Extra notes for the course Inleiding Topology, 2017

Notes on quotients

Let *X* be a set. Then by a partition of *X* we mean a collection *P* of non-empty subsets of *X* (thus, $P \subset \mathscr{P}(X)$), such that

- (a) for all $S, T \in P$, if $S \neq T$ then $S \cap T = \emptyset$;
- (b) *X* equals the union $\cup P$ of the sets from *P*.

If *R* is a relation on *X*, then for given $x, y \in X$ we shall sometimes write *xRy* in place of $(x, y) \in R$. Then *R* is said to be an equivalence relation if for all $x, y, z \in X$,

- (a) *xRx* (reflexivity);
- (b) $xRy \Rightarrow yRx$ (symmetry);
- (c) $xRy \wedge yRz \Rightarrow xRz$ (transitivity).

Let *R* be an equivalence relation on *X*. Then for $x \in X$ we define the equivalence class of *x* by

$$R(x) = \{ y \in X \mid xRy \}.$$

It is readily seen that the equivalence classes form a partition of R(x). This partition, the collection of equivalence classes, is denoted by X/R, and called the (abstract) quotient of X by R. The surjective map $\pi : X \mapsto X/R$, $x \mapsto R(x)$ is called the quotient map.

Conversely, if P is a partition of X, then the relation R_P defined by

$$(x,y) \in R_P \iff (\exists S \in P) : \{x,y\} \subset S,$$

is an equivalence relation. Its classes are precisely the elements of P. Thus, $P = X/R_P$.

Quotients appear naturally in the context of surjective maps. Let $f : X \to Y$ be a map between sets. For $y \in Y$ we define

$$f^{-1}(y) := f^{-1}(\{y\}) = \{x \in X \mid f(x) = y\}.$$

This subset of X is called the fiber of y for the map f. Clearly, f is surjective if and only if all fibers are non-empty. From now on we assume $f: X \to Y$ to be surjective. Then it is readily seen that the relation R_f on X defined by

$$(x, y) \in R_f \iff f(x) = f(y)$$

is an equivalence relation. Its equivalence classes are precisely the fibers of f. Indeed, for $y \in Y$ and $x \in f^{-1}(y)$ we have $R(x) = f^{-1}(y)$. In the second lecture we discussed the following result and its proof.

Lemma 1. Let $f: X \to Y$ be a surjective map of sets, and let $R = R_f$ be the associated equivalence relation on X defined as above. Then there exists a unique map $\overline{f}: X/R \to Y$ such that the following diagram commutes:

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ \pi \downarrow & \swarrow & \bar{f} \\ X/R \end{array}$$

The map \overline{f} is bijective.

Remark. Commutativity of the above diagram by definition means that $f = \overline{f} \circ \pi$. In general, commutativity of a diagram of maps means that all compositions of arrows are equal as soon as they have the same domain and target.

Proof. Let \overline{f} be any map $X/R \to Y$ such that the diagram commutes. Let $\xi \in X/R$ and $x \in \xi$. Then $\pi(x) = \xi$, hence $\overline{f}(\xi) = \overline{f}(\pi(x)) = \overline{f} \circ \pi(x) = f(x)$. This shows that there is only one choice for the values of \overline{f} . Hence the map is uniquely determined.

We will now prove existence of \overline{f} . Let $\xi \in X/R$. Then ξ is an equivalence class for R. If $x, y \in \xi$ then xRy hence f(x) = f(y) by definition of $R = R_f$. It follows that f has a common value on the equivalence class ξ . We define $\overline{f}(\xi) \in Y$ to be this common value. Now, for every $x \in X$ we have $\overline{f}(\pi(x)) = \overline{f}(R(x)) = f(x)$. Hence $\overline{f} \circ \pi = f$, so the diagram commutes for this \overline{f} . This establishes existence.

Finally, we will show that \overline{f} is bijective. First, if $y \in Y$, there exists $x \in X$ such that y = f(x). Put $\xi = \pi(x)$. Then $\overline{f}(\xi) = \overline{f} \circ \pi(x) = f(x) = y$ and we see that \overline{f} is surjective.

For injectivity, let $\xi_1, \xi_2 \in X$ and assume $\overline{f}(\xi_1) = \overline{f}(\xi_2)$. Select $x_1, x_2 \in X$ such that $\pi(x_j) = \xi_j$ for j = 1, 2. Then $\overline{f}(\xi_j) = f(x_j)$, so $f(x_1) = f(x_2)$. By definition of R it follows that x_1Rx_2 hence $R(x_1) = R(x_2)$, hence $\xi_1 = \pi(x_1) = R(x_1) = R(x_2) = \xi_2$. Injectivity follows.

Quotient topology

Let (X, \mathscr{T}) be a topological space, *R* an equivalence relation on *X* and $\pi : X \to X/R$ the quotient map. We define

$$\mathscr{T}_{X/R} := \{ V \subset X/R : \pi^{-1}(V) \in \mathscr{T} \}.$$

Claim: this set is a topology on $\mathcal{T}_{X/R}$.

Proof. First of all, $\pi^{-1}(X/R) = X$ and since $X \in \mathscr{T}$ we see that $X/R \in \mathscr{T}_{X/R}$. On the other hand, $\pi^{-1}(\emptyset) = \emptyset \in \mathscr{T}$ and we see that $\emptyset \in \mathscr{T}_{X/R}$. It follows that both \emptyset and X/R belong to $\mathscr{T}_{X/R}$.

If $U, V \in \mathscr{T}_{X/R}$, then $\pi^{(U)}$ and $\pi^{-1}(V)$ belong to \mathscr{T} so that also

$$\pi^{-1}(U \cap V) = \pi^{-1}(U) \cap \pi^{-1}(V) \in \mathscr{T}$$

and we find that $U \cap V \in \mathscr{T}_{X/R}$.

Finally, let $\{U_i\}_{i \in I}$ be any family of sets from \mathscr{T} . Then

$$\pi^{-1}(\cup_{i\in I}U_i)=\cup_{i\in I}\pi^{-1}(U_i)$$

is a union of the sets $\pi^{-1}(U_i) \in \mathscr{T}$, hence belongs to \mathscr{T} . Therefore, the union $\bigcup_{i \in I} U_i$ belongs to $\mathscr{T}_{X/R}$.

It follows from the above that the quotient X/R of a topological space X by an equivalence relation R carries a natural topology, which we call the quotient topology. We note that the natural map $\pi : X \to X/R$ is continuous for \mathscr{T} and $\mathscr{T}_{X/R}$. Furthermore, any topology \mathscr{T}' on X/R for which π is continuous must be a subset of $\mathscr{T}_{X/R}$. Thus, the quotient topology $\mathscr{T}_{X/R}$ is the largest topology on X/R such that $\pi : X \to X/R$ is continuous relative to \mathscr{T} and $\mathscr{T}_{X/R}$.

In the above we have used a few rules concerning preimages, intersections and unions. These rules, already proven in the first analysis course, are so important that we recall them explicitly. In the following we assume that $f: X \to Y$ is a map between sets. For a subset $A \subset Y$ the preimage of A under f is the subset of X defined by

$$f^{-1}(A) := \{ x \in X \mid f(x) \in A \}.$$

We note that

(a)
$$f^{-1}(\emptyset) = \emptyset$$
, $f^{-1}(Y) = X$ and $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$.

Let $\{A_i\}_{i \in I}$ be a family of subsets A_i of Y, parametrized by an index set I. Then the following assertions are valid.

- (a) $f^{-1}(\cap_{i \in I} A_i) = \cap_{i \in I} f^{-1}(A_i);$
- (b) $f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i).$

Phrased concisely, the map on power sets

$$f^{-1}: \mathscr{P}(Y) \to \mathscr{P}(X), A \mapsto f^{-1}(A)$$

preserves all complements, intersections and unions.