Extra Exercise 1

Let X be a topological space.
(a) Suppose that $\mathscr{S}=\left\{S_{i} \mid i \in I\right\}$ a locally finite collection of subsets of X. Show that the closure of the union $\cup \mathscr{S}$ is given by

$$
\overline{\cup_{i \in I} S_{i}}=\cup_{i \in I} \bar{S}_{i}
$$

(b) Let now $\left\{\eta_{i} \mid i \in I\right\}$ be a locally finite collection of functions from $C(X)$. Show that the support of their sum $\eta:=\sum_{i \in I} \eta_{i}$ is given by

$$
\operatorname{supp}(\eta) \subset \cup_{i \in I} \operatorname{supp}\left(\eta_{i}\right)
$$

If $\eta_{i} \geq 0$ for all $i \in I$, show that the inclusion becomes an equality.

Extra Exercise 2

Let $\left\{S_{i} \mid i \in I\right\}$ be a collection of subsets of a topological space. Show that the following assertions are equivalent.
(a) The collection $\left\{S_{i} \mid i \in I\right\}$ is locally finite.
(b) The collection $\left\{\bar{S}_{i} \mid i \in I\right\}$ is locally finite.

Extra Exercise 3

Let X be a topological space and $\mathscr{U}=\left\{U_{i} \mid i \in I\right\}$ an open covering of X. Show that the following assertions are equivalent.
(a) There exists a locally finite refinement \mathscr{V} of \mathscr{U}.
(b) There exists a locally finite open covering $\mathscr{W}=\left\{W_{i} \mid i \in I\right\}$ of X such that $W_{i} \subset U_{i}$ for all $i \in I$.

Hint: for $(\mathrm{a}) \Rightarrow(\mathrm{b})$: define \mathscr{W} in terms of a suitable function $\varphi: \mathscr{V} \rightarrow I$.

Extra Exercise 4

Assume that X is locally compact Hausdorff and paracompact. Let $\mathscr{U}=\left\{U_{i} \mid i \in I\right\}$ be an open covering of X.
(a) Show that their exists a locally finite open covering \mathscr{W} of X with the property that for every $W \in \mathscr{W}$ there exists a $U \in \mathscr{U}$ such that the closure \bar{W} of W is compact and contained in U.
(b) By giving an example, show that there need not exist a locally finite open covering $\left\{W_{i} \mid i \in I\right\}$ such that for all $i \in I$ the closure \bar{W}_{i} is compact and contained in U_{i}.

Extra Exercise 5

Let X be a topological space. Assume that for every open covering $\mathscr{U}=\left\{U_{i} \mid i \in I\right\}$ of X there exists a partition of unity $\left\{\eta_{i} \mid i \in I\right\}$ such that $\operatorname{supp}\left(\eta_{i}\right) \subset U_{i}$.
(a) Show that X is paracompact.

Now assume in addition that X is locally compact Hausdorff.
(b) Show that for every open cover $\mathscr{U}=\left\{U_{i} \mid i \in I\right\}$ of X there exists a partition of unity $\left\{\eta_{j} \mid j \in J\right\}$ subordinate to \mathscr{U} such that $\operatorname{supp}\left(\eta_{j}\right)$ is compact for every $j \in J$. Show that in general such a partition of unity need not exist with $J=I$.

