Exercise HW4 = 3.48

On $X = \mathbb{R}$ we consider the following families of subsets:

$$\mathscr{B} := \{(-p,p) : p \in \mathbb{Q}, p > 0\}, \qquad \mathscr{T} := \{(-a,a) \mid 0 \le a \le \infty\}.$$

In particular, by taking $a = 0, \infty$ we see that \emptyset and X belong to \mathcal{T} .

- (a) Show that \mathscr{B} is a topology basis.
- (b) Show that \mathscr{T} is the topology associated to \mathscr{B} .
- (c) Is the sequence $x_n = (-1)^n + \frac{1}{n}$ convergent in (X, \mathscr{T}) ? If so, to what?
- (d) Find the interior and the closure of A := (-1, 2) in (X, \mathcal{T}) .
- (e) Show that any continuous function $f: X \to \mathbb{R}$ is constant. Here X is equipped with the topology \mathscr{T} and \mathbb{R} with the Euclidean topology.
- (f) For the topological space (X, \mathcal{T}) decide whether it is
 - (1) Hausdorff;
 - (2) 1st countable;
 - (3) Metrizable.

For all three questions, prove the correctness of your answer.