Exercise HW6

The purpose of this exercise is to give an application of partitions of unity which illustrates how to pass from local to global.

For $\Omega \subset \mathbb{R}^n$ open, we denote by $C^1(\Omega)$ the space of functions $f : \Omega \to \mathbb{R}$ which are partially differentiable with continuous partial derivatives $\partial_j f : \Omega \to \mathbb{R}$, for j = 1, ..., n.

- (a) Show that the function $\varphi : \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = (x-1)^2(x+1)^2$ for $|x| \le 1$ and by $\varphi(x) = 0$ for |x| > 1 belongs to $C^1(\mathbb{R})$.
- (b) Show that $C^1(\mathbb{R})$ is normal.
- (c) Show that $C^1(\mathbb{R}^n)$ is normal.
- (d) Let $\{\lambda_1, \ldots, \lambda_k\}$ be a subset of [0, 1] such that $\sum_{i=1}^k \lambda_i = 1$. Show that for every interval $J \subset \mathbb{R}$ and every subset $\{r_1, \ldots, r_k\} \subset J$ we have $\sum_{i=1}^k \lambda_i r_i \in J$.
- (e) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function and *C* a compact subset of \mathbb{R}^n . Show that for each $\varepsilon > 0$ there exists a finite cover $\mathscr{U} = \{U_0, U_1, \dots, U_k\}$ of \mathbb{R}^n , with $U_0 = \mathbb{R}^n \setminus C$, and real numbers s_1, \dots, s_k such that

$$f(x) - \varepsilon < s_i < f(x) + \varepsilon$$

for each $1 \le i \le k$ and all $x \in U_i$.

(f) Show that for every $\varepsilon > 0$ there exists a C^1 -function $g : \mathbb{R}^n \to \mathbb{R}$ such that

$$|f(x) - g(x)| < \varepsilon$$
 $(\forall x \in C).$