T (G/H)→ T (G/H), (g,ξ ) 7→ g ·ξ given by

g ·ξ := dlg(x)ξ , (g ∈ G, x ∈ G/H, ξ ∈ Tx(G/H)).

By application of the chain rule, one sees that this is indeed an action, which is fiberwise linear.
We thus see that T (G/H) equipped with this action is an equivariant vector bundle.

If we use the natural identification T[e](G/H) ' g/h, the action of H on T[e](G/H) given by
(h,v) 7→ dlh([e]) corresponds to the action on g/h induced by the adjoint action of H on g. In
view of the above remark, the map

G× (g/h), (g,v) 7→ dlg([e])v

factors through a diffeomorphism

[G× (g/h)]/H '−→ T (G/H).

Let p : V → G/H be an equivariant vector bundle. Then there is a natural representation
π of G in the space of continuous sections Γ(M,V ). Given an element g ∈ G the map π(g) :
Γ(M,V )→ Γ(M,V ) is defined by

[π(g)s](m) = g · s(g−1m), (s ∈ Γ(M,V ), m ∈M).

It is readily verified that this is a continuous representation of G in Γ(M,V ), equipped with the
usual Fréchet topology.

Let ξ be the natural representation of H in the fiber V = V[e], defined above Lemma 19.1. We
will show that the representation π is equivalent to πξ = indG

H(ξ ) in a precise sense.
Given a section s ∈ Γ(G/H,V ) we define the continous function ϕs : G→V by

ϕs(x) = x−1s([x]) ∈ V[e] =V.

Then for h ∈ H we have

ϕs(xh) = h−1x−1s([xh]) = ξ (h)−1x−1s([x]) = ξ (h)−1
ϕs(x).

Thus we see that ϕs ∈C(G : H : ξ ).

Lemma 19.3. The map Φ : s 7→ ϕs defines a continuous linear isomorphism Γ(G/H,V )→
C(G : H : ξ ), which intertwines π with πξ .

Proof. For ϕ ∈C(G : H : ξ ) we define the continuous function 8sϕ : G→ V by

8sϕ(x) = x ·ϕ(x).
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Then 8sϕ(xh) = xh ·ξ (h)−1ϕ(x) = x ·ϕ(x) = 8sϕ(x). It follows that 8sϕ is right H-invariant hence
factors through a continuous function sϕ : G/H → V . Since 8sϕ maps x ∈ G into V[x], it follows
that sϕ ∈ Γ(G/H,V ). It is readily verified that ϕ 7→ sϕ is a continuous linear map C(G : H : ξ )→
Γ(G/H,V ), and a two-sided inverse to Φ.

It remains to establish the intertwining property. Let s ∈ Γ(G/H,V ) and g ∈ G, then

(Φ◦π(g)s)(x) = x−1(π(g)s)([x]) = x−1g · s(g−1[x])
= (g−1x)−1s([g−1x]) = Φ(s)(g−1x)
= πξ (g)◦Φ(s)(x)

and the required property follows.

We thus see that an equivariant vector bundle gives rise to an induced representation. We will
see that every induced representation arises in this way.

More precisely, let (ξ ,Vξ ) be a smooth representation of H in a finite dimensional complex
(or real) vector space Vξ . Then motivated by Lemma 19.1 we consider the right H-action on
G×Vξ by

(x,v) ·h := (xh,ξ (h)−1v), (x ∈ G, v ∈Vξ , h ∈ H).

This action is proper and free, since the right action of H on G is already proper and free. The
associated smooth quotient manifold is denoted by

G×H Vξ := G×Vξ/H.

Then the projection pr1 : G×Vξ → G is right H-equivariant, hence induces a smooth map

p : G×H Vξ → G/H,

so that the following diagram commutes

G×Vξ

π̃−→ G×H Vξ

pr1↓ ↓ p

G π−→ G/H.

(73)

Lemma 19.4. The map p : G×H Vξ → G/H has a unique structure of vector bundle for which
the pair of horizontal maps is a vector bundle morphism.

Remark 19.5. The above construction is known as the associated vector bundle construction
for the principal bundle G→ G/H and the H-representation ξ . It works more generally for any
H-principal bundle π : P→M ' P/H. The above definition and lemma are valid if G and G/H
are everywhere replaced by P and M.

Proof. It is actually easiest to prove the lemma in the generality of an H-principal bundle π :
P→M, as this allows localization to trivial bundles. We will do this.

Let x ∈ P and put m = π(x). Then the map jx : V → P×H V given by v 7→ [(x,v)] is readily
checked to be a bijection onto the fiber (P×H V )m := p−1(m). If p is equipped with a vector
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bundle structure satisfying the requirements, the map jx must be a linear isomorphism. On the
other hand, if x′ ∈ P is a second point in P, then π(x′) = m if and only if x′ = xh for an element
h ∈ H, and in this case it is readily seen that the following diagram commutes

V jx
↘

ξ (h)−1 ↓ (P×H V )m
↗

V jx′

It follows that the fiber p−1(m) carries a unique structure of linear space for which all maps jx′
with π(x′) = m become linear isomorphisms. We equip every fiber of p with this structure of
linear space.

Then it remains to be shown that for every m0 ∈M there exists an open neighborhood O 3m0
and a diffeomorphism τ : p−1(O)→ O×V such that the following diagram commutes

p−1(O)
τ−→ O×V

p ↓ ↓ pr1

O
I−→ O

and so that for every m ∈ O, the map pr2 ◦τ restricts to a linear isomorphism τm : p−1(m)→V.
We put PO := π−1(O) and may choose O such that the principal fiber bundle π allows a

trivialization PO 'O×H over O. In that case, the natural map PO ×V → P×V factors through
a diffeomorphism from PO×H V onto the open subset p−1(O) of P×H V under which the natural
projections onto O correspond.

We thus see that we may reduce to the case of a trivial principal bundle, and we may assume
that P = M×H from the start. Then

P×H V = (M×H×V )/H = M×H×H V

and we infer that it suffices to prove the existence of a trivialisation ϕ : M×H×H V →M×V
over M such that the map pr2 ◦ϕ ◦ j(m,h) : V →V is a linear isomorphism, for every (m,h) ∈ P.

We define ϕ by [(m,h,v)] 7→ (m,ξ (h)v). In the converse direction, we define ψ : (m,v) 7→
[(m,e,v)]. Then ϕ and ψ are smooth and two-sided inverses of each other, hence ϕ is a diffeo-
morphism. Furthermore, the following diagram commutes

M×H×H V
ϕ−→ M×V

pr1 ↓ ↓ pr1

M I−→ M

and we see that ϕ is a trivialisation. Finally,

pr2 ◦ϕ ◦ j(m,h)(v) = pr2 ◦ϕ([(m,h,v)]) = pr2(m,ξ (h)v) = ξ (h)v,

so that pr2 ◦ϕ ◦ j(m,h) equals the linear automorphism ξ (h) of V.
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Lemma 19.6. Let notation be as in Lemma 19.4. Then the natural left action of G on G×Vξ

factorizes through a smooth action of G on G×H Vξ . For this action, p : G×H V → G/H is a
G-equivariant vector bundle.

Remark 19.7. From now on we shall also write Vξ := G×H Vξ .

Proof. The natural left action of G on G×V commutes with the right H-action, hence induces a
smooth map G× (G×H V )→ (G×H) such that the following diagram is commutative

G× (G×H V ) −→ G×H V
↓ ↓

G×G/H −→ G/H.

Since the vertical map on the left is a surjective submersion, it follows that the horizontal map at
the bottom is smooth. We thus see that p : G×H V →G/H is a G-equivariant vector bundle.

Corollary 19.8. Let p : V → G/H be a G-equivariant bundle. Let ψ̄ : G×H V → V be defined
as in Lemma 19.1. Then ψ̄ is a (natural) isomorphism of G-equivariant vector bundles.

Proof. By the mentioned lemma, ψ̄ is a diffeomorphism. Since ψ : G×V → V intertwines the
left G-actions, it follows that ψ̄ does as well. It now remains to be shown that ψ̄ restricts to a
linear map (G×H V )m→ Vm for every m ∈G/H. By left G-equivariance, it suffices to show this
for m = [e].

Let i : V → V be the natural inclusion map, with image V[e], and let j = je : V → (G×H V )[e]
be the linear isomorphism induced by v 7→ [(e,v)]. Then ψ̄ ◦ j = i and we find that ψ̄ restricts to
a linear isomorphism (G×H V )[e]→ V[e].

Example 19.9. For later use, we consider the example of the bundle DαT (G/H) of (complex
valued) α-densities, with α a positive real number. We will especially be interested in the bundles
for the values α = 1 and α = 1/2.

If V is a finite dimensional real linear space of dimension n, then DαV is defined to be the
space of functions λ : ∧nV → C transforming according to the rule

λ (tv) = |t|αλ (v), (u ∈ ∧nV, t ∈ R).

Let ω ∈ ∧nV ∗ \{0}, then |ω|α : u 7→ |ω(u)|α is an example of such a density, and the map

z 7→ z|ω|α , C→DαV

is a linear isomorphism.
Given another real linear space W of dimension n and a linear map A : V →W we define the

linear map A∗ : DαW →DαV by

A∗λ = λ ◦(∧nA), (λ ∈DαW ).

In case W =V, it is readily verified that

A∗λ = |detA|αλ . (74)
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Accordingly, the natural action of GL(V ) on V induces an action on DαV given by the formula
(A,λ ) 7→ λ := A−1∗λ . From (74) we see that this action is given by the character

A 7→ |detA|−α .

The functor assigning to a finite dimensional real linear space its space of α-densities depends
smoothly on parameters, hence may be applied to the tangent bundle of a smooth manifold M to
give the bundle of α-densities DαT M.

If ϕ : M→ N is a diffeomorphism of manifolds of equal dimension n, then there is a natural
isomorphism of vector bundles ϕ̃ : DαT M→DαT N defined by

ϕ̃ : (λx) = dϕ(x)−1∗
λx ∈DTϕ(x)N, (x ∈M, λx ∈DαTxM).

We now turn to the setting of DαT (G/H). The action of G on G/H by left multiplication induces
a smooth action on the bundle DαT (G/H) by automorphisms of vector bundles. Accordingly,
the bundle is G-equivariant. It follows that we have a natural isomorphism

G×H DαT[e](G/H)
'−→ DαT (G/H).

The H-space DαT[e](G/H) is one dimensional over C. Hence H acts by a character which we
will now compute.

We recall that the derivative of the projection π : G→ G/H induces a natural isomorphism
g/h' T[e](G/H), through which we identify these spaces. The action of H on T[e](G/H) is given
by (h,v) 7→ dlh([e]). On g/h this action coincides with the action h 7→ Ad(h), H → GL(g/h)
induced by Ad|H : H→GL(g). We now infer that the action of h∈H on an element λ ∈Dα(g/h)
is given by

h ·λ = Ad(h)−1∗
λ = |detg/hAd(h)|−α

λ = ∆
α(h)λ ,

where

∆(h) = |detg/hAd(h)|−1 =
|detAd(h)|h|
|detAd(h)|g|

, (h ∈ H). (75)

Given a character δ of H, let Let Cδ denote C equipped with the H-module structure (h,z) 7→
ξ (h)z. Then it follows that

G×H C∆α
'−→ DαT (G/H). (76)

The isomorphism is determined up to a choice of normalization. Fix a non-zero top order al-
ternating form ω ∈ ∧top((g/h∗). Then z 7→ z|ω|α defines a linear isomorphism from C onto
Dα(g/h). The corresponding linear isomorphism (76) is induced by

G×C→DαT (G/H), (g,z) 7→ z ·dlg([e])−1∗|ω|α .

Remark 19.10. Before we proceed with our study of induced representations, we note that the
assignment F : V ; V[e] is a functor from the category VBG(G/H) of finite rank equivariant
smooth complex vector bundles on G/H to the category Rep(H) of finite dimensional contin-
uous representations of H. In the converse direction, G : (ξ ,Vξ ) ; G×H Vξ is a functor from

99



Rep(H) to VBG(G/H). Corollary 19.8 essentially asserts that the composed functor G ◦F is
naturally equivalent to the identity functor on VBG(G/H). Likewise, it can be shown that F ◦G
is naturally equivalent to the identity functor on Rep(H). We conclude that the two functors set
up an equivalence of the categories VBG(G/H) and Rep(H).

The realization of indG
H(ξ ) as the representation in C(G : H : ξ ) obtained by restriction of

the left regular representation, is sometimes called the ‘induced picture.’ The realization as the
representation in Γ(G/H,Vξ ) is called the ‘vector bundle picture’. For most of our purposes, it
will be sufficient to refer to the ‘induced picture’ of indG

H(ξ ). However, for understanding the
concept of unitary and normalized induction, a proper understanding of the bundle of densities
will turn out to be very useful.

The idea of unitary induction arises from the question whether the described process of induc-
tion preserves unitarity. For investigating this, we assume that Vξ is a finite dimensional Hilbert
space, equipped with a Hermitian inner product 〈 · , · 〉ξ , and that ξ is a unitary representation.
We consider the subspace Cc(G : H : ξ ) of C(G : H : ξ ) consisting of functions ϕ with support
π(suppϕ) compact in G/H. Given functions ϕ,ψ ∈Cc(G : H : ξ ), we define the function

〈ϕ , ψ〉ξ : G→ C, x 7→ 〈ϕ(x) , ψ(x)〉ξ . (77)

Then for x ∈ G and h ∈ H we see that

〈ϕ , ψ〉ξ (xh) = 〈ξ (h)−1
ϕ(x) , ξ (h)−1

ψ(x)〉ξ = 〈ϕ , ψ〉ξ (x),

and we see that the function (77) is right H-invariant, hence factors through a compactly sup-
ported continuous function G/H→ C.

Now assume that G/H admits a G-invariant positive density dx̄. Then we may define a Her-
mitian inner product 〈 · , · 〉 on Cc(G : H : ξ ) by

〈ϕ , ψ〉 :=
∫

G/H
〈ϕ , ψ〉ξ (x̄) dx̄. (78)

Then

〈πξ (g)ϕ , πξ (g)ψ〉 =
∫

G/H

(
〈ϕ , ψ〉ξ (g−1x̄)

)
dx̄

=
∫

G/H
l−1∗
g
(
〈ϕ , ψ〉ξ dx̄

)
=

∫
G/H

(
〈ϕ , ψ〉ξ dx̄

)
= 〈ϕ , ψ〉

where we used left-invariance of the density in the third equality, and invariance of integration
of densities (substitution of variables) in the next.

In other words, the given pre-Hilbert structure on Cc(G : H : ξ ) is invariant for the repre-
sentation πξ . Let L2(G : H : ξ ) be the Hilbert completion of Cc(G : V : ξ ) with respect to the
given pre Hilbert structure. Then πξ has a unique extension to a unitary representation of G in
L2(G : H : ξ ), in view of Lemma 1.8.
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Before proceeding we observe that we can also define an equivariant pairing if ξ is a possibly
non-unitary representation in a finite dimensional Hilbert space Vξ . We may define the conjugate
adjoint of ξ to be the representation ξ ∗ of H in Vξ by the formula

ξ
∗(h) = ξ (h−1)∗

where the star on the right-hand side indicates that the Hermitian adjoint with respect to the inner
product is taken. Then ξ is unitary if and only if ξ ∗= ξ . The above scheme may be used to define
an equivariant sesquilinear pairing

Cc(G : H : ξ )×Cc(G : H : ξ
∗)→ C

by the same formula (78).
The condition that G/H carries a positive invariant density is equivalent to the condition that

|detAd(h)|h|= |detAd(h)|g|, (h ∈ H),

which is fulfilled in case G is compact, or more generally in case both G and H are unimodular,
but not in general.

In the general case, we introduce the following definition of normalized induction to cir-
cumvent the choice of a possible invariant density on G/H. We assume that ξ is a continuous
representation in a finite dimensional Hilbert space Vξ . Then the H-module Vξ ⊗C

∆1/2 is natu-
rally isomorphic to Vξ equipped with the representation ξ ⊗∆1/2 given by

(ξ ⊗∆
1/2)(h)v = ∆(h)1/2

ξ (h)v, (v ∈Vξ ,h ∈ H).

We agree to write V
ξ⊗∆1/2 for the Hilbert space Vξ equipped with this representation. It is then

readily verified that the inner product of Vξ defines the H-equivariant sequilinear pairing

〈 · , · 〉ξ : V
ξ⊗∆1/2×V

ξ ∗⊗∆1/2 → C∆.

For ϕ ∈Cc(G : H : ξ ⊗∆1/2) and ψ ∈Cc(G : H : ξ ∗⊗∆1/2), we define the function 〈ϕ , ψ〉 : G→
C by

〈ϕ , ψ〉ξ := 〈ϕ(x) , ψ(x)〉ξ .

Then it follows that 〈ϕ , ψ〉ξ ∈Cc(G : H : ∆).
Let ω ∈ ∧top(g/h)∗ \{0}. Then it follows as in Example 19.9 that the map

〈ϕ , ψ〉ξ ,ω : x 7→ 〈ϕ , ψ〉ξ dlx([e])−1∗|ω|, G→DT (G/H), (79)

is right H-invariant and defines a compactly supported section of the density bundle DT (G/H)
on G/H. We may thus define 〈ϕ , ψ〉 ∈ C by

〈ϕ , ψ〉 :=
∫

G/H
〈ϕ , ψ〉ξ ,ω (80)
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Lemma 19.11. The sesquilinear pairing Cc(G : H : ξ ⊗ ∆1/2)×Cc(G : H : ξ ∗⊗ ∆1/2)→ C
defined by (80) is G-equivariant.

Proof. We put π = π
ξ⊗∆1/2 and π∗ = π

ξ ∗⊗∆1/2. Then

〈π(g)ϕ , π
∗(g)ψ〉ξ ,ω(x) = 〈Lgϕ , Lgψ〉(x)dlx(e)−1∗|ω|

= 〈ϕ , ψ〉(g−1x)dlx(e)−1∗|ω|
= dlg−1(x)∗〈ϕ , ψ〉(g−1x)dlg−1x(e)

−1∗|ω|
= l∗g−1(〈ϕ , ψ〉ξ ,ω)(x).

It follows that

〈π(g)ϕ , π(g)ψ〉 =
∫

G/H
l∗g−1(〈ϕ , ψ〉ξ ,ω)

=
∫

G/H
〈ϕ , ψ〉ξ ,ω

= 〈ϕ , ψ〉

by invariance of the integration of densities. This establishes the equivariance.

Lemma 19.12. Assume that ξ is unitary (so that ξ ∗ = ξ ). Then the pairing (80) defines a
G-equivariant pre-Hilbert structure on Cc(G : H : ξ ⊗∆1/2). The representation indG

H(ξ ⊗∆1/2)
has a unique extension to a unitary representation in the Hilbert space completion L2(G : H :
ξ ⊗∆1/2).

Proof. The given pairing is sesquilinear and G-equivariant by Lemma 19.11. We will show it is
positive definite. Let ϕ ∈Cc(G : H : ξ ⊗∆1/2). Then

〈ϕ , ϕ〉ξ (x) = 〈ϕ(x) , ϕ(x)〉 ≥ 0

for all x ∈ G. It follows that 〈ϕ , ϕ〉ξ ,ω is a compactly supported continuous density on G/H,
which is everywhere nonnegative. This implies that

〈ϕ , ϕ〉=
∫

G/H
〈ϕ , ϕ〉ξ ,ω ≥ 0,

with equality if and only if 〈ϕ , ϕ〉ξ ,ω = 0 everywhere. This in turn is equivalent to ϕ = 0. It
follows that the pairing defines a pre-Hilbert structure. The final assertion follows by application
of Lemma 1.8.

From now on we agree to write

IndG
H(ξ ) := indG

H(ξ ⊗∆
1/2),

for every continuous representation ξ of H in a finite dimensional Hilbert space. This adapted
induction procedure will be called normalized induction. If the representation ξ is unitary, we
also speak of unitary induction.
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20 The principal series
In the present section we will apply the theory of the previous section to define the principal
series of representations of a connected real semisimple Lie group G with finite center.

We assume that θ is a Cartan involution of its Lie algebra g, with associated Cartan decom-
position g = k⊕p. We fix a maximal abelian subspace a of p and a system Σ+ of positive roots
for the associated root system Σ = Σ(g,a). Accordingly, the sum of the positive root spaces is
denoted by n and the sum of the associated negative root spaces by n̄. The connected subgroups
of G with Lie algebras k, a and n are denoted by K,A and N, respectively. The group K is com-
pact, by Lemma 15.14. Recall that m denotes the centralizer of a in k. The centralizer of a in K is
denoted by M. This is is a closed subgroup of K, hence compact. We note that it may be highly
disconnected. This is apparent in the standard example of SL(n,R) with the standard Iwasawa
decomposition. In that case, M consists of all diagonal matrices with diagonal entries equal to
±1 and with product of diagonal entries equal to one.

We define the so called minimal parabolic subgroup P of G by

P = MAN.

Lemma 20.1. The group P is closed in G. The map (m,a,n) 7→ man is a diffeomorphism from
M×A×N onto P.

Proof. This is an immediate consequence of the Iwasawa decomposition.

We now assume that ξ is a unitary representation of M in a finite dimensional Hilbert space
Vξ and that λ ∈ a∗C. Then a 7→ aλ is a character of A, which is unitary if and only if λ ∈ ia.
Since M commutes with a, hence with A, the set MA is a subgroup of G, which is closed by
the Iwasawa decomposition. Furthermore, M×A→MA, (m,a) 7→ ma is an isomorphism of Lie
groups. For (m,a) ∈M×A we may now put

(ξ ⊗λ )(ma) : Vξ →Vξ , v 7→ aλ
ξ (m)v.

Then ξ ⊗λ defines a continuous representation of MA in the Hilbert space Vξ , which is unitary
if and only if λ ∈ ia∗.

Lemma 20.2.

(a) The group MA normalizes N.

(b) N is a normal subgroup of P.

Proof. For (a) we note that Ad(MA) centralizes a, hence normalizes n. Since N = exp(n) it
follows that MA normalizes N. Assertion (b) follows from (a).

In view of the above lemma, we may define a representation (ξ ⊗λ ⊗1) of P in Vξ by

(ξ ⊗λ ⊗1)(man) = (ξ ⊗λ )(ma) = aλ
ξ (m), ((m,a,n) ∈M×A×N).
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We note that
(ξ ⊗λ ⊗1)∗ = ξ ⊗ (−λ̄ )⊗1.

In particular, this representation is unitary if and only if λ ∈ ia∗.
The principal series of representations is the series of all induced representations indG

P (ξ ⊗
λ ⊗1) with ξ ∈ M̂ (irreducible) and λ ∈ a∗C. However, we will see that the manifold G/P does
not carry a G-invariant density, so that it is more convenient to use normalized induction, and a
corresponding shift of parameter, as explained in the previous section.

In accordance with (75) we define the positive character ∆ of P by

∆(y) = |detg/(m+a+n)Ad(y)|−1, (y ∈ P).

Let ρ ∈ a∗ be defined by

ρ(H) =
1
2

tr(ad(H)|n).

Then by the root space decomposition of n, we see that

ρ =
1
2 ∑

α∈Σ+

mαα.

where mα = dimR(gα). Thus, ρ is half the sum of the positive roots, counted with multiplicities.

Lemma 20.3. The character ∆ of P is given by

∆(man) = a2ρ , (m ∈M, a ∈ A, n ∈ N).

Proof. Since M is compact, it follows that ∆= 1 on M. Furthermore, if y= expY with Y ∈ n, then
ad(Y ) is a nilpotent element of sl(g), so that Ad(y) = exp ad(Y ) and its restriction to Lie(P) =
m+a+n has determinant 1. Hence ∆ = 1 on N. Finally, if a ∈ A, then Ad(a) preserves the root
space decomposition, so that

|detg/(m+a+n)Ad(a)| = |det(Ad(a)|n̄)|= |detead(loga)|n̄ |

= etr(ad(loga)|n̄) = e−2ρ(loga)

= a−2ρ .

The result now follows.

It follows from the above that

(ξ ⊗λ ⊗1)⊗∆
1/2 = ξ ⊗ (λ +ρ)⊗1,

so that
πξ ,λ := IndG

P (ξ ⊗λ ⊗1) = indG
P (ξ ⊗ (λ +ρ)⊗1).

The associated space C(G : P : ξ ⊗ (λ +ρ)⊗1) in which πξ ,λ is realized, will now be denoted
by C(P : ξ : λ ). Thus, this space consists of the continuous functions ϕ : G→ Vξ transforming
according to the rule

ϕ(xman) = a−λ−ρ
ξ (m)−1

ϕ(x), (x ∈ G,(m,a,n) ∈M×A×N}.
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Furthermore, πξ ,λ is the representation of G in C(P : ξ : λ ) obtained by restricting the left regular
representation.

Since G = KP, the coset space G/P is compact. Let ω be a non-zero top order alternating
form on g/(m⊕a⊕n), so that |ω| defines a positive density on this space. Following the proce-
dure of the previous section, we obtain for each λ ∈ a∗C a non-degenerate sesquilinear pairing

C(P : ξ : λ )×C(P : ξ :−λ̄ )→ C, (ϕ,ψ) 7→ 〈ϕ , ψ〉 (81)

defined as in (80), with P in place of H. By Lemma 19.11 this pairing is G-equivariant for
the respective representations πξ ,λ and π

ξ ,−λ̄
on these spaces. In particular, if λ ∈ ia∗, then

λ = −λ̄ and this pairing defines a pre-Hilbert structure on C(P : ξ : λ ). By Lemma 19.12 the
representation πξ ,λ then uniquely extends to a unitary representation in the Hilbert completion
of C(P : ξ : λ ).

It turns out that in the present setting the pairing (81) has a very appealing description. The
following lemma prepares for this.

Lemma 20.4. The inclusion map K→ G induces a diffeomorphism

ι : K/M '−→ G/P.

Proof. Let k ∈ K ∩P. Then k = man for (m,a,n) ∈ M×A×N. By the uniqueness part of the
Iwasawa decomposition it follows that k = m ∈M. Thus, we see that K∩P = M. It follows that
M is the stabilizer of [e] in K for the natural action of K on G/P. The result follows.

We return to the principal series representation πξ ,λ = IndG
P (ξ ⊗ λ ⊗ 1), with ξ ∈ M̂ and

λ ∈ a∗C. Let dk be normalized Haar measure on K.

Theorem 20.5. The form ω can be normalized such that the G-equivariant pairing (81) is given
by

(ϕ,ψ) 7→
∫

K
〈ϕ(k) , ψ(k)〉ξ dk, (82)

where 〈 · , · 〉ξ denotes the inner product of Vξ .

Proof. Let ϕ and ψ be as in (82). Then

〈ϕ(km) , ψ(km)〉ξ = 〈ϕ(k) , ψ(k)〉ξ ,

by unitarity of ξ . It follows that the function 〈ϕ , ψ〉ξ is right M-invariant. Hence,∫
K
〈ϕ(k) , ψ(k)〉ξ dk =

∫
K/M
〈ϕ , ψ〉ξ (k̄) dk̄ (83)

where dk̄ denotes the the normalized left K-invariant density on K/M.
There exists an alternating form ωM ∈ ∧top(k/m)∗ such that dk̄([k]) = dlk([e])−1∗|ωM| for all

k ∈ K. It follows that the integral in (83) equals the integral∫
K/M
〈ϕ , ψ〉ξ ,ωM (84)
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where the integrand is the density on K/M given by

〈ϕ , ψ〉ξ ,ωM(k) := 〈ϕ , ψ〉ξ (k) dlk([e])−1∗|ωM|, (k ∈ K).

Let ι : K/M→G/P be the diffeomorphism induced by inclusion. Then dι([e]) is the linear map
k/m→ g/(m+ a+ n) induced by inclusion. Since this map is a linear isomorphism we may
adapt the normalization of ω ∈ ∧top(g/m+a+n)∗ to arrange that

dι([e])∗|ω|= |ωM|.

As in the previous section, Eqn. (79) with P in place of H, we define the density 〈ϕ , ψ〉ξ ,ω on
G/P by

〈ϕ , ψ〉ξ ,ω = 〈ϕ , ψ〉ξ (x) dlx([e])−1∗|ω|.

Since ι : K/M→ G/P intertwines the natural K-actions, it follows that

ι
∗(〈ϕ , ψ〉ξ ,ω = 〈ϕ , ψ〉ξ ,ωM .

In view of Lemma 20.4 it now follows by invariance of integration that (84) equals∫
K/M

ι
∗(〈ϕ , ψ〉ξ ,ω) =

∫
G/P
〈ϕ , ψ〉ξ ,ω = 〈ϕ , ψ〉,

see (80) for the final equality.

We will now describe the so-called ‘compact picture’ of the principal series. We consider the
space

C(K : M : ξ ) := {ϕ ∈C(K,Vξ ) | ϕ(km) = ξ (m)−1
ϕ(k), ∀k ∈ K,m ∈M}.

The representation of K in this space obtained by restricting the left regular representation is just
the induced representation indK

M(ξ ), which equals the unitarily induced representation IndK
M(ξ ),

by compactness of K.

Lemma 20.6. Let λ ∈ a∗C. Then the restriction map ϕ 7→ϕ|K defines a K-equivariant topological
linear isomorphism

rλ : C(P : ξ : λ )→C(K : M : ξ ). (85)

Proof. If ϕ : G→Vξ belongs to C(P : ξ : λ ), then it is clear that rλ (ϕ) = ϕ|K belongs to C(K :
M : ξ ). Thus, (85) is a well-defined continuous linear map. We define the map iλ : C(K : M :
ξ )→C(G,Vξ ) by

iλ ( f )(kan) = a−λ−ρ f (k).

This map is well defined and continuous linear in view of the Iwasawa decomposition. Further-
more, it is readily checked that it maps into C(P : ξ : λ ). Finally, it is straightforward that rλ

and iλ are inverse to each other. This shows that (85) is a topological linear isomorphism. The
K-equivariance is obvious.
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Via the above isomorphism, we may transfer the representation πξ ,λ to a continuous repre-
sentation of G in C(K : ξ ), which will denoted by πξ ,λ as well. We will derive a formula for it
which expresses the dependence on λ ∈ a∗C.

In view of the Iwasawa decomposition and since exp : a→A is a diffeomorphism with inverse
log : A→ a, we may define smooth maps κ : G→ K and H : G→ a by

κ(kan) = k, H(kan) = loga, ((k,a,n) ∈ K×A×N).

Lemma 20.7. The representaton πξ ,λ of G in C(K : ξ ) is given by

[πξ ,λ (x)ϕ](k) = e−(λ+ρ)H(x−1k)
ϕ(κ(x−1k)), (86)

for ϕ ∈C(K : M : ξ ), x ∈ G and k ∈ K.

Proof. Write x−1k = k′a′n′ in according to the Iwasawa decomposition. Then k′ = κ(x−1k) and
a = expH(x−1k). The expression on the left-hand side of (86) equals by definition

(rλ ◦Lx ◦ iλ )(ϕ)(k) = Lx ◦ iλ (ϕ)(k)
= iλ (ϕ)(x

−1k)

= iλ (ϕ)(k
′a′n′) = (a′)−λ−ρ

ϕ(k′).

The latter expression equals the expression on the right-hand side of (86).

Remark 20.8. A special feature of the compact picture is that the representation space for πξ ,λ

has become independent of the parameter λ ∈ a∗C. Moreover, the representation πξ ,λ depends
on λ in a holomorphic fashion. At a later stage this will allow analytic continution of certain
identities in the parameter λ .

We denote by L2(K : M : ξ ) the space of functions ϕ ∈ L2(K,Vξ ) satisfying the transformation
rule

ϕ(km) = ξ (m)−1
ϕ(k),

for k ∈ K and m ∈ M. This space is a closed subspace of the Hilbert space L2(K,Vξ ), hence a
Hilbert space of its own right.

It is readily seen from the description of the representation πξ ,λ in Lemma 20.7 that the
representation has a unique extension to a continuous linear representation of G in L2(K : M : ξ ).
Furthermore, the pairing (83) is the restriction of the inner product of L2(K : M : ξ ). By continuity
and density of C(K : M : ξ ) in L2(K : M : ξ ) it follows that the inner product on L2(K : M : ξ )
gives a sesquilinear pairing

L2(K : M : ξ )×L2(K : M : ξ )→ C

which is equivariant for the representions πξ ,λ and π
ξ ,−λ̄

, respectively. Equivalently, this means
that

π
∗
ξ ,λ = π

ξ ,−λ̄
.
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In particular, if λ ∈ ia∗ then the representation πξ ,λ of G in L2(K : M : ξ ) is unitary.
Finally, via the isomorphism rλ , the L2-inner product on C(K : M : ξ ) transfers to a pre-

Hilbert structure on C(P : ξ : λ ). Let L2(P : ξ : λ ) denote the completion of C(K : M : ξ ). Then
the map rλ extends to an isometry L2(P : ξ : λ )' L2(K : M : ξ ) which intertwines the restriction
of L with πξ ,λ .

We conclude this section with a result on the K-isotypical components of the representations
of the principal series. We agree to write

C∞(P : ξ : λ ) :=C(P : ξ : λ )∩C∞(G,Vξ ).

This is a closed subspace of C∞(G,Vξ ), hence Fréchet in a natural way. Furthermore, it is in-
variant under left transflation, and IndG

P (ξ ⊗ λ ⊗ 1) restricts to a continuous representation on
it.

Proposition 20.9. Let ξ ∈ M̂ and λ ∈ a∗C. Then the space C(P : ξ : λ )K of left K-finite functions
in C(P : ξ : λ ) is a dense subspace of C∞(P : ξ : λ ). Furthermore, if δ ∈ K̂, then the associated
K-isotypical component in C(P : ξ : λ ) is finite dimensional, of dimension

dimC(P : ξ : λ )[δ ] = dimHomM(δ |M,ξ ) ·dimδ .

Proof. Since rλ : C(P : ξ : λ )→C(K : M : ξ ) is a K-equivariant topological linear isomorphism
which restricts to a topological linear isomorphism from C∞(P : ξ : λ ) onto C∞(K : M : ξ ) :=
C(K : M : ξ )∩C∞(K,Vξ ), with inverse iλ , it suffices to prove the analogous statements for C(K :
M : ξ ) and C∞(K : M : ξ ).

Now C(K : M : ξ ) is a left K-invariant subspace of C(K,Vξ ). Using the canonical identifica-
tion of the latter space with C(K)⊗Vξ , we see that

C(K : M : ξ )K ⊂C(K,Vξ )K = R(K)⊗Vξ ⊂C∞(K,Vξ ).

This implies that C(K : M : ξ )K = C∞(K : M : ξ ). Since the left regular representation of K in
C∞(K : M : ξ ) is a continuous representation in a Fréchet space, it follows by application of
Proposition 7.4 that C(K : M : ξ )K is dense in C∞(K : M : ξ ). This establishes the first assertion.

For the assertion on the dimension, we note that

C(K : M : ξ )[δ ]' HomK(Vδ ,C(K : M : ξ ))⊗Vδ .

Now
HomK(Vδ ,C(K : M : ξ )) = HomK(δ , indK

M(ξ ))' HomM(δ |M,ξ ),

by Frobenius reciprocity (see exercises). The result follows.
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21 Smooth vectors in a representation
We assume that G is a connected real semisimple Lie group with finite center, that θ : g→ g is
a Cartan involution of g and that K is the associated maximal compact subgroup of G. Let V be
a complete locally convex space. If Ω is an open subset of Rn, then we denote by C(Ω,V ) =
C0(Ω,V the space of continuous functions f : Ω→ V. This space carries the locally convex
topology induced by the fundamental system of seminorms

‖ · ‖K,s : f 7→ sup
x∈K

s( f (x)),

for K ⊂Ω compact and s a continuous seminorm on V.
If Ω⊂Rn is an open subset then a function f : Ω→V is said to be C1 if the partial derivatives

∂ j f , (1≤ j≤ n), exist and define continuous functions Ω→V. By recursion, we say that f is Cp

for p≥ 1 if the partial derivatives ∂ j f , (1≤ j ≤ n), exist and define Cp−1-functions Ω→V. The
space of these functions is denoted by Cp(Ω,V ). Finally, the space of smooth functions Ω→ V
is defined by

C∞(Ω,V ) :=
⋂
p≥1

Cp(Ω,V ).

By the usual proof one shows that the partial derivatives ∂i and ∂ j (for 1≤ i, j ≤ n) commute on
C2(Ω,V ). Accordingly, on Cp(Ω,V ) the general mixed partial derivative is of the form

∂
α = ∂

α1
1 · · ·∂

αn
n

for α ∈ Nn a multi-index of order |α|= α1 + · · ·+αn at most p.
The space Cp(Ω,V ) can be equipped with the continuous seminorms

‖ · ‖K,s,p : f 7→ max
|α|≤p

sup
x∈K

s(∂ α f (x)),

for K ⊂ Ω compact and s a continuous seminorm of V. This turns Cp(Ω,V ) into a complete
locally convex space. Furthermore, it is Fréchet if V is Fréchet. The space C∞(Ω,V ), equipped
with all seminorms ‖ · ‖K,p,s, for K ⊂Ω compact, p≥ 1 and σ a continuous seminorm on V is a
complete locally convex space as well. If V is Fréchet, then so is C∞(Ω,V ).

If ϕ : Ω′→Ω is a diffeomorphism of open subsets of Rn, then by making iterated use of the
chain rule one sees that ϕ∗ : f 7→ f ◦ϕ defines a continuous linear map Cp(Ω)→Cp(Ω′). This
allows to define the spaces Cp(M,V ), for a smooth manifold M. The spaces can be equipped
with the coarsest locally convex topology for which every restriction map f 7→ f |Ω, with Ω a
coordinate chart, becomes continuous.

In other words, let {Ω j} j∈J be a countable open cover of M with coordinate charts. Let
0≤ p≤ ∞. Then

Π := Πi∈I Cp(Ωi,V ),

equipped with the product topology, is a locally convex space. Indeed the topology is determined
by the collection of seminorms

ϕ 7→max
i∈I0

si(ϕi),
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with I0 ⊂ I a finite subset, and with si continuous seminorms on Cp(Ωi), for i ∈ I0. It is readily
seen that Π is complete, and Fréchet as soon as V is Fréchet.

We consider the map r : Cp(M,V )→Π defined by

r( f )i = f |Ωi.

Then r is injective with image equal to

im(r) = {ϕ ∈Π | ϕi|Ωi∩Ω j = ϕ j|Ωi∩Ω j , ∀i, j ∈ I}.

This is readily seen to be a closed subspace of Π, hence a complexe locally convex space, which
is Fréchet as soon as V is. The topology of Cp(M,V ) is such that r is an isomorphism of locally
convex spaces.

We now turn to the situation of Cp(G,V ) with G a Lie group. Given a compact subset K ⊂G,
a continuous seminorm s of V a finite subset F ⊂U(g)p we define the seminorm

‖ · ‖K,s,F : Cp(G,V )→ [0,∞[, f 7→max
u∈F

sup
x∈K

s(Ru f (x)).

Lemma 21.1. The above system of seminorms ‖ · ‖K,s,F determines the locally convex topology
of Cp(G,V ). The space Cp(G,V ) is complete. If V is Fréchet, then so is Cp(G,V ).

Proof. It suffices to prove the result for a fixed p < ∞.
Let Ω be an open neighborhood of 0 in g such that exp |Ω is a diffeomorphism onto an

open neighborhood ΩG of e in G. Let Cp(ΩG,V ) be equipped with the seminorms ‖ · ‖K ,s,F
as above, with K ⊂ ΩG. Then by left equivariance, it suffices to show that the bijective linear
map exp∗ : Cp(ΩG,V )→Cp(Ω,V ) is a topological linear isomorphism for the previously defined
locally convex topology on the second space.

For every u∈U(g)p, the operator A(u) := exp∗(Ru)= exp−1∗ ◦Ru ◦ exp∗ is a uniquely defined
partial differential operator on Ω, hence can be viewed as a smooth function A(u) : Ω→ S(g)p
with the property that

A(u)ϕ(X) = ∂A(u)(X)ϕ(X), (X ∈Ω).

Since A is linear, it follows that A(u)(X) = A(X)u, with A : Ω→ Hom(U(g)p,S(g)p) a smooth
function. We observe that

exp∗(Ru f )(X) = ∂A(X)u(exp∗ f )(X), (X ∈Ω),

for f ∈Cp(ΩG,V ) and u∈U(g)p. This expression implies that that for every K ⊂Ω there exists
a constant CK > 0 such that

‖Ru f‖exp(K ),s ≤CK‖exp∗ f‖K ,s,p, ( f ∈Cp(Ω,V )).

Hence, the operator exp−1∗ is continuous.
On the other hand, let s : S(g)→U(g) be the symmetrizer. Then Ā(X) := s◦A(X) is a linear

endomorphism of U(g)p depending smoothly on X ∈ Ω. Furthermore, Ā(0) = I by Theorem
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11.6. Replacing Ω by a smaller neighborhood if necessary, we may assume that det Ā(X) 6= 0
for X ∈Ω. By Cramer’s rule, it now follows that X 7→ Ā(X)−1 is smooth, hence X 7→ A(X)−1 is
smooth as well. Writing B(X) = A(X)−1, we obtain that

exp∗(RB(X)u f )(X) = ∂u(exp∗ f )(X), (X ∈Ω),

for all u ∈U(g)p and f ∈Cp(ΩG). Let F be a basis of U(g)p, then we see that for every compact
subset K ⊂Ω there exists a constant CK > 0 such that

‖exp∗ f‖K ,s,p ≤CK ‖ f‖exp(K ),s,F

for all f ∈Cp(K ,V ). This implies that exp∗ is a continuous linear map.

Definition 21.2. Let (π,V ) be a continuous representation of G in a Fréchet space V. A vector
v∈V is said to be C∞ or smooth if x 7→ π(x)v is a smooth map G→V. The space of these vectors
is denoted by V ∞.

Lemma 21.3. V ∞ is a G-invariant subspace of V.

Proof. Let v ∈V ∞ and y ∈ G. Then

π(x)π(y)(v) = π(xy)v = [Ryϕ](x)

where ϕ : x 7→ π(x)v is a smooth function G→V. It follows that π(y)v ∈V ∞.

Given X ∈ g and v ∈V ∞, we define

π∗(X)v :=
d
dt

∣∣∣∣
t=0

π(exp tX)v.

Lemma 21.4. If X ∈ g and v∈V ∞ then RX v∈V ∞. The map g×V ∞→V ∞, (X ,v) 7→ RX v defines
a representation of g in V ∞.

Proof. Given v ∈V ∞ we consider the function ϕv : G→V, (x,v) 7→ π(x)v. Then it follows that

π(x)π∗(X)v = π(x)
d
dt

∣∣∣∣
t=0

π(exp(tX)) =
d
dt

∣∣∣∣
t=0

π(xexp tX)v

since π(x) : V →V is continuous linear. It follows from the above that

π(x)π∗(X)v = RX ϕv(x), (x ∈ G).

Since RX ϕv is a smooth function, we see that π∗(X)v ∈V ∞ and

ϕπ∗(X)v = RX ϕv.

In particular, it follows from the above that

π∗(X)v = (RX ϕv)(e).
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from this we infer that the map g×V ∞→V ∞ given by (X ,v) 7→ π∗(X)v is bilinear. To finish the
proof we observe that for X ,Y ∈ g and v ∈V ∞ we have

π∗(X)π∗(Y )v−π∗(Y )π∗(X)v = [RX RY ϕv−RY RX ϕv] (e) = R[X ,Y ]ϕv(e) = π∗([X ,Y ])v.

This implies that π∗([X ,Y ]) = [π∗(X),π∗(Y )] on V ∞.

Lemma 21.5. Let v ∈V ∞, x ∈ G and X ∈ g. Then

π(x)π∗(X)v = π∗(Ad(x)X)π(x)v.

Proof. From the first display in the proof of the previous lemma, it follows that

π(x)π∗(X)v =
d
dt

∣∣∣∣
t=0

π(xexp tX)v =
d
dt

∣∣∣∣
t=0

π(exp tAd(x)X)π(x)v.

Since π(x)v ∈V ∞, the result follows.

It follows from the above, that V ∞ equipped with the representions π∗ of g and π|K of K is a
so called (g,K)-module.

Before proceeding we note that V ∞ may be equipped with a locally convex topology for
which the restriction

π
∞ = π|V ∞

becomes a continuous representation of G.
To see this, let C∞(G,V )G denote the space of smooth functions ϕ : G→ V transforming

according to the rule Lxϕ = π(x)−1v for all x ∈ G. Then clearly, C∞(G,V )G is a closed subspace
of C∞(G,V ), hence a complete locally convex space for the restriction topology. Furthermore, if
V is a Fréchet space, then so is C∞(G,V )G.

We define Φ : V ∞ → C∞(G,V ) by Φ(v)(x) = π(x)v. Then it is readily seen that this map
defines a linear isomorphism

Φ : V ∞ '−→ C∞(G,V )G

for which the evaluation map eve : ϕ 7→ ϕ(e) is a two-sided inverse. It is readily checked that
C∞(G,V )G is invariant under the right regular action R of G and that Φ intertwines π∞ with R.

We equip V ∞ with the locally convex topology for which Φ is a topological linear isomor-
phism. Obviously π∞ becomes a continuous representation for this topology.

Lemma 21.6. Assume that (π,V ) is a continuous representation in a Fréchet space (or more
generally, a complete barreled space). Then the topology of V ∞ is generated by the seminorms

v 7→ ‖v‖F,s := max
X∈F

s(π∗(X)v),

with F ⊂U(g) a finite subset and s a continuous seminorm of V.
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Proof. Let T denote the locally convex topology on V ∞ induced by the given collection of
seminorms. It is clear that that the map eve : C∞(G,V )G→ V ∞ is continuous for this topology
on V ∞. To see that Φ : V ∞ → C∞(G,V )G is continuous relative to T , let K ⊂ G be compact,
F ⊂U(g) a finite subset and s a continuous seminorm of V.

By the principle of uniform boundedness, the set of continuous linear maps {π(k) | k ∈K }
in End(V ) is equicontinuous. Hence, there exists a continuous seminorm s′ on V such that
s(π(k)v)≤ s′(v) for all k ∈K and v ∈V. This implies that

‖Φ(v)‖K ,F,s = max
X∈F

sup
k∈K

s(π(k)π∗(X)v)≤ ‖v‖s′,F .

Thus, the map Φ : (V ∞,T )→C∞(G,V ∞)G is continuous.

Lemma 21.7. Let ψ ∈C∞
c (G). Then π(ψ) defines a linear map V →V ∞. If V is a Fréchet space

(or, more generally, complete and barreled), this map is continuous.

Proof. Let ω be a relatively compact open subset of G containing e. Then there exists a compact
subset K of G (only depending on ω and suppψ) such that the map y 7→ Lyψ is smooth as a map
ω →CK (G). Let v ∈V and let s be a continous seminorm on V. Then s(π(x)v) is bounded by a
constant C > 0 for x ∈K . It follows that

s(π(ψ)v)≤C‖ψ‖K . (87)

We infer that the map ψ 7→ π(ψ)v, CC (G)→ V is continuous. Combining this with the first
observation of the proof, we see that y 7→ π(Lyψ)v is a smooth map ω →V. This implies that

y 7→ π(y)π(ψ)v = π(Lyψ)v

is smooth on ω, and we conclude that π(ψ)v ∈ V ∞. Furthermore, if X ∈ g then (Lexp tX ψ −
ψ)/t→ LX ψ in CC (G), so that

π∗(X)π(ψ)v =
d
dt

∣∣∣∣
t=0

π(Lexp tX ψ)v = π(LX ψ)v. (88)

Applying this argument repeatedly, we see that the equality between the expressions on the left
and right hold for all X ∈U(g).

We will now prove the final assertion about continuity. Let s be a continuous seminorm on V.
Then by the principle of uniform boundedness, tthe family {π(k) | k ∈ C } of linear maps V →V
is equicontinuous. Hence, there exists a continuous seminorm s′ on V such that s◦π(x) ≤ s′ for
all x ∈K . It follows that

s(π∗(X)π(ψ)v) = s(π(LX ψ)v)≤ ‖LX ψ‖K · s′(v), (v ∈V ).

In view of Lemma 21.6 this establishes the continuity.

Lemma 21.8. The space V ∞ is dense in V.

Proof. Let {ψ j} j≥0 be an approximation of the identity on G, consisting of smooth compactly
supported functions. Let v ∈V. Then by Lemma 2.7 it follows that

π(ψ j)v→ v ( j→ ∞)

in V. The elements of this sequence belong to V ∞, by Lemma 21.7.
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22 Admissible representations
We assume that G is a connected real semisimple Lie group with finite center, and that (π,H ) is
a unitary representation of G. Let HomG(H ) denote the algebra of continous linear intertwining
operators H →H . In the exercises, we mentioned the following version of Schur’s lemma,
which can be proved by using the spectral theorem for bounded self-adjoint operators.

Lemma 22.1. The representation π is irreducible if and only if EndG(H ) = CIH .

Based on this lemma, one can prove the following density theorem.

Lemma 22.2. Let (π,H ) be an irreducible unitary representation of G and let A be the sub-
algebra of End(H ) spanned by elements π(g), for g ∈ G. Then for every linearly independent
set v1, . . . ,vk in H , every collection of elements w1, . . . ,wk in H , and every ε > 0 there exists
an operator A ∈A such that

‖Av j−w j‖< ε (1≤ j ≤ k).

Proof. This follows from an observation of von Neumann, see [Wal88, §1.2] for details.

We recall that Z(g) denotes the center of U(g). The following may be viewed as a version of
Schur’s lemma.

Theorem 22.3. Let (π,H ) be an irreducible unitary representation of G in a Hilbert space H .
Then Z(g) acts by scalars on H ∞.

Proof. If Z ∈ Z(g) then Ad(x)Z = Z for all x ∈ G, since G is connected. It now follows from
Lemma 21.5 that

π(x)π∗(Z) = π∗(Z)π(x) on V ∞

for all x ∈ G. From the unitarity of π, it follows by differentiation and extension that

〈π(X)v , w〉= 〈v , π(X∨)〉

for all X ∈U(g) and v,w ∈H ∞. We will now finish the proof by showing that π∗(Z)v ∈ Cv for
all Z ∈ Z(g) and v ∈ V ∞. Arguing by contradiction, assume that v ∈ V ∞ and Z ∈ Z(g) are such
that v and π∗(Z)v are linearly indendent. Let A be as in Lemma 22.2. Then the elements of A
commute with π∗(Z) on V ∞. There exists a sequence (A j)⊂A such that

A jv→ v, A jπ∗(Z)v→ v.

Let w ∈H ∞, then it follows that

〈v , w〉 = lim〈A jπ∗(Z)v , w〉= lim〈π∗(Z)A jv , w〉
= lim〈A jv , π∗(Z∨)w〉= 〈v , π∗(Z∨)w〉= 〈π∗(Z)v , w〉.

Since H ∞ is dense in H , this implies that v = π∗(Z)v, contradiction.
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It follows from the above result that for an irreducible unitary representation (π,H ) the
center Z(g) of U(g) acts by a character on H ∞.

Definition 22.4. Let (π,V ) be a continuous representation in a locally convex space V. The
representation π is said to be quasi-simple if there exists a (unique) character χπ : Z(g)→ C
such that

π∗(Z) = χ(Z)I on V ∞.

In this case, the uniquely determined character χπ is called the infinitesimal character of π.

The following result, due to Harish-Chandra, is an important step towards the algebraization
of the representation theory of G. We say that a continuous representation (π,V ) of G in a
complete locally convex space is K-finite finitely generated if and only if there exists a finite
subset F ⊂VK such that the closed span of the elements π(g)v for g ∈ G and v ∈ F equals V.

Theorem 22.5. (Harish-Chandra) Let (π,V ) be a continuous representation of G in a complete
locally convex space V. Assume that π is quasi-simple and K-finite finitely generated. Then for
every δ ∈ K̂ the K-isotypical component V [δ ] is finite dimensional.

Proof. (Sketch). There exists a K-invariant finite dimensional subspace V0 of V such that V is the
closed span of π(G)V0. Let δ ∈ K̂ and let Pδ : V →V [δ ] be the unique K-equivariant projection
operator. We define the function f : G→ Hom(V0,V [δ ]) defined by

f (x)(v) = Pδ (π(x)v), (x ∈ G,v ∈V0).

Then the function f satisfies the differential equations

RZ f = χ(Z) f , (Z ∈ Z(g)),

together with finitely many initial value conditions at any given point a0 ∈ Areg. It can be shown
that the solution space to this initial value problem is finite dimensional. Moreover, there exists
a finite dimensional subspace H1 ⊂ HomK(Vδ ,V ) such that the initial values are contained in
Hom(V0,V1), where V1 is the (finite dimensional) canonical image of Vδ ⊗H1 in V [δ ]. It follows
from the nature of the differential equations that f must have all its values in Hom(V0,V1).
Since V equals the closed span of the elements π(g)v for v ∈ V0 and g ∈ G, this implies that
V [δ ] = Pδ (V )⊂V1 =V1. It follows that V [δ ] is finite dimensional. We refer the reader to [Var77,
p. 312, Thm. 12], for further details.

Definition 22.6. A continuous representation (π,V ) of G in a complete locally convex space is
said to be admissible if dim V [δ ]< ∞ for all δ ∈ K̂.

It follows from the above result that any K-finite finitely generated quasi-simple representa-
tion of G is admissible. In particular, this applies to irreducible unitary representations.

Lemma 22.7. Let (π,V ) be an admissible representation of G in a complete locally convex
space. Then for all δ ∈ K̂ we have the inclusion V [δ ] ⊂ V ∞. The space of K-finite vectors is a
g-invariant subspace of V ∞.
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Proof. The unique equivariant projection operator Pδ : V → V [δ ] is surjective and is given by
Pδ = dim(δ )π|K(χδ∨). From this formula one readily sees that it maps V ∞ into V ∞, hence into
V ∞∩V [δ ]. By density of V ∞ in V it now follows that Pδ (V ∞) hence V [δ ]∩V ∞ is dense in V [δ ].
By finite dimensionality of the latter space it follows that these two spaces are equal so that
V [δ ]⊂V ∞.

For the latter assertion it suffices to show that for a given δ ∈ K̂ we have π∗(g)V [δ ] ⊂ VK.
In view of Lemma 21.5 the natural map g⊗V [δ ]→ V is a K-module map; here g is equipped
with the adjoint representation by K. Since the tensor product is a finite dimensional K-module,
it follows that the image is contained in VK.

Definition 22.8. A (g,K)-module is a complex linear space V equipped with the structure of
g-module and of a K representation π such that

(a) For all k ∈ K and X ∈ g, we have π(k)◦X = [Ad(k)X ]◦π(k) on V.

(b) For all v ∈ V the linear span Wv of the elements π(k)v, (k ∈ K), is finite dimensional and
the restricted representation π|Wv of K in Wv is continuous.

(c) For all X ∈ k and v ∈V,

Xv =
d
dt

∣∣∣∣
t=0

π(exp tX)v.

For a (g,K)-module we may define isotypical components V [δ ], for δ ∈ K̂ as before. Then
V [δ ] is the canonical image of Hom(Vδ ,V )⊗Vδ in V. Furthermore,

V =
⊕
δ∈K̂

V [δ ].

The associated projections Pδ : V →V [δ ] are given by the formula

Pδ v := dim(δ )
∫

K
χ
∨
δ
(k)π(k)v dk.

Indeed this formula makes sense because of condition (b) in the definition above.

Definition 22.9. Let V be a (g,K)-module. Then V is said to be admissible if dimV [δ ]< ∞ for
all δ ∈ K̂.

Let (V,π) be an admissible continuous representation of G in a complete locally convex
space, then it follows that VK is an admissible (g,K)-module.

Lemma 22.10. Let (π,V ) be an admissible representation of G in a complete locally convex
space V. Then W 7→WK defines a bijective correspondence between the set of closed G-invariant
subspaces of V and the set of (g,K)-submodules of V.
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Proof. Let W be a closed submodule. Then clearly, W ∞ ⊂ V ∞ and it follows that W ∞ is a g-
submodule of V ∞. It follows that WK is a g-submodule of VK. Furthermore, WK is dense in W,
so that W is the closure of WK in W. This establishes the injectivity of the mentioned map. To
prove its surjectivity, assume that W0 is a (g,K)-submodule of V. We claim that its closure W
is invariant under G. Assuming the claim we find that W0 is dense in W, hence for every δ ∈ K̂
it follows that W0[δ ] = Pδ (W0) is dense in W [δ ] = Pδ (W ). By using the finite dimensionality of
V [δ ] we conclude that W [δ ] =W0[δ ]. Hence WK =W0.

To see that the claim holds, let λ ∈ V ′ be a continuous linear functional which vanishes on
W0. Given v ∈W0 the function f : x 7→ λ (π(x)v) can be shown to be analytic on G (this follows
from application of the elliptic regularity theorem, see [Var77] for details). By differentiating
with respect to x at e we find that RX f = λ (π∗(u)v) = 0 for all X ∈U(g). By analyticity this
implies that f vanishes on the connected group G. Hence λ vanishes on the linear span of the
elements π(g)v. By the Hahn-Banach theorem it follows that π(g)v∈W for all v∈W0 and g∈G.
Thus, if g ∈ G then π(g) maps W0 into W. Since π(g) is continuous, and W is the closure of W0
it follows that π(g)(W )⊂W. The result follows.

Definition 22.11. Let V be a (g,K)-module. Then V is irreducible if 0 and V are the only
subspaces which are invariant under both g and K.

Corollary 22.12. Let (π,V ) be an admissible representation of G in a complete locally convex
space, and let VK be the associated g,K)-module. Then the following assertions are equivalent.

(a) π is irreducible;

(b) VK is an irreducible (g,K)-module.

Proof. This follows from Lemma 22.10.

Definition 22.13. A Harish-Chandra module is a (g,K)-module which is finitely generated.

We have the following Schur’s lemma for irreducible Harish-Chandra modules. Given a
(g,K)-module V, we denote by Endg,K(V ) the space of linear maps T : V →V that intertwine the
actions of both g and K.

Lemma 22.14. Let V be an irreducible Harish-Chandra module. Then Endg,K(V ) = CIV .

Proof. Let T ∈ Endg,K(V ). We may assume that V 6= 0. Fix δ ∈ K̂ such that V [δ ] 6= 0. Then T
restricts to a linear endomorphism V [δ ]→V [δ ]. Hence there exists λ ∈C such that ker(T−λ IV )
has non-trivial intersection with V [δ ]. It follows that ker(T −λ IV ) is a non-trivial subspace of V,
which is (g,K)-invariant. As V is irreducible, we infer that T = λ IV .

Let (π,H ) be an irreducible unitary representation. Then the associated space HK of K-
finite vectors is an irreducible Harish-Chandra module. If X ∈ g then the unitarity of π implies
that for every v,w ∈HK we have

〈π(exp tX)v , π(exp tX)w〉= 〈v , w〉.

Since VK ⊂∈V ∞, it follows by differentiating the above expression at t = 0 that

〈Xv , w〉+ 〈v , Xw〉, (v,w ∈HK, X ∈ g). (89)
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Definition 22.15. Let V be a (g,K)-module. The module V is said to be unitary for a given
pre-Hilbert structure 〈 · , · 〉 on V if (89) is valid and K leaves the pre-Hilbert structure invariant.
Two such pre-Hilbert structures are said to be equivalent if they differ by a positive scalar factor.

Lemma 22.16. Let V be an irreducible Harish-Chandra module. If V is unitary for two pre-
Hilbert structures , then these pre-HIlbert structures are equivalent.

Proof. Let 〈 · , · 〉 j for j = 1,2 be two pre-Hilbert structures on V for which V is unitary. For
δ ∈ K̂ we define Tδ : V [δ ]→V [δ ] by

〈v , w〉2 = 〈Tδ v , w〉1, (v,w ∈V [δ ]).

We define T : V →V to be the direct sum of the maps Tδ . Then T is an invertible endomorphism
of V.

It follows from the unitarity of the K-actions that the projections Pδ are symmetric, hence or-
thogonal with respect to both pre-HIlbert structures. It follows that the spaces V [δ ] are mutually
orthogonal for both pre-Hilbert structures. Hence,

〈v , w〉2 = 〈T v , w〉1, (v,w ∈V ).

By non-degeneracy of the pre-Hilbert structures, T is uniquely defined by this identity. Further-
more, by (g,K)-equivariance of the pre-Hilbert structures it follows that T is a (g,K)-module
homomorphism. Since V is irreducible, we conclude that T = λ IV for a constant λ ∈ C. By
positive definiteness of the inner products, λ > 0. The equivalence follows.

The following result, due to Harish-Chandra, is given without proof. It implies that the clas-
sification of irreducible unitary representations comes down to the classification of irreducible
unitary Harish-Chandra modules.

Theorem 22.17. Let V be a unitary irreducible Harish-Chandra module. Then there exists an
irreducible unitary representation (π,H ) of G such that HK ' V, unitarily. If (π ′,H ′) is a
second such representation, then π and π ′ are unitarily equivalent.

We now come to a result that provides a severe limitation on the possible irreducible Harish-
Chandra modules. We assume that g = k⊕ p is a Cartan decomposition and a ⊂ p a maximal
abelian subspace. Let G = KAN be an associated Iwasawa decomposition, and P = MAN the
associated minimal parabolic subgroup.

We recall that every principal series representation IndG
P (ξ ⊗λ ⊗1) for ξ ∈ M̂ and λ ∈ a∗C is

admissible. It can be shown that the associated (g,K)-module, denoted C(P : ξ : λ )K is finitely
generated, hence a Harish-Chandra module.

Theorem 22.18. (Subrepresentation Theorem) Let V be an irreducible Harish-Chandra module.
Then there exist ξ ∈ M̂ and λ ∈ a∗C and a (g,K)-equivariant embedding

V ↪→C(P : ξ : λ )K.
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We give a sketch of the proof. By using differential equations one proves that V/nV is a
non-trivial finite dimensional (M,a)-module, different from 0. The existence of the embedding
is then a consequence of the following result, which we shall prove.

Theorem 22.19. (Casselman’s reciprocity) Let V be a Harish-Chandra module. Then for all
ξ ∈ M̂ and λ ∈ a∗C we have

Homg,K(V,C(P : ξ : λ )K)' HomM,a(V/nV,Vξ ,λ+ρ).

Proof. Let T ∈Homg,K(V,C(P : ξ : λ )K), then we define ε(T ) : V →Vξ ,λ by ε(T )(v) = T (v)(e).
For X ∈ n and v ∈ n we have

ε(T )(Xv) = [T (Xv)](e) = [LX [T (v)](e)] = 0,

since T v is a right N-invariant function. It follows that ε(T ) induces a map V/nV → Vξ ,λ .
Furthermore, if m ∈M, then for v ∈V we have

ε(T )(mv) = [T (mv)](e) = Lm[T (v)](e)] = T (v)(m−1) = ξ (m)ε(T ).

By a similar calculation one sees that for H ∈ a,

ε(T )(Hv) = [λ +ρ](H)ε(T )(v).

We thus see that ε(T ) ∈ HomM,a(V/nV,Vξ ,λ+ρ). Thus, ε defines a linear map from the space
Homg,K(V, indG

P (ω)) to HomM,a(V/nV,Vξ ,λ ). If ε(T ) = 0, then it follows that (T v)(e) = 0 for
all v ∈V so that

T v(k) = T (k−1v)(e) = 0

for all v ∈ V and k ∈ K. By the compact picture, this implies that T v = 0 for all v ∈ V hence
T = 0. We thus see that ε is injective.

To see that ε is surjective, let ψ ∈ HomM,a(V/nV,Vξ ,λ+ρ). Define S : V → C(G,Vξ ) by
[Sv](kan) = a−λ ψ(k−1v). Then it is readily verified that S maps V equivariantly into the space
C(P : ξ : λ )K. Furthermore,

ε(S)(v) = [Sv](e) = ψ(v)

so that ε(S) = ψ.

Completion of proof of subrepresentation theorem. We can now complete the proof of the
subrepresentation theorem as follows. The space V/nV is non-trivial and a finite dimensional
(M,a)-module on which n acts trivially. We may select an a-weight µ ∈ a∗C of (V/nV )∗ and an
irreducible M-submodule of the associated weight space. This leads to an embedding j : Vσ ⊗
Cµ ↪→ (V/nV )∗ of (M,a)-modules, with σ an irreducible representation of M. The transpose of
j defines a non-trivial projection of (M,a)-modules

j∗ : V/nV → (Vσ ⊗Cµ)
∗ 'Vξ ⊗Cλ+ρ 'Vξ ,λ+ρ

with ξ = σ∨ and λ = −µ − ρ. Let T = ε−1( j∗), then T : V → C(P : ξ : λ )K is a non-trivial
(g,K)-module morphism. Since V is irreducible, the kernel of T is trivial. Thus, T is the desired
embedding.
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