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1. Introduction

Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have defined
an explicit Fourier transform for X and shown that this transform is injective on the space
C°(X) of compactly supported smooth functions on X. In the present paper, which is
a continuation of these papers, we establish an inversion formula for this transform.
More precisely, let X=G/H, where G is a connected semisimple real Lie group
with an involution o, and H is an open subgroup of the group of elements in G fixed
by 0. Let K be a maximal compact subgroup of G invariant under o; then K acts on
X from the left. Let (7,V;) be a finite-dimensional unitary representation of K. The
Fourier transform F that we are going to invert is defined as follows, for 7-spherical
functions on X, that is, V;-valued functions f satisfying f(kz)=7(k)f(z) for all ke K,
x€X. Related to the (minimal) principal series for X and to 7, there is a family E(¢: \)
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of Eisenstein integrals on X (cf. [5]). These are sums of 7-spherical joint eigenfunctions
for the algebra D(X) of invariant differential operators on X; they generalize the elemen-
tary spherical functions for Riemannian symmetric spaces, as well as Harish-Chandra’s
Eisenstein integrals associated with a minimal parabolic subgroup of a semisimple Lie
group. The Eisenstein integral is linear in the parameter 1, which belongs to a finite-
dimensional Hilbert space °C depending on 7, and it is meromorphic in A, which belongs
to the complex linear dual ac of a maximal abelian subspace a4 of pNg. Here p is the
orthocomplement in g (the Lie algebra of G) of £ (the Lie algebra of K), and ¢ is the
orthocomplement in g of f (the Lie algebra of H). In [8] we introduced a particular
normalization E°(¢: X) of E(¢): \) with the property that as a function of A it is regular
on the set ia of purely imaginary points in agc- Now F f is defined as the meromorphic

°C-valued function on a:;c such that

(FO) ) = /X (@) B A 2)) de (L1)

holds for all 9€°C, A€ia;. Here dz is an invariant measure on X, (-|-) denotes the
sesquilinear inner products on °C and V;, and f belongs to the space C°(X:7) of com-
pactly supported smooth 7-spherical functions on X. The Fourier transform on K-finite
functions in C2°(X) can be expressed in terms of the transform F with suitable 7 (see
[8, §6]), and an inversion formula for F thus amounts to an inversion formula for K-finite
functions. Expansion over all K-types then yields an inversion formula for all functions
in C°(X). From now on we shall therefore concentrate on the inversion problem for F
with a fixed K-representation 7.

At first glance, a good candidate for the inverse of F would be the wave packet map
J defined as follows, for ¢ a °C-valued function (of reasonable decay) on ia:

jgp(z):/*Eo(go(/\):)\:x)d)\; (1.2)

here dA is a suitably normalized Lebesgue measure on the Euclidean space iag. In the
case of a Riemannian symmetric space it is indeed true that JF=1I (cf. [23, Chapter III]
and [9, Remark 14.4]), but in general this is not so. In [9] we showed that (taking
appropriate closures) the operator JF is the orthogonal projection onto a closed subspace
of the space L?(X:7) of all 7-spherical L2-functions on X. The subspace is the so-called
most continuous part of L?(X:7). In general the functions JFf, feC®(X:7), do not
belong to C2°(X:7); they are smooth functions of L?-Schwartz type, but not of compact
support. A central result in [9] asserts the existence of an invariant differential operator

Dy (depending on 7) on X that is injective as an endomorphism of C2°(X) and satisfies

DoJFf=Dof (1.3)
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for all feC°(X:7) (see Theorem 2.1). The injectivity of the Fourier transform is an
immediate consequence, but as we do not know an explicit inverse to Dy, (1.3) does not
give the inversion formula we want.

The inversion formula that we obtain involves not only the function Ff on iaj but
also its meromorphic continuation. In order to describe it, we must introduce some more
notation. Let ¥ denote the system of roots for a, in g; the corresponding Weyl group W
can be realized as the normalizer modulo the centralizer of aq in K. Let X% be a positive
system for 3 and let A} =expa}, where a} is the corresponding open Weyl chamber. For
simplicity of exposition, we assume in this introduction that the open subset X, =K A} H
of X is dense (in general, a finite and disjoint union of open sets of the form KAXwH,

weK, is dense). The normalized Eisenstein integral E°(¢: ) has an expansion (see [10])

E°(:hiz) =Y E,(sh:x)C%(s: \)1), (1.4)
seW

valid on X, that is a generalization of Harish-Chandra’s expansion for the spherical
functions on a Riemannian symmetric space. Here C°(s:\) is an endomorphism of °C,
and E_(sA:z) is a linear operator from °C to V,. Both of these objects depend mero-
morphically on A. For ¢»€°C and A generic, the function z—FE, (A:2) is defined on X,
as the unique 7-spherical annihilated by the same ideal of D(X) as E°(¢): \) and having
the leading term a2y (e) in the asymptotic expansion along Af. Tt can be shown (see
[5] and [10]) that if n€ay is sufficiently antidominant then F f()), as well as E (\:x), are
regular for A€n+iag. Moreover, these functions of A have decay properties that allow us

to conclude that the expression

%ff(:c)::|W|/ - E (Aix) FF(A)dA, (1.5)
n+iay
is defined for x€ X, and (by Cauchy’s theorem) independent of 7, provided the latter
quantity is sufficiently antidominant (|| is the order of W). We then denote it 7F f(x)
and call it a pseudo-wave packet. As a function of x€ X, it is smooth and 7-spherical,
and by moving 7 to infinity one can show that 7F f(x) vanishes for x outside a set with

compact closure in X. Our main result in the present paper is the following (Theo-
rem 4.7).

THEOREM 1.1. Let feC®(X:7). Then TF f(x)=f(x) for all z€X,.

Since X, is dense in X this provides the desired inversion formula for F on C°(X: 7).
The proof of Theorem 1.1 is carried out in §§5-9, but it rests on results from several
previous papers. In particular, the papers [11] and [12] have been written primarily for

this purpose. We shall now indicate some important steps in the proof. Inserting the
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expansion (1.4) in (1.2) (for this introduction we disregard the fact that A—FE, (\:x)
can be singular for A\€iay), and using simple Weyl group transformation properties for
the involved functions, one sees that the wave packet JF f is identical with 7y F f, the
expression (1.5) for n=0. We would like to identify this expression with the pseudo-
wave packet 7F f, but because there are singularities between n=0 and the sufficiently
antidominant 7, the difference between the two expressions involves residues. In order to
study closer these residues we invoke (in §5) the residue calculus for root systems that
we have developed in [11]. According to this calculus, the difference is a finite sum of

expressions of the form

/' ulrE, (- x)Ff](sv) dv, (1.6)
)\+2a}q

where F'is a non-empty subset of the set A of simple roots for ¥, aj, its orthocom-
plement in aj, and A a point in R +FCa}i{i. Furthermore, s is an element of W with
s(F)CX*, 7 is a suitable polynomial such that 7E, (-:2)Ff is regular on a neighbor-
hood of Ad(s)(A+af,c), and u€S (Ad(s)a}{i) serves as a constant-coefficient differential
operator on Ad(s)a}t. These objects (i.e. A, s, m and u) can be chosen independently
of f and z. We denote by Tr f(z) the sum of all the contributions of the form (1.6) for
a given non-empty F'CA. The function Tr f is T-spherical and smooth on X,. We now
have
TFf=JFf+) Trf=) Trf

FCA FCA
j

where we have set JF f=Tg f, and the result in Theorem 1.1 can be expressed as follows

(Theorem 7.1).

THEOREM 1.2. Let feCX®(X:7) and x€X,. Then
fl@)= ) Trf(x). (1.7)
FCA

The main step in the proof of this result consists of establishing the following prop-
erties of the operators Tr. In order to simplify the presentation, we assume in the
second statement of the following theorem that the map A——\ belongs to W (see

Corollary 10.11 for the general statement).

THEOREM 1.3. The function Trf on X, extends to a smooth function on X, for
all feCP(X:7), FCA. Moreover, the operator f—Trf is symmetric, that is,

/ (T f1(2)] fola)) de = / (f1(2) | Tr fola)) da
X X

for all f1, foeCX(X:T).
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Theorem 1.3 is first proved under the assumption (which is sufficient to derive The-
orem 1.2) that f and fy are supported on X, . This is done (in §9) by induction on the
number of elements in A. The derivation of Theorem 1.2 from Theorem 1.3 is given
in §7. We shall now outline the proof of Theorem 1.3, which is a central argument for
the paper.

We first derive the statements in Theorem 1.3 for F'#A. This is done by a careful
analysis of the asymptotic expansion of the integral kernel corresponding to the opera-
tor Tr. The principal term in the asymptotic expansion along the standard parabolic
subgroup Pr associated with F' can be identified in terms of the T'a for the Levi subgroup
of Pr. Invoking the induction hypothesis and a result from [12] (see Appendix B), the
symmetry of Tr is obtained. The smooth extension is a consequence of the symmetry.

Next, we consider the function g:=f—3 - Trf on X . The statement in The-
orem 1.2 is that g=0; we know already that g vanishes outside a set {2 with compact
closure in X, since both f and 7Ff have the same property. Knowing also that Tr f
extends smoothly to X for F'#A we are able to deduce that g is annihilated by any invari-
ant differential operator on X that annihilates Ta f. Here the result (1.3) from [9] plays
an important role. It follows that the annihilator of g in the algebra D(X) of invariant
differential operators on X is a cofinite ideal. Since ¢ is 7-spherical, g is hence analytic
on X, and since it vanishes outside 2 it must then vanish identically. Equation (1.7) is
thus proved for functions supported in X,. From this the statements of Theorem 1.3 for
F=A finally follow (with supp f, feCX,), and the induction is completed.

The part of the proof of Theorem 1.3 outlined above is given in §§8-9. In §10 we
define some generalized Eisenstein integrals and derive a formula for T in terms of these.
Theorem 1.3 in its full generality follows from this formula.

The inversion formula that we have derived in this paper is an important step towards
the Plancherel formula for X. What remains for the Plancherel formula is essentially to
identify the contributions Trf in terms of generalized principal series representations.
For example, Ta f should be identified as being in the discrete series for X. These
identifications will be given in a sequel [13] to this paper, but since it is an important
application we outline the argument here. For F'=& the identification is inherent already
in the definition of F and J by means of the minimal principal series—an important
ingredient is the regularity (from [8]) of the normalized Eisenstein integrals on iaj. This
regularity is, in turn, based on the so-called Maass—Selberg relations from [6], according

to which (cf. [9, Proposition 5.3]) the adjoint of the C-function is given by
Co(s:\)*=C"(s:—\) "L (1.8)
For the non-minimal principal series, analogues of F and J have been defined and the

Maass—Selberg relations have been generalized, by Carmona and Delorme (see [14], [18],
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[19], [15]). Using these generalized Maass—Selberg relations we obtain the necessary
identifications of Tk f for F#A. In particular, these functions are tempered. As a conse-
quence of Theorem 1.2 it follows then that Ta f is in the discrete series, and the Plancherel
formula is established. A different proof of the Plancherel formula, also based on the gen-
eralized Maass—Selberg relations, has been obtained independently and simultaneously
by Delorme (see [20]). Later, we have found a proof of these generalized Maass—Selberg
relations based on the results of the present paper. This proof will also be given in [13].

For the special case that G/H has but one conjugacy class of Cartan subspaces the
Plancherel formula is easier to obtain than by the argument described above. In this
case the contributions T f for F#& all vanish; we prove this in §11, using [25]. Hence
in this case we have JF=I as in the case of a Riemannian symmetric space (which, in
fact, is a subcase).

Another important application of the results presented here is to the Paley—Wiener
theorem for 7-spherical functions on X, that is, the description of the range F(C° (X :7)).
A conjectural description was given in [9, Remark 21.8], and based on the results of
the present paper we are able to prove this conjecture. The first step is given here in
Corollary 4.11; the further steps will be given in [13]. The Paley—Wiener theorem for X
generalizes Arthur’s theorem for G (which is a semisimple symmetric space by itself), [1],
the proof of which has been a substantial source of inspiration for the present work. In
particular, the inversion formula of Theorem 1.1 is in this special case a consequence
of Arthur’s result. There are some important differences, however, to Arthur’s treatise.
First of all, Arthur appeals to Harish-Chandra’s Plancherel theorem in his derivation
of the Paley—Wiener theorem, whereas eventually we shall derive both theorems from
the present results. In this respect our proof is very much in the spirit of that given by
Rosenberg and Helgason for the Riemannian symmetric spaces, see [22, §7 in Chapter IV].
Secondly, Arthur uses in the inductive argument a lifting theorem due to Casselman (see
[1, Theorem 4.1 in Chapter II]). The use of this result (the proof of which seems as yet
unpublished) is here replaced by Theorem 1.3 and the induction of relations of [12], which
is explained in Appendix B of this paper.

In the final §12 we generalize our inversion formula 7F f=f to rapidly decreasing
functions f on X. The space S of these functions has been studied, for example, in [21].
For G it is introduced in [29, §7]; it plays an important role in the theory of completions
of admissible (g, K')-modules, developed by Casselman and Wallach (cf. [30, §11], [16]).
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2. Notation and preliminaries

In this paper we use the same notation and basic assumptions as in [9, §§2-3]. In par-
ticular, and more generally than what was assumed in the introduction, G is a reductive
Lie group of Harish-Chandra’s class. As before we write Aj =exp a} where a is an open
Weyl chamber in aq. The simplifying assumption, that KAl H is dense in X=G /H, is
abandoned. However, the open subset X, of X defined by the disjoint union

X.= U KA;wH (2.1)
weWw

is dense in X (see [9, equation (2.1)]). The map
(k,a,w)— kw lawH (2.2)

induces a diffeomorphism of K/(KNHNM)x A} xW onto X. Notice that X, does not
depend on the choice of the Weyl chamber a/.

Let (7,V;) be a finite-dimensional unitary representation of K, and let °C="C(r)
be the finite-dimensional Hilbert space defined by [9, equation (5.1)]. For ¢ €°C, A€a;q
and x€X we define the Eisenstein integral E(i:A:x)€V, and its normalized version
E°(¢:X:x) asin [9, §5]. These are T-spherical functions of z, and they depend meromor-
phically on A. We view E°(A:x):=E°(-:A:x) as an element in Hom(°C, V;) and define
E*(A:x)eHom(V;, °C), likewise meromorphic in A, by

E*(\:z)=E°(-X:z)*, zeX. (2.3)

Here the asterisk on the right-hand side indicates that the adjoint has been taken. Then
E*(\:kx)=E*(\:z)or(k)~! for k€K, and the 7-spherical Fourier transform (1.1) of a

function feC%°(X: 1) is conveniently expressed as
ff()\):/ E*(\:x)f(z)dze€“C. (2.4)
X

In the same spirit we write the definition (1.2) of the wave packet as

j(p(x):/ *Eo()\:x)ga()\) dX (2.5)
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for p:ia’—"°C of suitable decay; it is a smooth function of z€X (see [9, §9]). In these
expressions measures are normalized according to [9, §3].

Recall from [9, equation (5.11)] that there exists a homomorphism g from D(X) to
the algebra of End(°C)-valued polynomials on a4 such that DE°(A\)=E°(A)epu(D:\) for
all DeD(X). Moreover,

FDf)=w(D)Ff, DIp=JTuD)g) (2.6)

for f and ¢ as above (see [9, Lemmas 6.2, 9.1]).

THEOREM 2.1 [9]. There exists an invariant differential operator DoeD(X) such
that Do: C®(X:7)—=CX(X:7) is injective and such that DoJFf=Dof for all fe
CP(X:7). In particular, if Ff=0 then f=0.

Proof. Choose Dy from the set D/ defined in [9, Lemma 15.3]. By [9, Theorem 14.1,
Proposition 15.2] it has the required properties. The final statement (which is [9, Theo-

rem 15.1]) is an immediate consequence. O

The Eisenstein integrals allow certain asymptotic expansions that we shall now recall
(cf. [10]). Let P€P™™ be the o-minimal parabolic subgroup of G that corresponds to
the chosen chamber aj; then there exists (see [8, §§4-5]), for each s€ W, a unique mero-
morphic End(°C)-valued function A—C"(s: A)=Cp p(s:A) on agc (called the normalized
C-function) such that

E'(aw)p~ Y @20 (5: M)l e)

seW

for each weW and all A\€ia}, as a—oo in A}. Here [ ]w(e) e VENMOwHw™ i dicates
the evaluation at e of the w-component of the element from °C inside the square brackets
(see [8, equations (17)—(18)]). In fact, for a€ A7 and A€a; s generic, there is a converg-
ing expansion for E°(¢: A:aw) as a function of a on A. This expansion is conveniently
expressed by means of the End(VENMMwHw™"y

duced in [10, §10]. Let the function E,(\): X, —Hom(°C, V;) be defined by

-valued functions ®p,(A:-) on A intro-

By (A kawH ) =7(k)®p.o (A:a)[t)]  (e) (2.7)

for k€K, ac A}, weW, €°C. It is easily seen from (2.2) that £, (\) is well defined
for generic A€aj, and that it belongs to the space C>(X,:7) of smooth 7-spherical

functions on X, . It satisfies

B, (\:aw)t ~ a4, (c)
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for weW, as a—oo in A}. Furthermore,
DE_(\)=E,(A)ou(D:)) (2.8)

for DeD(X), by [10, Corollary 9.3], and E, () depends meromorphically on A€a}q as
an element of C*°(X,:7). The expression (1.4) now follows from [10, Theorem 11.1].

It will be convenient to rewrite this as follows. Let

E, s(\:z)=E, (s\:x)oC°(s:\) e Hom(°C, V;); (2.9)
then
E°(\:x)= )Y E. . (\:x) (2.10)
sew
for xe X, .

The FEisenstein integrals satisfy an invariance property for the action of the Weyl
group (see [8, Proposition 4]). Expressed in terms of the notation introduced above it
reads

E°(\:x)=FE"(s\:x)oC"(s:\), E*(s\:z)=C"(s:\)oE*(\:1) (2.11)

for seW, where the Maass—Selberg relations (1.8) are used in the passage between the
two identities. For the Fourier transform of a function feCg°(X:7) the property (2.11)
implies that

Ff(sA\)=C (s:N\)Ff(N). (2.12)

3. The singular hyperplanes

In this section we study the singular set for the normalized Eisenstein integral E°(\:z),
as a function of A\. Our aim is to prove that E°(\:z) is singular only along real root
hyperplanes in a, that is, hyperplanes of the form {A[(\, a)=c} with a€X and ceR.
Part of the proof will, however, be deferred to an appendix.

For SCalc\{0} we denote by Ils=Ils(aq) the set of complex polynomials on a
which are products of affine functions of the form A— (X, &) —c with £€S and ceC. We
agree that 1€llg. For SCaj\{0} we define II5 gr CIlg similarly, but with c€R.

For ReR we define

ag(P, R):={\€a;c|Re () a) <R forae¥"} (3.1)

and denote by @ (P, R) the closure of this set.
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ProposiTION 3.1. Let RER. Then there exists p€lls; r such that the map
A—=p(NE*(N)eC™®(X:T)
is holomorphic on an open neighborhhod of the set EL;;(P, R). Moreover,
A—=p(N)Ff(N)e’C

is holomorphic on this neighborhood for all feC®(X:T).

Proof. We must prove, for each R, the existence of p€lly, g such that A—
p(A)E°(A:x) is holomorphic on

{Aeaic|Re(N,a) > —R for aeX*}.

It is known (from [5], see [8, Lemma 14]) that there exists p€Ily, with this property. It
remains to be seen that the singularities of E°(\:x) are along real root hyperplanes. The

main step is contained in the following lemma, in which notation is as in [9, §2].

LEMMA 3.2. Let EGJT/[\H, There exists, for each RER, a polynomial pelly g
such that the map A—p(X)j(P:£:A\)neC~°(K:§) is holomorphic on a}(P, R), for each
nev().

Proof. See Appendix A. d

It follows immediately from Lemma 3.2 and [8, equation (25)] that E(t): \) is singular
only along real root hyperplanes for all 1»)€°C. In order to establish the corresponding
result for the normalized Eisenstein integrals, we recall that the standard intertwining
operator A(Q'":Q:£: ) is singular only on real root hyperplanes for all @Q,Q'€P (see
[24, Theorem 6.6]). The same holds for the inverse of the operator (cf. [9, proof of
Lemma 20.3]). Moreover, by Lemma 3.2, also the operator B(Q':Q:&:\)€End V(&)
defined by [4, Proposition 6.1], as well as its inverse, is singular only along real root
hyperplanes (cf. also [9, proof of Lemma 20.5]). Finally, it then follows from [8, Lemma 3
and equations (47), (49)] that the normalized Eisenstein integral has only real root hyper-

plane singularities. This completes the proof of Proposition 3.1. O

Let w€lly be the polynomial defined in [9, equation (8.1)]. It is characterized (up
to a constant multiple) by being minimal subject to the condition that A—7(A)E*()\)
is holomorphic on a?(P,0), and hence also on a(P, ) for some £>0, cf. [9, Lemma 8.1].
Hence by Proposition 3.1 we have m€lly g. The map A—m(X)F f(A) is holomorphic on
al(P,e) for all feC(X:7).

The function A— E, (A:x), defined in the previous section, has a singular set which
is similar to that of E*(X):
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LEMMA 3.3. There exists, for each RER, a polynomial pr€lls, g such that A—
pr(AN) B, (\:x) is holomorphic on a neighborhood of @%(P, R), for all z€X,.

Proof. See [10, Theorem 9.1, Proposition 9.4]. |

4. Pseudo-wave packets

Let ¢: aéCHOC. For neay we define a V;-valued function on X, by

Top@) =Wl [ E.(a)p(N) dn, (4.1)

n+ial
provided the integral converges. We shall see that this is the case when p=Ff for
feCX(X: 7). First we need an estimate of E, (A:x) as a function of A. For ueU(g) and
f a smooth function on X, we denote by f(u;x) the value at x of the function obtained

from f by application of v from the left.

LEMMA 4.1. Let RER and let pr be as in Lemma 3.3. There exists for each
u€U(g) a constant dEN with the following property. Let wCay(P, R) and QCX, be
compact sets. Then

sup (1+A)) " 4[pr(A\) B (A us 2)|| < oo (4.2)

zEQ
AEwtiay

Proof. By sphericality it suffices to prove this result for the case that € is contained
in Ag8, the set of regular points in Ay. By the infinitesimal Cartan decomposition g=
t+aq+Ad(a)h, for a€ A8, we may as well assume that u€ U(aq) (use [2, Lemma 3.2]).
For the present  and u, the function E, (A:u;a), a€€), may be computed by termwise
differentiation of the power series [10, equation (15)] that defines the functions ®p ., (A: a)
in (2.7). The coefficient T', () in this series is thus replaced by T',(A\)=p(A—v)T,(N),
with p a polynomial depending on u. Let d be the degree of p; then there exists a constant
C>0 such that [p(A—v)|<C(1+|v])*(14[A))? for all Aea}e and all veNA. It follows
that the coefficient I",(\) of the differentiated series satisfies an estimate analogous to
the estimate for I', () in [10, Theorem 7.4]. The desired estimate is now obtained as in
[10, Theorem 9.1]. O

LEMMA 4.2. Let RER, let wCa be open and contained in aj(P,R) and let pe
s r. Let ¢ be a meromorphic “C-valued function on w+ia’ with the following property:
The map A—p(\)@(X)€°C is holomorphic on w+ia} and satisfies

sup  (1+[A])"[[p(A) (M) < o0 (4.3)
A€Ew+tiaf
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for all neN. Let new with p(n)#0, and assume in addition that pr(n)#0, where pg is
as in Lemma 3.3. Then the integral in (4.1) converges absolutely. The V. -valued function

T,p on X, is T-spherical and smooth, and it is locally independent of 7. Moreover,

DT, 0 =T,(n(D)¢) (4.4)

for DeD(G/H).

Proof. Tt follows from (4.2) and (4.3) that

sup (1A [|E (A us 2) (V)] < o0 (4.5)
AEn+iaf

with a bound that is locally uniform in 7. The convergence and the smoothness of (4.1)
follows immediately. The local independence on 7 results from a standard application of

Cauchy’s theorem, and (4.4) is a consequence of (2.8). O

In order to see that the Fourier transform of a compactly supported smooth function
satisfies the required estimates (4.3) we first recall the estimate for the Eisenstein integrals
in the following lemma. For M >0, let BjsCaq be the closed ball of radius M, and let

XM:KeXpBMHCX

and CP(X:7)={feC*(X:7)|supp fC X}
LEMMA 4.3. Let RER and let p be as in Proposition 3.1. Let ueU(g). There

exists a constant NEN such that

sup  (1+[A) " Ne MR pA) E* (A u; ) || < 00
ze€X M
A€al(P,R)

for all M>0.
Proof. See [5, Proposition 10.3, Corollary 16.2] and [8, equation (52)]. O

LEMMA 4.4. Let RER and let p€lls, r be as in Proposition 3.1. There exists for

each M >0 and for each neN a continuous seminorm v on C52(X:T) such that
IOV FF I < (1A MR () (4.6)

for all Aea3 (P, R), feCR(X:T).

Proof. This follows from Lemma 4.3 in the same manner as [9, Proposition 8.3]. O
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Let wCay be open and bounded, and choose RER such that wCa} (P, R). It follows
from Lemma 4.4 that the functions p=F f satisfy (4.3). Hence the results of Lemma 4.2
hold for these functions. Notice that it easily follows from (4.6) and (4.2) that f—7,F f
is a continuous linear operator from Cg°(X:7) to C*°(X,:7), for generic n€ay.

Let w€lly be as in the text preceding Lemma 3.3. We define the space P(X:7) as
the space of meromorphic functions ¢: a;c—°C having the following properties (a)—(b).

(a) p(sA)=C"(s:\)p(A) for all seW, A€a;c.

(b) There exists a constant £>0 such that 7 is holomorphic on a; (P, €); moreover,

for every compact set wCa (P, ¢)Na; and all n€N,
sup  (1+[A))"[|m(A)p(A)]| < oo. (4.7)
Aewtiay,
Furthermore, for M >0, we define P/ (X : 7) to be the subspace of P(X:7) consisting

of the functions ¢ that also satisfy the following condition (c).

(c) For every strictly antidominant n€ay there exist constants t,,C;,>0 such that
(M) < (14| A]) ~ dim aa= Tt Il

for all t>t, and Aetn+ial.

Notice that the Fourier transform F maps C{2(X:7) into Pa(X:7), by (2.12) and
Lemma 4.4. It follows from Lemma 4.2 that if o€P(X:7) then 7, ¢ is well defined for
all generic 7 in a(P,0)Nag.

LEMMA 4.5. Let ¢€P(X:7). Then Ty is defined for n regular and sufficiently

close to 0 in a}. Moreover, the wave packet (2.5) is defined and satisfies

1
TJo=1r Y T (4.8)
|W| seWw
for n regular and sufficiently close to 0. If A—E, (A:x)p(N) is regular along ia}, then
Top is defined and Jp="T)p.

Proof. Fix R>0 and let pr be as in Lemma 3.3. Since pr€lly r there exists a
W-invariant open neighborhood w of 0, such that (4.7) holds and pg has no zeros in
wNa;*e. Moreover, by [9, Lemma 8.1(a)] we may assume that 7 has no zeros in w. For
nEwnai™® the pseudo-wave packets 7s, ¢, s€W, are well defined in view of (4.7) and
Lemma 4.2.

It follows from (2.5), the estimate [9, (8.2)] and Cauchy’s theorem that

Te@=[ EOmetan
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for n sufficiently close to 0. The result, (4.8), now easily follows from insertion of (2.10)
and (2.9) in this expression.

Moreover, if A= E, (A:z)p()) is regular along iaf, then it follows from (4.2) and
(4.7) that (4.5) holds uniformly for n in a neighborhood of 0. It then follows as in
Lemma 4.2 that 7,,¢ is defined and independent of 7, for all 1 in a neighborhood of 0.

Hence Jyp="T, follows from (4.8). O

Choose R<0 such that w(\)#0 for A€aj (P, R), and let n€aj (P, R). Let p€P(X:7).
We define 7¢:=7,,¢ and call this function on X, the pseudo-wave packet formed by ¢.
It is independent of the choices of R and 7, by the statement of local independence in

Lemma 4.2.

LEMMA 4.6. Let M >0 and ¢€Pp(X:7). The pseudo-wave packet T ¢ is a smooth
T-spherical function on X,. The set {xe X, |To(x)#0} is contained in Xyy.

Proof. The first statement is immediate from Lemma 4.2. Let x€ X\ X;. We claim
that To(z)=0. Let z=kawH, where k€K, ac Al, weW; then |loga|>M. Since the

q 9
inner product on ag is the dual to that on aq, we may fix n€a,

*
q’

such that |n|=1 and n(loga)<—M. Then Typ="T,¢ for tcR sufficiently large. The

estimate

strictly antidominant,

|E,(tn+A:z)| <Ca™, Xeial, t>>0,
follows from [10, Theorem 9.1]. Hence
[T ()] < W] Ca"[e(N)] dA < C'a'e™",
tn+iu(’;
by (c), and we conclude by taking the limit as t—oo that T¢(z)=0. O

We can now state the main result of this paper, the inversion formula for the 7-

spherical Fourier transform.
THEOREM 4.7. Let feC®(X:7). Then TFf(z)=f(z) for all zeX,.

The proof will be given in the course of the next five sections. In the proof we shall

use the following result, which is a consequence of Theorem 2.1 and its proof.

LEMMA 4.8. There exists DoeD(X) such that det u(Dg)#0 and such that
DoTp(x) =DoJ p(x) (4.9)

forall zeX_, peP(X:7). For every M >0 and every 0€Pr(X:7), the function DoT ¢

on X, has a smooth extension to a function in C33(X:7); the Fourier transform of this
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extension is given by
FDoTo=p(Do)e. (4.10)

Moreover, for every fe€C®(X:7) we have DoT Ff=Dyf.

Proof. Let po€lly, r be given by Lemma 3.3 with R=0, and let Do€Dp,r, cf.
[9, Definition 10.3 and Corollary 10.4]. Then det u(Dg)#0 and por divides p(Dyp) in
S(aq)®End(°C). Moreover, let p€P(X:7) and put o=p(Do)p. Then geP(X:7) (use
[9, equation (5.13)]), and E,(A:2)@(A\) satisfies an estimate of the form (4.5) for all
neag(P,0)Na;. We infer as in Lemma 4.2 that 7, is defined and equal to 7¢ for all
neag(P,0)Nay. By Lemma 4.5 we conclude then that 7¢=7¢ on X, and (4.9) follows
from (2.6), (4.4).

By a standard application of Cauchy’s integral formula the restriction of ¢ to the
Euclidean space ia; is a “C-valued Schwartz function. Therefore, by [9, Theorem 16.4],
the wave packet J¢ belongs to the Schwartz space C(X:7) (see [9, §6]) and its Fourier
transform FJ ¢ equals ¢ by [9, Theorem 16.6]. Assume now that ¢€Pp(X:7). Then
DT ¢ has a smooth extension to a function in C3(X:7), by (4.9) and Lemma 4.6.
Moreover,

FDoTo=FDoJp=pu(Do)FITp=p(Do)p,

where the second equality is a consequence of [9, Lemma 6.2]. This establishes (4.10).
Let feC$(X:7) and put ¢=F f. Then o€Py(X:7), and it follows from the pre-
vious statements that Do7 FfeC2(X:7) and FDoT F f=u(Do) Ff=F(Dof). Since F

is injective (cf. Theorem 2.1), the final statement follows. O

COROLLARY 4.9. Let M >0 and p€Pp(X:7). Assume that Ty has a smooth
extension to X. Then this extension belongs to C$P(X:7) and its Fourier transform is
given by FT p=.

Proof. It follows from Lemma 4.6 that the extension of T¢ belongs to C37(X:7).

Hence its Fourier transform F7¢ makes sense, and we obtain from (4.10) that
w(Do) FT p=p(Do)e. Since det pu(Dg)#0 it follows immediately that FT o=¢. O

COROLLARY 4.10. Let feC®(X:7) and assume that TF f has a smooth extension

to X. Then this extension equals f.

Proof. There exists a constant M >0 such that feCP(X:7). Now FfePy(X:7),
and hence it follows from Corollary 4.9 that 7FfeC®(X:7) and that FTFf=Ff.
Since F is injective we conclude that 7F f=f. d

The preceding corollaries have been established without use of Theorem 4.7. On

the other hand, it follows from the conclusion of this theorem that 7 F f really has a
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smooth extension to X, for all feC>®(X:7). Thus we obtain from Theorem 4.7 and
Corollary 4.9 the following (weak) Paley—Wiener theorem:

COROLLARY 4.11. Let M >0 and let Py, (X:7) denote the set of functions @€
Prm(X:7) for which T has a smooth extension to X. The Fourier transform F maps
C(X 1) bijectively onto P (X:7); the inverse map is given by T followed by the

extension to X.

5. Residue operators

In order to study closer the pseudo-wave packets 7Ff we apply the residue calculus
from [11]. We first recall some basic notions from this reference. A subset of V=a;
of the form H, :={A€a}|(a, \)=s} for some aca}\{0} and s€R is called an affine
hyperplane; if € it is called an affine root hyperplane. A locally finite collection of
affine hyperplanes in V is called an affine hyperplane configuration; if it consists of affine
root hyperplanes it is said to be X-admissible. Moreover, if its elements are given as
above, with a€X* and with a uniform lower bound on s, then it is said to be P-bounded.

Let ‘H be an affine hyperplane configuration in afj, and let d: H—N be a map. For
any compact set wCag we denote by m, 4 the polynomial on a’s given by the product
of the functions ((a,-)—s)*Has) where H, 4 is any hyperplane that belongs to H and
meets w. We then denote by M(ag, H,d) the space of meromorphic functions ¢:ajc—C
for which 7,4 is holomorphic on a neighborhood of w+iaf, for all compact sets wCag.
Furthermore, we denote by P (a7, M, d) the subspace of those p€ M (a7, H,d) for which

sup  (L4[A])"70,a(A) p(A)| < o0
Aew+iay

for all w and all n€N. The unions over all d: H—N of these spaces are denoted
M(ag, H) :=UM(al, H,d), P(aj, H):=UP(a, H,d).
d d

Let L be an affine subspace of ag, that is, L=A+Vy, where A€ag and V[, is a linear
subspace of V' =ag. The set LNV consists of a single point ¢(L), called the central point
in L. The map A—c(L)+A is a bijection of Vi, onto L; via this map we can view L as a
linear space. The set

Hr={HNL|HeH, @ HNLG H}

is an affine hyperplane configuration in L. We may then define the sets M(L,Hr) and
P(L,Hyz) similarly as M(a}, H) and P(a’,H) above; they consist of functions that are
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meromorphic on the complexification Lc=c¢(L)+ (V)¢ of L. If d: H—N we denote by
qr,d the polynomial on a} o given by the product of the functions ({(a, - ) —5)UHas) where
H, s is any hyperplane that belongs to H and contains L. The restriction (¢r,q¢¢)|Lc
then makes sense and belongs to M(L,Hy), for all o€ M(a;,H,d). More generally, a
linear map

R: M(a, H) — M(L, Hy)

is called a Laurent operator if there exists, for each d: H—N, an element ug in the
symmetric algebra S(V;") of Vi such that, for every peM(af, H,d), the image Ry is
the restriction to Lc of ua(qr,.a¢). The space of Laurent operators from M(aj, H) to
M(L,Hy) is denoted Laur(ay, L,H). A Laurent operator R€Laur(af, L, H) automati-
cally maps P(a, H) into P(L,Hz) (cf. [11, Lemma 1.10]).

Let H denote the set of affine hyperplanes in a along which A—E, (A:z) or A
E*(\:x) is singular, for some z (in X, and X, respectively). It follows from Proposi-
tion 3.1 and Lemma 3.3 that H is a P-bounded -admissible hyperplane configuration.
Moreover, by Lemmas 4.1 and 4.4 the functions A—E_(A:x)F f(\), where feC®(X:T)
and x€ X, belong to the space P(a}, H)QV;.

Let R denote the set of root spaces in aq, that is, the set of all subspaces bCaq of
the form b=a;'(0)N...Na; *(0) with ay,...,a; €%, and for bER let

sing(b,X)= |J bna~1(0), reg(b,¥)=>b\sing(b,X).
alo£0

Furthermore, let P(b) denote the set of chambers in b, that is, the connected components
of reg(b,X), and let P=|J,.x P(b). There is a natural 1-1 correspondence between the
set P, of all 0#-stable parabolic subgroups of G, containing Ay, and P. Thus, a parabolic
subgroup Q€ P, with o-split component exp agq corresponds to the element a5, € P(aqq)
on which its roots are positive (in particular, elements in P™" correspond to chambers
in ag).

Let ACX denote the set of simple roots for ¥*, and let FCA. Let also apq=
Nacr @ '(0)€R, and let aj, €P(arq) be the chamber on which the roots in A\F are
positive. This chamber corresponds to a of#-stable standard parabolic subgroup which
we denote Pp (see [4, §2]). Furthermore, we denote by Wg the subgroup of W generated
by the reflections in the elements of F', and by W the set {s€ W |s(F)CX*}, which is
a set of representatives for the quotient W/Wp.

For beR we identify the dual space b* with a subspace of a; by means of the
extended Killing form B.

Let ¢t be a W-invariant residue weight for ¥, that is, a map from P to [0;1] such
that - oep(q) t(Q)=1 for all a€R, and t(wQ)=t(Q) for all QEP, weW. Starting from
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the data 3, P,t we defined, in [11, §3.4], for each subset FCA and every )\ea}t a
universal Laurent operator Resfjrtu}q. This operator encodes the procedure of taking a
residue along the affine subspace A+af o of a;c; it induces a Laurent operator (denoted
by the same symbol) Resffa}qeLaur(a;, A+af,, H'), for each ¥-admissible hyperplane
configuration H’. Define

A(F):= {)\Ga}t | Resfﬁu}q(goos) #0 for some s € W, peM(al, H)}. (5.1)

Then by [11, Corollary 3.18] this set is finite and contained in —R. F, the negative of the
cone spanned by F. Moreover, from the same reference it follows, for ne€ay sufficiently
antidominant and for ep a point in the chamber ay; sufficiently close to the origin (and
ea=0), that

/+_ PV dr= D tagy) Y, Resfja}q( > gpos) dup (5.2)

FCA AeA(F) A tertiag, SEWF

for all p€P(ay, H). Here d)\ denotes the choice of Lebesgue measure on the real lin-
ear space iay, specified in [9, §3], as well as its translation to n+iag. Furthermore,
dup::d,ua}q denotes a compatible choice of Lebesgue measure on the subspace 10
of 1a, as well as its translation to A+ep +ia%,. The required compatibility is as follows.
Let (ip,iv)—cB(u,v) be the positive definite inner product on the real linear space ia,
with respect to which the normalized Lebesgue measure is dA. Then dur is normal-
ized with respect to the restriction of this inner product. In particular, d)\:d,ug:d,ua:l.
Moreover, if apq={0}, so that A+ea +iaj, just consists of the point A, then the integral
f)\"l‘EAJl‘ia*AqduA in (5.2) represents evaluation in A, for each A€ A(A).

Applying the identity (5.2) on components we generalize it to V,-valued functions;
hence, in particular, the identity holds for p(A\)=E, (A:2)F f(\), where feC®(X:T)
and x€ X, . We conclude

TFf)=[W] > tahy) > / Resf;:a}q< > E+(s~:x)}'f(s.)> djtay,, -

FCA AeA(F) AtTErtiahy SEWF
(5.3)

The estimate that ensures the convergence of the integral over A+ep+iaj, follows
from estimates (4.2), (4.6) by general properties of the Laurent operators (see [11,
Lemma 1.11]): Let n€N. There exists, for each u€U(g), a constant C>0 such that

I Resf;fa}q(E+(3~ cuy ) Ff(s))(Aep+iv)|| <C(1+|v))™" (5.4)

for all veag,,, AEA(F), seW?F. The constant C is locally uniform in z€ X, . Tt follows
that the integral over A+ep+iaj, in (5.3) is a smooth function of z. The constant C' is
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also locally uniform in ep and in feC°(X:7) (cf. (4.6)). Thus, each integral in (5.3)
represents a continuous linear map from C°(X:7) to C*°(X,:7).

We now define for each FCA a continuous linear operator T% from C°(X:7) to
C*(X,:7) by

Thf() =Wt Y [

NEA(F) )\+6F+lan

Resffa?q< > E+(3-:x).7:f(3-)> dpay ; (5.5)

seEWF

as mentioned convergence follows from (5.4). Then
TFf=>_ Thf. (5.6)
FCA

The operator T% is independent of the choice of ex (provided the latter is sufficiently
close to 0). We also define the kernel K% (v:x:y) €End(V;) for v€a}, o, 2€X,, y€X by

KbL(viz:y)= Z Res/\+u ( Z E+(5':x)oE*(s~:y)>()\+l/). (5.7)
AEA(F) seWF

Clearly this is smooth as a function of (z,y)€X, xX and meromorphic as a function
of v. Note that by (2.9) and (2.11) we can rewrite the expression (5.7) as

Ki(v:iz:y)= Z Res)\_i_u ( Z E+VS(~:z)oE*(~:y)>()\+y). (5.8)

AEA(F) seWwr

LEMMA 5.1. Let FCA, ueU(g), z€X, and feCX(X:7). Then

sup (1+[v[)"

vEiapy

/ K}(sp—i-y:u;x:y)f(y)dyH<oo (5.9)
X
for each neN. The bound is locally uniform in x, ep and f. Moreover,

T (i) = W] t(af,) [ . | Koz @) dydss,. (510)

Proof. Let RER and let wCag (P, R) be compact. It follows from Lemmas 4.1 and
4.3 that there exist NN and C'>0 such that

IR\ EL (X u; z)o B*(A:y) || < CA+[ADY

for all Aew-+ia?. Moreover, this estimate holds locally uniformly in z€ X, and yeX.
From [11, Lemma 1.11] we obtain a similar estimate for all derivatives with respect to A
of the expression inside | - ||. This implies that for feC®(X:7) the expression

/X prROVPOVE, (A1 2)o B (A:y) [ (3) dy
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can be differentiated with respect to A before the integration over y. It follows that

/XK%(V:u;x o f = Y Resite. (Z E+(s-:u;x)o.7-"f(s-))()\+u), (5.11)

AEA(F) sEWF

and (5.9) is obtained from (5.4), with the stated uniformity. It follows from (5.4) that
differentiations with respect to = can be carried under the integral sign in (5.5). Then
(5.10) follows from this equation and (5.11). O

Consider the operator T% for F=@. We have agq=0a4 and W92 =W. Since all the
chambers of a4 are conjugate, a Weyl invariant residue weight necessarily takes the value
1/|W| on each chamber. Moreover A(@)={0} and Resf?’t is the identity operator. Hence

T f(x) / IDILACEEE =57 X T FI@) = TFI@) (.12

a seW seW

by Lemma 4.5, since the expression is independent of the choice of 4. Moreover, by
(2.10) and (2.11),
KL (viz:y)= Z E, (sv:x)oE*(sv:x)=E°(v:z)o E*(v:y). (5.13)
sEW
Remark 5.2. Consider the special case when G is compact. In this case K=G and
aq={0}. It is easily seen from the definitions that °C=C>(X:7) and that the Eisen-
stein integral E(x)=E°(x): °C—V; is the evaluation at x, for each z€X. In particular,
E(e) is an isomorphism of °C onto V2. It follows easily that E(e)oE*(e)€End(V;) is
the orthogonal projection Pg: V, —VH. Then E(z)oE*(y)=7(z)cPgor(y~!) for z,y€qG
by sphericality, and it follows that the kernel K& (z:y) for F=A=g is given by the same
expression K& (z:y)=7(z)oPgor(y™1).

6. Some properties of the residue operators

Let FCA and let ¢ be a W-invariant residue weight. We shall determine some further

properties of the operator T% and its kernel K¥..

LEMMA 6.1. Let wCap, be bounded. There exists a polynomial q€lly m with non-
trivial restriction to ay, for every u,u’'€U(g), a number NEN, and for all z€ X, y€X

a constant C>0, locally uniform in x,y, such that

lg@) K (v:us 2203 y) | < C(L+ ()Y
Jor all vEw+iag,.

Proof. This follows from Lemmas 4.1, 4.3 and [11, Lemma 1.11]. O
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LEMMA 6.2. Let F,F'CA and assume that apq=wapq for some weW. Then
K (wr:z:y)=Kh(v:z:y) (6.1)

for all generic VvEap,c, and all ze X, yeX.

Proof. The set wF is a basis for the root system spanned by F’; hence there exists
w'€Wpr such that w'wF=F"'. Since w’ acts trivially on apq we may thus assume that
wF=F'. Notice that then s+—sw™! is a bijection of W onto W 1t follows from
[11, Proposition 3.10] that

Resi;-‘rza (@Owil) = Resf_’:iu}q(gp)owfl
for all )\Ga}t and pe M(a;,’H). Hence A(F')=wA(F), and (6.1) follows easily from

(5.7). O

LEMMA 6.3. Let FCA and let vEag,c be such that Ki(-:x:y) is reqular at v.
The set
I:={DeD(X)| DK% (v:-:y)=0,Vye X}

is an ideal in D(X) of finite codimension.

Proof. From (2.8) we obtain

DK% (v:ix:y) = Z Res/\+a E (:x)op(D:-)eE*(-:y))(A+v)
AEA(F)

for the action of D in the variable . The endomorphisms p(D: ) of °C are simultane-
ously diagonalizable for all DED(X), A€a; (see [8, Lemma 4]). Let v;(D: ), i=1,...,m,
be the eigenvalues, and let I; \CD(X) for i=1,...,m, A€ajc, be the ideal generated by
all elements of the form D—+,;(D:\) where DeD(X). This is a finitely generated ideal of
codimension 1. Let Ae A(F). If k is sufficiently large then the polynomial p(D) vanishes
at A+v to sufficiently high order, for De [~ (I; x+.)*. Hence, for sufficiently large k,

Resifa (E+( cx)op(D:-)oE*(-1y))(A+v) =0,
and thus ID][\ep(p) [T, (Zi x+)*. The latter ideal is cofinite, since it is a product of
finitely generated cofinite ideals, so I is cofinite. O

COROLLARY 6.4. Let F, v and I be as in Lemma 6.3. A function in C®°(X,:T)
or C°°(X:7) that is annihilated by I is real-analytic.

Proof. This is a standard application of the elliptic regularity theorem (see [27,
p. 310]). O



46 E.P. VAN DEN BAN AND H. SCHLICHTKRULL

In particular, for generic v, the functions z— K% (v:z:y) (for y€ X) are real-analytic
on X . A similar argument shows that y—K&% (v:z:y) is real-analytic on X (for z€X ).
Let C°(X,:7) be the space of functions in C*°(X,:7) that are supported by a
compact subset of X,. The rest of this section is devoted to the determination of the

adjoint of the operator T%: C°(X:7)—C> (X, :7) with respect to the sesquilinear form

(flg)= /X (f(2)|g()) da

on C®(X:7)xC®(X,:7). The following definitions and lemmas will be helpful.
Define
Ef(\iz)=E, (-X:x)*

for x€ X, in analogy with (2.3). Furthermore, let

EX (Aiz)=E, (-X:2)* =C(s:\) e El(sA:a),

cf. (2.9) and (1.8); then

=Y Er (\ix) (6.2)

sew
for xeX,.

LEMMA 6.5. Let FCA and let vEay ¢ be generic. Then

Kt(via:y)* Z ReSAJra ( Z E%—s-:y)oEi(—s-:x)) (A+7D) (6.3)

AEA(F) SEWF
= > Resm <E°(—-:y)o > E;S(_.:x)>(x+y) (6.4)
AEA(F sEWF

for xeX,, yeX.

Proof. The Laurent operators Resfjfu} are real (see [11, Theorem 1.13]). It follows
q
eagsily that

Resffa}q(w)v - Resffa}q((pv) (6.5)

for all pe M(a%, H), where pY:vi—p(7). The identity (6.5) generalizes to End(V;)-
valued functions ¢ if we replace the definition of ¢V by ¢":v—p(0)*. We apply (6.5)
with

V)= Z E_ (sv:z)oE*(sv:y).

Then
Z E°(—sv:y)oE}(—sv:x);
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for A€ A(F') we thus obtain
[Resf;:a}q(go)()nLy)]* —Res? L (P A+D).
Applying this termwise to (5.7) we obtain (6.3), and using (2.11) we then obtain (6.4). O
For feC®(X,:7) we define, in analogy with (2.4),

Fof\) = / Ei(\:z)f(z)dze®C, (6.6)
X4
for generic A€ajc. Then F, f is a °C-valued meromorphic function on ac-

LEMMA 6.6. Let RER and let pr be as in Lemma 3.3. Let wCay (P, R) be compact.
Then
sup  (1+|AN)"[[pr(N) F f(=A)[| < oo

A€Ew+ial
for all neN, feC*®(X,:1).
Proof. This follows from Lemma 4.1 in the same manner as [9, Proposition 8.3]. O

LEMMA 6.7. Let FCA, and let w and q be as in Lemma 6.1. Let ueU(g), neN.
Then

sup_ (14 ]u])" o) /X Kio(v )" g(a) de| < o (6.7)

vew+tial

for every geC® (X, :7) and all ye X, with a bound that is locally uniform in g and y.
If geC* (X, :T), then the function

v S5l = IWlta,) [

—eptiagp,

/X Ki(-:m:y)*g(x) dx dpiay, € V7 (6.8)
+

belongs to C*°(X:7) and is independent of the choice (sufficiently close to 0) of ep.

Proof. Let neN and ueU(g). In analogy with (5.4) it follows from Lemmas 4.3
and 6.6 that

la() ResLilye (B°(—=s-ui)e Frg(—s ) A4) | SCA+IAD ™ (6.9)
for all vEw+iagp,, AEA(F), seW?F, with a constant C locally uniform in g€ C° (X :7)
and ye X. From Lemma 6.5 we obtain, as in the proof of Lemma 5.1,
/ Ki(viz:y)*g(x)dz = Z Resf\)l:a}q( Z E°(—s-:y)oF,g(—s- )> (A+7),
X4 AEA(F) SEWF
and the estimate (6.7) follows from (6.9). The final statement of the lemma is an imme-

diate consequence. O
Let FCA and let F'CA be given by F'=—wgF, where wy denotes the longest

element in W (with respect to A). Then —ap =woag,. Recall that a residue weight
t is called even if t(Q)=t(—Q) for all QeP. If t is even (and Weyl invariant) then

t(afpg)=t(apn)-
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LEMMA 6.8. Let FCA and F'=—wyF. Assume that t is even (in addition to being
W -invariant). Define Sk, as in Lemma 6.7. Then

(T flg) = (fISk9)
for all feCX(X:1) and geC® (X, :7).
Proof. By (5.9), (5.10) and Fubini’s theorem,

(Tt flg) = W|t( ) /X /+ / Ki(v:z:y) f(y)|g(x)) dy dv dx

—Wittay) [ [ [ i) £l gta) dyded
Ep-l-ia}q X JX
Similarly, by (6.8) and (6.7),

18 =IWittapy) [ [ / ) [ K (0 s0:9)" g() das o’ dy

=|W|t(az,) / //X Y) | K (Viz:y) g(2)) dz dy dv'.
7sF/+zaF, +

We have ap/q=wo0rq, and we may assume that —epr=wpep. Hence by the change of

(6.10)

variables v'=wyr and by Lemma 6.2,
F1Spa) =Witar,) [ [ [ K@i f@)lgle) dedydv. (611)
eptiayg X4

Finally, the expressions (6.10) and (6.11) are equal, since the order of the inner integrals

can be interchanged by continuity of the integrands, cf. Lemma 6.1. (]

7. Main results

With the notation introduced in §5 we can rewrite our main result as follows. By (5.6)

the following theorem is equivalent with Theorem 4.7.

THEOREM 7.1. Let t be a W-invariant residue weight for . Then
(2)=")_ Thf(x) (7.1)
FcA
for all feCX(X:1) and z€X,.
When stated as in (7.1) the inversion formula depends on the choice of a residue
weight. We shall see in [13] how this dependence can be eliminated from the formula.

The proof of Theorem 7.1 is based on the following result, which is the second main

result of our paper.
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THEOREM 7.2. Let t be a W-invariant even residue weight for ¥ and let FCA.
The End(V;)-valued kernel defined in (5.7) satisfies the following property of symmetry:

Ke(viz:y)* =Kh(-v:y:z) (7.2)

for all x,ye X, and generic VEAp,c-

For F=g this result is a direct consequence of (5.13) and (2.3). For the case of a
general set F' it will be proved in the course of the following two sections.

The symmetry of the kernel K% is related to a similar property of symmetry for the
operator T%. The following lemma will be used in an inductive argument in the proof of
Theorem 7.2.

LEMMA 7.3. Let t be a W-invariant even residue weight for X, and let FCA.
Assume that Kb is symmetric, i.e. (7.2) holds for z,yeX, and vEap,c generic. Then
the following holds. Let geC® (X, :T).

(i) The function x—Thg(x), X, —V;, extends to a smooth T-spherical function
on X.

(i) Let F'=—woFCA. Then x—T%, g(x) extends to a smooth T-spherical function
on X, and (T% f|g)=(f|Th g) for all fECX(X:T).

Later (after Theorem 7.2 has been proved) we shall see that (i), (ii) actually hold
with geC°(X:7) (see Corollary 10.11).

Proof. Tt follows from (7.2) that the operator St defined in Lemma 6.7 is identical
with the restriction of T% to C°(X :7) (apply the substitution of variables v——v in
the outer integral). Hence (i) follows from this lemma. Notice that the symmetry of K%
expressed in (7.2) implies that K%, satisfies the same kind of symmetry (by Lemma 6.2),

and hence (i) holds for T%, g as well. Now (ii) follows from Lemma 6.8. O
We shall now derive Theorem 7.1 from Theorem 7.2.

Proof of Theorem 7.1. We assume that Theorem 7.2 holds. We see from (5.6) that
Theorem 7.1 is equivalent with Theorem 4.7, in which the residue weight ¢ is absent, and
we may therefore assume that ¢ is even (cf. [11, Example 3.3]).

Let first feC°(X,:7). Since (7.2) holds by assumption, it follows by application
of Lemma 7.3 (i) that T, feC™(X:7) for all FCA. Hence TFfeC>(X:7) by (5.6),
and Corollary 4.10 shows that TF f=f.

Let now feC®(X:7), and let g€ C°(X,:7) be arbitrary. Then from (7.2) together
with Lemma 7.3 (ii) it follows that (T% f|g)=(f|T% g). Since F—F’ is a bijection

of the set of subsets of A, we conclude by summation and application of (5.6) that
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(TFflg)={(f|TFg). The expression on the right-hand side of the latter equation equals
(f1g) by the first part of the proof. We conclude (cf. [9, Lemma 11.3]) that 7F f=f
on X,. g

In the proof of Theorem 7.2 we shall need the reformulation of (7.2) given in the

following lemma.

LEMMA 7.4. Let x,ye X, and FCA. Let vEap,c be generic (or more precisely,
such that Ki(v:z:y) and Kb(—v:y:x) are both reqular at v). Then (7.2) holds if and
only if

Z Resf;fa}q( Z E+,s(-:a:)oE*(.:y))(>\+y)
)

AEA(F seEWF

- )Resf;:a?q<Eo(—-:x)o > ELL-) 00,

AEA(F SEWF

(7.3)

In particular, if F=A and aanq={0}, then this identity simplifies to the following identity
m V.

> Resy'(E.(-:2)E*(-:y))= Y Resy'(E°(—-:x)oEl(—:y)). (7.4)
AEA(A) AeA(A)

Proof. By means of (5.8) and (6.4) the two sides of (7.3) are identified as Kt (v:z:y)
and K% (—v:y:x)*, respectively. For F=A we have W¥={1}, so that (7.3) simplifies
to (7.4). O

LEMMA 7.5. Let x,ye X, FCA. Let A be any finite subset of aj{,{i containing A(F).

Then the identity (7.3) is equivalent to each of the identities resulting from it by replacing
A(F) by A on either one or both sides.

Proof. Tt suffices to show that the residues
Resyo, (Bys(-:2)oB*(-1y))
and
Resy o, (B°(=-:2)o B (= :y))
vanish for )\Ga}}t\A(F) and se WF. We note that
B s(px)oE"(uy) =E, (spra)o B (sp:y)
and
B (—p:a)o B (—piy) = (B, (sfisa)e B (sfi:y))".
It is easily seen that the functions p—E, (u:2)eE*(u:y) and p— (E (G:x)oE*(f:y))*

both belong to M(a}, H)®End(V;), with H defined as in the beginning of §5. The
assertion now follows from the definition of A(F), see (5.1). O
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8. Application of an asymptotic result

In this section we shall apply the theory of [12], as outlined in Appendix B, in order
to prove the following Proposition 8.2, which will be crucial for the induction in the
following section.

In order to prepare for the mentioned induction we must introduce some notation.
Let Q=M¢gAgNg€eP, with the indicated Langlands decomposition. For each element

v€ Nk (aq) we consider the symmetric space
Xg,0=Mg/MgnvHv™;

this is a reductive symmetric space of Harish-Chandra’s class, and its vectorial part is
trivial. If FCA and @ is the corresponding standard o-parabolic subgroup Pg, then
we write Mp=Mg and Xp,=Xg . In particular, Py is the fixed o-minimal parabolic
subgroup P, and Xg , is the compact symmetric space M/MNvHv 1!

Let FCA be fixed. For the symmetric space X, the role of aq is played by
the orthocomplement aJ};q of apq in aq, that is, this is a maximal abelian subspace
of mpNpNAdwv(q). As before we identify the elements of the dual a};{i with the linear
forms on a4 that vanish on apy. Then E}zE*ﬂa*Fé is a positive system for E(aJF-q, mp),
and F' is the corresponding set of simple roots. We denote by *P the parabolic subgroup
MpNP of Mp; it is the analog for X, of P. In the following, when we consider

Eisenstein integrals on Xp,, we relate them to X}. and *P, and consider these latter

+
q

As in [8, §8] we fix a set WrC Nypni(aq) of representatives for the two-sided

data as fixed. Similarly, the open chamber ax’ is defined relative to X7

quotient Zns.nk (ag)\Nyvpnk (8q)/Nypnknm(aq). The set W is the analog for Xp=
Mp/MpNH of the set WC Nk (ay); we recall that the latter set has been chosen as a set
of representatives for Zx (aq)\ Nk (aq)/Nknm(aq) (or, equivalently, for W/Winn). We
define

Cr= @ C®(M/MnwHw :7y),
weWF
where Ta=7|pnK. Then °Crp is the analog for X g of the space °C, which, we recall, is
given by
C= @ C*(M/MnwHw :1y). (8.1)
wEW
In particular, the Eisenstein integrals on Xp, E(Xp:¢:\)€C*>®(Xp:7|pmpnK), are para-
metrized by 1 €°Cr and Aeajy.
More generally, for each v€ Nk (aq) we fix a set Wg, C Narpnk (0q) of representatives
for Znrpnk (ag)\Napnk () /Narenknomo-1(0q); then We, plays the role for X, of W.
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We put
Cro= @ C®M/MnwvHv tw=t:my); (8.2)
wWEWp,»
this is the analog for Xz, of (8.1). Then we have the Eisenstein integrals E(Xp,:¢: )
on Xp,, where €°Cp,,, )\Ea}é. Similarly we introduce E°(Xp,:9:N), E*(Xp,:9:N),
E,(Xpy:t:A) and EY(Xp,:1:N). The latter two functions are defined on

Xpuy,+= U (MFﬂK)*A}qw(MpﬂvHv_l),
wEWF,U

where "A}, =exp a#;.
Let W be a (fixed) subset of Nk (aq) that is a complete set of representatives for
Wr\W/Wgknm. The proof of the following result is straightforward.

LEMMA 8.1. The union
U Weuv (8.3)

veFWwW

in Ni(aq) is disjoint and forms a complete set of representatives for W/Wignp .

In the following we shall assume (with F' fixed) that W has been chosen such that it
equals the set (8.3). Since the basic definitions, for example of the Eisenstein integrals,
are essentially independent of the choice of W (cf. [8, equation (27)]), this assumption
is harmless (although in general it cannot be realized simultaneously for all F'). Then,
corresponding to the injection of Wg, in W by (8.3) and the assumption just made,
there is a natural injection ip, of °Cp, into °C, simply given by the identity on each
component of (8.2). We denote by prp, the corresponding orthogonal projection of °C

onto °Cp,. It follows from Lemma 8.1 that

‘C= @ iru("Cro) (8.4)
vefw

Given a residue weight ¢ for ¥, we define a residue weight *¢ for X as in [11, §3.6].

Let )\Ga}t and peM(ag, H), where H is any X-admissible hyperplane configuration
in ag. Then, according to Lemma B.5 with V' and L as described below the proof of
the lemma, the function z—@(v+2) on ajge belongs to M(X, Xp), for g*eneric VEUL,c-
Moreover, according to Remark B.4, the universal residue operator Res)\R " on a}{i can
be identified with an element in M (X, Xr);,,,- Then, by Lemma B.5 the function v—

Reszp’*t[gp(u—i- +)] is meromorphic on a% . It now follows from [11, Theorem 3.14] that
P, P
[Res)\fu}q Pl (v+A) =Res, " p(v+-)] (8.5)

as an identity of meromorphic functions in v.
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PROPOSITION 8.2. Fiz FCA and assume that for each ve® W the identity (7.4) in
Lemma 7.4 holds for the symmetric space Xp,, for all x,y€Xp, .. Then (7.2) holds
(for the symmetric space X) for all x,ye X, and generic VEAR,C-

In particular, if FF’=g, then the hypothesis in Proposition 8.2 amounts to the sym-
metry, for each vEW, of the kernel KL (X g, :m:m') for the compact symmetric space
Xz o=M/MnNvHv™!'. This hypothesis is easily seen to be fulfilled (cf. Remark 5.2).
The conclusion, on the other hand, is the symmetry of the kernel K, (v:2:y) for X; this

symmetry was however already verified below Theorem 7.2.

Proof. Let ve®W. The assumption (7.4) for X, reads

> Res" (B (Xpyii2)o B (Xpy:ty))
ANEA(XF,v, F) (8.6)

= > Res) N(E(Xpyi—i2)o BN (Xp,:—1y))
NeA(Xp.o, F)

for all z,yeXp,, ,. Here A(Xp,, F) is the analog for Xz, of A(A) (see (5.1)), that is,
ANXp,, F)={\€ a}t | Res;P’*tgo #0 for some @€ ./\/l(a*Fng, Hrw)}, (8.7)

where Hp, is the set of affine hyperplanes in a}lgl along which A—E, (Xp,:-:x) or
A—E*(Xp,:-:y) is singular for some z, y.

Note that, by Lemma 7.5, an equivalent form of the identity (8.6) is obtained if we
replace on both sides the set of summation A(Xg,, F') by any finite subset A of a}t that
contains A(Xg,, F'). Likewise, in order to prove (7.3) (which, by Lemma 7.4, is sufficient
for our goal) it suffices to prove this identity with A(F) replaced on both sides by any
finite subset A of a*Ft that contains A(F'). We shall apply these observations with the
following set A:

A=[ U AXpn, F)JUA(F). (8.8)

veFW
We shall now apply the induction of relations of Appendix B. We first apply it in the

version of Theorem B.6. According to the discussion before (8.5), the linear functional

L:pr— Z Res;P’*t ®
AEA

on M (a}tc, Y r) is a Laurent functional in M (a}éc, Er)fu We define the Laurent func-

tionals L1, Lo EM(a}tC, )t by Li(@)=L(p(—-)) and Lo=L. For fixed yeXp,,

and a€V;, we define the functions ¢1, ¢2: aic—"Crv by ¢1(v+A)=E7(XFy:A:y)a and
G2(v+N)=E*(Xp,:A:y)a, for generic )\Ea};{ic and v€afp,c. Then ¢1 and ¢, belong
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to M(alc,X)® Cry. From (8.6) we now obtain, by applying Theorem B.6 with £y, Lo,
@1, P2 as mentioned, that

Z Res;\P’*t< Z E, s(v4 - :x)oip o E*(Xp,:-: y))

AEA sEWF (89)

= Z Res;P’*t(Eo(y— x)eipy o B (Xpy:— 1Y)
AEA

for all y€ Xp., 1, x€X, and generic v€ap,c.

We apply the induction of relations once more, this time in the dual version of
Corollary B.7, and obtain, with z€ X fixed,

Z Res:\P’*t < Z E, s(v+-:x)eip,oprp, oE"(v+-: y))

AEA seWF

- Z ReS;P7*t (EO(V_ ) :x)oiF,voer,vo Z Ei,s(l/_ y))

AEA sEWF

for all y€ X, and generic v€aj, . Summing over veFW, cf. (8.4), we obtain

Sores! (X Bl i) B o)

AeA sEWF
*P* o *
= > Res) (B (v—:2)e Y B (v :p)).
AeA sEWF

By (8.5) we can replace the residue operators Resi\P’*t by Resfiu} and, as remarked
above, A by A(F'). We thus obtain the desired identity (7.3). O

9. Proof of Theorem 7.2

The proof is by induction on the rank of the root system . We assume that the statement
of the theorem holds for all reductive symmetric spaces for which the corresponding root
system is of lower rank than 3 (this is definitely true if the rank of ¥ is zero). Then the
hypothesis in Proposition 8.2 is valid for all FGA, and we conclude that (7.2) holds for
such F'. Hence the statements in Lemma 7.3 are valid for all FCA. In order to complete
the proof we must establish (7.2) for F=A.

Let Y denote the set of continuous homomorphisms x: G—R_ for which x(h)=1 for
all he H, and let

‘G= N x ).

XET
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Then HC°G, and the pair (°G, H) satisfies the same general assumptions as we have

required for (G, H). Moreover, we have
G/H ~°G/H x Apq.
Let z,yc€°G/H, a,b€ Anq. Then it follows easily from the definitions that
Ky (v:za: yb) = (ab™!)” K (1) (9.1)

for v€aj o, where °KY is the kernel defined as Ky, but on °G//H. Tt follows that in order
to establish (7.2) it suffices to consider “K% on °G/H; in other words, we may assume
that anq={0}. Moreover, we may assume that X is not compact, since otherwise the
symmetry of Ka(z,y) follows easily from Remark 5.2.

Let feC(X,:7) be fixed and consider the function g:=f—7F f on X,. We shall
first prove that g=0 on X, as would follow from Theorem 7.1 if we could use it at this
stage. Afterwards we derive Theorem 7.2. Notice that g vanishes outside a bounded
subset of X, since f has compact support and Lemma 4.6 applies to 7F f.

In Lemma 6.3 take F'=A and let D belong to the corresponding ideal I (the para-
meter v is not present because of our assumption that anq={0}). Then DT’ f=0.
Hence

Dg=D(f~TFf) =D<f— 3 TFf),

FCA
and it follows from Lemma 7.3 (i) that Dg extends to a smooth function on X. Moreover,
it has compact support because as mentioned g has bounded support on X .. Thus
DgeC>®(X:7). Let DgeD(X) be as in Lemma 4.8. Then Dog=Dy(f—TFf)=0o0n X_,
and hence, since D(X) is commutative, DgDg=0. As Dy is injective we conclude that
Dg=0. Thus g is annihilated by I, and we conclude from Corollary 6.4 that g is real-
analytic on X,. However, we saw that g has bounded support, hence g=0 on X, as
claimed.

From the above it follows that the identity f=).T%f holds on X, for all fe
C°(X,:7). Isolating T% f and applying Lemma 7.3 (ii) for all FGA we obtain that the
identity

(Taflg)=(fIThg) (92)
holds for all f,geC° (X, :7). Hence we conclude from Lemma 9.1 below that (7.2) holds
for F=A. This completes the proof of Theorem 7.2. (I

LEMMA 9.1. Let t be a W-invariant even residue weight. Assume that anq={0}
and that (9.2) holds for all f,geCX(X,:7). Then

K (z:y)" =Ka(y:2) (9-3)

for all x,yeX,.
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Proof. Note that A’=A. We conclude from (9.2), Lemma 6.8 and [9, Lemma 11.3]
that T% g(z)=S% g(z) for all z€X,, geC(X,:7), that is,
/ K (2:9)9(y) dy:/ K (2:2)"g(2) da.
X, X,

Now (9.3) follows by means of [9, Lemma 11.3]. O

10. A product formula for the residue kernels

Fix a subset F'CA and an even and W-invariant residue weight t€ WT(X). Furthermore,
fix an element v€ay, o for which the kernel K (v:2:y) =KL (v:z:y)€End(V;) is regular.
This kernel is real-analytic as function of (z,y) in X, x X. However, as we have seen in
Theorem 7.2 that
Kv:z:y)=K(-v:y:2)" (10.1)
for all z,ye X, , it follows that (z,y)— K (v:z:y) extends real-analytically to (X x X, )U
(X, xX). Let
C,=Span{K(v:-:y)v|yeX,,veV;} CC°(X:T). (10.2)
LEMMA 10.1. The space C, is finite-dimensional and consists of real-analytic
D(G/H)-finite functions.

Proof. Tt was seen below (10.1) that x+— K (v:x:y) is real-analytic on X for yeX,.
The functions in C, are annihilated by a cofinite ideal in D(X) by Lemma 6.3; from this

the finite-dimensionality follows as in [3, Lemma 3.9]. O

LEMMA 10.2. The function (z,y)—K (v:z:y)=K%(v:z:y)€End(V;) extends to a
real-analytic function on X x X. It satisfies (10.1) for all z,yeX.

Proof. For x€ X, veV; we define the linear functional &, ,€C}; by & . (f)=(f(z)|v).
If an element of C, is annihilated by all &, ,, then this element is zero. It follows (by
the finite-dimensionality of C,) that the &, , span C}. Let n=dimC,. Then there exists
a collection (z1,v1), ..., (n,vn) €X, xV, such that the &, ., form a basis for C}. Let
fi, ..., fn be the dual basis for C,,. Then

F=Y (f@y)lv)f;
j=1
for all feC,. In particular,

K(V:x:y)vzz(K(z/:xj:y)v|vj>fj(x) (10.3)

j=1
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for xe X, ye X, and ve€V,. The right-hand side of (10.3) is real-analytic on X x X since
y—K(v:z;:y) and f; are both real-analytic on X.
The identity (10.1) is valid on X x X by continuity. d

Define e(x)=e,(z)eHom(C,, V;), for x€ X, by
e(x)u=u(z); (10.4)

then e is spherical for the 7®1-action of K on Hom(C,,V;)=V,®C}, and it is a real-

analytic function of x.

v

LEMMA 10.3. Assume in addition that vEiay,, and let a Hilbert space structure
(- |-)e, on the finite-dimensional space C, be given. Then there exists a unique endo-

morphism « of C, such that
K:z:y)=e(z)oace(y)” (10.5)

for all x,ye X_. Moreover, « is self-adjoint and bijective.

Proof. Let (x1,v1),..., (Tpn,vp)EX, XV, and fi,..., fn€C, be as in the proof of
Lemma 10.2. Define
Z (FIK(v:-rzj)vj)e, fi(@)

Jj=1

for feC,, x€X,; then afeC, and a€End(C,). Moreover, for z,ye X, veV,,

e(r)ae(y) v=(ae = y)v|K(v:-izi)vi)e, fi(x)

J

n

1

n

:Z<v|e(y)K(y: )i fi(x Z v|K(viy:zj)v;) fi(r)

j=1 j=1

=Y (K (=v:z;:9)v|v)) f;(2);

in the last equality we have used (10.1). Since —v=v, it follows from (10.3) that the
latter expression equals K (v:xz:y)v. This shows (10.5), that is, the existence of a has
been established.

Assume that e(z)efoe(y)*=0 for all z,yeX,, for some operator F€End(C,). By
(10.4) this means that (Soe(y)*)(x)=0 for all z, y, and hence Soe(y)*=0. Taking adjoints
we conclude that e(y)o3*=0 for all y, and hence $*=0 by (10.4). Thus 8=0. The

uniqueness of « follows.
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That « is self-adjoint is an immediate consequence of (10.1) and (10.5), by means of
the uniqueness just established. We have K (v:-:y)v=ae(y)*v, so if a was not surjective,

a contradiction with the definition of C, would arise. Hence the bijectivity of a. d

Remark 10.4. Let F=g in Lemma 10.3. If (v, 8)#0 for all €X then it follows easily
from (5.13) and [9, Lemma 16.14] that ¢— E°(¢:v) is a linear bijection of °C onto C,.
Moreover, if C, is given the Hilbert structure so that this is a unitary isomorphism, then

(5.13) shows that « is the identity operator.

Remark 10.5. Let F=A and assume that aaq={0}. In this case we denote the space
C, defined in (10.2) by Ca. It will be shown in [13] that Ca is contained in L?(X:7)
(as the discrete series). It will then be natural to use for (- |-)¢, in Lemma 10.3 the
inherited Hilbert structure. Then e is square integrable on X, and it follows from (10.5)
that Ki (z:y)=e(x)oaoce(y)* is the kernel of an integral operator on L?(X:7). It is easily
seen from the definition (10.4) of e that this integral operator is the orthogonal projection
onto Ca followed by «. However, it will also be shown in [13] that Ta is the restriction
to C2°(X:7) of the orthogonal projection of L?(X:7) onto Ca; by (5.10) this orthogonal
projection is the integral operator with kernel |W|K (z:y). We conclude that with the

present choice of Hilbert structure on Ca then « is |W|~! times the identity operator.

For F#A the product formula for K (v:2:y)=K%(v:2:y) obtained in Lemma 10.3
has the drawback that its dependence on v is obscure. Moreover, it is only valid under
the assumption that v€iaf,. We shall now give a different construction of a product
formula which does not have these disadvantages.

Fix FCA and vefW (see §8), and let K(m:m')=K@(Xg,:m:m'), m,m'€ Xp.,
be the analog for X, of the kernel K\ on X. Using the symmetry of this kernel we
have (cf. (10.1), (6.3))

K(m:m')= Y Res) "[E°(Xpy:—-m)e B (Xpy:—-:m)] (10.6)
MNeA(XFp,o, F)

for meXp ., m'€Xp, . Let the space Cr,, CC®(XF,:7) be defined as (10.2), but for
K(m:m'), that is,

Cry=Span{K (-:m')vg|m'€ Xpp , v0€V;}; (10.7)

it is thus the analog for Xp, of the space Ca discussed in Remark 10.5. Let Y €Cry;
then

w(m):ZK(m:mj)vj (10.8)

j=1
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for some pairs (m;,v;) € Xp,, . X Vr. Equivalently

p(m)= > Res"[E'(Xpy:—-:m)®(-)] (10.9)
ANEA(X v, F)
where
k
®(\)=> E1(Xpy:—Aim;)v; € Cry, A€afc (10.10)
j=1

Let v be a generic element in aj,,c and consider the V;-valued function on X given by

z— Y Res[E°(v—-:1)eip, @(-)]; (10.11)
)\EA(XFA,,F)

this function clearly belongs to C*°(X:7) and depends meromorphically on VEAp,c
(cf. Lemma B.5).

LEMMA 10.6. The expression in (10.11) is independent of the choice of the pairs
(mj,v;) that represent v in (10.8). It depends linearly on Y€ Cr,. Moreover, it remains
unchanged if we replace the set of summation A(Xp,, F') by any finite subset of a}t
containing A(Xp., F).

Proof. For the first statement it suffices to prove that (10.11) represents the trivial

function if ¥=0. The latter assumption amounts to

> Res" B (Xpyi—-im)®(+)] =0 (10.12)
A€EA
for all me Xp,,, where A=A(Xp,, F).
We shall now apply the induction of relations of Appendix B. We define a Laurent
functional £1€ M(a55c: BF)jaur bY

E
laur

‘Cl(w):ZRes)\Py*t 50(7')7 @GM(C‘*FJ&C7EF)'
AEA

Applying Theorem B.6 with £53=0 and ¢, (v+A)=P(—\) for generic /\Ea}éc, VEL,co
we conclude that

> Res" B (v— - 12)oip, O()] =0 (10.13)

AEA
for all z€ X,. By continuity, (10.13) holds for all z€ X. Thus indeed (10.11) represents
the trivial function if ¥=0.

Let ¢p=a/¢'+a'"y", where o/, o €C, ¢/, €Cp,, and let ¢, 1" be represented as

in (10.8) with pairs (m/;,v’);=1,. & and (m!,v?);=1, r~, respectively. Then ¢ is repre-

7777 7770

sented by (10.8) with k=k"+k", (m;,v;)=(m}, a'v}) for j=1,... k', and (mpry;, vk 4;)=
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(m},a"v]) for j=1,...,k". The corresponding functions ®, ' and " in (10.10) are then
related by @=a/®'+ " ®”, and the similar relation then holds for the functions in (10.11).
This proves the linear dependence of (10.11) on ).

To establish the final claim we must prove that (10.13) holds whenever ACa}t is
finite and disjoint from A(Xg,, F'). This follows by the same argument as above; indeed
(10.12) holds for such sets A since all its terms vanish by the definition of A(Xp., F)

(see (8.7) and the proof of Lemma 7.5). O

Definition 10.7. We denote by E  (v:z)€Hom(Cr,V;) the operator that takes
Y€Cr,y to the element of V. given by (10.11). The functions Ey (v :v):=FEp (V)Y€
C>*(X:7), for Y€CF, and generic v€a}, o, are called generalized Eisenstein integrals.
Furthermore, we define the finite-dimensional vector space Cr as the formal direct sum

CF = @ CF,m
vefw

and we define Ey(v:z)eHom(Cp, V;) by

Ep(v:a)y= ) Ep,(v:a)p,
veFW
for =3 cry Yo €Cp. The functions By (¢:v):=Ep(v)peC>®(X:T1), »€Cp, are also

called generalized Eisenstein integrals.

The generalized Eisenstein integral Ep(¢:v:x) depends meromorphically on the
parameter veap, . Notice that for F=9 we obtain, by application of Remark 5.2 to
the symmetric space M/MNvHv ™!, that Cy ,=C>(M/MNvHv 1 :7)). Hence Cx=°C
(cf. (8.1)). Moreover, in this case the generalized Eisenstein integral E (¢ :v) coincides
with the normalized Eisenstein integral E°(¢:v).

Arguing as in the proof of Lemma 6.3 we see that Ep(v: ) is annihilated by an ideal
of finite codimension in D(G/H) (the product over ve W, Ae A(Xp ., F) and i=1,....,m
of the ideals (I; ,_»)*CD(G/H) for k sufficiently large).

Both factors E°(-:x) and EY(Xp,:-:m;) in (10.11) allow suitable estimates. It
follows that the generalized Eisenstein integral Ep(¢:v:z) allows an estimate of the
following form. Let X, (F') denote the set of non-zero restrictions to arq of roots from X,
and define the set Ily, () r(arq) of polynomials on 0pqc similarly as the set IIg r was
defined in §3.

LEMMA 10.8. Let wCap, be compact. There exists a polynomial p€lls, (p),r(arg),
for every ueU(g) a number NEN, and for every x€X, Y€Cp, a constant C such that

lp(v) Ep (4 v :us2)| < C(1+ )Y

for all vEw+iay,. The constant C' can be chosen locally uniformly in x.



FOURIER INVERSION ON A REDUCTIVE SYMMETRIC SPACE 61

Proof. This follows from the estimates in Lemmas 4.1, 4.3 and [11, Lemma 1.11]. O

We fix a Hilbert space structure on Cp, for each ve®'W, and equip Cr with the

direct sum Hilbert space structure. Let
Eir(v:z)=FE,(—v:2)* € Hom(V,,Cr).

For each ve W, let ap, €End(Cr,) denote the operator given by Lemma 10.3 for the
kernel K} (Xp,:m:m’) for Xp, and the given Hilbert structure on Cp,,, and let ap€
End(Cr) be given by [apth],=ap, 1, for vefW.

ProprosSITION 10.9. Let x€X,, ye€X. Then

En(v:z)eap-En(V1y)

=3 Resf\jfu}q< ST B (vt ra)oBR (0 + .:y)> (), (10.14)
AEA(F) seWF
as an identity between meromorphic functions in v,V € Upqc- In particular,
Ep(v:z)eapoEn(v:y)=Kh(v:z:y). (10.15)

We remark that by application of Remark 10.5 to each of the symmetric spaces X,
it follows (from results to be seen in [13]) that Cr can be equipped with a natural Hilbert
space structure with respect to which ap is a constant times the identity operator.

Proof. Let veW. For me X, we denote by e(Xp,:m) the linear map Cp,—V;
given by evaluation at m; this is the analog of (10.4) for Xr,. By the definition of ap,
we have

*

Ki(Xpy:m:m')=e(Xpy:m)oap,oe(Xp,:m')

for meXp .y, m'€Xp, . Thus, for vo€V;,
KA (Xpy:m:m vy =[apy,oe(Xpy,:m') vl (m). (10.16)

Let ¢(m)=[apyoe(Xr,:m')*vo](m). Then (10.16) is an expression for ¢ of the form
(10.8). The function ® in (10.10) is then given by ®(\)=FE%(Xp,:—A:m')vo. By the
definition of £y, (v':y) (cf. (10.11)) we then obtain

EIO7','U(V/: y)anﬂ)Oe(XF’vim/)*

— Y R/ B (W= iy)eipg o Bl (Xpyi—m)]  (1017)
)\EA(XF,U,F)
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for yeX, v'e apqc- Recall from Lemma 10.6 that the above expression remains un-
changed if we replace in it A(Xp,, F') by a larger finite set A; as in the proof of Propo-
sition 8.2 we take as A the set given by (8.8).

For the moment, we fix a generic element v'€af,q; we insert —o’ for v/ in (10.17).
Taking adjoints as in the proof of Lemma 6.5 and applying the resulting operator to an

arbitrary vector a€V; we obtain (recall from Lemma 10.3 that ap,, is self-adjoint)
e(XF’va/)OCkF’,UOE;’y(V/Z y)a
= Z Reszp’*t[E+(XF7v coom')oprp o B (V' 41 y)al. (10.18)
AEA
On the left-hand side of this equation we have the element « F,UOEEU(V/ :y)a from Cp,

evaluated at m'€ Xp,, ,. By the definition of the space Cg, (cf. (10.9)) this evaluated

element has the form
[aro B, (V' y)al(m')

k

= Y Res" [E°(XFW = eim)e Y BN (Xpy i — - imy)v; (10.19)
AeA(X k0, F) j=1

for some my, ...,mp€Xp, , and vy, ..., v, €V, (depending on v, v/, y, a). In particular, we

have an identity between the right-hand sides of (10.18) and (10.19), for all m'e Xp,, ..

To this identity we shall now apply the induction of relations of Appendix B. Let the

Laurent functionals L4, EQEM(a}ngC, Yr)f,, be defined by

laur

Lip= > Res) "(p(—-)), Lap=> Res"(¢)

NEA(Xp.y, F) AeA

for @EM(a}éC,EF). Moreover, let ¢1,¢2€M(GEC,EF)®OCF7U be the meromorphic
functions defined by

k
P1(v+A) :ZEi(XF,U:)\:mj)vj, P2(v+A) =prp oL (V' +A:y)a

j=1

for generic /\Ea*FéC and v€ag, -
Applying Theorem B.6 to the identity between the right-hand sides of (10.18) and
(10.19), with £, L, ¢1, P2 as above, we conclude that

Z Reszp’*t[ Z E. (vt :x)oipyoprp, o B (V4 - :y)a}
A€EA seWr
k
= Z Reszp’*t {Eo(y—-:x)oiF7voZEi(XF7v:—.:mj)vj}

NEA(X py, F) j=1
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for all z€ X, and generic v€ap,c. On the other hand, by the definition (10.11) of
E% ,(v:z), it follows from (10.19) that

Ep,(v:x)lory-Ef, (v y)d]

k
= Z Res, """ |:EO(Z/—'Z.T)OiF,UOZEj;(XF,U:_':mj)'Uj:|;
AEA(XF,v, F) Jj=1

and so we conclude that

Z Resj\P’*t [ Z E, s(v+-:x)eipyoprp, o B (V' 4 y)]
AEA seWF
:E;,U(V:x)an,UOE;‘,U(V/: y)

In this latter expression we may replace the residue operators Res;P’*t by Resffa}q (cf.
(8.5)), and we may shrink the set of summation to A(F), since the extra terms vanish,
by the definition (5.5) of the latter set (see the proof of Lemma 7.5). Summing over
veW (cf. (8.4)), we finally obtain (10.14). The expression (10.15) is obtained by taking

v=v'. O
We can now sharpen the estimate for K% in Lemma 5.1 so that it is valid on X x X.

COROLLARY 10.10. Assume that wCap, is compact. Then there exists a polynomial
q€lly, (r),r(aFq) On @p,c, for every u,u’'€U(g) a number NEN, and for every z,y€ X
a constant C'>0 such that

lg) K (v:us 22’ y) | < C (L)Y

for all vew+iay,. The constant C' can be chosen locally uniformly in x and y.
Proof. Immediate from (10.15) and Lemma 10.8. O

COROLLARY 10.11. Let te WT(X) be even and W -invariant, and let FCA. Then
Tt f extends to a smooth function on X for every feC®(X:7). Moreover, fr>Tt f
is a continuous operator from C(X:7) to C°(X:7). Finally, if F' is defined as in
Lemma 7.3 (ii), then (T%f|g)=(f|T% g) for all f,geC>(X:T).

Proof. Tt follows from Corollary 10.10 in the same manner as [9, Proposition 8.3] that
(5.9) holds for ze X, feC(X: ), with similar uniformity as stated in Lemma 5.1. Then
(5.10) shows that T% f extends. The final statement now follows from Lemma 7.3 (ii) by

continuity. (I



64 E.P. VAN DEN BAN AND H. SCHLICHTKRULL

11. Application: The Plancherel formula
for one conjugacy class of Cartan subspaces

Recall that the reductive symmetric space is said to have one conjugacy class of Cartan

subspaces if all the Cartan subspaces of q are conjugate under H.

LEMMA 11.1. If X has one conjugacy class of Cartan subspaces then so has Xp,,
for every FCA and v€ Nk (ay).

Proof. We first notice that X, has only one conjugacy class of Cartan subspaces
if and only if the same holds for X . Indeed, conjugation by v provides a bijection from
the set of Cartan subspaces for Xr to the set of Cartan subspaces for Xg,. We may
therefore assume that v=e.

Let bCq be a Cartan subspace with ag=bNp. Then b is f-invariant and maximally
split. It is also a Cartan subspace for the pair (m;p, m;pNh) (where myp=mp+ap). Let
b’ be an arbitrary Cartan subspace for this pair; it is sufficient to prove that b’ is conjugate
to b under MpNH. Moreover, we may assume that b’ is f-invariant. Since b’ has the
same dimension as b and is contained in g, it is a Cartan subspace for (g, h), and therefore
it is conjugate to b under H. It follows that b’ is a maximally split Cartan subspace
for (g,h), by conjugacy. Thus, b and b’ are also maximally split Cartan subspaces for

(m1p, mypNh); from this it follows that they are conjugate under MpNH. O

In what follows we assume that G is linear, in order to be able to apply [25, Theorem)]
(see, however, [25, p. 388, (i)]).

LEMMA 11.2. If X is not compact and has one conjugacy class of Cartan subspaces

then the discrete series for X is empty.

Proof. If the discrete series is not empty there is a compact Cartan subspace ac-
cording to [25, Theorem]. If all Cartan subspaces are conjugate this would then imply

that all Cartan subspaces are compact, which is only possible if X is compact. O

THEOREM 11.3. If X has one conjugacy class of Cartan subspaces then Kt=0 for
all F#@. Moreover, in that case,

JF=I. (11.1)

Proof. The proof of the first statement is by induction on the rank of 3. The second
statement, the identity (11.1), is an immediate consequence, in view of Theorem 7.1.
Assume that the first statement is true for all reductive symmetric spaces for which the
corresponding root system has lower rank than . Let FCA, F#2, A, and consider the

generalized Eisenstein integral as defined in Definition 10.7. The induction hypothesis
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implies that the kernel K (m:m’) in (10.6) vanishes. Hence Cr,={0} for all ve W¥' and
it follows from (10.15) that K% =0. As an immediate consequence we have T% =0.

It remains to prove that K4 =0 if A#@. By (9.1) we may assume that Axq={0}.
By the inversion formula (Theorem 7.1) and (5.12) we have T% f=f—JFf for all fe
C°(X:71), and hence T f belongs to the Schwartz space of X (cf. [7, Theorem 1]).
However, as T f is annihilated by a cofinite ideal in D(G/H) (cf. Lemma 6.3) it then
follows that T% f belongs to the discrete part of L?(G/H)®V, (since it generates a
subrepresentation of finite length). Now T% =0 by Lemma 11.2, and it follows from
(5.10) that K% =0. O

12. Application: The Fourier transform of rapidly decreasing functions

The Fourier transform F is injective when defined on C°(X:7) (cf. Theorem 2.1). On
the other hand, its extension to the L?-type Schwartz space C(X:7) (see [9, §6]) will
in general not be injective because of the possible presence of non-trivial discrete or
intermediate series. In this section we extend the injectivity to a certain function space
S(X:7) that lies between C°(X:7) and C(X:7). We also extend our Fourier inversion
formula to this space.

Let ||-|| be the function on X defined by ||kaH|=el8?l for ke K, acA,; then
|z|| >1. We define || f|,=sup,cx ||z]|~"|f(z)| for reR, feC(X). The space

Cr(X)={feCX)[If]l» <oo}

is a Banach space, invariant under the left regular representation of G. The Fréchet

space of smooth vectors for this representation is given by
CR(X) ={feC™(X) | f(u;-) € C(X), Vue U(g)}

with the continuous seminorms f—uv,,(f):=|f(u;-)|lr, u€U(g). Clearly, C(X)C

c

C2°(X) with continuous inclusion. We define

S(X)= N CF(X)
reR
and provide this space with the seminorms v, ,, u€U(g), reR. It follows easily that
S(X) is a Fréchet space, and that the inclusion map C°(X)—S(X) is continuous. Fol-
lowing [29, 7.1.2] we call S(X) the space of rapidly decreasing functions on X.
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LEMMA 12.1. The subspace C°(X) is dense in S(X).

Proof. We shall prove the following statement, from which the density in S(X)
immediately follows. Let feC°(X). There exists a sequence f,€C°(X) with the
following property. Let 7€R and assume that feCp°(X). Then f,—f in C2,(X) for
all s>0.

Let {44} CC2°(X), t>0, be as in [3, Lemma 2.2] for some e >0. Fix s>0and ue U(g).
We have 1y (z)=1 for ||z||<e’ and sup,¢x ;0 [¢¢(u; )| <co. Hence

Vus(Ye—1)= sup ||zf|7*|(¢—1)(u; )| < Ce™™.
|| et
We conclude that ¢;—1 in C*(X) as t—oo. Let f,=v¢,feC>®(X). The proof is
now completed by the observation that pointwise multiplication is continuous from
CR(X)x O (X) to C5%,.(X). The latter is readily seen from the Leibniz rule. O

In [21, p. 134] the term zero Schwartz space is used for S(X) because it is the
intersection of the LP-type Schwartz spaces CP(X), p>0. Let C,.(X:7), C°(X:7) and
S(X:7) denote corresponding spaces of T-spherical functions. Then

SX:m)= [ C*(X:7),
reR

and we have the continuous inclusions
CE(X:T)CcS(X:T)CC(X:T).

LEMMA 12.2. Let RER, let p be as in Proposition 3.1 and let wCaj (P, R) be open
and bounded. There exists r€R such that the integral (2.4) that defines the Fourier
transform F f(\) converges for all fe€C.(X:7) and generic N€w+ia;. The Fourier
transform is a meromorphic °C-valued function of X, and there exist constants NeN
and C>0 such that

P ) F L)< CA+ADYIFl- (12.1)
Jor all Aew+iag, feC.(X:1). Moreover, for each n€N there exists a continuous semi-

norm v on C°(X) such that
[P F < A+AD ™" (f) (12.2)
for all Aew+iag, fECT(X:T).

Proof. We note that the estimate of the normalized Eisenstein integral stated in
Lemma 4.3 can be sharpened as follows, by the same references as given in the proof.
There exists ro€R and for every u€U(g) an integer N >0 such that

sup  (1+|A) N[z 7o RN p(A) B (A u; )| < oo (12.3)
reX

Ae€a (P, R)
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We take u=1. Then, for all reR,
IPNFFOI=| [ sV E" (o) f@) da| < O AL [l e

where C is the supremum in (12.3). Since ||z||~™ is integrable on X for m sufficiently
large (cf. [9, equation (3.1)]), we have [y [|z]|"0FReA+dr<oo for —r sufficiently large.
The statements up to and including (12.1) follow. The statement concerning (12.2) is
obtained from (12.1) in the same manner as [9, Proposition 8.3]. O

It follows from Lemma 12.2 that for all generic n€ay there exists a real number 7
such that the Fourier transform Ff is defined and meromorphic in a neighborhood of
n-+ia; for all f€C,(X:7). It then follows from (12.2) and Lemma 4.2 that 7, F f is well
defined and belongs to C*°(X, :7) for all feC°(X:7). Moreover, the map f—7,Ff is
a continuous linear operator from C2°(X:7) to C°(X, :7) (cf. (12.2) and (4.2)).

PROPOSITION 12.3. Let R<0 be such that w(\)#0 for all A€a’(P,R), and let
nea;(P,R). There exists r€R such that if feCX(X:7) and Ff=0 on n+ial, then
f=0.

Proof. For feC®(X:7) we have T, F f=T F f, by the definition of the pseudo-wave
packet 7F f, and hence 7, F f=f on X, by Theorem 4.7.

Let w be a bounded neighborhood of 7 and let r€R. be as in Lemma 12.2. Let r'<r.
Then for feCx(X:7) there exists, according to the proof of Lemma 12.1, a sequence
frn€CX(X:7) such that f,—f in C°(X:7). Since 7, F f,=f, on X, we conclude by
continuity that

T,Ff=f (12.4)
for feCP(X:7). In particular, if Ff=0 on n+ia; then f=0. d

LEMMA 12.4. The integral (2.4) that defines the Fourier transform F f(\) converges
for all feS(X:7) and generic A€aq; it is a meromorphic °C-valued function of .

Moreover, let RER and let p be as in Proposition 3.1. Then for each compact set

wCai(P, R) and each n€N there exists a continuous seminorm v on S(X:7) such that
PN FF < A+A) v (f)
for all New+iay, fE€S(X:T).
Proof. This is immediate from Lemma 12.2. O

In particular, F f belongs to the space P(aj, H)®°C (see §5) for all f€S(X:7), and
if P(a,H) is topologized as in [11, §1.5], then the final estimate in Lemma 12.4 amounts
to the continuity of the map F:S(X:7)—P(a;, H)®°C. The following theorem is an

immediate consequence of Proposition 12.3.
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THEOREM 12.5. The map F:S(X:7)—P(a;, H)®°C is injective.

We can also write down the inversion formula for the Fourier transform on S(X:7).
The function 7, F f€C> (X, :7) is defined for all f€S(X:7) and all generic n€a; by the
remarks preceding Proposition 12.3. As usual we define the pseudo-wave packet 7F f as
T, F f for n sufficiently antidominant; it is independent of by Lemma 4.2. Then (12.4)

implies the following.
THEOREM 12.6. Let f€S(X:7). Then TF f(x)=f(x) for all z€X, .

The space S(X) is contained in L?(X), and hence the L?-Fourier transform § defined
in [9, §18] can be applied to functions in S(X). Recall that § is defined by continuous
extension of the map feC(X)— f(&,\)eL3(K:£)QV (€)*, where f(£,)) is defined in
[9, §4], for §€J\/I\ r and generic A€aj;g. In [9, Theorem 15.5] we saw that the injectivity
of the 7-spherical Fourier transform F on C°(X:7) for all 7 implies injectivity of § on

Cg°(X). The same proof applies to S(X), and we conclude:
COROLLARY 12.7. Let feS(X). If §f=0 then f=0.

Notice that in the case of a group considered as a symmetric space the injectivity
of the Fourier transform on S(X) (as well as on C¢°(X)) is a consequence of Harish-
Chandra’s subquotient theorem together with the abstract Plancherel formula. There
exists a generalized subquotient (in fact, subrepresentation) theorem for reductive sym-
metric spaces (see [17, Theorem 1]), but it does not allow one to conclude similarly
the injectivity, because in general, for special values of A, there are H-fixed distribution
vectors in the o-minimal principal series other than those used to define the Fourier

transform.

Appendix A. On the functional equation for spherical distributions

The purpose of this appendix is to give a proof of Lemma 3.2. If it were not for the
assertion that the polynomial p is real, this lemma would be an immediate consequence
of [5, Theorem 9.1]. The additional assertion can be derived from [26, Theorem 11.4] if
it is assumed that the identity component of G is linear (which is a general assumption
in [26]). In order to cover the generality of the present paper, and for convenience, a proof
based on [5] is given below. We shall follow the proof of [5, Theorem 9.1], and indicate
where the arguments have to be sharpened in order to obtain the extra assertion. In
particular, we use in this appendix the notation from [5].

Let SCa?\{0} be as in [5, §7]. There it is stated that SCa g, but it is obvious that
one can take SCay. In [5, p. 356] the concept of S-polynomial growth of a function on



FOURIER INVERSION ON A REDUCTIVE SYMMETRIC SPACE 69

alc is defined for finite sets SCa’c\{0}. If SCaj we define (S, R)-polynomial growth
similarly, but with IIg g instead of Ilg. We shall establish Lemma 3.2 by means of the fol-
lowing Theorem A.1, which improves the functional equation for j(£:\), [5, Theorem 9.3],
exactly in the way needed. Let (m, F') be a finite-dimensional irreducible representation
of G that is both K-spherical and H-spherical (i.e., it has both a non-trivial K-fixed
vector and a non-trivial H-fixed vector). Then this representation has a lowest weight
peal (with respect to P), which belongs to the set A(aq) (see [5, p. 354]).
Let €€ My (:M\ps in the notation of [5]). In [5, p. 365] a differential operator
D, (§:N):CTF(P:&: A +pu) = C™(P:£:N)

is defined for generic A€alq, and it is asserted in [5, Lemma 9.2] that the map A
q(A) D, (§:A) is polynomial on a’ for a suitable g€llg(ay). Going through the proof
of the cited lemma one sees that ¢ can be taken in IIg r(aq), if the polynomial ¢ in
[5, Proposition 8.3] can be taken from IIg g (aq). The latter polynomial is constructed by
means of [5, Lemma 7.2], in which ¢ can be taken from Ilg g (aq) provided 71,72 belong
to the real span of X(g,j). In the application of [5, Lemma 7.2] on [5, p. 361] we do have
this property of 11,72, and hence indeed we see that we can take g€Ilg r(aq) in both
[5, Proposition 8.3] and [5, Lemma 9.2].

THEOREM A.1. There exists a rational End(V (£))-valued function A—R,,(£:X) on
asc of (S,R)-polynomial growth such that
J(P:&:A) = Du(§:A)oj(P:&: A4 p)oRy(E: A).
Before giving the proof of Theorem A.1 we notice that based on it and the pre-
vious remark about [5, Lemma 9.2] we can repeat the proof of [5, Theorem 9.1] and

obtain (X, R)-polynomial growth in the latter result. Thus Lemma 3.2 follows from
Theorem A.1.

Proof. The proof of [5, Theorem 9.3] is given on [5, p. 369]. For the improvement
asserted in Theorem A.1 we must establish that the polynomials ¢ in [5, Lemma 9.9] and
¢1,¢2 in [5, Proposition 9.11] can be taken in IIg g (a,). We have already seen that this
is the case for ¢, and we thus turn to the proof of [5, Proposition 9.11], which is based
on [5, Lemma 9.13]. The latter result can be improved as in the following Lemma A.2.
The claimed improvement of [5, Proposition 9.11], that g1, ¢2€Ilg r(ay), then follows
immediately as on [5, p. 372]. O

Let QP and assume that p€A(aq) is Q-dominant. Let
¢M(QI£)I aZC - End(V(& 1))

be the rational function in [5, Lemma 9.13]. Its exact definition will be recalled in the

following proof.
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LEMMA A.2. There exist polynomials ¢i1,q2€lly r(aq) and a constant c#0 such
that

e CI1()\)
wu(Q.ﬁ-/\)—ch\/(f,l) (A1)

for Aeajc.

Remark. The rational function ¢ /gs is in fact determined explicitly in the following
proof. It is given by an equation that involves Harish-Chandra’s c-function for the
Riemannian form G4/ K? of G/H, cf. Lemma A.5 and (A.9).

Proof. We first recall how ¢,(Q: ) is defined. Let H¢y denote the space H, equipped
with the representation {®A®1 of @, and consider the G-equivariant map

T,,: C~(Q: &: \)@F — C~° Ind§(Her® Flg)

determined by
T, (f@0)(x) = f(@)om(z)o.

On the level of K-finite vectors, T}, is an isomorphism (see [5, p. 359], where the map
is denoted ¢y). Let p,(Q:&:)\) denote the endomorphism of C~°(Q:£{:\)®F given
by projection along the infinitesimal character A+A+pu (where A is the infinitesimal
character of ), cf. [5, Proposition 8.3]. We refer to [5, p. 361] for the definitions of
b(Z,\)€C and D(Z,\)€Z(g) for Z€ Z(g), A€a;c. Both objects depend polynomially
on A, and there exists Z€ Z(g) such that b(Z,-) is not the zero polynomial. Then

pa(Q:€:2) =b(Z,\) ! [ndg(E@rx1)@m|(D(Z,A)), (A.2)

cf. [5, p. 362]. In particular, we see that p,(Q:£:)) acts as a differential operator.
It follows from [5, p. 370, below (75)] that T, maps the image of p,(Q:§: ) into the
subspace C~*° Indg(H@\Q@FN) of C—° Indg (Hea®F|q). Here F, is the one-dimensional
subspace in F of vectors of weight p; it carries the representation 1®@u®1 of @ (cf.
[5, Proposition 5.5]).

Fix a non-zero vector e, in F},. Then there is a natural G-equivariant isomorphism
Su:C™(Q:&: A +p) = C~* IndG(HA® F);
the image of feC™>°(Q:£: A+u) is the generalized function
Suf(z) = f(z)®e,

on G. Conversely, let e* € F* be the (unique) vector of weight — such that e* ,(e,)=1.
Then testing with e* , on the second component of H¢ ® F' induces a G-equivariant linear
map

t,: C~° Indg(Hex®@F|q) — C~(Q: E: A +p), (A.3)
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whose restriction to C~* Indg(Hg A®F),) is the inverse of S,,. We define

Ty =1,°T,:C™(Q:£: N)QF - C™(Q:&: A +p).
Let ey € F be a non-zero H-fixed vector, then

Tulpu(Q:€: M) ((Q:E: N n®@en) € C2(Q: E: A+ )"

for all neV (), by equivariance of p,(Q:§:A) and TVM. We define the endomorphism

Du(Q:€:0) of V(€) by
Du(Q: &N n=ev(T,[pu(Q: €: X)(H(Q: : N n@ep)])

where

ev: O™ (Q: & M) =V (€)

is the evaluation map. Since by definition j(Q:&:A4p) is the inverse to ev, and since
Tyopu(Q:€:\) maps into C~>° Indg(Hg,\@)Fu), on which S,,ot,,=1, we have, equivalently,
that 1), (Q:£:\) is determined by

T pu(Q: &N ((Q:E: N n®en)] = Su[i(Q: £ A+ 1) (Q: £: N7 (A4)

for neV(£). Note that @H(Q:f:/\) maps each component V (£, w) of V(&) to itself, since
pu(Q:€:X) as well as fu are support-preserving maps. The map 1, (Q:§) in (A.1) is the
restriction of ’(;N(Qtf) to V(&,1).

In the following it will be convenient to have some of the above-mentioned notions
from [5, §8] available in a slightly more general setting. In [5, §8] it is assumed that
the finite-dimensional irreducible representation £ of M is unitary and has a non-trivial
vector fixed by w(MNH)w™! for some weW. Moreover, the linear form A on a, is
extended to a linear form on a with trivial restriction to a, =anh. It is these assumptions
on the representation £E®A®1 of @ that we temporarily want to relax. It will also
be convenient to deal with the o-Langlands decomposition Q=M,AqN, instead of the
ordinary Langlands decomposition Q=MAN. We recall that M,=MA; where A,=
exp a,. We assume that (£, H¢) is a finite-dimensional irreducible representation of M,,
the infinitesimal character A of which is real with respect to the roots of j in m, (recall
that j is a Cartan subalgebra of g, defined as below [5, Corollary 5.3]). For A€a; s we then
consider the representation £@A®1 of Q=M, AN, and we use the notation C(Q:§: )
for the underlying space of the normally induced representation Indg(f ®RA®1).

The maps T}, Tvu and S, make sense in this generality. It is seen as in [5, Proposi-
tion 8.1] that T}, maps p,(Q:&:A)(C(Q:£:\) k ®F) bijectively onto the space of K-finite
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vectors in Indg (Hea®F),), and hence its composition TVN with (A.3) restricts to an iso-
morphism

T ppu(Q:E: M) (C(Q:E: Nk OF) S C(Q: € M) i

for S-generic A€ajq

The definitions of b(Z, A) and D(Z, A) immediately generalize to the present setting,
and the analogue of [5, Lemma 8.4] holds; it states that (A.2) holds on the K-finite level,
for S-generic A€agc.

Before giving the proof of Lemma A.2 we establish an analogous result, in which

MNK
He

H-fixed vectors are replaced by K-fixed vectors. The space is either trivial or

one-dimensional. At present we assume the latter and define
e(Q:&:N):HIME - C(Q:¢:N)

by
[£(Q: &: \) () (namk) = a2 €(m)¢

for neN, a€Aq, meM,, k€K and (eHMK. Then £(Q:¢:)) is a bijection of HM™K
onto C(Q:&:\)X; its inverse is given by the evaluation at the identity element.

Viewed as a function on G/K, ¢(Q:£:\)( is a joint eigenfunction for D(G/K).
This can be seen by factoring the Harish-Chandra homomorphism D(G/K)—S(ag)
through D(M,/MNK)®S(aq), in analogy with [5, Lemma 4.4]; the function m—§(m)¢
on M,/MNK is a joint eigenfunction for D(M,/MNK) (we recall that ap=jNp is a
Cartan subalgebra for the pair (G, K)). The eigenvalue homomorphism D(G/K)—C is
obtained from the character A1+ on ag, where A; denotes the restriction to agNm, of
the infinitesimal character A of &.

Let ex € F be a non-zero K-fixed vector and let CE’HéVmK. Then for generic A€ag
the function fﬂ[pu(szz)\)(e(Q:f:A)C@eK)] belongs to C(Q:&: A +u)X, and hence its
value at the identity is given by ¢, (Q:£:\)( for some complex scalar ¢,(Q:£:1). In
analogy with (A.4) we obtain

Tulpu(@: € N)(e(Q: €: M) (@er)] = 0u(Q: €:X) Su[e(Q: €: A+ )] (A.5)

LEMMA A.3. There exist polynomials gi1,q2€lly r(aq) and a constant c#0 such

that
Q1(/\

2(A

Proof. Fix Z€ Z(g) such that b(Z,-)#£0, and define an element u)€ Z(g) depending
rationally on A€age by

N

Pu(Q:8:N)=c

(=)

N

ux=b(Z,\)"'D(Z,\).
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The elements of Z(g) act on functions on G by the right regular representation R, and
it follows from (A.2) and (A.5) that

R(ux)(Tule(Q:€: M) C@ex]) = 0u(Q:€:A) Sule(Q: €: A4p)(]. (A.6)

Let e}, be the K-fixed element of F* determined by e (e, )=1. Then testing the ex-

pression on either side of (A.6) with e}, on the second component we obtain
R(ux)[e(Q:€: M) (- )@ei (m(-)er)] = e (p) 0u(Q: €: A) e(Q: E: A1) ¢ (A7)

on G. We now observe that e, (7(-)ey) equals ¢, 4., the elementary spherical function

on G/K determined by the parameter x4+ gg. Moreover, we have
| @ en) k) k= g, (A%)

Indeed, both sides of (A.8) are Héw MK _valued joint eigenfunctions for D(G/K) with the
same parameter A;+ A, and they both take the value ( when x is the identity. Integrating
(A.7) over K we thus obtain

R(ux) [, 2 Put00) = €5 () 0 (Q: §: N) oA, 4 A+ pu-

However, from the asymptotic expansions of the involved functions it follows (see
[28, Theorem 4.5 and Lemma 4.6]) that

c(p+oo)c(Ar+A)
C(A1+)\+M)

R(U/\)[SOA1+/\<PM+QU] = PAL+A 4

where c: ajc— C denotes Harish-Chandra’s c-function associated with the Riemannian

symmetric space G/K. We conclude that

6u(Q: 1) = Ste)eldatd)

~eb(en) (A +A+p) (A.9)

The desired statement now follows from the Gindikin—Karpelevic formula for ¢, cf. also
[28, Corollary 4.7]. O

We shall now translate (A.5) into an algebraic statement that will be used in the
proof of Lemma A.2.

Let C, denote C equipped with the structure of a U(m+a-+n)-module defined by
0=0¢ on a and the trivial action on m+n. Note that since () is of-stable, then so is g,
that is, it vanishes on a,. Given a finite-dimensional U(m+a+n)-module V' we shall

write

Hompy 40 (U(g), V)
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for the space of (m+a+n)-homomorphisms U(g)—V; here U(g) is viewed as a right
U(m+a+n)-module. Moreover, we define the U(g)-module

Ig(v) :=Homup a0 (U(g), V®Cg),

where the module structure is determined by

with u— the principal antiautomorphism of U(g).

We now consider a finite-dimensional representation (4, Vs) of Q. We shall then
also use the notation Ig(V;) for the U(g)-module defined as above by means of the
U(m+a-+n)-module structure on Vj that arises from 6. On the other hand, we consider
the normally induced representation Indg(é). The underlying representation space con-
sists of the space C'(Q: ) of continuous functions G—Vj, transforming according to the
rule

f(manx)=a®d(man) f(z), mane@,z€q.

We define Cg (Q:9) to be the space of germs along @ of Vs-valued real-analytic functions,
defined, and satisfying the above transformation rule, for = in some left -invariant neigh-
borhood of e. Via differentiation from the right we equip this space with the structure
of a U(g)-module. Note that taking germs along @ induces a natural U(g)-equivariant
embedding

C(Q:90)k — C5(Q:0).
Given feCy(Q:6), we define the map ¢(f): U(g)—V5;@C, by

We view «(f) as the power series of f at e. One readily verifies that ¢ is an equivariant
embedding of the U(g)-module C¢(Q:0) into Ig(%).

It is readily seen that Z(g) acts globally finitely on Ig(V};). Given Ag€j§& we denote
by pa, the projection in Ig(‘/:;) onto the generalized eigenspace for Z(g) determined by
the infinitesimal character Ag.

Fix (eH}'" and denote by &k ()) the unique E-invariant element of IS(HEA®F\Q)
determined by £x(A)(1)=(®ex ®1. Similarly, we denote by £,()) the unique €-invariant
element of Ig(HE)\QQF#) determined by £,(A)(1)=(®e, ®1. Then one readily sees that

e (N = UTLE(@Q: €0 CBex]). £u(N) = Sue(Q:€: A+ ). (A.10)
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LEMMA A.4. For generic A€a;c we have the following identity in Ig(H5A®F|Q):
PA+X+p [éK()‘)] = ¢M(Q3 §: )\) 5#0‘)'

Proof. Since ¢ and T}, are U(g)-equivariant maps we obtain from (A.10) that

PataulEx (M) = e(Tu[pu(Q: €:A)(e(Q: £: A)(®ek)]).

Applying (A.5) and (A.10) we obtain the desired identity. a

We now return to our original assumption on (§, H¢), that it belongs to M, . Our
goal is to give the proof of Lemma A.2. For this we may as well assume that V(£,1)=
'Héw NH (), otherwise there is nothing to prove. Since M is of Harish-Chandra’s class,
the representation £ has an infinitesimal character. This implies that the m-module H,
is a multiple of an irreducible representation, which we denote by (£o, He,). It follows
that we may assume that

He =He , QF,

with E a finite-dimensional complex linear space, and such that
EX)=&(X)®I, Xem.

From the fact that Hé\/f NH£() it follows that & possesses a non-trivial mNp-invariant

vector. The space Hgm’ is one-dimensional, and moreover,
MNH mnNb
He CHe, ®F.

Let g, and g_ denote the (+1)- and (—1)-eigenspaces for the involution o6, respec-
tively. Then g?:=g, @ig_ is a real form of the complexification gc of g. It is called the
dual real form of g. We denote the complex linear extensions of o and 6 to gc by oc
and fc, respectively. Let o and #? denote the restrictions to g? of fc and oc, respec-
tively. Then 6¢ is a Cartan involution of g, and ¢ is an involution of g¢ that commutes
with #%. We have associated eigenspace decompositions g?=t‘@p?=h%®q%. Note that
p?Ng=pNq, and hence ctg::aq is maximal abelian in p¢Nq?. Note that the root space
decomposition of g¢ relative to a4 is stable under the conjugations determining the real
forms g and g?. Hence £¢, the collection of roots of ag in g, equals 3.

Let G be a connected group of Harish-Chandra’s class with Lie algebra g to which
both involutions #% and ¢? lift. Standard notations introduced in the context of G will
also be used for G¢; a superscript d will indicate that an object originally defined for
G, H, K is defined in exactly the same way, but with (G¢, H? K?) in place of (G, H, K).
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In this spirit, let Affl be the image of ag under exp: g?—G%. Moreover, let Q¢ be the
minimal o%parabolic subgroup containing Ag, determined by the system X* of positive
roots for £¢=¥, and let Qd:MgAgN 4 be its o%Langlands decomposition. This is
compatible with the o-Langlands decomposition of @, in the sense that m¢=m,cNg?
and n=ncNg?.

We extend the representation &, of m in Hg, to a representation &; of ms=m®day
by triviality on ay,. The restriction to m? of the complexification of & is denoted by ¢¢.
The representation £{ is irreducible, and possesses a one-dimensional subspace of vectors
that are annihilated by [m,cNhc]Ng?=miNe?. We fix such a vector (non-trivial) and
denote it (?. Since M? is a group of Harish-Chandra’s class, it follows that ¢ lifts to a
unique M 2N K?-spherical representation, also denoted &¢.

The finite-dimensional irreducible representation (w, F') of G is K-spherical, hence
the associated infinitesimal representation of g in F is irreducible. Let 7¢ denote the
restriction to g¢ of this infinitesimal representation. Then, since 7 is also H-spherical,
7% has a non-trivial £%-fixed vector. Since G? is of Harish-Chandra’s class, the represen-
tation 7 lifts to a unique K“%spherical representation of G% in F¢:=F, which is again

d

denoted by 7. Note that u is an extremal ag—weight of . We assume that p is Q-

dominant; then s is also Q?-dominant. As before we select a non-trivial vector eu:eﬁ in

the weight space F}, of F. Moreover, we select a non-trivial H-fixed vector ey € F'; then
e is K%fixed as well, and we put e?(::eH.

According to Lemma A.4, applied to G, we now have for generic )\Guj‘lczag*c that
Paau(Eic (V) = 0 (QT 1 N) g (V) (A.11)
in the representation space
15 (Heg @ F?| ga) = Hom s atnt (U(gh), Hegr @ F&Cya).

Here Hcay denotes He,, equipped with the U(md +al+n)-module structure £f@A®1.
1 a
Note that U(g?)=U(g) and (m¢+al+n?)c=(m,+aq+1)c; hence, the space in the above

equation equals

IS(H€1>\®F|Q):Homma-i-aq-i-n(U(g)aH£1>\®F®Cg)
=Homu 1440 (U(g), Hepx® F®Cy).

It follows that we have a natural isomorphism of U(g)-modules:
I§(Hex® F|q) =15 (Hea O F% ga) O E; (A.12)

here U(g) acts on the first component of the tensor product on the right-hand side.
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LEMMA A.5. The function 1,(Q:§): ajc—End(V(£,1)) is given by

Vu(Q:E:0) =5 (Q% € N\ Tve 1) (A.13)

Proof. We recall that
V) =1 cHE Mo E=HE "M 9 B=CCOE,

where (¢ is the fixed m?Ne4-invariant vector for £§. For each n€V(&, 1) we have accord-
ingly n=¢%®@ng for a uniquely determined ng € FE.

We consider the germ ~;(A) along @ of the function T),[j(Q:&:\)n®eq], which
restricts to a real-analytic map QH —H¢®@F. Then 71(A\)€Cy Indg(Hg,\®F|Q). Via
the identification (A.12) we may view the associated formal power series ¢t(v1())) as an
element of Igj (Hea @ F4qa)®E; it is t'@ I-invariant, and its value at 1€ U(g?) equals
(d®e§(®1®nE. From this we obtain that

(V) = (N @ne. (A.14)

We consider similarly the germ ~2(\)€CE Indg (Hea®F),) along @ of the function
Sp[7(Q:&: A +p)n]. Its formal power series, viewed as an element of Igj (H5¥A®Fﬁ)®E
is £?® I-invariant, and its value at 1€ U(g?%) equals Cd®eﬁ®1®nE. It follows that

U2 (V) =&5(N) @np. (A.15)
It follows from (A.14) that

toPu (Q:§:) ['71()‘)] :pA+)\+u°L['Yl()‘)} =DPA+A+p [5?(()‘)]®WE»

which by (A.11) and (A.15) equals ¢ (Q?:£{: X) times ¢[y2())]. Since ¢ is an embedding,
it follows that

Pu(Q:&: N[N =64 (Q: &1 : M) (M)
on a neighborhood of e, for generic A€ajs. We conclude that
Tulpu(Q: 6N (G(Q: E: N n@en)] = ¢ (QN: &1 N) Su[(Q: E: A+ )]

on HQ, and comparing this with (A.4) we obtain (A.13). O

Finally, Lemma A.2 follows from Lemmas A.5 and A.3. O
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Appendix B. Induction of relations

In this appendix we recall a result from [12] that is used in §§ 8 and 10. We first introduce
the notion of a Laurent functional and discuss its relation to the previously defined notion
of a Laurent operator. Let V be a real linear space, equipped with a positive definite
inner product (-, ), and let Vo denote its complexification, equipped with the complex
linear extension of the inner product (-,-).

Let X be a (possibly empty) finite set of non-zero elements of V', such that R&; #R&s
for all distinct &1, €2 € X. By an X-hyperplane in V¢ we mean an affine hyperplane of the
form H:a—&—aﬁc, with a€Ve, ageX. Note that ay is uniquely determined in view of
our assumption on X; hence the polynomial function lg: Ve —C, z—(ay,z—a) is also
uniquely determined, and we have H= lﬁl (0). Alocally finite collection of X-hyperplanes
in V¢ is called an X-configuration in V.

If aeV, then we denote the (finite) collection of all X-hyperplanes containing a by
H(a, X). Moreover, we denote by M (a, X) the ring of germs of meromorphic functions
at a whose singular locus at a is contained in the germ of (JH(a, X) at a. By N¥X
we denote the space of functions X —N. For d€N*X we define the polynomial function

Ta,d=Tq, x,d: Vc—C by

maa(2) = [[ (€& 2=a)®, zeVe.
{ex

By O0,=0,(Ve) we denote the ring of germs of holomorphic functions at a. Then

M(a, X)= U W;}i(?a.

deNX

We define the space M(a, X))}, of X-Laurent functionals at a to be the space of linear

functionals £: M(a, X)—C such that for every d€N* there exists an element ug€S(V)
such that

LQD =Uqg [ﬂ—a,d Sﬁ} (a)a

for all 30671';(11 O,. Tt is immediate from this definition that the string (uq)genx is uniquely
determined by L£; we denote it by wu,.

Remark B.1. Let T,: z+—z+a denote translation by a in V. Pullback under T,
induces an isomorphism of rings T: Oy — Oq, @r—peT,. Moreover, T, (my q)=m0q for
every deNX, and we see that pullback under T, also induces an isomorphism of
rings T.: M(a, X)—M(0,X). From the definition of an X-Laurent functional one sees
that transposition induces a linear map Tg.: M(0, X)) —M(a, X), ;- Obviously,

T,. is a linear isomorphism; moreover, one readily checks that ur, r=u, for every

LeM(0, X);

laur*
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We shall now investigate which strings (ug)genx arise from Laurent functionals,
following the method of [11, §1.3]. We write wy=m( 4 and equip the space N with the
partial ordering < defined by d’<d if and only if d’(£) <d(€) for every £€X. If d’<d then
we define d—d’ componentwise as suggested by the notation.

In [11, §1.3] we defined S._(V, X) as the linear space of strings (uq)genx satisfying

ud(w@i—a ¢)(0) =uq (9)(0), (B.1)

for all d’,deNX with d’<d, and for every germ ¢€Oy. This space is a projective limit

space in a natural way, see [11] for details.

*

laur OTVEO

LEMMA B.2. The map Lr—ug is a linear isomorphism from M(a, X)
S—(V, X).

Proof. In view of Remark B.1 we may as well assume that a=0. Let L& M(0, X )} .s

and let uz=(ug)qenx be the associated string in S(V). Then for all d’,d with d’'<d we

have wq_q =7, , Waé,. Hence, for every p€Qg,

ua(@a—a¢)(0) = L5 0 ) = uar (¢)(0),

so that (B.1) holds. It follows that uz €S (V, X). Obviously the map £L—u, is a linear
injection. We will finish the proof by establishing its surjectivity.

Let u€S_ (V, X). For deN* we define £d:7r0111(90—>C by La(¢)=uq4(mo,q)(0). If
d,d'eNX, d'<d, then from (B.1) it follows that £;=L4 on w(itli, Op. Therefore, there
exists a unique L€ M(0, X)* such that £L=L; on 77(;01[ Oy for every deNX. By definition
we have LeM (0, X)f, . and us=u. O

laur

In the following we shall see that the notion of a Laurent functional is closely related
to the notion of a Laurent operator introduced in [11], see also §5. For this, we need
some notation as well as a slight generalization of the concept of a Laurent operator from
the setting of a real X-configuration to that of an arbitrary one.

By an X-subspace in Vo we mean any non-empty intersection of X-hyperplanes
in Vo. We denote the set of such affine subspaces by A=A(Vg, X). For LeA there
exists a unique real linear subspace V;, CV such that L=a+ V¢ for some a€Ve. The
intersection VLLCﬂL consists of a single point, called the central point of L; we denote
it by ¢(L). The space L is said to be real if ¢(L)€V’; this means precisely that L is the
complexification of an affine subspace of V.

For an X-configuration H we define M(V¢, H) to be the space of meromorphic func-
tions on V& whose singular locus is contained in | JH. If H consists of real hyperplanes,
we put Hy ={HNV | HeH}; then M(Vc, H) equals the space M(V, Hy ) defined in §5.
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If Le A we write H(L,X) for the collection of X-hyperplanes containing L, and
X(L)={ay|HEH(L, X)}. From the assumptions on X it follows that X(L)=XNV.
Let X, be the orthogonal projection of X\ X(L) onto Vz. Let X? be a subset of X,
such that for every £€ X, there exists a unique £%€ X? with ¢eREP. Translation by (L)
induces an affine isomorphism from Vic onto L. Via this isomorphism we equip L with
the structure of a complex linear space together with a real form with inner product;
moreover, we write Xy, for the image of X0 in L. If H is an X-configuration in Vi, then
Hr={HNL|HeH, sGCHNLGH} is an X -configuration in L.

We can now define the space Laur(Vg, L, H) of Laurent operators from M (Vg, H) to
M(L,Hy) asin [11, §1.3], see also §5. Lemma 1.5 of [11] is now readily seen to generalize

to the present setting. It provides us with an isomorphism
Laur(Vg, L, H) — S (Vi-, X(L)), R ug. (B.2)

LEMMA B.3. Assume that L€ A, and let H be an X -configuration in Vo containing
H(L, X).

(a) If pe M(Ve,'H), then for we L\|J Hy the function z— p(w+z) is meromorphic
on Vig, with a germ at 0 that belongs to M(0, X (L)).

(b) If LeM(0,X(L)) is a Laurent functional in Vg, then for oe M(Ve, H)

the function

*
laur

Loprwi= L{p(w-))

belongs to the space M(L,Hy). The operator L.: M(Vo, H)—M(L,Hy) is a Laurent
operator.
(c) The map L— L, is an isomorphism from M(0, X (L))}, onto Laur(Ve, L, H).

This isomorphism corresponds with the identity on SH(VLJ-, X (L)), via the isomorphisms
of Lemma B.2 and equation (B.2).

Proof. (a) Let we L\|J Hr. Assume that HEH is a hyperplane containing w. Then
HNL#@ and from w¢| ) Hy, it follows that HeH(L, X). Thus, any hyperplane HeH
containing w satisfies V- ¢ Vir, hence w+ Vi H. Tt follows that [ JH has a non-empty
complement in w+Vig. Hence if o€ M(V, H), then p%: z—p(w+2) is a meromorphic
function on Vig. The germ (p®)y has its singular locus contained in the union of
the hyperplanes H,,:=—w+(w+Vig)NH, with HEH, H>w, hence with HeH (L, X).
We note that weH implies H,=V/sNH; the latter is an X(L)-hyperplane in Vi,
containing 0. This proves (a).

(b) Let LEM(0, X (L))fur and put ug=(uq)genxw). If d’ is a map H—N, then
via the bijection H(L, X)~X (L), we may identify d’|H (L, X) with an element deN~(L),
For e H(Ve, H,d’) we then have L. o(w)=uq(m,q49")(0). We now observe that mp 4=
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70, x(L),d equals the polynomial g7, 4 defined in [11, equation (1.5)]. Hence L, is a Laurent
operator from M(Vg, H) to M(L, Hp,).

(c) From the reasoning in (b) we see that the element u, of S (Vi, X (L)) equals
the element u,, corresponding to L, under the isomorphism of (B.2). It follows that
the map L+ L, corresponds to the identity on S (V/, X(L)). In particular, it is an
isomorphism from M(0, X (L)}, onto Laur(Vg, L, H). O

laur

Remark B.4. In particular, we may apply the above lemma with L={a}. Then
V=V and X(L)=X; hence for H an X-configuration containing H(a, X), we have
M(0, X )5y =Laur(Ve, {a}, H). Composing with the isomorphism T, discussed in Re-

mark B.1 we obtain an isomorphism
M(a, X))y, > Laur(Ve, {a}, H).

We have Hy=@; hence M(L,H,)~C naturally via evaluation at a, and we may identify
Laur(Vg, {a}, H) with a subspace of M(Ve, H)*. If LeM(a, X)7,,,, then the associated
Laurent operator £,eM Ve, H)* is given by L.(¢)=L(pa)-

Let M (%, X)}, . denote the disjoint union of the spaces M(a, X)i. ., a€Ve. A map

laur laur>
L:Ve—=M(x, X)i . with Lo:=L(a)eM(a, X)],, for all a€Vg is called a section of
M(*, X){ - The closure of the set {a€Vc|L,#0} is called the support of £, and

*

lour 15 called an X-Laurent

denoted by supp £. A finitely supported section of M (x*,X)

*
laur*

functional on V. The space of such Laurent functionals is denoted by M (Vg, X)
If S is a subset of V&, we put

M(S, X)faur = {£ € M(Ve, X)iaur [ supp £ C S},

and call this the space of X-Laurent functionals supported on S. If €2 is an open subset
of Vg, then by M(Q) we denote the ring of meromorphic functions on Q. Moreover, if
a€Q, then by M(,a, X) we denote the subring of those o€ M () whose germ ¢, at a
belongs to M(a, X). If SCQ, we define

M(Q,8,X):= N M(Q,a,X).
acsS
Finally, we write M (2, X) for M(Q,Q, X). In particular, M(Vg, X) is the ring of mero-
morphic functions whose singular locus is contained in the union of an X-configuration.

There is a natural pairing M(S, X)§ _xM(Q,S, X)—C given by

laur

Lo= Y Lapa

a€supp L
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The pairing naturally induces a linear map M (S, X);, . —M(Q, S, X)* which is injective;
however, we will not need this injectivity here.

If E is a finite-dimensional complex linear space, »eM(,S, X)®F and L€
M(S, X)f s then we shall write £y for (LRIg).

Now assume that Le.A, and let the sets X(L)CV;- and X CL be as defined in
Remark B.1.

LEMMA B.5. Let £ be an X(L)-Laurent functional on Vi, and let pe M(V, X).
Then for w in the complement of an Xy -configuration in L, the function z+— p(w+z)
belongs to M(Vis,supp £, X(L)). Moreover, the function

Lip:w L{p(w-))
belongs to the space M(L,Xp).

Proof. 1t suffices to prove the assertions for a Laurent functional £ whose support
consists of a single point a€ V. Composing £ with a translation if necessary, we may
as well assume that a=0 (use Remark B.1).

Let peM(Ve,X). Then there exists an X-configuration H in Ve containing
H(L, X), such that o€ M(V,H). All assertions now follow from Lemma B.3. O

We now specialize to the setting of a reductive symmetric space. We take V=a}
and X=X*, the set of indivisible roots in ¥*. The space ./\/l(a:;c,i*) is denoted by
M(a}c, X). Moreover, with notation as in §8, let F'CA and let ZF::Zﬁa}%1 denote the
set of roots of az, in mp. Note that if )\Ga}t and L=A+a} ¢, then Vi-=aj; and X(L)
equals the set X}, of indivisible roots in ¥7.. By a ¥ p-Laurent functional on a}tc we
mean a ¥ 5-Laurent functional on a}éc.

The following theorem is proved in [12]. Its displayed equations concern equalities

between meromorphic functions, in view of Lemma B.5.

THEOREM B.6. Let veXW. Let L£1,Ls be Yp-Laurent functionals on a}éc, and
let g1, P2 € M(a}c, X)®@°Cpy. Assume that

Ly(E (Xpp:-im)dr(vt-)) = Lo(EL (Xpo - :m)da(v++))
for all meXp, , and generic v€aj . Define Yi=(I®ip,)dieM(a;c,2)@°C for

i=1,2. Then, for every xr€X,,

LE Wb ) =L ¥ Btoaae). B3

seEWF

as an identity of Vi-valued meromorphic functions in the variable VEAp,c-

The following result is a dual version of the above theorem.
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COROLLARY B.7. Let ve®W. Let L1, Ly be ¥p-Laurent functionals on u’}éc, and
let ¢1, paeM(aX a’cs Y)®(°Cpy)*. Assume that

Li(pi(v+)E*(XFpp:-:m))=La(dp2(v+)ET (XFp:-:m)) (B.4)

for all me X, , and generic v€ap,c. Define Yi=(I@pr},)di€M(a}q, X)@°C* for
1=1,2. Then, for every x€X,,

Ly((v+- ) E*(v+-:2)) = Lo (wz (o) D BL v+ )> (B.5)
seWF
as an identity of VI -valued meromorphic functions in the variable v€ap ..

Proof. We prove this corollary by dualization of Theorem B.6.
If wEM(a*FJéC,EF), then the function 1V: Ar—1(—\) is readily seen to belong to
M(a*FJaC, Yr) as well. If £ is a ¥ p-Laurent functional on a}tc, then there is a unique

Y p-Laurent functional £V on aF o such that

LYWY) = (L))", (B.6)

where the star denotes conjugation of a complex number. If H is a finite-dimensional
complex Hilbert space, then we shall use the following notation. If v€H, then by v* we
denote the element of the dual Hilbert space H* determined by v*(w)=(w|v), for weH.
If wEM(anc, Y r)®H, then we define the function wVEM(anC, Yr)@H* by

With this notation, equation (B.6) still holds if £ is a ¥ p-Laurent functional on a}igc
and if Y e M(a}gc, ¥r) OH.

Let now L1, L, ¢1,¢2 be as in the corollary. Then replacing v by — in (B.4) and
applying a star to both sides of the resulting equation, we obtain that

LY(E (Xpotm)d](v+:)) =Ly (B (Xpo:im)dy (v+-))

for all m€ Xp,, , and generic v€aj, c. Applying Theorem B.6 with LY, ¢ in place of
L;, ¢;, respectively, we then obtain, for all z€ X, that

CYUE (vt - :2) ip Y (04-)) = L ( S B (vteia)in, ¢;<v+->) (B.7)

seEWF

as a meromorphic identity in v. We now observe that

(170 (& (1))]" =P, (¢i(—4)) =i (—1).
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Thus, applying a star to both sides of (B.7) and inserting —7 for v we obtain (B.5), for
all ze X, and for generic v. Since both members of (B.5) are meromorphic functions

of v, by Lemma B.5, equation (B.5) holds as an identity of meromorphic functions. O

Remark B.8. The above results have two features that are worthwhile noting ex-
plicitly. First of all, the results enable us to extend certain sums of ‘partial’ Eisenstein
integrals to smooth functions on all of X. Indeed, a priori the expression on the right-
hand side of equation (B.3) is only defined for x€X,. However, the expression on the
left-hand side of the equation is a smooth function of x€X.

Secondly the above results are also of interest if £o=0. In that case the statements
amount to asserting that the Eisenstein integrals satisfy relations of a particular type, if
certain leading coefficients in their expansions along the wall A}qv satisfy these relations.
The title of this section is motivated by the well-known fact that taking such leading

coeflicients essentially inverts the procedure of parabolic induction.

References

[1] ARTHUR, J., A Paley-Wiener theorem for real reductive groups. Acta Math., 150 (1983),
1-89.

[2] BaN, E.P. VAN DEN, Asymptotic behaviour of matrix coefficients related to reductive
symmetric spaces. Nederl. Akad. Wetensch. Indag. Math., 49 (1987), 225-249.

[3] — Invariant differential operators on a semisimple symmetric space and finite multiplicities
in a Plancherel formula. Ark. Mat., 25 (1987), 175-187.

[4] — The principal series for a reductive symmetric space, 1. H-fixed distribution vectors.
Ann. Sci. Ecole Norm. Sup. (4), 21 (1988), 359-412.

[5] — The principal series for a reductive symmetric space, II. Eisenstein integrals. J. Funct.
Anal., 109 (1992), 331-441.

[6] — The action of intertwining operators on spherical vectors in the minimal principal series

of a reductive symmetric space. Indag. Math. (N.S.), 8 (1997), 317-347.

[7] BaN, E.P. vAN DEN, CARMONA J. & DELORME, P., Paquets d’ondes dans l’espace de
Schwartz d’un espace symétrique réductif. J. Funct. Anal., 139 (1996), 225-243.

[8] BAN, E. P. VAN DEN & SCHLICHTKRULL, H., Fourier transforms on a semisimple symmetric
space. Invent. Math., 130 (1997), 517-574.

[9] — The most continuous part of the Plancherel decomposition for a reductive symmetric
space. Ann. of Math. (2), 145 (1997), 267-364.
[10] — Expansions for Eisenstein integrals on semisimple symmetric spaces. Ark. Mat., 35
(1997), 59-86.
[11] — A residue calculus for root systems. To appear in Compositio Math.
[12] — Analytic families of eigenfunctions on a reductive symmetric space. Preprint, 1999.
[13] — The Paley—Wiener theorem and the Plancherel decomposition for a reductive symmetric

space. In preparation.

[14] CARMONA, J. & DELORME, P., Base méromorphe de vecteurs distributions H-invariants
pour les séries principales géneralisées d’espaces symétriques réductifs. Equation fonc-
tionelle. J. Funct. Anal., 122 (1994), 152-221.



(15]
[16]

(17]

18]

(19]
[20]

(21]
22]
23]
24]
[25]
[26]
27]

28]

FOURIER INVERSION ON A REDUCTIVE SYMMETRIC SPACE 85

— Transformation de Fourier sur ’espace de Schwartz d’un espace symétrique réductif.
Invent. Math., 134 (1998), 59-99.

CASSELMAN, W., Canonical extensions of Harish-Chandra modules to representations of G.
Canad. J. Math., 41 (1989), 385—438.

DELORME, P., Injection de modules sphériques pour les espaces symétriques réductifs dans
certaines représentations induites, in Non-Commutative Harmonic Analysis and Lie
Groups (Marseille-Luminy, 1985), pp. 108-143. Lecture Notes in Math., 1243. Springer—
Verlag, Berlin—New York, 1987.

— Intégrales d’Eisenstein pour les espaces symétriques réductifs: Temperance, majorations.
Petite matrice B. J. Funct. Anal., 136 (1996), 422-509.

— Troncature pour les espaces symétriques réductifs. Acta Math., 179 (1997), 41-77.

— Formule de Plancherel pour les espaces symétriques réductifs. Ann of Math. (2), 147
(1998), 417-452.

DELORME, P. & FLENSTED-JENSEN, M., Towards a Paley—Wiener theorem for semisimple
symmetric spaces. Acta Math., 167 (1991), 127-151.

HELGASON, S., Groups and Geometric Analysis. Academic Press, Orlando, FL, 1984.

— Geometric Analysis on Symmetric Spaces. Amer. Math. Soc., Providence, RI, 1994.

Knaprp, A. W. & STEIN, E. M., Intertwining operators for semisimple groups, II. Invent.
Maih., 60 (1980), 9-84.

OsHimMA, T. & Matsuki, T., A description of discrete series for semisimple symmetric
spaces. Adv. Stud. Pure Math., 4 (1984), 331-390.

THORLEIFSSON, H., Die verallgemeinerte Poisson Transformation fiir reduktive sym-
metrische Rdume. Habilitationsschrift, Universitdt Goéttingen, 1995.

VARADARAJAN, V.S., Harmonic Analysis on Real Reductive Groups. Lecture Notes in
Math., 576. Springer-Verlag, Berlin—-New York, 1977.

VRETARE, L., Elementary spherical functions on symmetric spaces. Math. Scand., 39
(1976), 346-358.

[29] WALLACH, N., Real Reductive Groups, I. Academic Press, San Diego, CA, 1988.
[30] — Real Reductive Groups, II. Academic Press, San Diego, CA, 1992.

ERIK P. VAN DEN BAN HENRIK SCHLICHTKRULL
Mathematisch Instituut Matematisk Institut

Universiteit Utrecht Kgbenhavns Universitet

P.O. Box 80010 Universitetsparken 5

3508 TA Utrecht 2100 Kgbenhavn @

The Netherlands Denmark

ban@math.uu.nl schlicht@math.ku.dk

Received February 20, 1998



