Inleiding Topologie - Retake (March 21, 2016)

Note: All the questions are worth 0.5 points (adding up to a total of 10.5 points). Please motivate all your answers. For instance, in Exercise 1, point e) do not just answer with yes or no, but provide a proof. Also, in d) of the same exercise, please do not just write down the final result, but also explain how you found it.

You can write either in English or Dutch.

Exercise 1. (3 points) Consider \mathbb{R}^2 endowed with the product topology $\mathcal{T} = \mathcal{T}_l \times \mathcal{T}_{\text{Eucl}}$, where \mathcal{T}_l is the lower limit topology on \mathbb{R} (i.e., the topology generated by the right-open intervals [a, b)) and $\mathcal{T}_{\text{Eucl}}$ is the Euclidean topology on \mathbb{R} . Consider also

$$A = [0, 1] \times [0, 1].$$

- a. Show that any subset $U \subset \mathbb{R}^2$ which is open with respect to the Euclidean topology is open also with respect to \mathcal{T} .
- b. Give an example of a sequence in \mathbb{R}^2 which is convergent with respect to the Euclidean topology but is not convergent in $(\mathbb{R}^2, \mathcal{T})$.
- c. Show that the interior of A in $(\mathbb{R}^2, \mathcal{T})$ is $B := [0, 1) \times (0, 1)$.
- d. Compute the closure of B in $(\mathbb{R}^2, \mathcal{T})$.
- e. Is A, with the topology induced from $(\mathbb{R}^2, \mathcal{T})$, connected?
- f. Is A, with the topology induced from $(\mathbb{R}^2, \mathcal{T})$, compact?

Exercise 2. (2 points) Consider

$$X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, 0 \le z < 1\}$$
$$Y = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, 0 < z < 1\}$$

both endowed with the Euclidean topology. Compute their one point compactifications and then show that X and Y are not homeomorphic.

Exercise 3. (3.5 points) Let A be the set of polynomials in one variable, with real coefficients, which take the same values at 0 and 1:

$$A = \{ P \in \mathbb{R}[t] : P(0) = P(1) \} = \{ a + t(t-1)Q : a \in \mathbb{R}, Q \in \mathbb{R}[t] \}.$$

a. Show that, with the usual operations between polynomials, A is an algebra.

We want to show that any character on A is of type

$$\chi_r : A \to \mathbb{R}, \quad \chi_r(P) = P(r)$$

for some real number r. Start with an arbitrary character $\chi: A \to \mathbb{R}$ and define

$$u_p := \chi(t^p(t-1)),$$

for each $p \ge 1$ integer. Please be aware that one can talk about $\chi(P)$ only for $P \in A$ (since we assume that χ is defined only on A); i.e. it does not make sense to talk about $\chi(t)$ or $\chi(t^2)$!). Show that

- b. $u_p \cdot u_q = u_{p'} \cdot u_{q'}$ whenever p + q = p' + q'.
- c. $(u_1)^3 = (u_2)^2 u_1 \cdot u_2$.
- d. If $u_1 = 0$ then $u_p = 0$ for any p and $\chi = \chi_0$.
- e. If $u_1 \neq 0$ then $\chi = \chi_r$ where $r = \frac{u_2}{u_1}$.

Denoting by X(A) the spectrum of A,

- f. show that the map $\mathbb{R} \to X(A)$, $r \mapsto \chi_r$ is a continuous surjection.
- g. Finally, describe a subspace of \mathbb{R}^2 that is homeomorphic to X(A).

Exercise 4. (2 points) Consider the group

$$\Gamma := \mathbb{Z} \times \mathbb{Z},$$

with the group operation denoted by \oplus and defined by

$$(m,n)\oplus(m',n')=(m+m',n+n').$$

Find all the real numbers $\lambda \in \mathbb{R}$ with the property that

$$\phi_{m,n}(x,y) = (m,n) \cdot (x,y) := (x+n+\lambda my + \frac{\lambda m(m-\lambda)}{2}, y+\lambda^2 m)$$

defines an action of Γ on \mathbb{R}^2 . Then, in each case that you find, show that the quotient space \mathbb{R}^2/Γ is homeomorphic to either a torus or a cylinder.