Extra exercises for the course Inleiding Topology, 2018

The following exercise provides background for Exercises 2.32 and 2.54.

Exercise E.2.1

The purpose of this exercise is to show that for R equipped the Euclidean topology has the
following topological property (which is known as the connectedness of R, see Section
4.1 of the lecture notes).

Let A C R be a non-empty open and closed subset. Then A = R.

This result has been proven in Inleiding Analyse. The purpose of this exercise is to go
through the proof again.

Let A C R be non-empty and both open and closed. Select a € A. Consider the set
Vi={z>alla,z] C A}

(a) Show that V # 0.

(b) Show that V' is not bounded from above. Hint: assuming that V" is bounded from
above, show that sup V' € A and derive a contradiction.

(c) Show that A D [a, c0).
(d) Show that A = R.

Exercise E.3.1

In this exercise, we will show that every equivalence relation can be realized through the
orbits of a group action. (This exercise has nothing to do with topology, but arose from a
question by a student.)

Let X be a set, and R an equivalence relation of X. Let P = X/ R be the associated
partition of X. X. We look at the group G of all bijections X — X. The group operation
if given by fg = fogfor f, g € G and the neutral element is given by e = idx.

(a) Let G be the subset of G consisting of all bijections f : X — X such that f(C) =
C for all C' € X/R. Show that G is a subgroup of G.

(b) Let 2,y € X belong to the same element C' € X/R. Show that there exists an
f € Gy such that f(x) = y.

(c) Show that X/R = X/G,.
(d) Show that for x,y € X we have xRy <= Gor = Goy.

The following exercise is an extension of Exercise 5.11.



Exercise E.5.1

For 2 C R" open, we denote by C*(Q) the space of functions f : Q — R which are

partially differentiable with continuous partial derivatives 0;f : 0 — R, forj =1,...,n.
We note that C*(Q2) € C(Q).

(a) Show that the function ¢ : R — R defined by p(z) = (z — 1)?(xz + 1)* for |z] < 1
and by ¢(z) = 0 for |z| > 1 belongs to C'(R).

(b) Show that for every a € R™ and any open neighborhood U of a in R" there exists
a function g € C*(R™) with g > 0, g(a) > 0, and supp g C U.

(c) Let C' C R™ be closed and bounded, and let U C R" be an open subset containing
C. Show that there exists a function n € C*'(R") such that n > 0, n|c > 0 and
suppn C U. Hint: use compactness.

(d) Find a result in the lecture notes which guarantees that C'(X) is normal. In partic-
ular, in item (c) there exists a function 7 with the properties mentioned, and with
n=1onC.

Exercise E.5.2

The purpose of this exercise is to give an application of partitions of unity which illus-
trates how to pass from local to global.

(a) Let {\y,..., \x} be a subset of [0, 1] such that Zle Ai = 1. Show that for every
interval J C R and every subset {r1,..., 74} C J we have SF | \ir; € J.

(b) Let f : R — R be a continuous function and C' a compact subset of R". Show
that for each ¢ > 0 there exists a finite cover U = {Uy, Uy, ..., U} of R™, with
Uy = R™\ C, and real numbers sy, . . ., s such that

flz)—e<s; < f(x)+e
foreach1l <i < kandall x € U,.
(c) Show that for every € > 0 there exists a C'-function ¢ : R” — R such that

[f(x) —g(z)l <e  (Vazel).

(d) Use paracompactness of R and the idea of the above argument to show that g can
even be found such that dq.,(f, g) < €.

(e) Show that C*°(R") is dense in C'(R™) equipped with the topology of uniform con-
vergence.



Exercise E.5.3

The purpose of this exercise is to show that C>°(R™) is a normal collection in C'(R").
Our basic tool is the function ¢ : R — R defined by

Y(z) =e Y forz >0, and(z) =0 for z <O0.

(a) Show that 1) is continuous.

It is an exercise of basic analysis to show that v € C*°(R). You may use this result
without proof.

(b) Show that there exists a function ¢ € C°(R) such that 0 < ¢ < 1, p(0) = 1 and
(x) =0 for |z| > 1.

(c) Show that for every a € R™ and every open neighborhood U of a in R" there exists
a function g € C*°(R") with ¢ > 0, g(a) > 0 and supp g C U.

(d) Show that C*°(IR™) is a normal collection in C'(R™).

Exercise E.5.4

Let X be a topological space. If {.S; | i € I} is alocally finite collection of subsets of X
show that

(a) {S;}ier is locally finite;

(b) the closure of U;<1.5; is given by

UierSi = UrerSi.

Exercise E.5.5

Let X be a second countable locally compact Hausdorff space.

(a) Suppose that {S;};c; is a family of subsets of X, indexed by an index set I. Show
that the following conditions are equivalent.
(i) The collection {S; };¢; is locally finite.

(ii) For every compact subset C' C X the collection Ic :={i € I | S,NC # 0}

is finite.

(b) If {S;}ics is locally finite, show that the collection of ¢ € I with .S; # () is at most
countable.

(c) Let {n;}ics be a partition of unity on X. Show that the collection of i € [ with
7; # 0 is at most countable.



Exercise E.5.6

Let X be a topological space, and .4 a subset of C'(X) which contains the zero function
and is closed under locally finite sums. Let i/ = {U,};c; be an open cover of X and
{ta } aca an A-partition of unity such that for every a € a there exists a g(«) € I such
that supp ¥o, C Ug(a).

(a) For each € I show that

ni = Z wa
)

acg=1(i

is a well-defined function X — R which belongs to .A.

(b) Show that for every ¢« € I we have

suppn; C Uj.

Exercise E.5.7

Let X be a paracompact Hausdorff space, and let A C C'(X) be a subset which is normal
and closed under taking locally finite sums and quotients. In addition assume that A is
closed under scalar multiplication by R. Thus, A is a linear subspace of C'(X).

Show that for every f € C(X) and every ¢ > 0 there exists a function p € A such that
|f(z) —p(z)| <eforallz € X.

Hint: first show that there exists an open covering {U; };c; such that for every i € I there
exists \; € Rsuch that |f(z) — \;| < e forall z € U;.
Then show that there exists a locally finite collection {7, };c; of functions from A

such that
|f = Z Aini| < e

on X.

Exercise E.7.1

Let X be a set.

(a) Let d, be a metric on X with associated topology 7. Show that d., = min(1,d,)
is a metric on X. Show that the associated topology 7., equals 7.

We now assume that for each j > 1 a metric d; : X x X — [0,00) is given. Let 7; be
the associated topology.

(b) Defined : X x X — [0, 00)
d(l’,y) = Sup{dj(x7y> |] > 1}

Show that d is a metric on X. Show that the associated topology 7 contains 7; for
every 7 > 1.



We now assume in addition that d; > 1/j on X; this may be easily arranged without
changing topologies, by replacing d; with min(1/j,d;).

(c) Show that 7 is the smallest topology containing all 7, for j > 1.

(d) Show that the space X = C(RR) equipped with the topology 7., of uniform con-
vergence on compact sets is metrizable.



