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Introduction

Let X =G/K be a Riemannian symmetric space of the noncompact type with
boundary B=K/M, and let [D(X) be the algebra of all G-invariant differential operators
on X. In harmonic analysis on X it is of fundamental importance to study the
properties of simultaneous eigenfunctions of [2(X) on X, and in particular to determine
their behavior at infinity (that is, near the boundary B). For eigenfunctions transforming
finitely under K this was done by Harish-Chandra ([H-C 58] and [H-C 60], see also
[War 7211] and [C-M 82]), who obtained converging series expansions. In the present
paper we adapt a technique due to Wallach ([Wal 83]) to obtain asymptotic expansions
for a wider class of joint eigenfunctions f on X, imposing on f and its derivatives from
the left a certain condition of (at most) exponential growth with respect to the
Riemannian distance on X. The asymptotic expansions lead to a theory of boundary
values in C®(B) of f, defined via leading terms in the expansion, and by means of this
theory we are able to characterize the eigenfunctions which satisfy our growth condition
as being precisely the functions on X which can be represented by a generalized Poisson
integral of a C*-function on B. :

To be more precise, let y be a map [(X)— C and let &,(X) denote the
corresponding joint eigenspace

&,={feC*(X)|VDeDX):Df=xD)f}.

Let L denote the left regular representation of G on C*(X), and let #(g) be the
enveloping algebra of the Lie algebra g of G. Via L the elements of %(g) act as
differential operators on X. The condition we impose on f is that there exists r € /& such
that for all u € %(g) we have an upper bound

©- 1) L, (x)] £ Cordi ek
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for all x € X, with C a constant (depending on u but not on x). Here dist denotes the
Riemannian distance on X. Let &;°(X) denote the space of all fe &,(X) satisfying (0. 1).
Let a be a maximal abelian split subspace of g, and a* an open Weyl chamber. We
derive (Theorem 3.5) for each fe & and g e G an asymptotic expansion

0.2) f(gexptH)~Y p:(g, tH)e'*™
4

for He a™, as t — +o00. Here ¢ belongs to an explicitly determined discrete infinite set
of linear forms on a, and the p.(g,*) are polynomials on a, depending smoothly on g.
The boundary value f(f)e C®(B) of f is then defined by means of the top order
coefficient of the polynomial p, with ¢ a “leading exponent” of (0. 2) (cf. Section 8). Now
it is easily seen that the generalized Poisson transformation 2, from functions on B to
&,(X) maps C*(B) into &°(X). We prove (Theorem 10.1) that it is actually onto
&7 (X), and characterize its inverse as being the boundary value map B (up to a constant
non-zero factor).

We give two major applications of this theory, presented respectively in Parts II
and III of the paper. The first is a new proof of a theorem due to Oshima and Sekiguchi
([Os 80]) which characterizes the functions on X which can be represented by a
generalized Poisson integral of a distribution on B (Theorem 12.2). Thus let &} (X)
denote the space of all fe &,(X) for which there are r € R and C >0 such that

If(x)l < Cerdist (x, eK)

(compared to (0. 1) there is no condition on the derivatives of f). It is not difficult to see
that #, maps the space %'(B) of distributions on B into &;(X) (this was observed in
[Le 78]). The theorem of [OS 80] confirms that it is actually onto &}*(X). The proof in
[OS 80] uses advanced micro-local techniques from [SKK 73] and [KO 77] together
with the solution in [KKMOOT 78] to Helgason’s conjecture (which says that %, maps
the space of hyperfunctions on B onto &,(X)). (For G/K of real rank one the Oshima-
Sekiguchi Theorem was proved in [Le 78] (with a restriction on y) with a much more
elementary proof, and for harmonic functions on the disk it is in [K6 52, Satz 19]). A
different proof has been given by Wallach in [Wal 83], which avoids the hyperfunction
theory, but however does not explicitly show how the distribution T on B is obtained
from the eigenfunction fe & (X). Our new proof (which owes a great deal to Wallach’s)
simply reduces the theorem, by convolution with test functions, to the theorem
mentioned above that #, maps C*(B) onto &;°(X). Since this was proved by explicit
construction of the inverse as a boundary value map, the inverse of 2,: 9'(B) — &} (X)
is also given by a distribution boundary value map (up to a constant multiple). We find
this knowledge of the inverse of 2, interesting, it is certainly important in Part III of the

paper.

The second application, the content of Part III, is to give a new proof of a
theorem of Matsuki and Oshima [OM 84] which asserts L?-ness of certain functions,
related to the discrete series, on a non-Riemannian semisimple symmetric space G/H
(Theorem 19.1). In our opinion our proof simplifies that of [OM 84] considerably
because it replaces the complicated microlocal analysis of [SKK 73], [KO 77] and
[Osh 84] (prerequisites for [OM 84]) with simpler expansions from [Ban 84] (along the
lines of [CM 82]) in combination with the present asymptotic techniques. In particular
we obtain a new proof of Flensted-Jensen’s conjecture “C =0 in [F-J 80], originally
solved by Oshima (cf. [Schl84], Ch.8). In the special case of a connected real
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semisimple Lie group considered as a symmetric space (cf. [Schl 84], Sect. 8.4.1) this
gives a new proof of the existence of a discrete series representation corresponding to
each of Harish-Chandra’s parameters ([H-C 66], § 41). The basic ingredient in our proof
(which has some similarity with Oshima’s proof of the Flensted-Jensen conjecture)
consists of an argument which excludes certain coefficients in the series expansion (from
[Ban 84]) of the function in question. The argument involves analytic continuation, for
which the theory from Part I is crucial.

As mentioned, the asymptotic expansions for the functions in &;°(X) are derived
using ideas from [Wal83] (where asymptotic expansions for matrix coefficients of
representations of G are derived). However our approach deviates somewhat from
Wallach’s. Thus (0.2) holds for H in a* whereas the expansions in [Wal 83] are along
rank one parabolics. Moreover the fact that we are considering functions on G/K
(whereas [Wal 83] assumes only K-finiteness from the right) makes it possible to get
more precise knowledge of the nature of the asymptotics, such as which exponents can
occur in (0. 2) and uniform control when the homomorphism y: [)(G/K) — C varies. To
be more precise, the homomorphisms y: [D(G/K) — C are parametrized (modulo the
action of a finite group) by elements A in the complex linear dual a} of a. If for each A
in an open subset of a* we are given a function f; in the corresponding space &,°
(x = x2), and if f;, depends holomorphically on 4 (in a proper sense) then in some explicit
sense (see Theorem 3.6 and Corollary 3.7) the whole expansion (0.2) depends
holomorphically on A. This property plays an important role in the application to G/H
(in the above mentioned argument involving analytic continuation).

As a byproduct we obtain in Corollary 16.6 a property of generalized Poisson
integrals which is related to Fatou’s theorem (the result is a generalization of a result
due to Michelson [Mi 73]. It has been obtained independently by Sjogren [S;j 86]).

We would also like to point out that even in the simplest example, that of
harmonic functions on the disk, our asymptotic expansions and boundary value maps
seem to be new.

If this paper appears long, it is because one of our objectives has been to use only
well known prerequisites (say from the books of Helgason, [He 78] and [He 84]). Apart
from these the theory developed in PartsI and II is virtually self-contained (though
using ideas from [Wal 83], the presentation is logically independent of it). In Part III we
use some structure theory for semisimple symmetric spaces (with [Schl84], Ch.7 as
reference) together with [Ban 84].

Part I. Asymptotic expansions
1. Notations and preliminaries

Let G be a connected real semisimple Lie group with finite center and K a
maximal compact subgroup of G. Then G/K is a Riemannian symmetric space (for the
following general background we refer to [He 84]). Let g and f be the Lie algebras of G
and K, 0 € Aut(g) the corresponding Cartan involution, p = g the —1 eigenspace of 0, a
a maximal abelian subspace of p, and X < a* the corresponding system of restricted
roots with W the associated Weyl group.
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Let [)(G/K) be the algebra of invariant differential operators on G/K, and let % (g)
denote the universal enveloping algebra of the complexification g, of g. Unless otherwise
specified we identify elements of % (g) with left invariant differential operators on G. Then
there is a natural surjective homomorphism

(1.1) w9 — D(G/K)

(where as usual, #(g)* means the centralizer of K in %(g)), whose kernel is
U(g)* n%(g)t. We also have Harish-Chandra’s canonical isomorphism

1.2) y: D (G/K) =5 U (a)” .

From (1. 2) it follows that the characters of [D)(G/K) are parametrized by the orbits of W
in a¥: y,(D)=y(D) (4) for D € D(G/K) and 1 € a¥, with y, =y, if and only if ve WA.

Fix a basis 4 for X, and let AV - 4 denote the set of all elements Y n,a € a* with

integers n, =20, > the partial order on a* given by A>v< A—ve N -afifz * the set of
positive roots, ncg the sum of the corresponding root spaces, i=0n, a* ca the
positive open chamber, and ¢ € a* half the sum of the roots of X* counted with their
multiplicities in n. For n € af let T,: %(a) — % (a) denote the automorphism generated
by

(1.3) T,(H)=H +n(H)

for H € a., and let 'v=T,(v) for v e %(a). For u e %(g) let u, € %(a) be defined by
(1.4 u—u,en(@)+%@g)t

then the isomorphism (1. 2) is defined via y(u(u))="u, for u e %(g)¥. Equivalently
(1.5) u—"y(uw)en#%(g)+%(9)t.

For each A€ af let &,(G/K) be the corresponding joint eigenspace, consisting of those

distributions fe 2'(G/K) which satisfy

(1. 6) Df= (D) f

for all D € D(G/K). Then &,,,=46, for we W. It is well known that the elements of &,
are real analytic functions on G/K.

Let N=expn, N=expit, M=K°, and P=MAN cG. Then G=KAN and P is a
minimal parabolic subgroup. For g € G let H(g) € a be defined via g € Kexp H(g) N, and
let e,(g)=e *"6™" for jea*. For ac A we put a*=e,(a). Notice that L,,e,=a %e,
for ae A and n e N, where L is the left regular representation of G. From this and (1. 4)
it follows that

(1.7 ue,(nak)=(Adku), (A) a*

for u e % (g) and k € K. In particular, it follows that De;, =y(D) (A— @) e, for D € [D(G/K),
that is, e, , € &,.
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For each continuous function ¢ on K/M and A € o} the Poisson transform 2, ¢ is
the function on G/K given by

(1.8)  PpEK)=] oK) ers ok g) dk =] p(k) e~ ¢+OHE D gk
K K

for g € G. Obviously 2, ¢ € &,(G/K).

Let C(G/P; L,) denote the space of continuous functions ¢ on G satisfying

(1.9) d(gman)=a*"¢(g)

for all geG, meM, aeA, and neN. The Poisson transformation
2:.C(G/P; L;) — C*(G/K) is given by

(1. 10) 9’¢(gK)=I§( ¢(gk) dk

for g € G. Clearly 2 is equivariant for L. Moreover, to each ¢ € C(K/M) corresponds a
unique ¢, € C(G/P; L,) with ¢,(K)= ¢ (kM) for k € K, and we have (by an easy change
of variables) Z ¢, =2,¢.

2. Some function spaces on G

In this section we introduce a certain growth condition, which when imposed on
eigenfunctions will enable us (in the following sections) to derive asymptotic expansions.
The growth condition is satisfied by 2, ¢ for ¢ € C*(K/M).

For each g € G we denote by | g|| the (operator) norm of Adg on g, which is a real
Hilbert space when equipped with the scalar product (X, Y),= — B(X, 0Y) (where B is
the Killing form). The assignment g — |g| has the following properties:

Lemma 2. 1. Let x,y € G. Then
@ lxl=l0xl=lx""Iz1,
(i) lxyl=lxl iyl
(i) if x=k,ak, with k;, k,€ K and ae A then

|Ix|| = max a”,
ael

(iv) there are constants c,;, c; >0 such that if x=expY with Y € p then
e M < x| S e
1
where |Y| denotes the Killing norm B(Y, Y)? of Y,

v) la| £ an| for ae A, ne N.

Proof. (i)—(iv) are elementary, and (v) follows from Kostant’s convexity theorem
([He 84], TV, Thm. 10.5). O
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For any function f: G — C and r € [R we define

(2.1) ||fl|,=SU1g gl =" 1/ (@l

and say that f increases at most exponentially if | f|,<+oo for some re [R. The
motivation for using this terminology is that by (iv), | g|| as a measure of the distance in
G/K from gK to the base point eK, is equivalent to an exponential in the Riemannian
distance (cf. [War 721], p.282). Let C,(G) denote the Banach space of continuous
functions f on G with || f|, < + oo, with norm || - |,.

Examples 2. 2. (i) Let Aea* and let r(4)=c;'|Rei—g| (where ¢, is given in
Lemma 2. 1(iv)). For each ¢ € C(K/M) let ¢, € C(G) be given by ¢,(kan)=¢(k) a* "¢
for ke K, ae A, and ne N. Then Lemma 2.1(v) shows that ¢;e C,;(G). Clearly
¢ — @, is a bounded linear map C(K/M)— C,;(G). Using (1. 10) it follows that 2, is a
bounded linear map of C(K/M) into C,(G).

(i) A matrix coefficient of a finite dimensional representation of G has at most
exponential growth.

The right and left regular representations R and L of G both preserve C,(G),
indeed we have

(2.2) Lo f 1l < XA

and

(2.3) IR AN = 1111

for xe G and re R.

Let C,” = C/?(G) denote the space of C®-vectors for L in C,(G), that is
Cr(G)={feC*(G) | Vueu(g): L.fe C,(G)}.

We endow C;° with its standard Fréchet topology, the definition of which we recall: Let
X,..., X, be a basis for g, and let X" =X7' --- X » € U(g) for y=(yy,...,7,) € N. By
Poincaré-Birkhoff-Witt the elements X7 constitute a basis for #(g). For ge N and
fe CY4G) a g times continuously differentiable function we define

1/ Wlg,r=max | Ly, f,.

lvl=q
Endowed with this norm the space
G =CHG)={fe CUG) | | flly,,< + oo}
is a Banach space. Obviously C/ < C{' if ¢’ < g, and C;” =() C{. The topology on C,* is
q
the projective limit for this intersection (that is, it is given by the family of norms | - ||, ,

(ge N) on CX).

Example 2.3. Let C*(G/P;L,)=C*(G)n C(G/P;L,) be endowed with the
Fréchet topology inherited from C*(G). Then C®(G/P; L;)~C*(K/M), and it is the
space of C®-vectors for L in C(G/P; L;). From (1. 10) we infer that 2, maps C*(K/M)
continuously into C,, (cf. Example 2.2 (i)).
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We now consider for each g € N the action of L and R on C!. Obviously L,
(x € G) leaves C? invariant. Actually it follows from (2.2) and Example 2. 2(ii) (applied
to the adjoint action of G on % (g), = {u € %(g) | degu < g}) that there exist constants C
and s in R (depending only on ¢q) such that

(2.4) IS lgr S CIxI* 1 £ g0
for all fe C? and x € G. On the other hand it follows immediately from (2. 3) that

2.5 IR S llg,r S U0 £y, -

Hence also R, leaves C!? invariant. As for the derived actions we obviously have for
ue(g) and g=degu that

(2 6) ”Luf”q-degu,réC”f"q,r

for all fe C2, where C is a constant depending on u and q. Moreover, using the relation

uf(g)= LAdg(uV)f(g)

(where u— u" is the canonical antiautomorphism of #(g)), we get for ue %(g),
g=degu, and fe C? that

(2 7) “uf“q-—degu,r+s§C“f”q,r

where s =0 is a constant depending only on u, and where C >0 depends on u and g.

Let Q<= C" (ne N) be an open set and ¢: Q2— C;* a map. We say that ¢ is
holomorphic if for each g € NV it maps Q holomorphically into the Banach space C?, or
equivalently, if for each u e %(g) the map L, o ¢: Q — C, is holomorphic.

Example 2. 4. Let r>0 and let Q={A € a}|r(4)<r} (cf. Example 2.2(i)). Then it
can be seen that 1 — ¢, is holomorphic 2 — C.° for each ¢ € C*(K/M). By continuity
of the map C;° — C{° given by f— [ R, fdk it follows that A — 2, ¢ is holomorphic
Q—Cr. k

Notice that &;°, = &,(G/K) n C;*(G) is a closed subspace of C,*(G), for each 4 € a¥
(cf. (2.7)). We equip &;°, with the Fréchet topology inherited from C°. Let
&P =& (G/K) denote the space & = () &5, that is
rel®

2. 8) & ={fe &,(G/K)|Ire RVueu(g): L.fe C,(G)}.

(In Section 10 we shall prove that & =&, for some re R.)

Let Q < af be an open set, and let (f;),.o be a family of functions on G. We say
that (f))ico is a holomorphic family in &°(G/K), if f, € &,(G/K) for each A€ Q and
moreover for each 4, € Q there exists r € [ such that 4 — f;, maps a neighborhood of 4,
holomorphically into C?(G). It follows from Example 2.4 that (2,¢),.+ is a
holomorphic family in &;°(G/K), for each ¢ € C*(K/M).
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3. Asymptotic expansions

In this section we give a general definition of asymptotic expansions for functions

on a®, and state the main results on asymptotic expansions of eigenfunctions.

Let V be a finite dimensional complex linear space provided with a norm |+|. By a
formal exponential expansion (with values in V) at a point H, € a*, we shall mean a
formal sum

3.1) Y pe(H, t) e st

teX

where X is a subset of a* such that the subset X (N) given by
X(N)={fe X |Rel(Hp)ZN}

is finite for each N € [R, and where each p, is a continuous V-valued function, defined in
some neighborhood of {H,} x R and polynomial in its last variable.

Let F be a function a* — V. If N € R we say that (3. 1) is asymptotic to F of order
N at H,, if there exist a neighborhood U of H, in a™ and constants ¢ >0, C >0 such
that

IF(tH)— 3. pe(H, t) et < Ce®?"
¢eX(N)
for H e U, t 20. Moreover, we say that the expansion (3. 1) is an asymptotic expansion
for F at H, if for every N € [R it is asymptotic to F of order N at H,. We write this as

F(tH)~ ) p:(H,t)e"*™ (t— ).

éeX

The following result shows that the p. are essentially unique.

Proposition 3. 1. Let X < a¥, and let Z pe(H, t) ™ and ) q.(H, t) €™ be
= teX
formal exponentzal expansions at Hg,, both assumed to be asymptotic expansions for the

same function F: a* — V. Then for each & € X there is a neighborhood U of H, such that
p:=q; on UXR.

Proof. An immediate consequence of the following Lemma 3. 2. O

Lemma 3. 2. If (3.1) is asymptotic of order N at H, to the zero function a™ — V,
then there exists a neighborhood U of H, such that p.=0 on U xR for all £ e X(N).

Proof. Select an open neighborhood U of H, and constants ¢ >0, C >0 such that
(3.2) | Y pe(H, 1) e < CoN 20

EeX(N)
for H € U. We may assume (by shrinking U) that Reé(H)> N —¢ for H e U, £ € X(N).
Now let U, be the dense open subset of U consisting of the points H € U such that all
the £(H), & € X (N), are mutually different. Multiplying (3. 2) with e"¥*9* and applying
Lemma 3.3 below we obtain that p,=0 on U;x[R, hence on UxR by
continuity. O
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Lemma 3.3. Let zy,...,z, be a finite collection of mutually different complex
numbers with Rez; =0, and p,..., p, polynomial functions R — V. Assume that

Y pilt) e —0
i=1
as t — +oo. Then p,=---=p,=0.
Proof. Use [H-C 58], p. 305, Corollary. O

We also leave to the reader to verify the following consequence of the uniqueness
expressed by Proposition 3. 1.

Corollary 3.4. Let X caf and F:a™ — V. Assume that for each H, € a* there is
given a formal exponential expansion

Y. Pen,(H, 1) e
teX

which is an asymptotic expansion for F at H,. Then for each & € X there exists a (unique)
continuous function p;:a* — V such that each Hy e a® has a neighborhood U with

Pen,(H, 1)=p:(tH) (H e U, t>0).

We shall now state our main results on asymptotics. Let X; be the set of positive
indivisible roots and d € NV the number of elements in X (not counting multiplicities).
Let P,(a) be the space of polynomials on a (with complex coefficients) of degree <d. For
A€ a¥ let

XA)={wi—o—pu|lweW, ueN - 4}.

For a € X let " € a* be the dual root given by oV =2a/{a, a).

Theorem 3. 5. Let A€ a¥.
(i) For each fe &°(G/K), x€ G and & e X(A) there exists a unique polynomial
pae(f, x) on a such that

fxexptH)~ Y p; (fx, tH)e*™® (t— o0)
e X(A)

at every H, € a*. The polynomials p;, .(f, x) have degree <d.

(i) Let relR and e X(A). There exists r' € R such that f—p, .(f) is a
continuous linear map of &;°, into C?(G) ® P,(a), equivariant for the left actions of G on
&, and C2.

(iii) If for every a € X we have (A, ") ¢ Z, then all the polynomials p, .(f, x) on a
are constant.

This theorem will be proved in Sections 6—7, together with the next result, which
expresses a certain holomorphic dependence on A of the asymptotic expansions. Let
Q, < a* be open.
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Theorem 3. 6. Let (f,);.q, be a holomorphic family in & (G/K), and fix Ay € Q,
and &g € X(Ay). Let

EMN={wi—g—peX(A)|weW and peN- -4 with wiy—o—u==¢}.
There exist an open neighborhood Q< Q, of A, and a constant v’ € R such that the map
(4, H)— Z P,{,q(fz, H) et®™

EeE(A)
is continuous from Qxa* into C, and in addition holomorphic in . In particular, if for
all o« € X we have (A, 0" ) ¢ Z, then for each we W and p e N - A there exists a constant
r' € R such that A — p; .- ,-,.(f3) is holomorphic from a neighborhood of i, into C2.

In terms of the asymptotic expansion, Theorem 3.6 implies that its “head” is
holomorphic in 4:

Corollary 3.7. Let (f}),cq, be a holomorphic family in &°(G/K), and let i, € Q,,
Hyea®, NeR, and 6,>0 be given. There exist an open neighborhood Q of ), and
constants v’ € R and J € ]0, 6,[ such that the map

(4, H) — Z Pa.(f3, H) et

£eX(2)
Re&(Ho)>N—d

is continuous from Qxa* to C?, and in addition holomorphic in A.

Finally we mention that in Theorem 10. 3 we shall give some extra information on
the nature of the polynomials p, ., when (iii) does not hold.*)

4. Some lemmas on W-invariant differential operators

As a preparation for the proofs of the theorems stated in the previous section we
recall in this section some results of Chevalley, Harish-Chandra, and Steinberg (cf.
[He 84], Ch. III), and prove a related lemma.

Let P(a) be the ring of complex polynomial functions on a, and S(a) the
symmetric algebra of a (with complex coefficients). We identify S(a) with P(a*) and,
since a is abelian, also with %(a). The subring #(a)” of W-invariants in #%(a) is
generated by n algebraically independent homogeneous generators (where n = dim a). By
0 we denote the homomorphism of #%(a) into the algebra of constant coefficient
differential operators on a, determined by

d
@)X =7 fX+1Y)
t=0
for fe C®(a) and X, Y€ a.
Let Q < a be an open connected nonempty set, and let 4 € a*. We are interested in

the joint eigenspace E,(Q2) consisting of all solutions (say distributions) & on Q to the
homogeneous system

. 1) [0@W)—v(A)]1h=0 (veu(a)™).

There is a natural representation J, of #(a) on E,(Q2) given by J,(u) h=20(u)h for
ue U a).
*) See also note 1 at the end of the paper.

61 Journal fiir Mathematik. Band 380
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Consider first # = E,(a), which is the space of W-harmonic polynomials on a. It is
known that # has a basis consisting of m homogeneous polynomials, where m is the
order of W, and also that it contains the polynomial @ given by

w(H)= [] a(H)

+
aeXy

(H € a), as a cyclic vector for §, (that is, # = 3(%(a)) @) (see [He 84], Sect. III 3.2).

Similarly we define the subspace E,(a*) of P(a*)~%/(a) as the space of solutions
he C®(a*) to [0(v)—v(A)] h=0 for all v € S(a*)”. Via the Killing form we can identify a
with a*, and hence # = E,(a) with E,(a*). The map

h®v— hv (he Eo=Eq(a*), ve %(a)¥)

extends to a linear bijection of E, ® % (a)” onto % (a) (cf. loc. cit.). Hence % (a) is a free
% (a)” -module with m free homogeneous generators. For each A € a} let ., denote the
maximal ideal of % (a)* given by

4.2) Fr={veu@" | v(l)=0},
then it follows that % (a)=E,® E,.#, and that E, ¢, is an ideal of %/(a).

For any pe af let W* denote the subgroup {w|wu=pu} of W, then W* is the
Weyl group of the root system X* consisting of all roots orthogonal to u (cf. [He 78],
VII, Thm. 2. 15). The W*-harmonic polynomials on a are the solutions h to d(v) h=0
for all ve #(a)"*. In particular, if u is regular, that is if W* is trivial, then only the
constants are W*-harmonic. Let e* denote the function H — ¢**® on a.

Proposition 4. 1. Let A€ a*. The space E,(Q) has dimension m, and each element
h e E,(Q) has a unique expression

4.3) h=( Y awe"lo

weW/WA

with W"*-harmonic polynomials q,, on a. Conversely any function h of the form (4.3)
belongs to E,;(Q). Moreover E,.#, is the annihilating ideal in % (a) of d,, and (6,, E,) is
equivalent as an a-module to % (a)/E, #,.

Proof. See [He 84], III, Thm. 3. 13). O
In particular each element of E,(£2) extends to a real analytic function on a.

Let (6, V) be a finite dimensional representation of a and let € a¥*. The space
Ve={veV|Ire NVYea:[6(Y)—pu(Y)] v=0}

is called the generalized weight space corresponding to u and its dimension the
multiplicity of u. If the multiplicity is not zero, u is called a weight of .

Corollary 4. 2. The set of weights of &, is WA, and the multiplicity of each ue Wi
is the number of elements in W*.

Proof. Immediate from (4. 3). O
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Recall that an exponential polynomial on Q is a function of the form
H — q(H) e*™ where qe P(a) and p € a*. Let Q(2) denote the space of functions on Q
spanned by the exponential polynomials. From Proposition 4.1 we have that the
solution space for the homogeneous system (4. 1) is contained in Q (22). We now consider
solutions to a similar inhomogeneous system. Fix any A € a*.

Lemmad4.3. If he2'(Q) and [0(v)—v(A)]heQ(Q) for all ve¥(a)¥, then
he Q(Q).

Proof. The assumption on h can be expressed as 0(#;) hcQ(€2). Hence
0(Eq.#;) hcQ(Q), and the lemma is a consequence of the following Lemma 4.4. [J

Lemmad4.4. Let ¢ <% (a) be an ideal of finite codimension. If fe 2'(Q) and
(1) f=Q(Q) then fe Q(Q).

Proof. Let V=0(%(a))f=2'(Q) and V,=V n Q(). The assumption on f implies
that dim V/V, < + co. Since differentiations leave Q(€) invariant, ¢ induces a represen-
tation of a on V/V,. Now if V/V,+0 there exist u € a¥ and ve V\V, such that

4. 4) oY)v—u(Y)veV,

for all Y € a. Define 5 € 2'(Q) by t=e *v, then (4.4) shows that d(Y) i € Q(Q) for all
Y € a. It follows easily (by n integrations) that # € Q(£2), and hence v € Q(£), contradict-
ing v¢ V,. Thus Vo=V and fe Q(Q). O

5. The weights of the spherical principal series

The purpose of this section is to analyze the action of a, and its dependence on 4,
in the right g-module generated by an element of &,(G/K). For this aim it is convenient
to introduce some algebraic models for the spherical principal series, originating from
Kostant.

For each A€ a* let I, be the ideal y~*(#;) of I(G/K), that is
I,={D e D(G/K) | x,(D)=0},

and let J, c%(g) be the left ideal generated by f and by u~'(I,) where p is the map
(1. 1). Notice that J, is invariant under the adjoint representation of K. Let %, denote
the (g, K)-module % (g)/J,, which is Kostant’s model for the spherical principal series (cf.
[Kos 757, p. 244). Our interest in %, comes from the fact that if fe &,(G/K) then the
map u — uf of %(g) into C*(G) factors through %,.

Remark 5.1. Though we do not need it in the sequel it is of interest to notice
that it follows from [Kos 75], p. 323, Remark 2.10.2 that the (g, K)-module %, is
equivalent to the (g, K)-module of K-finite vectors in C(G/P;L_;), provided
Re {4, a)=0 for all xe 2™,

Our aim is to describe, for each k € NV, the set of weights of a in %,/i*%,, and
moreover to consider the dependence on A of the corresponding generalized weight
spaces.

It is convenient to have available a model for the (g, K)-module %, in which the
action of fi is easily described and in which the underlying vector space is independent
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of A. Let Eq = Ey(a*) =% (a) be the m dimensional space defined in the previous section,
and let E=T,(E,) =% (a), where v — T,(v), from now on denoted v — 'v, is defined by
(1.3). Then h® v — h'v extends to a bijection of E ® % (a)” onto #%(a). Let

(5.1) Y=UR)®E.

We shall construct a linear bijection of % with %,, and for this purpose we need the
following (well known) proposition (cf. [Kos 78], Prop. 5.2). Let

(5.2 I':%® D(G/K)— u(g)/%(g)
be the map defined by
I'(y®@um)=yu+u(g)t

for ye % and u € % (g)¥. Here (and in the following) we identify % with a subspace of
U(g) via x® e — xe for xe % (n) and e € E.

Proposition 5. 1. The map I' is bijective.

Proof. We include the proof for completeness. Via the Iwasawa decomposition
we have %(g)/% (g) T~ % () ® % (a). Via this isomorphism the degree on % (a) induces a
degree on % (g)/%(g) T, denoted deg,. Let % (g)/%(g) T be filtered according to deg,, and
let % Q® D(G/K)=%()® E® D(G/K) be filtered according to the total degree on
E ® D(G/K).

Notice that for each D e [D(G/K) there exists ue u~!(D) with degu=degD (cf.
[He 84], II, Thm. 4.9). It follows that I" preserves the filtrations. Moreover, from the
definition of "y (cf. (1.5)) we infer that

deg, [u—"y(D)+ % (g) T] <degu=degD.
Since deg’y(D)=degD it then easily follows that the graded map
grI: % (W) ® gr(E @ D(G/K)) — % () ® gr (% (a))
associated to I', is given by x ® e® D — x ® e’y(D). This being bijective the propo-
sition follows. O
Corollary 5. 2. (i) I maps % ® I, onto J,.
(i) For each u € %U(g) there exists a unique y € % such that u—yeJ,.

Proof. (i) According to the proposition and the definition of J,, every element of
J, can be written (modulo % (g) f) as a sum of terms I'(y ® D) v with y € %, D € [D(G/K)
and ve pu~'(I;). Since I'(y ® D) v=T(y ® Dpu(v)), we have (i).

(i) Let ue%(g). According to the proposition there is a unique element
Yy ®D;e¥ @ D(G/K) with u=T(} y,® D;) (modulo %(g) f). It follows easily that

(5.3) “—ZXA(D:') yi€J;.

Conversely if ye % and u—y e J, then from (i) we get that ) y,® D,—y®1e ¥ ® I,,
from which it follows that y=Y x,(D;) y;. O
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From the corollary we obtain a linear bijection ¥, of %, onto %, defined via
u—"T,wu+J,)eJ;
for u € %(g). Notice that by (5.3) we have

(5.4) T.(I'(y® D) +J,)= (D) y

for ye % and D € [D(G/K). Notice also that from the definition of ¥, we immediately
get

(5.5) uf=T,u+J,)f

for all fe &,(G/K) (where, according to our convention, both u and ¥,(u+ J,) act as left
invariant differential operators).

For each 4 € a¥ we denote by 7, the unique representation of g on # which turns
9, into a morphism of g-modules. Explicitly the action of 7,(X) for X € g is determined
as follows. Let y € # % (g). The element Xy of %(g) can be written (modulo % (g) f) as
I'(}) y;® D;) according to Proposition 5.1, and then (cf. (5. 4)):

(5 6) 7,(X) y=z x1(Dy) y;-

Notice that if X € i, then 7,(X) is just left multiplication by X in #. It follows that for
every k e N, 1, induces a representation t% of a on the finite dimensional space %/it*%.
In particular, t} is a representation of a on #/in% ~E.

Lemma 5.3. The set of weights of t; is WA—g, and the multiplicity of each
Ee WA—g is the number of elements in W*.

Proof. Let '#;=T,(#;). Comparing with Corollary 4.2 it suffices to construct an
a-isomorphism of (z}, E) onto % (a)/E'#,. Obviously the map e — e+ E'#, is a linear
bijection, we claim that it is also an a-morphism. Let Hea, ec E and write
He=Y e;/'y(D;) with e; € E, D; e [D(G/K). By (1.5) we then have

He—F(Z e;®D;)eit¥(g)+«(9)t,
and hence tj(H)e=) x,(D;) e; by (5.6). But then

He—t(H)e=} e:(7(D)— 1:(D) € E'S,

13

as claimed. O

For ke N let A, be an enumeration of the weights of the finite dimensional a-
module

M= U (W)U (7)
counting multiplicities. The elements of A, are easily seen to be contained in —AN - 4.

Proposition 5.4. Let Aeca} and ke N, k>0. The set of weights of t% is
Wi —o+ Ay. The multiplicity of a weight & is the number of pairs (w, —p) € W x A, such
that E=wil—o—p.
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Proof. Use induction on k. For k=1 this is Lemma 5. 3. For k> 1 the induction
step is a consequence of the following two exact sequences of a-modules:

0 — [f ' (M) u (7)) ® [¥,/7¥,] — U,/ Y, — U, /7", — 0
and

0 — i*~ ' W)/ U W) — M — My, — 0. O
In the proof of the next proposition we need the following lemma.

Lemma5.5. Let Aca* and assume for all aeX that {A,0")¢Z. Then
wi—A¢Z- A for all we W\{e}.

Proof. See [Schl 84], Lemma 5. 2. 3. O

Proposition 5. 6. Fix A€ a¥* and assume for all w € X that {A,a") ¢ Z. Let ke N.
Then the t%(H) for H € a are simultaneously diagonalizable.

Proof. It follows from Proposition 5.4 and Lemma 5.5 that the multiplicity of
wi—o is one in t¥ for all we W and ke N. In particular, 7} is diagonalizable, and
moreover the natural projection p: #/it*% — %/it% admits a section j: %/i¥ — ¥ [i*¥
(i.e. p o j=id) which is an a-morphism.

We now define an a-morphism
(5.7 D: UM QY /Y — YRkY

by ®(x ® y)=1%(x)j(y) for x € % (7t) and y € #/f%. Obviously @ induces a linear map:
M, Q@ Y% — ¥ [i*%. We claim that this is a bijection. By dimensions (cf. Proposition
5.4) it suffices to prove injectivity, that is:

(5. 8) ker & = iU (7)) @ U/ Y .

To prove (5. 8), let ey, ..., e, be a linear basis for E; and choose y;,..., y,, € % such that
jle)=y;+a*¥ (i=1,...,m). Since poj=id we have that e,—y, e % for i=1,...,m.
Let xy,..., X,, € % (it) and assume that @(} x; ® ¢,)=0, that is ) x;y; € i*%. The claim
is that then x; e i*% (i) for each i. We will prove that x;e i/ "' %) (i=1,..., m) for
j<k, by induction on j. Assume x; e R/ % (it) (i=1,..., m) (to get the induction started
this obviously holds with j=0). Then

Yoxie=) Xiyi+y xie,—y) e Y+ Y =Y
and hence x; € it/ "1 (it) for all i, by the linear independence of ey, ..., e,. Thus (5. 8) is

proved.

Since the left hand side of (5. 7) is diagonalizable (using Poincaré-Birkhoff-Witt on
2 () and @ is bijective, the proposition follows. O

Let 2 € a* and ke N. For each weight ¢ of 75 we denote by P, , the projection
map of #/it*®% onto the generalized weight space of weight ¢, along the remaining
generalized weight spaces.
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Corollary 5.7. There exists for each A€ a* and each weight ¢ of %, a unique
polynomial q; . on a with coefficients in End. (#/f*%) such that P, ¢q; (H) P; :=q;, «(H)
and

(5.9) expti(H) =), ™q; (H)
B

for Hea. If for all a € ¥ we have {1, ") ¢ Z then all the polynomials q; . are constant
on a.

1
Here the operator exp t%(H) is as usual defined by )| — [z (H)]". The corollary is
straightforward. "

We now consider the dependence on A of t%. It follows immediately from (5. 6)
that t% depends holomorphically on 4 and by Proposition 5.4 its weights are given by
holomorphic expressions in A.

Proposition 5.8. Let Jloca* and ke N, and fix a weight &, of % . For each
A€ a¥ let

EQ)={wi—o—plweW, —pe A, and wio—o—p=C,o}

and let P())= Y, P, ;. Then the projection operator P (1) depends holomorphically on A
EeE(Q)
in a neighborhood of A,.

Proof. The proposition follows at once from Lemma 5.9 below. O

Let F be an n-dimensional complex vector space, and let 7, be a family of
representations of a on F, depending holomorphically on a parameter z € C". Assume
that the weights of 7, are s,(z),..., s,(z) € a¥ (each repeated according to its multiplicity),

where each s; depends continuously on z. Fix zoe C" and let o,,...,0, be the
mutually different elements of {s;(zo), ..., S,(20)}-

Lemma 5.9. There exists a neighborhood Q of z,, and for each ze€ Q a basis
fi@),....f.(z) for F, with each f; depending holomorphically on z, such that the
corresponding matrix for t,(H) (H € a) has the form

Bl(H) 0

0 BI'(H)
where each block Bi(H) is a matrix whose eigenvalues are the s;(z, H) for which
si(zo)=0j.

Proof. Use [Ka 80], Ch. 2, § 14, formula (1. 1b).

From Proposition 5.8 we immediately get the following corollary by applying
P(A) to (5.9).

Corollary 5. 10. There is a neighborhood Q of A, such that the map
(5.10) (4 H)— ) eq; (H)

seE(A)

from Qxa to End(¥/i*%) is continuous, and in addition holomorphic in A.
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Recalling that a polynomial g on a is W-harmonic if d(u) g=0 for all ue % (a)¥,
and that this implies degq<d=|X7|, we now have

Corollary 5. 11.  The polynomials q; . on a are all W-harmonic. In particular,
degg; <d.

Proof. Fix Ay € a} and let £, be a weight of 75 . For each 1€ a* let ¢, be the
End (%/ii*%)-valued C*-function on a given by

(5. 11) Pr(H)=e °@PA)exptf(H)= ), " q, (H).

EeE(A)

Let ue%(a). It follows from (5.11) and the continuity of i— P(4) that
A — [0(u) @;] (H) is continuous near A, for each H e a. Now if (1, 0") ¢ Z for alla e X
then it follows from the final statement of Corollary 5.7 that

(5. 12) 0w o= ), u(l—Ey) et %q, ..

EeE(4)
If e Z(A) then by definition we have &—¢,=w(A—4,) for some we W, hence if
ue#(a) we get from (5.12) that
(5. 13) () @ =u(A—4o) @;.

By density of {A|Vae Z: {4, a") ¢ Z} in a¥*, we infer from (5. 13) that d(u) ?3,=1u(0) @,
for ue(a)”, that is, ¢, is W-harmonic. Since ©Vso=4q;0,¢, the corollary is
proved. O

Remark 5. 12. For v e a¥ let W, denote the subgroup {w|wv—ve Z- 4} of W. If
€o=Wo4o— @ — o € X (4o) then it can actually be seen that g, ., is W, ,,-harmonic. In
fact, we have for each ¢ € Z(4) that £ — &, € wwy (4 — Ay) with we W,,_, . Hence if u is an
W, s,-invariant element of % (a) we obtain from (5. 12) that

0(u) @, =u(wo(A—4o)) 0,

and the claim follows as above.

04o*

Notice that it follows from [KKMOOT 78], App. Il that W, is actually the Weyl
group of a root system, for each v € a*.

6. Existence of asymptotic expansions

In this section we derive asymptotic expansions for the functions in &;°, and use
them to prove most of Theorem 3.5. The proof will be completed in the next section.
The basic result is the following technical proposition.

Fix o€ a¥, Hyea®, and re R. If A, and A, are Banach spaces we denote by
B(A,, A,) the Banach space of bounded linear operators from A4, to A4,.

Proposition 6. 1. There exist, for each N € R
(a) open neighborhoods Q of Ay in a¥ and U of H, in a¥,

(b) constants k, ge N, ¥ 2r, and C, >0,
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(c) a continuous map ¥:QxU — B(C%, ¥[i*% ® C,.), holomorphic in the first
variable, and

(d) a linear form ne (¥ //*¥)*
such that

(i) ¥ (4, H) intertwines the left actions of G on C? and C,., for all (1, H)e Q x U,
and

(i) [RexpmfS— (< expi(tH) @ 1) (P (4 H) ), ZClif |y, eV~ for all
fe&(G/IKYNCE, AeQ, HeU, and t=0.

In the proof of the proposition we need the following lemma. Define
B:a— R by f(H)=min,_,a(H).

Lemma 6.2. Let ke N, and put

6.1) y(H)=rl ¢, |H|— k B(H)

for Hea, where c, is the constant of Lemma 2.1(iv). For each y € *% there exist
constants g€ N, r'=Zr, and C>0 such that for all H e a* we have

(6 2) “Repoyf "r’ é C "f”q,r eY(H)
for fe Ca.

Proof. We may assume that y=Y, --- Ye where e€ E, I>k, and Y; belongs to
the —a; root space for some a; € X*. Then

Repoyf= e_al(H)_m_al(H)yRepof
and the estimate (6. 2) follows from (2.7) and (2. 5). O

Proof of Proposition 6. 1. Let Ne[R be given, and select ke N such that
7(Ho) < N, where y is given by (6. 1). Let S(4) = X (1) denote the set of weights of % (cf.
Proposition 5.4). The first step is to split S(4) in two parts, which will give different
growth orders in the asymptotics.

Fix £>0 such that y(H,)+¢< N and such that for ¢ e §(4,) we have
Re &(Ho) ¢ [N—2¢, N

We can then choose a compact connected neighborhood U of H, in a* such that
(6.3) y(H)+e<N
and
1
(6. 4) Reé(H)gt[N—Ze,N—Es]
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for He U and & € S(4,). By compactness of U and the continuous dependence of 75 on
4 we can now choose a connected bounded open neighborhood @ of 4, in a¥ such that
(6.4) holds for A€ Q, ¢ e S(4), and H € U. Thus for 1€ Q, S(4) is the disjoint union of
the subsets

S+(l)={éeS(l) | Reé(H)>N—%s, VH e U}

and
S_(H)={eS(A)| Reé(H)<N—2¢ VHEe U}.

Let V, (A) and V_ (1) denote the sums of the corresponding generalized weight spaces for
7%, and Q, (1) (resp. Q_(4)) the projection onto V, (1) along V_(4) (resp. onto V_(4)
along V, (4)), then Q, (4) and Q_(4) depend holomorphically on 4 by Proposition 5. 8.
If necessary we shrink € such that the operator norms of Q. (4) are uniformly bounded
for 1 e Q.

Fix elements xi,..., x, of % with x; = 1, such that their canonical images m(x;) in
% /i*% constitute a basis for ¥/i*%. Via this basis we identify %/i*% with C?, and
denote by B(A, H) the matrix of t%(H). Let

P
yi(4, H)=1,(H) x; — Z B(4, H)j; x; € iy
=1

J

for i=1,..., p, then y,(4, H) depends linearly on H. From (5.6) it follows that the
yi(4, H) (A€ a¥, Hea, and i=1,..., p) span a finite dimensional subspace of @*%, and
that A — y;(4, H) is holomorphic from a* into this space. Since Uc=a® and Q caf are
bounded sets, it follows from Lemma 6. 2 that there exist elements g € N and r' =r, and
constants ¢, C =0 such that

IRexperr Xif Il SC I f g, €
(here we have used Lemma 6.2 with k=0) and
IRexperr Vil H) [, S C I f Ny, €7
for all feCi, He U, A€ Q, t=0, and i=1,..., p. Hence if we define
F(H, t);=Re Ry,
and
G,(H, t);=Rexpn Ry 2. 1)

then F(H, t); and G,(H, t); are bounded linear maps from C? to C,,, and their operator
norms satisfy

(6.5) IF (H, t);]| < Ce*!
and

(6. 6) 1G(H, t)l| < Cer ™"
forall He U, AeQ, t=20, and i=1,..., p.
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The motivation for these definitions is that if fe &,(G/K) then by (5.5)

Hxf=[7,(H) x]f

for Hea and x € %, hence
p
Hx;f= Z B(4, H)j; xjf+yi(/1’ H)f
i=1

and we obtain the (C,-valued) differential equation

6.7) A F(H, =BG, H) F(H, 0+ Gy(H, 0] f

for fe &,(G/K)n C!. The estimate (ii) will be obtained from manipulations with this
equation (notice that R, f=F(H, t); f). First we rewrite it as the integral equation

t
(6. 8) F(H,t)f= [e‘B“'H’F(H, 0)+ [ e 9B*M G, (H, ) ds:|f.
0
We will use Q. (4) to split the right hand side of this equation, but first we estimate
some of the resulting terms.
We have
1Q-(3) P4 M) < C(1+s)! ™29

for all AeQ, He U, and s=0, for a suitable constant C >0 (cf. Corollaries 5.7 and
5.11). From this we deduce

6.9 10 (4) esB*M| < CesV o

for some (new) constant C> 0. Similarly
(6. 10) 10, (3) ™8] < CemsV=0
for all Ae Q, He U, and s=0. From (6. 5), (6. 6), and (6.9) we infer
(6. 11) 10-(A) eB*® F(H, 0)]| < Ce'™ 9
and
10_ (1) et~ 9BEB G (H, 5)| < Cet™ =2 g~ sN 2= 3(H)

for all Ae 2, He U, and 0<s=t. Combining the latter estimate with (6.3) we find

(6. 12) < Cet-0

t
‘Q- () [ et 9B*ING (H, s)ds
0

with C>0 a (new) constant. On the other hand from (6.6) and (6. 10) we have an
estimate

(t—s)B(A, H) < (C pt(N=2) ,—s(N—e—y(H)
19+ (4) e Gy(H,s)[=Ce e
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for 0 <t <s. Taking (6. 3) into account, we infer that
(6. 13) 0. et 9BAMG (H, s)ds
t
converges absolutely and that

6. 14) < CetW-9),

[ Q. (3) et~ B4 MG, (H, 5) ds
t

Moreover, since all estimates are uniform in A1eQ and He U, (6.13) depends
continuously on (4, H) € 2 x U, and holomorphically on 4 € Q. In particular, if we define

(6. 15) YA, H)=0Q.(4) F(H, 0)+ oj? 0.(A) e sB@DG,(H,s)ds
0

for AeQ and He U, then ¥(A, H);e B(C4 C,) for i=1,...,p. Moreover ¥ (4, H);
depends continuously on (4, H) and holomorphically on 4, and we have |¥(4, H)| =C
(take t=0 in (6. 14)).

Now if fe & n C? we obtain from (6.8) and (6. 15) that

F(H, 1) f= [e“’“' 0 w(), Hy+Q_ (4) e» D F(H, 0)
+[Q_(A) " 9BEDG, (H, s)ds
(o)

— [ Q4 () e IRHIG,(H, 5 ds]f
t
and hence by (6.11), (6. 12), and (6. 14) that
IF(H, t) f—e** DY@, H) ||, <Ce' V2| fll,,,

for some constant C >0 (independent of f). Let n € (C?)* be defined by #n(z,,..., z,) =z,
then we finally get that

(6. 16) IRexpenf—ne P4, H) fll, Ce' V2 fl,,,
for all fe&,nCL, AeQ, HeU, and t=0. O

Remark 6. 3. It follows easily from the definition of ¥ (see (6.15)) that
Y(i,tH)y=¥(4 H) if t>0 and tH € U. Moreover ¥ (4, H) maps C/ into V,(A)® C,.

Remark 6.4. Let g € N. Restricting from CZ to C2*? we have that ¥ maps
QxU continuously (and holomorphically in the first variable) into
B(Ci*Y, % /it % ® C%), and that

IRexperr S — (o exptitH)® 1) W (4, H) fllg, SC I f lgg,r €
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for some constant C (which depends on ¢'). Indeed this is a consequence of the following
observation:

Lemma 6.5. Letr,r e R, qe N, and let T be a bounded linear map of C4(G) into
C,(G), G-equivariant for the left action and with operator norm |T||. Then T maps
CI*%(G) continuously into C¥(G), with operator norm <C|T| for each ¢ € N, C being
a constant depending only on r, ¥, q, and ¢'.

Proof. Follows from the (easily established) fact that C2*% is the set of CY-
vectors for the left action of G on CY. O

We now begin the proof of Theorem 3.5. Using Corollary 5.7 we can write

(nexpTi(tH)® 1) ¥ (4, H)=Y p; ¢(H, 1) e*®
3

for Ae Q, H e U, and t >0, where the summation extends over the weights ¢ of 7% and

(6.17) Pre(H,t)=(ne°q,(tH)®1) ¥(4 H)e B(C}, C,).

Each p, .(H, t) is continuous in H and polynomial in ¢ of degree <d (cf. Corollary
5.11). From (ii) we have

(6.18) |Resp /=X 5P ps e (H, 0 f 1, ZCI1 Sl ™2
¢

for fe &, Ci. For ge G we put p, .(f; g H, t)=(ps :(H, t) f) (g). It then follows from
(6.18) that ' p, .(f, & H, t) e*™ is asymptotic to f(gexptH) of order N at H,.
4

Since N was arbitrary we deduce from Corollary 3.4 that for each Ae a¥,
e X(4), and reR there exist constants r and ¢, and a continuous map
picat — B(&,n CE, C,) such that

fgexptH)~ ¥ p;(f g tH) e ™ (t— o)

EeX ()

at every Hyea™, for fe &,nC? and ge G. From Remark 6.4 we have that Ps,:(H)
maps a® continuously into B(&,n C2*%, C%) for every ¢q' € N. Moreover Pi,e(H)
intertwines the left regular representations, and the map t— Pi:(f g tH) is a
polynomial on R, of degree <d, which is constant if (i, a¥>¢ Z for all xe X (cf.
Corollary 5.7). In order to prove Theorem 3.5 it only remains to be seen that
Ps¢(f g H) is polynomial in H. Postponing this to the next section we now consider
the dependence on 1 in order to prove Theorem 3. 6.

Let (f})ien, be a holomorphic family in &°. Let 1, € Q, and assume f,€CPin a
neighborhood @, of 1,. It follows from (6. 17), Corollary 5. 10 and Remark 6. 4 that the
map

4, H)— Z eé(H)Pz,c(H)
LeZ(Q)



130 van den Ban and Schlichtkrull, Asymptotic expansions

is continuous from Qx U to B(C4*%, C%), and in addition holomorphic in 4, for each
q' € N. Hence

(4, H)— Z eé(H)Pz,c(fb H)

EeE(A)

is continuous from (2N Q,)xU to C¢, and in addition holomorphic in A. The first
assertion of Theorem 3.6 easily follows, and the second assertion is an immediate
consequence of this and Theorem 3. 5(iii) (whose proof will be completed shortly).

7. Differential equations for the expansion coefficients
In this section we derive certain differential equations for the functions p; .(f, g)

on a*, where fe & and ge G. In particular the equations will show that these
functions are polynomials.

Fix u e %(g)* and let D= pu(u) e M(G/K). By (1.5) we can choose finitely many
x; € A (i) and v; € % (a) such that

(7.1 u—"y(D)=Y x;v;€%(9) ¥
and such that ad(a) acts on x; by a weight —#;+0 where n,e N - 4.

Proposition 7. 1. Let A€ a* and fe 67 (G/K). The functions p, «(f) et on Gxa”*
satisfy the following recursive equations

(7.2 (1® [8(y(D) — 1:D))) P ¢(f) €
=— Y  (R,®eMW)) pscrn(f) e
i, E+nieX (1)

for all & e X(4).

Before giving the proof of the proposition, let us use it to finish what was left in
the previous section.

Proof of Theorem 3.5. Tt only remains to be seen that p, .(f, g H) is polynomial
in H. Since we know that t — p, .(f, g, t H) is polynomial on [, it is easily seen that it
suffices to prove that p, .(f,g)€Q(a¥) (i.e. p,(f g is a finite sum of exponential
polynomials on a*) for all fe &, g € G, and ¢ € X (4). By the intertwining property of
pa. ¢ it suffices to take g=e.

If ¢ is <-maximal in X (/) the right hand side of (7. 2) vanishes and it follows that
Pi:(f,e)e** e E;(a”) (cf. (4.1)), hence Pre(f,e)€Q(a’) for all fe & In general
evaluation of (7.2) at e yields

(7.3) [O(yD)—uD]prglfel=— Y e m00)pygrn(lyfie)e™

i,E+nieX(4)

Using this and Lemma 4.3 recursively for all fe & gives the desired result. O
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The main step in the proof of Proposition 7.1 is the following lemma.

Lemma 7.2. Let Aea} feé&”, and ge G. The functions Pie(f, 8 on a* are
smooth for all & e X (4). For each v € % (a) the function vf has the exponential asymptotic
expansion

(7.4) vf(gexptH)~ 3 [0(Tv) pso(f g)] (tH) '™

EeX(4)

at every Hy e a™, for t — oo.

Here T.v is defined by (1.3). The proof of Lemma 7.2 follows similar lines as the
previous section. We start with a technical lemma elaborating Proposition 6. 1. Fix
do€a¥, Hyea®, reR, and NeR, and let Q, U, k, q, r, ¢, ¥, and n be given by
Proposition 6. 1.

Lemma 7.3. Let I, € N. There exist constants q" € N and r" € R (with q" = q and
r" 21", such that

(i) The map Qx U — B(C#",%/i*¥ ® C,.), obtained from ¥ (and denoted by the
same letter) via restriction and injection, has derivatives in H € U up to order l,. The
derivatives are continuous in (A, H) and holomorphic in A.

(1) For each ve %(a) of degree <l there exists C>0 such that
IRexp e 0f = 0(v) [(n o expti(1) @ 1) ¥ (4, *) f1¢H)|,» S CI f l,, e 70"
Jor all fe &,(G/K)nCI', AeQ, He U, and t20.
Proof. 'We use notation from the proof of Proposition 6. 1. The maps F(H, t) and

G;(H,t) are differentiated in H as follows. Assume (without loss of generality) that
v € % (a) is homogeneous of degree [ <I,. Then

)y F(H, t);=(—1t)' R,° F(H, t),
(where the subscript H indicates differentiation in the H-variable). Moreover, if

Hy,..., H, is a basis for a, we can write v= )" u;H; with u,..., u, € % (a) homogeneous

j=1
of degree I—1 (possibly some u; =0), and tJhen

M=

00y Gy(H, t);=(—t)' R, o G(H, t);+(—1)'"*

j

RexptH Rujy;(l, Hj)
1

for i=1,...,p. Tt follows from Lemma 6.2 that there exist q” and r’ such that
0(v)y F(H, t); and 0(v)y G,(H, t); exist as bounded linear maps from C?" to C,., and that
their operator norms satisfy

0(v)y F(H, t)]| £ C(1+1) e
and
10y G(H, t);| £ C(1+1¢) e?®!

for suitable constants C and ¢, for all He U, 1€ Q, t>0, and i= L...,p.
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In analogy with (6.9) and (6. 10) we also have
10(v)y [Q— (A) esBX ]| < CesN 2
and
[0(v)y [Q4 (A) e SBAH]| < Ce™ N2,
and then
10(0)g [O-(A) eB*DF(H, 0)]|| < Ce'™ 9
and (using the Leibniz rule) for 0<s=<t¢
10(v)g [Q— (A) e* 9BEB G (H, 5)]| < C(1+5) W9 s 2=y

from which we get in analogy with (6. 12)
t
16() [Q- () | e 9PN Gy (H, 5) ds]| < Ce'™ ™9
0

(each time with a new constant C > 0). Similarly we get
1) [Q: (2) €954 G, (H, ]| S C(1+5) ! =D =NV =e=7D)

for 0<t<s, and we conclude in analogy with (6. 13), (6. 14) that
§ 0y [Q4 (1) e* 724G, (H, 5)] ds
t

converges absolutely and has its norm dominated by Ce'™~®. In particular it follows
from this that d(v)y ¥ (4, H) exists as a bounded linear map from C{" to #/#*% ® C,.,
and that it depends continuously on (4, H) and holomorphically on 4.

Combining the estimates above one obtains (cf. (6. 16))
(7 5) “a(v)H [RexptHf_ ”letBu’ n T()“a H)f] ”r” é Ce'(N_E) “f”q",r

for fe &,nCY, 1€, He U, and t=0. Moreover, by the homogeneity of v, the left
hand side of (7. 5) equals

t’ "RexptH Uf— a(U) ["eB(l,')T(l’ .)f] (tH)"r"
(recall Remark 6.3 that ¥ (4, th)= ¥(4, H)). The lemma follows. O

Proof of Lemma 7.2. Easy from Lemma 7.3. Notice that we are not using the
polynomial property of p, , on a™. O

Remark 7.4. The proof above shows that the expansion (7.4) of vf has similar
properties as that of f (expressed in Theorems 3.5 and 3. 6). Thus f— d(T;v)y ps,(f; H)
is continuous from &, to C,* for each H € a*, and if (f});cq, is @ holomorphic family
in &7, then for each 1, € Q, and &, € X(4,) there is a neighborhood Q of 4, such that

(4, H)— o)y [ z Pz,c(fb H) et

EeZ(A)

is continuous from Qxa* to C*, and holomorphic in A.
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Lemma 7.5. Let Aeaf, feé, geG, veWU(a), xe¥R), and ne N - A, and
assume [H,x]= —n(H)x for Hea. Then the function xvf has the exponential
asymptotic expansion

xvf(gexptH)~ 3 [(Ry® d(Tgyy0)) pazsy(N)] (LH) €@

EtneX(4)

at every Hyea™, for t —» + o0.

Proof. We may assume g=e. Then
xvf(exptH)=e "My, f(exptH)
and it follows from Lemma 7.2 that

xvf(exptH)~ Y [0(Tyv) ps (L f, €)1 (tH) €'~ DA,
LX)

The lemma now follows from

Pa (Lo f, @) =(Lyv ps(f) () =(R,p,, () (e). O

Proof of Proposition 7. 1. From (7. 1) we have Df= (v + x;v;) f where v="y(D) and
hence by Lemma 7.5 we have that Df(gexptH) is asymptotic to

Z [(1 ® d(T;v)) pae(f) +Z (R, ® 0(Ty 4 p,01)) Pa e+ ()] (tH) ett®

EeX(4)

as t — + oo (with the convention that p, .., =0 if & +#; ¢ X (4)). Since Df=y,(D) f and
the asymptotics are unique, we get (7.2) from the relation

d(T0)=e"00) o & ((ea®). O

With this the proofs of Theorems 3.5 and 3.6 are finished.

8. Leading exponents and principal parts

We shall now consider the “leading exponents” ¢ in the asymptotic expansion
from Theorem 3.5, and show that for these ¢ the P,(a)-valued functions pie(f) on G
satisfy a homogeneity under the right action of the minimal parabolic subgroup
P=MAN.

Let fe &7(G/K) and g, € G. We say that an element & € X (4) is an exponent of f
at g, along gy A™ if the support of p, .(f) contains g,. The set of exponents at g, along
goA™ is denoted by E(f; go). If V is an open subset of G we put

EAV)=U E(f9).
geV
Thus an element ¢ € X (4) belongs to E(f, V) if and only if P, ¢(f) is not identically zero
on V. The set of <-maximal elements in E(f, g,) (resp. E(f, V)), called the leading
exponents, is denoted E,(f, go) (resp. E.(f, V)). Recall that W*={we W |wv=v} for
v Eak.
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Proposition 8. 1. Let iea* feéP(G/K), g,€G, and o€ E.(f g) Then
6 € WA—g. Moreover there is a neighborhood V of g, such that p, ,(f,g) is a W
harmonic polynomial on a, for all ge V.

Proof. Since ¢ is leading and (6 + AN - 4) n X (4) is finite there is a neighborhood
V of g, such that p, .(f)=0 on V for all {>>0, &+ 0. Therefore the right hand side of
(7.2) vanishes on V, so that p, ,(f,g) e°*?€ E;(a*) for ge V. Since p; ,(f 8 is a
polynomial the proposition follows from Proposition 4. 1. O

Let V= G be open and let g, € V. It is easily seen that

EL(f, V) N E(f, 8o) = EL(, 80)-

Hence we obtain the following.

Corollary 8.2. We have E,(f, V)< Wi—g. Moreover p, ,(f, g) is W’ ¢-harmonic
for all 6 € E;(f,V) and ge V.

We define the principal part of f in V along VA" to be the element P(f, V) of
C*(V)® C>(a) given by

P(iV)= X pas(f)e

ceEL(f,V)

The following lemma is an immediate consequence of this definition.

Lemma 8. 3. The principal part P(f, V) of f in V along VA™ vanishes if and only
if f(gexptH) is asymptotic to zero for all Hea™ and geV (i.e. p;.(f 8=0,
VEe X (4).

Given an element Y e a we define the linear automorphism Ty of C*(a) by
Tyw(H)=w(H+Y) for y e C*(a), H € a. The following result describes the transform-
ation of the principal part under the action of P=MAN from the right.

Theorem 8.4. Let Aca* fe&F(G/K), and V an open subset of G. Then
E.(f, V)=E_(f, VP), and the principal part P(f, VP) of f in VP satisfies

(Rman ® 1) P(f, VP)=(1® Tyo5.) P(f; VP)
for all me M, ae A, ne N.

The proof is preceded by a series of lemmas in which we describe the
transformation under P of p, (f) for each £ e X(4).

Lemma 8.5. Let (€ X(A), me M and ae A. Then
(Rma ® 1) pl,é(f)=a€(1 ® Tioga) pl,{(f)'

Proof. Clearly f(gmexptH)=f(gexptH) so that R, leaves p, .(f) fixed. We
have

f(gaexptH)=f(gexp(tH +loga)).
Let Hyea® and N e R, and let U be a neighborhood of H, in a™ such that

If(gexptH)— Y pae(f,g tH) ™ <Ce'™?

Rel(Ho)ZN
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for all H e U. Since tH +loga=t(H+t 'loga) and H+t 'logae U for t sufficiently
large, it follows that for H near H, we have

|f(gaexptH)— Y p,:(f g tH+loga)eH+18a| < C, otV -0

Rel(Ho)z N

for some constant C;. The lemma now follows from the uniqueness of the asymptotic
expansion. O

Before considering the effect of N on p, .(f) we need the following simple lemma.
We define a: 4 — R* by a(a),=a”? for ae 4 and y € 4.

Lemma 8.6. Fix ne N. There exists a unique real analytic map z: R4 — N A,
such that na e z(a(a)) aK for ae A. In particular, z(0)=e.

Proof. By easy root space calculations there exist real analytic maps
p:R*XNA—NA and $:R*xNA—NA such that y(a(a),y)=a 'ya and
P(x(a), y)=aya~' for all ye NA, e NA, and ac A. Let t: NA— NA be the real
analytic difffomorphism defined by y € 7(y) K, and define

z(t)=9p (t’ T (V’(t, n)))

Then z(a(a))=at(a 'na)a '=t(na)a™?!, and the first assertion follows. It follows
easily from the definition of z that z(0)=e. O

Let ne N and define z according to this lemma. For each fe C® the function
x— L(z(x)™') f from R“ to the Fréchet space C° has a Taylor expansion at 0

8.1 Lzx)™N)f= Y x*f,+F(x)
neN-4
lul <k

where F,(x) is the remainder term (k € V). Here we have used the multiindex notations

lul=) 4, and x*=[](x,)** for p=Y p,aeN-4 and xe R4 The remainder is

acd

estimated by

(8.2 IFe Mg, r S CoielXI* £ g,
for [x| <1, for each g € NV (g = k), with C,, a constant independent of x and f. Notice
that f,=f and f, € L(%(9))f.
Lemma 8.7. Assume fe &5, and & € X(4). Then
Pz,g(fa n)= Z Pa,¢+,¢(fu, e).
neN-4
E+ueX(a)

Proof. Let NeR and Hy,ea*, and choose k, ¢ and U as in the proof of
Proposition 6.1 so that y(H)<N—¢ for HeU (cf. (6.3)). Fix HeU and let
x,=a(expt H), then

f(nexptH)=f(z(x,) exptH).

From (8. 1) we then obtain

fnexptH)— Y f(exptH)e " =F,(x,) (exptH)
neN-4
lul <k
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and in view of (8.2) there exists a constant C such that
|Fi(x,) (exptH)| = CeWN—0t

for all =0, because |x,|<e "#™ Now substitute the asymptotic approximations for
each f, in the above equation, then the result follows from Lemma 3.2. O

Proof of Theorem 8.4. From Lemma 8.5 we find that E(f,V)=E(f, VM A) and
hence E,(f, V)=E.(f, VM A). Moreover

(Rma ® 1) (p).,ﬁ(f) eé)=(1 ® ’Iioga) (p).,é(f) eé)

for any ¢ € X (/). From Lemma 8.7 and the equivariance for L of p, . we infer that

Pio(f; gW)=ps,(f 8)
for geG, oce€E,(f,g, and neN. From these identities the theorem easily
follows. d

9. Boundary values

Using the asymptotic expansion we assign in this section to each function in &;° a
boundary value (in general actually several boundary values), which is a C*-function on
K/M.

Recall that o =2<¢a, o) ! « for a € T and let
9. 1) o ={lea¥|VaeZ :{Aa')¢ —N*}

where AV* = AV\{0}. In particular, if ReA is dominant then 1€ o/. Hence Wun o/ +0
for all pe a¥.

Lemma 9.1. Let A€ a*. Then /e .o/ if and only if wA> A implies wA=24 for all
we W.

Proof. See [KKMOOT 78], Appendix II, Prop. 2(2). O

From this lemma it follows that if A€ o/ then 1—g is <-maximal in X (4), and
hence from Corollary 8.2 that p, ;_,(f, g) is a W*-harmonic polynomial on a for all
g€ G. Let o/’ denote the set of regular elements in .o/, that is

9.2) A ={lear|VaeZt:(ha')¢ —N},

then it follows that p, ,_,(f, g) is constant on a if A€ .o/’. For 1€ &' we define the

boundary value B,(f)e C®(G) of fe & (G/K) by B;(f)(8)=ps1-.(f g, and call
B,: & — C* a boundary value map. Notice that wi may be contained in &/’ for several
w e W, in this case we get several boundary value maps f,,,: §;° — C®. Let n € % (a) be
the element defined via the polynomial function

9. 3) =[] <va'd

+
aely

on aX.
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Theorem 9.2. (i) Let 1€ /. The boundary value map B, maps 6°,(G/K) linearly,
continuously, and G-equivariantly into C*(G/P; L,) for each r € R.

(i) Let Q<a¥ be open, and let (f;);.q be a holomorphic family in &. Then
A— Bi(fi)lx is holomorphic from Qo' to C*(K/M) (that is, holomorphic into the
Banach space C1(K/M) for each q € N), and 1 — (1) B,(f.)|x has removable singularities
in Qn(L\AL).

Proof. (i) follows immediately from Theorems 3.5 and 8.4, and the first
statement in (i) follows from Theorem 3. 6 (using continuity of the restriction map from
C7(G) to C*(K)). Hence 1 — m(4) B,(fy)lx is holomorphic in @ «’. To justify the
final statement in (ii) it suffices by a classical theorem (cf. [Osg 29], p. 187) to prove that
all singularities have codimension =2, that is, to prove that the function extends
holomorphically to the set

U {Ae@na | <4, y>+0forall y e X5 \{a}}.

+
aeXy

Let oeQn o/ and assume (g, a)=0 for some ae Xy and (A, p>+0 for all
y € Z5 \{a}. It follows from Theorem 3.6 that for each ac A* =expa* the C,(G)*-
valued function (with a suitable r' € [R)

ba(A)=Bi(f3) @7+ By, a(f3) a** ¢

on QN .o/, extends holomorphically to a neighborhood of A,. We choose a,a,e A
such that af #a% and denote by A(4) the matrix

a’ll_" aslal_9>
azzl—e aszal—e

¢a1(z)> <ﬁ1<fl) )
D)= , A)= ,
@ <¢,,z(z) PO=s

9.4 A = <

Put

then @()=A4()p(A) for AeQno. A simple computation shows that
A— Ao’y " det A(A) extends to a never vanishing holomorphic function on a
neighborhood of 4,. Hence <4, ") A(1)~! extends holomorphically to a neighborhood
of Ay, and hence so does

n() pA)=n(D) AAD)" o). O

Corollary 9.3. Let o€ .o/, Qcaf a neighborhood of Ly, and (f,),.o a holo-
morphic family in &°. Then

©.3) lim w(w) B, (f,)= 11111; ©(4) Bi(f3)

A= Ao

Jor all we W*(={w|wi,=1,}).
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Proof. 1t is easily seen that (9.5) is equivalent to

©. 6) lim 7(2) B,(fs1) = Aliqrr: n(4) B (f3)

ﬂ.—’lo

for all s e W (let s=w~! and substitute A=sv on the left side of (9. 5)). To prove (9. 6)
we may assume that s is reflection in a root a with {lg,a>=0. Let
h,=<4 o> ' (fi—f.2), then (h;);.o is a holomorphic family in &;°. Theorem 9.2(ii)
shows that n(4) B,(h,) has a removable singularity at A,. Hence {4, a) n(4) B,(h;) is zero
at A,. O

We now consider the non-regular elements A in /. For any ZAeaf let
S*={aeX|<{a Ay=0} and define w* € P(a) and n* € %(a) by

9. 7) AH)= [] oH)

aesrinzy

for H € a, and

©.8) Pw= [1 <a',mw

aeZriniy
for u € a*. Notice that d(n*) w* is a positive constant (cf. [Va 77], part L, p. 59, Cor. 7).

Let Ae #/\ ' and fe &7, then p; ,_,(f, g) is a W*-harmonic polynomial on a for
each g € G. In particular, p, ;_,(f, g) € (% (a)) w* (cf. Section 4). It follows that we can

define B,(f, g) € C uniquely by deg(ps .-,(f &) — Bi(f, g) o) <degw” (thus B,(f g) is
the coefficient of p, ,_,(f; g to w* in any homogeneous basis for the W*-harmonic

polynomials).

Notice that we have

©.9) Bu(f, &)=[0(x") ©@*171 0(n*) P, 1-,(/: 8)

for each ge G. The function B,(f)e C*(G) is called a boundary value of f, and
B.: & — C* a boundary value map.

For each 1 € a¥, let a(4) denote the following non-zero constant

9. 10) a)=\WH ") 0*] ] <4 a').

aeIi\zA

Theorem 9.4. (i) Let Ae o/ \.o/'. The boundary value map B, maps &;°,(G/K)
linearly, continuously, and G-equivariantly into C*(G/P; L,) for each r € R.

(ii) In the setting of Theorem 9.2(ii) we have

6. 11) im  7(4) B2(f) = a(ho) fay(fio)

A= Ao, Aed’
for lpe A NAQ.

Proof. (i) That B,(f)e C*(G/P; L,) follows from Theorem 8.4 because Thoga®?
equals w* plus some lower order terms. The continuity of f; follows from Theorem 3. 5.

(i) By Theorem 3.6 we have for He a® that

9. 12) Z Bui(f2) eV ) plo,lo—g(f}.y H) ghoth

weW?o
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as A — 4o, 4 € o/'. By Remark 7.4 we still have convergence of (9. 12) after applying the
differential operator d(n*°) on a* to both sides. Now

-1
6(7:’10)e“=n‘°(wl)e“=sgnw[ 11 <,1,oz">] n(l) e”?
aeZi\3z%

and hence

1
lim d(n*) } ﬂwz(fa)e‘”=|W‘°I[ I1 </lo,av>] Alirri n(A) Bi(f3) e

A= Ao we W40 aeZ5\2%

by Corollary 9.3. On the other hand, using (9. 9)

O(1*) [ Pio, 200 (f3o) €1 =[0(n?) 0] B,,(f3,) €%
and (9. 11) follows. O

Finally we notice that for certain A we can obtain the boundary value f,(f) from
f€ & by a simple limiting procedure. More precisely we have

Lemma 9.5. Let 1€ af and assume that Re{4,a) >0 for all a € Z*\X* Then

Bi(f:g)= lim [w*(tH)e* @M1 f(gexptH)

t—= +o
for fe &, g€ G, and Hea™.

Notice that for A € a* the assumption is that 1 is dominant (that is, {4, o) =0 for
all ae 2.

Proof. The condition on A implies that Re &(H) <Re(1—yg) (H) for all & e X (1)
with ¢+ 4 —¢. Then the result follows from Theorem 3.5 and the definition of 8,. [

10. Inversion of the Poisson transformation

In this section we give the relation of the boundary value map B, to the Poisson
transformation £,. Essentially they are the inverse of each other.

Recall from Section 2 that 2, maps C®(K/M) continuously into & v(G/K) for
each A€ af (r(4) € R given in Example 2.2(i)). On the other hand, when A e .o/ (and in
particular, cf. (9.1), when Re {4, a)>0 for all xe £*) we have seen in the previous
section that f, maps &;°, continuously into C*(K/M) for each re R (with the
identification C*(K/M)=C*(G/P; L,)).

Let ¢ denote Harish-Chandra’s c-function, which is the meromorphic function on
a¥ given by the well known integral formula

c(/{) =J’ e(-A—e)(H(ﬁ))dﬁ
N
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when Re (4, a)>>0 for all e X" (cf. [He 84], Sect. IV6. The Haar measure dii on N
is normalized such that c(g) =1). Explicitly c(4) is given by the expression ([He 84], IV,
Thm. 6.14) due to Gindikin and Karpelevic. It follows from this expression that the
meromorphic function A — m(4) ¢(4) on a¥ is nonzero and without poles in /. For
Jo € o/ we define the nonzero constant k(1) € C by

(10. 1) k(do)=a(io)™"! [m(4) c(D]s=4,
where a(4,) is given by (9.10). In particular if A, € &" then k(4,) = c(4o).

Theorem 10. 1. Let L€ .o/. Then 2, is a topological isomorphism of C*(K/M)
onto &,;)(G/K) whose inverse is k(2)~' B,. Moreover &7,,)(G/K)= &7 (G/K).

Proof. Assume first that Re {4, a)>0 for all x € *. From Lemma 9.5 we then
obtain that

(10.2) B (P, 0, k)= lirP e WOt p o (kexptH)
t— +o

for all o€ C*(K/M), ke K, and Hea". A simple argument involving a transformation
of the integral over K to an integral over N shows that the right hand side of (10.2)
equals c(4) @ (k) (cf. [He70], p.130 or [Schl84], Thm. 5.1.4). Hence for any
@ e C*(K/M)

(10.3) Br(Z0)=c(A) o.

Assuming only A e ./’ it follows from Theorem 9.2(ii) that (10. 3) still holds, because
2, ¢ is a holomorphic family in &;°. Finally, for arbitrary A€ o/ we infer that

(10. 4) B:(Z10)=k(4) @

for ¢ € C*(K/M), using Theorem 9. 4(ii). In particular this proves that f, is surjective
from &%, onto C*(K/M).

Let re R with r=r(4), and let V<&, be the kernel of f;, then V is a closed
invariant subspace of &5°,. Now for any such subspace V we have either V=0 or ¢, €V,
where ¢,=%,1 is the spherical function (because if feV and f(e)+0 then
[ Ly fdk e V\{0}). However (10.4) shows that B,(¢;)=k(4)+0, hence V=0 and B; is
K .

injective.
Since both 2, and 8, are known to be continuous the theorem easily follows (of

course actually the continuity of one of them would suffice, by the closed graph
theorem). O

In the rest of this section we give some simple applications of Theorem 10. 1.

Corollary 10.2. Let A, € a¥ and fe &;. There exists a holomorphic family (f;);cax
in & such that f=f,,.

Proof. Choose we W such that wiy,e o, let T=k(wi,)™ ' B, (f), and take
=2, T. O
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Using this corollary we can now describe in more detail which polynomials p, ,
can occur in the asymptotic expansion of fe &°. For v e a* we have earlier defined
W,={we W |wv—veZ- A} (cf. Remark 5. 12).

Theorem 10. 3. Let Ay € af, fe £2(G/K), and g € G, and let
E=wilo—o—pe X(4)

where we W and ue N - A. Then p,, (f, g) is a W, -harmonic polynomial on a, hence in
particular a W-harmonic polynomial.

Proof. We may assume that f is the f;, of a holomorphic family f, in &;°. For
Aeak let p, e C*(a) be given by

Ya= Z P,l,g(fu g)eé_go-
EeE(A)
It follows from Remark 7.4 that A— [0(u) v,] (H) is continuous near A, for each
ue(a) and Hea®. The argument from the proof of Corollary 5.11 can now be
repeated and gives the theorem (cf. Remark 5. 12). O

Let fe &. By definition, all the left derivatives of f belong to the same space
C,(G). Actually, the differential equations satisfied by f force the right derivatives to
behave similarly (considering f as a function on G):

Theorem 10.4. Let A€ a¥. There exists r€ R such that L,R,fe C,(G) for all
fe &P and u, v e U(g).

Proof. Since L,fe & for all ve %(g) it suffices to take v =1. Conjugating with
W if necessary we may assume A€ /. By Theorem 10.1 we have f=2,¢ for some
@ e C*(K/M), and then

uf(@)=J @) (ue;.,) (k™ 'g) dk

K
for g e G. Then the theorem follows from Lemma 10.5 below. O

Lemma 10.5. Fix Ae€af There exists re R such that ue, e C,(G) for all
ueuUg).

Proof. Follows from (1.7) and Lemma 2. 1. O

Finally we remark that £, is a topological isomorphism of C*(K/M) onto
&7 a(G/K) for 4 in a slightly bigger set than /. Let e(4)”! be the “denominator of ¢”
as defined in [Schl 84], eq. (5. 17).

Theorem 10. 6. Let A€ af and assume e(1)+0. Then 2, is a topological isomor-
phism of C*(K/M) onto &},

Proof. This is a simple consequence of Theorem 10.1 and the theory of
intertwining operators. We omit the details ([KKMOOT78], p.27—30 is
similar). OJ

If e(A)=0 then 2, is neither surjective nor injective (cf. [He 847, p. 279).

71 Journal fiir Mathematik. Band 380
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Part II. Distribution boundary values
11. Eigenfunctions of weak moderate growth

In this section we introduce a “weak” growth condition for eigenfunctions on G/K,
which is much weaker than that satisfied by the functions in &;°(G/K). The weak
growth condition is satisfied by the Poisson transforms of all distributions on K/M.

Recall from Section 2 that

C,?:{fe Cq(G) | “f“q,r< +OO}

for ge N and re R, and C;* =) C¢. Following [Wal 83] we define & =5(G) to be
q

the space

endowed with the projective limit topology for the intersection over g and r (that is, the
topology given by the family of all the norms || - [, ,).

By a standard argument (involving Ascoli), the injection of C{ into CZ, is a
compact mapping if ¢’ <q and ' >r. Hence ¥ is a Fréchet-Schwartz space (in the sense
of Grothendieck [Gr 54], p. 117), which means exactly that it is the projective limit of a
compact sequence of Banach spaces (cf. [Kom 67], Thm. 17). In particular, & is a
Fréchet space.

It follows from (2.4)—(2.7) that L and R leave the space % invariant and act
smoothly on it. It is easily seen that the space C°(G) of compactly supported C*-
functions on G is contained in . as a dense subspace, and that the injection C° ¢, & is
continuous.

Let &' =%'(G) be the space dual to &, equipped with the strong dual topology.
It follows from the above that %’ is a subspace of the space 2'(G) of distributions on G.
For any Te & and g€ N, r € R we denote

1Tl =sup{IT@) | 0 € &, ol =1}

The space (C3)={Te¥ ||T|,,<+oco} with this norm is the dual space of CJ.
Moreover we have & =) (C?) and (C!) <=(C}) if q<q and r'<r. By duality (cf.

[Kom 67], Thm. 11) &%’ isq’irsomorphic to the inductive limit of these spaces.

Using Lemma 2. 1(iii) one proves easily (cf. [War 721I], Lemma 8. 15. 4) that
(11.1) [llgl®dg< +o0
G
for some b e R. From this it follows that there is a continuous injection of C? = C,(G)

into (C2_,) (hence also into ') defined via integration on G (with respect to some fixed
normalization of the Haar measure).
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Let ¢ <q and re R. For each T € (C4) and ¢ € C? we define a C? ~4-function
L'(p) T on G by

[LY(¢) T]1(x)=T(R,-19).
Notice that if fe C,(G) and ¢ € C,_,(G) then

[L" () /] (X)=(J; ¢"(8) Lyf(x) dg

where ¢ (g)=0(g™").
Lemma 11. 1. Let q,q9 € N with q¢'=q. There exist s=0 and C >0 such that

”Lv ((P) T”q’—q, |r| é C “T“;,r I|¢|Iq’,r—s
for all re R, Te(Cf), and ¢ € Ci_,.

Differently put, LY is a bounded linear operator from CZ, to B((C?Y, Cf™9). In

particular, it follows for each T e (Cf) that ¢ — LY () T is a continuous linear map
from C2; to Cy.

Proof. 1t follows from (2.5) that

(11.2) ILY (@) Tl = 1T, ol
for all Te(C?) and ¢ € C2. We choose s and C such that

(11.3) IRx»@llg,r = Cll@llg,r-s

for all |y|<q'—q and @ € CZ (cf. (2.7)). Since Ly, L" (¢p) T=L"(Ry,¢) T we get from
(11.2) and (11.3) that

ILY (@) Tllg -,y = max Ly LY (@) Tl = CITlly, I9lg,r—s

79’ —a

for Te(C% and @ e Ci_,. O

Let &¥(G/K) denote the closed (cf. (2. 7)) subspace &,(G/K)n ¥ (G) of &' (G). We
call the elements of &5 eigenfunctions of weak moderate growth. Notice that if T € &;*
and ¢ € & then LY (¢) T € &° by Lemma 11.1.

For each distribution T € 2'(K/M) and A € a} the Poisson transform 2, T is the
function on G/K whose value at the coset gK is obtained by applying T to the C*®-
function kM —e;,,(k"'g) on K/M. Then £, maps 2'(K/M) into &,(G/K), and
identifying C(K/M) with a subspace of 2'(K/M) via the normalized Haar measure we
see that this definition extends (1. 8).

Let 2'(G/P; L,) denote the space of distributions S on G satisfying
(11. 4) R,anS=a%*"¢S

for all meM, ae A, and neN. For Te 2'(K/M) let T, € 2'(G) be defined by
T,(¢) = T(¢*) for ¢ € C*(G) where ¢* e C*(K/M) is given by

(11.5) o*(k)= | [ | p(kman) a***dmdadm

M AN
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then T, € 2'(G/P; L;), and T — T, is a bijection of 2'(K/M) with 2'(G/P; L,). Let the
Poisson transformation 2: 9'(G/P; L;) — 2'(G/K) be the restriction of the adjoint of the
trivial map C*(G/K)— CZ(G). Then clearly &2 is equivariant for L. Moreover 2T,
equals 2, T (viewed as a distribution via Haar measure on G, suitably normalized) for
T € 2'(K/M).

Let 2'(K/M) be equipped with the strong topology.

Lemma 11. 2. Let A€ aF. We have 2'(G/P; L;,) < &' (G), and T — T, is continuous
from 2'(K/M) into &' (G).

Proof. Tt follows from (11.5) that ¢ — ¢* extends to a continuous map from
& (G) to C*(K/M) (use Lemma 2. 1). The lemma follows by duality. O

Corollary 11.3. Let A€ a*. We have 2, T € §F(G/K) for all T € 9'(K/M), and
P,: D' (K/M)— & is continuous.

Proof. Immediate from #,T=2T,. O

Since T, and 2, T belong to &' for T € 2'(K/M) it makes sense to form the
functions LY (¢) T, and LY (¢) #,T on G for ¢ € &.

Lemma 11.4. Let Te 9'(K/M) and ¢ € ¥ (G). Then
(11.6) L' (9) Z,T=2(L" (¢) T))
for all A€ a¥.

Proof. By continuity of L (Lemma 11. 1) it suffices to take ¢ € C°(G), and then
(11. 6) follows from the left equivariance of 2. O

By a similar argument we also have

Lemma 11.5. Let fe 87°(G/K) and ¢ € #(G). Then
LY (@) B1f=Bi(LY (9) ).

12. Distribution boundary values

We shall now assign boundary values on K/M to the functions in &;*(G/K). The
boundary values will be distributions on K/M, and as before the boundary value map
turns out essentially to be the inverse of the Poisson transformation.

Let 1€ o (cf. (9.1)) and fe &*. It follows from Lemma 11.5 that when B,(f) is
considered as a distribution, its value at a given ¢ € & is identical to the value of the
C>-function B,(LY(p)f) at the identity element. This consideration motivates the
following definition.

Let Ae .o/ and fe &F. For each ¢ € & we have LY (¢)fe & (cf. Lemma 11.1),
and hence the boundary value B,(L" () f) exists in C*(G/P; L;). We define a linear
form B,(f) on %, called the boundary value of f, by

Bi(f) (@)=PBi(L" (@) f. )

for p € . The map f— B,(f) is called the boundary value map. The consideration
above shows that though &;° = & there is no ambiguity in the use of the symbol §,.
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Theorem 12. 1. Let A€ o/ and fe £¥(G/K). Then B,(f) e &'(G) and the boundary
value map B,: &F — &' is linear, continuous, and commutes with L. Moreover we have

Bi(f) € 2'(G/P; Ly).

Proof. Fix r € R and consider the linear form on &3 obtained from composing
Bi: 8% — C*(G/P; L,) with evaluation at e. This being continuous there exists qgenN
such that it extends to a continuous linear form on C{,n &, (by definition of the
topology on Cy).

For each g e N it follows from Lemma 11.1 that f— LY (+)fis a bounded linear
operator from (Cf) né&, to B(CE 14, C% N &,). By composition with the linear form
above we see that f— B,(L"(-)f e) is a bounded operator from (C4) N &, to (CL*¥Y,
hence continuous into &". It follows that f, is a continuous linear map from & to &
The intertwining property is obvious from LY(L,-:¢) f=L"(¢) L,f for ge G.

In analogy with Lemmas 11.4 and 11.5 we now have

(12.1) LY (@) B:(f) =B (LY (9)f)
for fe &F and ¢ € &. Evaluating both sides of (12.1) at x € G we obtain

Bi(f) (Ry-10) =B (LY (9) f, x).
Using this with x € P the last assertion follows from B, (LY (@) f) e C*(G/P; L,). O
It follows from the last assertion of Theorem 12.1 that we may consider §,(f) as
an element of &'(K/M) via the isomorphism T — T, of 2'(K/M) onto @'(G/P; L,).

Theorem 12.2. Let A€ .o/. Then P, is a topological isomorphism of %' (K/M) onto
E¥(G/K), and its inverse is k()™ B,.

Here k(1) e C\{0} is given by (10.1).

Proof. We have already seen (Corollary 11.3 and Theorem 12. 1) that 2, and B,
are continuous.

From Lemma 11.4, (12.1) and Theorem 10.1 we get that
LY () ZB:(f)=2B:(L" (9) f) = k() L" (9) f
for fe &F and ¢ € &. Similarly
L (@) B2, T=B,2(L" () T)) =k(2) L" () T,

for TeZ'(K/M) and ¢ e &. Evaluating these two identities at e we get the
theorem. O

The first assertion in Theorem 12.2 is due to Oshima and Sekiguchi [OS 80] (and
partially to Lewis [Le 78]). As in Theorem 10. 6 (and with the same argument as there)
it actually holds under the weaker condition that e(4) 0.

In analogy with Theorem 10.4 we shall now prove that the functions in & satisfy
stronger growth conditions than those used to define the space. Following [Wal 83] an
eigenfunction fe &, is said to have moderate growth if there exists r e /@ such that
ufe C,(G) for all ue %(g).

7> Journal fiir Mathematik. Band 380
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Theorem 12.3. Let 4 € a* and let f be an eigenfunction of weak moderate growth
(i.e. fe &F). Then f has moderate growth.

Proof. We may assume (conjugating with W) that A€ ./, and then f=2,T for
some T € 2'(K/M) by Theorem 12. 2. The result now follows from [Wal 83], p. 365 but
for completeness we give a simple proof.

There exist a finite set ] c%(f) and a constant 4 >0 such that

IT(p)l=A sup |x ¢ (k)|

keK
for ¢ € C*(K). From this it follows that
12, T(g)l = A sup IL,ue; s (k™' gl
kekK

for g€ G and u € %(g). Hence the theorem is a consequence of Lemma 12.4 below.

Lemma 12.4. Fix x € %(g) and A € a¥. There exists r € R such that L, ue, € C,(G)
for all ue % (g)

Proof. 1t follows from Example 2.2(ii) and the relation
L,ue;(g)=Adg ' (x") ue;(g)
that we may assume x =1. Now see Lemma 10. 5. O

Remark 12.5. Let &, ,=¢&, n C,(G) be equipped with the Banach space topology
inherited from C,(G). Then the injections &, , — & are continuous and hence it follows
from Theorem 12.3 and the closed graph theorem ([B66], II, §4, n°6, Prop. 10)
that the topology on & is identical with the limit topology for the union &7 = U €5

13. Distributional asymptotic expansions

From the theory developed in PartI for the functions in &° we draw a few
consequences for the functions in &F. The most important is:

Theorem 13.1. Let A€ a¥, fe £F(G/K), and ¢ € ¥ (G).

(i) For each &€ X (J) there exists a unique polynomial p, «(f, @) on a such that
L' (@) fexptH)~ 3, pae(fs o tH) e (1 — o0)
EeX(A)
at every Hyea®.
(i) Let ¢€ X(A). Then f— p, «(f) is a continuous linear map of &¥(G/K) into
&' (G) ® P,(a), equivariant for the left actions of G on &F and &'

(i) Let E=wi—g—pue X (4) where we W, ue N - A. Then p, :(f, ¢) is a W, ;-
harmonic polynomial on a. In particular if for all o € X we have {4, «") ¢ Z, then all the
polynomials p, .(f, @) on a are constants.
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Proof. (i) is immediate from Theorem 3.5(i), and (ii) follows from Theorem
3.5(ii) (cf. also the proof of Theorem 12.1). (iii) follows from Theorem 10. 4. O

Let fe &F and x, € G. As in Section 8 we define the set of exponents of f at x,
along x, A" by

E(f, xo)= {5 eX(A)]xo€ SuPppz,g(f)}
(that is, & € E(f, x,) if and only if for each neighborhood U of e there exists ¢ € C°(U)
with & e E(LY () f; x,)). Also as before we put E(f, V)= () E(f, x) for V=G, V open.

Then e E(f, V) if and only if p, .(f, ¢) 0 for some (pxeea“’(V). Moreover we define
the leading exponents of f in V along VA™ (resp. at x, along x,A") as the <-maximal
elements in E(f, V) (resp. E(f, x,)), and denote the set of these by E,(f, V) (resp.
E (f, x)). It follows easily from Proposition 8.1 and Corollary 8.2 that E,(f, V) (resp.
E.(f, o)) is contained in WAi—pg, and that p, .(f, ¢) is W’*%harmonic for all
cgeE (f,V) and ¢ e CP(V) (resp. for all o€ E (f,x,) and ¢ e C*(U), for some
neighborhood U of x,).

We define the principal part P(f, V) of f in V to be the element of 2'(V) ® C®(a)
given by
P(EV)(@)= Y  Pu.(fi@)e’=P(L"(9)f,V)(e)

geEL(Sf,V)

for ¢ € C* (V). From Theorem 8.4 we easily obtain that E,(f, V)=E_(f, VP) and
(Rpnan ® 1) P(f, VP)=(1 ® Tyoga) P(f; VP)
for fe & and mane P=MAN.

Part III. Converging expansions
14. H-finite functions

In this section we introduce extra assumptions on the eigenfunction fe &,(G/K),
which — as will be seen in the following sections — ensure that the asymptotic
expansion actually converges in certain directions to the boundary. Basically the
assumption is that f transforms finitely under the group of fixed points of some
involution of G, and the main result in the present section is that this implies
fe &F(G/K) (cf. Section 11), so that the theory of Part Il applies to f. An important
example is that of K-finite eigenfunctions.

Let o be an involution of G, G’ the subgroup of G consisting of the o-fixed
elements, and G§ the identity component of G°. Let H be any subgroup of G satisfying

GicHcG".

Throughout we assume that ¢ and 0 commute mutually (which can always be obtained
through conjugation, cf. [Schl 84], Prop. 7.1.1). We say that a function f on G is H-
finite, if the set of all its left translates L,f by elements h € H, spans a finite dimensional
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linear space. The following basic result was proved jointly by Flensted-Jensen, Oshima
and the second author, using the theory of [Osh 84] (cf. [F-J 86], Ch.IV, Prop. 8). We
shall give another proof based on [Ban 84].

Theorem 14. 1. Let A€ a¥ and fe &,(G/K), and assume that f is H-finite. Then f
has at most exponential growth (that is, fe€ &} (G/K)).

Remark 14. 2. Let 6 =0. Then the theorem says that K-finite eigenfunctions have
at most exponential growth. In this case the details of the proof below are simpler, and
reference to [Ban 84] can be replaced by reference to [CM 82]. Notice that combining
Theorems 14.1 and 12.2 we obtain a new proof of Helgason’s theorem [He 76], Cor.
7.4 that 2, gives a bijection of the K-finite functions on K/M onto the K-finite
functions in &,(G/K) (for 1 € o). (Alternatively, Helgason’s result implies Theorem 14. 1
for 6=10.)

Before giving the proof we establish some notation. Let ) be the Lie algebra of H,
and q the orthocomplement (with respect to the Killing form) of §) in g. We assume that
the maximal abelian subspace a of p is chosen o-stable and g-maximal, that is, if
a,=angq, then a, is maximal abelian in p nq. Let X, denote the set of all non-zero
restrictions to a, of roots in 2. Let Ng(a) and Ng(a,) (resp. Zx(a) and Z(a,)) denote the
normalizers (resp. centralizers) of a and a, in K. Then W = Ny(a)/Zg(a), and we also
have the following result, due to Rossmann [Ro 79].

Lemma 14. 2. The set X, is a root system on a,, and its Weyl group W, is naturally
identified with Ng(a,)/Zg(a,). Moreover, each element we W, has a representative in
Ng(a,) N Ng(a).

Proof. See [Schl 84], Section 7. 2. O

Let 2 be the set of all non-zero restrictions to a, of roots in . We assume (as
we may) that X is q-compatible, that is, X forms a positive set for Z,. It follows that
the set HP of all elements hp, where he H and pe P, is an open subset of G (cf.
[Schl 84], Prop. 7.1.8(ii)). Let 4, be the set of simple roots for X, af the
corresponding open chamber in a,, A,=expa,, and 4] =expa, .

Let 7 be a representation of H in a finite dimensional complex linear space E. An
E-valued function F on G/K which satisfies

(14.1) F(hx)=1(h) F(x)

for all he H and x € G/K, will be called t-spherical. Notice that if F is t-spherical and
n € E* then the function n o F is H-finite. Conversely, let f be an H-finite C-valued
function on G/K, and let V denote the finite dimensional space of functions on G/K
spanned by the H-translates L,f of f Let E denote the dual space V* 1t the
representation of H on E dual to L on V, and F: G/K — E the function given by
F(x) v=v(x) for v € V. Then F is t-spherical and f=# o F for a suitable linear form # on
E (n=f when E* is identified with V). This consideration allows us to switch between
H-finite functions and z-spherical functions, which is often convenient. We say that F is
associated to f.

Let &, .(G/K) denote the space of all t-spherical C*-functions F on G/K satisfying
the system of differential equations

DF=y,(D)F (D e D(G/K)).
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We recall from [Ban 84] that if F € &, .(G/K) then F admits certain converging series
expansions on A4,. To be more precise, let a,: A, — [ be the map given by

(14.2) aq(a) = (a_y)yeAq
where a”=¢"1¢% for vea}. Let D={ze C||z/<1}, and let P(a,) be the space of

complex polynomial functions on a,. We then have from [Ban 84], Thm. 3.5:

Proposition 14. 3. Let A € af and F € &, .(G/K). There exist finite sets S c af. and
M < P(a,), and for each pair (v, p)e Sx M a holomorphic function F, » from D% to E
such that

(14. 3) F(@= ) F, ,(a,(a)p(oga)a’

veS
pPeEM

for all ae A].

Proof of Theorem 14. 1. Let F € &, .(G/K) and fix any norm || on E. Since 7 is
finite dimensional there exist constants C, and r, such that

(14. 4) eIl = Cy [Ih]™

for all h e H, where |z(h)| is the operator norm of t(h) on E.

The expression (14.3) shows that for each 6 <1 there exist constants C, and r,
such that

(14.5) |F(a) £ C; |al|™

for all ae A, with a,(a) € ]0, 6]4e. Actually this holds for § =1 too, as follows from the
statement for “asymptotics along the walls” similar to Proposition 14.3, cf. [Ban 84],
Lemma 8.2 and Thm. 8.3. Hence (14.5) holds for all a in the closure of 4., and since
any positive set X, for X, corresponds to some compatible choice of Z* we get (14. 5)
for all ae A,.

Combining (14.4) and (14.5) with Lemma 14. 4(ii) below we have
[F(ha)| C, C; ||hal™ ",
and the theorem is proved because G=HA, K (cf. [Schl 84], Prop. 7. 1.3). O

Lemma 14.4. Let o be an involution of G, commuting with 0. Then
(i) llogl=ligll for all ge G, and
(i) if h,ae G with ch=h and ca=0a then
lall = lhall and ||h] < |hal.
Proof. (i) is obvious since the Killing form is o-invariant. Using the Cauchy-

Schwartz inequality on the definition of || - | on G, we easily get the following inequality
for all x, ye G:

(14.6) IyI2 < lxyll IIx @)

73 Journal fir Mathematik. Band 380
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1

Replacing (x, y) by (y~*, x~!) we also have

(14.7) 1)1 < xyl 1x @)
With (x, y) = (h, a) we get (ii) from (14. 6) and (14. 7) because |h(0a)|| = |ha| by (i). O

Remark 14.5. With the same arguments as in the proof of Theorem 14.1 we
actually get from [Ban 84] the following more general result: A function fe C*(G) has
at most exponential growth if it is left H-finite, right K-finite, and transforms finitely
under the center of the enveloping algebra %(g).

Let Aea* and let fe &,(G/K) be H-finite. We now know that the asymptotic
theory of Theorem 13.5 can be applied to f In the following we will relate the
converging expansion (14.3) to the asymptotic expansion. The first step (redundant if
a,=aqa, e.g. if H=K) is to extend (14.3) from a € A toae A"

For each aeA we write a=a,a, for the unique decomposition where
a,€ A,=exp(anb) and a,€ A,. Let T denote the set of weights of a, in 7. For each
we T there exists an E-valued polynomial g, on a, such that

T(ay) = z q,(logay) aif
neT

for all a, e A,. Combining this with (14.3) we immediately get

(14.8) F(a)= ) F,,(,(a,) q,(loga,) p(loga,) aj a

Vs 4, P

for ae A,A;. However, it is more convenient to replace (14.8) with an expression
involving a(a) instead of a,(a,), where a: 4 — [R“ is defined by

(14.9) a(@=(@a""),c4-
This we will do by means of the following lemma.

Lemma 14. 6. There exists a polynomial map y: C* — C** with p(0)=0 and
yp(D?) = D4 such that
a,(al) =y (x(a)

for all ae A. In particular, A* < A,A; .

Proof. For each ff e A we have

(14. 10) a; P =a P70

for each ae A. If Bla,+0 then 6gfe X+, s0 ae A™ implies a, € 4, . The existence of v
follows easily from (14. 10) and [Schl 84], Lemma 7. 2. 3. O

Let D=1y~ !(D%), then D*c D C* and a(a)e D for all ae A, A4, .

Proposition 14.7. Let A€ a} and F € &, .(G/K). There exist finite sets S’ < af and
M’ c P(a), and for each pair (v, p) € S’ x M" a holomorphic function F, , from D to E, such
that

(14.11) F(a)= ) F, ,(a(a) p(loga)a’

veS’
peM’

for all ae A,A].
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Proof. By an easy rearrangement of terms in (14.8) we obtain finitely many
holomorphic functions 'F, ,: D% — E such that

F(a) = Z IFv,p(aq(aqz)) py(IOg ah) p(log aq) a# az;'

v, U5 p

Combining this with Lemma 14. 6 we obtain (14. 11). O

15. The action of H near the boundary of G/K

The purpose of this section is to prove the following lemma which may appear
technical at first sight, but is encountered naturally if one tries to relate the converging
expansion (14.11) to the asymptotic expansion of Theorem 13.1. Let H be any closed
subgroup of G with the property that the map (h, p) — hp from HXxP to G is
submersive at (e, e) (that is, g=T,H + T, P), so that the image HP is open in G.

Lemma 15. 1. There exist an open neighborhood Q, of (e, 0) in G x [R* and real
analytic maps h: Qy, — H and a: Qy — A such that:

(i) For all ge G and b e A with (g, a(b)) € Q,
gbK=h(g, a(b)) a(g, a(b) bK.

() If (g,00eQ, and x=mane P then (gx,0)e Q, h(gx,0)=h(g, 0), and
a(gx,0)=a(g 0) a.

(i) For t € [R“ near 0 we have h(e, t)=al(e, t)=e.

Proof. We shall use Oshima’s compactification X of X. For its definition we refer
to [Schl 84], Ch. 4.

Let n be the number of elements in 4, and let 4={a,,..., «,}. We identify R4
with " and denote by n the projection G x B" — X (cf. loc. cit. p. 64), which is a real
analytic map.

By the assumption on H there exists a subspace s of ) which is complementary in
g to the Lie algebra of P. Since 7n(x, 0)=n(e, 0) for all x € P, a dimension argument
shows that the differential of 7 at (e, 0) maps s x [R" bijectively onto the tangent space
Tn(e,o))f'. Let U be an open neighborhood of 0 in b such that exp:h— H maps U
diffeomorphically into H, and put Y =exp(s n U). It follows that the restriction of 7 is a
real analytic difffomorphism of an open neighborhood Q; of (e, 0) in Y x R" onto an

open neighborhood of (e, 0) in X.

We now define Q, = G x R" by Q,=n""'(n(R,)). Moreover we define real analytic
maps h: Q, — H and s: Q, — R" by (h(g, t), s(g, t)) € Q, and

(15. 1) n(h(g, 1), s(g 1)) =mn(g t)
for (g, t) € Q.

It follows immediately from these definitions that if (g, 0)e Q, and x e P then
(gx, 0)e Qy, h(gx,0)=h(g,0), and (s(gx, 0)=s(g, 0)=0, and also that h(e, t)=e and
s(e,t)=t for t near 0.



152 van den Ban and Schlichtkrull, Asymptotic expansions

From (15. 1) and the definition of = it follows for all j=1,..., n and (g, t) € Q, that
s(g, t);=0 if and only if t;=0. Hence there is a real analytic map o: 2, — [R" such that

0s;
s(g, t)j=tjo(g t); for j=1,..., n. In particular (g, O)j=a—:’(g, 0) and o(e, t)=(1,..., 1).
J
In order to finish the proof we need the following.

Lemma 15.2. Let (g,0)eQ, and x=maneP. Then o(gx,0);=a “a(g 0);
(1<j<n).

Proof. First assume that x=ne N. Let z: ®"— NA be given by Lemma 8.6
(with the given n), then

(15.2) n(gn, t)=m(gz(t), t)

for all (g,t) e Gx [R" (for t € ]0, co[" this is immediate from na € z(a(a)) aK, and by
analytic continuation it is valid for all t). From (15.1) and (15.2) it follows that
s(gn, t)=s(gz(t), t). Applying the chain rule and noticing that the derivatives in the first
0s; _0s;

a1, (gn, 0)= 51, (g, 0), for
all (g, 0) € Q,. Hence a(gn, 0)=0c(g, 0). Next we assume x =a € A. From the definition of
n it follows that

(15. 3) n(ga, t)=n(g, a(a)t)

for all (g, t)e Gx[R" (here the product of two elements s, te R" is defined by
(st);=s;t;). Hence s(ga, t)=s(g, a(a) t) for t near 0 and (g, 0) € Q,, which shows that
a(ga, 0)=a(a) o(g, 0). Finally if x € M it is obvious from (15. 1) that s(gx, t)=s(g, t) and
hence o(gx, 0)=a(g, 0). O

coordinate of s vanish at (g, 0) (because s(+, 0)=0) we get that

Completion of the proof of Lemma 15.1. In particular it follows from the above
lemma that o(x, 0)=ea(a) for x=man e P. Shrinking Q, if necessary we may then
assume that ¢;>0 on Q, for j=1,..., n. We now define a(g, t) € 4 by a(a(g, t))=0(g, 1)
for (g, t)e Q,. Obviously a:Q,— A is real analytic, and by the above lemma
a(gx, 0)=al(g, 0) a. Hence (ii) and (iii) hold. Finally it follows from (15. 3) and (15. 1) that

n(h(g t) a(g, t), t)=m(h(g, t), a(a(g, 1)) t)=n(g 1).
Applying this to t =a(b) and using (15.3) we infer that

n(h(g, a(b)) a(g, a®) b, (1,...,1)=n(gt, (1,..., 1)
whence (i). O

16. Converging expansions

Resuming the notation of Section 14 we shall now prove that an H-finite
eigenfunction admits converging expansions in the directions towards the open subset
HP of the boundary G/P, and relate these expansions to the asymptotic expansions (the
existence of which follows from Theorems 14.1 and 13.1).

In the following we denote by # the (finite dimensional) space of W-harmonic
polynomials on a.
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Theorem 16. 1.  There exists an open subset Q of G x [R* containing HP x {0}, with
the following property. Let 1€ a* and let fe &,(G/K) be H-finite. Then there exists for
each ve W1 a real analytic function ®,: Q — H#, such that

(16. 1) fgaK)= 3 @,(g a(a)(loga)a’"*

veWa

for all ge G and a e A with (g, a(a)) € Q.

Proof. Let Qg h and a be given by Lemma 15.1. Since a is continuous and
a(e, 0)=e we may assume (by shrinking Q, if necessary) that

a(a(g, 1), <t

for all y € 4 and (g, t) € Q, with ¢,#0. From this it follows that a(a(g, a(b)) b) € D* for
all ge G and b e A with (g, a(b)) € Q,.

Let F € &, .(G/K). If we combine Proposition 14.7 and Lemma 15.1 we obtain
(16. 2) F(gbK)=1(h) Y F, ,((ab))p(log(ab))(ab)’

veS’
peM’

with h=h(g, a(b)) and a=a(g, a(b)), for all g€ G, b € A with (g, a(b)) € Q,. From (16.2)
it easily follows that there exist finite sets S” < a¥ and M” < P(a), and for each pair
(v, p) € " x M" a real analytic function F,, from Q, to E, such that

(16. 3) F@gbK)= Y. F!,(za(b) plogh)b.

veS”
peM”

Moreover, after some obvious rearrangements we may assume that the elements of M”
are linearly independent and that M” n # spans #. Then, expanding each F) (g, *) in
a power series at 0 and inserting this into (16.3), we find for each £ € S”"— N4 and
peM” a uniquely determined real analytic E-valued function ¢,, on
{g€ G| (g 0)e Qy} such that:

(16.4) F(gbK)= } p(ogh) Y cg,(g) b
peM” £eS”"—N4
when (g, a(b)) € Q,. The sum converges absolutely, and locally uniformly with respect to
g. Let v,..., v, be the (mutually different) elements of S” and put I'y =v, — N - 4 and
Ii=v;—N-A\(I'yv - ul;_,) recursively for i=2,..., r. Redefining the F,  we may

v, p
assume that F,' (g, a(b))= ) ¢, ,(g)b® for i=1,..., p, and under these assumptions
F//

Sel;
». p is uniquely determined by F and the choices of M”, S” and the ordering of S”.

In particular it follows that if (g, t)e Q,, he H, and (hg, t) € Q, then
(16.5) F p(hg, t)=1(h) F (g, ).
Hence if we put Q={(hg,t)e GXxR*|heH, (g t)e Q,} and define F,,:Q— E by

(16.5), then F), is real analytic and we have (16.3) for all ge G and be A with
(g a(b) e Q.
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It remains to be seen that we may take S"=WA1—g and M" < 5 in (16.3).

Let (g,0)e Q, and let ¥V and U be neighborhoods of g and 0, respectively, such
that ¥ x U< Q. For each ¢ € C®(V) let LY (p) F be the E-valued function given by

[L"(p) F] (x)=£F(gX) »(g)dg

for x € G. It follows from (16.3) and (16.4) that
(16. 6) [LY(p) F1(b)= ). pllogh) 3,  cs,(p)b*

peM” £eS"-N-4

for b e A with a(b) e U, where ¢, ,(¢) € E is given by
(16.7) ce (@)= ¢ ,(8) () dg.
G

The sum (16. 6) converges absolutely.

On the other hand, by Theorem 14. 1, each component of the vector function F
belongs to &, and hence the asymptotic theory of Part II can be applied to F
(component wise). Thus we have

(16.8) [LY (p) F]1(exptY)~Y, ps(F, ¢, 1Y) e*®
4

as t— 400, for Yea® and ¢ € &. Here ps(F, ¢,tY)e E and p, is a W-harmonic
polynomial in its third variable (cf. Theorem 13.1), and the summation extends over
EeXW)=Wil—-9g—N- 4.

By the uniqueness of asymptotic expansions it follows from (16. 6) and (16. 8) that
¢ € X (4) whenever ¢, ,+0 for some pe M". Hence redefining the F;/, we may assume
that $” =« WA — g. Moreover, if £ € X(4) it follows that

(16.9) P(F, 0)= Y ¢, (@)p

peM”

for all ¢ € CF(V). Since p(F, ¢) € #, the assumptions on M” imply that ¢, ,=0 if
p € M"\#. Therefore we may replace M” by M" n s in (16. 3). O

In the course of the above proof we obtained the following (cf. (16.4), (16.7) and
(16.9)).

Corollary 16. 2. Let A€ a* and let fe &,(G/K) be H-finite. The #-valued distri-
butions p.(f) in the asymptotic expansion for f restrict to real analytic #-valued
functions on HP, and the sum

(16. 10) flgaK)= ) p:(f 8 loga)at

eX(A)

converges absolutely for all g € G and a € A with (g, a(a)) € Q. In particular, if i€ o (see
(9. 1)), then p,_,(f, g) = ,(8,0) for g HP.

Remark 16. 3. Notice that in general the @, (v e W41) are not uniquely determined
by (16.1). However, if 1 € .o/ then &,(g, 0) is uniquely determined for g e HP. Also, if
(A, o'y ¢ Z for all a€ X, then the &, (ve WA) are uniquely determined and scalar
valued.
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In general there are other open H-orbits on G/P than HP, and for each of these
one gets expansions similar to (16. 1) and (16. 10). More explicitly if x € Ng(a,) N N(a),
then HxP is open in G (cf. [Ma 79] or [Schl 84], Prop. 7. 1. 8(ii). Every open orbit can
be represented in this fashion.) One may extend @ to contain HxP x {0} without
disturbing the validity of the assertions of Theorem 16.1. Moreover, Corollary 16.2
remains valid if HP is replaced everywhere by HxP. This is easily seen by applying the
original statements to the xHx~ !-finite function L,-.f.

In the remainder of this section we draw some interesting consequences of
Theorem 16.1 which are related to the classical “Fatou-theorem”, and which improve
on Proposition 9. 6. They will not be used in the following sections.

Fix A€ af and assume (as in Proposition 9. 6) that

(16. 11) Re{d, a) >0 (VaeX™\Z%).
In the following the notation a — oo means that a € 4 and a(a) — 0 in 4. Let w* be
given by (9. 7).

Corollary 16. 4. Assume (16.11) and let fe &,(G/K) be H-finite. Then

(16.12) [w”(loga) a*~¢]17" f(gaK) — B,(f) (2)

as a— oo, for all ge HP (or ge Hx P, x € Ng(a) N Ng(a,)). The convergence is uniform

in g when g belongs to a compact subset of HP.
Proof. The condition on A implies that a*~* — 0 as a — oo, for all ve WA with
v+ A. Hence it follows from (16.1) and the first statement of Corollary 16.2 that

lim [w*(loga) a*~¢]7" f(gaK)= lim [w*(loga)] " p,_,(/, g loga).

The corollary follows immediately from the definition of B;. O

Integration of (16. 12) against a function ¢ € C°(HP) of course yields a similar
convergence property of L" (¢) f towards B,(f, ¢), for f H-finite. The following theorem
shows that this holds even without H-finiteness.

Theorem 16. 5. Assume (16. 11) and let fe &;(G/K). Then

(16. 13) [w*(loga) a*~¢1~" L" (¢) f(a) = B,(f; 9)
as a— oo, for all p e &.

Proof. If ¢ is (left) K-finite this follows from Corollary 16.4 with H = K, applied
to LY () f. Since the space of K-finite functions in % is a dense subspace of %, it now
suffices to prove the existence of a continuous seminorm v on % such that

(16. 14) [[w*(loga) a*~¢17* [L* (9) f1 (@) £ v(p)

for all p € ¥, aea™'(]0, $]). By Theorem 12.2 there exists a T € 2'(K/M) such that

f=2,T, whence L' (¢p)f=2P(L"(p) T;) (cf. (10.3)). There exists a continuous semi-

norm V' on & such that sup|L'(p) T,/<v(p) for all pe.¥. It follows that
K

ILY (0) f1=V'(9) dres» Where ¢g., is the spherical function in &, ,(G/K) (use (I.8)).
Applying (16.12) to the K-finite function ¢g.; and using that w®®*(loga)/w*(loga) is
uniformly bounded on a~!(]0, 1]4), the estimate (16. 14) follows. O



156 van den Ban and Schlichtkrull, Asymptotic expansions

Corollary 16. 6. Assume (16. 11) and let v be a continuous function on K/M. Then
(16.15) [w*(loga) a* "1™ Z,w(ya) — k(A w(y)

as a— oo, for all ye K.
Here k(A) is the non-zero constant given by (10. 1).

Proof. The proof is similar to that of Theorem 16. 5, using Theorem 12.2, (16. 12)
and density of the K-finite functions in C(K/M). O

Remark 16. 7. Notice that the proofs of Corollaries 16.5 and 16. 6 require only
(16. 12) for K-finite functions.

Remark 16. 8. Assume {4, a)> >0 for all € X", and let P, denote the kernel on
G/K x K/M given by

P,(gK, kM)=¢,(g)" ! e *- e HE k)

for g€ G and k € K. Then (16. 15) implies that P,(aK,-) is an approximate identity on
K/M for ae A, a — oo. For regular A (and A=0 when rank G/K = 1) this was proved in
[Mi 73]. For A=0 this gives the answer to a question of [Sj 81], p. 244, and in this case
it has also been obtained by Sjogren [Sj86]. In particular, it follows that Harish-
Chandra’s upper bound [He 84], p. 483 for the spherical function ¢,, is the best possible
(cf. also [Ban 82]).

17. Leading exponents and LP-estimates

In this section we relate to each other the leading exponents of the expansions on
A, and on A. The purpose is to express a natural [F-condition on A4, in terms of the
leading exponents on A.

Let fe &,(G/K) be H-finite and let F be the associated E-valued t-spherical
function. We first consider exponents on A. Recall that for each x € G, E(f, x) is the set
of £ € X(4) for which the distribution p.(f) is not identically zero near x, and E,(f, x) is
the set of <-maximal elements in E(f, x). Define E(F, x) and E, (F, x) similarly for the
expansion (16.8) then E(F,x)= () E(noF, x). Notice that E(f,x)=E(f,e) and

neE*
E(F, x)=E(F, e) for all x in the identity component of HP because the p,s are real

analytic functions on HP (cf. Corollary 16. 2).

Lemma 17.1. Assume H is connected. Then E(F,x)=E(f,x) (and hence
E,(F, x)=E,(f, x)) for all x € G.

Proof. Obviously E(f, x)= E(F, x). Let V be the H-invariant space generated by
£, then it suffices to prove that E(f, x)< E(f, x) for all fe V. Since left differentiations
do not create new exponents this follows from the fact that V={L,f|ue %(b)}. |
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Turning to A,, we infer from Proposition 14.3 that F admits a converging
expansion

(17.1) F@= )  P(loga)a
veS—N- 4,
for ae A, where each P, is a polynomial on a (which is a linear combination of

elements from M). We say that v € af is an exponent of F on A if P,+0 in (14. 1), and
denote by E,(F) the set of these exponents. Introducing an ordering <, on a}, by

VL gusrpu—ve N - 4,

we call the <, -maximal elements in E, (F) the leading exponents of F on A;, and denote
the set of these by E, . (F).

Theorem 17.2. Let A€ o} and F € &, .(G/K). Then E, | (F) is the collection of <
maximal elements in the set

(17.2) {&lo, | £ € EL(F, €)}.
Before giving the proof we identify E, (F) in the following lemma.

Lemma 17.3. For € X(4) and g € HP let p.(F, g) be the E-valued polynomial on
a from (16.8). Then

E,(F)={¢l., | £ € E(F, €), ps(F, e)+0}.

Proof. Writing p, = p,(F, e) for short, we have

(17.3) F@= ) ploga)a’
EeX(A)
for ae A,A; (cf. Proposition 14.7 and formula (16. 10)). For ve ay, let
(17. 4) EM={teX)]| ¢la,=v and p;+0}.

Then the lemma amounts to the following claim: P,+0 if and only if &(v)+0.

Comparing (17. 3) with (14. 8) we see that p,+ 0 implies £|, € T, the set of weights
of l,,, from which it follows that & (v) is finite for all v. Comparing (17. 3) with (17. 1) we
then have that

(17.5) P(Y)= ) p(Y)

fe&(v)

for Y € a,, since the P, are unique in (17.1). From this we immediately derive that P,+0
implies &(v) 0.

The spherical property of F combined with the uniqueness of pe in (17. 3) implies
that

(17. 6) t(b) pe(Y) = pe(Y + log b) b
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for all Yea and b e A,. Assuming that P,=0 we get from (17.5) and (17. 6) that
Y. pe(Y+logh) b*=0

ceEW)
for all Yea, and be A4,. From this it easily follows that each term in the sum must
vanish, that is, &(v)=0. O

Notice that in general we cannot rule out that p.(F, e)=0 for some ¢ € E(F, e),
because ¢ ¢ E(F, e) means p;(F, g)=0 for all g near e. For leading exponents this is
different, though, because then p,(F) is uniquely determined on HP by its value at e, by
the spherical property and the distribution version of Theorem 8. 4.

Proof of Theorem 17.2. 1If £ € E(F, e), then p:(F, e) %0 by the above observation,
hence ¢|, € E,(F) by Lemma 17.3. It follows that the set X defined by (17.2) is
contained in E,(F). On the other hand, if v € E, ; (F), then the set &(v) is nonempty and
finite (proof of Lemma 17. 4). Select a <-maximal element & € &(v). Then ¢ € E(F, e). Fix
{ e EL(F, e) with {<{. Then v</(|, . The latter element being contained in E, (F), it
follows that (|, =v, whence { € £(v). By maximality we must have {=¢, or { € EL(F, e).
It follows that E, ; (F)< X < E,(F), whence the result. O

Let 1<p<oo and let da be a Haar measure on A4,.

Theorem 17.4. For each F € &, .(G/K) the following two conditions are equivalent:
(i) The function a— ||F(a)|| belongs to LP(A]; a*¢da).

(i) For all we W with wi—geE,(F,e) and all Yecl(a;)\{0} we have

Rewl(Y)<p—;£ o(Y).

Proof. In [Ban 84], proof of Thm. 9.4 it is proved that (i) holds if and only if
2
Rev+; o is negative on cl(a;)\{0} for all ve E, ;(F). By Theorem 17.2 this holds if

and only if Reé +% o is negative on cl(a,)\{0} for all ¢ € E,(F, e), which is (ii). O

Define g,: a, — [0, + o[ by g,(vY)=¢(Y) for Yecla, and v in the Weyl group
W, of 2.

Corollary 17.5. For each F €&, .(G/K) the following two conditions are
equivalent

(i) The function a— ||F(a)|| belongs to I*(A,; a*®da).
(i) For all x e Ng(a)n Ng(a,) and all we W with wi—g € E.(F, x) we have

RewA(Y) <p—gﬁ o(Y) for Y ecl(a;)\{0}.

Proof. Let x e Ng(a)n Ng(a,). It follows easily from Theorem 17.4 that the

-2
function a— |[F(xa)| belongs to LP(A;;a*¢da) if and only if Rewi< pp
cl(a)\{0} for all wi—ge E(F, x) (replace H by x"'Hx and F by L.-.F). The
equivalence of (i) and (ii) now follows from Lemma 14.2. O

on
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18. Distributions supported on closed orbits

In relation to H the distributions T € 2'(G/P; L,) which are supported on closed
H-orbits on G/P play a distinguished role. In this section we will study the impact of
this support condition on the asymptotic expansion of Z,T.

We impose on H (or on o) the extra condition that
(18. 1) rank G/K =rank H/H n K,

that is, there is a maximal abelian subspace a; of p, contained in h ~p. Our aim is to
prove:

Theorem 18. 1. Assume (18.1). Let A € a* and assume Re {4, a)>0 for all x e =+,
Let T € 2'(G/P; L;) and assume that supp T is contained in a union of closed H-orbits on
G/P. Let x € Ng(a) N Ng(a,) and g€ HxP. If wi—g € E (P, T, g) then RewA(Y)<O0 for
all Y e cl(a,)\{0}.

Notice the similarity of the conclusion with (ii) of Corollary 17.5 (cf. Corollary
18. 6 below).

The proof of Theorem 18.1 consists of a series of lemmas. The proof of the key
lemma 18.5 is similar to a main ingredient in Oshima’s proof of Flensted-Jensen’s
conjecture (cf. [Schl 84], p. 136).

Lemma 18.2. (i) For each c e K with Adc(a)=a, we have HcP=(HNK)cP,
hence HcP is closed.

(i) There are only finitely many closed H-orbits on G/P, and each is obtained
by (i).

Proof. See [Ma79]. ((i) follows easily from the Iwasawa decomposition
of H.) O

From this lemma it follows that we may assume supp T HcP for some (fixed)
ce K with Adc(a)=a;. For each continuous function y on K~ H we define a
distribution T, on K/M by

Ty(<p)=KI @(kcM)y(k)dk

then supp T,c(K n H) ¢ M.

Lemma 18.3. Let T e 2'(K/M) with supp T<(HNK)cM. There exist finitely
many ..., Yym € C(KNH) and uy,..., u, € U¥) such that

T=Y L,T,.
i=1

Proof. Follows from [Schw 57], Thm. 37 (cf. also Thm. 26). O
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From this lemma it follows that we may assume T =L,T, for some y e C(K n H)
and ue ) (this idea is due to Flensted-Jensen [F-J86]). Actually, since
E(L,?,T,, gy < E(#,T,, g) we may even further assume that T=T,.

Lemma 18.4. Let A€ a* and assume Re (i +g,a) =20 for all ae X*. There exist
constants r and &> 0 with the following property: Let y € C(K n H), x € Nx(a) n Ng(a,),
and let Lc HxP be a compact set. Then there exists C =0 such that

12, T, (ga) = Cllanl"
for all ge L and a e A with a(a) € 10, 5[“.

Proof. Notice that

P ()= [ vk esr (c™ k™ g)dk

KnH

from which it immediately follows that we may assume y =1 and 4 € a* (that is, 4 is real
valued on a). Let v, =2, T,, then p, >0, and it follows from [Schl 84], Lemmas 7. 3. 1
and 7.6.1 that there exists r =0 such that

(18.2) pa(ha) < ||h|"
for he H and ae A,. From (18.2) we get
(18.3) pathxa)< |hxa,|" < [|h]" llanl

for he H and a € A (use that xa,x~ ' € 4,). From Lemma 15. 1 (applied to the subgroup
x~!Hx) we have that there exists a 6 >0 such that

(18. 4) xybK =h(y, a(b)) xa(y, a(b)) bK
for ye P and b e A with a(b) € 10, 5[“. Combining (18.3) and (18.4) we easily get

P, (gb) = C byl
for ge L. N

Let a* ={Aea*| (4, a)>0 for all xe X"} be the positive Weyl chamber in a*,
and let

W ={weW |3l eatdY,ecl(a)\{0}:wi,(Yp) = 0}.

Lemma 18.5. Assume that {i,a"'>¢Z for all aeZX. Let ye C(KnH) and
x € Ng(a) n Ng(a,). Then

(18.5) Bu1(2,T,)=0

on HxP, for all we W'
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Proof. Fix we W' and let wio(Yp)Z0, where A,ea* and Y,ecl(a])\{0}.
Perturbing first 4, and then Y, we may assume wi,(Y,)>0 and Y, e a/. Scaling 4,
with a positive constant we may even assume wi,(Y,) > o(Y,), and perturbmg Ao once
more also that {1y, a") ¢ Z for any a € . Let Q be a neighborhood of Ao In aX such
that

RewA(Yy) > o(Y)
and
Re (4, a*) € 10, o[\Z

for all x € 2 and A € Q. By holomorphic continuation it suffices to prove (18. 5) for 1 € Q
(use Theorem 9.2 (ii) after evaluation against test functions ¢ € C(Hx P) as in Section
13). Fix Y, € a,, such that a(Y;)>0 for all x € Z* with al,,=0. Let A € Q and choose r
according to Lemma 18.4, and let { >0 be such that

(18.6) Re(wi—g) (Yo)>{(r|IY,l| —Re(wi—op)(Yy)).
Put X =Y, +(Y,, then X € a*, and (18. 6) implies that
r| Xyl =Re(wi—o) (X)—e
for some ¢>0. Hence by Lemma 18. 4
[2,[L" (9) T,] (exp tX )  CeRetwi-aren s
for ¢ € C*(HxP), from which (18. 5) follows. |

Proof of Theorem 18. 1. The proof goes essentially by applying holomorphic
continuation to Lemma 18.5. Let 4, € a¥ with Re {4y, a) >0 for all a € X, let wy € W,
and assume that Rewy4,(Y)=0 for some Y ecl (a,\{0}. As we have already seen
below Lemma 18.3, it suffices to prove that then Pio,woro—0(Z2, T,)=0 on HxP for
ye C(K n H).

For each A€ a¥ let
EMN={l=wil—o—p|weW and pe N -4 with wi,—pu=wol,}.

Assume that {1, a") ¢ Z for all e X and let {=wA—o—pe E(1). By Theorem 3.6
(and Section 13) it suffices to prove that then p, .(#,T,)=0 on HxP. Assume the latter
not to be the case. Then ¢ e E(2, T, g) for some ge HxP. Hence o € E (%, T, g) for
some g € WA — ¢ (cf. Proposition 8. 1) with ¢ <. Since the non-integrality condition on
4 implies 6 =w i — g (cf. Lemma 5. 5), we obtain f3,, 2(@, T,) £0 near g. However, ¢ € Z(J)
implies that

Rewao(Y)=Rew,io(Y)+u(Y)=0
and hence w e W', contradicting Lemma 18. 5. O

Corollary 18. 6. Assume (18.1) and RedA,ad>0 for all aeXZ*, and let
F € &, .(G/K). If supp B,(F) is contained in a union of closed H-orbits on G/P, then the
function a — |[F(a)| belongs to L*(A,; a*®*da).

Proof. Combine Theorem 18.1 (applied componentwise to F) with Corollary
17.5. O
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19. Discrete series for semisimple symmetric spaces

In this final section, notation differs from the previous sections. We will indicate
the construction of discrete series via Corollary 18. 6.

Let G be any connected semisimple real Lie group, g its Lie algebra, ¢ an
involution of g, b the fixed point set of o, and H the corresponding analytic subgroup of
G. Let Z denote the center of G (notice that we are not assuming Z to be finite). Let 0
be a Cartan involution of g commuting with o, f its fixed point set, and K the
corresponding analytic subgroup of G.

Let (g° b? %) be the symmetric triple which is dual to (g, f, b), that is
g=tnbh+i(fng)+i(pnh)+pnq
and
hl=g'nt, H=g'nh..

(In [F-J 80] and [Schl 84], g* b? and £ are called, respectively g°, t° and h°.) Let G, be
a complex connected Lie group with Lie algebra g, and let G% H? and K? denote the
analytic subgroups corresponding to g%, b7, and ¢ respectively. The space X" = G/K* is
a Riemannian symmetric space, called the noncompact Riemannian form of X = G/H.
According to Flensted-Jensen’s duality there is a linear injection f— f" of the space
C2(G/H) of K-finite C*-functions f on X into the space Cifa(G*/K®) of H’-finite C*-
functions on X" (cf. [Schl 84], Thm. 8.2.4). If X is simply connected this is a bijection.

Let D(G/H) denote the algebra of invariant differential operators on G/H, then
there is a natural identification of [D(G/H) with [(G%/K?), which is respected by the
map f— f (that is, (Df) = D(f") for D e D(G/H)=D(G’/K")).

Assume
(19. 1) rank G/H =rank K/K nH

and let t be a maximal abelian subspace of g, then (19.1) amounts to t being
maximal abelian in q. Let a?=it, then a’ is a maximal abelian subspace of p? (where
g? =1 @ p? is the Cartan decomposition of g?), and a’<p? N h?. Let 2 denote the root
system of t,=a? in g,, and pick a positive set Z*. For each 1 € t* we have the canonical
homomorphism y, from [ (G/H) to C (defined via (1. 2) for GY/K?). Let &,(G/H) denote
the corresponding eigenspace in C®(G/H), then f— f" maps the K-finite elements in
&,(G/H) into H’finite elements in &,(G%/K*).

Finally let x be a unitary character of Z, and let [%(G/H) denote the Hilbert space
of functions f: G/H — C satisfying

(19.2) L.f=x(z)f (z€Z)
and

(19.3) |f| € L*(G/ZH)).

(Notice that |f| makes sense as a function on G/(ZH) because of the unitary of x.)
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Theorem 19. 1 (Oshima and Matsuki [OM 84]). Assume (19.1), let Aet* and as-
sume Re{4,ay>0 for all o€ Z*. Let fe &,(G/H) be K-finite, and assume (19.2). If
supp B,(f") is a union of closed H%orbits in G*/P? then fe L2(G/H).

Proof. To f corresponds a vector valued function F on G/H satisfying
F(kx)=1(k) F(x)

for ke K and x e G/H, for a suitable representation t of K (same argument as after
(14.1)). Via the duality (which is readily extended to t-spherical functions, cf. [Schl 82],
Thm. 2.4) we obtain a function F’, which is exactly the vector valued function
associated to f". Since suppf;(F")=supp f,;(f") we obtain from Corollary 18.6 that
a— ||F(a)|l belongs to L*(A,; a*®da) (on A, we have F =F"). This easily implies the
Theorem, cf. [Schl 84], Thm. 8. 11. O

In particular, this theorem implies Flensted-Jensen’s conjecture “C=0" of [F-
J 80], first proved by Oshima (cf. [Schl 84], Thm. 8. 3.1).

Notice that the main ingredient in our proof, Corollary 17.5, gives a forceful
necessary and sufficient condition, in terms of the asymptotic expansion of f”, for f to
be in Lf(G/H). For p=2 this result is similar to [OM 84], Prop. 2.
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Notes (added in proof). 1. It is possible to improve slightly Theorems 3.5 and
13.1 as follows: The set of exponents

XA)={wi—go—plweW,ueN - 4}
can be replaced by the smaller set
X (A)={wi—o—p|lweW,ue2N - 4}.

We sketch the proof: Let Q € U(g) be the Casimir element, and D, = u(2) the Laplace-
Beltrami operator on G/K. A straightforward computation shows that

Q-"y(Dy)e Y XZ,+U(g)t
1§aie§xm(a)

where X _,; (1Si<m(o)) is a suitably normalized basis for g~* If {4, a*) ¢ Z for all
a € 2 (so that p, , is constant on a) it follows from Proposition 7.1 that

(LO('7(Do)) — 24(Do)] eé) Pa,g(f) = - Z (Ry2 Da e+ 2a(f)) et.

A —ai
a,l
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Now 3(y(Do) e*=<& E+20) e and  x;(Do) =<4, 4)—<¢, 0>, and hence if
E=wl—o—u we get that

{u—=2wi, pp Pz.g(f)= ‘Z_ sz_aipz,&za(f)-

By recursion this shows that p, =0 if &e X (A)\X,(4), except possibly for 1 in a
countable family of hyperplanes (where {1, ") € Z or {ug—2w4, u) =0). For general 4,
the statement now follows from Corollary 10.2 and Theorem 3. 6.

As a consequence of this, Theorem 10.3 can also be improved: p, . is actually
W, l-harmonic on a. In particular if Vae X: {4y, a') ¢ 2Z then W, N ={e} (cf.
%% M

Lemma 5.5) and hence p;, . is a constant polynomial on a for all ¢ (this holds for
instance in the case of G=SL(2, R) and A=y).

2. Let V<G be open and let fe &°(G/K). If P(f, V)=0 (cf. Lemma 8. 3) then
f=0. Thus f is uniquely determined by its set of coefficients p,,,_,(f) on V (we W).
This result is contained in our forthcoming paper: Local boundary data of eigenfunctions
on Riemannian symmetric spaces.
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