
Extra exercises 2019
Exercise 1. We assume that G is a Lie group, and (π, V ) a finite dimensional continuous repre-
senation of G. Show that for all x ∈ G and X, Y ∈ g the following identities are valid:

(a) π(x)π∗(Y ) = π∗(Ad (x)Y )π(x);

(b) π∗(X)π∗(Y ) = π∗(Y )π∗(X) + π∗([X, Y ]).

Exercise 2. Let G and H be Lie groups. If (π, V ) and (ρ,W ) are finite dimensional continuous
representations of G and H, respectively, then the exterior tensor product of π and ρ is defined
to be the representation π⊗̂ρ of G×H in V ⊗W given by

π⊗̂ρ(g, h) = π(g)⊗ ρ(h), ((g, h) ∈ G×H).

(a) Show that the representation π⊗̂ρ is continuous finite dimensional.

(b) Show that the character of π⊗̂ρ is the function χπ⊗̂ρ : G×H → C given by

χπ⊗̂ρ(g, h) = χπ(g)χρ(h).

(c) If G and H are compact show that the following assertions are equivalent.

(1) π is irreducible as a representation of G and ρ is irreducible as a representation of H;

(2) π⊗̂ρ is irreducible as a representation of G×H.

Exercise 3. We assume that G and H are compact Lie groups, and that (π, V ) is a finite dimen-
sional continuous representation of G×H. We identify G and H with the subgroups G× {eH}
and {eG} ×H of G×H.

(a) For δ a finite dimensional irreducible representation ofG, show that the projection operator
Pδ : V → V associated with π|G as in Exercise 33 commutes with π(H).

We now assume that π is irreducible.

(b) Show that Pδ(V ) = V.

(c) Show that the canonical map Vδ ⊗ HomG(Vδ, V )→ V is a linear isomorphism.

(d) Show that the natural representation ρ of H in HomG(Vδ, V ) is irreducible and that

π ' δ⊗̂ρ.

1



Exercise 4. The purpose of this exercise is to understand the group of fractional linear transfor-
mations.

We define P1(C) to be the space of lines Cz ⊂ C2 with z = (z0, z1) ∈ C \ {0}. The line Cz
is denoted by [z0 : z1]. Accordingly, [z0 : z1] = [w0 : w1] if and only if there exists λ ∈ C \ {0}
such that z = λw (homogeneous coordinates).

(a) Show that the action of C∗ on C2 \ {0} defined by scalar multiplication is smooth and of
principal fiber bundle type.

(b) Show that the map C2 \ {0} → P1(C) factors through a bijection C2 \ {0}/C∗ ' P1(C).
We equip P1(C) with the structure of (complex) manifold which turns this map into a
diffeomorphism.

(c) Show that the natural action of GL(2,C) on P1(C) given by (g,Cz) 7→ g(C) is smooth.

(d) Show that P1(C) ' GL(2,C)/B, where B is the group of two by two invertible matrices
with zero in the lower left entry.

(e) Show that the map j : C→ P(C) given by z 7→ [z : 1] is an open embedding whose image
is the complement of a point, which we denote by∞. Accordingly, we view P(C) a the
Riemann sphere Ĉ.

(f) For z ∈ Ĉ and a, b, c, d ∈ C such that ad− bc 6= 0 we have(
a b
c d

)
z =

az + b

cz + d
.

Exercise 5. The purpose of this exercise is to understand covering homomorphisms of Lie
groups.

We recall that a smooth map f : M → N between connected smooth manifolds is a smooth
covering if for every q ∈ N there exists an open neighborhood V 3 q in N such that f−1(V )
can be written as ∪j∈JUj, with {Uj | j ∈ J} a non-empty disjoint collection of open subsets
in M such that for each j ∈ J the map f |Uj

is a diffeomorphism from Uj onto V. By using
connectedness of N, it is easy to check that such a covering f is surjective. The covering f is
said to be a covering with base points if it comes equipped with a pair of points (m0, n0) ∈M×N
such that f(m0) = n0.

(a) Let f : G → H be a homomorphism of connected Lie groups. Show that the following
assertions are equivalent:

(1) Tef is bijective;

(2) f is a smooth covering (with base points eG, eH).
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Suppose now that M is a smooth manifold and m0 ∈ M. Then there exists a smooth covering
π : M̃ →M with a pair of basepoints (m̃0,m0) ∈ M̃ ×M such that M̃ is connected and simply
connected. Any such covering has the following universal property.

If p : (Q, q0) → (N, n0) is a covering with basepoints and if f : M → N is a smooth map
with f(m0) = n0 then there exists a unique smooth map f̃ : M̃ → Q such that f̃(m̃0) = q̃0 and
such that the following diagam commutes:

M̃
f̃−→ Q

π↓ ↓p
M

f−→ N

From the universal property it follows that (M̃, m̃0) is determined modulo isomorphism (of ob-
vious type) of based coverings. For this reason, it is called the universal cover with base point of
(M,m0).

(b) Let G be a connected Lie group and π : G̃ → G its universal covering with base point
ẽ ∈ G̃. Show that G̃ has a unique structure of Lie group with neutral element ẽ such that π
is a Lie group homomorphism.

(c) If f : G → H is a Lie group homomorphism of connected Lie groups, π : G̃ → G the
universal covering homomorphism and p : K → H a covering homomorphism, show
that there exists a unique Lie group homomorphism f̃ : G̃ → K such that the following
diagram commutes:

G̃
f̃−→ K

π↓ ↓p
G

f−→ H

(d) Let g̃ denote the Lie algebra of G̃. Show that π∗ : g̃→ g is an isomorphism of Lie algebras.

Exercise 6. This exercise is a continuation of the previous one. Its purpose is establish the
following result.

Lemma Let G,H be two connected Lie groups with algebras g and h, respectively. Let ϕ :
g → h be a Lie algebra homomorphism. If G is simply connected, then there exists a unique
homomorphism f : G→ H of Lie groups such that Tef = ϕ.

(a) Show that k = graph(ϕ) is a Lie subalgebra of the direct sum Lie algebra g⊕ h.

(b) LetK be the connected Lie subgroup ofG×H generated by exp(k). Show that the projec-
tion map p1 : G×H → G restricts to a smooth covering homomorphism p1|K : K → G.

(c) Show that p1|K : K → G is an isomorphism of Lie groups.

(d) Complete the proof of the above theorem.
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(e) Let V be a finite dimensional complex vector space. Show that the map π 7→ π∗ induces a
bijection between the set of continuous representations ofG in V and the set of Lie algebra
representations of g in V.

Conclusion: If G is connected and simply connected, every finite dimensional representation of
g can be ‘lifted’ to a continuous finite dimensional representation of G.

Without proof we mention the following beautiful result of Hermann Weyl: if G is a compact
connected Lie group, and g has trivial center, then the universal cover G̃ is compact. Thus, the
finite dimensional representations of g can be lifted to continuous representations of G̃ and the
global methods based on compactness can still be used.

Example: SO(3) is compact and its Lie algebra so(3) ' su(2) has trivial center. The group
SU(2) is simply connected and the natural homomorphism p : SU(2) → SO(3) is a covering.
Therefore, p : SU(2) → SO(3) is the universal covering homomorphism. Every finite dimen-
sional representation ρ of so(3) ' su(2) lifts to a finite dimensional continuous representation ρ̃
of SU(2).

(f) Show that ρ lifts to SO(3) if and only ρ̃(x) = I for x ∈ ker p = {−I, I}.
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