
Extra notes for the course Inleiding Topology, 2017

Notes on quotients
Let X be a set. Then by a partition of X we mean a collection P of non-empty subsets
of X (thus, P⊂P(X)), such that

(a) for all S,T ∈ P, if S 6= T then S∩T = /0;

(b) X equals the union ∪P of the sets from P.

If R is a relation on X , then for given x,y ∈ X we shall sometimes write xRy in place
of (x,y) ∈ R. Then R is said to be an equivalence relation if for all x,y,z ∈ X ,

(a) xRx (reflexivity);

(b) xRy⇒ yRx (symmetry);

(c) xRy∧ yRz⇒ xRz (transitivity).

Let R be an equivalence relation on X . Then for x ∈ X we define the equivalence class
of x by

R(x) = {y ∈ X | xRy}.

It is readily seen that the equivalence classes form a partition of R(x). This partition, the
collection of equivalence classes, is denoted by X/R, and called the (abstract) quotient
of X by R. The surjective map π : X 7→ X/R, x 7→ R(x) is called the quotient map.

Conversely, if P is a partition of X , then the relation RP defined by

(x,y) ∈ RP ⇐⇒ (∃S ∈ P) : {x,y} ⊂ S,

is an equivalence relation. Its classes are precisely the elements of P. Thus, P = X/RP.
Quotients appear naturally in the context of surjective maps. Let f : X → Y be a

map between sets. For y ∈ Y we define

f−1(y) := f−1({y}) = {x ∈ X | f (x) = y}.

This subset of X is called the fiber of y for the map f . Clearly, f is surjective if and
only if all fibers are non-empty. From now on we assume f : X → Y to be surjective.
Then it is readily seen that the relation R f on X defined by

(x,y) ∈ R f ⇐⇒ f (x) = f (y)

is an equivalence relation. Its equivalence classes are precisely the fibers of f . Indeed,
for y ∈ Y and x ∈ f−1(y) we have R(x) = f−1(y). In the second lecture we discussed
the following result and its proof.
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Lemma 1. Let f : X→Y be a surjective map of sets, and let R = R f be the associated
equivalence relation on X defined as above. Then there exists a unique map f̄ : X/R→
Y such that the following diagram commutes:

X
f−→ Y

π ↓ ↗ f̄

X/R

The map f̄ is bijective.

Remark. Commutativity of the above diagram by definition means that f = f̄ ◦π.
In general, commutativity of a diagram of maps means that all compositions of arrows
are equal as soon as they have the same domain and target.

Proof. Let f̄ be any map X/R→ Y such that the diagram commutes. Let ξ ∈ X/R
and x ∈ ξ . Then π(x) = ξ , hence f̄ (ξ ) = f̄ (π(x)) = f̄ ◦π(x) = f (x). This shows that
there is only one choice for the values of f̄ . Hence the map is uniquely determined.

We will now prove existence of f̄ . Let ξ ∈ X/R. Then ξ is an equivalence class for
R. If x,y ∈ ξ then xRy hence f (x) = f (y) by definition of R = R f . It follows that f has
a common value on the equivalence class ξ . We define f̄ (ξ ) ∈ Y to be this common
value. Now, for every x ∈ X we have f̄ (π(x)) = f̄ (R(x)) = f (x). Hence f̄ ◦π = f , so
the diagram commutes for this f̄ . This establishes existence.

Finally, we will show that f̄ is bijective. First, if y ∈ Y, there exists x ∈ X such
that y = f (x). Put ξ = π(x). Then f̄ (ξ ) = f̄ ◦π(x) = f (x) = y and we see that f̄ is
surjective.

For injectivity, let ξ1,ξ2 ∈ X and assume f̄ (ξ1) = f̄ (ξ2). Select x1,x2 ∈ X such
that π(x j) = ξ j for j = 1,2. Then f̄ (ξ j) = f (x j), so f (x1) = f (x2). By definition of
R it follows that x1Rx2 hence R(x1) = R(x2), hence ξ1 = π(x1) = R(x1) = R(x2) = ξ2.
Injectivity follows. �

Quotient topology
Let (X ,T ) be a topological space, R an equivalence relation on X and π : X → X/R
the quotient map. We define

TX/R := {V ⊂ X/R : π
−1(V ) ∈T }.

Claim: this set is a topology on TX/R.

Proof. First of all, π−1(X/R) = X and since X ∈T we see that X/R ∈TX/R. On the
other hand, π−1( /0) = /0 ∈T and we see that /0 ∈TX/R. It follows that both /0 and X/R
belong to TX/R.

If U,V ∈TX/R, then π(U) and π−1(V ) belong to T so that also

π
−1(U ∩V ) = π

−1(U)∩π
−1(V ) ∈T
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and we find that U ∩V ∈TX/R.
Finally, let {Ui}i∈I be any family of sets from T . Then

π
−1(∪i∈IUi) = ∪i∈Iπ

−1(Ui)

is a union of the sets π−1(Ui) ∈ T , hence belongs to T . Therefore, the union ∪i∈IUi
belongs to TX/R. �

It follows from the above that the quotient X/R of a topological space X by an
equivalence relation R carries a natural topology, which we call the quotient topology.
We note that the natural map π : X→X/R is continuous for T and TX/R. Furthermore,
any topology T ′ on X/R for which π is continuous must be a subset of TX/R. Thus,
the quotient topology TX/R is the largest topology on X/R such that π : X → X/R is
continuous relative to T and TX/R.

In the above we have used a few rules concerning preimages, intersections and
unions. These rules, already proven in the first analysis course, are so important that
we recall them explicitly. In the following we assume that f : X→Y is a map between
sets. For a subset A⊂ Y the preimage of A under f is the subset of X defined by

f−1(A) := {x ∈ X | f (x) ∈ A}.

We note that

(a) f−1( /0) = /0, f−1(Y ) = X and f−1(Y \A) = X \ f−1(A).

Let {Ai}i∈I be a family of subsets Ai of Y, parametrized by an index set I. Then the
following assertions are valid.

(a) f−1(∩i∈IAi) = ∩i∈I f−1(Ai);

(b) f−1(∪i∈IAi) = ∪i∈I f−1(Ai).

Phrased concisely, the map on power sets

f−1 : P(Y )→P(X), A 7→ f−1(A)

preserves all complements, intersections and unions.
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