Take home exercise 3

Let

Let S^1 be the unit circle in the complex plane. For $w = e^{i\varphi} \in S^1$ we define the following rotations about the *z*-axis and about the *y*-axis in \mathbb{R}^3 ,

$$R_w := \begin{pmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix}, \text{ and } r_w := \begin{pmatrix} \sin\varphi & 0 & \cos\varphi\\ 0 & 1 & 0\\ \cos\varphi & 0 & -\sin\varphi \end{pmatrix}.$$

$$X = S^1 \times [-1, 1]$$

equipped with the restriction of the Euclidean topology on $\mathbb{C} \times \mathbb{R}$. We define the map $f: S^1 \times [-1,1] \to \mathbb{R}^3$ by

$$f(w,t) = R_{w^2}(2e_1 + r_w(te_3)),$$

where e_j denotes the *j*-th standard basis vector in \mathbb{R}^3 .

- (a) Argue that the image M of f is a geometric realization of the Möbius band in \mathbb{R}^3 . See also Exercise 1.12.
- (b) Determine the equivalence relation *R* on *X* which turns $f: X \to M$ into a quotient modulo *R*. Determine an action of the group $\mathbb{Z}_2 = \{1, -1\}$ on *X* whose orbits are precisely the equivalence classes of *R*.
- (c) Show that there exists a continuous bijection $F: X/\mathbb{Z}_2 \to M$. (Later we will see that by compactness of X this implies that F is a homeomorphism).
- (d) We consider the continuous map

$$h: [0,1] \times [-1,1] \to X = S^1 \times [-1,1], \quad h(s,t) = (e^{i\pi s}, t).$$

Let $p: X \to X/\mathbb{Z}_2$ be the natural projection. Show that $p \circ h$ is a continuous surjection from $[0,1] \times [-1,1]$ onto X/\mathbb{Z}^2 .

(e) Describe the gluing relation G on $[0,1] \times [-1,1]$ for which $p \circ h$ is a quotient modulo G. Show that $([0,1] \times [-1,1])/G$ is homeomorphic to X/\mathbb{Z}_2 .