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Exercise 1. Let M be a smooth manifold. For each compact subset K⊂M we define sK :C(M)→
R by

sK( f ) = sup
x∈K
| f (x)|, ( f ∈C(M)).

(a) Show that for each compact set K ⊂M the function sK is a seminorm on C(M).

(b) Show that the set S = {sK | K ⊂M compact} is a fundamental system of seminorms on
C(M).

(c) Show that there exists a countable fundamental system of seminorms which defines an
equivalent topology on C(M).

(d) Show that C(M) equipped with the topology defined by S is complete. Accordingly,
C(M) is a Fréchet space.

(d) Let G be a Lie group, and α : G×M→M,(x,m)→ xm a continuous left action of G on M.
For f ∈C(M) and x ∈G we define the function π(x) f : M→C by [π(x) f ](m) = f (x−1m).
Show that (π,C(M)) defines a continuous representation of G in C(M).

Exercise 2. Let (π,H ) be a unitary representation of G in a Hilbert space H . The space of
continous G-intertwining endomorphisms of H is denoted by EndG(H ).

(a) Let A∈EndG(H ) be Hermitian symmetric. Show that the spectral resolution of A consists
of G-intertwining projections.

(b) Show that the equivalent of Schur’s lemma is valid:

π is irreducible ⇐⇒ EndG(H ) = CIH .

Exercise 3. Let (π,H ) be an irreducible unitary representation of a Lie group G in a Hilbert
space H . Let D⊂H be a dense subspace of H and let T be a self-adjoint operator on H with
domain D. We assume that D is G-invariant and that

∀x ∈ G : T ◦π(x) = π(x) on D.

Show that T = λ IH for a suitable scalar λ ∈ C.

Exercise 4. Let V1,V2 be two complete locally convex spaces (Hausdorff, over C). We define the
conjugate space V̄j to be the space Vj equipped with the same addition and topology, but with the
conjugate scalar multiplication given by

λ · v = λ̄v (v ∈V, λ ∈ C).

Let G be a unimodular Lie group and dx be left Haar measure on G.
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(a) Show that for every continuous linear operator A : V̄1 → V̄2 and every f ∈ Cc(G,V1) we
have

A(
∫

G
f (x) dx) =

∫
G

A( f (x)) dx.

(b) Let π be a unitary representation of G in a Hilbert space H . Show that for every f ∈Cc(G)
we have

π( f )∗ = π( f ∗),

where f ∗(x) = f (x−1).

Exercise 5. Let K be a compact Lie group. By a K-module with finite K-action, we shall mean
a complex linear space V equipped with a representation π of K such that

• for each v ∈V the linear span of π(K)v is finite dimensional

• for each v ∈V the restriction of π to span(π(K)v) is a continuous representation of K.

Let now (δ ,Vδ ) belong to K̂ and let W be an arbitrary complex linear space. On Vδ ⊗W we
define the representation δ ⊗1 of K by (δ ⊗1)(k) = δ (k)⊗ IW .

(a) Show that Vδ ⊗W is a K-module with finite K-action.

(b) Show that HomK(Vδ ,Vδ ⊗W )'W, naturally.

(c) Let W ′ be complex linear space. Show that

HomK(Vδ ⊗W,Vδ ⊗W ′)' HomC(W,W ′),

naturally. Observe that Schur’s lemma can be viewed as a special case of this assertion.

(d) Let δ ′ ∈ K̂, δ ′ 6∼ δ . Show that

HomK(Vδ ⊗W,Vδ ′⊗W ′) = {0}.

Exercise 6. We consider a two finite dimensional continuous representations (π j,Vj), for j =
1,2, of a compact group K. Let π1⊗̂π2 be the associated representation of K×K on V1⊗V2.

(a) Show that the natural isomorphism End(V1)⊗End(V2)' End(V1⊗V2) maps EndK(V1)⊗
EndK(V2) onto EndK×K(V1⊗V2).

(b) Show that π1⊗̂π2 is irreducible if and only if both π1 and π2 are irreducible representations
of K.

(c) Let (π,V ) be finite dimensional irreducible representation of K. Show that π is an irre-
ducible representation of K if and only if π⊗̂π∨ is an irreducible representation of K×K.
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Exercise 7. We assume that K is a compact Lie group and that (π,V ) is an irreducible represen-
tation of K. Let 〈 · , · 〉 j, for j = 1,2 be two positive definite Hermitian inner products on H for
which π is unitary.

(a) Show that there exists a positive scalar c > 0 such that

〈v , w〉1 = c〈v , w〉2 (v,w ∈V ).

Hint: relate the two inner products by a Hermitian tranformation.

(b) For j = 1,2, let 〈 · , · 〉HS, j denote the Hilbert-Schmid inner product on End(V ), induced
by 〈 · , · 〉 j. Show that

〈 · , · 〉HS,1 = 〈 · , · 〉HS,2.

Exercise 8. Show that the space R(K) of representative functions, equipped with pointwise
addition and pointwise multiplication of functions, is an algebra over C with unit.

Exercise 9. Show that the map mδ : Vδ ⊗V ∗
δ
→R(x), given by

mδ (v⊗η)(x) = η(δ (x−1v))

intertwines the representations δ ⊗̂δ ∗ and L×K of K×K.

Exercise 10. Let K be a compact group. Show that for f ,g ∈C(K) we have

(a) ( f ∗g)∗ = g∗ ∗ f ∗,

(b) f ∗g∗(e) = 〈 f , g〉L2(K).

Let (π,H ) be a unitary representation of K. Show that for f ∈C(K),

(c) π( f )∗ = π( f ∗).

Exercise 11. Let (π,V ) be a continuous representation of the compact group K in a Fréchet
space. Let δ ∈ V [δ ]. Let P1,P2 : V → V be K-equivariant continuous linear operators such that
P2

j = Pj (projections) and im(Pj) =V [δ ]. Show that P1 = P2.

Hint: determine P1−P2 on each of the isotypical components V [δ ′], for δ ′ ∈ K̂.

Exercise 12. Let H be a compact group and let (π,V ) be a continuous finite dimensional rep-
resentation of H. Let ι : V H → V be the inclusion map, and let p : V → V H be the unique
H-equivariant projection. Show that the map A 7→ ι ◦A◦ p defines a linear embedding

End(V H) ↪→ End(V )

of algebras.
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Exercise 13. Let G be a unimodular Lie group and K a compact subgroup. Let dx be a choice
of Haar measure for G. Assume that the associated convolution algebra (Cc(K\G/K),∗) is com-
mutative. Assume that (π,H ) is an irreducible unitary representation of G in a Hilbert space.
space. The purpose of this exercise is to show that dim(H K)≤ 1.

(a) If v ∈H \{0}, show that π(Cc(G))v is dense in H .

(b) Let P : H →H be the unique K-equivariant continuous projection operator with image
H K. Show that for v ∈H the space P(π(Cc(G))v) is dense in H K.

(c) Show that for v ∈H K \{0} the space π(Cc(K\G/K)v) is a dense subspace of H K.

To complete the proof we assume that H K is at least two dimensional and aim at deriving a
contradiction.

(d) Show that there exists f ∈Cc(K\G/K) such that π( f )|H K is a normal operator different
from a scalar multiplication.

(e) Show that there exists an orthogonal projection Q : H K →H K such that Q 6= 0, I and
such that Q commutes with all operators from π(Cc(K\G/K))|H K . Hint: show that the
spectrum of π( f )|H K consists of more than one point and use the spectral resolution of
this operator.

(f) Derive a contradiction.

Exercise 14. Let G be a Lie group, and σ an involution. Let H be an open subgroup of the group
Gσ of fixed points. The derivative σ∗ of σ at e is denoted by σ as well.

(a) Show that the Lie algebra of Gσ equals gσ ; here, g denotes the Lie algebra of G.

(b) Show that the Lie algebra h of H equals gσ .

We define q := ker(σ + Ig), the minus one eigenspace of σ : g→ g.

(c) Show that [h,q]⊂ q and [q,q]⊂ h.

(d) Show that q is invariant under AdG(H).

(e) Show that h and q are perpendicular for the Killing form (which may be degenerate).

Exercise 15. We consider the Lie group SO(3).

(a) Show that its Lie algebra so(3) is generated by the infinitesimal rotations R1,R2,R3 given
by R j(x) = e j× x (exterior product).

(b) Let J be the diagonal matrix with entries +1,−1,−1. Show that the map x 7→ JxJ defines
an involution σ of SO(3).

(c) Determine the infinitesimal involution σ : so(3)→ so(3) in terms of the generators.

(d) Show that the connected component H of SO(3)σ is a copy of SO(2).
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(e) Determine the −1 eigenspace q of σ in so(3).

(f) Show that the +1 eigenspace h of σ is a maximal torus in so(3) (this is a special feature
of the present case).

(g) Argue that the irreducible representations of SO(3) may be parametrized as δn, with n∈N,
so that dim(δn) = 2n+1.

(h) Determine the h-weights of the associated nfinitesimal representation δn of so(3).

(i) Show that (Vδn)
SO(2) has dimension 1 for every n≥ 0.

(j) Argue that the natural representation of SO(3) decomposes as

(L,L2(S2)) '
⊕̂

n≥0
δn.

Exercise 16. Let g,h be finite dimensional complex Lie algebras, and let ϕ : g→ h be be a Lie
algebra homomorphism.

(a) Show that ϕ has a unique extension to an algebra homomorphism U(ϕ) : U(g)→U(h).

(b) Let ψ : h→ l be a second homorphism of Lie algebras. Show that U(ψ ◦ϕ)=U(ψ)◦U(ϕ).

(c) Show: if ϕ is an isomorphism then U(ϕ) is an isomorphism as well.

Remark: it follows that g→ U(g) defines a functor from the category of finite dimensional
complex Lie algebras to the category of complex associative algebras with unit. From now on
we shall usually just write ϕ for U(ϕ).

For a Lie algebra g we define the opposite Lie algebra gopp to be the vector space g equipped
with the bracket [X ,Y ]opp := [Y,X ].

For an associative algebra A with unit, we define the opposite algebra Aopp to be A as a
complex linear space, but equipped with the product (X ,Y ) 7→ X ·Y := Y X .

(d) Show that the map ι : g→ g, X 7→ X∨ :=−X defines an isomorphism from g onto gopp.

The associated map U(ι) : U(g)→U(g)opp is usually denoted by u 7→ u∨.

(e) Show that for X1, . . . ,Xm ∈ g we have

(X1 · · ·Xm)
∨ = (−1)mXm · · ·X1.

The map u 7→ u∨ is often called the canonical anti-automorphism of U(g).
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Exercise 17. Let V be a finite dimensional complex linear space, and A ∈ End(V ). We define the
endomorphism δA of the tensor algebra T (V ) by

δA(u) :=
d
dt

∣∣∣∣
t=0

T (I + tA)(u), (u ∈V ).

(a) Show that δA preserves the gradation of T (V ).

(b) Show that δA is a derivation, i.e.,

δA(u⊗ v) = δA(u)⊗ v+u⊗δA(v), (u,v ∈ T (V )).

Now assume that g is a finite dimensional complex Lie algebra, and that A : g→ g is a derivation.

(c) Show that δA : T (g)→ T (g) preserves the kernel of the canonical homomorphism T (g)→
U(g).

(d) Show that δA factors through a derivation δ̄A of the associative algebra U(g), and that this
derivation extends A.

(e) Show that δ̄A is the unique derivation of U(g) which restricts to A on g. We will therefore
also denote it by A.

We now assume that A = adX , where X ∈ g.

(f) Show that for all u ∈U(g), we have Au = Xu−uX .

For obvious reasons we write ad(X)(u) for A(u) and [X ,u] for Xu−uX . No confusion will
arise from this!

Now assume that g is the complexification of the Lie algebra g0 of a Lie group G0.

(g) Show that for all X ∈ g0 and u ∈U(g) we have

[X ,u] =
d
dt

∣∣∣∣
t=0

Ad(exp(tX))u.

(in particular, give an appropriate interpretation of the expression on the right-hand side of
the equation).

Exercise 18. Let (π,V ) be a finite dimensional representation of a real Lie group G. Then π :
G→ GL(V ) is a continuous homomorphism, hence smooth, and its derivative π∗ : g→ End(V )
defines a representation of g in V, which by complex linear extension equips V with the structure
of gC-module. With notation as in the previous exercise, show that

π(x)◦H = Ad(x)(H)◦π(x) on V

for all H ∈U(g) and x ∈ G.
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Exercise 19. Assume that g is a complex Lie algebra.

(a) If g is abelian, show that there exists a unique algebra homomorphism ϕ : S(g)→U(g)
such that ϕ(X) = X for X ∈ g. Show that ϕ equals the symmetrizer map s.

(b) Show that the symmetrizer map s : S(g)→U(g) is an isomorphism of algebras if and only
if g is abelian.

Exercise 20.

(a) Let V be a finite dimensional representation of sl(2,C), having a cyclic highest weight
vector. Show that V is irreducible.

(b) Let g be a complex semisimple Lie algebra with Cartan subalgebra h. Let R+ be an
associate system of positive roots and let V be a finite dimensional g-module of high-
est weight λ ∈ h∗. Let α ∈ R+ and let Hα ∈ [g−α ,gα ] be such that α(Hα) = 2 and let
sα := g−α ⊕CHα ⊕ gα be the associated copy of sl(2,R). Show that λ (Hα) ∈ N. Show
that λ ∈ Λ.

Exercise 21. The purpose of this exercise is to give a suitable definition of the Laplace operator ∆

for a Riemannian manifold M. We denote the metric by g and the associated Riemannian volume
form (a density) by dV. There is no need to assume that M is oriented. The space of smooth vector
fields on M is denoted by X(M). Here it is convenient to work with complex valued vector fields;
these are sections of the complexified tangent bundle (T M)C. For each x ∈M, the inner product
gx is naturally extended to a complex bilinear form on (TxM)C.

(a) Give the definition of a first order partial differential operator D : C∞(M)→ X(M).

(b) For a smooth function f ∈C∞(M) the gradient vector field grad f ∈ X(M) is defined by

gx(grad f (x),ξ ) = d f (x)ξ , (x ∈M,ξ ∈ TxM).

Show that grad : C∞(M)→ X(M) is a first order partial differential operator.

(c) Give the definition of a first order partial differential operator P : X(M)→C∞(M).

(d) Show that there exists a unique first order partial differential operator div :X(M)→C∞(M)
such that ∫

M
gx(grad f (x),v(x)) dV =−

∫
M

f (x)divv(x) dV,

for every v ∈ X(M) and f ∈C∞
c (M). Hint: use local coordinates.

We define the Laplace operator on M to be the composed operator

∆ := div◦grad : C∞(M)→C∞(M).

(e) Calculate grad,div and ∆ for Rn equipped with the Euclidean metric.
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(f) Show that the Laplace operator ∆ is a second order differential operator on M, which
satisfies ∫

M
∆ f (x)g(x)dV =

∫
M

f (x)∆g(x) dV, ( f ,g ∈C∞
c (M)).

Exercise 22. We now consider the setting of a Riemannian homogeneous space G/H. Here we
assume that G is a unimodular Lie group and that H is a compact subgroup. This implies that G
has a bi-invariant Haar measure, and that there exists an Ad(H)-invariant subspace q of g such
that g = h⊕ q. Furthermore, q can be equipped with an Ad(H)-invariant positive definite inner
product β : q×q→ R.

(a) Show that the inner product
gx := dlx([e])−1∗

β

on T[x](G/H) depends on x through its class [x] in G/H. We will therefore also denote it
by g[x]. It has a unique extension to a non-degenerate bilinear form on T[x](G/H)C, which
will be denoted by the same symbol.

(b) Show that [x] 7→ g[x] defines a Riemannian structure on G/H which is G-invariant.

We denote by C∞(G,qC) the space of smooth functions ϕ : G→ qC and by C∞(G,H,qC) the
subspace consisting of functions ϕ ∈C∞(G,qC) transforming according to the rule

ϕ(xh) = Ad(h)−1
ϕ(x), (x ∈ G,h ∈ H).

(c) Given a vector field v ∈ X(G/H) show that the function

ϕv : x 7→ dlx([e])−1v([x]), G→ qC

belongs to C∞(G,H,qC).

(d) Show that the map v 7→ ϕv defines a linear isomorphism from X(G/H) onto C∞(G,H,qC),
and give a formula for the inverse map ϕ 7→ vϕ .

(e) For T = X⊗Y ∈ T 2(qC) we define the linear map D̄T : C∞(G)→C∞(G,qC) by

D̄T f (x) = RX f (x)Y.

Show that T 7→ D̄T extends to a linear map T 2(qC)→ Hom(C∞(G),C∞(G,qC)) and that
the extended map satisfies the transformation rule

Rh(D̄T f ) = Ad(h)−1D̄Ad(h)T Rh f .

(f) Now assume that T ∈ T 2(qC)
H . Show that D̄T restricts to a linear map C∞(G/H) →

C∞(G,H,qC), which corresponds to a first order partial differential operator DT :C∞(G/H)→
X(G/H) under the isomorphism X(G/H)'C∞(G,H,qC).
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(g) Let β ∗ be the dual of β on q∗. If X1, . . . ,Xn is an orthonormal basis for q, relative to β ,
show that (canonically)

β
∗ =

n

∑
j=1

X j⊗X j.

(h) Prove that Dβ ∗ = grad.

(i) Given T = X⊗Y ∈ T 2(qC) we define the map ∇̄T : C∞(G,qC)→C∞(G) by

∇̄T ϕ(x) = β (RX ϕ(x),Y ).

Show that for T ∈ T 2(qC)
H the operator ∇̄T restricts to a linear operator C∞(G,H,qC)→

C∞(G/H), which corresponds to a first order differential operator

∇T : X(G/H)→C∞(G/H).

(j) Prove that ∇β ∗ = div.

(k) Let X1, . . . ,Xn be an orthonormal basis of q as above. Show that for all f ∈C∞(G/H),

∆ f =
n

∑
j=1

R2
X j

f .

(l) Show that L := ∑
n
j=1 X2

j ∈U(gC)
H and that

∆ = r(L).

9



Exercise 23. We assume that g is a complex semisimple Lie algebra, h a Cartan subalgebra, R
the root system and R+ a choice of positive roots. Without loss of generality you may assume
that g = uC, with u a compact semisimple Lie algebra, and that h = tC, with t a maximal torus
in u. But this is not necessary.

(a) Argue that for all λ ,µ ∈ h∗ we have

λ +µ 6= 0⇒ gλ ⊥ gµ

(relative to the Killing form B of g ).

(b) Show that one can find elements Xα ∈ gα and Yα ∈ g−α such that B(Xα ,Yα) = 1, for α ∈ R.

(c) Show that the Killing form B restricts to a positive definite inner product on hR.

(d) Let H1, . . . ,Hr be a B-orthonormal inner product of hR. Describe the basis {H j,Xα ,Y α}
of g∗ which is dual to the basis {H j,Xα ,Yα} of g and show that the Killing form B is given
by

B =
r

∑
j=1

H j⊗H j + ∑
α∈R+

(Xα ⊗Y α +Y α ⊗Xα)

with respect to this basis.

(e) Describe the map B : g→ g∗ in terms of the above bases for g and g∗.

(f) Show that the dualized Killing form is given by

B∗ =
r

∑
j=1

H j⊗H j + ∑
α∈R+

(Xα ⊗Yα +Yα ⊗Xα)

For α ∈ R, let Hα ∈ h be the unique element of h such that Hα ⊥ kerα relative to B and such that
α(Hα) = 2. Warning: the span of the triple Hα ,Xα ,Yα is isomorphic to the standard copy sα of
sl(2,C), but the given triple need not be standard.

(g) Let Bh denote the restriction of the Killing form to h× h Show that the associated map
Bh : h→ h∗ satisfies

Bh(Hα) =
1
2

B(Hα ,Hα)α.

Show that relative to the dual form B∗h we have

B(Hα ,Hα)B∗h(α,α) = 4.

From now on we shall use the notation 〈 · , · 〉 for both the linear form Bh on h and for the dual
form B∗h on h∗. Then the above relation becomes

〈Hα , Hα〉〈α , α〉= 4, (α ∈ R).
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(h) Show that
B([Xα ,Yα ],H) = α(H), (H ∈ h),

and conclude that
[Xα ,Yα ] = 2

Hα

〈Hα , Hα〉
.

(i) View the polynomial function Q : ξ 7→ B∗(ξ ,ξ ), g∗→ C, as an element of S2(g) and give
an expression of Q in terms of the elements H j,Xα and Yα .

(j) Argue that the image Ω := s(Q) under the symmetrizer s : S(g)→U(g) belongs to Z(g).
This element is called the Casimir operator of g. Express Ω in terms of the canonical
images of H j,Xα and Yα in U(g).

(k) Calculate 8γ(Ω) (relative to the positive system R+).

(l) Show that the associated polynomial function on h∗ is in general not Weyl group invariant.
(Give a simple counter example. )

(m) Show that the polynomial function γ(Ω) ∈ P(h∗) is given by

γ(Ω,λ ) = 〈λ , λ 〉−〈δ , δ 〉, (λ ∈ h∗).

Check that this function is indeed invariant under W.

(n) Repeat (k), (l), (m) for the positive system −R+ in place of R+. Compare the obtained
version of γ(Ω) to the previous one.

(p) Argue more generally that γ(Ω) is independent of the choice of positive roots.

Exercise 24. We now consider the situation of a connected compact semisimple Lie group U
equipped with an involution σ . Let Bu be the Killing form of the compact semisimple algebra u.
Then Bu is negative definite. Furthermore, g = uC is a complex semisimple Lie algebra, whose
(complex) Killing form B is equal to the complex bilinear extension of Bu.

We assume that K is an open subgroup of Uσ . Let q be the −1-eigenspace of σ and let β

be the restriction of −B to q× q. Then as in Exercise 22, the form β determines an invariant
Riemannian structure on U/K, which determines a Laplace operator ∆.

Let t be any maximal torus of u. Put h = tC and fix a choice R+ of positive roots for R :=
R(g,h). Let Ω be the Casimir element of Z(g), defined as in Exercise 23.

(a) Let p := dimu and let X1, . . . ,Xp be an orthonormal basis of u relative to the inner product
−Bu. Show that

Ω =−
p

∑
j=1

X2
j ,

as an element of U(g).
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(b) Show that the following diagram commutes:

C∞(U)
RΩ−→ C∞(U)

π∗ ↑ ↑ π∗

C∞(U/K)
−∆−→ C∞(U/K)

From this we conclude that r(Ω) =−∆, as elements of D(U/K).

(c) Show that the eigenvalues of the Laplace operator ∆ are of the form

sξ :=−〈λξ , λξ +2δ 〉,

with ξ ∈U∧ such that V K
ξ
6= 0 and with λξ equal to the highest weight of ξ .

(d) Assume that s∈C is an eigenvalue of the Laplace operator ∆, with corresponding eigenspace

Es := { f ∈C∞(U/K) | ∆ f = s f}.

Show that s≤ 0 and that Es is finite dimensional.

We now specialize to the situation that U = SO(3) and that σ equals the involution of SO(3)
described in Exercise 15. We consider the standard action of SO(3) on S2, the unit sphere in R3.
The stabiliser of the standard basis vector e1 = (1,0,0) equals the connected component K of
Uσ . In Exercise 15 we have seen that K ' SO(2).

(e) Show that the derivative at 0 of the map ϕ : q→ S2, X 7→ (expX) · e1 is given by

dϕ(0)R j = e j× e1.

(f) Let b denote the Euclidean inner product on Te1S2 ' {0}×R2. Show that dϕ(0)∗b = β ,
where β denotes the restriction of −B/2 to q.

We equip U/K with the U-invariant Riemannian metric induced by β .

(g) Show that the map ψ : U/K→ S2, xK 7→ x · e1 is an isometry.

If follows from (g) that the following diagram commutes:

C∞(S2)
∆−→ C∞(S2)

ψ∗ ↓ ↓ ψ∗

C∞(U/K)
∆U/K−→ C∞(U/K)

Here ∆ denotes the Laplace operator for the standard metric on the unit sphere S2.

(h) Show that ∆ =−1
2r(Ω).
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(i) Let δn be the irreducible representation of SO(3) of dimension 2n+1. Show that its highest
weight is given by λn = nα, where α is the unique positive root (we assume that a maximal
torus t⊂ u and a choice of positive roots has been fixed).

(j) Show that 〈Hα , Hα〉= 2 and that 〈α , α〉= 2.

(k) Show that the eigenvalues of ∆ are given by sn := −n(n + 1), and that the associated
eigenspace equals

C∞(S2)δn.

Argue that the eigenspace has dimension 2n+1.

Exercise 25. We assume that K is a compact connected Lie group. The purpose of this exercise
is to describe the image of C∞(K) under Fourier transform.

We assume that t is a maximal torus in K, R = R(kC, tC), Λ the associated lattice of integral
weights. We denote by ΛK the sublattice consisting of λ ∈ Λ such that there exists a character
ξλ on T = exp(t) such that dξλ (e) = λ . Then it is known that ΛK has finite index in Λ.

Let R+ be a choice of positive roots, Λ+ be the associated set of dominant weights, and
Λ
+
K = ΛK ∩Λ+. Then it is known that via highest weight theory, K̂ corresponds to Λ

+
K . It follows

that for each λ ∈ ΛK there is a unique irreducible representation δλ ∈ K̂ whose infinitesimal
character equals χλ : Z(k)→ C, Z 7→ γ(Z,λ ). (Beware: in this notation λ is the infinitesimal
character of δλ , which is different from the highest weight).

(a) Argue that δλ ∼ δµ ⇐⇒ Wλ =W µ.

For f ∈ L2(K) and λ ∈ ΛK we define the Fourier transform f̃ (λ ) by

f̃ (λ ) = δλ ( f ) ∈ End(Vδλ
).

(b) If f ∈C∞(G) and Z ∈ Z(k), show that for every λ ∈ ΛK,

(LZ f )˜= γ(Z,λ ) f̃ .

(c) If f ∈C∞(G), show that for every N ∈ N there exists a constant CN > 0 such that

‖ f̃ (λ )‖HS ≤CN(1+‖λ‖)−N .

Now assume that f ∈ L2(K) and that for every N ∈N there exists a constant CN > 0 such that the
estimate in (b) is valid. The purpose is to show that then f is a smooth function.

For each R ∈ N we define the smooth function ϕR ∈R(K) by

ϕR = ∑
λ∈Λ

+
K

‖λ‖≤R

dim(δλ )χδλ
.
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(d) Show that ϕR ∗ f → f in L2(K), for R→ ∞. In the following we assume that R j is an
increasing sequence of positive real numbers, with R j→ ∞ for j→ ∞.

(e) Show that for every X ∈ t there exist constants C > 0 and N > 0 such that

‖δλ (X)‖op ≤C(1+‖g‖)N , (λ ∈ Λ
+
K ).

What is the best N you can find?

(f) Show that a similar estimate is valid for every X ∈ k.

(g) Show that a similar estimate is valid for every u ∈U(g).

(h) Show that for every u∈U(g) the sequence Lu(ϕR j ∗ f ) ( j∈N) is Cauchy in C(K), equipped
with the sup-norm.

(i) Let p ∈ N. Show that f ∈Cp(K) and that ϕR j ∗ f → f in Cp(K), equipped with the usual
Banach topology.

Exercise 26. We consider the one dimensional complex projective space P1(C). As a set it is
defined as the set of one dimensional subspaces Cv of C2, for v ∈ C2 \ {0}. It has a unique
structure of complex analytic manifold for which the maps z 7→ C(z,1) and w 7→ C(1,w) define
holomorphic open embeddings C→ P1(C) (the inverses of affine charts).

(a) Show that SL(2,C) has a natural holomorphic action on P1(C).

(b) Show that this action is transitive.

(c) We consider the Riemann sphere Ĉ = C∪ {∞}, equipped with the obvious structure of
complex analytic manifold. Show that the map ϕ : Ĉ→ P1(C) defined by

ϕ(z) = C(z,1), (z ∈ C), and ϕ(∞) = C(0,1)

is a holomorphic diffeomorphism.

(d) Through the above diffeomorphism we transfer the action of SL(2,C) on P1(C) to an
action on Ĉ. Show that the action of an element

g =

(
a b
c d

)
on Ĉ is given by

g · z = az+b
cz+d

.

Note that the appearing fractional linear transformation is thus interpreted as a biholomor-
phic invertible transformation of the Riemann sphere, which sends −d/c to ∞, and which
sends ∞ to a/c.

14



The action of SL(2,C) restricts to an action of SL(2,R) on Ĉ which we shall now consider.

(e) Show that the stabilizer in SL(2,R) of the imaginary unit i equals K := SO(2).

We consider the standard Iwasawa subgroups A = {at | t ∈ R}, N = {nx | x ∈ R}, where

at =

(
et 0
0 e−t

)
, and nx :=

(
1 x
0 1

)
.

(f) Calculate nxat · i. Show that SL(2,R) · i contains the upper half plane H consisting of the
points z ∈ C with Imz > 0.

(g) Calculate the stabilizer of 0 in SL(2,R) and show that SL(2,R) ·0 = R̂ := R∪{∞}.

(h) Argue that the SL(2,R) action on Ĉ has three orbits: H+, R̂ and −H.

(k) Use SL(2,R) · i = H to conclude that SL(2,R) = NAK.

Exercise 27. The purpose of this exercise is to use the identification H ' SL(2,R)/SO(2) of the
previous exercise, in order to calculate the hyperbolic metric on the upper half plane H.

Let p denote the subspace of symmetric matrices in sl(2,R) We shall use the linear isomor-
phism ϕ : R2 7→ p given by

ϕ(x,y) =
(

x y
y −x

)
(a) Show that the map Φ : (x,y) 7→ exp[ϕ(x,y)] · i defines a diffeomorphism from R2 onto H.

By calculating partial derivatives, show that its total derivative dΦ(0,0) equals the map
R2→ C, (x,y) 7→ 2y+2xi.

(b) Show that for k ∈ SO(2) we have

k Φ(x,y)k−1 = Φ(k2 · (x,y))

In the following we will denote by dx⊗dx+dy⊗dy the standard metric on the Euclidean space
R2. Its restriction to H is said to be the standard Euclidean metric on H and denoted by β .

(a) Show that
dlk(i)∗βi = βi.

Hint: use Φ.

(b) For x ∈ SL(2,R) we define gx to be the inner product on Tx·i(H)' R2, given by

gx := dlx(i)−1∗
βi.

Show that gx depends on x through its image x · i. We shall therefore also write gx·i. Show
that z 7→ gz defines a Riemannian metric on H for which SL(2,R) acts by isometries. This
metric is called the hyperbolic metric on H.
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(c) Show that
gz = y−2

βz, (z = x+ iy ∈ H).

Hint: first, prove this for z = at · i.
(d) Let t ∈ R and calculate the hyperbolic distance d(at · i, i) of the point at · i to the origin i.

Exercise 28. We assume that G is a connected real semisimple Lie group with finite center,
that K is a maximal compact subgroup (hence comes from a Cartan decomposition) and that
g = k⊕ p is the associated Cartan decomposition of g. Let a be a maximal abelian subspace of
p. Let Σ = Σ(g,a) be the associated root system, and W ⊂ GL(a∗) the associated Weyl group
generated by the reflections sα ∈ GL(a∗).

(a) Show that through the contragredient action, W may be realized as a subgroup of GL(a).

We write NK(a) for the normalizer of a in K and ZK(a) for the centralizer of a in K. Thus,

NK(a) = {k ∈ K | Ad(k)(a) = a}, ZK(a) = {k ∈ K | Ad(k)|a = 0}.

(b) Show that for every w ∈W there exists a k ∈ NK(a) such that w = Ad(k)|a.
(c) Show that the normalizer of a in k equals the centralizer of a in k.

(d) Show that ZK(a) is a normal subgroup of NK(a) and that NK(a)/ZK(a) is a finite group.
The natural map NK(a)→ GL(a), k 7→ Ad(k)|a induces an embedding of NK(a)/ZK(a)
into GL(a) via which we shall view NK(a)/ZK(a) as a subgroup of the latter group.

(e) Show that W ⊂ NK(a)/ZK(a).

Remark. It can be shown that the inclusion in (e) is an equality.

Exercise 29. Let G be a connected real semisimple Lie group with finite center. Let g= k⊕p be
a Cartan decomposition and K the associated maximal compact subgroup of G.

The purpose of this exercise is to show that all maximal abelian subspaces of p are conjugate
under Ad(K).

(a) Let H ∈ areg (regular means that α(H) 6= 0 for all α ∈ Σ(g,a) ). Let X ∈ p and consider
the function f : K→ R given by

f (k) = B(Ad(k)X ,H).

Show that f has a stationary point k0 ∈ K.

(b) Show that B([U,Ad(k)X ],H) = 0 for all U ∈ k.

(c) By using root spaces, show that [k,H] = a⊥∩p.
(d) Show that Ad(k0)X ∈ a.

(e) Let b⊂ p be a maximal abelian subspace, and let X ∈ breg. Show that b= Zg(X)∩p.
(f) Show that Ad(k0)b= a.
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Exercise 30. Assume that G is a connected real semisimple Lie group, let g = k⊕ p and let
θ : G→ G be the associated global Cartan involution.

(a) Let H ⊂ G be a closed subgroup which is θ invariant. Show that

H = (H ∩K)exp(h∩p).

and that the map (k,X) 7→ k exp(X) is a diffeomorphism from (H ∩K)× (h∩p) onto H.

(b) Let X ∈ a and let Z be its centralizer in G. Show that Z = Z∩K)exp(z∩p).

Exercise 31. Let G be a connected real semisimple Lie group, and let g = k⊕ a⊕ n be an
infinitesimal Iwasawa decomposition.

Let X ∈ a and let H be its centralizer in G. Show that

H = (H ∩K)A(H ∩N).

Hint: first compare with the infinitesimal Iwasawa decomposition. Warning: in general, H is not
connected.

Exercise 32. Let G be a Lie group and H a closed subgroup.

(a) Show that the cotangent bundle T ∗(G/H) is an equivariant vector bundle on G/H.

(b) Describe a natural diffeomorphismn

(G× (g/h)∗)/H→ T ∗(G/H).

(c) Show that the exterior bundle ∧T ∗(G/H) is equivariant.

(d) Describe a natural diffeomorphism

(G×∧(g/h)∗)/H→ T ∗(G/H).

(e) Prove that the space Γ(G,∧kT ∗(G/H))G of G-invariant sections of the bundle is linearly
isomorphic to the space [∧k(g/h)∗]H of Ad(H)-invariants in ∧k(g/h)∗.

(f) Formulate a generalization of the result in (e) to an arbitrary equivariant vector bundle
p : V → G/H.
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Exercise 33. (Frobenius reciprocity) Let K be a compact Lie group and H a closed subgroup.
Let (xi,Vξ ) be a finite dimensional continuous representation of H.

(a) Let eve : C(K : H : ξ )→Vξ be defined by f 7→ f (e). Show that for every finite dimensional
representation (π,V ) of K the map ε : T 7→ eve ◦T gives a linear isomorphism

HomK(V,C∞(K : H : ξ ))
'−→ HomM(V,Vξ ).

This is more conveniently expressed as

HomK(π, indK
H(ξ )) ' HomM(π|M,ξ ), naturally.

One says that the forgetful functor π ; π|M is left-adjoint to the induction functor ξ ;

indK
H(ξ ).

(b) Show that for every irreducible δ ∈ K̂ the isotypical component C(K : H : ξ )[δ ] has finite
dimension.

(c) Give the decomposition of C(K : H : ξ )K into isotypical components, and prove the cor-
rectness of your result.

(d) Argue that the functions in C(K : H : ξ )K are smooth.
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Exercise 34. (Infinitesimal character of principal series) The purpose of this exercise is to
show that representations of the principal series have an infinitesimal character, and to determine
this infinitesimal character.

We assume that G is a real semisimple Lie group with finite center, that g= k⊕p is a Cartan
decomposition of its Lie algebra, that a ⊂ p is a maximal abelian subspace, Σ = Σ(g,a) the
associated root system, Σ+ a choice of positive roots, and g= k⊕a⊕n and

G = KAN

the associated Iwasawa decompositions.
Furthermore, we write M = ZK(a), define P=MAN, and assume that (ξ ,Vξ ) is an irreducible

unitary representation of M. We denote by

πξ ,λ = IndG
P (ξ ⊗λ ⊗1)

the restriction of the left regular representation of G on C∞(P : ξ : λ ) (the smooth version of the
principal series representation).

The center Z(mC) of U(mC) acts on Vξ by an infinitesimal character which we denote by χξ .

(a) Show that
U(gC) =U(mC⊕aC)⊕ (nCU(gC)+U(gC)n̄C).

(b) Given Z ∈ Z(gC) we denote by 8µ(Z) the projection of Z on U(mC⊕aC) according to the
above decomposition. Show that

8
µ(Z) ∈U(aC)Z(mC) and Z− 8

µ(Z) ∈ nCU(gC)n̄C.

(c) If ϕ ∈C∞(P : ξ : λ ), show that

LZϕ(e) = [ξ ⊗ (λ +ρ)](8µ(Z))ϕ(e).

Show that πξ ,λ has an infinitesimal character χξ ,λ . Hint: observe that U(aC)Z(mC) equals
the center of U(aC⊕mC).

Our next goal is to derive a simpler formula for the infinitesimal character χξ ,λ .

(d) Show that U(aC)Z(mC) can be identified with the space P(a∗C)⊗ Z(mC) of polynomial
functions a∗C→ Z(mC). Accordingly, show that

χξ ,λ (Z) = χξ (
8
µ(Z)(λ +ρ)), (Z ∈ Z(gC),

where χξ denotes the infinitesimal character of ξ .

We are now going to use the Harish-Chandra isomorphism for Z(mC) to describe the infinitesimal
character χξ . We fix a maximal torus t in the (compact) Lie algebra m.
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(e) Show that h := t⊕ a is a Cartan subalgebra of g, i.e., h is maximal subject to the condi-
tions that a) it be abelian, and 2) for every X ∈ h, the endomorphism ad(X)C ∈ End(gC)
diagonalizes.

(f) Let R be the root system of hC in gC. Show that for every α ∈ R we have

α|a 6= 0⇒ α|a ∈ Σ.

The direct sum decomposition h= t⊕a allows us to identify t∗C with the elements of h∗C vanish-
ing on a. Likewise, a∗C may be identified with the subspace of h∗C consisting of the functionals
vanishing on t.

(g) Show that Rm := {α ∈ R | α|a = 0} can be identified with the root system of tC in mC, and
that

gCα =mCα , (α ∈ Rm).

(h) Show that there exists a choice of positive roots R+ for R such that

α ∈ R+ \Rm⇒ α|a ∈ Σ
+.

Such a positive system R+ is said to be compatible with the system Σ+. We assume it fixed from
now on.

(i) Show that R+
m := R+∩Rm is a positive system for Rm.

(j) Let g+C be the sum of the root spaces gCα for α ∈ R+, and let m+
C be the similar sum of the

root spaces mCβ for β ∈ R+
m. Show that

g+C =m+
C⊕nC.

(k) Let δ be half the sum of the roots in R+, and let δm be half the sum of the positive roots in
R+
m. Show that

δ = δm+ρ.

(l) Let 8γm : Z(mC)→ S(tC) be the algebra homomorphism determined by

Z− 8
γm(Z) ∈m+

CU(mC)m
−
C, (Z ∈ Z(mC)).

Show that the Harish-Chandra isomorphism gm : Z(mC)→ S(tC)W (m,t) is given by

γm(Z,Λ) = 8
γm(Z,Λ+δM).

Warning: this formula has δM in place of the usual −δM because of a different choice of a
positive system in the definition of 8γm.

(m) Let Λξ ∈ t∗C be such that χξ = γm( · ,Λξ ). Show that

χξ+λ (Z) = γ(Z,Λξ +λ ), (Z ∈ Z(g)).
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