Extra exercises 2019

Exercise 1. We assume that G is a Lie group, and (7, V') a finite dimensional continuous repre-
senation of GG. Show that for all z € G and X, Y € g the following identities are valid:

(@) m(2)m(Y) = m(Ad (2)Y)m(x);
(b) T (X)) (Y) = m (V) (X) + m ([ X, Y]).
Exercise 2. Let GG and H be Lie groups. If (7, V') and (p, W) are finite dimensional continuous

representations of G' and H, respectively, then the exterior tensor product of 7 and p is defined
to be the representation 7®p of G x H in V ® W given by

7@p(g,h) =7(g) @ p(h),  ((9,h) € G x H).
(a) Show that the representation 7®p is continuous finite dimensional.

(b) Show that the character of 7®p is the function Xxgp - G X H — C given by
Xazp(9: 1) = X (9)X,p(h).

(c) If G and H are compact show that the following assertions are equivalent.

(1) 7 isirreducible as a representation of GG and p is irreducible as a representation of H;

(2) 7®p is irreducible as a representation of G' x H.

Exercise 3. We assume that G and H are compact Lie groups, and that (7, V) is a finite dimen-
sional continuous representation of G x H. We identify G and H with the subgroups G x {ey}
and {eq} x H of G x H.

(a) For ¢ a finite dimensional irreducible representation of GG, show that the projection operator
Ps : V — V associated with 7|¢ as in Exercise 33 commutes with 7(H).

We now assume that 7 is irreducible.
(b) Show that Ps(V') = V.
(c) Show that the canonical map Vs ® Homg(V5, V) — V is a linear isomorphism.

(d) Show that the natural representation p of H in Homg(Vs, V') is irreducible and that

T~ 5&®p.



Exercise 4. The purpose of this exercise is to understand the group of fractional linear transfor-
mations.

We define P*(C) to be the space of lines Cz C C? with z = (20, z1) € C\ {0}. The line Cz
is denoted by [z : z;]. Accordingly, [z : 21| = [w : wy] if and only if there exists A € C \ {0}
such that z = Aw (homogeneous coordinates).

(a) Show that the action of C* on C? \ {0} defined by scalar multiplication is smooth and of
principal fiber bundle type.

(b) Show that the map C? \ {0} — P!(C) factors through a bijection C* \ {0}/C* ~ P!(C).
We equip P*(C) with the structure of (complex) manifold which turns this map into a
diffeomorphism.

(c) Show that the natural action of GL(2, C) on P!(C) given by (g, Cz) — ¢(C) is smooth.

(d) Show that P*(C) ~ GL(2,C)/B, where B is the group of two by two invertible matrices
with zero in the lower left entry.

(e) Show that the map j : C — P(C) given by z — [z : 1] is an open embedding whose image
is the complement of a point, which we denote by co. Accordingly, we view P(C) a the
Riemann sphere C.

(f) For z € C and a,b,c,d € C such that ad — bc # 0 we have
a b az+b
z = .
c d cz+d

Exercise 5. The purpose of this exercise is to understand covering homomorphisms of Lie
groups.

We recall that a smooth map f : M — N between connected smooth manifolds is a smooth
covering if for every ¢ € N there exists an open neighborhood V' > ¢ in N such that f~(V)
can be written as U,c;U;, with {U; | j € J} a non-empty disjoint collection of open subsets
in M such that for each j € .J the map f|y, is a diffeomorphism from U; onto V. By using
connectedness of /V, it is easy to check that such a covering f is surjective. The covering f is
said to be a covering with base points if it comes equipped with a pair of points (mg, ng) € M x N
such that f(mg) = no.

(a) Let f : G — H be a homomorphism of connected Lie groups. Show that the following
assertions are equivalent:

(1) T.f is bijective;

(2) f is a smooth covering (with base points e, eg).
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Suppose now that ) is a smooth manifold and mg € M. Then there exists a smooth covering
7+ M — M witha pair of basepoints (1mg, mg) € M x M such that M is connected and simply
connected. Any such covering has the following universal property.

If p: (Q,q) — (N,ng) is a covering with basepoints and if f : M — N is a smooth map
with f(mg) = ng then there exists a unique smooth map f: M — Q such that f (mo) = o and
such that the following diagam commutes:

M Lo
ml Ip
M LN

From the universal property it follows that (M , M) is determined modulo isomorphism (of ob-
vious type) of based coverings. For this reason, it is called the universal cover with base point of
(M, m0> .

(b) Let G be a connected Lie group and 7 : G — G its universal covering with base point
¢ € G. Show that G has a unique structure of Lie group with neutral element ¢ such that 7
is a Lie group homomorphism.

(¢c) If f : G — H is a Lie group homomorphism of connected Lie groups, 7 : G — G the
universal covering homomorphism and p : K — H a covering homomorphism, show
that there exists a unique Lie group homomorphism f : G — K such that the following
diagram commutes:

g K

G
ml Ip
a Lom

(d) Let g denote the Lie algebra of G. Show that , : g — g1is an isomorphism of Lie algebras.

Exercise 6. This exercise is a continuation of the previous one. Its purpose is establish the
following result.

Lemma Let G, H be two connected Lie groups with algebras g and by, respectively. Let ¢ :
g — b be a Lie algebra homomorphism. If GG is simply connected, then there exists a unique
homomorphism f : G — H of Lie groups such that T, f = ¢.

(a) Show that £ = graph(¢y) is a Lie subalgebra of the direct sum Lie algebra g & b.

(b) Let K be the connected Lie subgroup of G x H generated by exp(£). Show that the projec-
tion map p; : G x H — @ restricts to a smooth covering homomorphism p; | : K — G.

(c) Show that py|g : K — G is an isomorphism of Lie groups.

(d) Complete the proof of the above theorem.



(e) Let V be a finite dimensional complex vector space. Show that the map 7 — 7, induces a
bijection between the set of continuous representations of G in V" and the set of Lie algebra
representations of g in V.

Conclusion: If G is connected and simply connected, every finite dimensional representation of
g can be ‘lifted’ to a continuous finite dimensional representation of G.

Without proof we mention the following beautiful result of Hermann Weyl: if G is a compact
connected Lie group, and g has trivial center, then the universal cover GG is compact. Thus, the
finite dimensional representations of g can be lifted to continuous representations of G and the
global methods based on compactness can still be used.

Example: SO(3) is compact and its Lie algebra so(3) ~ su(2) has trivial center. The group
SU(2) is simply connected and the natural homomorphism p : SU(2) — SO(3) is a covering.
Therefore, p : SU(2) — SO(3) is the universal covering homomorphism. Every finite dimen-
sional representation p of s0(3) ~ su(2) lifts to a finite dimensional continuous representation p
of SU(2).

(f) Show that p lifts to SO(3) if and only p(x) = I for x € kerp = {—1,I}.



