Extra Exercise 1

Let *X* be a topological space.

(a) Suppose that $\mathscr{S} = \{S_i \mid i \in I\}$ a locally finite collection of subsets of *X*. Show that the closure of the union $\cup \mathscr{S}$ is given by

$$\overline{\bigcup_{i\in I}S_i}=\bigcup_{i\in I}\bar{S}_i.$$

(b) Let now $\{\eta_i \mid i \in I\}$ be a locally finite collection of functions from C(X). Show that the support of their sum $\eta := \sum_{i \in I} \eta_i$ is given by

$$\operatorname{supp}(\eta) \subset \bigcup_{i \in I} \operatorname{supp}(\eta_i).$$

If $\eta_i \ge 0$ for all $i \in I$, show that the inclusion becomes an equality.

Extra Exercise 2

Let $\{S_i \mid i \in I\}$ be a collection of subsets of a topological space. Show that the following assertions are equivalent.

- (a) The collection $\{S_i \mid i \in I\}$ is locally finite.
- (b) The collection $\{\overline{S}_i \mid i \in I\}$ is locally finite.

Extra Exercise 3

Let *X* be a topological space and $\mathscr{U} = \{U_i \mid i \in I\}$ an open covering of *X*. Show that the following assertions are equivalent.

- (a) There exists a locally finite refinement \mathscr{V} of \mathscr{U} .
- (b) There exists a locally finite open covering $\mathscr{W} = \{W_i \mid i \in I\}$ of X such that $W_i \subset U_i$ for all $i \in I$.

Hint: for (a) \Rightarrow (b): define \mathscr{W} in terms of a suitable function $\varphi : \mathscr{V} \rightarrow I$.

Extra Exercise 4

Assume that *X* is locally compact Hausdorff and paracompact. Let $\mathscr{U} = \{U_i \mid i \in I\}$ be an open covering of *X*.

- (a) Show that their exists a locally finite open covering \mathcal{W} of X with the property that for every $W \in \mathcal{W}$ there exists a $U \in \mathcal{U}$ such that the closure \overline{W} of W is compact and contained in U.
- (b) By giving an example, show that there need not exist a locally finite open covering $\{W_i \mid i \in I\}$ such that for all $i \in I$ the closure \overline{W}_i is compact and contained in U_i .

Extra Exercise 5

Let *X* be a topological space. Assume that for every open covering $\mathscr{U} = \{U_i \mid i \in I\}$ of *X* there exists a partition of unity $\{\eta_i \mid i \in I\}$ such that $\operatorname{supp}(\eta_i) \subset U_i$.

(a) Show that *X* is paracompact.

Now assume in addition that *X* is locally compact Hausdorff.

(b) Show that for every open cover $\mathscr{U} = \{U_i \mid i \in I\}$ of X there exists a partition of unity $\{\eta_j \mid j \in J\}$ subordinate to \mathscr{U} such that $\operatorname{supp}(\eta_j)$ is compact for every $j \in J$. Show that in general such a partition of unity need not exist with J = I.