Extra notes for the course Inleiding Topology, 2017

Notes on quotients

Let X be a set. Then by a partition of X we mean a collection P of non-empty subsets of X (thus, $P \subset \mathscr{P}(X)$), such that
(a) for all $S, T \in P$, if $S \neq T$ then $S \cap T=\emptyset$;
(b) X equals the union $\cup P$ of the sets from P.

If R is a relation on X, then for given $x, y \in X$ we shall sometimes write $x R y$ in place of $(x, y) \in R$. Then R is said to be an equivalence relation if for all $x, y, z \in X$,
(a) $x R x$ (reflexivity);
(b) $x R y \Rightarrow y R x$ (symmetry);
(c) $x R y \wedge y R z \Rightarrow x R z \quad$ (transitivity).

Let R be an equivalence relation on X. Then for $x \in X$ we define the equivalence class of x by

$$
R(x)=\{y \in X \mid x R y\} .
$$

It is readily seen that the equivalence classes form a partition of $R(x)$. This partition, the collection of equivalence classes, is denoted by X / R, and called the (abstract) quotient of X by R. The surjective map $\pi: X \mapsto X / R, x \mapsto R(x)$ is called the quotient map.

Conversely, if P is a partition of X, then the relation R_{P} defined by

$$
(x, y) \in R_{P} \quad \Longleftrightarrow \quad(\exists S \in P):\{x, y\} \subset S,
$$

is an equivalence relation. Its classes are precisely the elements of P. Thus, $P=X / R_{P}$.
Quotients appear naturally in the context of surjective maps. Let $f: X \rightarrow Y$ be a map between sets. For $y \in Y$ we define

$$
f^{-1}(y):=f^{-1}(\{y\})=\{x \in X \mid f(x)=y\} .
$$

This subset of X is called the fiber of y for the map f. Clearly, f is surjective if and only if all fibers are non-empty. From now on we assume $f: X \rightarrow Y$ to be surjective. Then it is readily seen that the relation R_{f} on X defined by

$$
(x, y) \in R_{f} \Longleftrightarrow f(x)=f(y)
$$

is an equivalence relation. Its equivalence classes are precisely the fibers of f. Indeed, for $y \in Y$ and $x \in f^{-1}(y)$ we have $R(x)=f^{-1}(y)$. In the second lecture we discussed the following result and its proof.

Lemma 1. Let $f: X \rightarrow Y$ be a surjective map of sets, and let $R=R_{f}$ be the associated equivalence relation on X defined as above. Then there exists a unique map $\bar{f}: X / R \rightarrow$ Y such that the following diagram commutes:

$$
\begin{array}{cc}
X & \xrightarrow{f} Y \\
\pi \downarrow & \nearrow \bar{f} \\
X / R &
\end{array}
$$

The map \bar{f} is bijective.
Remark. Commutativity of the above diagram by definition means that $f=\bar{f} \circ \pi$. In general, commutativity of a diagram of maps means that all compositions of arrows are equal as soon as they have the same domain and target.
Proof. Let \bar{f} be any map $X / R \rightarrow Y$ such that the diagram commutes. Let $\xi \in X / R$ and $x \in \xi$. Then $\pi(x)=\xi$, hence $\bar{f}(\xi)=\bar{f}(\pi(x))=\bar{f} \circ \pi(x)=f(x)$. This shows that there is only one choice for the values of \bar{f}. Hence the map is uniquely determined.

We will now prove existence of \bar{f}. Let $\xi \in X / R$. Then ξ is an equivalence class for R. If $x, y \in \xi$ then $x R y$ hence $f(x)=f(y)$ by definition of $R=R_{f}$. It follows that f has a common value on the equivalence class ξ. We define $\bar{f}(\xi) \in Y$ to be this common value. Now, for every $x \in X$ we have $\bar{f}(\pi(x))=\bar{f}(R(x))=f(x)$. Hence $\bar{f} \circ \pi=f$, so the diagram commutes for this \bar{f}. This establishes existence.

Finally, we will show that \bar{f} is bijective. First, if $y \in Y$, there exists $x \in X$ such that $y=f(x)$. Put $\xi=\pi(x)$. Then $\bar{f}(\xi)=\bar{f} \circ \pi(x)=f(x)=y$ and we see that \bar{f} is surjective.

For injectivity, let $\xi_{1}, \xi_{2} \in X$ and assume $\bar{f}\left(\xi_{1}\right)=\bar{f}\left(\xi_{2}\right)$. Select $x_{1}, x_{2} \in X$ such that $\pi\left(x_{j}\right)=\xi_{j}$ for $j=1,2$. Then $\bar{f}\left(\xi_{j}\right)=f\left(x_{j}\right)$, so $f\left(x_{1}\right)=f\left(x_{2}\right)$. By definition of R it follows that $x_{1} R x_{2}$ hence $R\left(x_{1}\right)=R\left(x_{2}\right)$, hence $\xi_{1}=\pi\left(x_{1}\right)=R\left(x_{1}\right)=R\left(x_{2}\right)=\xi_{2}$. Injectivity follows.

Quotient topology

Let (X, \mathscr{T}) be a topological space, R an equivalence relation on X and $\pi: X \rightarrow X / R$ the quotient map. We define

$$
\mathscr{T}_{X / R}:=\left\{V \subset X / R: \pi^{-1}(V) \in \mathscr{T}\right\} .
$$

Claim: this set is a topology on $\mathscr{T}_{X / R}$.
Proof. First of all, $\pi^{-1}(X / R)=X$ and since $X \in \mathscr{T}$ we see that $X / R \in \mathscr{T}_{X / R}$. On the other hand, $\pi^{-1}(\emptyset)=\emptyset \in \mathscr{T}$ and we see that $\emptyset \in \mathscr{T}_{X / R}$. It follows that both \emptyset and X / R belong to $\mathscr{T}_{X / R}$.

If $U, V \in \mathscr{T}_{X / R}$, then $\left.\pi^{(} U\right)$ and $\pi^{-1}(V)$ belong to \mathscr{T} so that also

$$
\pi^{-1}(U \cap V)=\pi^{-1}(U) \cap \pi^{-1}(V) \in \mathscr{T}
$$

and we find that $U \cap V \in \mathscr{T}_{X / R}$.
Finally, let $\left\{U_{i}\right\}_{i \in I}$ be any family of sets from \mathscr{T}. Then

$$
\pi^{-1}\left(\cup_{i \in I} U_{i}\right)=\cup_{i \in I} \pi^{-1}\left(U_{i}\right)
$$

is a union of the sets $\pi^{-1}\left(U_{i}\right) \in \mathscr{T}$, hence belongs to \mathscr{T}. Therefore, the union $\cup_{i \in I} U_{i}$ belongs to $\mathscr{T}_{X / R}$.

It follows from the above that the quotient X / R of a topological space X by an equivalence relation R carries a natural topology, which we call the quotient topology. We note that the natural map $\pi: X \rightarrow X / R$ is continuous for \mathscr{T} and $\mathscr{T}_{X / R}$. Furthermore, any topology \mathscr{T}^{\prime} on X / R for which π is continuous must be a subset of $\mathscr{T}_{X / R}$. Thus, the quotient topology $\mathscr{T}_{X / R}$ is the largest topology on X / R such that $\pi: X \rightarrow X / R$ is continuous relative to \mathscr{T} and $\mathscr{T}_{X / R}$.

In the above we have used a few rules concerning preimages, intersections and unions. These rules, already proven in the first analysis course, are so important that we recall them explicitly. In the following we assume that $f: X \rightarrow Y$ is a map between sets. For a subset $A \subset Y$ the preimage of A under f is the subset of X defined by

$$
f^{-1}(A):=\{x \in X \mid f(x) \in A\} .
$$

We note that
(a) $f^{-1}(\emptyset)=\emptyset, \quad f^{-1}(Y)=X \quad$ and $\quad f^{-1}(Y \backslash A)=X \backslash f^{-1}(A)$.

Let $\left\{A_{i}\right\}_{i \in I}$ be a family of subsets A_{i} of Y, parametrized by an index set I. Then the following assertions are valid.
(a) $f^{-1}\left(\cap_{i \in I} A_{i}\right)=\cap_{i \in I} f^{-1}\left(A_{i}\right)$;
(b) $f^{-1}\left(\cup_{i \in I} A_{i}\right)=\cup_{i \in I} f^{-1}\left(A_{i}\right)$.

Phrased concisely, the map on power sets

$$
f^{-1}: \mathscr{P}(Y) \rightarrow \mathscr{P}(X), A \mapsto f^{-1}(A)
$$

preserves all complements, intersections and unions.

