and (c) follows.
Let W be the linear span of the vectors v_{k}, for $0 \leq k \leq n$. Then by definition of the vectors $v_{k}, Y v_{k}=v_{k+1}$. Therefore, Y leaves W invariant. By (c), H and X leave W invariant as well. It follows that W is a non-trivial invariant subspace of V, hence $V=W$ by irreducibility. The vectors v_{k}, for $0 \leq k \leq n$, must be linear independent since they are eigenvectors for H for distinct eigenvalues; hence (a).

Finally, we have established the second assertion of (c) for all $k \geq 0$, in particular for $k=$ $n+1$. Now $v_{n+1}=0$, hence $0=(n+1)(\lambda-n) v_{n}$ and since $v_{n} \neq 0$ it follows that $\lambda=n$. This establishes (b).

It follows from (a) and (c) that the only primitive vectors in V are non-zero multiples of v_{0}.

Corollary 30.8 Let V and V^{\prime} be two irreducible finite dimensional $\mathfrak{s l}(2, \mathbb{C})$-modules. Then $V \simeq V^{\prime}$ if and only if $\operatorname{dim} V=\operatorname{dim} V^{\prime}$. Moreover, if v and v^{\prime} are primitive vectors of V and V^{\prime}, respectively, then there is a unique isomorphism $T: V \rightarrow V^{\prime}$ mapping v onto v^{\prime}.

Proof: Clearly if $V \simeq V^{\prime}$ then V and V^{\prime} have equal dimension. Conversely, assume that $\operatorname{dim} V=\operatorname{dim} V^{\prime}=n$ and that v and v^{\prime} are primitive vectors of V and V^{\prime} respectively. Then by the above lemma, the vectors $v_{k}=Y^{k} v, 0 \leq k \leq n$ form a basis of V. Similarly the vectors $v_{k}^{\prime}=Y^{k} v^{\prime}, 0 \leq k \leq n$ form a basis of V^{\prime}. Any intertwining operator $T: V \rightarrow V^{\prime}$ that maps v onto v^{\prime} must map the basis v_{k} onto the basis v_{k}^{\prime}, hence is uniquely determined. Let $T: V \rightarrow V^{\prime}$ be the linear map determined by $T v_{k}=v_{k}^{\prime}$, for $0 \leq k \leq n$. Then T is a linear bijection. Moreover, by the above lemma we see that T intertwines the actions of H, X, Y on V and V^{\prime}. It follows that T is equivariant, hence $V \simeq V^{\prime}$.

Completion of the proof of Theorem 30.3: The space $P_{n}\left(\mathbb{C}^{2}\right)$ is an irreducible $\mathfrak{s l}(2, \mathbb{C})$ module, of dimension $n+1$. Hence if V is an irreducible $\mathfrak{s l}(2, \mathbb{C})$-module of dimension $m \geq 1$, then $V \simeq P_{n}\left(\mathbb{C}^{2}\right)$, with $n=m-1$.

31 Roots and weights

Let \mathfrak{t} be a finite dimensional commutative real Lie algebra, and let (ρ, V) be a representation of \mathfrak{t} in a non-trivial complex linear space V (which we do not assume to be finite dimensional).

Let $\mathfrak{t}_{\mathbb{C}}^{*}$ denote the space of complex linear functionals on $\mathfrak{t}_{\mathbb{C}}$. Note that \mathfrak{t}^{*}, the space of real linear functionals on \mathfrak{t} may be identified with the space of $\lambda \in \mathfrak{t}_{\mathbb{C}}^{*}$ that are real valued on \mathfrak{t}. Thus, \mathfrak{t}^{*} is viewed as a real linear subspace of $\mathfrak{t}_{\mathbb{C}}^{*}$. Accordingly $i \mathfrak{t}^{*}$ equals the space of $\lambda \in \mathfrak{t}_{\mathbb{C}}^{*}$ such that $\left.\lambda\right|_{\mathrm{t}}$ has values in $i \mathbb{R}$.

If $\lambda \in \mathfrak{t}_{\mathbb{C}}^{*}$, then we define the following subspace of V :

$$
\begin{equation*}
V_{\lambda}=\bigcap_{H \in \mathfrak{t}} \operatorname{ker}(\rho(H)-\lambda(H) I) . \tag{43}
\end{equation*}
$$

In other words, V_{λ} equals the space of $v \in V$ such that

$$
\rho(H) v=\lambda(H) v \quad \text { for all } \quad H \in \mathfrak{t} .
$$

If $V_{\lambda} \neq 0$, then λ is called a weight of \mathfrak{t} in V, and V_{λ} is called the associated weight space. The set of weights of \mathfrak{t} in V is denoted by $\Lambda(\rho)$.

Lemma 31.1 Let $T \in \operatorname{End}(V)$ be a ρ-intertwining linear endomorphism, then T leaves V_{λ} invariant, for every $\lambda \in \Lambda(\rho)$.

Proof: Let $\lambda \in \Lambda(\rho)$. The endomorphism T commutes with $\rho(H)$ hence leaves the eigenspace $\operatorname{ker}(\rho(H)-\lambda(H))$ invariant, for every $H \in \mathfrak{t}$. Hence T leaves the intersection V_{λ} of all these spaces invariant.

Lemma 31.2 Let

$$
\begin{equation*}
V^{\prime}:=\sum_{\lambda \in \Lambda(\rho)} V_{\lambda} . \tag{44}
\end{equation*}
$$

Then for every \mathfrak{t}-invariant subspace $W \subset V^{\prime}$,

$$
\begin{equation*}
W=\bigoplus_{\lambda \in \Lambda(\rho)}\left(W \cap V_{\lambda}\right) . \tag{45}
\end{equation*}
$$

In particular, the sum (44) is direct.
Proof: We will first show that the sum (44) is direct. Let $\lambda_{1}, \ldots, \lambda_{n}$ be a collection of distinct weights in $\Lambda(\rho)$ and assume that $v_{j} \in V_{\lambda_{j}}$ are given such that $\sum_{j=1}^{n} v_{j}=0$. Then it suffices to show that $v_{j}=0$ for all $1 \leq j \leq n$. Since the weights are distinct, the sets $K_{i j}:=\operatorname{ker}\left(\lambda_{i}-\lambda_{j}\right)$, for $i \neq j$ are hyperplanes in $\mathfrak{t}_{\mathbb{C}}$. The union $\cup_{i \neq j} K_{i j}$ is strictly contained in $\mathfrak{t}_{\mathbb{C}}$, hence we may select $H \in \mathfrak{t}_{\mathbb{C}}$ in the complement of this union. It follows that $s_{j}:=\lambda_{j}(H)$, for $1 \leq j \leq n$, is a sequence of distinct complex numbers. Applying H repeatedly to the sum $v_{1}+\cdots+v_{n}$ we find that

$$
\sum_{j=1}^{n} s_{j}^{l} v_{j}=0, \quad(l \geq 0)
$$

Let $T: \mathbb{C}^{n} \rightarrow V$ be the unique linear map sending the j-th standard basis vector e_{j} to v_{j}. Then it follows from the above that

$$
T\left(\sum_{j=1}^{n} s_{j}^{l} e_{j}\right)=0, \quad(l \geq 0) .
$$

Let A be the linear map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which sends e_{k} to $\sum_{j=1}^{n} s_{j}^{k-1} e_{j}$ for $1 \leq k \leq n$. Then it follows that $T A=0$. By the Vandermone determinant formula, $\operatorname{det} A=\prod_{i<j}\left(s_{j}-s_{i}\right)=\neq 0$, hence A is invertible. Therefore, $T=0$ and we conclude that indeed $v_{j}=0$ for all $1 \leq j \leq n$.

To complete the proof we note that W is a \mathfrak{t}-module, hence so is the quotient space V^{\prime} / W. Let $w \in W$. Then $w=v_{1}+\cdots+v_{n}$ for certain $v_{j} \in V_{\lambda_{j}}$ with $\lambda_{1}, \ldots, \lambda_{n}$ a collection of distinct weights in $\Lambda(\rho)$. Each canonical image \bar{v}_{j} in V^{\prime} / W is a weight vector of weights λ_{j} in V^{\prime} / W. Furthermore, $\sum_{j=1}^{n} \bar{v}_{j}=\bar{w}=0$. By the first result, applied to V^{\prime} / W in place of V, it follows that $\bar{v}_{j}=0$ hence $v_{j} \in W$ for all $1 \leq j \leq n$.

It follows from the above that $W=\sum_{\lambda \in \Lambda(\rho)} W \cap V_{\lambda}$. By the first result, applied to W in place of V, it follows that the sum is direct.

The action of \mathfrak{t} on V (or the representation ρ) is said to be semisimple if for every $X \in \mathfrak{t}$ the action of $\rho(X)$ is diagonalizable. The latter means that V decomposes as a direct sum of eigen spaces for $\rho(X)$.

Lemma 31.3 If ρ is semisimple, then

$$
\begin{equation*}
V=\bigoplus_{\lambda \in \Lambda(\rho)} V_{\lambda} . \tag{46}
\end{equation*}
$$

Proof: We will prove the lemma by induction on the dimension of \mathfrak{t}. First assume $\operatorname{dim} \mathfrak{t}<1$. Fix a non-zero element $X \in \mathfrak{t}$. Let S denote the set of eigenvalues of $\rho(X)$. Then by the assumed semisimplicity, V is the direct sum of the eigen spaces $V_{s}=\operatorname{ker}(\rho(X)-s I)$, for $s \in S$. For $s \in S$ we define $\lambda_{s} \in \mathfrak{t}_{\mathbb{C}}^{*}$ by $\lambda_{s}(X)=s$. Then for each $s \in \Sigma$ we have $V_{\lambda_{s}}=V_{s}$ and we see that $\Lambda(\rho)=\left\{\lambda_{s} \mid s \in S\right\}$ and (46) follows.

Let now $d>1$ and assume the result has been established for \mathfrak{t} of dimension smaller than d. We will then prove the result for \mathfrak{t} of dimension d. We fix an element $X \in \mathfrak{t}$ and a complementary subspace \mathfrak{t}_{0} such that $\mathfrak{t}=\mathfrak{t}_{0} \oplus \mathbb{R} X$. By the induction hypothesis, the space V decomposes as a direct sum of weight spaces V_{μ} for $\rho_{0}:=\left.\rho\right|_{\mathfrak{t}_{0}}$, with $\mu \in \Lambda\left(\rho_{0}\right) \subset \mathfrak{t}_{0 \mathbb{C}}^{*}$. Furthermore, V decomposes as the direct sum of the weight spaces V_{s}, for $s \in S$, defined as in first part of the proof. By commutativity of \mathfrak{t}, the operator $\rho(X) \in \operatorname{End}(V)$ is intertwining. By Lemma 31.1 each weight space V_{μ} is $\rho(X)$-invariant hence by Lemma 31.2 it decomposes as the direct sum of the spaces $V_{\mu} \cap V_{s}$, for $s \in S$. It follows that

$$
V=\bigoplus_{\mu \in \Lambda\left(\rho_{0}\right), s \in S} V_{\mu} \cap V_{s} .
$$

Let $\lambda_{\mu, s} \in \mathfrak{t}_{\mathbb{C}}^{*}$ be defined by $\left.\lambda_{\mu, s}\right|_{t_{0}}=\mu$ and $\lambda_{\mu, s}(X)=s$, then

$$
V_{\mu, s}=V_{\mu} \cap V_{s},
$$

and we see that $\Lambda(V, \mathfrak{t})$ equals the set of $\lambda_{\mu, s} \in \mathfrak{t}_{\mathbb{C}}^{*},\left(\mu \in \Lambda\left(\rho_{0}\right), s \in S\right)$, for which the above intersection is non-zero. Furthermore, V is the direct sum of the corresponding weight spaces.

Lemma 31.4 Let (ρ, V) be finite dimensional representation of \mathfrak{t}. Then $\Lambda(\rho)$ is a finite nonempty subset of $\mathfrak{t}_{\mathbb{C}}^{*}$.

Proof: In view of Lemma 31.2 it follows that $\Lambda(\rho)$ has at most $\operatorname{dim} V$ elements.
Thus it remains to be shown that $\Lambda(\rho)$ is non-empty. For this we proceed by induction on the dimension of t.

First, assume $\operatorname{dim} \mathfrak{t}=1$. Then $\mathfrak{t}=\mathbb{R} X$ for $X \in \mathfrak{t} \backslash\{0\}$. The map $\rho(X)$ has at least one eigenvalue s. Let $\lambda \in \mathfrak{t}_{\mathbb{C}}^{*}$ be defined by $\lambda(X)=s$. Then $V_{\lambda} \neq 0$ hence $\lambda \in \Lambda(\rho)$.

Next, assume that $\operatorname{dim} \mathfrak{t}>1$. Then we fix a decomposition $\mathfrak{t}=\mathfrak{t}_{0} \oplus \mathbb{R} X$ with \mathfrak{t}_{0} is a subspace of codimension 1 and $X \in \mathfrak{t} \backslash\{0\}$. By the induction hypothesis, $\rho_{0}:=\left.\rho\right|_{\mathfrak{t}_{0}}$ has a weight $\lambda_{0} \in \mathfrak{t}_{0 \mathbb{C}}^{*}$. The associated weight space $V_{\lambda_{0}}$ is $\rho(X)$-invariant and finite dimensional, hence contains an eigenvector $v \neq 0$. It follows that $\rho(\mathfrak{t}) v \subset \mathbb{C} v$, from which we infer that v is contained in a weight space for ρ.

Assumption: In the rest of this section we assume that G is a compact Lie group, with Lie algebra \mathfrak{g}.

Definition 31.5 A torus in \mathfrak{g} is by definition a commutative subalgebra of \mathfrak{g}. A torus $\mathfrak{t} \subset \mathfrak{g}$ is called maximal if there exists no torus of \mathfrak{g} that properly contains \mathfrak{t}.

From now on we assume that \mathfrak{t} is a fixed maximal torus in \mathfrak{g}.
Lemma 31.6 The centralizer of \mathfrak{t} in \mathfrak{g} equals \mathfrak{t}.
Proof: Since \mathfrak{t} is abelian, it is contained in its centralizer. Conversely, assume that $X \in \mathfrak{g}$ centralizes \mathfrak{t}. Then $\mathfrak{t}^{\prime}=\mathfrak{t}+\mathbb{R} X$ is a torus which contains \mathfrak{t}. Hence $\mathfrak{t}^{\prime}=\mathfrak{t}$ by maximality, and we see that $X \in \mathfrak{t}$.

Let (π, V) be a finite dimensional representation of $\mathfrak{g}_{\mathbb{C}}$, the complexification of the Lie algebra \mathfrak{g}; i.e., π is a complex Lie algebra homomorphism from $\mathfrak{g}_{\mathbb{C}} \operatorname{into} \operatorname{End}(V)$ (the latter is the space of complex linear endomorphisms equipped with the commutator Lie bracket). Alternatively we will also say that V is a finite dimensional $\mathfrak{g}_{\mathbb{C}}$-module. We denote by $\Lambda(\pi)=\Lambda(\pi, \mathfrak{t})$ the set of weights of the representation $\rho=\left.\pi\right|_{\mathfrak{t}}$ of \mathfrak{t} in V. If $\lambda \in \mathfrak{t}_{\mathbb{C}}^{*}$, then as before, V_{λ} is defined as in (43), with $\left.\pi\right|_{\mathrm{t}}$ in place of ρ. Thus

$$
V_{\lambda}=\{v \in V \mid \pi(H) v=\lambda(H) v \quad \text { for all } \quad H \in \mathfrak{t}\} .
$$

From Lemma 31.4 we see that $\Lambda(\pi)$ is a finite non-empty subset of $\mathfrak{t}_{\mathbb{C}}^{*}$.
Let (π, V) be a finite dimensional continuous representation of G. Then the map $\pi: G \rightarrow$ $\mathrm{GL}(V)$ is a homomorphism of Lie groups. Let $\pi_{*}=T_{e} \pi$. Then $\pi_{*}: \mathfrak{g} \rightarrow \operatorname{End}(V)$ is a Lie algebra homomorphism, or, differently said, a representation of \mathfrak{g} in V. The homomorphism π_{*} has a unique extension to a complex Lie algebra homomorphism from $\mathfrak{g}_{\mathbb{C}}$ into $\operatorname{End}(V)$ (we recall that V is a complex linear space by assumption). This extension is called the induced infinitesimal representation of $\mathfrak{g}_{\mathbb{C}}$ in V.

Lemma 31.7 Let π be a finite dimensional continuous representation of G. Then $\Lambda\left(\pi_{*}\right)$ is a finite subset of $i t^{*}$. Moreover,

$$
V=\bigoplus_{\lambda \in \Lambda\left(\pi_{*}\right)} V_{\lambda} .
$$

If V is equipped with a G-invariant inner product, then for all $\lambda, \mu \in \Lambda\left(\pi_{*}\right)$ with $\lambda \neq \mu$ we have $V_{\lambda} \perp V_{\mu}$.

Proof: There exists a G-invariant inner product on V; assume such an inner product $\langle\cdot, \cdot\rangle$ to be fixed. Then π maps G into $\mathrm{U}(V)$, the associated group of unitary transformations. It follows that π_{*} maps \mathfrak{g} into the Lie algebra $\mathfrak{u}(V)$ of $\mathrm{U}(V)$, which is the subalgebra of anti-Hermitian endomorphisms in $\operatorname{End}(V)$. It follows that for $X \in \mathfrak{g}$ the endomorphism $\pi_{*}(X)$ is anti-Hermitian, hence diagonalizable with imaginary eigenvalues. The direct sum decomposition now follows from Lemma 31.3. It remains to establish orthogonality of the summands. Let λ, μ be distinct weights in $\Lambda\left(\pi_{*}\right)$. Then there exists $H \in \mathfrak{t}$ such that $\lambda(H) \neq \mu(H)$. For $v \in V_{\lambda}$ and $w \in V_{\mu}$ we have

$$
\lambda(H)\langle v, w\rangle=\left\langle\pi_{*}(H) v, w\right\rangle=-\left\langle v, \pi_{*}(H) w\right\rangle=-\overline{\mu(H)}\langle v, w\rangle=\mu(H)\langle v, w\rangle .
$$

It follows that $\langle v, w\rangle=0$.
If $A \in \operatorname{End}(\mathfrak{g})$, then we denote by $A_{\mathbb{C}}$ the complex linear extension of A to $\mathfrak{g}_{\mathbb{C}}$. Obviously the map $A \mapsto A_{\mathbb{C}}$ induces a real linear embedding of $\operatorname{End}(\mathfrak{g})$ into $\operatorname{End}\left(\mathfrak{g}_{\mathbb{C}}\right):=\operatorname{End}_{\mathbb{C}}\left(\mathfrak{g}_{\mathbb{C}}\right)$. Accordingly we shall view $\operatorname{End}(\mathfrak{g})$ as a real linear subspace of the complex linear space $\operatorname{End}\left(\mathfrak{g}_{\mathbb{C}}\right)$ from now on. Thus, we may view Ad as a representation of G in the complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g}. The associated infinitesimal representation is the adjoint representation ad of $\mathfrak{g}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$. The associated collection $\Lambda(\mathrm{ad})$ of weights contains the weight 0 . Indeed the associated weight space $\mathfrak{g}_{\mathbb{C} 0}$ equals the centralizer of \mathfrak{t} in $\mathfrak{g}_{\mathbb{C}}$, which in turn equals $\mathfrak{t}_{\mathbb{C}}$, by Lemma 31.6. Hence:

$$
\mathfrak{g}_{\mathbb{C} 0}=\mathfrak{t}_{\mathbb{C}}
$$

Definition 31.8 The weights of ad in $\mathfrak{g}_{\mathbb{C}}$ different from 0 are called the roots of \mathfrak{t} in $\mathfrak{g}_{\mathbb{C}}$; the set of these is denoted by $R=R\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}\right)$. Given $\alpha \in R$, the associated weight space $\mathfrak{g}_{\mathbb{C} \alpha}$ is called a root space.

It follows from the definitions that

$$
\mathfrak{g}_{\mathbb{C} \alpha}=\left\{X \in \mathfrak{g}_{\mathbb{C}} \mid[H, X]=\alpha(H) X \quad \text { for all } \quad H \in \mathfrak{t}\right\} .
$$

From Lemma 31.7 we now obtain the so called root space decomposition of $\mathfrak{g}_{\mathbb{C}}$, relative to the torus \mathfrak{t}.

Corollary 31.9 The collection $R=R\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}\right)$ of roots is a finite subset of $i t^{*}$. Moreover, we have the following direct sum of vector spaces:

$$
\begin{equation*}
\mathfrak{g}_{\mathbb{C}}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\mathbb{C} \alpha} . \tag{47}
\end{equation*}
$$

Example 31.10 The Lie algebra $\mathfrak{g}=\mathfrak{s u}(2)$ has complexification $\mathfrak{s l}(2, \mathbb{C})$, consisting of all complex 2×2 matrices with trace zero. Let H, X, Y be the standard basis of $\mathfrak{s l}(2, \mathbb{C})$; i.e.

$$
H=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Now $\mathfrak{t}=i \mathbb{R} H$ is a maximal torus in $\mathfrak{s u}(2)$. We recall that $[H, X]=2 X,[H, Y]=-2 Y$, $[X, Y]=H$. Thus, if we define $\alpha \in \mathfrak{t}_{\mathbb{C}}^{*}$ by $\alpha(H)=2$, then $R=R\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{t}\right)$ equals $\{\alpha,-\alpha\}$. Moreover, $\mathfrak{g}_{\mathbb{C} \alpha}=\mathbb{C} X$ and $\mathfrak{g}_{\mathbb{C}(-\alpha)}=\mathbb{C} Y$.

We recall that, by definition, the center $\mathfrak{z}=\mathfrak{z}_{\mathfrak{g}}$ of \mathfrak{g} is the ideal ker ad; i.e., it is the space of $X \in \mathfrak{g}$ that commute with all $Y \in \mathfrak{g}$.

Lemma 31.11 The center of \mathfrak{g} is contained in \mathfrak{t} and equals the intersection of the root hyperplanes:

$$
\mathfrak{z}_{\mathfrak{g}}=\bigcap_{\alpha \in R} \operatorname{ker} \alpha
$$

In particular, if $\mathfrak{z}_{\mathfrak{g}}=0$, then R spans the real linear space $i \mathfrak{t}^{*}$.
Proof: The center of \mathfrak{g} centralizes \mathfrak{t} in particular, hence is contained in \mathfrak{t}, by Lemma 31.6. Let $H \in \mathfrak{t}$ and assume that H centralizes \mathfrak{g}; then H centralizes $\mathfrak{g}_{\mathbb{C}}$, hence every root space of $\mathfrak{g}_{\mathbb{C}}$. This implies that $\alpha(H)=0$ for all $\alpha \in R$. Conversely, if $H \in \mathfrak{t}$ is in the intersection of all the root hyperplanes, then H centralizes $\mathfrak{t}_{\mathbb{C}}$ and every root space $\mathfrak{g}_{\mathbb{C} \alpha}$. By the root space decomposition it then follows that $H \in \mathfrak{z}$. This establishes the characterization of the center.

If $\mathfrak{z}=0$, then the root hyperplanes $\operatorname{ker} \alpha(\alpha \in R)$ have a zero intersection in \mathfrak{t}. This implies that the set $R \subset i \mathrm{t}^{*}$ spans the real linear space $i t^{*}$.

Lemma 31.12 Let (π, V) be a finite dimensional representation of $\mathfrak{g}_{\mathbb{C}}$. Then for all $\lambda \in \Lambda(\pi)$ and all $\alpha \in R \cup\{0\}$ we have:

$$
\pi\left(\mathfrak{g}_{\mathbb{C} \alpha}\right) V_{\lambda} \subset V_{\lambda+\alpha}
$$

In particular, if $\lambda+\alpha \notin \Lambda(\pi)$, then $\pi\left(\mathfrak{g}_{\mathbb{C} \alpha}\right)$ anihilates V_{λ}.
Proof: Let $X \in \mathfrak{g}_{\mathbb{C} \alpha}$ and $v \in V_{\lambda}$. Then, for $H \in \mathfrak{t}$,

$$
\begin{aligned}
\pi(H) \pi(X) v & =\pi(X) \pi(H) v+[\pi(H), \pi(X)] v \\
& =\lambda(H) \pi(X) v+\pi([H, X]) v=[\lambda(H)+\alpha(H)] \pi(X) v
\end{aligned}
$$

Hence $\pi(X) v \in V_{\lambda+\alpha}$. If $\lambda+\alpha$ is not a weight of π, then $V_{\lambda+\alpha}=0$ and it follows that $\pi(X) v=0$.

Corollary 31.13 If $\alpha, \beta \in R \cup\{0\}$, then

$$
\left[\mathfrak{g}_{\mathbb{C} \alpha}, \mathfrak{g}_{\mathbb{C} \beta}\right] \subset \mathfrak{g}_{\mathbb{C}(\alpha+\beta)}
$$

In particular, if $\alpha+\beta \notin R \cup\{0\}$, then $\mathfrak{g}_{\mathbb{C} \alpha}$ and $\mathfrak{g}_{\mathbb{C} \beta}$ commute.
Proof: This follows from the previous lemma applied to the adjoint representation.

We shall write $\mathbb{Z} R$ for the \mathbb{Z}-linear span of R, i.e., the \mathbb{Z}-module of elements of the form $\sum_{\alpha \in R} n_{\alpha} \alpha$, with $n_{\alpha} \in \mathbb{Z}$.

In the following corollary we do not assume that π comes from a representation of G.
Corollary 31.14 Let (π, V) be a finite dimensional representation of $\mathfrak{g}_{\mathbb{C}}$. Then

$$
\begin{equation*}
W:=\bigoplus_{\lambda \in \Lambda(\pi)} V_{\lambda} \tag{48}
\end{equation*}
$$

is a non-trivial $\mathfrak{g}_{\mathbb{C}}$-submodule. If π is irreducible, then $W=V$. Moreover, if $\lambda, \mu \in \Lambda(\pi)$, then $\lambda-\mu \in \mathbb{Z} R$.

Proof: By Lemma 31.4 the set $\Lambda(\pi)$ is non-empty and finite, and therefore W is a non-trivial subspace of V. From Lemma 31.12 we see that W is $\mathfrak{g}_{\mathbb{C}}$-invariant. If π is irreducible, then $W=V$. To establish the last assertion we define an equivalence relation on $\Lambda(\pi)$ by $\lambda \sim \mu \Longleftrightarrow$ $\lambda-\mu \in \mathbb{Z} R$. If S is a class for \sim, then $V_{S}=\oplus_{\lambda \in S} V_{\lambda}$ is a non-trivial $\mathfrak{g}_{\mathbb{C}}$-invariant subspace of V, by Lemma 31.12. Hence $V_{S}=V$ and it follows that $S=\Lambda(\pi)$.

Remark 31.15 If \mathfrak{g} has trivial center, then the above result actually holds for every finite dimensional V-module. To see that a condition like this is necessary, consider $\mathfrak{g}=\mathbb{R}$, the Lie algebra of the circle. Define a representation of \mathfrak{g} in $V=\mathbb{C}^{2}$ by

$$
\pi(x)=\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)
$$

Then $\Lambda(\pi)=\{0\}$, but $V_{0}=\mathbb{C} \times\{0\}$ is not all of V.
Note that this does not contradict the conclusion of Lemma 31.7, since π is not associated with a continuous representation of the circle group in \mathbb{C}^{2}.

Lemma 31.16 Let \mathfrak{t} be a maximal torus in \mathfrak{g}, and R the associated collection of roots. If $\alpha \in R$ then $-\alpha \in R$.

Proof: Let τ be the conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to the real form \mathfrak{g}. That is: $\tau(X+i Y)=$ $X-i Y$ for all $X, Y \in \mathfrak{g}$. One readily checks that τ is an automorphism of $\mathfrak{g}_{\mathbb{C}}$, considered as a real Lie algebra (by forgetting the complex linear structure). Let $\alpha \in R$, and let $X \in \mathfrak{g}_{\mathbb{C} \alpha}$. Then for every $H \in \mathfrak{t}$,

$$
[H, \tau(X)]=\tau[H, X]=\tau(\alpha(H) X)=\overline{\alpha(H)} \tau(X)=-\alpha(H) \tau(X)
$$

For the latter equation we used that α has imaginary values on \mathfrak{t}. It follows that $-\alpha \in R$ and that τ maps $\mathfrak{g}_{\mathbb{C} \alpha}$ into $\mathfrak{g}_{\mathbb{C}-\alpha}$ (in fact is a bijection between these root spaces; why?).

We recall that we identify $i \mathfrak{t}^{*}$ with the real linear subspace of $\mathfrak{t}_{\mathbb{C}}^{*}$ consisting of λ such that $\lambda \mid \mathfrak{t}$ has values in $i \mathbb{R}$; the latter condition is equivalent to saying that $\left.\lambda\right|_{i t}$ is real valued. One readily verifies that the restriction map $\left.\lambda \mapsto \lambda\right|_{i t}$ defines a real linear isomorphism from $i t^{*}$ onto the real linear dual $(i \mathfrak{t})^{*}$. In the following we shall use this isomorphism to identify $i t^{*}$ with $(i t)^{*}$. Now R is a finite subset of $(i \mathfrak{t})^{*} \backslash\{0\}$. Hence the complement of the hyperplanes ker $\alpha \subset i \mathfrak{t}$, for $\alpha \in R$ is a finite union of connected components, which are all convex. These components are called the Weyl chambers associated with R. Let \mathcal{C} be a fixed chamber. By definition every root is either positive or negative on \mathcal{C}. We define the system of positive roots $R^{+}:=R^{+}(\mathcal{C})$ associated with \mathcal{C} by

$$
R^{+}=\{\alpha \in R \mid \alpha>0 \quad \text { on } \quad \mathcal{C}\} .
$$

By what we said above, for every $\alpha \in R$, we have that either α or $-\alpha$ belongs to R^{+}, but not both. It follows that

$$
\begin{equation*}
R=R^{+} \cup\left(-R^{+}\right) \quad \text { (disjoint union). } \tag{49}
\end{equation*}
$$

We write $\mathbb{N} R^{+}$for the subset of $\mathbb{Z} R$ consisting of the elements that can be written as a sum of the form $\sum_{\alpha \in R^{+}} n_{\alpha} \alpha$, with $n_{\alpha} \in \mathbb{N}$.

Lemma 31.17 $\mathbb{N} R^{+} \cap\left(-\mathbb{N} R^{+}\right)=0$.
Proof: Let $\mu \in \mathbb{N} R^{+}$. Then $\mu \geq 0$ on \mathcal{C}, the chamber corresponding to R^{+}. If also $-\mu \in \mathbb{N} R^{+}$, then $\mu \leq 0$ on \mathcal{C} as well. Hence $\mu=0$ on \mathcal{C}. Since \mathcal{C} is a non-empty open subset of $i \boldsymbol{t}^{*}$, this implies that $\mu=0$.

Lemma 31.18 The spaces

$$
\mathfrak{g}_{\mathbb{C}}^{+}:=\sum_{\alpha \in R^{+}} \mathfrak{g}_{\mathbb{C} \alpha}, \quad \mathfrak{g}_{\mathbb{C}}^{-}:=\sum_{\beta \in-R^{+}} \mathfrak{g}_{\mathbb{C} \beta}
$$

are $\operatorname{ad}(\mathfrak{t})$-stable subalgebras of $\mathfrak{g}_{\mathbb{C}}$. Moreover,

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}_{\mathbb{C}}^{+} \oplus \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{g}_{\mathbb{C}}^{-}
$$

Proof: Let $\alpha, \beta \in R^{+}$and assume that $\left[\mathfrak{g}_{\mathbb{C} \alpha}, \mathfrak{g}_{\mathbb{C} \beta}\right] \neq 0$. Then $\alpha+\beta \in R \cup\{0\}$, and $\alpha+\beta>0$ on \mathcal{C}. This implies that $\alpha+\beta \in R^{+}$, hence $\mathfrak{g}_{\mathbb{C}(\alpha+\beta)} \subset \mathfrak{g}_{\mathbb{C}}^{+}$. It follows that $\mathfrak{g}_{\mathbb{C}}^{+}$is a subalgebra. For similar reasons $\mathfrak{g}_{\mathbb{C}}^{-}$is a subalgebra. Both subalgebras are $\operatorname{ad}(\mathfrak{t})$ stable, since root spaces are. The direct sum decomposition is an immediate consequence of (47) and (49).

We are now able to define the notion of a highest weight vector for a finite dimensional $\mathfrak{g}_{\mathbb{C}^{-}}$ module, relative to the system of positive roots R^{+}. This is the appropriate generalization of the notion of a primitive vector for $\mathfrak{s l}(2, \mathbb{C})$.

Definition 31.19 Let V be a (not necessarily finite dimensional) $\mathfrak{g}_{\mathbb{C}}$-module. Then a highest weight vector of V is by definition a non-trivial vector $v \in V$ such that
(a) $\mathfrak{t}_{\mathbb{C}} v \subset \mathbb{C} v ;$
(b) $X v=0$ for all $X \in \mathfrak{g}_{\mathbb{C}}^{+}$.

Lemma 31.20 Any finite dimensional $\mathfrak{g}_{\mathbb{C}}$-module has a highest weight vector.
Proof: We define the $\mathfrak{g}_{\mathbb{C}}$-submodule W of V as the sum of the $\mathfrak{t}_{\mathbb{C}}$-weight spaces, see Corollary 31.14.

Let \mathcal{C} be the positive chamber determining R^{+}. Fix $X \in \mathcal{C}$. Then $\alpha(X)>0$ for all $\alpha \in R^{+}$. We may select $\lambda_{0} \in \Lambda(\pi)$ such that the real part of $\lambda(X)$ is maximal. Then $\lambda_{0}+\alpha \notin \Lambda(\pi)$ for all $\alpha \in R^{+}$. By Lemma 31.12 this implies that $\pi_{*}\left(\mathfrak{g}_{\mathbb{C}_{\alpha}}\right) V_{\lambda} \subset V_{\lambda_{0}+\alpha}=0$ for all $\alpha \in R^{+}$. Hence $\mathfrak{g}_{\mathbb{C}}^{+}$annihilates $V_{\lambda_{0}}$. Thus, every non-zero vector of $V_{\lambda_{0}}$ is a highest weight vector.

Definition 31.21 Let V be a (not necessarily finite dimensional) $\mathfrak{g}_{\mathbb{C}}$-module. A vector $v \in V$ is said to be cyclic if it generates the $\mathfrak{g}_{\mathbb{C}}$-module V, i.e., V is the smallest $\mathfrak{g}_{\mathbb{C}}$-submodule containing v.

Obviously, if V is irreducible, then every non-trivial vector is cyclic.
Proposition 31.22 Let V be a $\mathfrak{g}_{\mathbb{C}}$-module and $v \in V$ a cyclic highest weight vector.
(a) There exists a (unique) $\lambda \in \Lambda(V)$ such that $v \in V_{\lambda}$. Moreover, $V_{\lambda}=\mathbb{C} v$.
(b) The space V is equal to the span of the vectors v and $\pi\left(X_{1}\right) \cdots \pi\left(X_{n}\right) v$, with $n \in \mathbb{N}$ and $X_{j} \in \mathfrak{g}_{\mathbb{C}}^{-}$, for $1 \leq j \leq n$.
(c) Every weight $\mu \in \Lambda(V)$ is of the form $\lambda-\nu$, with $\nu \in \mathbb{N} R^{+}$.
(d) The module V has a unique maximal proper submodule W.
(e) The module V has a unique non-trivial irreducible quotient.

Proof: The first assertion of (a) follows from the definition of highest weight vector. We define an increasing sequence of linear subspaces of V inductively by $V_{0}=\mathbb{C} v$ and $V_{n+1}=V_{n}+$ $\pi\left(\mathfrak{g}_{\mathbb{C}}^{-}\right) V_{n}$. Let W be the union of the spaces V_{n}. We claim that W is an invariant subspace of V. To establish the claim, we note that by definition we have $\pi\left(\mathfrak{g}_{\mathbb{C}}^{-}\right) V_{n} \subset V_{n+1}$; hence W is $\mathfrak{g}_{\mathbb{C}}^{-}$ invariant. The space V_{0} is \mathfrak{t} - and $\mathfrak{g}_{\mathrm{C}}^{+}$-invariant; by induction we will show that the same holds for V_{n}. Assume that V_{n} is \mathfrak{t} - and $\mathfrak{g}_{\mathbb{C}}^{+}$-invariant, and let $v \in V_{n}, Y \in \mathfrak{g}_{\mathbb{C}}^{-}$. Then for H in \mathfrak{t} we have $H Y v=Y H v+[H, Y] v$. Now $v \in V_{n}$ and by the inductive hypothesis it follows that $H v \in V_{n}$. Hence $Y H v \in V_{n+1}$. Also $[H, Y] \in \mathfrak{g}_{\mathbb{C}}^{-}$and it follows that $[H, Y] v \in V_{n+1}$. We conclude that $H Y v \in V_{n+1}$. It follows from this that

$$
\pi(\mathfrak{t}) \pi\left(\mathfrak{g}_{\mathbb{C}}^{-}\right) V_{n} \subset V_{n+1} .
$$

Hence V_{n+1} is t -invariant.
Let now $v \in V_{n}, Y \in \mathfrak{g}_{\mathbb{C}}^{-}$and $X \in \mathfrak{g}_{\mathbb{C}}^{+}$. Then $X Y v=Y X v+[X, Y] v$. Now $X v \in V_{n}$ by the induction hypothesis and we see that $Y X v \in V_{n+1}$. Also, $[X, Y] \in \mathfrak{g}_{\mathbb{C}}$. By the induction
hypothesis it follows that $\mathfrak{g}_{\mathbb{C}} V_{n} \subset V_{n+1}$. Hence $[X, Y] v \in V_{n+1}$. We conclude that $X Y v \in V_{n+1}$. It follows from this that

$$
\pi\left(\mathfrak{g}_{\mathbb{C}}^{+}\right) \pi\left(\mathfrak{g}_{\mathbb{C}}^{-}\right) V_{n} \subset V_{n+1}
$$

Hence V_{n+1} is $\mathfrak{g}_{\mathbb{C}}^{+}$-invariant. This establishes the claim that W is a $\mathfrak{g}_{\mathbb{C}}$-invariant subspace of V.
Since W contains the cyclic vector v, it follows that $W=V$. In view of the definition of the spaces V_{k} assertion (b) follows.

Let $w=\pi\left(Y_{1}\right) \cdots \pi\left(Y_{n}\right) v$, with $n \in \mathbb{N}, Y_{j} \in \mathfrak{g}_{\mathbb{C}\left(-\alpha_{j}\right)}, \alpha_{j} \in R^{+}$. Then w belongs to the weight space $V_{\lambda-\nu}$, where $\nu=\alpha_{1}+\cdots+\alpha_{n} \in \mathbb{N} R^{+}$. Since v and such elements w span $W=V$, we conclude that every weight μ in $\Lambda(V)$ is of the form $\lambda-\nu$ with $\nu \in \mathbb{N} R^{+}$. This establishes (c).

It follows from the above description that V equals the vector sum of $\mathbb{C} v$ and V_{-}, where V_{-} denotes the sum of the weight spaces V_{μ} with $\mu \in \Lambda(V) \backslash\{\lambda\}$. This implies that $V_{\lambda}=\mathbb{C} v$, whence the second assertion of (a).

We now turn to assertion (d). Let U be a submodule of V. In particular, U is a $\mathfrak{t}_{\mathbb{C}}$-invariant subspace. Let $\Lambda(U)$ be the collection of $\mu \in \Lambda(V)$ for which $U_{\mu}:=U \cap V_{\mu} \neq 0$. In view of Lemma 31.2, U is the direct sum of the spaces U_{μ}, for $\mu \in \Lambda(U)$. If U is a proper submodule, then $U_{\lambda}=0$, hence $\Lambda(U) \subset \Lambda(V) \backslash\{\lambda\}$ and we see that $U \subset V_{-}$. It follows that the vector sum W of all proper submodules satisfies $W \subset V_{-}$hence is still proper. Therefore, V has W as unique maximal proper submodule.

The final assertion (e) is equivalent to (d). To see this, let $p: V \rightarrow V^{\prime}$ be a surjective $\mathfrak{g}_{\mathbb{C}^{-}}$ module homomorphism onto a non-trivial $\mathfrak{g}_{\mathbb{C}}$-module. Then $U \mapsto p^{-1}(U)$ defines a bijection from the collection of proper submodules of V^{\prime} onto the collection of proper submodules of V containing ker p. It follows that V^{\prime} is irreducible if and only if $\operatorname{ker} p$ is a proper maximal submodule of V. The equivalence of (d) and (e) now readily follows.

Corollary 31.23 Let V be a finite dimensional irreducible $\mathfrak{g}_{\mathbb{C}}$-module. Then V has a highest weight vector v, which is unique up to a scalar factor. Let λ be the weight of v. Then all assertions of Proposition 31.22 are valid.

Proof: It follows from Lemma 31.20 that V has a highest weight vector. Let v be any highest weight vector in V and let λ be its weight. By irreducibility of V, the vector v is cyclic. Hence all assertions of Proposition 31.22 are valid. Note that $W=\{0\}$ is the unique maximal proper submodule.

Let w be a second highest weight vector and let μ be its weight. Then all assertions of Proposition 31.22 are valid. Hence $\mu \in \lambda-\mathbb{N} R^{+}$and $\lambda \in \mu-\mathbb{N} R^{+}$, from which $\mu-\lambda \in$ $\mathbb{N} R^{+} \cap\left(-\mathbb{N} R^{+}\right)=\{0\}$. It follows that $\mu=\lambda$; hence $w \in V_{\lambda}=\mathbb{C} v$.

Remark 31.24 For obvious reasons the above weight λ is called the highest weight of the irreducible $\mathfrak{g}_{\mathbb{C}}$-module V, relative to the choice R^{+}of positive roots.

The following theorem is the first step towards the classification of all finite dimensional irreducible representations of $\mathfrak{g}_{\mathbb{C}}$.

Theorem 31.25 Let V and V^{\prime} be irreducible $\mathfrak{g}_{\mathbb{C}}$-modules. If V and V^{\prime} have the same highest weight (relative to R^{+}), then V and V^{\prime} are isomorphic (i.e., the associated $\mathfrak{g}_{\mathbb{C}}$-representations are equivalent).

Proof: We denote the highest weight by λ and fix associated highest weight vectors $v \in V_{\lambda} \backslash\{0\}$ and $v^{\prime} \in V_{\lambda}^{\prime} \backslash\{0\}$. We consider the direct sum $\mathfrak{g}_{\mathbb{C}}$-module $V \oplus V^{\prime}$ and denote by W the smallest $\mathfrak{g}_{\mathbb{C}}$-submodule containing the vector $w:=\left(v, v^{\prime}\right)$. Then w is a cyclic weight vector of W, of weight λ.

Let $p: V \oplus V^{\prime} \rightarrow V$ be the projection onto the first component, and $p^{\prime}: V \oplus V^{\prime} \rightarrow V^{\prime}$ the projection onto the second. Then p and p^{\prime} are $\mathfrak{g}_{\mathbb{C}}$-module homomorphisms. Since $p(w)=v$, it follows that $\left.p\right|_{W}$ is surjective onto V. Similarly, $\left.p^{\prime}\right|_{W}$ is surjective onto V^{\prime}. It follows that V, V^{\prime} are both irreducible quotients of W, hence isomorphic by Proposition 31.22 (e).

Remark 31.26 In the above proof it is easy to deduce that in fact W is irreducible, and $\left.p\right|_{W}$ and $\left.p^{\prime}\right|_{W}$ are isomorphisms from W onto V and V^{\prime}, respectively.

