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ABSTRACT

Let G be a complex semisimple group, T C G a maximal torus and B a Borel subgroup of G containing
T. Let Q be the Kostant—Kirillov holomorphic symplectic structure on the adjoint orbit O = Ad(G)c¢ ~
G/Z(c), where ¢ € Lie(T), and Z(c) is the centralizer of ¢ in G. We prove that the real symplectic form
Re Q (respectively, Im2) on O is exact if and only if all the eigenvalues ad(c) are real (respectively,
purely imaginary). Furthermore, each of these real symplectic manifolds is symplectomorphic to the
cotangent bundle of the partial flag manifold G/Z(c) B, equipped with the Liouville symplectic form.
The latter result is generalized to hyperbolic adjoint orbits in a real semisimple Lie algebra.

1. INTRODUCTION

This work grew out of attempts to understand the following theorem of Arnold {1,
p. 100, Theorem 1].

Theorem 1.1 [1]. Let Q be the standard complex symplectic structure on a
regular coadjoint orbit of the group SL(n + 1,C). This orbit, equipped with the
real symplectic structure Im(Q), is isomorphic to the total space of the cotangent
bundle of the variety parameterizing the complete flags in C"*', equipped with the
standard Liouville symplectic structure on it, if and only if all the eigenvalues of
some (and hence any) matrix in the orbit are pure imaginary.

E-mails: hassanaz@kfupm.edu.sa (H. Azad), e.p.vandenban@uu.nl (E. van den Ban),
indranil@math.tifr.res.in (I. Biswas).
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A proof of this theorem is outlined in [I, pp. 100—-101]. The assertion about the
equivalence of the above mentioned symplectic structure Im(€2) with the one on
total space of the cotangent bundle of the flag variety is made in lines 13—15 of [1,
p- 101]. Apparently, the regular coadjoint orbit is identified with an adjoint orbit in
sl(n + 1, C) through the non-degenerate bilinear form (X, Y) — Tr(XY), so that it
makes sense to speak of eigenvalues of matrices in the orbit.

Arnold’s result may be reformulated in terms of the theory of semisimple
Lie groups. In the present paper we will state this reformulation and prove a
generalization of it.

Let G be a connected complex semisimple Lie group. Its Lie algebra, which
will be denoted by g, comes equipped with the Killing form B, which is an
Ad(G)-invariant symmetric non-degenerate bilinear form. Given an element ¢ € g,
we denote by B(c) the complex linear functional on g defined by X — B(c, X).
Accordingly, the Killing form is viewed as a G-equivariant linear isomorphism

B:g—>g.

Unless specified otherwise, we will use B to identify g with g*. In particular, by
pull-back under B of the canonical Kostant-Liouville holomorphic symplectic form
on any coadjoint orbit O C g* may be viewed as a holomorphic symplectic form on
the associated adjoint orbit B~1(0).

If ¢ € g, then by ad(c) we denote the endomorphism Y - [c, Y] of g. The element
¢ is called semisimple if and only if ad(c) diagonalizes. Equivalently, this means
that ¢ is contained in the Lie algebra of a maximal torus (or Cartan subgroup) T
of G. The centralizer of ¢ in G is denoted by Z(c). If ¢ is semisimple, then Z(c) is
known to be the Levi component of a parabolic subgroup P of G. In fact, one may
take P = Z(c)B, where B is a Borel subgroup containing a maximal torus which
contains ¢. We will prove the following generalization of Arnold’s result.

Theorem 1.2. Let G be a connected complex semisimple group, and let ¢ be a
semisimple element of its Lie algebra g. Let Q be the Kostant—Kirillov holomorphic
symplectic form on the orbit O = Ad(G)c >~ G/Z(c). Then the real and imaginary
parts Re Q and Im Q are real symplectic forms on O. Moreover, the following hold.

(a) The form ReQ (respectively, Im Q) on O is exact if and only if all eigenvalues
of ad(c) are real (respectively, purely imaginary).

(b) In either case, these symplectic manifolds with exact real symplectic forms are
symplectomorphic to the total space of the cotangent bundle of G/ P, equipped
with the Liouville symplectic form, where P is any parabolic subgroup of G
with Levi component Z(c).

In fact, we will prove a refinement of assertion (b) in the more general context of
a real hyperbolic adjoint orbit of a real semisimple Lie group; see Theorems 2.11

and 6.1.
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Here are a few words about our interpretation of the above mentioned result of
Arnold.

Set G =SL(n + 1,C), and let T C G be the subgroup of diagonal matrices. For
any ¢ € Lie(T) with distinct eigenvalues we have Z(c) = T, so that the adjoint orbit
of ¢ can be identified with G/T. Let ¢; denote the ith diagonal entry of ¢. The
eigenvalues of ad(c) are all the numbers of the form ¢; —¢;, with 1 <i, j <n. As
b jCi= 0, it follows that the eigenvalues of ¢ are all real if and only if those of
ad(c) are.

The group G naturally acts on the manifold F of full flags in C**!. The stabilizer
of the standard flag C ¢ C? ¢ -.- ¢ C" is the subgroup B C G of upper triangular
matrices. Consequently, F =~ G/B, as G-manifolds. Arnold’s result asserts that
Ad(G)c =~ T*F ~ T*(G/B) as real symplectic manifolds. In the present set-up,
our generalization concerns the analogue for an arbitrary diagonal matrix ¢ and the
associated partial flag manifold G/P.

As G/T >~ G x g (B/T), the natural projection

¥:G/T - G/B

makes G/ T a fiber bundle over the full flag manifold G/B; its fibers are translates
of B/ T. Since G/ B is a complete variety, and G/T ~ O an affine variety, the bundle
Y does not admit any holomorphic sections.

On the other hand, let K = SU(n + 1). Then the natural map j: K/KNT — G/T
determines a real analytic section of y. Indeed, since G=KBand KNB=KNT,
the map K/K NT — G/B is areal analytic diffeomorphism. Composing its inverse
with j we obtain a section s : G/B — G/T. Moreover,

G/T ~G x5 (B/T)=KB x5 (B/T)
~ K xgng (B/T) = K xgnr Ry(B),

where R, (B) denotes the unipotent radical of B. This unipotent radical has the
structure of a complex linear space on which the adjoint action of T linearizes.
Therefore, the last isomorphism realizes G/ T as a real analytic vector bundle over
K/(K NT) ~ G/B with s corresponding to the zero section. This real analytic
vector bundle is in fact isomorphic to the cotangent bundle of X /(K N T). It follows
that the inclusion K /(K NT) — G /T, and hence the real analytic sections : G/B —
G/ T, induces an isomorphism on the cohomology algebras of these spaces. Hence,
one can decide whether a given closed differential two-form on G/ T is exact from
its restriction to K /(K N T). This is roughly a translation in group theoretic terms
of [1, p. 100-101]. The generalization of this argument to our more general setting
is worked out in the next section and leads to part (a) of Theorem 1.2.

Assertion (b) in Theorem 1.2 is based on the crucial observation that the fibration
¥ :G/Z(c) - G/ P has Lagrangian fibers and that K/K N Z(c) < G/T defines a
Lagrangian section. This implies the existence of commuting vertical vector fields
on the bundle ¥ and is enough to establish the existence of a local symplectic
isomorphism along the section K/K N Z(c); see Section 3. This argument is
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indicated in [1], but an argument for the existence of a globally defined symplectic
isomorphism seems to be lacking.

We prove the existence of such a global symplectomorphism in Section 6 by
showing that the mentioned vertical vector fields have complete flows which can be
used to construct global coordinates along the fibers of 1. Moreover, we give this
argument of integration in the more general setting of real hyperbolic adjoint orbits
for a real semisimple Lie group.

The above mentioned commuting vector fields are used to construct a K-
equivariant diffeomorphism

¢: K xxnz() (8/Lie(P))* — G/Z(c).

The pull back of Re(S2) — in the notation of Theorem 1.2 — is the Liouville form on
K X knz() (g/Lie(P))* identified with 7*(G/ P).

2. COMPLEX SEMISIMPLE ORBITS

We will recall some generalities concerning the Kostant—Kirillov symplectic form,
after fixing the notation. At first we assume that G is a connected Lie group over
the base field k, which is either R or C. Let n be an element of g*, the k-linear
dual of g. Let Z(n) denote the stabilizer of n in G, and let 3(n) be the Lie algebra
of Z(n). The map x > n o Ad(x)~! induces a G-equivariant diffeomorphism from
G/Z(n) onto the coadjoint orbit O = O, C g* through 7.

The Kostant-Kirillov form Q = 2, on O is defined as follows. The action of
G on O gives rise to a Lie algebra homomorphism from g to the space Vect(O)
of vector fields on . Given X € g, the associated vector field X on © is given
by Xz = —~£ ocad X € T;O C g*, where & € 0. We agree to write X; for X¢ and
note that the map X > X descends to an isomorphism from g/3(¢) onto T: O. The
two-form €2 on O is given by the formula

@2.1)  Q(Xe, Ye) =X, YD,

where & € O and X, Y € g. Here we note that the expression on the right-hand side
of (2.1) depends on X and Y through their images in g/3(£), so that Q is well
defined. The form 2 is G-invariant. Moreover, it is readily seen to be closed and
non-degenerate at the point &, hence it is a symplectic form. See [5, p. 6]. Note
that if k = C, then O is a complex submanifold of g*, and 2 is a holomorphic
symplectic form.

Via the natural diffeomorphism G/Z(n) — O the form Q may be pulled-back to
a form on G/Z(n). The resulting form, also denoted by £2, is the unique G-invariant
two-form which at the element € := eG (n) is given by the formula

(22) QiXe Ya)=n(X,YD, X Yes

We now assume that G is a semisimple connected Lie group over k, so that the
Killing form B(X,Y) = Tr(ad(X)ad(Y) is non-degenerate on g. The form B is
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G-invariant and symmetric. Hence it induces a G-equivariant linear isomorphism
g — g* that maps adjoint orbits diffeomorphically and G-equivariantly onto coad-
joint orbits. Let § € g* and let ¢ = c¢ = B~!(&). This means that

2.3) n(Y)=B(Y), Yegq.

Then Z(7n) coincides with Z(c), the centralizer of ¢ in G. Via pull back under B,
the form 2 may be realized as a form on the adjoint orbit Ad(G)c.

In the rest of this section we assume that k = C, so that G is a connected complex
semisimple Lie group. We assume that n € g* is such that ¢ = ¢, is semisimple,
i.e., the endomorphism ad(c) € End(g) given by X > [c, X] is diagonalizable.
Equivalently, this means that ¢ is contained in the Lie algebra of a maximal torus
in G.

We fix a maximal torus T of G whose Lie algebra contains ¢, and in addition a
maximal compact subgroup K of G for which K N T is a maximal torus. Writing &
for the (real) Lie algebra of K, we have

24) g=tev-1-¢t

as a direct sum of real linear spaces. In particular, ¢ is a real form of g. The
associated conjugation map 6:g — g is called the Cartan-involution associated
with K.

Lemma 2.1. With notation as above, let Q2 be the holomorphic Kostant-Kirillov
symplectic form on G/Z(c) = G/Z(n). Then both Re Q and Im Q are real symplec-
tic forms on G /Z(c).

Proof. We will write gg for g, viewed as a real Lie algebra. Accordingly, we put g
for the real linear dual of gg. Then g = Homg(g, R). Both Re  and Im 5 belong to
og- Let Z(Ren) and Z(Imn) be the stabilizers of these elements for the coadjoint
action for G, viewed as a real Lie group. We claim that

Z(n) = Z(Ren) = Z(Impn).

Indeed, this is seen as follows. Let J denote the linear automorphism of g given by
X > +/—1- X. Pull-back by J induces the real linear automorphism J* of gR given
by £ > & o J. As G is a complex Lie group, the adjoint action of G on g commutes
with J. Therefore, the coadjoint action of G on g commutes with J*. It follows
that Z(J*§) = Z(§) for all £ € gi. Now J* Ren = Re(in) = —Imn, from which we
see that Z(Ren) = Z(Imn). Since Z(n) = Z(Ren) N Z(Imz), the claim follows.

We now observe that Re 2 is the unique G-invariant two-form on G/Z(n) =
G/Z(Ren) given by Re Q;(Xz, ¥z) = [Ren](X,Y). This implies that Re Q2 is just
the Kostant—Kirillov form associated with the coadjoint orbit through Rez in
gr, with G viewed as a real semisimple Lie group. Likewise, Im 2 is the form
associated with the coadjoint orbit through Imn in gp. O

In the rest of this section we will prove the following theorem.
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Theorem 2.2. Let c € Lie(T), let n = B(c, ) € g* and let 2 be the holomorphic
Kostant-Kirillov symplectic form on G/Z(c) defined by (2.2).

The real symplectic form Re Q (respectively, ImQ2) on G/ Z(c) is exact if and only
if all eigenvalues of ad(c) are real (respectively, purely imaginary).

We will prove Theorem 2.2 through a number of lemmas.

Lemma 2.3. The centralizer 3(c) is stable under 6. Equivalently, ¢ N 3(c) is a real

Jorm of 5(c).

Proof. Write { for the Lie algebra of the maximal torus 7. Since TN K is a maximal
torus of X, we have

t=tNE+/—1(tNE).

Accordingly, we write ¢ = a + +/—1b, where a and b belong to tN ¢ Fix a
positive definite K-invariant Hermitian inner product (-,-) on g. Then ad(a) is
anti-Hermitian, hence diagonalizable with purely imaginary eigenvalues. Similarly,
ad(~/—1b) is diagonalizable with real eigenvalues. Since ad(a) and ad(~/—1b)
commute, they allow a simultaneous diagonalization. From this we see that ker(c)
is the intersection of kerad(a) and kerad(b). Since both a and b are #-stable, it
follows that 3(c) = kerad(c) is -stable. O

If g € G centralizes c, then g also centralizes the one—parameter subgroup
{exp(tc) | r € C} of G. The closure of this one-parameter subgroup will be denoted
by S. Clearly g centralizes S. In other words, we have Z(c) = Z(S).

It is well known that the centralizers of tori are connected reductive. More
precisely, Z{(c) = Z(5) is the Levi complement of a parabolic subgroup of G [4,
p. 26, Proposition 1.22], [3].

Fix a simple system A; of roots of the reductive group Z(c) relative to the
maximal torus 7 and extend it to a simple system A of roots of G relative to the
same maximal torus. Let B be the Borel subgroup of G defined by the simple system
of roots A. Then P = Z(c)B is a parabolic subgroup of G. Its Levi-complement is
Z(c), and its unipotent radical R, (P) is given by the roots in B whose supports are
not contained in A;. So P = Z(c)R,(P), and G = KB = K P. We agree to write
Zg(c) for K N Z(c), the centralizer of ¢ in K.

Lemma 2.4. The manifold G/Z(c) is real analytically a vector bundle over
K/ZK (C)

Proof. This is a consequence of basic results of Mostow [7]. A direct argument is
as follows.

The exponential map induces a holomorphic diffeomorphism from Lie(R,(P))
onto R, (P) ~ P/Z(c). Accordingly, we equip P/Z(c) with the structure of a
complex vector space. As kexpXZ(c) = expAdk)XZ(c) for X € R,(P) and
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ke KNP =K NZ(c), the action of K N P on P/Z(c) by left translation is linear
for this structure. Accordingly,

K xxnp P/Z(c)—> K/KNP =K/Zg(c)

has the structure of a real analytic vector bundle over K /Zk (¢).
The multiplication map induces a surjective and submersive real analytic map
K x P — G, which factors to a submersive real analytic map

KXKin—>G.

This map is clearly injective, hence a real analytic diffeomorphism. Therefore, the
induced map

K xgnp P/Z(c) > G/Z(c)

is areal analytic diffeomorphism as well. It realizes G/Z(c) as a real analytic vector
bundle over K/Zg(c). O

Lemma 2.5. Let Q be the holomorphic symplectic form on G/Z(c) defined in
(2.2). The K -orbit through e = eZ(c) is Lagrangian relative to Im Q (respectively,
Re Q) if and only if all the eigenvalues of ad(c) are purely imaginary (respectively,
real).

Proof. In Lemma 2.1 we established that Re © and Im Q are real symplectic forms
on G/Z(c). It follows from Lemma 2.3 that Ke >~ K/Zg(c) is a real form for
G/Z(c). In particular, K e has half the real dimension of G/Z(c). Hence it suffices
to establish the above assertion with the word Lagrangian replaced by isotropic.

It follows from (2.2) combined with (2.3) that the form Im Q is at € = e Z(¢) given
by

Im(Qz(Xz, Ye)) =ImB(c,[X,Y]), X,Yeg.

We write ¢ =a + +/—1b with a, b € t N &, as in the proof of Lemma 2.3. Since B is
real-valued on &, it follows that

Im(Q:(Xz, Y2)) = B(b, [X, Y])

forall X, Y e¢®.

If K e is isotropic, then taking into account that (€, €] = &, we see that B(Z,b) =0
for all Z € €, and hence also forall Z € g = ¢C. It follows that b= 0. Hence c =a €
tN ¢ and it follows that the eigenvalues of ad(c) are all purely imaginary.

Conversely, assume that all eigenvalues of ad(c) are purely imaginary. Then ¢ €
tN ¢, so that b = 0. It follows that K is isotropic at the point e. By invariance, K is
isotropic everywhere. This completes proof of the result involving Im 2. The proof
for Re 2 is similar. 0O
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Lemma 2.6. The K-orbit of ¢ = eZ(c) is Lagrangian with respect to Im Q if and
only if the form Im Q is exact.

Proof. As in the proof of the previous lemma, it suffices to prove the assertion with
the word Lagrangian replaced by isotropic.

By Lemma 2.4, the G-orbit Gé >~ G/L can be retracted onto the K-orbit of
Ke ~ K/K N L. Hence, the inclusion Ke — G/Z(c) induces an isomorphism on de
Rham cohomology. Therefore, the closed form w = Im 2 is exact if and only if its
restriction to Ke is exact. Now the lemma is a consequence of the following more
general result. O

Lemma 2.7. Let K be a compact Lie group and H C K a compact subgroup
containing a maximal torus of K. Let w be a K -invariant closed two-formon K /H.
Then w is exact if and only if w = 0.

Proof. We need to show that if w is exact, then w is identically zero.

Assume that w = d7. By integrating the left-translates [}’ over k € K with respect
to the Haar measure on K of total volume 1, we may assume that the form 7 is also
K -invariant.

Let Ty be a maximal torus of K contained in H and consider the natural fibration
w:K/To— K/H. The pull back

:=m"n

is a K-invariant one-form. Let e = eT. Then the evaluation 77(¢) is an Ad(Tp)-
invariant linear functional on the tangent space T:(K /Tp). Its complex linear ex-
tension is therefore an Ad(7y)-invariant C-linear functional on the complexification
T:(K/Ty) ®r C.

A basis for this complexification is given by the canonical images of root vectors
{Xo}acr, where R is a system of roots of K € relative to TO‘C. The Ad(Tp)-invariance
of 7j(¢) implies that 77(¢) = 0 on each of these root vectors, hence on T;(K/Tp). By
K -invariance, it follows that 7 = 0. Since 7 is a surjective submersion, this in turn
implies that n =0. O

Lemma 2.5 and Lemma 2.6 together complete the proof of Theorem 2.2. In view
of Lemma 2.1 this completes the proof of Theorem 1.2(a). For the remaining part
of the proof of Theorem 1.2, the following observation will be of fundamental
importance.

Lemma 2.8. The fibers of the fibration  : G/ Z{c) — G /P are isotropic for the
holomorphic symplectic form Q.
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Proof. Put e := eZ(c). By G-invariance, it suffices to show that €2; vanishes on the
tangent space at ¢ to the fiber ¥ ~!(eP) = PZ(c) = R,(P)e. In view of (2.2) and
(2.3) it suffices to show that

B, [X,Y]) =0

for all X,Y e Lie(R,(P)). By linearity it suffices to prove this identity for X, Y
contained in root spaces of R,(P). If [X, Y] =0, the identity is trivially valid, so
we may assume [X, Y] # 0. Then [X, Y] is contained in a root space for a root « of
P.Lett € T be such that r* 3 1. Then by G-invariance of B,

B(c,[X,Y]) = B(Ad(t™")c, [X, ¥])
= B(c, Ad®)[X, Y]) =t*B(c, [X, Y)).

The lemma follows. O

The rest of the paper will be devoted to the proof of Theorem 1.2(b), or rather its
generalization to the setting of real semisimple Lie algebras. We will proceed under
the assumption that all eigenvalues of ad(c) are real. The case with all eigenvalues
purely imaginary is treated similarly. Thus, Re is a real symplectic form on
G/Z(c) and K/Zg(c) is a Lagrangian submanifold for this form. Moreover, by
Lemma 2.8 the fibers of the fibration G/Z(c) — G/ P are Lagrangian for Re Q.

In order to facilitate the comparison with the theory of real semisimple Lie
algebras, we make a few more remarks about the real Lie algebra gg (see the proof
of Lemma 2.1). This algebra has a real Killing form which we denote by Bg.

Lemma 2.9. A4s maps g x g — C, the Killing forms B and Bg are related by Bg =
2Re B.

Proof. Let A:g — g be a complex linear map. Its complex trace is denoted by
Trc A. At the same time A defines a real linear endomorphism of gg. As such, its
trace is denoted by Trg A. It is straightforward to check that Trg A = 2ReTr¢ A.
Hence, for X,Y € g we have Br(X,Y) = Trg(ad(X) o ad(Y)) = 2Re Trc(ad(X) o
ad(Y))=2ReB(X,Y). O

If A € g we denote by X, the dual of A relative to Bg, i.e., A(Y) = Br(X,,Y)
for all Y € gg.

Lemma 2.10. ¢, =2XRey.

Proof. For every Y € g we have
BRr(2XReyn, Y) =2Ren(Y)=2Re B(c,, Y) = Br(c,, Y).

The result now follows from the non-degeneracy of Bg. O
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We assumed that all eigenvalues of ¢ = ¢, are real. Because of Lemma 2.10 it
follows that the element Xge 5 is real hyperbolic in the real semisimple Lie algebra
gr. in the sense of Section 6. Let B be a Borel subgroup of G containing 7 and
such that the roots of R,(B) are non-negative on c¢. Then the parabolic subgroup
P = Z(c) B corresponds to the parabolic subgroup P (Re n) introduced in Section 6.
Therefore, the results of that section apply to the present setting. In particular, the
following result is a special case of Theorem 6.1.

Theorem 2.11. Let n € g* be such that ¢ = c,, belongs to Lie(T) and such that
ad(c) has real eigenvalues. Then the projection

G/Z(c)y—> G/P

is a Lagrangian fibration with Lagrangian section K | Z x (n) relative to the symplec-
tic form Re ;. Moreover, there exists a unique symplectic isomorphism from this
Sfibration onto the cotangent fibration T*(G/P) — G/ P equipped with the Liouville
symplectic form, mapping K /| Zg (n) to the zero section.

Theorem 1.2(b) follows from this result.

3. BACKGROUND IN SYMPLECTIC GEOMETRY

In this section we will discuss some background from symplectic geometry. Let M
be a smooth manifold, and let 7 : Z — M be a fiber bundle whose total space Z is
equipped with a symplectic form . The bundle = is called Lagrangian if for each
point x € M the fiber 7 ~'(x) is a Lagrangian submanifold of Z. A section

s M—->Z

is said to be Lagrangian if the image s(M) is a Lagrangian submanifold of Z. If
m:Z — M is Lagrangian, then by application of the Darboux theorem, it follows
that for any point zp € Z there exists a Lagrangian section s of Z locally defined in
a neighborhood of my = 7 (z¢) and with s(mp) = zgp.

The following result is well known in basic symplectic geometry and can be
found in [2], Sect. 4.2. See also [9], where the result is established in the context of
Banach manifolds, with a useful review of the finite-dimensional case. A manifold
M will be identified with a submanifold of its cotangent bundle 7*M through the
zero section.

Theorem 3.1. Let n:Z — M be a fiber bundle whose total space Z is equipped
with a symplectic form Q2. Assume that:

(1) m has Lagrangian fibers;
(2) m admits a Lagrangian section s.
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Let p:T*M — M be the cotangent bundle of M equipped with the Liouville
symplectic structure a. Then there exists an open neighborhood U of M in T*M
and an open embedding ¢ :U — Z such that

(@) mop=ponU;
(b) p=son M;
(©) " () =o0.

If¢': U’ — T*Z is a second such embedding, then ¢’ = ¢ on an open neighborhood
of MinUNU"

Although this result is well known, we include a proof to prepare for our later
arguments leading to the proof of Theorem 6.1, see also Theorem 2.11. The point
is that there is a canonical way to define the map ¢.

We agree to write n for the dimension of M. Then s(M) is a submanifold of Z
of dimension n. Since this submanifold is Lagrangian, the dimension of Z must be
2n. The fibers of 7 have dimension n.

LetxeMandne T)M. Foreachz e 7 (x) we define a vector H,(2) e T,Z by
the requirement that

3.1 Q.(X, Hy(z)) =n{dn(2)X), VYXeT,Z.

Since dn(z) = 0 on T,7 ~!(x), which is a Lagrangian subspace of T, Z, it follows
that H,(z) belongs to this Lagrangian subspace. Hence H,(z) is tangent to the fiber
7~ '(x) at any of its points z. Accordingly, H, will be viewed as an element of
Vect(r ~! (x)), the space of vector fields on 7! (x).

We will use the flows of these vector fields to define ¢. The motivation for the
above definition is the following relation to Hamilton vector fields of functions that
are constant along the fibers of 7.

Lemma 3.2. Letxe M, p € T;M and let f:M — R be a smooth function such
thatd f(x)=n. Let f =n*(f) and let H r be the associated Hamilton vector field.
Then

Hy=H, on n_l(x).
Proof. This is an immediate consequence of the definitions of H,, and Hy. O

Corollary 3.3. Let x € M and n\,m € T*M. Then H,, and H,, commute as
vector fields on the fiber ! (x).

Proof. We select smooth functions f, :M — R with d fj(x) = 7n; and define
fi= 7r*(fj). Then Hy, f> = 0, hence {fi, f} =0 and it follows that Hy, and
Hj, commute. These vector fields are tangent to the fiber 71 (x), hence their
restrictions to the fiber commute. These restrictions equal H,, and H,, by the
lemma above. O
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Proof of Theorem 3.1. If n € T M we denote by ¢ — €' Hyg(x) the integral curve of
H, in 7 ~1(x) with starting point s(x). Its maximal interval of definition is denoted
by I,. There exists an open neighborhood U of M in T*M such that for each x € M,
the open set "M NU is star shaped and for each n € T NU the interval I, contains
(—2,2). We define ¢ : U — Z by

(32)  em=eMs(pm), neU.

Then ¢ is a local diffeomorphism at each point of M and coincides with an
embedding on M. Shrinking U if necessary, we may arrange that in addition to
the above, ¢ becomes a diffeomorphism from U onto an open neighborhood of
s(M) in Z. From the construction it is clear that (a) and (b) of Theorem 3.1 are
satisfied.

We will now establish (c). As this is a local statement, we may assume that there
exists a diffeomorphism f = (fi, ..., f,) from M onto an open subset of R”. Put
f=a*(f)=(fi,---, f»)- Then by Lemma 3.2 the Hamilton vector fields Hy, are
all tangent to the fibers of &, from which we deduce that Q(Hy,, H fj) =0, for all
1<i,j<n.

Define g: p(U) — (R")* by

33)  glem)=df(=m) "0, nel.

Ift = (11,..., 1) € (R")* we agree to write tf =to f =t1fi +--- + 1, f, and
E(,) =d(t f)(x) =t odf(x) =t1d fi(x) + -+ + t,d fu(x). Then

gi(e" o - oemfis(x)) = gj(eMeens(x)) = pr;d f(x) *e(x, 1) =1,

for (x, t) in a suitable neighborhood of the zero section in M x (R")*. From this we
see that Hy g; = §;;, so that Q(Hj,, ng) =§;; for all 1 < i, j < n. The functions
g; are constant on the Lagrangian submanifold s(M) of Z. Therefore, the vector
fields H,g, are tangent to s(M), and it follows that {g;, g;} = Q(Hy,, Hg;) =0 on
s(M). Now Hy {gi,8;} = {fx,{gi, &j}} = O by application of the Jacobi identity.
It follows that Q(H,,, H, D= 0 on a suitable neighborhood of s(M) in Z. We
conclude that 2 =3, df; A dg; on this neighborhood, by evaluation on the vector
fields Hy,, Hg;. Shrinking U if necessary, we may assume the identity to hold
on ¢(U). Hence, |y ) is the pull-back under (f, g) of the standard symplectic
form on f(M) x (R")*. Let F:T*M — T* f(M) = f(M) x (R")* be the canonical
symplectic isomorphism induced by f. Then for (c) it suffices to prove that the
following diagram commutes

T*M>U —% » oU)cZ
F\ (.8

f(M) x (R")*
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Let £ € U and put x = p(£). Then, by definition, F(§) = (f(x),d f(x)~1*£). On
the other hand,

(fv g)(fﬂ(s)) = (f(ﬂ(QO(é)), df_(x(s))—l*) = (f(x)’ df(x)_l*S),

by (3.3), and commutativity of the diagram follows.

It remains to establish uniqueness. Assume that ¢ satisfies the conditions of
the theorem. We will show that it must be given by (3.2) in a neighborhood of
the zero section. The cotangent bundle p:T*M — M is Lagrangian, with M as a
Lagrangian section. Hence, for n € T)M and & € p~l(x) = T*M, we may define
17,7 & eT; (p~ 1 (x)) as H,, but for the bundle p instead of . Using that ¢*Q =g,
it is an easy matter to check from the definitions that

do (&) Hy (&) = Hy(¢®)),

for all £ in a suitable neighborhood of M in T*M. For the associated flows in the
fibers p~'(x) and 7 ~!(x) this implies that

o et — ot 0.
A computation in local coordinates of M shows that e’ ﬁ’lé = & + tn. On the other
hand, ¢(0,) = s(x) = s(3r (7)), and it follows that

o(tn) =e'Mrs(p(m),

for all ¢ in any interval containing zero on which both expressions are well defined.
It follows that ¢ must be given by (3.2) on a suitable neighborhood of M in
T*M. O

4. REAL SEMISIMPLE GROUPS

In this section we recall some of the basic structure theory of real semisimple
Lie groups and their Lie algebras. As a basic reference for this material we
recommend [6].

Let G be a connected real semisimple group with finite center. The group G
has a maximal compact subgroup K. All such are conjugate and connected. The
Killing form B of g is known to be negative definite on & and positive definite on
the orthocomplement p of €. In particular,

41) g=t®p

as a direct sum of linear spaces. It is known that [, ¥] C ¢, [¢,p] C p and [p,p] C E.
The decomposition (4.1) is called the Cartan decomposition of g associated with the
maximal compact subgroup K. It is readily seen that this decomposition is Ad(K)-
invariant.

The map 6 : g — g givenby 6 =1 on £ and 6§ = —I on p is called the associated
Cartan involution. It commutes with the adjoint action of K. We define the bilinear
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form {-,-)ongby (X,Y) = —B(X,0Y). Then (-, -) is a K -invariant positive definite
inner product on g; in other words, Ad(K) acts by orthogonal transformations with
respect to it. We note that ad p consists of symmetric transformations.

It is known that the map (k, X) — kexp X is a real analytic diffeomorphism of
K x p onto G. Define :G— G by g(kepr) = kexp(—X), then it is readily
verified that 6 is an involution of G with derivative equal to the Cartan involution
6 of g. We agree to write 8 for §; this involution of G is also called the Cartan
involution assoctated with K.

Remark 4.1. We note that if G is a complex semisimple group, then it may be

viewed as a real semisimple Lie group with finite center. If K is a maximal compact

subgroup, then p = /—1 - £, and 6 is the involution associated with the real form &.
On the other hand, if G is linear, then G has a complexification G and

F:E@«/—l-p

is the Lie algebra of a maximal compact subgroup of GC.

Let a be a maximal abelian subspace of p. It is known that all such are conjugate
under K. For each linear functional A € a*, we put

4.2) g ={Xeg|[H X]=AH)X, YVH €a}.

Since a is abelian, and ad(H) is symmetric for (-, -}, for all H € qa, the adjoint
representation of a in g has a simultaneous diagonalization. It follows that g
decomposes as a finite direct sum of joint eigenspaces of the form (4.2). Let X
be the set of nonzero A € a* with 3(A) # 0. Then

9=009 P ge-

ae¥

It is known that (a, X) is a root system, which is possibly non-reduced. A root
a € X is called reduced if %a is not a root. The set ¥y of all reduced roots forms a
genuine root system in a*. For each o € T there exists a unique «p € Xy such that
a € {ag, 2a0}. We note that [gy, 98] C [ga+p] forall o, B € X.

A positive system for T is a subset I1 of ¥ such that £ = ITU (—I), and I
and —IT are separated by a hyperplane in a*, i.e., there exists a H € a such that
M= {aeX|a(Hd) > 0}. It follows that IT — [Ty := I1 N Ly defines a bijection
from the set of positive systems of ¥ onto the set of positive systems for Xj. Let
a8 be the complement in a of the union of all root hyperplanes kera for ¢ € X.
Then the connected components of a™# are called the open Weyl chambers of the
root system X. There is an obvious bijection between the set of all such chambers
and the set of positive systems for .

Clearly, go is the centralizer of a in g. As & = —I on a, it follows that gp is
invariant under 8. The centralizer of a in € is denoted by m. Since a is maximal
abelian in p, the intersection go N p equals a. Therefore,

go=mda.

520



Remark 4.2. In the notation of Remark 4.1, ¢ := +/—1 - a® a is a maximal torus of
g whose intersection with ¢ is a maximal torus of &. Moreover, a is the real subspace
of ¢ consisting of all points on which the roots of t are real. Let R be the set of
t-roots. Then restriction to a induces an isomorphism R — X. In particular, the
root system X is reduced in this setting. Accordingly, the root spaces for t coincide
with those for a. Finally, go =tandm=tNé¢=+/—1-a.

Fix a positive system T+ for . Let n be the sum of all positive root spaces gq,
fore € 7. Since 6 = —1I on a, we have

6(8a) = g—a;
for every o € . Hence,
g=0(n) ®goDn.
As B is the eigenspace of 6 for the eigenvalue 1, we see that

(“43) t=m& Y (X+06(X).

acrt Xegy

It now follows that
g=t@adn,

as a direct sum of vector spaces. The exponential map exp:g — G maps a and n
diffeomorphically onto closed subgroups A and N of G, respectively. Moreover,
one has the so-called Iwasawa dccomposition

4.4) G=KAN,
the multiplication map (k, a, n) —> kan being a diffeomorphism K x A x N — G.

5. PARABOLIC SUBGROUPS

We recall that a Borel subalgebra of the complexified semisimple Lie algebra g€
is by definition a maximal solvable subalgebra. A subalgebra of g€ which contains
a Borel subalgebra is said to be parabolic. It is well known that such a subalgebra
equals its own normalizer in gC.

A parabolic subalgebra of g is defined to be a subalgebra 8 whose complexifica-
tion BT is parabolic in g©. Such an algebra B equals its own normalizer in g.

A parabolic subgroup of G is defined to be a subgroup P which is the normalizer
of a parabolic subalgebra B of g. Being its own normalizer, B is the Lie algebra
of P. We proceed by describing the basic structure theory of parabolic subgroups
of G. Details can be found in, e.g., [81, p. 279.
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The algebra m + a + n = go + n is a parabolic subalgebra of g. It is known
to be minimal in the sense that it does not contain any strictly smaller parabolic
subalgebra. The associated minimal parabolic subgroup of G is given by

Po=MAN.

Note that this decomposition is compatible with the Iwasawa decomposition (4.4).
In particular, the multiplication map M x A x N — Py is a diffeomorphism.
Moreover, from the Iwasawa decomposition (4.4) it follows that

5.1) G=KPp.

It is known that every parabolic subgroup of G is conjugate to one containing Py.
The parabolic subgroups containing Py are finite in number, and may be described
as follows. Let

at:={H ea|a(H)>0,Va eI}

be the closed positive Weyl chamber in a. Given ¢ € a* we define

‘»B(C) = @ Ba-

aeX,a(c)20

Clearly, this is a subalgebra of g containing m @ a & n, hence parabolic. Moreover,

it depends on c¢ through the set I1(c) := {@ € T | a(c) > 0}. It can be shown that

every parabolic subalgebra of g containing m & a & n is of the form P(c) for some

¢ € a*. In particular, we see that these parabolic subalgebras are finite in number.
Let n(c) be the sum of the root spaces g, for & € [1(c). Then

P(c) =3(c) ®n(c).

As 3(c) 1s reductive and normalizes the nilpotent subalgebra n(c), this is a Levi
decomposition of P(c). In particular, n(c) is the nilpotent radical of P(c). Since
n{c) C n, the exponential map maps n(c) diffeomorphically onto a closed subgroup
N(c) of G. Let P(c) be the normalizer of 3(¢) in G, then we have the semi direct
product decomposition

P(c)=Z(c) x N(c).

In particular, N(c) is the unipotent radical of P.

Finally, we note that P(c) is the sum of the eigenspaces for the nonnegative
eigenvalues of ad(c). Now this definition can be given for any element ¢ € g which is
real hyperbolic, i.e., for which ad(c) diagonalizes with real eigenvalues. Moreover,
Ad(x)P(c) = P(Ad(x)c), for each x € G. It is known that every real hyperbolic
element is conjugate to an element of a*. From what we just said, it follows that
every algebra of the form P(c), with ¢ real hyperbolic, is a parabolic subalgebra
of g. Moreover, since all minimal parabolic subalgebras are conjugate, it follows
that every parabolic subalgebra arises in this way.
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We retain the assumption that c € a*. Let P = P(c) be the associated parabolic
subgroup of G. Since G/Z(c) >~ G x p P/Z(c), the natural projection

7:G/Z(c)—> G/P

gives the quotient manifold G/Z(c) the structure of a real analytic fiber bundle over
the real flag manifold G/ P, with fiber P/Z(c) = N(c).

We note that P contains Py, so that G = KP, by (5.1). It follows that the
inclusion map K — G induces a diffeomorphism K/KNP ~G/P.Now KNP =
KNPNBP=KNZ().Put Zg(c) = KN Z(c). Then

(52)  G/Z(c)=KP/Z() =K Xzge) P/Z(c) = K Xz4(c) N(©),

exhibiting G/Z(c) as a K -equivariant real analytic vector bundle over K/Zg(c) =
G/P.

From (4.3) it follows that the map X +— X + 60X induces a linear isomorphism
from n(c) onto &/¢ M 3(c). This implies that K /Zx (¢) is a submanifold of G/Z(c)
of half the dimension.

6. REAL FLAG MANIFOLDS

Let G be a connected real semisimple Lie group with finite center, and let A € g* be
a real linear functional. We write X, = B~1(}), ie.,

AY)=B(X,,Y), Yeg.

The element A is called real hyperbolic if ad(X,) € End(g) is diagonalizable with
real eigenvalues. From now on we assume A to be real hyperbolic.

From the discussion in the previous section we know that the element X is
conjugate to an element of the positive chamber in a. Thus, for the purpose of
studying the symplectic geometry of the coadjoint orbit through A, we may — and
will — assume that X, is contained in the positive chamber in a from the start.

Let Q = Q, be the Kostant—Kirillov symplectic form on the coadjoint orbit G - A.
The centralizer Z()) of A in G equals Z(X,), by invariance of the Killing form. Via
the natural G-equivariant diffeomorphism

G/Z(A)—> G -A,

the form 2 may be pulled back to a symplectic form on G/G(X). For convenience,
the latter form will also be denoted by Q.

With notation as in the previous section, we write n(1) = n(X,) and PQ) =
P(X,), and likewise N(A) = N(X;) and P(A) = P(X,). Then P(}) is a parabolic
subgroup of G with Levi decomposition P(A) = Z(A)N(A).

The projection

6.1) 7w:G/Z(R) — G/P(L)
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is a G-equivariant fibration with fibers equal to the G-translates of N(A) <>
G/Z(A). On the other hand, the cotangent bundle 7*(G/P(A)) comes equipped
with the natural Liouville symplectic form o.

In this section we will prove the following result.

Theorem 6.1. There exists a unique diffeomorphism
on:T*(G/P(W)) —> G/Z(A)
satisfying the following conditions:

(a) 7 o @, equals the projection of T*(G/ P()\));
(b) @x maps the zero-section of T*(G/P()\)) to K /Zg (A);
(c) 95 (822) = (0).

The proof of this result is based on the ideas of the proof of Theorem 3.1 and will
be given through a number of lemmas. We start by observing that the symplectic
form © on G/Z(X) is G-invariant. At the origin e = eZ () it is given by

(62)  Qa(Xg Yo) =A(X,Y]) = B(X,,[X, Y] =—-B(X,[X,, Y],

for X,Y eg.
The following lemma expresses that we are in the set-up of Theorem 3.1.

Lemma 6.2.

(a) The fibers of 7, defined in (6.1), are Lagrangian for 2.
(b) The submanifold K /Zg (A) — G/Z()) is Lagrangian for Q.

Proof. From (6.2) one sees that ; vanishes on n x n, so that T;(N(A)e) is
isotropic in T;(G/Z(})). We agree to write i = 6n and n(1) = On(1). From the
decomposition

g=n) @ 3(A) &n()

one sees that dimg/3(1) = 2 - dimn. Hence, the orbit N(A)e is Lagrangian in
G/Z()). By equivariance, the fibers gN(A)e are Lagrangian as well. This estab-
lishes assertion (a).

For (b) we observe that for X, Y € ¢ we have

Q(X,Y)=BX,,[X,Y)=B(#X,,[6X,6Y])
=—B(X,,[X,Y) =—-Q:(X,Y).

This implies that T;(K/Zg (X)) is isotropic in T3(G/Z())). By K-invariance,

K/Zg (1) is isotropic in G/Z(A). In the text below equation (5.2), we observed
that K /Zg () has dimension equal to half the dimension of G/Z(»). O
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We proceed by following the ideas of the proof of Theorem 3.1. Our first goal
is to define suitable vector fields along the fibers of the fibration (6.1). The natural
projection G — G/P () induces an isomorphism from g/J3(1) onto the tangent
space T, p)(G/ P (1)) which we use for identification of the two spaces.

Let n € (g/B(1))* and n € N(X). Since 2,z is non-degenerate on T,,:G/ G (X) we
may define a tangent vector H, ,(né) = Hy(ne) € T,:G/Z(A) by

(6.3)  S2:(Z, Hy(ne)) = n(dn(né)z),

for all Z e T,,;G/Z()»). Viewing n as an element of Te*P(x)(G /P (X)), we see that
this tangent vector coincides with the vector H,(né) defined in (3.1). In particular,
H, (né) is tangent to the fiber N (1)é.

If X is a homogeneous space for G, and g € G, we denote by [, the left
multiplication x > gx on X. For the space G/P(A) we note that dl,(eP(})) is a
linear isomorphism from g/ (1) onto T,p;)(G/P(X)). Given n € (g/B(A))" and
g € G, we put

g-ni=dlg(eP(W) "n=nodl(eP) "

Lemma 6.3. Let g € G and n € (g/'B(A)*. Let Hg.;, € Vect(gN (A)e) be defined
as in (3.1), for the bundle n :G/Z(\) - G/P()). Then

H, ,(gney=dl,(eYHy(ne), neN().

Proof. This is a straightforward consequence of the G-invariance of € and the
G-equivariance of the projection map 7 : G/Z(A) — G/P(A). O

At a later stage the situation that g =m € P()) will be of particular interest to
us. As left translation by P()) fixes the element e P(A) of G/P(X), we see that
(m, n) > m - 5 defines an action of P(A) on (g/P\))* = T.poy(G/P(X)).

Lemma 6.4. The action (m,n) — m - n of P()) on (g/PB(A))* is induced by the
adjoint action of P(A) on g.

Proof. Let pr: G — G/P()) be the natural projection and for m € P(}), let
Cm:G — G denote the conjugation map x > mxm~!. Then proCy = I o pr.
Differentiating this expression at the identity element, we see that dl,,(eP(}) €
End(g/P(A)) is induced by dC,,(e) = Ad(m). The result follows. O

We will now derive a formula for the vector field H, along N(A)e that will allow
us to understand the global behavior of its flow.

Lemma 6.5. Let n € N(). The map n v Hy,(né) is a linear isomorphism from
(g/P(R)* onto T,:(N(X)e).
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Proof. Since ,; is non-degenerate, the map is injective. The expression on the
right-hand side of (6.3) vanishes for all Z € T,,;(N(A)e). Since T,;(N(A)e) is
Lagrangian for the form €,; it follows that H,(ne) belongs to T,z(N(A)e). The
result now follows for dimensional reasons. (1

For each point n € N(A) the natural map n — née is an embedding of N(1) onto
the closed submanifold N(A)é = w~!(eP (1)) of G/Z(x). The derivative of this
embedding is a linear isomorphism from 7, N () onto 7,z N (A)e through which we
shall identify these spaces.

Since n(A) and P(A) are perpendicular for the Killing form B, the map X —
—B(X, ) induces a linear map

64) Vv,  a)— (g/B0)"

As B is non-degenerate, the map (6.4) is a linear isomorphism onto. Given V € n()
we agree to write

Hy(n) = Hyy(né), neN(Q),

viewed as an element of 7, N (). Accordingly, Hy becomes a vector field on N(A).
The following lemma gives an explicit formula for this vector field. It involves the
endomorphism

(65) TA = ad(X,\)In(,\) € End(n(k))

As the roots of n(A) are positive on X,, this endomorphism is invertible. From (6.2)
we see that

(6.6) Q:(X +3(0), Y +3(0) =—-B(X, T,.Y),

forall X,Y eg.

Lemma 6.6. Let V € n()). Then for eachn € N()),

(6.7)  Hy(n)=dl,(e)o T, 0 Ad(n) =1 (V).

Proof. Let 7 = ny. From (6.3) it follows that for every X € g we have

Q: (X + PR, Hy(®) =n(X + PW)
= —B(V, X).

On the other hand, since H,(e) = Hy (e) + PB(}) it follows from (6.6) that
Q:(X + PO, Hy(®) = —B(X, T Hy (e)).

Comparing the two equalities, and using that the Killing form is non-degenerate,
we find that

(6.8) Hy(e)=T'V.
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This establishes (6.7) for n =e.
To establish the formula in general, we observe that from Lemma 6.4 it follows
that for every n € N(A) we have
n-Ivl=ny o Adm) ™" =nagmv-

1

From Lemma 6.3 with g =n~' we now infer that

H,, (né) = H,, @).

Ad(m)—1v
Therefore,

Hy(n) =dly(e)Hpgmy-1y(€) =dln(e) o T 0 Ad) 1 (V). O

Proposition 6.7. For every pair Vi, Vo € n(}), the associated vector fields Hy,
and Hy, in Vect(N (L)) commute. Moreover, the flows of these vector fields are well
defined as maps R x N(A) — N(A). The associated map

V > exp(Hy)en
induces a diffeomorphism from n(A) onto N(A).

Proof. The first assertion follows from Corollary 3.3 applied to the bundle
n:GJZ(\) — G/P(L).

Let now V € n(A). In our study of the flow of the vector field Hy € Vect(N (1))
formula (6.7) will play a crucial role. Let hy denote the pull back of the vector field
Hy under the exponential map exp:n(A) — N(1). Thus,

(6.9)  hy(U)=dexp(U) 'Hy(expU).
Now
(6.10)  dexp(U) = dlexpu(e) o [I + R(ad U)],

where R is the analytic function R — R given by the convergent power series

_l—e™ . (—)"
Ry =— _l_g(n+l)!'

Since n(A) is nilpotent, there exists a smallest positive integer Ng such that
(ad U)YNo+1 = 0 for all U € n(A). It follows that formula (6.10) is also valid with
the polynomial
No
(=1)"
R(t) = —_
® Z (n+1)!

n=1

Combining (6.7), (6.9) and (6.10), we see that the vector field Ay on n(}) is given
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by

hy(U)=[1+R@dU)] ' oT oe™ Y (V)
=V +p(adU)(V),

with p, = p € R[t] a polynomial divisible by #; see (6.5) for the definition of 7;.
We recall that, by assumption, the element ad X; diagonalizes with real eigenval-
ues. Let

V<V << Uy

be the positive eigenvalues, and let n(v;) be the eigenspace associated with
the eigenvalue v;. Let d; be the dimension of this eigenspace. The sum of
the eigenspaces n(v;) equals n(i). Accordingly, we fix a basis of eigenvectors
Vi,..., V, forad X, in n(d), and put n; = RV;. By choosing a suitable numbering
we may arrange that for each k,

@n(v,-): @ n;.

i<k J<d)+-+dy

Given 1 < k£ < n, we put

nzk =Py

jzk

In addition, we put nxx = O for k£ > n. The subspaces n, ngi and n of n(}) are
defined in a similar fashion.

For 1 < j < n, we denote by pr; the projection map n(i) — n; along the
remaining summands n;, i # j. Also, we define pry; =35, pr;. The projections
P-4, pr¢i and pr_, are defined in a similar fashion.

By the Jacobi identity, ad X, acts on [n(v;), n(v;)] as the scalar multiplication
through v; + v;. Hence, for each k > 1,

[n(A), ] C sy

Let V € n(A). Then the integral curve r i U (¢) of the vector field Ay with initial
point U (0) = Uy is determined by the initial value problem

6.11) U'(t)=V+p(adlU®])(V), U@©)=Up.

For the component U, := pr; oU in n| the equation becomes
Uity =pr vV, U(0)=pr;(Up).

Indeed, p{ad U)V has its values in n..|. The equation for U; has the solution
Ui(t) =1pr V +pry (Vo).
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which is linear in 7. The remaining components may now be obtained by a
recurrence procedure and integration. More precisely, let k > 2, assume that U; :=
pr; oU has been solved for each 1 < j <k — 1, and put

U= Uj.

j<k
Then Uy is determined by the initial value problem

{ Up() =pr V +priop(adlU )I)(V) = pr V + pri op(ad[U < (D)])(V),
Uk (0) = pr; (Up).

This equation may be solved directly by integration. By induction one sees that the
integral curve is defined for all + € R and is in fact a polynomial function of ¢.

For the final part of the proof it is important to make the following observation.
If V € nyy, then the integral curve U (1) satisfies

(6.12) U@ —Uy—1V €nag

for all 7 € R. Indeed, this follows by applying the projection pr, to the constituents
of the equation (6.11) and solving the resulting equation.

The vector fields h; := hvj, where 1 < j < n, form a collection of commuting
vector fields for which the flows are defined globally. Consequently, the associated
flow maps (¢, c¢) — e'"'ic are smooth maps R x n(A) - n(A). Let 1 <k <n. It
follows from (6.12) that

(6.13)  prg ety =prgpx +tVa,

for all x € n(X) and ¢ € R. Since the vector fields #; commute, the map ¢ :R" x
n(A) — n(3) given by

o, x) = e o oenhn(x),

defines a smooth action of (R, +, 0) on n(1). It follows by repeated application of
(6.13) that

pry 0O, th, .o, ta, X) =P X 4+ 1 Vi,

for all #,...,1, € R and x € n(1). We will use this observation to show that the
action @ is proper.

For the proof of'this, it is convenient to have the following notation. For a compact
subset C C n(A) we write

T(C) :=prga{p "(C)NR" xC) = {teR"|3ceC: o, c)eC}.

For proving properness of the action, it suffices to show that for every compact
subset C C n(1), the set T(C) defined above is bounded. Indeed, this implies that
¢ 1(C) NR™ x C is compact. For | <k < n, let ¢, : R — R* be projection onto
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the first coordinates. By induction on & we will show that for every compact set
C C n(d) the set w4 (T (C)) is bounded.

First, let k = 1, and let r € T(C). Then there exists some ¢ € C such that ¢(z,¢) €
C. Since

prye(t,c)=pric+1nVy,

it follows that 7, V; belongs to the vectorial sum — pr,(C) + pr;(C), which shows
that 7<) (T (C)) is bounded.

Next, let 1 < k < n, and assume that pr, (7 (C)) is bounded for every compact
subset C C n(A). Let t € T(C). Then there exists a ¢ € C such that ¢(z,c) € C. The
element (1, ..., #;) lies in the subset

S :=clpr (T(0))
of R*, which is compact by the inductive hypothesis. It follows that

9O, fit 1, ... tn,0) =T e TGt )
lies in the compact subset

C = {e”"hl e Rk | (t,c) e S x C} C n(A).
Now

pr<k+1 <p(0, eyl oo ns C) = pr<k+1 C~+ try Vk+[,
from which we see that #11Vi1 belongs to the vectorial sum —prg;(C) +
prei+1(C"). From this we conclude that 7z +17 (C) is bounded.

We now come to the final assertion. It follows from the above that the map

¥ :R” — n(})
defined by t — ¢(z, 0) is proper. Moreover, since at every point the vector fields
hi, ..., h, are linearly independent, it follows that ¥ is a local diffeomorphism.
Therefore, i has open and closed image, hence it is surjective onto n(1). Moreover,
the fibers of i are finite and discrete. Hence, ¥ is a covering map. Since n(A) is
simply connected, it follows that i is a diffeomorphism from R” onto n(1). We
consider the linear bijection

7:n(A) - R”

given by V =3, 7(V);V;. By linearity of the map V +> hy it follows that for all
Ven(d),

exp(hv)(0) =exp(t(VDhi +--- + 1(Va)hy ) (0) = ¢ (z(V), 0).
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This implies that the map defined by V +> exp(hy)(0) is a diffeomorphism from
n(2) onto n(x). Since hy is the pull back of Hy by the diffeomorphism exp: n(3) —
N (), it follows that

eV =expoetV oexp!.

Hence, the map defined by V > ef/V ey is a diffeomorphism from n(A) onto N(1).
This completes the proof of the proposition. O

Corollary 6.8. The map ®:K x (g/BAY* = G/Z()) given by
Ok, n) = kexp(H,)é

induces a K ~equivariant diffeomorphism of fiber bundles
@K xzy (8/BD))" > G/ZM).

Here the action of Zk(X) on (g/B(A)* is induced by the adjoint action of Zk (1)
on g.

Proof. The map & is the composition of the diffeomorphism

P:K x (g/PA)) —> K x N(A)eé
defined by (k, ) > (k, exp(H,)e) and the submersion

j K x NWe—> G/Z(A)
defined by (k,né) — kne. The latter map factors to a diffeomorphism K xz, )
N()é — G/Z()). The quotient K Xz, ) N(1) is defined by using the left action
of Zx (L) on N(\)e. It follows from Lemma 6.3 that for all m € Zg (1) we have

Im o exp(H;) = exp(Hm.p) 0 I
on N (A)e. This implies that

P(km, n) = Sk, m - 1),

so that ® induces a diffeomorphism K xzx ) @/ PBA)N* - K xz, oy NQVe. In
view of Lemma 6.4 this completes the proof. O

The action of K on G/ P ()) naturally induces an action of K on the total space of
the cotangent bundle 7*(G/P (1)) through symplectomorphisms for the Liouville
symplectic form o on T*(G/P(1)). In particular, the stabilizer Zx(A) = K N P(})
acts linearly on the cotangent space of T.px)G/P(}) at eP(A). The latter is
naturally identified with (g/93(1))*. By Lemma 6.4 the resulting action of Zg (1)
on (g/P(A))* coincides with the one induced by the adjoint action of Zx(3) on g.
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The map defining the action of K on 7*(G/P(})) induces a submersion
K x (g/PBW)" — T*(G/P(H))

which factors to an isomorphism of vector bundles

Ui K xzea) (8/BM)" S TH(G/PR)).

We will complete the proof of Theorem 6.1 by showing that the bundle isomorphism
gr = ®r oW TG/ P(V)) —> G/Z (W)

satisfies the properties of the theorem.

Completion of the proof of Theorem 6.1. Since K N P(A) = Zkx(}) and G =
K P(A), the inclusion map K — G induces a diffeomorphism K/Zg(A) —
G/P()), whose inverse will be denoted by 5. Let j: K/Zg(X) — G/Z(A) be the
embedding induced by the inclusion map; then s = j o § is a section of the bundle
w:G/Z(A)—> G/P(AL).

Let x e G/P()) and £ € T}(G/P(L)). Fix k € K such that kZg (1) = s(x) and
define n :=dli (e P(A))*&. Then

Wik, n) =k-n=§,

so that

@r(§) = @ ([k, nD)
= kexp(H,)e
= exp(Hy.p)ke
= exp(Hg)s(x).

It follows that ¢ = ¢, equals the map defined by (3.2), for the bundle n : G/Z (1) —
G/ P. Moreover, in view of Lemma 6.3, Proposition 6.7 and Corollary 6.8, the proof
of Theorem 3.1 works with U = T*(G/P(})); in particular, all appearing flows of
vector fields are defined without any restriction on their domains. This establishes
conditions (a), (b) and (¢) of Theorem 3.1 with U = T*M and ¢(U) = G/Z(}\).
From these, conditions (a), (b) and (c) of Theorem 6.1 follow. Uniqueness of ¢,
follow by the arguments of the proof of Theorem 3.1 that are valid without any
restrictions on domains. O
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