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Abstract: Let G/H be a reductive symmetric space of split rank one and let K be a maximal compact subgroup
of G. In a previous article the first two authors introduced a notion of cusp forms for G/H. We show that the
space of cusp forms coincides with the closure of the space of K-finite generalized matrix coefficients of dis-
crete series representations if and only if there exist no K-spherical discrete series representations. Moreover,
we prove that every K-spherical discrete series representation occurs with multiplicity one in the Plancherel
decomposition of G/H.
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1 Introduction

By refining a suggestion of M. Flensted-Jensen, the first two authors introduced a notion of cusp forms for
reductive symmetric spaces of split rank one in [4]. For reductive groups of split rank one this definition of
cusp forms coincides with Harish-Chandra’s definition. It further generalizes the definition of cusp forms
for hyperbolic spaces given in [1, 2]. The definition of cusp forms does not straightforwardly generalize to
reductive symmetric spaces of higher split rank as the cuspidal integrals are not always convergent; see [11,
Section 4].

Let G/H be a reductive symmetric space of split rank one. We write C(G/H) for the space of Harish-
Chandra-Schwartz functions on G/H. In [4] a class Py of minimal parabolic subgroups is identified such
that the cuspidal integrals

Rop@):= [ demdn (g<0)
No/NonH
are absolutely convergent for every Q € Py and ¢ € C(G/H). Here N is the unipotent radical of Q. A function
¢ € C(G/H) is said to be a cusp form if Ro¢p = 0 for all Q € Py. Let Ccusp(G/H) denote the space of cusp forms
and let Cqs(G/H) be the closure in C(G/H) of the span of K-finite generalized matrix coefficients of discrete
series representations for G/H. It is shown in [4, Theorem 8.20] that

ecusp(G/H) < C‘zds(G/H)-
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Let K be a maximal compact subgroup of G so that K n H is a maximal compact subgroup of H. For a finite
set 9 of irreducible unitary representations of K we write C(G/H)g for the subspace of C(G/H) of K finite
functions with K-isotypes contained in 9. In [4, Theorem 8.4] it is established that

Cas(G/H)g := Cas(G/H) N C(G/H)y
admits an L?-orthogonal decomposition
Gds(G/H)S = e(:usp(G/H)S ® eres(G/H)S,

where Cres(G/H)g is spanned by certain residues of Eisenstein integrals defined in terms of parabolic sub-
groups in Py.

It is a fundamental result of Harish-Chandra that for reductive Lie groups no residual discrete series
representations occur, i.e., if G is a reductive Lie group, then

Cds(G) = Ceusp(G); (1.1)

see [12], [13, Thm. 10], [14, Sections 18 and 27] and [16, Thm. 16.4.17]. In [4, Theorem 8.22] the following
criterion was given for the analogue of (1.1) for reductive symmetric spaces of split rank one:

Cres(G/H)X = {0} implies Ceusp(G/H) = Cas(G/H). (1.2)
The main result of this article is that this is actually an equivalence.
Theorem 1.1. There exist no non-zero K-invariant cusp forms, i.e.,
Ceusp(G/H)¥ = {0}. (1.3)

Moreover, the following assertions are equivalent:
(i) ecls(G/H) = ecusp(G/H)-
(i) Cas(G/H)X = {0}.

Note that for the group case equality (1.3) is valid without any assumptions on the split rank of the group,
which is a result of Harish-Chandra [12, Lemma 36].

The analysis needed for the proof of Theorem 1.1 is further used to prove the following theorem, which
confirms some special cases of the multiplicity one result of [10, p. 3, Theorem 3].

Theorem 1.2. Let G/H have split rank one. Every K-spherical discrete series representation occurs with multi-
plicity one in the Plancherel decomposition of G/H.

The article is organized as follows: We start by introducing the necessary notation in Section 2. In Sections 3
and 4 we set up the machinery needed for the proof of Theorem 1.1. The proof is given in Section 5. Finally,
Theorem 1.2 is proved in Section 6.

2 Notation and preliminaries

Throughout the paper, G will be a reductive Lie group of the Harish-Chandra class, ¢ an involution of G and H
an open subgroup of the fixed point subgroup for 0. We assume that H is essentially connected as defined
in [3, p. 24]. The involution of the Lie algebra g of G obtained by deriving o is denoted by the same symbol.
Accordingly, we write g = h @ g for the decomposition of g into the +1- and —1-eigenspaces for o. Thus, h is the
Lie algebra of H. Here and in the rest of the paper, we adopt the convention to denote Lie groups by Roman
capitals, and their Lie algebras by the corresponding Fraktur lower cases.

We fix a Cartan involution 0 that commutes with o and write g = ¢ @ p for the corresponding decomposi-
tion of g into the +1- and —1-eigenspaces for 6. Let K be the fixed point subgroup of 6. Then K is a o-stable
maximal compact subgroup with Lie algebra . In addition, we fix a maximal abelian subspace a, of p N g and
a maximal abelian subspace a of p containing a,. Then a is o-stable and

a=aqg®ap,
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where a, = a nh. This decomposition allows us to identify a3 and a’,; with the subspaces (a/h)* and (a/q)*,
respectively, of a*.

Let A be the connected Lie group with Lie algebra a. We define M to be the centralizer of A in K. The set
of minimal parabolic subgroups containing A is denoted by P(A).

If Q is a parabolic subgroup, then its nilpotent radical will be denoted by Ng. Furthermore, we agree to
write Q = 6Q and Nq = 6N(. Note that if Q € P(A), then MA is a Levi subgroup of Q and Q = MANj, is the
Langlands decomposition of Q.

The root system of a in g is denoted by X = Z(g, a). For Q € P(A) we put

2(Q) :={a € X: gq S ng}.

Let Z4(a,q) denote the centralizer of a4 in g. We define the elements pq and pq, of a* by

1 1
pa(+) = 5 tr@d(+)ln,) and  pop(+) =5 tr@d()lngnzg(ay)-

We say that Q is h-compatible if
(a,pq,p) =0 forall a € £(Q).

We write Py (A) for the subset of P(A) consisting of all h-compatible parabolic subgroups.

3 t-spherical cusp forms

Let (1, V;) be a finite-dimensional representation of K. We write C*°(G/H : 1) for the space of smooth func-
tions ¢ : G/H — V; satisfying the transformation rule

d(kx) = 1(k)p(x) (k€ K, x € G/H)

and we write C(G/H : 1) for the space of ¢p € C*°(G/H : ) that are Schwartz (see [4, Section 3.1]).

Let W(aq) be the Weyl group of the root system of g in a,. Then W(a,) can be realized as the quotient
W(aq) = Ng(aq)/Zg(aq). Let Wgnp(ag) be the subgroup of W(a,) of elements that can be realized in Ngnp(aq).
We choose a set W of representatives of W(aq)/Wgnm(aq) in Nx(aq) N Nx(ap) such that e € W. This is possible
because of the identity

Ni(ag) = Ng(ag) NNk (ag))Zk(aq);
see [15, top of p. 165].
Let
ag := ﬂ ker(a)
aeznay

and define

mg 1= Zg(aq) N ag.
Let mg, be the direct sum of all non-compact ideals in mg and let My, be the connected subgroup of G with
Lie algebra mg,. We define 7 to be the restriction of T to M and write T%I for the subrepresentation of 7, on
(V¢)MonnK We further define

Ama(1) := €D COM/MnvHV 1 T5)).
vew

We equip A2 (1) with the natural Hilbert space structure and note that it is finite-dimensional.
Given v € W and Q € P(A), we define the parabolic subgroup Q" € P(A) by

Q' :=vtaw
Let Q € Py(A). For ¢ € C(G/H : 7) define Hq,r¢ : A — Apm,2(7) to be the function given by

(Ho,rp(a))y(m) = aPePob J p(mavn)ydn (veW, meM, ac Ay).
NQV/HHNQV
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By [4, Theorem 5.12], the integral is absolutely convergent for every ¢ € C(G/H). Furthermore, the map
Hao,r : €(G/H : 1) = C*®(Aq) ® Apy,2(1) thus obtained is continuous. We call ¢ € ¢(G/H : T) a T-spherical
cusp form if for every Q € Py (4),

Hor¢p = 0.

We will now describe the relation between the 7-spherical cusp forms and the cusp forms defined in the
previous section. Let 9 be a finite subset of K. For a representation of K on a vector space V, we denote the
subspace of K-finite vectors with isotypes in § by Vg. Consider C(K) equipped with the left-regular represen-
tation of K. Define V; := C(K)y, i.e., let V; be the space of K-finite functions on K whose isotopy types for
the left regular representation are contained in 9. We define 7 to be the unitary representation of K on V;
obtained from the right action. Then there is a canonical isomorphism

¢:C(G/H)g — C(G/H : 1)

given by
cp(x)(k) = ¢p(kx) (¢ € C(G/H)g, k € K, x € G/H).
By [4, Remark 6.3] we now have
¢(Ceusp(G/H)g) = Ceusp(G/H : T).

4 A formula for Hq

In [5] Eisenstein integrals were constructed which were then used in [4] to derive a formula for Hg, ;. This
formula is very useful to analyze the relation between cusp forms and discrete series representations. We will
now recall this formula and all relevant objects. For details we refer to the two mentioned articles.

We fix Q € Py(A). We further choose a minimal o6-stable parabolic subgroup Py containing A, with the
property that £(Q) Nn 06Z(Q) < Z(Py). (It is easy to see that such a minimal g6-stable parabolic subgroup
always exists.)

Given ¢ € Ay (1), A € a;C and v € W, we define the function ¥, 9,1 : G — V; by

Py,ga(kman) = at-Pepaey (k) (m).

Let w, be anon-zero density on h/h N Lie(v-1Qv).If —(Re A, a) is sufficiently large for every a € £(Q) N 06%(Q),
then for each x € G and v € W the function

h i Por(xhv ) dly(e) w

defines an integrable V;-valued density on H/H n v~1Qv (see [5, Proposition 8.2]). For these A we define the
Eisenstein integral E-(Q : ¢ : 1) € C*(G/H : T) by

E-(Q:y: )(x):= ) J Yvoa(xhv ) dly(e) M w, (x € G).
VeW HiHAv-1Qv

The function A — E;(Q : ¥ : A) extends to a meromorphic C*°(G/H : t)-valued function on a;c. This defini-
tion of Eisenstein integrals coincides with the definition in [5, Section 8]. We write E;(Q : -) for the map

Am2(T) 3 Y = E-(Q: 3 : ).

We define

agt =a3"(Po) := {A € ag : (A, a) > O forall @ € X(Po)}.

Let Sq,r be the set of A € ag™ + iay such that E-(Q : —-) is singular at A. By [4, Lemma 5.4], this set is finite
and contained in ag*. It follows from [4, Theorem 8.10 (b)] that all poles of E-(Q : —-) are simple.

Let £ be the unique vector in a;* of unit length with respect to the Killing form. For a meromorphic
function ¢ : a; — Cand a point y € a; we define the residue

Res ¢(A) := Res p(u + z¢).
A:H z=0
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Here, z is a variable in the complex plane, and the residue on the right-hand side is the usual residue from
complex analysis, i.e., the coefficient of z~! in the Laurent expansion of z +— @(u + z¢&) around z = 0. For
u € Sg,r wedefine Res;(Q : u) = Res;(Q : u : -) to be the function G/H — Hom(Apm,>(7), V) given by

Res;(Q: p: x)(¥) = —/Egi EQ: ¢ : )(x).
By [4, Theorem 8.10 (a)],

Rest(Q: p)() € Cas(G/H : T) (M € S0, P € Am,2(7)). (4.1)
Following [4, Section 4.1], we define for ¢ € C2°(G/H : T) the smooth functionJo,-¢p : Aq — Awm,2(7) that
is determined by the equation
(Jor9p(a), ¥) :13{8 I J (PO, Er(Q : P : ~A)(x))a" dx dA
evtiay G/H

for every 1 € Ay (1) and a € A,. Here vis any choice of element of a;; the definition is independent of this
choice. Themap Jq r : CZ°(G/H : T) — C*(4,) ® Apn,2(7) extends to a continuous map

Jor: C(G/H : T) — C®(Aq) ® Ap,2(T);

see [5, Proposition 7.2]. The image of Jq,; is contained in the tempered A,>(7)-valued functions on A, and
is called the tempered term of the Harish-Chandra transform. This map has the following properties.

Proposition 4.1 ([4, Corollaries 8.2 and 8.11]). (i) Assume ¢ € C(G/H : 7). Then for every ) € Ay,>(T) and
a € Aq one has
(Horp(a) - Jo p(a), ) = ) a* j (p(x), Resc(Q : p = x)()) dx. (4.2)

ueSqr G/H

(i) Cas(G/H : T) = ker(Jg.1).

5 Proof of Theorem 1.1

From (1.2) it follows that (ii) implies (i) in Theorem 1.1. Moreover, if (1.3) holds, then (i) implies (ii). It remains
to prove (1.3).

Let Q € Py(A). Let further 1x be the trivial representation of K and let ¢p € C45(G/H : 1g) = Cas(G/H)X.
Then Jq,1,¢ = 0. Hence Hq, 1, ¢ = 0 if and only if the right-hand side of (4.2) vanishes for all a € A, and all
Y € Apm,2(1k). The latter is true if and only if

| (@00, Res1,(Q: i) dx =0 (€ S ¥ € Ao (L),
G/H
i.e., Hg,1,¢ = 0 if and only if ¢ is perpendicular to
Vq := span{Resy, (Q : u)(¥) : 4 € Sq14, P € Anm2(1x)}.
To show (1.3) it thus suffices to prove the following proposition.
Proposition 5.1. V = Cqs(G/H)X.

To prove the proposition we will study the orthogonal projection (with respect to the inner product on
L*(G/H : 1g))
Tys : C°(G/H : 1k) — Cas(G/H : 1k).

To this end we first recall a formula for Tys.
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Let the minimal o6-stable parabolic Py be as before (see Section 4). For A € “;«: and Y € Ay(1k) we
define the Eisenstein integral E1,(Po : Y : A) = E(Po : ¥ : A) like E-(Q : ¥ : A) in the previous section, but
with T and Q replaced by 1 and Po = 6Py, respectively. Note that in order to replace Q by Py in this construc-
tion, we need to replace the space Ay, (1) by

Aty 2(1) := @D C®(Mo/Mo nVHV™ : Tyy,),
veWw

where Ty, is the restriction of T to My N K. However, in view of [4, Lemma 8.1] applied with vHv~! in place
of H, for v € W we have
Am,2(T) = Ap,,2(T).

We normalize these Eisenstein integrals as in [7, Section 5], and thus we obtain the normalized Eisenstein
integral
E°(Po:y:A) e C°(G/H : 1)

for ¢ € Apn,2(1k) and generic A € a;«:-
We define
Aj = {aeA:a*<1forall a € £(Py)}.

For w € Wlet 6 € Ap,2(1k) be the element satisfying
(W, 6w) =yYw(e) (P € Ay2(1k))-
Observe that Ay, (1k) is spanned by {8, : w € W}. For w € W and generic A € a;C we write
Oy(A: ) =p, ,A:-): A; — End(C) =C

for the function introduced in [6, Section 10]. From [6, (53) and Remark 6.2] it follows that ®,,(A, a) depends
holomorphically on A for A € ag" + iay. Moreover, it can be seen from [6, (15) and Proposition 5.2] that
®y(A: a)isreal forA € ag’.

Let A = {—a} be the set of simple roots in £(Pg). From [9, Theorem 21.2 (c)] (see also [9, Definition 12.1])
it follows that Tqs coincides with the operator T, defined in [8, (5.5)]. In our setting it is straightforward
to rewrite this equation and thus obtain the following formula for Tys: For ¢ € C(G/H : 1), w € W and

aeA;,

Tasp(w'aw) = J $(0 Y Res(@y (A : Q- (Po : 8, 5 -A)(X) dx. (5.1)
GIH pes K

Note that Tys¢ is completely determined by this formula as KA;WH is a dense open subset of G.
We now compare the residues occurring in (5.1) to the residues Res,,(Q : u). This is done in the following

lemma.

Lemma 5.2. Theset S := Sq,1, is equal to the set of A € ag* + ia; such that
A @A a)E (P : 6y : —A)

is singular at A for some w € W and a € A;. The poles which occur are simple. Moreover, for every ji € S there
exists a constant ¢, > 0 so that for every w € Wand a € Aq,

I}SE(CDW(A :@)E°(Po : 8y : —A)) = cu @y (1 : @) Resy (Q : w)(Su). (5.2)

Proof. Let P € P(A) be the unique minimal parabolic subgroup contained in Py with Z(P) n a;‘) =2(Q)n a;‘).
For generic A € ag the standard intertwining operator A(o(P) : Q : 1j : A) maps the space C*(Q : 1y : MK
to the space C®(a(P) : 1y : A)X. Both of these spaces are 1-dimensional. Let 19 € C®(Q : 1 : )X and
14,1 € C®(a(P) : 1y : D)X be determined by

1g,.a(e) = 1gp),a(e) = 1.
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Then the action of A(6(P) : Q : 137 : A) on C*°(Q : 1y : A)X is determined by the identity
A(o(P) : Q : 1y : D)1ga = c(a(P), Q : H1ga.

Here c := c(0(P), Q : -) is the partial c-function which for A in the set
{A € ag : Re(A, a) > Oforall a € Z(Pp) N Z(Q)}

is given by the integral
W= | 1o, (5.3)
GNPO ﬂ@NQ

and for other A € a¢ by meromorphic continuation. It follows from [4, Proposition 4.4] that for generic
Ae a;«:’
Eq(Q:: =) =cA+pon)E(Po::-A) (e Ama(1k)).

By assumption, Q € Py(A), and hence (pq,5, a) > O for all a € %(Q). Therefore, (A + pq,,, a) > O for all
a € X(Po)NZ(Q)ifA e ag® + iay, and thus A — c(A + pq,p) is holomorphic on agt + iay and given by the inte-
gral representation (5.3). Note that for A € aj*(P) the integrand is strictly positive, and hence c(A + pq,p,) > O.

Let u € S. Since the pole of E1,(Q : ¥ : —A) at A = —p is simple and the function

D,(A:a)
c(A+pq,p)
is holomorphic on ag™ + iag, it follows that
_ (o) ra
Res(@y(A : @)E*(Po : 6y 1 —A)) = 2w i) Resy, (Q : p)(6y),
A=p c(u+pap)
. _ 1
and hence (5.2) follows with ¢, = e O
Proof of Proposition 5.1. Since Tgs is the restriction to C°(G/H )X of the orthogonal projection
C(G/H)* — Cus(G/H)®
(with respect to the L2-inner product), it follows from the formula (5.1) for Tqs and Lemma 5.2 that
Cas(G/H)K = span{ Y Res(@, (A : Q)E (Po s 8 : -N) i a € Ay, we w}
pes =K
= span{ z CyOw(u : a)Resy (Q: u)(Bw) : a e Aa, w e W}
HES
c VQ.
The other inclusion V < C45(G/H)X is a consequence of (4.1). O

6 Multiplicity of K-spherical discrete series representations

In this final section we use the analysis that has been used for the proof of Theorem 1.1 to prove Theorem 1.2.

We begin with a lemma. If 77 is a discrete series representation for G/H, then we write C,(G/H) for the
closure of the span of the K-finite generalized matrix coefficients of 7 in G(G/H). Note that the closure of
Cr(G/H) in L?(G/H) decomposes into a direct sum of representations equivalent to 7.

Lemma 6.1. For every K-spherical discrete series representation r of G/H there exists a unique p € Sqg,1, SO
that

Ca(G/H)X ¢ span{Res;, (Q : () : Y € Ap2(1x)}- (6.1)
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Moreover, if u,v € S and u + v, then for every y, x € Aun,2(1k),

J Resy, (Q : u : x)()Resy, (Q : v : x)(x) dx = 0. (6.2)
G/H

Proof. Letmbea K-spherical discrete series representation for G/H. Then €, (G/H)X isnon-zero and €, (G/H)X
is canonically identified with a subspace C,(G/H : 1k) of C(G/H : 1k). Let ¢ € C;(G/H : 1g). Let Ag/n
and Ay4, be the Laplacian on G/H and A, respectively. Since ¢ is a joint-eigenfunction of D(G/H), there
exists a ¢ € C such that

AG/H¢ = C¢.

The constant ¢ depends only on 7, not on the particular choice of ¢. By [4, Lemma 8.4], the function 3,1, ¢
satisfies

A, Hoa,P = (¢ +{ppys PP ) H 1, D- (6.3)

It follows from Proposition 4.1 that 3,1, ¢ is a finite sum of exponential functions, all with non-zero
real exponents y in the set Sg,1,. Together with (6.3) this implies that there exists a unique u € Sqg,1, (only
depending on 71, not on the function ¢) with (u, u) = c + {pp,, pp,), and a Yo € Ap,2(1x) such that

Hoa,P(a) = a*o.

In view of (4.2) it follows that ¢ is orthogonal to Resq, (Q : v)(i) for every v € Swithv # pand i € Ap,2(1k).
We conclude that for every K-spherical discrete series representation 77 there exists a unique u € S such that
1
Ca(G/H < ( €D span{Ress (Q: VI() : P € Au(1)})
veS\{u}

For p € S let Dy, be the set of discrete series representations 7 such that Ag,y acts on €;(G/H) by the
scalar (u, u) — {pp,, pp,). It follows from Proposition 5.1 that

1

D Ca(G/H = ( €D span{Ress (Q: V)W) : P € Au(10)})

neDy, veS\{u}

and hence for every y € S,

D eaem=( P P eaerm)

neDy veS\{u} neD,

P span{Resy, (Q: )W) : Y € Au,2(1x)}

veS\{u} xeS\{v}
= span{Resy, (Q : () : Y € Aum,2(1x)}.

This proves the assertions in the proposition. O

Proof of Theorem 1.2. Let m be a K-spherical discrete series representation. If |[W| = 1, then the right-hand
side of (6.1) is 1-dimensional, and hence dim €,(G/H)X = 1 and the multiplicity with which 7 occurs in the
Plancherel decomposition is equal to 1.

Now assume that |W| = 2. In view of Lemma 5.2 we may rewrite (5.1) as

Tospwlaw) = ¥ @y : @) I P(ORes1 (0 : 1z 0By dx,
Hes GIH

with a € A; and w € W. We used in the derivation of this formula that ®,,(u : -) is real-valued for y € ag".
Since Resy,(Q : p)(6y) € Cas(G/H)X, it follows in view of (6.2) that for v, w e Wand a € Ay,

Res1, (Q:pu: wlaw)(6,) = cyOw(u : a) J Res1,(Q : p : x)(6v)Resq, (Q : p : x)(6w) dx.
G/H
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In particular, it follows that there exist constants c,,,, € C so that
Res1,(Q : u : kawh)(6y) = cy,w@w(u:a) (kekK, ac Ag, heH, vyweW).
Let vo be the non-trivial element in W. Note that for every w € W the restricted functions

Res1,(Q : p)(e)lga;wn and  Resy, (Q: u)(8vy)lka;wh

are linearly dependent. Since the Resq, (Q : p)(6,) are K-fixed (hence K-finite) vectors in an irreducible sub-
representation of L?(G/H), they are analytic vectors and hence real analytic functions on G/H. It follows that
Cv,w is independent of w € W, and thus that Resq, (Q : u)(6e) and Resq, (Q : u)(6,,) are linearly dependent.
Therefore, the right-hand side of (6.1) is 1-dimensional. This implies that dim €, (G/H)X = 1 and that 77 occurs
in the Plancherel decomposition of G/H with multiplicity one. O

Funding: The second author was supported by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — 262362164.

References

[1] N.B.Andersen and M. Flensted-Jensen, Cuspidal discrete series for projective hyperbolic spaces, in: Geometric Analysis
and Integral Geometry, Contemp. Math. 598, American Mathematical Society, Providence (2013), 59-75.

[2] N.B.Andersen, M. Flensted-Jensen and H. Schlichtkrull, Cuspidal discrete series for semisimple symmetric spaces,
J. Funct. Anal. 263 (2012), no. 8, 2384-2408.

[3] E.P.vanden Ban, A convexity theorem for semisimple symmetric spaces, Pacific J. Math. 124 (1986), no. 1, 21-55.

[4] E.P.vandenBan and ). ). Kuit, Cusp forms for reductive symmetric spaces of split rank one, Represent. Theory 21 (2017),
467-533.

[5] E.P.vandenBan and ). ). Kuit, Normalizations of Eisenstein integrals for reductive symmetric spaces, J. Funct. Anal. 272
(2017), no. 7, 2795-2864.

[6] E.P.vandenBan and H. Schlichtkrull, Expansions for Eisenstein integrals on semisimple symmetric spaces, Ark. Mat. 35
(1997), no. 1, 59-86.

[71 E.P.vanden Ban and H. Schlichtkrull, Fourier transform on a semisimple symmetric space, Invent. Math. 130 (1997),
no. 3, 517-574.

[8] E.P.vanden Ban and H. Schlichtkrull, Fourier inversion on a reductive symmetric space, Acta Math. 182 (1999), no. 1,
25-85.

[9] E.P.vandenBan and H. Schlichtkrull, The Plancherel decomposition for a reductive symmetric space. I. Spherical
functions, Invent. Math. 161 (2005), no. 3, 453-566.

[10] F.V.Bien, Z-modules and Spherical Representations, Math. Notes 39, Princeton University Press, Princeton, 1990.

[11] M. Flensted-Jensen and ). ). Kuit, Cuspidal integrals for SL(3)/K¢, Indag. Math. (N.S.) 29 (2018), no. 5, 1235-1258.

[12] Harish-Chandra, Discrete series for semisimple Lie groups. Il. Explicit determination of the characters, Acta Math. 116
(1966), 1-111.

[13] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529-551.

[14] Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal. 19 (1975),
104-204.

[15] W.Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), no. 1, 157-180.

[16] V.S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math. 576, Springer, Berlin-New York,
1977.

Brought to you by | Utrecht University Library
Authenticated | e.p.vandenban@uu.nl author's copy
Download Date | 10/31/18 9:19 AM



	$K$-invariant cusp forms for reductive symmetric spaces of split rank one
	1 Introduction
	2 Notation and preliminaries
	3 $\tau$-spherical cusp forms
	4 A formula for $\mathcal{H}_{Q,\tau}$
	5 Proof of Theorem 1.1
	6 Multiplicity of $K$-spherical discrete series representations


