Extra exercises 2019

Exercise 1. We assume that G is a Lie group, and (π, V) a finite dimensional continuous representation of G. Show that for all $x \in G$ and $X, Y \in \mathfrak{g}$ the following identities are valid:

(a)
$$\pi(x)\pi_*(Y) = \pi_*(\operatorname{Ad}(x)Y)\pi(x);$$

(b) $\pi_*(X)\pi_*(Y) = \pi_*(Y)\pi_*(X) + \pi_*([X,Y]).$

Exercise 2. Let G and H be Lie groups. If (π, V) and (ρ, W) are finite dimensional continuous representations of G and H, respectively, then the exterior tensor product of π and ρ is defined to be the representation $\pi \otimes \rho$ of $G \times H$ in $V \otimes W$ given by

$$\pi \widehat{\otimes} \rho(g,h) = \pi(g) \otimes \rho(h), \qquad ((g,h) \in G \times H).$$

- (a) Show that the representation $\pi \widehat{\otimes} \rho$ is continuous finite dimensional.
- (b) Show that the character of $\pi \widehat{\otimes} \rho$ is the function $\chi_{\pi \widehat{\otimes} \rho} : G \times H \to \mathbb{C}$ given by

$$\chi_{\pi\widehat{\otimes}\rho}(g,h) = \chi_{\pi}(g)\chi_{\rho}(h).$$

- (c) If G and H are compact show that the following assertions are equivalent.
 - (1) π is irreducible as a representation of G and ρ is irreducible as a representation of H;
 - (2) $\pi \widehat{\otimes} \rho$ is irreducible as a representation of $G \times H$.

Exercise 3. We assume that G and H are compact Lie groups, and that (π, V) is a finite dimensional continuous representation of $G \times H$. We identify G and H with the subgroups $G \times \{e_H\}$ and $\{e_G\} \times H$ of $G \times H$.

(a) For δ a finite dimensional irreducible representation of G, show that the projection operator $P_{\delta}: V \to V$ associated with $\pi|_{G}$ as in Exercise 33 commutes with $\pi(H)$.

We now assume that π is irreducible.

- (b) Show that $P_{\delta}(V) = V$.
- (c) Show that the canonical map $V_{\delta} \otimes \operatorname{Hom}_{G}(V_{\delta}, V) \to V$ is a linear isomorphism.
- (d) Show that the natural representation ρ of H in Hom_G(V_{δ}, V) is irreducible and that

$$\pi \simeq \delta \otimes \rho.$$

Exercise 4. The purpose of this exercise is to understand the group of fractional linear transformations.

We define $\mathbb{P}^1(\mathbb{C})$ to be the space of lines $\mathbb{C}z \subset \mathbb{C}^2$ with $z = (z_0, z_1) \in \mathbb{C} \setminus \{0\}$. The line $\mathbb{C}z$ is denoted by $[z_0 : z_1]$. Accordingly, $[z_0 : z_1] = [w_0 : w_1]$ if and only if there exists $\lambda \in \mathbb{C} \setminus \{0\}$ such that $z = \lambda w$ (homogeneous coordinates).

- (a) Show that the action of \mathbb{C}^* on $\mathbb{C}^2 \setminus \{0\}$ defined by scalar multiplication is smooth and of principal fiber bundle type.
- (b) Show that the map C² \ {0} → P¹(C) factors through a bijection C² \ {0}/C* ≃ P¹(C). We equip P¹(C) with the structure of (complex) manifold which turns this map into a diffeomorphism.
- (c) Show that the natural action of $GL(2,\mathbb{C})$ on $\mathbb{P}^1(\mathbb{C})$ given by $(g,\mathbb{C}z) \mapsto g(\mathbb{C})$ is smooth.
- (d) Show that $\mathbb{P}^1(\mathbb{C}) \simeq \operatorname{GL}(2,\mathbb{C})/B$, where B is the group of two by two invertible matrices with *zero* in the lower left entry.
- (e) Show that the map j : C → P(C) given by z → [z : 1] is an open embedding whose image is the complement of a point, which we denote by ∞. Accordingly, we view P(C) a the Riemann sphere C.
- (f) For $z \in \widehat{\mathbb{C}}$ and $a, b, c, d \in \mathbb{C}$ such that $ad bc \neq 0$ we have

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)z = \frac{az+b}{cz+d}.$$

Exercise 5. The purpose of this exercise is to understand covering homomorphisms of Lie groups.

We recall that a smooth map $f: M \to N$ between connected smooth manifolds is a smooth covering if for every $q \in N$ there exists an open neighborhood $V \ni q$ in N such that $f^{-1}(V)$ can be written as $\bigcup_{j \in J} U_j$, with $\{U_j \mid j \in J\}$ a non-empty disjoint collection of open subsets in M such that for each $j \in J$ the map $f|_{U_j}$ is a diffeomorphism from U_j onto V. By using connectedness of N, it is easy to check that such a covering f is surjective. The covering f is said to be a covering with base points if it comes equipped with a pair of points $(m_0, n_0) \in M \times N$ such that $f(m_0) = n_0$.

- (a) Let $f: G \to H$ be a homomorphism of connected Lie groups. Show that the following assertions are equivalent:
 - (1) $T_e f$ is bijective;
 - (2) f is a smooth covering (with base points e_G, e_H).

Suppose now that M is a smooth manifold and $m_0 \in M$. Then there exists a smooth covering $\pi : \widetilde{M} \to M$ with a pair of basepoints $(\widetilde{m}_0, m_0) \in \widetilde{M} \times M$ such that \widetilde{M} is connected and simply connected. Any such covering has the following universal property.

If $p: (Q, q_0) \to (N, n_0)$ is a covering with basepoints and if $f: M \to N$ is a smooth map with $f(m_0) = n_0$ then there exists a unique smooth map $\tilde{f}: \widetilde{M} \to Q$ such that $\tilde{f}(\tilde{m}_0) = \tilde{q}_0$ and such that the following diagam commutes:

$$\begin{array}{cccc} \widetilde{M} & \stackrel{f}{\longrightarrow} & Q \\ \pi \downarrow & & \downarrow p \\ M & \stackrel{f}{\longrightarrow} & N \end{array}$$

From the universal property it follows that (\tilde{M}, \tilde{m}_0) is determined modulo isomorphism (of obvious type) of based coverings. For this reason, it is called the universal cover with base point of (M, m_0) .

- (b) Let G be a connected Lie group and $\pi : \tilde{G} \to G$ its universal covering with base point $\tilde{e} \in \tilde{G}$. Show that \tilde{G} has a unique structure of Lie group with neutral element \tilde{e} such that π is a Lie group homomorphism.
- (c) If $f: G \to H$ is a Lie group homomorphism of connected Lie groups, $\pi: \tilde{G} \to G$ the universal covering homomorphism and $p: K \to H$ a covering homomorphism, show that there exists a unique Lie group homomorphism $\tilde{f}: \tilde{G} \to K$ such that the following diagram commutes:

$$\begin{array}{cccc} \widetilde{G} & \stackrel{f}{\longrightarrow} & K \\ \pi \downarrow & & \downarrow_p \\ G & \stackrel{f}{\longrightarrow} & H \end{array}$$

(d) Let $\tilde{\mathfrak{g}}$ denote the Lie algebra of \tilde{G} . Show that $\pi_* : \tilde{\mathfrak{g}} \to \mathfrak{g}$ is an isomorphism of Lie algebras.

Exercise 6. This exercise is a continuation of the previous one. Its purpose is establish the following result.

Lemma Let G, H be two connected Lie groups with algebras \mathfrak{g} and \mathfrak{h} , respectively. Let $\varphi : \mathfrak{g} \to \mathfrak{h}$ be a Lie algebra homomorphism. If G is simply connected, then there exists a unique homomorphism $f: G \to H$ of Lie groups such that $T_e f = \varphi$.

- (a) Show that $\mathfrak{k} = \operatorname{graph}(\varphi)$ is a Lie subalgebra of the direct sum Lie algebra $\mathfrak{g} \oplus \mathfrak{h}$.
- (b) Let K be the connected Lie subgroup of $G \times H$ generated by $\exp(\mathfrak{k})$. Show that the projection map $p_1 : G \times H \to G$ restricts to a smooth covering homomorphism $p_1|_K : K \to G$.
- (c) Show that $p_1|_K : K \to G$ is an isomorphism of Lie groups.
- (d) Complete the proof of the above theorem.

(e) Let V be a finite dimensional complex vector space. Show that the map π → π_{*} induces a bijection between the set of continuous representations of G in V and the set of Lie algebra representations of g in V.

Conclusion: If G is connected and simply connected, every finite dimensional representation of g can be 'lifted' to a continuous finite dimensional representation of G.

Without proof we mention the following beautiful result of Hermann Weyl: if G is a compact connected Lie group, and \mathfrak{g} has trivial center, then the universal cover \tilde{G} is compact. Thus, the finite dimensional representations of \mathfrak{g} can be lifted to continuous representations of \tilde{G} and the global methods based on compactness can still be used.

Example: SO(3) is compact and its Lie algebra $\mathfrak{so}(3) \simeq \mathfrak{su}(2)$ has trivial center. The group SU(2) is simply connected and the natural homomorphism $p : \mathrm{SU}(2) \to \mathrm{SO}(3)$ is a covering. Therefore, $p : \mathrm{SU}(2) \to \mathrm{SO}(3)$ is the universal covering homomorphism. Every finite dimensional representation ρ of $\mathfrak{so}(3) \simeq \mathfrak{su}(2)$ lifts to a finite dimensional continuous representation $\tilde{\rho}$ of SU(2).

(f) Show that ρ lifts to SO(3) if and only $\tilde{\rho}(x) = I$ for $x \in \ker p = \{-I, I\}$.