Extra exercises for the course Inleiding Topology, 2018

The following exercise provides background for Exercises 2.32 and 2.54.

Exercise E.2.1

The purpose of this exercise is to show that for \mathbb{R} equipped the Euclidean topology has the following topological property (which is known as the connectedness of \mathbb{R} , see Section 4.1 of the lecture notes).

Let $A \subset \mathbb{R}$ be a non-empty open and closed subset. Then $A = \mathbb{R}$.

This result has been proven in Inleiding Analyse. The purpose of this exercise is to go through the proof again.

Let $A \subset \mathbb{R}$ be non-empty and both open and closed. Select $a \in A$. Consider the set $V := \{x > a \mid [a, x] \subset A\}$.

- (a) Show that $V \neq \emptyset$.
- (b) Show that V is not bounded from above. Hint: assuming that V is bounded from above, show that $\sup V \in A$ and derive a contradiction.
- (c) Show that $A \supset [a, \infty)$.
- (d) Show that $A = \mathbb{R}$.

Exercise E.3.1

In this exercise, we will show that every equivalence relation can be realized through the orbits of a group action. (This exercise has nothing to do with topology, but arose from a question by a student.)

Let X be a set, and R an equivalence relation of X. Let P = X/R be the associated partition of X. X. We look at the group G of all bijections $X \to X$. The group operation if given by $fg = f \circ g$ for $f, g \in G$ and the neutral element is given by $e = id_X$.

- (a) Let G_0 be the subset of G consisting of all bijections $f : X \to X$ such that f(C) = C for all $C \in X/R$. Show that G_0 is a subgroup of G.
- (b) Let $x, y \in X$ belong to the same element $C \in X/R$. Show that there exists an $f \in G_0$ such that f(x) = y.
- (c) Show that $X/R = X/G_0$.
- (d) Show that for $x, y \in X$ we have $xRy \iff G_0x = G_0y$.

The following exercise is an extension of Exercise 5.11.

Exercise E.5.1

For $\Omega \subset \mathbb{R}^n$ open, we denote by $C^1(\Omega)$ the space of functions $f : \Omega \to \mathbb{R}$ which are partially differentiable with continuous partial derivatives $\partial_j f : \Omega \to \mathbb{R}$, for $j = 1, \ldots, n$. We note that $C^1(\Omega) \subset C(\Omega)$.

- (a) Show that the function $\varphi : \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = (x-1)^2(x+1)^2$ for $|x| \le 1$ and by $\varphi(x) = 0$ for |x| > 1 belongs to $C^1(\mathbb{R})$.
- (b) Show that for every $a \in \mathbb{R}^n$ and any open neighborhood U of a in \mathbb{R}^n there exists a function $g \in C^1(\mathbb{R}^n)$ with $g \ge 0$, g(a) > 0, and $\operatorname{supp} g \subset U$.
- (c) Let $C \subset \mathbb{R}^n$ be closed and bounded, and let $U \subset \mathbb{R}^n$ be an open subset containing *C*. Show that there exists a function $\eta \in C^1(\mathbb{R}^n)$ such that $\eta \ge 0$, $\eta|_C > 0$ and $\operatorname{supp} \eta \subset U$. Hint: use compactness.
- (d) Find a result in the lecture notes which guarantees that $C^1(X)$ is normal. In particular, in item (c) there exists a function η with the properties mentioned, and with $\eta = 1$ on C.

Exercise E.5.2

The purpose of this exercise is to give an application of partitions of unity which illustrates how to pass from local to global.

- (a) Let $\{\lambda_1, \ldots, \lambda_k\}$ be a subset of [0, 1] such that $\sum_{i=1}^k \lambda_i = 1$. Show that for every interval $J \subset \mathbb{R}$ and every subset $\{r_1, \ldots, r_k\} \subset J$ we have $\sum_{i=1}^k \lambda_i r_i \in J$.
- (b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function and C a compact subset of \mathbb{R}^n . Show that for each $\varepsilon > 0$ there exists a finite cover $\mathcal{U} = \{U_0, U_1, \dots, U_k\}$ of \mathbb{R}^n , with $U_0 = \mathbb{R}^n \setminus C$, and real numbers s_1, \dots, s_k such that

$$f(x) - \varepsilon < s_i < f(x) + \varepsilon$$

for each $1 \leq i \leq k$ and all $x \in U_i$.

(c) Show that for every $\varepsilon > 0$ there exists a C^1 -function $g : \mathbb{R}^n \to \mathbb{R}$ such that

$$|f(x) - g(x)| < \varepsilon \qquad (\forall x \in C).$$

- (d) Use paracompactness of ℝⁿ and the idea of the above argument to show that g can even be found such that d_{sup}(f, g) < ε.</p>
- (e) Show that $C^{\infty}(\mathbb{R}^n)$ is dense in $C(\mathbb{R}^n)$ equipped with the topology of uniform convergence.

Exercise E.5.3

The purpose of this exercise is to show that $C^{\infty}(\mathbb{R}^n)$ is a normal collection in $C(\mathbb{R}^n)$. Our basic tool is the function $\psi : \mathbb{R} \to \mathbb{R}$ defined by

 $\psi(x) = e^{-1/x}$ for x > 0, and $\psi(x) = 0$ for $x \le 0$.

(a) Show that ψ is continuous.

It is an exercise of basic analysis to show that $\psi \in C^{\infty}(\mathbb{R})$. You may use this result without proof.

- (b) Show that there exists a function φ ∈ C[∞](ℝ) such that 0 ≤ φ ≤ 1, φ(0) = 1 and φ(x) = 0 for |x| ≥ 1.
- (c) Show that for every $a \in \mathbb{R}^n$ and every open neighborhood U of a in \mathbb{R}^n there exists a function $g \in C^{\infty}(\mathbb{R}^n)$ with $g \ge 0$, g(a) > 0 and $\operatorname{supp} g \subset U$.
- (d) Show that $C^{\infty}(\mathbb{R}^n)$ is a normal collection in $C(\mathbb{R}^n)$.

Exercise E.5.4

Let X be a topological space. If $\{S_i \mid i \in I\}$ is a locally finite collection of subsets of X, show that

- (a) $\{\overline{S}_i\}_{i \in I}$ is locally finite;
- (b) the closure of $\bigcup_{i \in I} S_i$ is given by

$$\overline{\bigcup_{i\in I}S_i} = \bigcup_{I\in I}\overline{S_i}.$$

Exercise E.5.5

Let X be a second countable locally compact Hausdorff space.

- (a) Suppose that $\{S_i\}_{i \in I}$ is a family of subsets of X, indexed by an index set I. Show that the following conditions are equivalent.
 - (i) The collection $\{S_i\}_{i \in I}$ is locally finite.
 - (ii) For every compact subset $C \subset X$ the collection $I_C := \{i \in I \mid S_i \cap C \neq \emptyset\}$ is finite.
- (b) If $\{S_i\}_{i \in I}$ is locally finite, show that the collection of $i \in I$ with $S_i \neq \emptyset$ is at most countable.
- (c) Let $\{\eta_i\}_{i \in I}$ be a partition of unity on X. Show that the collection of $i \in I$ with $\eta_i \neq 0$ is at most countable.

Exercise E.5.6

Let X be a topological space, and \mathcal{A} a subset of C(X) which contains the zero function and is closed under locally finite sums. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X and $\{\psi_{\alpha}\}_{\alpha \in \mathfrak{a}}$ an \mathcal{A} -partition of unity such that for every $\alpha \in \mathfrak{a}$ there exists a $g(\alpha) \in I$ such that $\sup \psi_{\alpha} \subset U_{g(\alpha)}$.

(a) For each $i \in I$ show that

$$\eta_i := \sum_{\alpha \in g^{-1}(i)} \psi_\alpha$$

is a well-defined function $X \to \mathbb{R}$ which belongs to \mathcal{A} .

(b) Show that for every $i \in I$ we have

$$\operatorname{supp} \eta_i \subset U_i.$$

Exercise E.5.7

Let X be a paracompact Hausdorff space, and let $\mathcal{A} \subset C(X)$ be a subset which is normal and closed under taking locally finite sums and quotients. In addition assume that \mathcal{A} is closed under scalar multiplication by \mathbb{R} . Thus, \mathcal{A} is a linear subspace of C(X).

Show that for every $f \in C(X)$ and every $\varepsilon > 0$ there exists a function $\varphi \in A$ such that $|f(x) - \varphi(x)| < \varepsilon$ for all $x \in X$.

Hint: first show that there exists an open covering $\{U_i\}_{i \in I}$ such that for every $i \in I$ there exists $\lambda_i \in \mathbb{R}$ such that $|f(x) - \lambda_i| < \varepsilon$ for all $x \in U_i$.

Then show that there exists a locally finite collection $\{\eta_i\}_{i\in I}$ of functions from \mathcal{A} such that

$$|f - \sum_i \lambda_i \eta_i| < \varepsilon$$

on X.

Exercise E.7.1

Let X be a set.

(a) Let d_{\circ} be a metric on X with associated topology \mathcal{T}_{\circ} . Show that $d_{\circ\circ} = \min(1, d_{\circ})$ is a metric on X. Show that the associated topology $\mathcal{T}_{\circ\circ}$ equals \mathcal{T}_{\circ} .

We now assume that for each $j \ge 1$ a metric $d_j : X \times X \to [0, \infty)$ is given. Let \mathcal{T}_j be the associated topology.

(b) Define $d: X \times X \to [0, \infty)$

$$d(x,y) = \sup\{d_j(x,y) \mid j \ge 1\}$$

Show that d is a metric on X. Show that the associated topology \mathcal{T} contains \mathcal{T}_j for every $j \ge 1$.

We now assume in addition that $d_j \ge 1/j$ on X; this may be easily arranged without changing topologies, by replacing d_j with $\min(1/j, d_j)$.

- (c) Show that \mathcal{T} is the smallest topology containing all \mathcal{T}_j , for $j \ge 1$.
- (d) Show that the space $X = C(\mathbb{R})$ equipped with the topology \mathcal{T}_{cpt} of uniform convergence on compact sets is metrizable.