
Extra exercises for the course Inleiding Topology, 2018
The following exercise provides background for Exercises 2.32 and 2.54.

Exercise E.2.1
The purpose of this exercise is to show that for R equipped the Euclidean topology has the
following topological property (which is known as the connectedness of R, see Section
4.1 of the lecture notes).

Let A ⊂ R be a non-empty open and closed subset. Then A = R.

This result has been proven in Inleiding Analyse. The purpose of this exercise is to go
through the proof again.

Let A ⊂ R be non-empty and both open and closed. Select a ∈ A. Consider the set
V := {x > a | [a, x] ⊂ A}.

(a) Show that V 6= ∅.

(b) Show that V is not bounded from above. Hint: assuming that V is bounded from
above, show that supV ∈ A and derive a contradiction.

(c) Show that A ⊃ [a,∞).

(d) Show that A = R.

Exercise E.3.1
In this exercise, we will show that every equivalence relation can be realized through the
orbits of a group action. (This exercise has nothing to do with topology, but arose from a
question by a student.)

Let X be a set, and R an equivalence relation of X. Let P = X/R be the associated
partition of X. X. We look at the group G of all bijections X → X. The group operation
if given by fg = f ◦ g for f, g ∈ G and the neutral element is given by e = idX .

(a) Let G0 be the subset of G consisting of all bijections f : X → X such that f(C) =
C for all C ∈ X/R. Show that G0 is a subgroup of G.

(b) Let x, y ∈ X belong to the same element C ∈ X/R. Show that there exists an
f ∈ G0 such that f(x) = y.

(c) Show that X/R = X/G0.

(d) Show that for x, y ∈ X we have xRy ⇐⇒ G0x = G0y.

The following exercise is an extension of Exercise 5.11.
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Exercise E.5.1
For Ω ⊂ Rn open, we denote by C1(Ω) the space of functions f : Ω → R which are
partially differentiable with continuous partial derivatives ∂jf : Ω→ R, for j = 1, . . . , n.
We note that C1(Ω) ⊂ C(Ω).

(a) Show that the function ϕ : R→ R defined by ϕ(x) = (x− 1)2(x+ 1)2 for |x| ≤ 1
and by ϕ(x) = 0 for |x| > 1 belongs to C1(R).

(b) Show that for every a ∈ Rn and any open neighborhood U of a in Rn there exists
a function g ∈ C1(Rn) with g ≥ 0, g(a) > 0, and supp g ⊂ U.

(c) Let C ⊂ Rn be closed and bounded, and let U ⊂ Rn be an open subset containing
C. Show that there exists a function η ∈ C1(Rn) such that η ≥ 0, η|C > 0 and
supp η ⊂ U. Hint: use compactness.

(d) Find a result in the lecture notes which guarantees that C1(X) is normal. In partic-
ular, in item (c) there exists a function η with the properties mentioned, and with
η = 1 on C.

Exercise E.5.2
The purpose of this exercise is to give an application of partitions of unity which illus-
trates how to pass from local to global.

(a) Let {λ1, . . . , λk} be a subset of [0, 1] such that
∑k

i=1 λi = 1. Show that for every
interval J ⊂ R and every subset {r1, . . . , rk} ⊂ J we have

∑k
i=1 λiri ∈ J.

(b) Let f : Rn → R be a continuous function and C a compact subset of Rn. Show
that for each ε > 0 there exists a finite cover U = {U0, U1, . . . , Uk} of Rn, with
U0 = Rn \ C, and real numbers s1, . . . , sk such that

f(x)− ε < si < f(x) + ε

for each 1 ≤ i ≤ k and all x ∈ Ui.

(c) Show that for every ε > 0 there exists a C1-function g : Rn → R such that

|f(x)− g(x)| < ε (∀ x ∈ C).

(d) Use paracompactness of Rn and the idea of the above argument to show that g can
even be found such that dsup(f, g) < ε.

(e) Show that C∞(Rn) is dense in C(Rn) equipped with the topology of uniform con-
vergence.
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Exercise E.5.3
The purpose of this exercise is to show that C∞(Rn) is a normal collection in C(Rn).

Our basic tool is the function ψ : R→ R defined by

ψ(x) = e−1/x for x > 0, and ψ(x) = 0 for x ≤ 0.

(a) Show that ψ is continuous.

It is an exercise of basic analysis to show that ψ ∈ C∞(R). You may use this result
without proof.

(b) Show that there exists a function ϕ ∈ C∞(R) such that 0 ≤ ϕ ≤ 1, ϕ(0) = 1 and
ϕ(x) = 0 for |x| ≥ 1.

(c) Show that for every a ∈ Rn and every open neighborhood U of a in Rn there exists
a function g ∈ C∞(Rn) with g ≥ 0, g(a) > 0 and supp g ⊂ U.

(d) Show that C∞(Rn) is a normal collection in C(Rn).

Exercise E.5.4
Let X be a topological space. If {Si | i ∈ I} is a locally finite collection of subsets of X,
show that

(a) {Si}i∈I is locally finite;

(b) the closure of ∪i∈ISi is given by

∪i∈ISi = ∪I∈ISi.

Exercise E.5.5
Let X be a second countable locally compact Hausdorff space.

(a) Suppose that {Si}i∈I is a family of subsets of X, indexed by an index set I. Show
that the following conditions are equivalent.

(i) The collection {Si}i∈I is locally finite.

(ii) For every compact subset C ⊂ X the collection IC := {i ∈ I | Si ∩ C 6= ∅}
is finite.

(b) If {Si}i∈I is locally finite, show that the collection of i ∈ I with Si 6= ∅ is at most
countable.

(c) Let {ηi}i∈I be a partition of unity on X. Show that the collection of i ∈ I with
ηi 6= 0 is at most countable.
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Exercise E.5.6
Let X be a topological space, and A a subset of C(X) which contains the zero function
and is closed under locally finite sums. Let U = {Ui}i∈I be an open cover of X and
{ψα}α∈a an A-partition of unity such that for every α ∈ a there exists a g(α) ∈ I such
that suppψα ⊂ Ug(α).

(a) For each i ∈ I show that
ηi :=

∑
α∈g−1(i)

ψα

is a well-defined function X → R which belongs to A.

(b) Show that for every i ∈ I we have

supp ηi ⊂ Ui.

Exercise E.5.7
Let X be a paracompact Hausdorff space, and letA ⊂ C(X) be a subset which is normal
and closed under taking locally finite sums and quotients. In addition assume that A is
closed under scalar multiplication by R. Thus, A is a linear subspace of C(X).

Show that for every f ∈ C(X) and every ε > 0 there exists a function ϕ ∈ A such that
|f(x)− ϕ(x)| < ε for all x ∈ X.
Hint: first show that there exists an open covering {Ui}i∈I such that for every i ∈ I there
exists λi ∈ R such that |f(x)− λi| < ε for all x ∈ Ui.

Then show that there exists a locally finite collection {ηi}i∈I of functions from A
such that

|f −
∑
i

λiηi| < ε

on X.

Exercise E.7.1
Let X be a set.

(a) Let d◦ be a metric on X with associated topology T◦. Show that d◦◦ = min(1, d◦)
is a metric on X. Show that the associated topology T◦◦ equals T◦.

We now assume that for each j ≥ 1 a metric dj : X × X → [0,∞) is given. Let Tj be
the associated topology.

(b) Define d : X ×X → [0,∞)

d(x, y) = sup{dj(x, y) | j ≥ 1}.

Show that d is a metric on X. Show that the associated topology T contains Tj for
every j ≥ 1.
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We now assume in addition that dj ≥ 1/j on X; this may be easily arranged without
changing topologies, by replacing dj with min(1/j, dj).

(c) Show that T is the smallest topology containing all Tj, for j ≥ 1.

(d) Show that the space X = C(R) equipped with the topology Tcpt of uniform con-
vergence on compact sets is metrizable.
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