Extra Exercise 6

By a 'semi-metric' on a set *X* we mean a map $d : X \times X \rightarrow [0, \infty)$ such that for all $x, y, z \in X$,

- (1) d(x,x) = 0;
- (2) d(x,y) = d(y,x);
- (3) $d(x,z) \le d(x,y) + d(y,z)$.

(Thus, we do not assume that $d(x, y) = 0 \Rightarrow x = y$.) For such a semi-metric we define the open balls:

$$B_d(a; r) = \{ x \in X \mid d(x, a) < r \}.$$

- (a) Show that the balls $B_d(a;r)$, for $a \in X$ and r > 0 form the basis for a topology \mathcal{T}_d .
- (b) Let *d* be a semi-metric on *X*. Show that $\hat{d} : (x,y) \mapsto \min\{1, d(x,y)\}$ is also a semi-metric. Show that the associated topology $\mathscr{T}_{\hat{d}}$ is equal to \mathscr{T}_d . Show that *d* is a metric if and only if \hat{d} is a metric.
- (c) Suppose that $\{d_k \mid k \in \mathbb{N}\}$ is a collection of semi-metrics on *X* with the property that for all $x, y \in X$ we have:

$$[\forall k : d_k(x, y) = 0] \Rightarrow x = y.$$

Let \mathscr{T} be the smallest topology on X containing $\bigcup_{k \in \mathbb{N}} \mathscr{T}_{d_k}$. Show that \mathscr{T} is metrisable.

Extra Exercise 7

For a compact space *K* we equip the space C(K) with the uniform metric $d_K : (f,g) \mapsto \sup\{|f(x) - g(x)| \mid x \in K\}$.

We consider a locally compact Hausdorff space *X* which is second countable. For each compact subset $K \subset M$ we consider the restriction map $\rho_K : C(M) \to C(K)$, $f \mapsto f|_K$. We equip C(M) with the smallest topology \mathscr{T} for which all restriction maps ρ_K ($K \subset M$ compact), become continuous.

Show that \mathcal{T} is metrizable. Hint: use the previous exercise.

Extra Exercise 8

Let *M* be a compact topological manifold of dimension *n*.

(a) Show that there exists a finite open covering $\mathscr{U} = \{U_1, \dots, U_k\}$ of *M* such that for every *j* there exists a homeomorphism $\varphi_j : U_j \to \mathbb{R}^n$.

- (b) Show that there exist finitely many continuous functions $\xi_1, \ldots, \xi_k \in C(M)$ such that $\operatorname{supp}(\xi_j) \subset U_j$ for every j and such that for every $m \in M$ there exists a j such that $\xi_j(m) \neq 0$.
- (c) For $1 \leq j \leq k$ we define the map $f_j : M \to \mathbb{R}^{n+1}$ by

$$f_j(m) = \xi_j(m)(\varphi_j(m), 1)$$
 for $m \in U_j$; $f_j = 0$ on $X \setminus U_j$.

Show that f_j is continuous.

(d) Show that the map $f = (f_1, \dots, f_k) : M \to \mathbb{R}^{k(n+1)}$ is an embedding.