and (c) follows.

Let W be the linear span of the vectors v_k , for $0 \le k \le n$. Then by definition of the vectors v_k , $Yv_k = v_{k+1}$. Therefore, Y leaves W invariant. By (c), H and X leave W invariant as well. It follows that W is a non-trivial invariant subspace of V, hence V = W by irreducibility. The vectors v_k , for $0 \le k \le n$, must be linear independent since they are eigenvectors for H for distinct eigenvalues; hence (a).

Finally, we have established the second assertion of (c) for all $k \ge 0$, in particular for k = n + 1. Now $v_{n+1} = 0$, hence $0 = (n + 1)(\lambda - n)v_n$ and since $v_n \ne 0$ it follows that $\lambda = n$. This establishes (b).

It follows from (a) and (c) that the only primitive vectors in V are non-zero multiples of v_0 .

Corollary 30.8 Let V and V' be two irreducible finite dimensional $\mathfrak{sl}(2, \mathbb{C})$ -modules. Then $V \simeq V'$ if and only if dim $V = \dim V'$. Moreover, if v and v' are primitive vectors of V and V', respectively, then there is a unique isomorphism $T : V \to V'$ mapping v onto v'.

Proof: Clearly if $V \simeq V'$ then V and V' have equal dimension. Conversely, assume that $\dim V = \dim V' = n$ and that v and v' are primitive vectors of V and V' respectively. Then by the above lemma, the vectors $v_k = Y^k v$, $0 \le k \le n$ form a basis of V. Similarly the vectors $v'_k = Y^k v'$, $0 \le k \le n$ form a basis of V'. Any intertwining operator $T : V \to V'$ that maps v onto v' must map the basis v_k onto the basis v'_k , hence is uniquely determined. Let $T : V \to V'$ be the linear map determined by $Tv_k = v'_k$, for $0 \le k \le n$. Then T is a linear bijection. Moreover, by the above lemma we see that T intertwines the actions of H, X, Y on V and V'. It follows that T is equivariant, hence $V \simeq V'$.

Completion of the proof of Theorem 30.3: The space $P_n(\mathbb{C}^2)$ is an irreducible $\mathfrak{sl}(2,\mathbb{C})$ -module, of dimension n + 1. Hence if V is an irreducible $\mathfrak{sl}(2,\mathbb{C})$ -module of dimension $m \ge 1$, then $V \simeq P_n(\mathbb{C}^2)$, with n = m - 1.

31 Roots and weights

Let t be a finite dimensional commutative real Lie algebra, and let (ρ, V) be a representation of t in a non-trivial complex linear space V (which we do not assume to be finite dimensional).

Let $\mathfrak{t}_{\mathbb{C}}^*$ denote the space of complex linear functionals on $\mathfrak{t}_{\mathbb{C}}$. Note that \mathfrak{t}^* , the space of real linear functionals on \mathfrak{t} may be identified with the space of $\lambda \in \mathfrak{t}_{\mathbb{C}}^*$ that are real valued on \mathfrak{t} . Thus, \mathfrak{t}^* is viewed as a real linear subspace of $\mathfrak{t}_{\mathbb{C}}^*$. Accordingly $i\mathfrak{t}^*$ equals the space of $\lambda \in \mathfrak{t}_{\mathbb{C}}^*$ such that $\lambda|_{\mathfrak{t}}$ has values in $i\mathbb{R}$.

If $\lambda \in \mathfrak{t}_{\mathbb{C}}^{*},$ then we define the following subspace of V:

$$V_{\lambda} = \bigcap_{H \in \mathfrak{t}} \ker(\rho(H) - \lambda(H)I).$$
(43)

In other words, V_{λ} equals the space of $v \in V$ such that

$$\rho(H)v = \lambda(H)v$$
 for all $H \in \mathfrak{t}$.

If $V_{\lambda} \neq 0$, then λ is called a *weight* of t in V, and V_{λ} is called the associated *weight space*. The set of weights of t in V is denoted by $\Lambda(\rho)$.

Lemma 31.1 Let $T \in \text{End}(V)$ be a ρ -intertwining linear endomorphism, then T leaves V_{λ} invariant, for every $\lambda \in \Lambda(\rho)$.

Proof: Let $\lambda \in \Lambda(\rho)$. The endomorphism T commutes with $\rho(H)$ hence leaves the eigenspace $\ker(\rho(H) - \lambda(H))$ invariant, for every $H \in \mathfrak{t}$. Hence T leaves the intersection V_{λ} of all these spaces invariant.

Lemma 31.2 Let

$$V' := \sum_{\lambda \in \Lambda(\rho)} V_{\lambda}.$$
(44)

Then for every t*-invariant subspace* $W \subset V'$ *,*

$$W = \bigoplus_{\lambda \in \Lambda(\rho)} (W \cap V_{\lambda}).$$
(45)

In particular, the sum (44) is direct.

Proof: We will first show that the sum (44) is direct. Let $\lambda_1, \ldots, \lambda_n$ be a collection of distinct weights in $\Lambda(\rho)$ and assume that $v_j \in V_{\lambda_j}$ are given such that $\sum_{j=1}^n v_j = 0$. Then it suffices to show that $v_j = 0$ for all $1 \le j \le n$. Since the weights are distinct, the sets $K_{ij} := \ker(\lambda_i - \lambda_j)$, for $i \ne j$ are hyperplanes in $\mathfrak{t}_{\mathbb{C}}$. The union $\bigcup_{i \ne j} K_{ij}$ is strictly contained in $\mathfrak{t}_{\mathbb{C}}$, hence we may select $H \in \mathfrak{t}_{\mathbb{C}}$ in the complement of this union. It follows that $s_j := \lambda_j(H)$, for $1 \le j \le n$, is a sequence of distinct complex numbers. Applying H repeatedly to the sum $v_1 + \cdots + v_n$ we find that

$$\sum_{j=1}^{n} s_{j}^{l} v_{j} = 0, \qquad (l \ge 0).$$

Let $T : \mathbb{C}^n \to V$ be the unique linear map sending the *j*-th standard basis vector e_j to v_j . Then it follows from the above that

$$T(\sum_{j=1}^{n} s_{j}^{l} e_{j}) = 0, \qquad (l \ge 0).$$

Let A be the linear map $\mathbb{C}^n \to \mathbb{C}^n$ which sends e_k to $\sum_{j=1}^n s_j^{k-1} e_j$ for $1 \le k \le n$. Then it follows that TA = 0. By the Vandermone determinant formula, det $A = \prod_{i < j} (s_j - s_i) = \neq 0$, hence A is invertible. Therefore, T = 0 and we conclude that indeed $v_j = 0$ for all $1 \le j \le n$.

To complete the proof we note that W is a t-module, hence so is the quotient space V'/W. Let $w \in W$. Then $w = v_1 + \cdots + v_n$ for certain $v_j \in V_{\lambda_j}$ with $\lambda_1, \ldots, \lambda_n$ a collection of distinct weights in $\Lambda(\rho)$. Each canonical image \bar{v}_j in V'/W is a weight vector of weights λ_j in V'/W. Furthermore, $\sum_{j=1}^n \bar{v}_j = \bar{w} = 0$. By the first result, applied to V'/W in place of V, it follows that $\bar{v}_j = 0$ hence $v_j \in W$ for all $1 \le j \le n$.

It follows from the above that $W = \sum_{\lambda \in \Lambda(\rho)} W \cap V_{\lambda}$. By the first result, applied to W in place of V, it follows that the sum is direct.

The action of t on V (or the representation ρ) is said to be *semisimple* if for every $X \in \mathfrak{t}$ the action of $\rho(X)$ is diagonalizable. The latter means that V decomposes as a direct sum of eigen spaces for $\rho(X)$.

Lemma 31.3 If ρ is semisimple, then

$$V = \bigoplus_{\lambda \in \Lambda(\rho)} V_{\lambda}.$$
(46)

Proof: We will prove the lemma by induction on the dimension of \mathfrak{t} . First assume dim $\mathfrak{t} < 1$. Fix a non-zero element $X \in \mathfrak{t}$. Let S denote the set of eigenvalues of $\rho(X)$. Then by the assumed semisimplicity, V is the direct sum of the eigen spaces $V_s = \ker(\rho(X) - sI)$, for $s \in S$. For $s \in S$ we define $\lambda_s \in \mathfrak{t}^*_{\mathbb{C}}$ by $\lambda_s(X) = s$. Then for each $s \in \Sigma$ we have $V_{\lambda_s} = V_s$ and we see that $\Lambda(\rho) = \{\lambda_s \mid s \in S\}$ and (46) follows.

Let now d > 1 and assume the result has been established for t of dimension smaller than d. We will then prove the result for t of dimension d. We fix an element $X \in \mathfrak{t}$ and a complementary subspace \mathfrak{t}_0 such that $\mathfrak{t} = \mathfrak{t}_0 \oplus \mathbb{R}X$. By the induction hypothesis, the space V decomposes as a direct sum of weight spaces V_{μ} for $\rho_0 := \rho|_{\mathfrak{t}_0}$, with $\mu \in \Lambda(\rho_0) \subset \mathfrak{t}^*_{0\mathbb{C}}$. Furthermore, Vdecomposes as the direct sum of the weight spaces V_s , for $s \in S$, defined as in first part of the proof. By commutativity of \mathfrak{t} , the operator $\rho(X) \in \operatorname{End}(V)$ is intertwining. By Lemma 31.1 each weight space V_{μ} is $\rho(X)$ -invariant hence by Lemma 31.2 it decomposes as the direct sum of the spaces $V_{\mu} \cap V_s$, for $s \in S$. It follows that

$$V = \bigoplus_{\mu \in \Lambda(\rho_0), s \in S} V_{\mu} \cap V_s.$$

Let $\lambda_{\mu,s} \in \mathfrak{t}^*_{\mathbb{C}}$ be defined by $\lambda_{\mu,s}|_{\mathfrak{t}_0} = \mu$ and $\lambda_{\mu,s}(X) = s$, then

$$V_{\lambda_{\mu,s}} = V_{\mu} \cap V_{s}$$

and we see that $\Lambda(V, \mathfrak{t})$ equals the set of $\lambda_{\mu,s} \in \mathfrak{t}^*_{\mathbb{C}}$, $(\mu \in \Lambda(\rho_0), s \in S)$, for which the above intersection is non-zero. Furthermore, V is the direct sum of the corresponding weight spaces.

Lemma 31.4 Let (ρ, V) be finite dimensional representation of \mathfrak{t} . Then $\Lambda(\rho)$ is a finite nonempty subset of $\mathfrak{t}^*_{\mathbb{C}}$. **Proof:** In view of Lemma 31.2 it follows that $\Lambda(\rho)$ has at most dim V elements.

Thus it remains to be shown that $\Lambda(\rho)$ is non-empty. For this we proceed by induction on the dimension of t.

First, assume dim $\mathfrak{t} = 1$. Then $\mathfrak{t} = \mathbb{R}X$ for $X \in \mathfrak{t} \setminus \{0\}$. The map $\rho(X)$ has at least one eigenvalue s. Let $\lambda \in \mathfrak{t}_{\mathbb{C}}^*$ be defined by $\lambda(X) = s$. Then $V_{\lambda} \neq 0$ hence $\lambda \in \Lambda(\rho)$.

Next, assume that dim $\mathfrak{t} > 1$. Then we fix a decomposition $\mathfrak{t} = \mathfrak{t}_0 \oplus \mathbb{R}X$ with \mathfrak{t}_0 is a subspace of codimension 1 and $X \in \mathfrak{t} \setminus \{0\}$. By the induction hypothesis, $\rho_0 := \rho|_{\mathfrak{t}_0}$ has a weight $\lambda_0 \in \mathfrak{t}^*_{0\mathbb{C}}$. The associated weight space V_{λ_0} is $\rho(X)$ -invariant and finite dimensional, hence contains an eigenvector $v \neq 0$. It follows that $\rho(\mathfrak{t})v \subset \mathbb{C}v$, from which we infer that v is contained in a weight space for ρ .

Assumption: In the rest of this section we assume that G is a compact Lie group, with Lie algebra \mathfrak{g} .

Definition 31.5 A *torus* in g is by definition a commutative subalgebra of g. A torus $\mathfrak{t} \subset \mathfrak{g}$ is called *maximal* if there exists no torus of g that properly contains \mathfrak{t} .

From now on we assume that \mathfrak{t} is a fixed maximal torus in \mathfrak{g} .

Lemma 31.6 The centralizer of \mathfrak{t} in \mathfrak{g} equals \mathfrak{t} .

Proof: Since t is abelian, it is contained in its centralizer. Conversely, assume that $X \in \mathfrak{g}$ centralizes t. Then $\mathfrak{t}' = \mathfrak{t} + \mathbb{R}X$ is a torus which contains t. Hence $\mathfrak{t}' = \mathfrak{t}$ by maximality, and we see that $X \in \mathfrak{t}$.

Let (π, V) be a finite dimensional representation of $\mathfrak{g}_{\mathbb{C}}$, the complexification of the Lie algebra \mathfrak{g} ; i.e., π is a complex Lie algebra homomorphism from $\mathfrak{g}_{\mathbb{C}}$ into $\operatorname{End}(V)$ (the latter is the space of complex linear endomorphisms equipped with the commutator Lie bracket). Alternatively we will also say that V is a finite dimensional $\mathfrak{g}_{\mathbb{C}}$ -module. We denote by $\Lambda(\pi) = \Lambda(\pi, \mathfrak{t})$ the set of weights of the representation $\rho = \pi|_{\mathfrak{t}}$ of \mathfrak{t} in V. If $\lambda \in \mathfrak{t}_{\mathbb{C}}^*$, then as before, V_{λ} is defined as in (43), with $\pi|_{\mathfrak{t}}$ in place of ρ . Thus

$$V_{\lambda} = \{ v \in V \mid \pi(H)v = \lambda(H)v \text{ for all } H \in \mathfrak{t} \}.$$

From Lemma 31.4 we see that $\Lambda(\pi)$ is a finite non-empty subset of $\mathfrak{t}^*_{\mathbb{C}}$.

Let (π, V) be a finite dimensional continuous representation of G. Then the map $\pi : G \to \operatorname{GL}(V)$ is a homomorphism of Lie groups. Let $\pi_* = T_e \pi$. Then $\pi_* : \mathfrak{g} \to \operatorname{End}(V)$ is a Lie algebra homomorphism, or, differently said, a representation of \mathfrak{g} in V. The homomorphism π_* has a unique extension to a complex Lie algebra homomorphism from $\mathfrak{g}_{\mathbb{C}}$ into $\operatorname{End}(V)$ (we recall that V is a complex linear space by assumption). This extension is called the *induced infinitesimal representation* of $\mathfrak{g}_{\mathbb{C}}$ in V.

Lemma 31.7 Let π be a finite dimensional continuous representation of G. Then $\Lambda(\pi_*)$ is a finite subset of it^{*}. Moreover,

$$V = \bigoplus_{\lambda \in \Lambda(\pi_*)} V_{\lambda}.$$

If V is equipped with a G-invariant inner product, then for all $\lambda, \mu \in \Lambda(\pi_*)$ with $\lambda \neq \mu$ we have $V_{\lambda} \perp V_{\mu}$.

Proof: There exists a *G*-invariant inner product on *V*; assume such an inner product $\langle \cdot, \cdot \rangle$ to be fixed. Then π maps *G* into U(V), the associated group of unitary transformations. It follows that π_* maps \mathfrak{g} into the Lie algebra $\mathfrak{u}(V)$ of U(V), which is the subalgebra of anti-Hermitian endomorphisms in $\operatorname{End}(V)$. It follows that for $X \in \mathfrak{g}$ the endomorphism $\pi_*(X)$ is anti-Hermitian, hence diagonalizable with imaginary eigenvalues. The direct sum decomposition now follows from Lemma 31.3. It remains to establish orthogonality of the summands. Let λ, μ be distinct weights in $\Lambda(\pi_*)$. Then there exists $H \in \mathfrak{t}$ such that $\lambda(H) \neq \mu(H)$. For $v \in V_{\lambda}$ and $w \in V_{\mu}$ we have

$$\lambda(H)\langle v, w \rangle = \langle \pi_*(H)v, w \rangle = -\langle v, \pi_*(H)w \rangle = -\overline{\mu(H)}\langle v, w \rangle = \mu(H)\langle v, w \rangle.$$

It follows that $\langle v, w \rangle = 0$.

If $A \in \operatorname{End}(\mathfrak{g})$, then we denote by $A_{\mathbb{C}}$ the complex linear extension of A to $\mathfrak{g}_{\mathbb{C}}$. Obviously the map $A \mapsto A_{\mathbb{C}}$ induces a real linear embedding of $\operatorname{End}(\mathfrak{g})$ into $\operatorname{End}(\mathfrak{g}_{\mathbb{C}}) := \operatorname{End}_{\mathbb{C}}(\mathfrak{g}_{\mathbb{C}})$. Accordingly we shall view $\operatorname{End}(\mathfrak{g})$ as a real linear subspace of the complex linear space $\operatorname{End}(\mathfrak{g}_{\mathbb{C}})$ from now on. Thus, we may view Ad as a representation of G in the complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} . The associated infinitesimal representation is the adjoint representation ad of $\mathfrak{g}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$. The associated collection $\Lambda(\operatorname{ad})$ of weights contains the weight 0. Indeed the associated weight space $\mathfrak{g}_{\mathbb{C}0}$ equals the centralizer of \mathfrak{t} in $\mathfrak{g}_{\mathbb{C}}$, which in turn equals $\mathfrak{t}_{\mathbb{C}}$, by Lemma 31.6. Hence:

$$\mathfrak{g}_{\mathbb{C}0} = \mathfrak{t}_{\mathbb{C}}.$$

Definition 31.8 The weights of ad in $\mathfrak{g}_{\mathbb{C}}$ different from 0 are called the *roots* of \mathfrak{t} in $\mathfrak{g}_{\mathbb{C}}$; the set of these is denoted by $R = R(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t})$. Given $\alpha \in R$, the associated weight space $\mathfrak{g}_{\mathbb{C}\alpha}$ is called a *root space*.

It follows from the definitions that

$$\mathfrak{g}_{\mathbb{C}\alpha} = \{ X \in \mathfrak{g}_{\mathbb{C}} \mid [H, X] = \alpha(H)X \text{ for all } H \in \mathfrak{t} \}.$$

From Lemma 31.7 we now obtain the so called *root space decomposition* of $\mathfrak{g}_{\mathbb{C}}$, relative to the torus \mathfrak{t} .

Corollary 31.9 The collection $R = R(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t})$ of roots is a finite subset of $i\mathfrak{t}^*$. Moreover, we have the following direct sum of vector spaces:

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\mathbb{C}\alpha}.$$
(47)

Example 31.10 The Lie algebra $\mathfrak{g} = \mathfrak{su}(2)$ has complexification $\mathfrak{sl}(2, \mathbb{C})$, consisting of all complex 2×2 matrices with trace zero. Let H, X, Y be the standard basis of $\mathfrak{sl}(2, \mathbb{C})$; i.e.

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Now $\mathfrak{t} = i\mathbb{R}H$ is a maximal torus in $\mathfrak{su}(2)$. We recall that [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H. Thus, if we define $\alpha \in \mathfrak{t}_{\mathbb{C}}^*$ by $\alpha(H) = 2$, then $R = R(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t})$ equals $\{\alpha, -\alpha\}$. Moreover, $\mathfrak{g}_{\mathbb{C}\alpha} = \mathbb{C}X$ and $\mathfrak{g}_{\mathbb{C}(-\alpha)} = \mathbb{C}Y$.

We recall that, by definition, the center $\mathfrak{z} = \mathfrak{z}_{\mathfrak{g}}$ of \mathfrak{g} is the ideal ker ad; i.e., it is the space of $X \in \mathfrak{g}$ that commute with all $Y \in \mathfrak{g}$.

Lemma 31.11 The center of \mathfrak{g} is contained in \mathfrak{t} and equals the intersection of the root hyperplanes:

$$\mathfrak{z}_{\mathfrak{g}} = \bigcap_{\alpha \in R} \ker \alpha.$$

In particular, if $\mathfrak{z}_{\mathfrak{g}} = 0$, then R spans the real linear space $i\mathfrak{t}^*$.

Proof: The center of \mathfrak{g} centralizes \mathfrak{t} in particular, hence is contained in \mathfrak{t} , by Lemma 31.6. Let $H \in \mathfrak{t}$ and assume that H centralizes \mathfrak{g} ; then H centralizes $\mathfrak{g}_{\mathbb{C}}$, hence every root space of $\mathfrak{g}_{\mathbb{C}}$. This implies that $\alpha(H) = 0$ for all $\alpha \in R$. Conversely, if $H \in \mathfrak{t}$ is in the intersection of all the root hyperplanes, then H centralizes $\mathfrak{t}_{\mathbb{C}}$ and every root space $\mathfrak{g}_{\mathbb{C}\alpha}$. By the root space decomposition it then follows that $H \in \mathfrak{z}$. This establishes the characterization of the center.

If $\mathfrak{z} = 0$, then the root hyperplanes ker α ($\alpha \in R$) have a zero intersection in \mathfrak{t} . This implies that the set $R \subset i\mathfrak{t}^*$ spans the real linear space $i\mathfrak{t}^*$.

Lemma 31.12 Let (π, V) be a finite dimensional representation of $\mathfrak{g}_{\mathbb{C}}$. Then for all $\lambda \in \Lambda(\pi)$ and all $\alpha \in R \cup \{0\}$ we have:

$$\pi(\mathfrak{g}_{\mathbb{C}\alpha})V_{\lambda}\subset V_{\lambda+\alpha}.$$

In particular, if $\lambda + \alpha \notin \Lambda(\pi)$, then $\pi(\mathfrak{g}_{\mathbb{C}\alpha})$ anihilates V_{λ} .

Proof: Let $X \in \mathfrak{g}_{\mathbb{C}\alpha}$ and $v \in V_{\lambda}$. Then, for $H \in \mathfrak{t}$,

$$\pi(H)\pi(X)v = \pi(X)\pi(H)v + [\pi(H), \pi(X)]v = \lambda(H)\pi(X)v + \pi([H, X])v = [\lambda(H) + \alpha(H)]\pi(X)v.$$

Hence $\pi(X)v \in V_{\lambda+\alpha}$. If $\lambda+\alpha$ is not a weight of π , then $V_{\lambda+\alpha} = 0$ and it follows that $\pi(X)v = 0$. \Box

Corollary 31.13 If $\alpha, \beta \in R \cup \{0\}$, then

$$[\mathfrak{g}_{\mathbb{C}\alpha},\mathfrak{g}_{\mathbb{C}\beta}]\subset\mathfrak{g}_{\mathbb{C}(\alpha+\beta)}.$$

In particular, if $\alpha + \beta \notin R \cup \{0\}$, then $\mathfrak{g}_{\mathbb{C}\alpha}$ and $\mathfrak{g}_{\mathbb{C}\beta}$ commute.

Proof: This follows from the previous lemma applied to the adjoint representation. \Box

We shall write $\mathbb{Z}R$ for the \mathbb{Z} -linear span of R, i.e., the \mathbb{Z} -module of elements of the form $\sum_{\alpha \in R} n_{\alpha} \alpha$, with $n_{\alpha} \in \mathbb{Z}$.

In the following corollary we do not assume that π comes from a representation of G.

Corollary 31.14 Let (π, V) be a finite dimensional representation of $\mathfrak{g}_{\mathbb{C}}$. Then

$$W := \bigoplus_{\lambda \in \Lambda(\pi)} V_{\lambda} \tag{48}$$

is a non-trivial $\mathfrak{g}_{\mathbb{C}}$ -submodule. If π is irreducible, then W = V. Moreover, if $\lambda, \mu \in \Lambda(\pi)$, then $\lambda - \mu \in \mathbb{Z}R$.

Proof: By Lemma 31.4 the set $\Lambda(\pi)$ is non-empty and finite, and therefore W is a non-trivial subspace of V. From Lemma 31.12 we see that W is $\mathfrak{g}_{\mathbb{C}}$ -invariant. If π is irreducible, then W = V. To establish the last assertion we define an equivalence relation on $\Lambda(\pi)$ by $\lambda \sim \mu \iff \lambda - \mu \in \mathbb{Z}R$. If S is a class for \sim , then $V_S = \bigoplus_{\lambda \in S} V_\lambda$ is a non-trivial $\mathfrak{g}_{\mathbb{C}}$ -invariant subspace of V, by Lemma 31.12. Hence $V_S = V$ and it follows that $S = \Lambda(\pi)$.

Remark 31.15 If \mathfrak{g} has trivial center, then the above result actually holds for every finite dimensional *V*-module. To see that a condition like this is necessary, consider $\mathfrak{g} = \mathbb{R}$, the Lie algebra of the circle. Define a representation of \mathfrak{g} in $V = \mathbb{C}^2$ by

$$\pi(x) = \left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right).$$

Then $\Lambda(\pi) = \{0\}$, but $V_0 = \mathbb{C} \times \{0\}$ is not all of V.

Note that this does not contradict the conclusion of Lemma 31.7, since π is not associated with a continuous representation of the circle group in \mathbb{C}^2 .

Lemma 31.16 Let t be a maximal torus in \mathfrak{g} , and R the associated collection of roots. If $\alpha \in R$ then $-\alpha \in R$.

Proof: Let τ be the conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to the real form \mathfrak{g} . That is: $\tau(X + iY) = X - iY$ for all $X, Y \in \mathfrak{g}$. One readily checks that τ is an automorphism of $\mathfrak{g}_{\mathbb{C}}$, considered as a real Lie algebra (by forgetting the complex linear structure). Let $\alpha \in R$, and let $X \in \mathfrak{g}_{\mathbb{C}\alpha}$. Then for every $H \in \mathfrak{t}$,

$$[H, \tau(X)] = \tau[H, X] = \tau(\alpha(H)X) = \alpha(H)\tau(X) = -\alpha(H)\tau(X).$$

For the latter equation we used that α has imaginary values on t. It follows that $-\alpha \in R$ and that τ maps $\mathfrak{g}_{\mathbb{C}\alpha}$ into $\mathfrak{g}_{\mathbb{C}-\alpha}$ (in fact is a bijection between these root spaces; why?).

We recall that we identify $i\mathfrak{t}^*$ with the real linear subspace of $\mathfrak{t}^*_{\mathbb{C}}$ consisting of λ such that $\lambda|\mathfrak{t}$ has values in $i\mathbb{R}$; the latter condition is equivalent to saying that $\lambda|_{i\mathfrak{t}}$ is real valued. One readily verifies that the restriction map $\lambda \mapsto \lambda|_{i\mathfrak{t}}$ defines a real linear isomorphism from $i\mathfrak{t}^*$ onto the real linear dual $(i\mathfrak{t})^*$. In the following we shall use this isomorphism to identify $i\mathfrak{t}^*$ with $(i\mathfrak{t})^*$. Now R is a finite subset of $(i\mathfrak{t})^* \setminus \{0\}$. Hence the complement of the hyperplanes ker $\alpha \subset i\mathfrak{t}$, for $\alpha \in R$ is a finite union of connected components, which are all convex. These components are called the *Weyl chambers* associated with R. Let C be a fixed chamber. By definition every root is either positive or negative on C. We define the system of positive roots $R^+ := R^+(C)$ associated with C by

$$R^+ = \{ \alpha \in R \mid \alpha > 0 \quad \text{on} \quad \mathcal{C} \}.$$

By what we said above, for every $\alpha \in R$, we have that either α or $-\alpha$ belongs to R^+ , but not both. It follows that

$$R = R^+ \cup (-R^+) \quad \text{(disjoint union)}. \tag{49}$$

We write $\mathbb{N}R^+$ for the subset of $\mathbb{Z}R$ consisting of the elements that can be written as a sum of the form $\sum_{\alpha \in R^+} n_\alpha \alpha$, with $n_\alpha \in \mathbb{N}$.

Lemma 31.17 $\mathbb{N}R^+ \cap (-\mathbb{N}R^+) = 0.$

Proof: Let $\mu \in \mathbb{N}R^+$. Then $\mu \ge 0$ on \mathcal{C} , the chamber corresponding to R^+ . If also $-\mu \in \mathbb{N}R^+$, then $\mu \le 0$ on \mathcal{C} as well. Hence $\mu = 0$ on \mathcal{C} . Since \mathcal{C} is a non-empty open subset of $i\mathfrak{t}^*$, this implies that $\mu = 0$.

Lemma 31.18 *The spaces*

$$\mathfrak{g}^+_\mathbb{C}:=\sum_{lpha\in R^+}\mathfrak{g}_{\mathbb{C}lpha},\qquad \mathfrak{g}^-_\mathbb{C}:=\sum_{eta\in -R^+}\mathfrak{g}_{\mathbb{C}eta}$$

are $\operatorname{ad}(\mathfrak{t})$ -stable subalgebras of $\mathfrak{g}_{\mathbb{C}}$. Moreover,

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{g}_{\mathbb{C}}^+ \oplus \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{g}_{\mathbb{C}}^-.$$

Proof: Let $\alpha, \beta \in R^+$ and assume that $[\mathfrak{g}_{\mathbb{C}\alpha}, \mathfrak{g}_{\mathbb{C}\beta}] \neq 0$. Then $\alpha + \beta \in R \cup \{0\}$, and $\alpha + \beta > 0$ on \mathcal{C} . This implies that $\alpha + \beta \in R^+$, hence $\mathfrak{g}_{\mathbb{C}(\alpha+\beta)} \subset \mathfrak{g}_{\mathbb{C}}^+$. It follows that $\mathfrak{g}_{\mathbb{C}}^+$ is a subalgebra. For similar reasons $\mathfrak{g}_{\mathbb{C}}^-$ is a subalgebra. Both subalgebras are $\mathrm{ad}(\mathfrak{t})$ stable, since root spaces are. The direct sum decomposition is an immediate consequence of (47) and (49).

We are now able to define the notion of a highest weight vector for a finite dimensional $\mathfrak{g}_{\mathbb{C}}$ module, relative to the system of positive roots R^+ . This is the appropriate generalization of the
notion of a primitive vector for $\mathfrak{sl}(2,\mathbb{C})$.

Definition 31.19 Let V be a (not necessarily finite dimensional) $\mathfrak{g}_{\mathbb{C}}$ -module. Then a *highest* weight vector of V is by definition a non-trivial vector $v \in V$ such that

(a)
$$\mathfrak{t}_{\mathbb{C}}v \subset \mathbb{C}v$$
;

(b) Xv = 0 for all $X \in \mathfrak{g}^+_{\mathbb{C}}$.

Lemma 31.20 Any finite dimensional $\mathfrak{g}_{\mathbb{C}}$ -module has a highest weight vector.

Proof: We define the $\mathfrak{g}_{\mathbb{C}}$ -submodule W of V as the sum of the $\mathfrak{t}_{\mathbb{C}}$ -weight spaces, see Corollary 31.14.

Let C be the positive chamber determining R^+ . Fix $X \in C$. Then $\alpha(X) > 0$ for all $\alpha \in R^+$. We may select $\lambda_0 \in \Lambda(\pi)$ such that the real part of $\lambda(X)$ is maximal. Then $\lambda_0 + \alpha \notin \Lambda(\pi)$ for all $\alpha \in R^+$. By Lemma 31.12 this implies that $\pi_*(\mathfrak{g}_{\mathbb{C}\alpha})V_\lambda \subset V_{\lambda_0+\alpha} = 0$ for all $\alpha \in R^+$. Hence $\mathfrak{g}_{\mathbb{C}}^+$ annihilates V_{λ_0} . Thus, every non-zero vector of V_{λ_0} is a highest weight vector.

Definition 31.21 Let V be a (not necessarily finite dimensional) $\mathfrak{g}_{\mathbb{C}}$ -module. A vector $v \in V$ is said to be *cyclic* if it generates the $\mathfrak{g}_{\mathbb{C}}$ -module V, i.e., V is the smallest $\mathfrak{g}_{\mathbb{C}}$ -submodule containing v.

Obviously, if V is irreducible, then every non-trivial vector is cyclic.

Proposition 31.22 Let V be a $\mathfrak{g}_{\mathbb{C}}$ -module and $v \in V$ a cyclic highest weight vector.

- (a) There exists a (unique) $\lambda \in \Lambda(V)$ such that $v \in V_{\lambda}$. Moreover, $V_{\lambda} = \mathbb{C}v$.
- (b) The space V is equal to the span of the vectors v and $\pi(X_1) \cdots \pi(X_n)v$, with $n \in \mathbb{N}$ and $X_j \in \mathfrak{g}_{\mathbb{C}}^-$, for $1 \leq j \leq n$.
- (c) Every weight $\mu \in \Lambda(V)$ is of the form $\lambda \nu$, with $\nu \in \mathbb{N}R^+$.
- (d) *The module* V has a unique maximal proper submodule W.
- (e) *The module V has a unique non-trivial irreducible quotient.*

Proof: The first assertion of (a) follows from the definition of highest weight vector. We define an increasing sequence of linear subspaces of V inductively by $V_0 = \mathbb{C}v$ and $V_{n+1} = V_n + \pi(\mathfrak{g}_{\mathbb{C}}^-)V_n$. Let W be the union of the spaces V_n . We claim that W is an invariant subspace of V. To establish the claim, we note that by definition we have $\pi(\mathfrak{g}_{\mathbb{C}}^-)V_n \subset V_{n+1}$; hence W is $\mathfrak{g}_{\mathbb{C}}^$ invariant. The space V_0 is t- and $\mathfrak{g}_{\mathbb{C}}^+$ -invariant; by induction we will show that the same holds for V_n . Assume that V_n is t- and $\mathfrak{g}_{\mathbb{C}}^+$ -invariant, and let $v \in V_n$, $Y \in \mathfrak{g}_{\mathbb{C}}^-$. Then for H in t we have HYv = YHv + [H, Y]v. Now $v \in V_n$ and by the inductive hypothesis it follows that $Hv \in V_n$. Hence $YHv \in V_{n+1}$. Also $[H, Y] \in \mathfrak{g}_{\mathbb{C}}^-$ and it follows that $[H, Y]v \in V_{n+1}$. We conclude that $HYv \in V_{n+1}$. It follows from this that

$$\pi(\mathfrak{t})\pi(\mathfrak{g}_{\mathbb{C}}^{-})V_n \subset V_{n+1}.$$

Hence V_{n+1} is t-invariant.

Let now $v \in V_n$, $Y \in \mathfrak{g}_{\mathbb{C}}^-$ and $X \in \mathfrak{g}_{\mathbb{C}}^+$. Then XYv = YXv + [X, Y]v. Now $Xv \in V_n$ by the induction hypothesis and we see that $YXv \in V_{n+1}$. Also, $[X, Y] \in \mathfrak{g}_{\mathbb{C}}$. By the induction hypothesis it follows that $\mathfrak{g}_{\mathbb{C}}V_n \subset V_{n+1}$. Hence $[X, Y]v \in V_{n+1}$. We conclude that $XYv \in V_{n+1}$. It follows from this that

$$\pi(\mathfrak{g}_{\mathbb{C}}^+)\pi(\mathfrak{g}_{\mathbb{C}}^-)V_n \subset V_{n+1}.$$

Hence V_{n+1} is $\mathfrak{g}_{\mathbb{C}}^+$ -invariant. This establishes the claim that W is a $\mathfrak{g}_{\mathbb{C}}$ -invariant subspace of V.

Since W contains the cyclic vector v, it follows that W = V. In view of the definition of the spaces V_k assertion (b) follows.

Let $w = \pi(Y_1) \cdots \pi(Y_n)v$, with $n \in \mathbb{N}$, $Y_j \in \mathfrak{g}_{\mathbb{C}(-\alpha_j)}$, $\alpha_j \in R^+$. Then w belongs to the weight space $V_{\lambda-\nu}$, where $\nu = \alpha_1 + \cdots + \alpha_n \in \mathbb{N}R^+$. Since v and such elements w span W = V, we conclude that every weight μ in $\Lambda(V)$ is of the form $\lambda - \nu$ with $\nu \in \mathbb{N}R^+$. This establishes (c).

It follows from the above description that V equals the vector sum of $\mathbb{C}v$ and V_- , where V_- denotes the sum of the weight spaces V_{μ} with $\mu \in \Lambda(V) \setminus \{\lambda\}$. This implies that $V_{\lambda} = \mathbb{C}v$, whence the second assertion of (a).

We now turn to assertion (d). Let U be a submodule of V. In particular, U is a $\mathfrak{t}_{\mathbb{C}}$ -invariant subspace. Let $\Lambda(U)$ be the collection of $\mu \in \Lambda(V)$ for which $U_{\mu} := U \cap V_{\mu} \neq 0$. In view of Lemma 31.2, U is the direct sum of the spaces U_{μ} , for $\mu \in \Lambda(U)$. If U is a proper submodule, then $U_{\lambda} = 0$, hence $\Lambda(U) \subset \Lambda(V) \setminus {\lambda}$ and we see that $U \subset V_{-}$. It follows that the vector sum W of all proper submodules satisfies $W \subset V_{-}$ hence is still proper. Therefore, V has W as unique maximal proper submodule.

The final assertion (e) is equivalent to (d). To see this, let $p: V \to V'$ be a surjective $\mathfrak{g}_{\mathbb{C}}$ -module homomorphism onto a non-trivial $\mathfrak{g}_{\mathbb{C}}$ -module. Then $U \mapsto p^{-1}(U)$ defines a bijection from the collection of proper submodules of V' onto the collection of proper submodules of V containing ker p. It follows that V' is irreducible if and only if ker p is a proper maximal submodule of V. The equivalence of (d) and (e) now readily follows.

Corollary 31.23 Let V be a finite dimensional irreducible $\mathfrak{g}_{\mathbb{C}}$ -module. Then V has a highest weight vector v, which is unique up to a scalar factor. Let λ be the weight of v. Then all assertions of Proposition 31.22 are valid.

Proof: It follows from Lemma 31.20 that V has a highest weight vector. Let v be any highest weight vector in V and let λ be its weight. By irreducibility of V, the vector v is cyclic. Hence all assertions of Proposition 31.22 are valid. Note that $W = \{0\}$ is the unique maximal proper submodule.

Let w be a second highest weight vector and let μ be its weight. Then all assertions of Proposition 31.22 are valid. Hence $\mu \in \lambda - \mathbb{N}R^+$ and $\lambda \in \mu - \mathbb{N}R^+$, from which $\mu - \lambda \in \mathbb{N}R^+ \cap (-\mathbb{N}R^+) = \{0\}$. It follows that $\mu = \lambda$; hence $w \in V_{\lambda} = \mathbb{C}v$.

Remark 31.24 For obvious reasons the above weight λ is called the *highest weight* of the irreducible $\mathfrak{g}_{\mathbb{C}}$ -module V, relative to the choice R^+ of positive roots.

The following theorem is the first step towards the classification of all finite dimensional irreducible representations of $\mathfrak{g}_{\mathbb{C}}$.

Theorem 31.25 Let V and V' be irreducible $\mathfrak{g}_{\mathbb{C}}$ -modules. If V and V' have the same highest weight (relative to R^+), then V and V' are isomorphic (i.e., the associated $\mathfrak{g}_{\mathbb{C}}$ -representations are equivalent).

Proof: We denote the highest weight by λ and fix associated highest weight vectors $v \in V_{\lambda} \setminus \{0\}$ and $v' \in V'_{\lambda} \setminus \{0\}$. We consider the direct sum $\mathfrak{g}_{\mathbb{C}}$ -module $V \oplus V'$ and denote by W the smallest $\mathfrak{g}_{\mathbb{C}}$ -submodule containing the vector w := (v, v'). Then w is a cyclic weight vector of W, of weight λ .

Let $p: V \oplus V' \to V$ be the projection onto the first component, and $p': V \oplus V' \to V'$ the projection onto the second. Then p and p' are $\mathfrak{g}_{\mathbb{C}}$ -module homomorphisms. Since p(w) = v, it follows that $p|_W$ is surjective onto V. Similarly, $p'|_W$ is surjective onto V'. It follows that V, V' are both irreducible quotients of W, hence isomorphic by Proposition 31.22 (e).

Remark 31.26 In the above proof it is easy to deduce that in fact W is irreducible, and $p|_W$ and $p'|_W$ are isomorphisms from W onto V and V', respectively.