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1. Introduction

Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have defined
an explicit Fourier transform for X and shown that this transform is injective on the space
C∞

c (X) of compactly supported smooth functions on X. In the present paper, which is
a continuation of these papers, we establish an inversion formula for this transform.

More precisely, let X=G/H, where G is a connected semisimple real Lie group
with an involution σ, and H is an open subgroup of the group of elements in G fixed
by σ. Let K be a maximal compact subgroup of G invariant under σ; then K acts on
X from the left. Let (τ, Vτ ) be a finite-dimensional unitary representation of K. The
Fourier transform F that we are going to invert is defined as follows, for τ -spherical
functions on X, that is, Vτ -valued functions f satisfying f(kx)=τ(k)f(x) for all k∈K,
x∈X. Related to the (minimal) principal series for X and to τ , there is a family E(ψ :λ)
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of Eisenstein integrals on X (cf. [5]). These are sums of τ -spherical joint eigenfunctions
for the algebra D(X) of invariant differential operators on X; they generalize the elemen-
tary spherical functions for Riemannian symmetric spaces, as well as Harish-Chandra’s
Eisenstein integrals associated with a minimal parabolic subgroup of a semisimple Lie
group. The Eisenstein integral is linear in the parameter ψ, which belongs to a finite-
dimensional Hilbert space �C depending on τ , and it is meromorphic in λ, which belongs
to the complex linear dual a∗qC of a maximal abelian subspace aq of p∩q. Here p is the
orthocomplement in g (the Lie algebra of G) of k (the Lie algebra of K), and q is the
orthocomplement in g of h (the Lie algebra of H). In [8] we introduced a particular
normalization E�(ψ :λ) of E(ψ :λ) with the property that as a function of λ it is regular
on the set ia∗q of purely imaginary points in a∗qC. Now Ff is defined as the meromorphic
�C-valued function on a∗qC such that

〈Ff(λ) |ψ〉=
∫

X

〈f(x) |E�(ψ :λ :x)〉 dx (1.1)

holds for all ψ∈�C, λ∈ia∗q. Here dx is an invariant measure on X, 〈 · | · 〉 denotes the
sesquilinear inner products on �C and Vτ , and f belongs to the space C∞

c (X :τ) of com-
pactly supported smooth τ -spherical functions on X. The Fourier transform on K-finite
functions in C∞

c (X) can be expressed in terms of the transform F with suitable τ (see
[8, §6]), and an inversion formula for F thus amounts to an inversion formula for K-finite
functions. Expansion over all K-types then yields an inversion formula for all functions
in C∞

c (X). From now on we shall therefore concentrate on the inversion problem for F
with a fixed K-representation τ .

At first glance, a good candidate for the inverse of F would be the wave packet map
J defined as follows, for ϕ a �C-valued function (of reasonable decay) on ia∗q:

Jϕ(x)=
∫

ia∗
q

E�(ϕ(λ) :λ :x) dλ; (1.2)

here dλ is a suitably normalized Lebesgue measure on the Euclidean space ia∗q. In the
case of a Riemannian symmetric space it is indeed true that JF=I (cf. [23, Chapter III]
and [9, Remark 14.4]), but in general this is not so. In [9] we showed that (taking
appropriate closures) the operator JF is the orthogonal projection onto a closed subspace
of the space L2(X :τ) of all τ -spherical L2-functions on X. The subspace is the so-called
most continuous part of L2(X :τ). In general the functions JFf , f∈C∞

c (X :τ), do not
belong to C∞

c (X :τ); they are smooth functions of L2-Schwartz type, but not of compact
support. A central result in [9] asserts the existence of an invariant differential operator
D0 (depending on τ) on X that is injective as an endomorphism of C∞

c (X) and satisfies

D0JFf =D0f (1.3)
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for all f∈C∞
c (X :τ) (see Theorem 2.1). The injectivity of the Fourier transform is an

immediate consequence, but as we do not know an explicit inverse to D0, (1.3) does not
give the inversion formula we want.

The inversion formula that we obtain involves not only the function Ff on ia∗q but
also its meromorphic continuation. In order to describe it, we must introduce some more
notation. Let Σ denote the system of roots for aq in g; the corresponding Weyl group W

can be realized as the normalizer modulo the centralizer of aq in K. Let Σ+ be a positive
system for Σ and let A+

q =exp a+
q , where a+

q is the corresponding open Weyl chamber. For
simplicity of exposition, we assume in this introduction that the open subset X+=KA+

qH

of X is dense (in general, a finite and disjoint union of open sets of the form KA+
qwH,

w∈K, is dense). The normalized Eisenstein integral E�(ψ :λ) has an expansion (see [10])

E�(ψ :λ :x)=
∑
s∈W

E+(sλ :x)C�(s :λ)ψ, (1.4)

valid on X+, that is a generalization of Harish-Chandra’s expansion for the spherical
functions on a Riemannian symmetric space. Here C�(s :λ) is an endomorphism of �C,
and E+(sλ :x) is a linear operator from �C to Vτ . Both of these objects depend mero-
morphically on λ. For ψ∈�C and λ generic, the function x �→E+(λ :x)ψ is defined on X+

as the unique τ -spherical annihilated by the same ideal of D(X) as E�(ψ :λ) and having
the leading term aλ−�ψ(e) in the asymptotic expansion along A+

q . It can be shown (see
[5] and [10]) that if η∈a∗q is sufficiently antidominant then Ff(λ), as well as E+(λ :x), are
regular for λ∈η+ia∗q. Moreover, these functions of λ have decay properties that allow us
to conclude that the expression

TηFf(x) := |W |
∫

η+ia∗
q

E+(λ :x)Ff(λ) dλ, (1.5)

is defined for x∈X+ and (by Cauchy’s theorem) independent of η, provided the latter
quantity is sufficiently antidominant (|W | is the order of W ). We then denote it T Ff(x)
and call it a pseudo-wave packet. As a function of x∈X+ it is smooth and τ -spherical,
and by moving η to infinity one can show that T Ff(x) vanishes for x outside a set with
compact closure in X. Our main result in the present paper is the following (Theo-
rem 4.7).

Theorem 1.1. Let f∈C∞
c (X :τ). Then T Ff(x)=f(x) for all x∈X+.

Since X+ is dense in X this provides the desired inversion formula for F on C∞
c (X :τ).

The proof of Theorem 1.1 is carried out in §§5–9, but it rests on results from several
previous papers. In particular, the papers [11] and [12] have been written primarily for
this purpose. We shall now indicate some important steps in the proof. Inserting the
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expansion (1.4) in (1.2) (for this introduction we disregard the fact that λ �→E+(λ :x)
can be singular for λ∈ia∗q), and using simple Weyl group transformation properties for
the involved functions, one sees that the wave packet JFf is identical with T0Ff , the
expression (1.5) for η=0. We would like to identify this expression with the pseudo-
wave packet T Ff , but because there are singularities between η=0 and the sufficiently
antidominant η, the difference between the two expressions involves residues. In order to
study closer these residues we invoke (in §5) the residue calculus for root systems that
we have developed in [11]. According to this calculus, the difference is a finite sum of
expressions of the form ∫

λ+ia∗
Fq

u[πE+( · :x)Ff ](sν) dν, (1.6)

where F is a non-empty subset of the set ∆ of simple roots for Σ+, a∗Fq its orthocom-
plement in a∗q, and λ a point in R+F⊂a∗⊥Fq. Furthermore, s is an element of W with
s(F )⊂Σ+, π is a suitable polynomial such that πE+( · :x)Ff is regular on a neighbor-
hood of Ad(s)(λ+a∗FqC), and u∈S(Ad(s)a∗⊥Fq) serves as a constant-coefficient differential
operator on Ad(s)a∗⊥Fq. These objects (i.e. λ, s, π and u) can be chosen independently
of f and x. We denote by TF f(x) the sum of all the contributions of the form (1.6) for
a given non-empty F⊂∆. The function TF f is τ -spherical and smooth on X+. We now
have

T Ff =JFf +
∑
F⊂∆
F �=∅

TF f =
∑
F⊂∆

TF f,

where we have set JFf=T∅f , and the result in Theorem 1.1 can be expressed as follows
(Theorem 7.1).

Theorem 1.2. Let f∈C∞
c (X :τ) and x∈X+. Then

f(x)=
∑
F⊂∆

TF f(x). (1.7)

The main step in the proof of this result consists of establishing the following prop-
erties of the operators TF . In order to simplify the presentation, we assume in the
second statement of the following theorem that the map λ �→−λ belongs to W (see
Corollary 10.11 for the general statement).

Theorem 1.3. The function TF f on X+ extends to a smooth function on X, for
all f∈C∞

c (X :τ), F⊂∆. Moreover, the operator f �→TF f is symmetric, that is,∫
X

〈TF f1(x) |f2(x)〉 dx=
∫

X

〈f1(x) |TF f2(x)〉 dx

for all f1, f2∈C∞
c (X :τ).
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Theorem 1.3 is first proved under the assumption (which is sufficient to derive The-
orem 1.2) that f and f2 are supported on X+. This is done (in §9) by induction on the
number of elements in ∆. The derivation of Theorem 1.2 from Theorem 1.3 is given
in §7. We shall now outline the proof of Theorem 1.3, which is a central argument for
the paper.

We first derive the statements in Theorem 1.3 for F �=∆. This is done by a careful
analysis of the asymptotic expansion of the integral kernel corresponding to the opera-
tor TF . The principal term in the asymptotic expansion along the standard parabolic
subgroup PF associated with F can be identified in terms of the T∆ for the Levi subgroup
of PF . Invoking the induction hypothesis and a result from [12] (see Appendix B), the
symmetry of TF is obtained. The smooth extension is a consequence of the symmetry.

Next, we consider the function g :=f−
∑

F⊂∆ TF f on X+. The statement in The-
orem 1.2 is that g=0; we know already that g vanishes outside a set Ω with compact
closure in X, since both f and T Ff have the same property. Knowing also that TF f

extends smoothly to X for F �=∆ we are able to deduce that g is annihilated by any invari-
ant differential operator on X that annihilates T∆f . Here the result (1.3) from [9] plays
an important role. It follows that the annihilator of g in the algebra D(X) of invariant
differential operators on X is a cofinite ideal. Since g is τ -spherical, g is hence analytic
on X+, and since it vanishes outside Ω it must then vanish identically. Equation (1.7) is
thus proved for functions supported in X+. From this the statements of Theorem 1.3 for
F =∆ finally follow (with supp f, f2⊂X+), and the induction is completed.

The part of the proof of Theorem 1.3 outlined above is given in §§8–9. In §10 we
define some generalized Eisenstein integrals and derive a formula for TF in terms of these.
Theorem 1.3 in its full generality follows from this formula.

The inversion formula that we have derived in this paper is an important step towards
the Plancherel formula for X. What remains for the Plancherel formula is essentially to
identify the contributions TF f in terms of generalized principal series representations.
For example, T∆f should be identified as being in the discrete series for X. These
identifications will be given in a sequel [13] to this paper, but since it is an important
application we outline the argument here. For F =∅ the identification is inherent already
in the definition of F and J by means of the minimal principal series—an important
ingredient is the regularity (from [8]) of the normalized Eisenstein integrals on ia∗q. This
regularity is, in turn, based on the so-called Maass–Selberg relations from [6], according
to which (cf. [9, Proposition 5.3]) the adjoint of the C-function is given by

C�(s :λ)∗ =C�(s :−λ̄)−1. (1.8)

For the non-minimal principal series, analogues of F and J have been defined and the
Maass–Selberg relations have been generalized, by Carmona and Delorme (see [14], [18],
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[19], [15]). Using these generalized Maass–Selberg relations we obtain the necessary
identifications of TF f for F �=∆. In particular, these functions are tempered. As a conse-
quence of Theorem 1.2 it follows then that T∆f is in the discrete series, and the Plancherel
formula is established. A different proof of the Plancherel formula, also based on the gen-
eralized Maass–Selberg relations, has been obtained independently and simultaneously
by Delorme (see [20]). Later, we have found a proof of these generalized Maass–Selberg
relations based on the results of the present paper. This proof will also be given in [13].

For the special case that G/H has but one conjugacy class of Cartan subspaces the
Plancherel formula is easier to obtain than by the argument described above. In this
case the contributions TF f for F �=∅ all vanish; we prove this in §11, using [25]. Hence
in this case we have JF=I as in the case of a Riemannian symmetric space (which, in
fact, is a subcase).

Another important application of the results presented here is to the Paley–Wiener
theorem for τ -spherical functions on X, that is, the description of the range F(C∞

c (X :τ)).
A conjectural description was given in [9, Remark 21.8], and based on the results of
the present paper we are able to prove this conjecture. The first step is given here in
Corollary 4.11; the further steps will be given in [13]. The Paley–Wiener theorem for X

generalizes Arthur’s theorem for G (which is a semisimple symmetric space by itself), [1],
the proof of which has been a substantial source of inspiration for the present work. In
particular, the inversion formula of Theorem 1.1 is in this special case a consequence
of Arthur’s result. There are some important differences, however, to Arthur’s treatise.
First of all, Arthur appeals to Harish-Chandra’s Plancherel theorem in his derivation
of the Paley–Wiener theorem, whereas eventually we shall derive both theorems from
the present results. In this respect our proof is very much in the spirit of that given by
Rosenberg and Helgason for the Riemannian symmetric spaces, see [22, §7 in Chapter IV].
Secondly, Arthur uses in the inductive argument a lifting theorem due to Casselman (see
[1, Theorem 4.1 in Chapter II]). The use of this result (the proof of which seems as yet
unpublished) is here replaced by Theorem 1.3 and the induction of relations of [12], which
is explained in Appendix B of this paper.

In the final §12 we generalize our inversion formula T Ff=f to rapidly decreasing
functions f on X. The space S of these functions has been studied, for example, in [21].
For G it is introduced in [29, §7]; it plays an important role in the theory of completions
of admissible (g,K)-modules, developed by Casselman and Wallach (cf. [30, §11], [16]).

Acknowledgment. The results presented here were found in the fall of 1995, when
both authors were at the Mittag-Leffler Institute for the 95/96 program, Analysis on Lie
Groups. We are grateful to the organizers of the program and the staff of the institute
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2. Notation and preliminaries

In this paper we use the same notation and basic assumptions as in [9, §§2–3]. In par-
ticular, and more generally than what was assumed in the introduction, G is a reductive
Lie group of Harish-Chandra’s class. As before we write A+

q =exp a+
q where a+

q is an open
Weyl chamber in aq. The simplifying assumption, that KA+

qH is dense in X=G/H, is
abandoned. However, the open subset X+ of X defined by the disjoint union

X+ =
⋃

w∈W
KA+

qwH (2.1)

is dense in X (see [9, equation (2.1)]). The map

(k, a, w) �→ kw−1awH (2.2)

induces a diffeomorphism of K/(K∩H∩M)×A+
q ×W onto X+. Notice that X+ does not

depend on the choice of the Weyl chamber a+
q .

Let (τ, Vτ ) be a finite-dimensional unitary representation of K, and let �C=�C(τ)
be the finite-dimensional Hilbert space defined by [9, equation (5.1)]. For ψ∈�C, λ∈a∗qC
and x∈X we define the Eisenstein integral E(ψ :λ :x)∈Vτ and its normalized version
E�(ψ :λ :x) as in [9, §5]. These are τ -spherical functions of x, and they depend meromor-
phically on λ. We view E�(λ :x):=E�( · :λ :x) as an element in Hom(�C, Vτ ) and define
E∗(λ :x)∈Hom(Vτ , �C), likewise meromorphic in λ, by

E∗(λ :x)=E�(−λ̄ :x)∗, x∈X. (2.3)

Here the asterisk on the right-hand side indicates that the adjoint has been taken. Then
E∗(λ :kx)=E∗(λ :x)�τ(k)−1 for k∈K, and the τ -spherical Fourier transform (1.1) of a
function f∈C∞

c (X :τ) is conveniently expressed as

Ff(λ)=
∫

X

E∗(λ :x)f(x) dx∈ �C. (2.4)

In the same spirit we write the definition (1.2) of the wave packet as

Jϕ(x)=
∫

ia∗
q

E�(λ :x)ϕ(λ) dλ (2.5)
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for ϕ: ia∗q→�C of suitable decay; it is a smooth function of x∈X (see [9, §9]). In these
expressions measures are normalized according to [9, §3].

Recall from [9, equation (5.11)] that there exists a homomorphism µ from D(X) to
the algebra of End(�C)-valued polynomials on aq such that DE�(λ)=E�(λ)�µ(D :λ) for
all D∈D(X). Moreover,

F(Df)=µ(D)Ff, DJϕ=J (µ(D)ϕ) (2.6)

for f and ϕ as above (see [9, Lemmas 6.2, 9.1]).

Theorem 2.1 [9]. There exists an invariant differential operator D0∈D(X) such
that D0:C∞

c (X :τ)→C∞
c (X :τ) is injective and such that D0JFf=D0f for all f∈

C∞
c (X :τ). In particular, if Ff=0 then f=0.

Proof. Choose D0 from the set D′
π defined in [9, Lemma 15.3]. By [9, Theorem 14.1,

Proposition 15.2] it has the required properties. The final statement (which is [9, Theo-
rem 15.1]) is an immediate consequence. �

The Eisenstein integrals allow certain asymptotic expansions that we shall now recall
(cf. [10]). Let P∈Pmin

σ be the σ-minimal parabolic subgroup of G that corresponds to
the chosen chamber a+

q ; then there exists (see [8, §§4–5]), for each s∈W , a unique mero-
morphic End(�C)-valued function λ �→C�(s :λ)=C�

P |P(s :λ) on a∗qC (called the normalized
C-function) such that

E�(λ :aw)ψ∼
∑
s∈W

asλ−�[C�(s :λ)ψ]w(e)

for each w∈W and all λ∈ia∗q, as a→∞ in A+
q . Here [ · ]w(e)∈V K∩M∩wHw−1

τ indicates
the evaluation at e of the w-component of the element from �C inside the square brackets
(see [8, equations (17)–(18)]). In fact, for a∈A+

q and λ∈a∗qC generic, there is a converg-
ing expansion for E�(ψ :λ :aw) as a function of a on A+

q . This expansion is conveniently
expressed by means of the End(V K∩M∩wHw−1

τ )-valued functions ΦP,w(λ : · ) on A+
q intro-

duced in [10, §10]. Let the function E+(λ):X+→Hom(�C, Vτ ) be defined by

E+(λ :kawH)ψ = τ(k)ΦP,w(λ :a)[ψ]w(e) (2.7)

for k∈K, a∈A+
q , w∈W, ψ∈�C. It is easily seen from (2.2) that E+(λ) is well defined

for generic λ∈a∗qC, and that it belongs to the space C∞(X+ :τ) of smooth τ -spherical
functions on X+. It satisfies

E+(λ :aw)ψ∼ aλ−�ψw(e)
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for w∈W, as a→∞ in A+
q . Furthermore,

DE+(λ)=E+(λ)�µ(D :λ) (2.8)

for D∈D(X), by [10, Corollary 9.3], and E+(λ) depends meromorphically on λ∈a∗qC as
an element of C∞(X+ :τ). The expression (1.4) now follows from [10, Theorem 11.1].
It will be convenient to rewrite this as follows. Let

E+,s(λ :x)=E+(sλ :x)�C�(s :λ)∈Hom(�C, Vτ ); (2.9)

then

E�(λ :x)=
∑
s∈W

E+,s(λ :x) (2.10)

for x∈X+.
The Eisenstein integrals satisfy an invariance property for the action of the Weyl

group (see [8, Proposition 4]). Expressed in terms of the notation introduced above it
reads

E�(λ :x)=E�(sλ :x)�C�(s :λ), E∗(sλ :x)=C�(s :λ)�E∗(λ :x) (2.11)

for s∈W , where the Maass–Selberg relations (1.8) are used in the passage between the
two identities. For the Fourier transform of a function f∈C∞

c (X :τ) the property (2.11)
implies that

Ff(sλ)=C�(s :λ)Ff(λ). (2.12)

3. The singular hyperplanes

In this section we study the singular set for the normalized Eisenstein integral E�(λ :x),
as a function of λ. Our aim is to prove that E�(λ :x) is singular only along real root
hyperplanes in a∗qC, that is, hyperplanes of the form {λ | 〈λ, α〉=c} with α∈Σ and c∈R.
Part of the proof will, however, be deferred to an appendix.

For S⊂a∗qC\{0} we denote by ΠS =ΠS(aq) the set of complex polynomials on aq

which are products of affine functions of the form λ �→〈λ, ξ〉−c with ξ∈S and c∈C. We
agree that 1∈ΠS . For S⊂a∗q\{0} we define ΠS,R⊂ΠS similarly, but with c∈R.

For R∈R we define

a
∗
q(P,R) := {λ∈a

∗
qC |Re 〈λ, α〉<R for α∈Σ+} (3.1)

and denote by ā∗q(P,R) the closure of this set.



34 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

Proposition 3.1. Let R∈R. Then there exists p∈ΠΣ,R such that the map

λ �→ p(λ)E∗(λ)∈C∞(X : τ)

is holomorphic on an open neighborhhod of the set ā∗q(P,R). Moreover,

λ �→ p(λ)Ff(λ)∈ �C

is holomorphic on this neighborhood for all f∈C∞
c (X :τ).

Proof. We must prove, for each R, the existence of p∈ΠΣ,R such that λ �→
p(λ)E�(λ :x) is holomorphic on

{λ∈a
∗
qC |Re 〈λ, α〉>−R for α∈Σ+}.

It is known (from [5], see [8, Lemma 14]) that there exists p∈ΠΣ with this property. It
remains to be seen that the singularities of E�(λ :x) are along real root hyperplanes. The
main step is contained in the following lemma, in which notation is as in [9, §2].

Lemma 3.2. Let ξ∈M̂H . There exists, for each R∈R, a polynomial p∈ΠΣ,R

such that the map λ �→p(λ)j(P :ξ :λ)η∈C−∞(K :ξ) is holomorphic on a∗q(P,R), for each
η∈V (ξ).

Proof. See Appendix A. �

It follows immediately from Lemma 3.2 and [8, equation (25)] that E(ψ :λ) is singular
only along real root hyperplanes for all ψ∈�C. In order to establish the corresponding
result for the normalized Eisenstein integrals, we recall that the standard intertwining
operator A(Q′ :Q : ξ :λ) is singular only on real root hyperplanes for all Q,Q′∈P (see
[24, Theorem 6.6]). The same holds for the inverse of the operator (cf. [9, proof of
Lemma 20.3]). Moreover, by Lemma 3.2, also the operator B(Q′ :Q : ξ :λ)∈End V (ξ)
defined by [4, Proposition 6.1], as well as its inverse, is singular only along real root
hyperplanes (cf. also [9, proof of Lemma 20.5]). Finally, it then follows from [8, Lemma 3
and equations (47), (49)] that the normalized Eisenstein integral has only real root hyper-
plane singularities. This completes the proof of Proposition 3.1. �

Let π∈ΠΣ be the polynomial defined in [9, equation (8.1)]. It is characterized (up
to a constant multiple) by being minimal subject to the condition that λ �→π(λ)E∗(λ)
is holomorphic on a∗q(P, 0), and hence also on a∗q(P, ε) for some ε>0, cf. [9, Lemma 8.1].
Hence by Proposition 3.1 we have π∈ΠΣ,R. The map λ �→π(λ)Ff(λ) is holomorphic on
a∗q(P, ε) for all f∈C∞

c (X :τ).
The function λ �→E+(λ :x), defined in the previous section, has a singular set which

is similar to that of E∗(λ):
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Lemma 3.3. There exists, for each R∈R, a polynomial pR∈ΠΣ,R such that λ �→
pR(λ)E+(λ :x) is holomorphic on a neighborhood of ā∗q(P,R), for all x∈X+.

Proof. See [10, Theorem 9.1, Proposition 9.4]. �

4. Pseudo-wave packets

Let ϕ: a∗qC→�C. For η∈a∗q we define a Vτ -valued function on X+ by

Tη ϕ(x)= |W |
∫

η+ia∗
q

E+(λ :x)ϕ(λ) dλ, (4.1)

provided the integral converges. We shall see that this is the case when ϕ=Ff for
f∈C∞

c (X :τ). First we need an estimate of E+(λ :x) as a function of λ. For u∈U(g) and
f a smooth function on X, we denote by f(u;x) the value at x of the function obtained
from f by application of u from the left.

Lemma 4.1. Let R∈R and let pR be as in Lemma 3.3. There exists for each
u∈U(g) a constant d∈N with the following property. Let ω⊂ā∗q(P,R) and Ω⊂X+ be
compact sets. Then

sup
x∈Ω

λ∈ω+ia∗
q

(1+|λ|)−d‖pR(λ)E+(λ :u;x)‖<∞. (4.2)

Proof. By sphericality it suffices to prove this result for the case that Ω is contained
in Areg

q , the set of regular points in Aq. By the infinitesimal Cartan decomposition g=
k+aq+Ad(a)h, for a∈Areg

q , we may as well assume that u∈U(aq) (use [2, Lemma 3.2]).
For the present Ω and u, the function E+(λ :u; a), a∈Ω, may be computed by termwise
differentiation of the power series [10, equation (15)] that defines the functions ΦP,w(λ :a)
in (2.7). The coefficient Γν(λ) in this series is thus replaced by Γ′

ν(λ)=p(λ−ν)Γν(λ),
with p a polynomial depending on u. Let d be the degree of p; then there exists a constant
C>0 such that |p(λ−ν)|�C(1+|ν|)d(1+|λ|)d for all λ∈a∗qC and all ν∈N∆. It follows
that the coefficient Γ′

ν(λ) of the differentiated series satisfies an estimate analogous to
the estimate for Γν(λ) in [10, Theorem 7.4]. The desired estimate is now obtained as in
[10, Theorem 9.1]. �

Lemma 4.2. Let R∈R, let ω⊂a∗q be open and contained in a∗q(P,R) and let p∈
ΠΣ,R. Let ϕ be a meromorphic �C-valued function on ω+ia∗q with the following property :
The map λ �→p(λ)ϕ(λ)∈�C is holomorphic on ω+ia∗q and satisfies

sup
λ∈ω+ia∗

q

(1+|λ|)n‖p(λ)ϕ(λ)‖<∞ (4.3)
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for all n∈N. Let η∈ω with p(η) �=0, and assume in addition that pR(η) �=0, where pR is
as in Lemma 3.3. Then the integral in (4.1) converges absolutely. The Vτ -valued function
Tη ϕ on X+ is τ -spherical and smooth, and it is locally independent of η. Moreover,

DTη ϕ= Tη(µ(D)ϕ) (4.4)

for D∈D(G/H).

Proof. It follows from (4.2) and (4.3) that

sup
λ∈η+ia∗

q

(1+|λ|)n‖E+(λ :u;x)ϕ(λ)‖<∞ (4.5)

with a bound that is locally uniform in η. The convergence and the smoothness of (4.1)
follows immediately. The local independence on η results from a standard application of
Cauchy’s theorem, and (4.4) is a consequence of (2.8). �

In order to see that the Fourier transform of a compactly supported smooth function
satisfies the required estimates (4.3) we first recall the estimate for the Eisenstein integrals
in the following lemma. For M>0, let BM⊂aq be the closed ball of radius M , and let

XM =K exp BMH ⊂X

and C∞
M (X :τ)={f∈C∞

c (X :τ) | supp f⊂XM}.

Lemma 4.3. Let R∈R and let p be as in Proposition 3.1. Let u∈U(g). There
exists a constant N∈N such that

sup
x∈XM

λ∈a
∗
q(P,R)

(1+|λ|)−Ne−M |Re λ|‖p(λ)E∗(λ :u;x)‖<∞

for all M>0.

Proof. See [5, Proposition 10.3, Corollary 16.2] and [8, equation (52)]. �

Lemma 4.4. Let R∈R and let p∈ΠΣ,R be as in Proposition 3.1. There exists for
each M>0 and for each n∈N a continuous seminorm ν on C∞

M (X :τ) such that

‖p(λ)Ff(λ)‖� (1+|λ|)−neM |Re λ|ν(f) (4.6)

for all λ∈a∗q(P,R), f∈C∞
M (X :τ).

Proof. This follows from Lemma 4.3 in the same manner as [9, Proposition 8.3]. �
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Let ω⊂a∗q be open and bounded, and choose R∈R such that ω⊂a∗q(P,R). It follows
from Lemma 4.4 that the functions ϕ=Ff satisfy (4.3). Hence the results of Lemma 4.2
hold for these functions. Notice that it easily follows from (4.6) and (4.2) that f �→TηFf

is a continuous linear operator from C∞
c (X :τ) to C∞(X+ :τ), for generic η∈a∗q.

Let π∈ΠΣ be as in the text preceding Lemma 3.3. We define the space P(X :τ) as
the space of meromorphic functions ϕ: a∗qC→�C having the following properties (a)–(b).

(a) ϕ(sλ)=C�(s :λ)ϕ(λ) for all s∈W , λ∈a∗qC.
(b) There exists a constant ε>0 such that πϕ is holomorphic on a∗q(P, ε); moreover,

for every compact set ω⊂a∗q(P, ε)∩a∗q and all n∈N,

sup
λ∈ω+ia∗

q

(1+|λ|)n‖π(λ)ϕ(λ)‖<∞. (4.7)

Furthermore, for M>0, we define PM (X :τ) to be the subspace of P(X :τ) consisting
of the functions ϕ that also satisfy the following condition (c).

(c) For every strictly antidominant η∈a∗q there exist constants tη, Cη>0 such that

‖ϕ(λ)‖�Cη(1+|λ|)− dim aq−1etM |η|

for all t�tη and λ∈tη+ia∗q.
Notice that the Fourier transform F maps C∞

M (X :τ) into PM (X :τ), by (2.12) and
Lemma 4.4. It follows from Lemma 4.2 that if ϕ∈P(X :τ) then Tη ϕ is well defined for
all generic η in a∗q(P, 0)∩a∗q.

Lemma 4.5. Let ϕ∈P(X :τ). Then Tηϕ is defined for η regular and sufficiently
close to 0 in a∗q. Moreover, the wave packet (2.5) is defined and satisfies

Jϕ=
1

|W |
∑
s∈W

Tsη ϕ (4.8)

for η regular and sufficiently close to 0. If λ �→E+(λ :x)ϕ(λ) is regular along ia∗q, then
T0ϕ is defined and Jϕ=T0ϕ.

Proof. Fix R>0 and let pR be as in Lemma 3.3. Since pR∈ΠΣ,R there exists a
W -invariant open neighborhood ω of 0, such that (4.7) holds and pR has no zeros in
ω∩a∗regq . Moreover, by [9, Lemma 8.1(a)] we may assume that π has no zeros in ω. For
η∈ω∩a∗regq the pseudo-wave packets Tsη ϕ, s∈W , are well defined in view of (4.7) and
Lemma 4.2.

It follows from (2.5), the estimate [9, (8.2)] and Cauchy’s theorem that

Jϕ(x)=
∫

η+ia∗
q

E�(λ :x)ϕ(λ) dλ
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for η sufficiently close to 0. The result, (4.8), now easily follows from insertion of (2.10)
and (2.9) in this expression.

Moreover, if λ �→E+(λ :x)ϕ(λ) is regular along ia∗q, then it follows from (4.2) and
(4.7) that (4.5) holds uniformly for η in a neighborhood of 0. It then follows as in
Lemma 4.2 that Tη ϕ is defined and independent of η, for all η in a neighborhood of 0.
Hence Jϕ=T0ϕ follows from (4.8). �

Choose R<0 such that π(λ) �=0 for λ∈a∗q(P,R), and let η∈a∗q(P,R). Let ϕ∈P(X :τ).
We define T ϕ:=Tη ϕ and call this function on X+ the pseudo-wave packet formed by ϕ.
It is independent of the choices of R and η, by the statement of local independence in
Lemma 4.2.

Lemma 4.6. Let M>0 and ϕ∈PM (X :τ). The pseudo-wave packet T ϕ is a smooth
τ -spherical function on X+. The set {x∈X+ |T ϕ(x) �=0} is contained in XM .

Proof. The first statement is immediate from Lemma 4.2. Let x∈X+\XM . We claim
that T ϕ(x)=0. Let x=kawH, where k∈K, a∈A+

q , w∈W; then | log a|>M . Since the
inner product on a∗q is the dual to that on aq, we may fix η∈a∗q, strictly antidominant,
such that |η|=1 and η(log a)<−M . Then T ϕ=Ttη ϕ for t∈R sufficiently large. The
estimate

‖E+(tη+λ :x)‖�Catη, λ∈ ia∗q, t� 0,

follows from [10, Theorem 9.1]. Hence

‖T ϕ(x)‖� |W |
∫

tη+ia∗
q

Catη‖ϕ(λ)‖ dλ �C ′atηeMt,

by (c), and we conclude by taking the limit as t→∞ that T ϕ(x)=0. �

We can now state the main result of this paper, the inversion formula for the τ -
spherical Fourier transform.

Theorem 4.7. Let f∈C∞
c (X :τ). Then T Ff(x)=f(x) for all x∈X+.

The proof will be given in the course of the next five sections. In the proof we shall
use the following result, which is a consequence of Theorem 2.1 and its proof.

Lemma 4.8. There exists D0∈D(X) such that det µ(D0) �=0 and such that

D0T ϕ(x)=D0Jϕ(x) (4.9)

for all x∈X+, ϕ∈P(X :τ). For every M>0 and every ϕ∈PM (X :τ), the function D0T ϕ

on X+ has a smooth extension to a function in C∞
M (X :τ); the Fourier transform of this
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extension is given by
FD0T ϕ=µ(D0)ϕ. (4.10)

Moreover, for every f∈C∞
c (X :τ) we have D0T Ff=D0f .

Proof. Let p0∈ΠΣ,R be given by Lemma 3.3 with R=0, and let D0∈Dp0π, cf.
[9, Definition 10.3 and Corollary 10.4]. Then detµ(D0) �=0 and p0π divides µ(D0) in
S(aq)⊗End(�C). Moreover, let ϕ∈P(X :τ) and put ϕ̃=µ(D0)ϕ. Then ϕ̃∈P(X :τ) (use
[9, equation (5.13)]), and E+(λ :x)ϕ̃(λ) satisfies an estimate of the form (4.5) for all
η∈ā∗q(P, 0)∩a∗q. We infer as in Lemma 4.2 that Tη ϕ̃ is defined and equal to T ϕ̃ for all
η∈ā∗q(P, 0)∩a∗q. By Lemma 4.5 we conclude then that T ϕ̃=J ϕ̃ on X+, and (4.9) follows
from (2.6), (4.4).

By a standard application of Cauchy’s integral formula the restriction of ϕ to the
Euclidean space ia∗q is a �C-valued Schwartz function. Therefore, by [9, Theorem 16.4],
the wave packet Jϕ belongs to the Schwartz space C(X :τ) (see [9, §6]) and its Fourier
transform FJϕ equals ϕ by [9, Theorem 16.6]. Assume now that ϕ∈PM (X :τ). Then
D0T ϕ has a smooth extension to a function in C∞

M (X :τ), by (4.9) and Lemma 4.6.
Moreover,

FD0T ϕ=FD0Jϕ=µ(D0)FJϕ=µ(D0)ϕ,

where the second equality is a consequence of [9, Lemma 6.2]. This establishes (4.10).
Let f∈C∞

M (X :τ) and put ϕ=Ff . Then ϕ∈PM (X :τ), and it follows from the pre-
vious statements that D0T Ff∈C∞

M (X :τ) and FD0T Ff=µ(D0)Ff=F(D0f). Since F
is injective (cf. Theorem 2.1), the final statement follows. �

Corollary 4.9. Let M>0 and ϕ∈PM (X :τ). Assume that T ϕ has a smooth
extension to X. Then this extension belongs to C∞

M (X :τ) and its Fourier transform is
given by FT ϕ=ϕ.

Proof. It follows from Lemma 4.6 that the extension of T ϕ belongs to C∞
M (X :τ).

Hence its Fourier transform FT ϕ makes sense, and we obtain from (4.10) that
µ(D0)FT ϕ=µ(D0)ϕ. Since det µ(D0) �=0 it follows immediately that FT ϕ=ϕ. �

Corollary 4.10. Let f∈C∞
c (X :τ) and assume that T Ff has a smooth extension

to X. Then this extension equals f .

Proof. There exists a constant M>0 such that f∈C∞
M (X :τ). Now Ff∈PM (X :τ),

and hence it follows from Corollary 4.9 that T Ff∈C∞
c (X :τ) and that FT Ff=Ff .

Since F is injective we conclude that T Ff=f . �

The preceding corollaries have been established without use of Theorem 4.7. On
the other hand, it follows from the conclusion of this theorem that T Ff really has a
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smooth extension to X, for all f∈C∞
c (X :τ). Thus we obtain from Theorem 4.7 and

Corollary 4.9 the following (weak) Paley–Wiener theorem:

Corollary 4.11. Let M>0 and let P ′
M (X :τ) denote the set of functions ϕ∈

PM (X :τ) for which T ϕ has a smooth extension to X. The Fourier transform F maps
C∞

M (X :τ) bijectively onto P ′
M (X :τ); the inverse map is given by T followed by the

extension to X.

5. Residue operators

In order to study closer the pseudo-wave packets T Ff we apply the residue calculus
from [11]. We first recall some basic notions from this reference. A subset of V =a∗q
of the form Hα,s :={λ∈a∗q | 〈α, λ〉=s} for some α∈a∗q\{0} and s∈R is called an affine
hyperplane; if α∈Σ it is called an affine root hyperplane. A locally finite collection of
affine hyperplanes in V is called an affine hyperplane configuration; if it consists of affine
root hyperplanes it is said to be Σ-admissible. Moreover, if its elements are given as
above, with α∈Σ+ and with a uniform lower bound on s, then it is said to be P -bounded.

Let H be an affine hyperplane configuration in a∗q, and let d:H→N be a map. For
any compact set ω⊂a∗q we denote by πω,d the polynomial on a∗qC given by the product
of the functions (〈α, · 〉−s)d(Hα,s), where Hα,s is any hyperplane that belongs to H and
meets ω. We then denote by M(a∗q,H, d) the space of meromorphic functions ϕ: a∗qC→C
for which πω,dϕ is holomorphic on a neighborhood of ω+ia∗q, for all compact sets ω⊂a∗q.
Furthermore, we denote by P(a∗q,H, d) the subspace of those ϕ∈M(a∗q,H, d) for which

sup
λ∈ω+ia∗

q

(1+|λ|)n|πω,d(λ)ϕ(λ)|<∞

for all ω and all n∈N. The unions over all d:H→N of these spaces are denoted

M(a∗q,H) :=
⋃
d

M(a∗q,H, d), P(a∗q,H) :=
⋃
d

P(a∗q,H, d).

Let L be an affine subspace of a∗q, that is, L=λ+VL where λ∈a∗q and VL is a linear
subspace of V =a∗q. The set L∩V ⊥

L consists of a single point c(L), called the central point
in L. The map λ �→c(L)+λ is a bijection of VL onto L; via this map we can view L as a
linear space. The set

HL = {H∩L |H∈H, ∅� H∩L � H}

is an affine hyperplane configuration in L. We may then define the sets M(L,HL) and
P(L,HL) similarly as M(a∗q,H) and P(a∗q,H) above; they consist of functions that are
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meromorphic on the complexification LC=c(L)+(VL)C of L. If d:H→N we denote by
qL,d the polynomial on a∗qC given by the product of the functions (〈α, · 〉−s)d(Hα,s), where
Hα,s is any hyperplane that belongs to H and contains L. The restriction (qL,dϕ)|LC

then makes sense and belongs to M(L,HL), for all ϕ∈M(a∗q,H, d). More generally, a
linear map

R:M(a∗q,H)→M(L,HL)

is called a Laurent operator if there exists, for each d:H→N, an element ud in the
symmetric algebra S(V ⊥

L ) of V ⊥
L such that, for every ϕ∈M(a∗q,H, d), the image Rϕ is

the restriction to LC of ud(qL,dϕ). The space of Laurent operators from M(a∗q,H) to
M(L,HL) is denoted Laur(a∗q, L,H). A Laurent operator R∈Laur(a∗q, L,H) automati-
cally maps P(a∗q,H) into P(L,HL) (cf. [11, Lemma 1.10]).

Let H denote the set of affine hyperplanes in a∗q along which λ �→E+(λ :x) or λ �→
E∗(λ :x) is singular, for some x (in X+ and X, respectively). It follows from Proposi-
tion 3.1 and Lemma 3.3 that H is a P -bounded Σ-admissible hyperplane configuration.
Moreover, by Lemmas 4.1 and 4.4 the functions λ �→E+(λ :x)Ff(λ), where f∈C∞

c (X :τ)
and x∈X+, belong to the space P(a∗q,H)⊗Vτ .

Let R denote the set of root spaces in aq, that is, the set of all subspaces b⊂aq of
the form b=α−1

1 (0)∩ ...∩α−1
l (0) with α1, ..., αl∈Σ, and for b∈R let

sing(b,Σ)=
⋃

α∈Σ
α|b �=0

b∩α−1(0), reg(b,Σ)= b\sing(b,Σ).

Furthermore, let P(b) denote the set of chambers in b, that is, the connected components
of reg(b,Σ), and let P=

⋃
b∈RP(b). There is a natural 1-1 correspondence between the

set Pσ of all σθ-stable parabolic subgroups of G, containing Aq, and P. Thus, a parabolic
subgroup Q∈Pσ with σ-split component exp aQq corresponds to the element a

+
Qq∈P(aQq)

on which its roots are positive (in particular, elements in Pmin
σ correspond to chambers

in aq).
Let ∆⊂Σ denote the set of simple roots for Σ+, and let F⊂∆. Let also aFq=⋂

α∈F α−1(0)∈R, and let a
+
Fq∈P(aFq) be the chamber on which the roots in ∆\F are

positive. This chamber corresponds to a σθ-stable standard parabolic subgroup which
we denote PF (see [4, §2]). Furthermore, we denote by WF the subgroup of W generated
by the reflections in the elements of F , and by W F the set {s∈W | s(F )⊂Σ+}, which is
a set of representatives for the quotient W/WF .

For b∈R we identify the dual space b∗ with a subspace of a∗q by means of the
extended Killing form B.

Let t be a W -invariant residue weight for Σ, that is, a map from P to [0; 1] such
that

∑
Q∈P(a) t(Q)=1 for all a∈R, and t(wQ)=t(Q) for all Q∈P, w∈W . Starting from



42 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

the data Σ, P, t we defined, in [11, §3.4], for each subset F⊂∆ and every λ∈a∗⊥Fq a
universal Laurent operator ResP,t

λ+a∗
Fq

. This operator encodes the procedure of taking a
residue along the affine subspace λ+a∗FqC of a∗qC; it induces a Laurent operator (denoted
by the same symbol) ResP,t

λ+a∗
Fq
∈Laur(a∗q, λ+a∗Fq,H′), for each Σ-admissible hyperplane

configuration H′. Define

Λ(F ) := {λ∈a
∗⊥
Fq |ResP,t

λ+a∗
Fq

(ϕ�s) �=0 for some s∈WF, ϕ∈M(a∗q,H)}. (5.1)

Then by [11, Corollary 3.18] this set is finite and contained in −R+F, the negative of the
cone spanned by F. Moreover, from the same reference it follows, for η∈a∗q sufficiently
antidominant and for εF a point in the chamber a

∗+
Fq sufficiently close to the origin (and

ε∆=0), that∫
η+ia∗

q

ϕ(λ) dλ =
∑
F⊂∆

t(a+
Fq)

∑
λ∈Λ(F )

∫
λ+εF +ia∗

Fq

ResP,t
λ+a∗

Fq

( ∑
s∈W F

ϕ�s

)
dµF (5.2)

for all ϕ∈P(a∗q,H). Here dλ denotes the choice of Lebesgue measure on the real lin-
ear space ia∗q, specified in [9, §3], as well as its translation to η+ia∗q. Furthermore,
dµF :=dµa∗

Fq
denotes a compatible choice of Lebesgue measure on the subspace ia∗Fq

of ia∗q, as well as its translation to λ+εF +ia∗Fq. The required compatibility is as follows.
Let (iµ, iν) �→cB(µ, ν) be the positive definite inner product on the real linear space ia∗q,
with respect to which the normalized Lebesgue measure is dλ. Then dµF is normal-
ized with respect to the restriction of this inner product. In particular, dλ=dµ∅=dµa∗

q
.

Moreover, if a∆q={0}, so that λ+ε∆+ia∗∆q just consists of the point λ, then the integral∫
λ+ε∆+ia∗

∆q
dµ∆ in (5.2) represents evaluation in λ, for each λ∈Λ(∆).

Applying the identity (5.2) on components we generalize it to Vτ -valued functions;
hence, in particular, the identity holds for ϕ(λ)=E+(λ :x)Ff(λ), where f∈C∞

c (X :τ)
and x∈X+. We conclude

T Ff(x)= |W |
∑
F⊂∆

t(a+
Fq)

∑
λ∈Λ(F )

∫
λ+εF +ia∗

Fq

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E+(s· :x)Ff(s· )
)

dµa∗
Fq

.

(5.3)
The estimate that ensures the convergence of the integral over λ+εF +ia∗Fq follows
from estimates (4.2), (4.6) by general properties of the Laurent operators (see [11,
Lemma 1.11]): Let n∈N. There exists, for each u∈U(g), a constant C>0 such that

‖ResP,t
λ+a∗

Fq
(E+(s· :u;x)Ff(s· ))(λ+εF +iν)‖�C(1+|ν|)−n (5.4)

for all ν∈a∗Fq, λ∈Λ(F ), s∈WF . The constant C is locally uniform in x∈X+. It follows
that the integral over λ+εF +ia∗Fq in (5.3) is a smooth function of x. The constant C is
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also locally uniform in εF and in f∈C∞
c (X :τ) (cf. (4.6)). Thus, each integral in (5.3)

represents a continuous linear map from C∞
c (X :τ) to C∞(X+ :τ).

We now define for each F⊂∆ a continuous linear operator Tt
F from C∞

c (X :τ) to
C∞(X+ :τ) by

Tt
F f(x)= |W | t(a+

Fq)
∑

λ∈Λ(F )

∫
λ+εF +ia∗

Fq

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E+(s· :x)Ff(s· )
)

dµa∗
Fq

; (5.5)

as mentioned convergence follows from (5.4). Then

T Ff =
∑
F⊂∆

Tt
F f. (5.6)

The operator Tt
F is independent of the choice of εF (provided the latter is sufficiently

close to 0). We also define the kernel Kt
F (ν :x :y)∈End(Vτ ) for ν∈a∗FqC, x∈X+, y∈X by

Kt
F (ν :x :y)=

∑
λ∈Λ(F )

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E+(s· :x)�E∗(s· : y)
)

(λ+ν). (5.7)

Clearly this is smooth as a function of (x, y)∈X+×X and meromorphic as a function
of ν. Note that by (2.9) and (2.11) we can rewrite the expression (5.7) as

Kt
F (ν :x :y)=

∑
λ∈Λ(F )

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E+,s( · :x)�E∗( · : y)
)

(λ+ν). (5.8)

Lemma 5.1. Let F⊂∆, u∈U(g), x∈X+ and f∈C∞
c (X :τ). Then

sup
ν∈ia∗

Fq

(1+|ν|)n
∥∥∥∫

X

Kt
F (εF +ν :u;x :y)f(y) dy

∥∥∥ <∞ (5.9)

for each n∈N. The bound is locally uniform in x, εF and f . Moreover,

Tt
F f(u;x)= |W | t(a+

Fq)
∫

εF +ia∗
Fq

∫
X

Kt
F ( · :u;x :y)f(y) dy dµa∗

Fq
. (5.10)

Proof. Let R∈R and let ω⊂a∗q(P,R) be compact. It follows from Lemmas 4.1 and
4.3 that there exist N∈N and C>0 such that

‖pR(λ)p(λ)E+(λ :u;x)�E∗(λ :y)‖�C(1+|λ|)N

for all λ∈ω+ia∗q. Moreover, this estimate holds locally uniformly in x∈X+ and y∈X.
From [11, Lemma 1.11] we obtain a similar estimate for all derivatives with respect to λ

of the expression inside ‖ · ‖. This implies that for f∈C∞
c (X :τ) the expression∫

X

pR(λ)p(λ)E+(λ :u;x)�E∗(λ :y)f(y) dy
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can be differentiated with respect to λ before the integration over y. It follows that∫
X

Kt
F (ν :u;x :y)f(y) dy =

∑
λ∈Λ(F )

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E+(s· :u;x)�Ff(s· )
)

(λ+ν), (5.11)

and (5.9) is obtained from (5.4), with the stated uniformity. It follows from (5.4) that
differentiations with respect to x can be carried under the integral sign in (5.5). Then
(5.10) follows from this equation and (5.11). �

Consider the operator Tt
F for F =∅. We have a∅q=aq and W ∅=W . Since all the

chambers of aq are conjugate, a Weyl invariant residue weight necessarily takes the value
1/|W | on each chamber. Moreover Λ(∅)={0} and ResP,t

a? q
is the identity operator. Hence

Tt
∅f(x)=

∫
ε? +ia∗

q

∑
s∈W

E+(sλ :x)Ff(sλ) dλ =
1

|W |
∑
s∈W

Tsε? Ff(x)=JFf(x) (5.12)

by Lemma 4.5, since the expression is independent of the choice of ε∅. Moreover, by
(2.10) and (2.11),

Kt
∅(ν :x :y)=

∑
s∈W

E+(sν :x)�E∗(sν :x)=E�(ν :x)�E∗(ν :y). (5.13)

Remark 5.2. Consider the special case when G is compact. In this case K=G and
aq={0}. It is easily seen from the definitions that �C=C∞(X :τ) and that the Eisen-
stein integral E(x)=E�(x): �C→Vτ is the evaluation at x, for each x∈X. In particular,
E(e) is an isomorphism of �C onto V H

τ . It follows easily that E(e)�E∗(e)∈End(Vτ ) is
the orthogonal projection PH :Vτ →V H

τ . Then E(x)�E∗(y)=τ(x)�PH �τ(y−1) for x, y∈G

by sphericality, and it follows that the kernel Kt
F (x :y) for F =∆=∅ is given by the same

expression Kt
F (x :y)=τ(x)�PH �τ(y−1).

6. Some properties of the residue operators

Let F⊂∆ and let t be a W -invariant residue weight. We shall determine some further
properties of the operator Tt

F and its kernel Kt
F .

Lemma 6.1. Let ω⊂a∗Fq be bounded. There exists a polynomial q∈ΠΣ,R with non-
trivial restriction to a∗Fq, for every u, u′∈U(g), a number N∈N, and for all x∈X+, y∈X

a constant C>0, locally uniform in x, y, such that

‖q(ν)Kt
F (ν :u;x :u′; y)‖�C(1+|ν|)N

for all ν∈ω+ia∗Fq.

Proof. This follows from Lemmas 4.1, 4.3 and [11, Lemma 1.11]. �
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Lemma 6.2. Let F,F ′⊂∆ and assume that aF ′q=waFq for some w∈W . Then

Kt
F ′(wν :x :y)=Kt

F (ν :x :y) (6.1)

for all generic ν∈a∗FqC, and all x∈X+, y∈X.

Proof. The set wF is a basis for the root system spanned by F ′; hence there exists
w′∈WF ′ such that w′wF =F ′. Since w′ acts trivially on aF ′q we may thus assume that
wF =F ′. Notice that then s �→sw−1 is a bijection of WF onto WF ′

. It follows from
[11, Proposition 3.10] that

ResP,t
wλ+ia∗

F ′q
(ϕ�w−1)=ResP,t

λ+ia∗
Fq

(ϕ)�w−1

for all λ∈a∗⊥Fq and ϕ∈M(a∗q,H). Hence Λ(F ′)=wΛ(F ), and (6.1) follows easily from
(5.7). �

Lemma 6.3. Let F⊂∆ and let ν∈a∗FqC be such that Kt
F ( · :x :y) is regular at ν.

The set
I := {D∈D(X) |DKt

F (ν : · :y)= 0, ∀y∈X}

is an ideal in D(X) of finite codimension.

Proof. From (2.8) we obtain

DKt
F (ν :x :y)=

∑
λ∈Λ(F )

ResP,t
λ+a∗

Fq
(E+( · :x)�µ(D : · )�E∗( · : y))(λ+ν)

for the action of D in the variable x. The endomorphisms µ(D :λ) of �C are simultane-
ously diagonalizable for all D∈D(X), λ∈a∗qC (see [8, Lemma 4]). Let γi(D :λ), i=1, ...,m,
be the eigenvalues, and let Ii,λ⊂D(X) for i=1, ...,m, λ∈a∗qC, be the ideal generated by
all elements of the form D−γi(D :λ) where D∈D(X). This is a finitely generated ideal of
codimension 1. Let λ∈Λ(F ). If k is sufficiently large then the polynomial µ(D) vanishes
at λ+ν to sufficiently high order, for D∈

∏m
i=1(Ii,λ+ν)k. Hence, for sufficiently large k,

ResP,t
λ+a∗

Fq
(E+( · :x)�µ(D : · )�E∗( · : y))(λ+ν)= 0,

and thus I⊃
∏

λ∈Λ(F )

∏m
i=1(Ii,λ+ν)k. The latter ideal is cofinite, since it is a product of

finitely generated cofinite ideals, so I is cofinite. �

Corollary 6.4. Let F , ν and I be as in Lemma 6.3. A function in C∞(X+ :τ)
or C∞(X :τ) that is annihilated by I is real-analytic.

Proof. This is a standard application of the elliptic regularity theorem (see [27,
p. 310]). �
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In particular, for generic ν, the functions x �→Kt
F (ν :x :y) (for y∈X) are real-analytic

on X+. A similar argument shows that y �→Kt
F (ν :x :y) is real-analytic on X (for x∈X+).

Let C∞
c (X+ :τ) be the space of functions in C∞(X+ :τ) that are supported by a

compact subset of X+. The rest of this section is devoted to the determination of the
adjoint of the operator Tt

F :C∞
c (X :τ)→C∞(X+ :τ) with respect to the sesquilinear form

〈f |g〉 :=
∫

X+

〈f(x)|g(x)〉 dx

on C∞
c (X :τ)×C∞

c (X+ :τ). The following definitions and lemmas will be helpful.
Define

E∗
+(λ :x)=E+(−λ̄ :x)∗

for x∈X+, in analogy with (2.3). Furthermore, let

E∗
+,s(λ :x)=E+,s(−λ̄ :x)∗ =C�(s :λ)−1

�E∗
+(sλ :x),

cf. (2.9) and (1.8); then
E∗(λ :x)=

∑
s∈W

E∗
+,s(λ :x) (6.2)

for x∈X+.

Lemma 6.5. Let F⊂∆ and let ν∈a∗FqC be generic. Then

Kt
F (ν :x :y)∗ =

∑
λ∈Λ(F )

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E�(−s· : y)�E∗
+(−s· :x)

)
(λ+ν̄) (6.3)

=
∑

λ∈Λ(F )

ResP,t
λ+a∗

Fq

(
E�(− · : y)�

∑
s∈W F

E∗
+,s(− · :x)

)
(λ+ν̄) (6.4)

for x∈X+, y∈X.

Proof. The Laurent operators ResP,t
λ+a∗

Fq
are real (see [11, Theorem 1.13]). It follows

easily that
ResP,t

λ+a∗
Fq

(ϕ)∨=ResP,t
λ+a∗

Fq
(ϕ∨) (6.5)

for all ϕ∈M(a∗q,H), where ϕ∨: ν �→ϕ(ν̄). The identity (6.5) generalizes to End(Vτ )-
valued functions ϕ if we replace the definition of ϕ∨ by ϕ∨: ν �→ϕ(ν̄)∗. We apply (6.5)
with

ϕ(ν)=
∑

s∈W F

E+(sν :x)�E∗(sν :y).

Then
ϕ∨(ν)=

∑
s∈W F

E�(−sν :y)�E∗
+(−sν :x);
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for λ∈Λ(F ) we thus obtain

[ResP,t
λ+a∗

Fq
(ϕ)(λ+ν)]∗ =ResP,t

λ+a∗
Fq

(ϕ∨)(λ+ν̄).

Applying this termwise to (5.7) we obtain (6.3), and using (2.11) we then obtain (6.4). �

For f∈C∞
c (X+ :τ) we define, in analogy with (2.4),

F+f(λ)=
∫

X+

E∗
+(λ :x)f(x) dx∈ �C, (6.6)

for generic λ∈a∗qC. Then F+f is a �C-valued meromorphic function on a∗qC.

Lemma 6.6. Let R∈R and let pR be as in Lemma 3.3. Let ω⊂a∗q(P,R) be compact.
Then

sup
λ∈ω+ia∗

q

(1+|λ|)n‖pR(λ)F+f(−λ)‖<∞

for all n∈N, f∈C∞
c (X+ :τ).

Proof. This follows from Lemma 4.1 in the same manner as [9, Proposition 8.3]. �

Lemma 6.7. Let F⊂∆, and let ω and q be as in Lemma 6.1. Let u∈U(g), n∈N.
Then

sup
ν∈ω+ia∗

q

(1+|ν|)n|q(ν)|·
∥∥∥∫

X+

Kt
F (ν :x :u; y)∗g(x) dx

∥∥∥ <∞ (6.7)

for every g∈C∞
c (X+ :τ) and all y∈X, with a bound that is locally uniform in g and y.

If g∈C∞
c (X+ :τ), then the function

y �→St
F g(y) := |W | t(a+

Fq)
∫
−εF +ia∗

Fq

∫
X+

Kt
F ( · :x :y)∗g(x) dx dµa∗

Fq
∈Vτ (6.8)

belongs to C∞(X :τ) and is independent of the choice (sufficiently close to 0) of εF .

Proof. Let n∈N and u∈U(g). In analogy with (5.4) it follows from Lemmas 4.3
and 6.6 that

‖q(ν)ResP,t
λ+a∗

Fq
(E�(−s· :u; y)�F+g(−s· ))(λ+ν)‖�C(1+|ν|)−n (6.9)

for all ν∈ω+ia∗Fq, λ∈Λ(F ), s∈WF, with a constant C locally uniform in g∈C∞
c (X+ :τ)

and y∈X. From Lemma 6.5 we obtain, as in the proof of Lemma 5.1,∫
X+

Kt
F (ν :x :y)∗g(x) dx=

∑
λ∈Λ(F )

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E�(−s· : y)�F+g(−s· )
)

(λ+ν̄),

and the estimate (6.7) follows from (6.9). The final statement of the lemma is an imme-
diate consequence. �

Let F⊂∆ and let F ′⊂∆ be given by F ′=−w0F , where w0 denotes the longest
element in W (with respect to ∆). Then −a

+
Fq=w0a

+
F ′q. Recall that a residue weight

t is called even if t(Q)=t(−Q) for all Q∈P. If t is even (and Weyl invariant) then
t(a+

Fq)=t(a+
F ′q).
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Lemma 6.8. Let F⊂∆ and F ′=−w0F . Assume that t is even (in addition to being
W -invariant). Define St

F ′ as in Lemma 6.7. Then

〈Tt
F f |g〉= 〈f |St

F ′g〉

for all f∈C∞
c (X :τ) and g∈C∞

c (X+ :τ).

Proof. By (5.9), (5.10) and Fubini’s theorem,

〈Tt
F f |g〉= |W | t(a+

Fq)
∫

X+

∫
εF +ia∗

Fq

∫
X

〈Kt
F (ν :x :y)f(y) |g(x)〉 dy dν dx

= |W | t(a+
Fq)

∫
εF +ia∗

Fq

∫
X+

∫
X

〈Kt
F (ν :x :y)f(y) |g(x)〉 dy dx dν.

(6.10)

Similarly, by (6.8) and (6.7),

〈f |St
F ′g〉= |W | t(a+

F ′q)
∫

X

∫
−εF ′+ia∗

F ′q

∫
X+

〈f(y) |Kt
F ′(ν′ :x :y)∗g(x)〉 dx dν′dy

= |W | t(a+
F ′q)

∫
−εF ′+ia∗

F ′q

∫
X

∫
X+

〈f(y) |Kt
F ′(ν′ :x :y)∗g(x)〉 dx dy dν′.

We have aF ′q=w0aFq, and we may assume that −εF ′=w0εF . Hence by the change of
variables ν′=w0ν and by Lemma 6.2,

〈f |St
F ′g〉= |W | t(a+

Fq)
∫

εF +ia∗
Fq

∫
X

∫
X+

〈Kt
F (ν :x :y)f(y) |g(x)〉 dx dy dν. (6.11)

Finally, the expressions (6.10) and (6.11) are equal, since the order of the inner integrals
can be interchanged by continuity of the integrands, cf. Lemma 6.1. �

7. Main results

With the notation introduced in §5 we can rewrite our main result as follows. By (5.6)
the following theorem is equivalent with Theorem 4.7.

Theorem 7.1. Let t be a W -invariant residue weight for Σ. Then

f(x)=
∑
F⊂∆

Tt
F f(x) (7.1)

for all f∈C∞
c (X :τ) and x∈X+.

When stated as in (7.1) the inversion formula depends on the choice of a residue
weight. We shall see in [13] how this dependence can be eliminated from the formula.

The proof of Theorem 7.1 is based on the following result, which is the second main
result of our paper.
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Theorem 7.2. Let t be a W -invariant even residue weight for Σ and let F⊂∆.
The End(Vτ )-valued kernel defined in (5.7) satisfies the following property of symmetry :

Kt
F (ν :x :y)∗ =Kt

F (−ν̄ :y :x) (7.2)

for all x, y∈X+ and generic ν∈a∗FqC.

For F =∅ this result is a direct consequence of (5.13) and (2.3). For the case of a
general set F it will be proved in the course of the following two sections.

The symmetry of the kernel Kt
F is related to a similar property of symmetry for the

operator Tt
F . The following lemma will be used in an inductive argument in the proof of

Theorem 7.2.

Lemma 7.3. Let t be a W -invariant even residue weight for Σ, and let F⊂∆.
Assume that Kt

F is symmetric, i.e. (7.2) holds for x, y∈X+ and ν∈a∗FqC generic. Then
the following holds. Let g∈C∞

c (X+ :τ).
(i) The function x �→Tt

F g(x), X+→Vτ , extends to a smooth τ -spherical function
on X.

(ii) Let F ′=−w0F⊂∆. Then x �→Tt
F ′g(x) extends to a smooth τ -spherical function

on X, and 〈Tt
F f |g〉=〈f |Tt

F ′g〉 for all f∈C∞
c (X :τ).

Later (after Theorem 7.2 has been proved) we shall see that (i), (ii) actually hold
with g∈C∞

c (X :τ) (see Corollary 10.11).

Proof. It follows from (7.2) that the operator St
F defined in Lemma 6.7 is identical

with the restriction of Tt
F to C∞

c (X+ :τ) (apply the substitution of variables ν→−ν̄ in
the outer integral). Hence (i) follows from this lemma. Notice that the symmetry of Kt

F

expressed in (7.2) implies that Kt
F ′ satisfies the same kind of symmetry (by Lemma 6.2),

and hence (i) holds for Tt
F ′g as well. Now (ii) follows from Lemma 6.8. �

We shall now derive Theorem 7.1 from Theorem 7.2.

Proof of Theorem 7.1. We assume that Theorem 7.2 holds. We see from (5.6) that
Theorem 7.1 is equivalent with Theorem 4.7, in which the residue weight t is absent, and
we may therefore assume that t is even (cf. [11, Example 3.3]).

Let first f∈C∞
c (X+ :τ). Since (7.2) holds by assumption, it follows by application

of Lemma 7.3 (i) that Tt
F f∈C∞(X :τ) for all F⊂∆. Hence T Ff∈C∞(X :τ) by (5.6),

and Corollary 4.10 shows that T Ff=f .
Let now f∈C∞

c (X :τ), and let g∈C∞
c (X+ :τ) be arbitrary. Then from (7.2) together

with Lemma 7.3 (ii) it follows that 〈Tt
F f |g〉=〈f |Tt

F ′g〉. Since F �→F ′ is a bijection
of the set of subsets of ∆, we conclude by summation and application of (5.6) that
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〈T Ff |g〉=〈f |T Fg〉. The expression on the right-hand side of the latter equation equals
〈f |g〉 by the first part of the proof. We conclude (cf. [9, Lemma 11.3]) that T Ff=f

on X+. �

In the proof of Theorem 7.2 we shall need the reformulation of (7.2) given in the
following lemma.

Lemma 7.4. Let x, y∈X+ and F⊂∆. Let ν∈a∗FqC be generic (or more precisely,
such that Kt

F (ν :x :y) and Kt
F (−ν̄ :y :x) are both regular at ν). Then (7.2) holds if and

only if ∑
λ∈Λ(F )

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E+,s( · :x)�E∗( · : y)
)

(λ+ν)

=
∑

λ∈Λ(F )

ResP,t
λ+a∗

Fq

(
E�(− · :x)�

∑
s∈W F

E∗
+,s(− · : y)

)
(λ−ν).

(7.3)

In particular, if F =∆ and a∆q={0}, then this identity simplifies to the following identity
in Vτ : ∑

λ∈Λ(∆)

ResP,t
λ (E+( · :x)�E∗( · : y))=

∑
λ∈Λ(∆)

ResP,t
λ (E�(− · :x)�E∗

+(− · : y)). (7.4)

Proof. By means of (5.8) and (6.4) the two sides of (7.3) are identified as Kt
F (ν :x :y)

and Kt
F (−ν̄ :y :x)∗, respectively. For F =∆ we have W F ={1}, so that (7.3) simplifies

to (7.4). �

Lemma 7.5. Let x, y∈X+, F⊂∆. Let Λ be any finite subset of a∗⊥Fq containing Λ(F ).
Then the identity (7.3) is equivalent to each of the identities resulting from it by replacing
Λ(F ) by Λ on either one or both sides.

Proof. It suffices to show that the residues

ResP,t
λ+a∗

Fq
(E+,s( · :x)�E∗( · : y))

and
ResP,t

λ+a∗
Fq

(E�(− · :x)�E∗
+,s(− · : y))

vanish for λ∈a∗⊥Fq\Λ(F ) and s∈WF. We note that

E+,s(µ :x)�E∗(µ : y)=E+(sµ :x)�E∗(sµ : y)

and
E�(−µ :x)�E∗

+,s(−µ :y)= (E+(sµ̄ :x)�E∗(sµ̄ :y))∗.

It is easily seen that the functions µ �→E+(µ :x)�E∗(µ :y) and µ �→(E+(µ̄ :x)�E∗(µ̄ :y))∗

both belong to M(a∗q,H)⊗End(Vτ ), with H defined as in the beginning of §5. The
assertion now follows from the definition of Λ(F ), see (5.1). �
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8. Application of an asymptotic result

In this section we shall apply the theory of [12], as outlined in Appendix B, in order
to prove the following Proposition 8.2, which will be crucial for the induction in the
following section.

In order to prepare for the mentioned induction we must introduce some notation.
Let Q=MQAQNQ∈Pσ with the indicated Langlands decomposition. For each element
v∈NK(aq) we consider the symmetric space

XQ,v =MQ/MQ∩vHv−1;

this is a reductive symmetric space of Harish-Chandra’s class, and its vectorial part is
trivial. If F⊂∆ and Q is the corresponding standard σ-parabolic subgroup PF , then
we write MF =MQ and XF,v=XQ,v. In particular, P∅ is the fixed σ-minimal parabolic
subgroup P , and X∅,v is the compact symmetric space M/M∩vHv−1.

Let F⊂∆ be fixed. For the symmetric space XF,v the role of aq is played by
the orthocomplement a⊥Fq of aFq in aq, that is, this is a maximal abelian subspace
of mF ∩p∩Ad v(q). As before we identify the elements of the dual a∗⊥Fq with the linear
forms on aq that vanish on aFq. Then Σ+

F =Σ+∩a∗⊥Fq is a positive system for Σ(a⊥Fq,mF ),
and F is the corresponding set of simple roots. We denote by ∗P the parabolic subgroup
MF ∩P of MF ; it is the analog for XF,v of P . In the following, when we consider
Eisenstein integrals on XF,v, we relate them to Σ+

F and ∗P , and consider these latter
data as fixed. Similarly, the open chamber a

⊥+
Fq is defined relative to Σ+

F .

As in [8, §8] we fix a set WF ⊂NMF ∩K(aq) of representatives for the two-sided
quotient ZMF ∩K(aq)\NMF ∩K(aq)/NMF ∩K∩H(aq). The set WF is the analog for XF =
MF /MF ∩H of the set W⊂NK(aq); we recall that the latter set has been chosen as a set
of representatives for ZK(aq)\NK(aq)/NK∩H(aq) (or, equivalently, for W/WK∩H). We
define

�CF =
⊕

w∈WF

C∞(M/M∩wHw−1 : τM ),

where τM =τ |M∩K . Then �CF is the analog for XF of the space �C, which, we recall, is
given by

�C =
⊕

w∈W
C∞(M/M∩wHw−1 : τM ). (8.1)

In particular, the Eisenstein integrals on XF , E(XF :ψ :λ)∈C∞(XF : τ |MF ∩K), are para-
metrized by ψ∈�CF and λ∈a∗⊥Fq.

More generally, for each v∈NK(aq) we fix a set WF,v⊂NMF ∩K(aq) of representatives
for ZMF ∩K(aq)\NMF ∩K(aq)/NMF ∩K∩vHv−1(aq); then WF,v plays the role for XF,v of W.
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We put
�CF,v =

⊕
w∈WF,v

C∞(M/M∩wvHv−1w−1 : τM ); (8.2)

this is the analog for XF,v of (8.1). Then we have the Eisenstein integrals E(XF,v :ψ :λ)
on XF,v, where ψ∈�CF,v, λ∈a∗⊥Fq. Similarly we introduce E�(XF,v :ψ :λ), E∗(XF,v :ψ :λ),
E+(XF,v :ψ :λ) and E∗

+(XF,v :ψ :λ). The latter two functions are defined on

XF,v,+ =
⋃

w∈WF,v

(MF ∩K)∗A+
Fqw(MF ∩vHv−1),

where ∗A+
Fq=exp a

⊥+
Fq .

Let FW be a (fixed) subset of NK(aq) that is a complete set of representatives for
WF \W/WK∩H . The proof of the following result is straightforward.

Lemma 8.1. The union ⋃
v∈F W

WF,v v (8.3)

in NK(aq) is disjoint and forms a complete set of representatives for W/WK∩H .

In the following we shall assume (with F fixed) that W has been chosen such that it
equals the set (8.3). Since the basic definitions, for example of the Eisenstein integrals,
are essentially independent of the choice of W (cf. [8, equation (27)]), this assumption
is harmless (although in general it cannot be realized simultaneously for all F ). Then,
corresponding to the injection of WF,v in W by (8.3) and the assumption just made,
there is a natural injection iF,v of �CF,v into �C, simply given by the identity on each
component of (8.2). We denote by prF,v the corresponding orthogonal projection of �C
onto �CF,v. It follows from Lemma 8.1 that

�C =
⊕

v∈F W
iF,v(�CF,v). (8.4)

Given a residue weight t for Σ, we define a residue weight ∗t for ΣF as in [11, §3.6].
Let λ∈a∗⊥Fq and ϕ∈M(a∗q,H), where H is any Σ-admissible hyperplane configuration
in a∗q. Then, according to Lemma B.5 with V and L as described below the proof of
the lemma, the function z �→ϕ(ν+z) on a∗⊥FqC belongs to M(λ,ΣF ), for generic ν∈a∗FqC.
Moreover, according to Remark B.4, the universal residue operator Res

∗P,∗t
λ on a∗⊥Fq can

be identified with an element in M(λ,ΣF )∗laur. Then, by Lemma B.5 the function ν �→
Res

∗P,∗t
λ [ϕ(ν+ · )] is meromorphic on a∗FqC. It now follows from [11, Theorem 3.14] that

[ResP,t
λ+a∗

Fq
ϕ](ν+λ)=Res

∗P,∗t
λ [ϕ(ν+ · )] (8.5)

as an identity of meromorphic functions in ν.
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Proposition 8.2. Fix F⊂∆ and assume that for each v∈FW the identity (7.4) in
Lemma 7.4 holds for the symmetric space XF,v, for all x, y∈XF,v,+. Then (7.2) holds
(for the symmetric space X) for all x, y∈X+ and generic ν∈a∗FqC.

In particular, if F =∅, then the hypothesis in Proposition 8.2 amounts to the sym-
metry, for each v∈W, of the kernel Kt

∅(X∅,v :m :m′) for the compact symmetric space
X∅,v=M/M∩vHv−1. This hypothesis is easily seen to be fulfilled (cf. Remark 5.2).
The conclusion, on the other hand, is the symmetry of the kernel Kt

∅(ν :x :y) for X; this
symmetry was however already verified below Theorem 7.2.

Proof. Let v∈FW. The assumption (7.4) for XF,v reads

∑
λ∈Λ(XF,v,F )

Res
∗P,∗t
λ (E+(XF,v : · :x)�E∗(XF,v : · : y))

=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ (E�(XF,v :− · :x)�E∗

+(XF,v :− · : y))
(8.6)

for all x, y∈XF,v,+. Here Λ(XF,v, F ) is the analog for XF,v of Λ(∆) (see (5.1)), that is,

Λ(XF,v, F )= {λ∈a
∗⊥
Fq |Res

∗P,∗t
λ ϕ �=0 for some ϕ∈M(a∗⊥Fq,HF,v)}, (8.7)

where HF,v is the set of affine hyperplanes in a∗⊥Fq along which λ �→E+(XF,v : · :x) or
λ �→E∗(XF,v : · : y) is singular for some x, y.

Note that, by Lemma 7.5, an equivalent form of the identity (8.6) is obtained if we
replace on both sides the set of summation Λ(XF,v, F ) by any finite subset Λ of a∗⊥Fq that
contains Λ(XF,v, F ). Likewise, in order to prove (7.3) (which, by Lemma 7.4, is sufficient
for our goal) it suffices to prove this identity with Λ(F ) replaced on both sides by any
finite subset Λ of a∗⊥Fq that contains Λ(F ). We shall apply these observations with the
following set Λ:

Λ =
[ ⋃
v∈F W

Λ(XF,v, F )
]
∪Λ(F ). (8.8)

We shall now apply the induction of relations of Appendix B. We first apply it in the
version of Theorem B.6. According to the discussion before (8.5), the linear functional

L:ϕ �→
∑
λ∈Λ

Res
∗P,∗t
λ ϕ

on M(a∗⊥FqC,ΣF ) is a Laurent functional in M(a∗⊥FqC,ΣF )∗laur. We define the Laurent func-
tionals L1,L2∈M(a∗⊥FqC,ΣF )∗laur by L1(ϕ)=L(ϕ(− · )) and L2=L. For fixed y∈XF,v,+

and a∈Vτ , we define the functions φ1, φ2: a∗qC→�CF,v by φ1(ν+λ)=E∗
+(XF,v :λ : y)a and

φ2(ν+λ)=E∗(XF,v :λ : y)a, for generic λ∈a∗⊥FqC and ν∈a∗FqC. Then φ1 and φ2 belong
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to M(a∗qC,Σ)⊗�CF,v. From (8.6) we now obtain, by applying Theorem B.6 with L1,L2,

φ1, φ2 as mentioned, that

∑
λ∈Λ

Res
∗P,∗t
λ

( ∑
s∈W F

E+,s(ν+ · :x)� iF,v �E
∗(XF,v : · : y)

)

=
∑
λ∈Λ

Res
∗P,∗t
λ (E�(ν− · :x)� iF,v �E

∗
+(XF,v :− · : y))

(8.9)

for all y∈XF,v,+, x∈X+ and generic ν∈a∗FqC.
We apply the induction of relations once more, this time in the dual version of

Corollary B.7, and obtain, with x∈X+ fixed,

∑
λ∈Λ

Res
∗P,∗t
λ

( ∑
s∈W F

E+,s(ν+ · :x)� iF,v �prF,v �E
∗(ν+ · : y)

)

=
∑
λ∈Λ

Res
∗P,∗t
λ

(
E�(ν− · :x)� iF,v �prF,v �

∑
s∈W F

E∗
+,s(ν− · : y)

)

for all y∈X+ and generic ν∈a∗FqC. Summing over v∈FW, cf. (8.4), we obtain

∑
λ∈Λ

Res
∗P,∗t
λ

( ∑
s∈W F

E+,s(ν+ · :x)�E∗(ν+ · : y)
)

=
∑
λ∈Λ

Res
∗P,∗t
λ (E�(ν− · :x)�

∑
s∈W F

E∗
+,s(ν− · : y)).

By (8.5) we can replace the residue operators Res
∗P,∗t
λ by ResP,t

λ+a∗
Fq

and, as remarked
above, Λ by Λ(F ). We thus obtain the desired identity (7.3). �

9. Proof of Theorem 7.2

The proof is by induction on the rank of the root system Σ. We assume that the statement
of the theorem holds for all reductive symmetric spaces for which the corresponding root
system is of lower rank than Σ (this is definitely true if the rank of Σ is zero). Then the
hypothesis in Proposition 8.2 is valid for all F �∆, and we conclude that (7.2) holds for
such F . Hence the statements in Lemma 7.3 are valid for all F �∆. In order to complete
the proof we must establish (7.2) for F =∆.

Let Υ denote the set of continuous homomorphisms χ:G→R+ for which χ(h)=1 for
all h∈H, and let

�G=
⋂

χ∈Υ

χ−1(1).
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Then H⊂�G, and the pair (�G,H) satisfies the same general assumptions as we have
required for (G,H). Moreover, we have

G/H � �G/H×A∆q.

Let x, y∈�G/H, a, b∈A∆q. Then it follows easily from the definitions that

Kt
∆(ν :xa : yb)= (ab−1)ν �Kt

∆(x : y) (9.1)

for ν∈a∗∆qC, where �Kt
∆ is the kernel defined as Kt

∆, but on �G/H. It follows that in order
to establish (7.2) it suffices to consider �Kt

∆ on �G/H; in other words, we may assume
that a∆q={0}. Moreover, we may assume that X is not compact, since otherwise the
symmetry of K∆(x, y) follows easily from Remark 5.2.

Let f∈C∞
c (X+ :τ) be fixed and consider the function g :=f−T Ff on X+. We shall

first prove that g=0 on X+, as would follow from Theorem 7.1 if we could use it at this
stage. Afterwards we derive Theorem 7.2. Notice that g vanishes outside a bounded
subset of X+, since f has compact support and Lemma 4.6 applies to T Ff .

In Lemma 6.3 take F =∆ and let D belong to the corresponding ideal I (the para-
meter ν is not present because of our assumption that a∆q={0}). Then DTt

∆f=0.
Hence

Dg =D(f−T Ff)=D

(
f−

∑
F�∆

TF f

)
,

and it follows from Lemma 7.3 (i) that Dg extends to a smooth function on X. Moreover,
it has compact support because as mentioned g has bounded support on X+. Thus
Dg∈C∞

c (X :τ). Let D0∈D(X) be as in Lemma 4.8. Then D0g=D0(f−T Ff)=0 on X+,
and hence, since D(X) is commutative, D0Dg=0. As D0 is injective we conclude that
Dg=0. Thus g is annihilated by I, and we conclude from Corollary 6.4 that g is real-
analytic on X+. However, we saw that g has bounded support, hence g=0 on X+ as
claimed.

From the above it follows that the identity f=
∑

F Tt
F f holds on X+ for all f∈

C∞
c (X+ :τ). Isolating Tt

∆f and applying Lemma 7.3 (ii) for all F �∆ we obtain that the
identity

〈Tt
∆f | g〉= 〈f |Tt

∆g〉 (9.2)

holds for all f, g∈C∞
c (X+ :τ). Hence we conclude from Lemma 9.1 below that (7.2) holds

for F =∆. This completes the proof of Theorem 7.2. �

Lemma 9.1. Let t be a W -invariant even residue weight. Assume that a∆q={0}
and that (9.2) holds for all f, g∈C∞

c (X+ :τ). Then

Kt
∆(x : y)∗ =Kt

∆(y :x) (9.3)

for all x, y∈X+.
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Proof. Note that ∆′=∆. We conclude from (9.2), Lemma 6.8 and [9, Lemma 11.3]
that Tt

∆g(z)=St
∆g(z) for all z∈X+, g∈C∞

c (X+ :τ), that is,∫
X+

Kt
∆(z : y)g(y) dy =

∫
X+

Kt
∆(x :z)∗g(x) dx.

Now (9.3) follows by means of [9, Lemma 11.3]. �

10. A product formula for the residue kernels

Fix a subset F⊂∆ and an even and W -invariant residue weight t∈WT(Σ). Furthermore,
fix an element ν∈a∗FqC for which the kernel K(ν :x : y):=Kt

F (ν :x :y)∈End(Vτ ) is regular.
This kernel is real-analytic as function of (x, y) in X+×X. However, as we have seen in
Theorem 7.2 that

K(ν :x : y)=K(−ν̄ : y :x)∗ (10.1)

for all x, y∈X+, it follows that (x, y) �→K(ν :x : y) extends real-analytically to (X×X+)∪
(X+×X). Let

Cν =Span{K(ν : · : y)v | y∈X+, v∈Vτ}⊂C∞(X : τ). (10.2)

Lemma 10.1. The space Cν is finite-dimensional and consists of real-analytic
D(G/H)-finite functions.

Proof. It was seen below (10.1) that x �→K(ν :x : y) is real-analytic on X for y∈X+.
The functions in Cν are annihilated by a cofinite ideal in D(X) by Lemma 6.3; from this
the finite-dimensionality follows as in [3, Lemma 3.9]. �

Lemma 10.2. The function (x, y) �→K(ν :x : y)=Kt
F (ν :x :y)∈End(Vτ ) extends to a

real-analytic function on X×X. It satisfies (10.1) for all x, y∈X.

Proof. For x∈X+, v∈Vτ we define the linear functional ξx,v∈C∗
ν by ξx,v(f)=〈f(x)|v〉.

If an element of Cν is annihilated by all ξx,v, then this element is zero. It follows (by
the finite-dimensionality of Cν) that the ξx,v span C∗

ν . Let n=dim Cν . Then there exists
a collection (x1, v1), ..., (xn, vn)∈X+×Vτ such that the ξxj ,vj form a basis for C∗

ν . Let
f1, ..., fn be the dual basis for Cν . Then

f =
n∑

j=1

〈f(xj)|vj〉fj

for all f∈Cν . In particular,

K(ν :x : y)v =
n∑

j=1

〈K(ν :xj : y)v |vj〉fj(x) (10.3)
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for x∈X, y∈X+ and v∈Vτ . The right-hand side of (10.3) is real-analytic on X×X since
y �→K(ν :xj : y) and fj are both real-analytic on X.

The identity (10.1) is valid on X×X by continuity. �

Define e(x)=eν(x)∈Hom(Cν , Vτ ), for x∈X, by

e(x)u=u(x); (10.4)

then e is spherical for the τ⊗1-action of K on Hom(Cν , Vτ )=Vτ ⊗C∗
ν , and it is a real-

analytic function of x.

Lemma 10.3. Assume in addition that ν∈ia∗Fq, and let a Hilbert space structure
〈 · | · 〉Cν on the finite-dimensional space Cν be given. Then there exists a unique endo-
morphism α of Cν such that

K(ν :x : y)= e(x)�α�e(y)∗ (10.5)

for all x, y∈X+. Moreover, α is self-adjoint and bijective.

Proof. Let (x1, v1), ..., (xn, vn)∈X+×Vτ and f1, ..., fn∈Cν be as in the proof of
Lemma 10.2. Define

αf(x)=
n∑

j=1

〈f |K(ν : · :xj)vj〉Cν fj(x)

for f∈Cν , x∈X+; then αf∈Cν and α∈End(Cν). Moreover, for x, y∈X+, v∈Vτ ,

e(x)αe(y)∗v =(αe(y)∗v)(x)=
n∑

j=1

〈e(y)∗v |K(ν : · :xj)vj〉Cν fj(x)

=
n∑

j=1

〈v |e(y)K(ν : · :xj)vj〉fj(x)=
n∑

j=1

〈v |K(ν : y :xj)vj〉fj(x)

=
n∑

j=1

〈K(−ν̄ :xj : y)v |vj〉fj(x);

in the last equality we have used (10.1). Since −ν̄=ν, it follows from (10.3) that the
latter expression equals K(ν :x :y)v. This shows (10.5), that is, the existence of α has
been established.

Assume that e(x)�β�e(y)∗=0 for all x, y∈X+, for some operator β∈End(Cν). By
(10.4) this means that (β�e(y)∗)(x)=0 for all x, y, and hence β�e(y)∗=0. Taking adjoints
we conclude that e(y)�β∗=0 for all y, and hence β∗=0 by (10.4). Thus β=0. The
uniqueness of α follows.
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That α is self-adjoint is an immediate consequence of (10.1) and (10.5), by means of
the uniqueness just established. We have K(ν : · : y)v=αe(y)∗v, so if α was not surjective,
a contradiction with the definition of Cν would arise. Hence the bijectivity of α. �

Remark 10.4. Let F =∅ in Lemma 10.3. If 〈ν, β〉�=0 for all β∈Σ then it follows easily
from (5.13) and [9, Lemma 16.14] that ψ �→E�(ψ :ν) is a linear bijection of �C onto Cν .
Moreover, if Cν is given the Hilbert structure so that this is a unitary isomorphism, then
(5.13) shows that α is the identity operator.

Remark 10.5. Let F =∆ and assume that a∆q={0}. In this case we denote the space
Cν defined in (10.2) by C∆. It will be shown in [13] that C∆ is contained in L2(X :τ)
(as the discrete series). It will then be natural to use for 〈 · | · 〉Cν in Lemma 10.3 the
inherited Hilbert structure. Then e is square integrable on X, and it follows from (10.5)
that Kt

∆(x : y)=e(x)�α�e(y)∗ is the kernel of an integral operator on L2(X :τ). It is easily
seen from the definition (10.4) of e that this integral operator is the orthogonal projection
onto C∆ followed by α. However, it will also be shown in [13] that T∆ is the restriction
to C∞

c (X :τ) of the orthogonal projection of L2(X :τ) onto C∆; by (5.10) this orthogonal
projection is the integral operator with kernel |W |Kt

∆(x :y). We conclude that with the
present choice of Hilbert structure on C∆ then α is |W |−1 times the identity operator.

For F �=∆ the product formula for K(ν :x : y)=Kt
F (ν :x :y) obtained in Lemma 10.3

has the drawback that its dependence on ν is obscure. Moreover, it is only valid under
the assumption that ν∈ia∗Fq. We shall now give a different construction of a product
formula which does not have these disadvantages.

Fix F⊂∆ and v∈FW (see §8), and let K(m :m′)=K∗t
F (XF,v :m :m′), m,m′∈XF,v,

be the analog for XF,v of the kernel Kt
∆ on X. Using the symmetry of this kernel we

have (cf. (10.1), (6.3))

K(m :m′)=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ [E�(XF,v :− · :m)�E∗

+(XF,v :− · :m′)] (10.6)

for m∈XF,v, m′∈XF,v,+. Let the space CF,v⊂C∞(XF,v :τ) be defined as (10.2), but for
K(m :m′), that is,

CF,v =Span{K( · :m′)v0 |m′∈XF,v,+, v0∈Vτ}; (10.7)

it is thus the analog for XF,v of the space C∆ discussed in Remark 10.5. Let ψ∈CF,v;
then

ψ(m)=
k∑

j=1

K(m :mj)vj (10.8)
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for some pairs (mj , vj)∈XF,v,+×Vτ . Equivalently

ψ(m)=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ [E�(XF,v :− · :m)Φ( · )] (10.9)

where

Φ(λ)=
k∑

j=1

E∗
+(XF,v :−λ :mj)vj ∈ �CF,v, λ∈ a

∗⊥
FqC. (10.10)

Let ν be a generic element in a∗FqC and consider the Vτ -valued function on X given by

x �→
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ [E�(ν− · :x)� iF,v Φ( · )]; (10.11)

this function clearly belongs to C∞(X :τ) and depends meromorphically on ν∈a∗FqC

(cf. Lemma B.5).

Lemma 10.6. The expression in (10.11) is independent of the choice of the pairs
(mj , vj) that represent ψ in (10.8). It depends linearly on ψ∈CF,v. Moreover, it remains
unchanged if we replace the set of summation Λ(XF,v, F ) by any finite subset of a∗⊥Fq

containing Λ(XF,v, F ).

Proof. For the first statement it suffices to prove that (10.11) represents the trivial
function if ψ=0. The latter assumption amounts to∑

λ∈Λ

Res
∗P,∗t
λ [E�(XF,v :− · :m)Φ( · )]= 0 (10.12)

for all m∈XF,v, where Λ=Λ(XF,v, F ).
We shall now apply the induction of relations of Appendix B. We define a Laurent

functional L1∈M(a∗⊥FqC,ΣF )∗laur by

L1(ϕ)=
∑
λ∈Λ

Res
∗P,∗t
λ ϕ(− · ), ϕ∈M(a∗⊥FqC,ΣF ).

Applying Theorem B.6 with L2=0 and φ1(ν+λ)=Φ(−λ) for generic λ∈a∗⊥FqC, ν∈a∗FqC,
we conclude that ∑

λ∈Λ

Res
∗P,∗t
λ [E�(ν− · :x)� iF,v Φ( · )]= 0 (10.13)

for all x∈X+. By continuity, (10.13) holds for all x∈X. Thus indeed (10.11) represents
the trivial function if ψ=0.

Let ψ=α′ψ′+α′′ψ′′, where α′, α′′∈C, ψ′, ψ′′∈CF,v, and let ψ′, ψ′′ be represented as
in (10.8) with pairs (m′

j , v
′
j)j=1,...,k′ and (m′′

j , v′′
j )j=1,...,k′′ , respectively. Then ψ is repre-

sented by (10.8) with k=k′+k′′, (mj , vj)=(m′
j , α

′v′
j) for j=1, ..., k′, and (mk′+j , vk′+j)=
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(m′′
j , α′′v′′

j ) for j=1, ..., k′′. The corresponding functions Φ, Φ′ and Φ′′ in (10.10) are then
related by Φ=α′Φ′+α′′Φ′′, and the similar relation then holds for the functions in (10.11).
This proves the linear dependence of (10.11) on ψ.

To establish the final claim we must prove that (10.13) holds whenever Λ⊂a∗⊥Fq is
finite and disjoint from Λ(XF,v, F ). This follows by the same argument as above; indeed
(10.12) holds for such sets Λ since all its terms vanish by the definition of Λ(XF,v, F )
(see (8.7) and the proof of Lemma 7.5). �

Definition 10.7. We denote by E�

F,v(ν :x)∈Hom(CF , Vτ ) the operator that takes
ψ∈CF,v to the element of Vτ given by (10.11). The functions E�

F,v(ψ :ν):=E�

F,v(ν)ψ∈
C∞(X :τ), for ψ∈CF,v and generic ν∈a∗FqC, are called generalized Eisenstein integrals.
Furthermore, we define the finite-dimensional vector space CF as the formal direct sum

CF =
⊕

v∈F W
CF,v,

and we define E�

F (ν :x)∈Hom(CF , Vτ ) by

E�

F (ν :x)ψ =
∑

v∈F W

E�

F,v(ν :x)ψv

for ψ=
∑

v∈F W ψv∈CF . The functions E�

F (ψ :ν):=E�

F (ν)ψ∈C∞(X :τ), ψ∈CF , are also
called generalized Eisenstein integrals.

The generalized Eisenstein integral E�

F (ψ :ν :x) depends meromorphically on the
parameter ν∈a∗FqC. Notice that for F =∅ we obtain, by application of Remark 5.2 to
the symmetric space M/M∩vHv−1, that C∅,v=C∞(M/M∩vHv−1:τM ). Hence C∅=�C
(cf. (8.1)). Moreover, in this case the generalized Eisenstein integral E�

∅(ψ :ν) coincides
with the normalized Eisenstein integral E�(ψ :ν).

Arguing as in the proof of Lemma 6.3 we see that E�

F (ν :x) is annihilated by an ideal
of finite codimension in D(G/H) (the product over v∈FW, λ∈Λ(XF,v, F ) and i=1, ...,m

of the ideals (Ii,ν−λ)k⊂D(G/H) for k sufficiently large).
Both factors E�( · :x) and E∗

+(XF,v : · :mj) in (10.11) allow suitable estimates. It
follows that the generalized Eisenstein integral E�

F (ψ :ν :x) allows an estimate of the
following form. Let Σr(F ) denote the set of non-zero restrictions to aFq of roots from Σ,
and define the set ΠΣr(F ),R(aFq) of polynomials on a∗FqC similarly as the set ΠS,R was
defined in §3.

Lemma 10.8. Let ω⊂a∗Fq be compact. There exists a polynomial p∈ΠΣr(F ),R(aFq),
for every u∈U(g) a number N∈N, and for every x∈X, ψ∈CF , a constant C such that

‖p(ν)E�

F (ψ :ν :u;x)‖�C(1+|ν|)N

for all ν∈ω+ia∗Fq. The constant C can be chosen locally uniformly in x.
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Proof. This follows from the estimates in Lemmas 4.1, 4.3 and [11, Lemma 1.11]. �

We fix a Hilbert space structure on CF,v for each v∈FW, and equip CF with the
direct sum Hilbert space structure. Let

E∗
F (ν :x)=E�

F (−ν̄ :x)∗ ∈Hom(Vτ , CF ).

For each v∈FW, let αF,v∈End(CF,v) denote the operator given by Lemma 10.3 for the
kernel K∗t

F (XF,v :m :m′) for XF,v and the given Hilbert structure on CF,v, and let αF ∈
End(CF ) be given by [αF ψ]v=αF,vψv for v∈FW.

Proposition 10.9. Let x∈X+, y∈X. Then

E�

F (ν :x)�αF �E∗
F (ν′:y)

=
∑

λ∈Λ(F )

ResP,t
λ+a∗

Fq

( ∑
s∈W F

E+,s(ν+ · :x)�E∗(ν′+ · : y)
)

(λ), (10.14)

as an identity between meromorphic functions in ν, ν′∈a∗FqC. In particular,

E�

F (ν :x)�αF �E∗
F (ν : y)=Kt

F (ν :x :y). (10.15)

We remark that by application of Remark 10.5 to each of the symmetric spaces XF,v,
it follows (from results to be seen in [13]) that CF can be equipped with a natural Hilbert
space structure with respect to which αF is a constant times the identity operator.

Proof. Let v∈FW. For m∈XF,v we denote by e(XF,v :m) the linear map CF,v→Vτ

given by evaluation at m; this is the analog of (10.4) for XF,v. By the definition of αF,v

we have

K
∗t
F (XF,v :m :m′)= e(XF,v :m)�αF,v �e(XF,v :m′)∗

for m∈XF,v, m′∈XF,v,+. Thus, for v0∈Vτ ,

K
∗t
F (XF,v :m :m′)v0 = [αF,v �e(XF,v :m′)∗v0](m). (10.16)

Let ψ(m)=[αF,v �e(XF,v :m′)∗v0](m). Then (10.16) is an expression for ψ of the form
(10.8). The function Φ in (10.10) is then given by Φ(λ)=E∗

+(XF,v :−λ :m′)v0. By the
definition of E�

F,v(ν′:y) (cf. (10.11)) we then obtain

E�

F,v(ν′: y)�αF,v �e(XF,v :m′)∗

=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ [E�(ν′− · : y)� iF,v �E

∗
+(XF,v :− · :m′)] (10.17)
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for y∈X, ν′∈a∗FqC. Recall from Lemma 10.6 that the above expression remains un-
changed if we replace in it Λ(XF,v, F ) by a larger finite set Λ; as in the proof of Propo-
sition 8.2 we take as Λ the set given by (8.8).

For the moment, we fix a generic element ν′∈a∗FqC; we insert −ν̄′ for ν′ in (10.17).
Taking adjoints as in the proof of Lemma 6.5 and applying the resulting operator to an
arbitrary vector a∈Vτ we obtain (recall from Lemma 10.3 that αF,v is self-adjoint)

e(XF,v :m′)�αF,v �E
∗
F,v(ν′ : y)a

=
∑
λ∈Λ

Res
∗P,∗t
λ [E+(XF,v : · :m′)�prF,v �E

∗(ν′+ · : y)a]. (10.18)

On the left-hand side of this equation we have the element αF,v �E
∗
F,v(ν′ : y)a from CF,v

evaluated at m′∈XF,v,+. By the definition of the space CF,v (cf. (10.9)) this evaluated
element has the form

[αF,v �E
∗
F,v(ν′ : y)a](m′)

=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ

[
E�(XF,v :−· :m′)�

k∑
j=1

E∗
+(XF,v :−· :mj)vj

]
(10.19)

for some m1, ...,mk∈XF,v,+ and v1, ..., vk∈Vτ (depending on v, ν′, y, a). In particular, we
have an identity between the right-hand sides of (10.18) and (10.19), for all m′∈XF,v,+.
To this identity we shall now apply the induction of relations of Appendix B. Let the
Laurent functionals L1,L2∈M(a∗⊥FqC,ΣF )∗laur be defined by

L1ϕ=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ (ϕ(− · )), L2ϕ=

∑
λ∈Λ

Res
∗P,∗t
λ (ϕ)

for ϕ∈M(a∗⊥FqC,ΣF ). Moreover, let φ1, φ2∈M(a∗qC,ΣF )⊗�CF,v be the meromorphic
functions defined by

φ1(ν+λ)=
k∑

j=1

E∗
+(XF,v :λ :mj)vj , φ2(ν+λ)=prF,v �E

∗(ν′+λ : y)a

for generic λ∈a∗⊥FqC and ν∈a∗FqC.

Applying Theorem B.6 to the identity between the right-hand sides of (10.18) and
(10.19), with L1,L2, φ1, φ2 as above, we conclude that

∑
λ∈Λ

Res
∗P,∗t
λ

[ ∑
s∈W F

E+,s(ν+ · :x)� iF,v �prF,v �E
∗(ν′+ · : y)a

]

=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ

[
E�(ν− · :x)� iF,v �

k∑
j=1

E∗
+(XF,v :−· :mj)vj

]
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for all x∈X+ and generic ν∈a∗FqC. On the other hand, by the definition (10.11) of
E�

F,v(ν :x), it follows from (10.19) that

E�

F,v(ν :x)[αF,v �E
∗
F,v(ν′: y)a]

=
∑

λ∈Λ(XF,v,F )

Res
∗P,∗t
λ

[
E�(ν− · :x)� iF,v �

k∑
j=1

E∗
+(XF,v :−· :mj)vj

]
,

and so we conclude that

∑
λ∈Λ

Res
∗P,∗t
λ

[ ∑
s∈W F

E+,s(ν+ · :x)� iF,v �prF,v �E
∗(ν′+ · : y)

]

=E�

F,v(ν :x)�αF,v �E
∗
F,v(ν′ : y).

In this latter expression we may replace the residue operators Res
∗P,∗t
λ by ResP,t

λ+a∗
Fq

(cf.
(8.5)), and we may shrink the set of summation to Λ(F ), since the extra terms vanish,
by the definition (5.5) of the latter set (see the proof of Lemma 7.5). Summing over
v∈FW (cf. (8.4)), we finally obtain (10.14). The expression (10.15) is obtained by taking
ν=ν′. �

We can now sharpen the estimate for Kt
F in Lemma 5.1 so that it is valid on X×X.

Corollary 10.10. Assume that ω⊂a∗Fq is compact. Then there exists a polynomial
q∈ΠΣr(F ),R(aFq) on a∗FqC, for every u, u′∈U(g) a number N∈N, and for every x, y∈X

a constant C>0 such that

‖q(ν)Kt
F (ν :u;x :u′; y)‖�C(1+|ν|)N

for all ν∈ω+ia∗Fq. The constant C can be chosen locally uniformly in x and y.

Proof. Immediate from (10.15) and Lemma 10.8. �

Corollary 10.11. Let t∈WT(Σ) be even and W -invariant, and let F⊂∆. Then
Tt

F f extends to a smooth function on X for every f∈C∞
c (X :τ). Moreover, f �→Tt

F f

is a continuous operator from C∞
c (X :τ) to C∞(X :τ). Finally, if F ′ is defined as in

Lemma 7.3 (ii), then 〈Tt
F f |g〉=〈f |Tt

F ′g〉 for all f, g∈C∞
c (X :τ).

Proof. It follows from Corollary 10.10 in the same manner as [9, Proposition 8.3] that
(5.9) holds for x∈X, f∈C∞

c (X :τ), with similar uniformity as stated in Lemma 5.1. Then
(5.10) shows that Tt

F f extends. The final statement now follows from Lemma 7.3 (ii) by
continuity. �
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11. Application: The Plancherel formula
for one conjugacy class of Cartan subspaces

Recall that the reductive symmetric space is said to have one conjugacy class of Cartan
subspaces if all the Cartan subspaces of q are conjugate under H.

Lemma 11.1. If X has one conjugacy class of Cartan subspaces then so has XF,v

for every F⊂∆ and v∈NK(aq).

Proof. We first notice that XF,v has only one conjugacy class of Cartan subspaces
if and only if the same holds for XF . Indeed, conjugation by v provides a bijection from
the set of Cartan subspaces for XF to the set of Cartan subspaces for XF,v. We may
therefore assume that v=e.

Let b⊂q be a Cartan subspace with aq=b∩p. Then b is θ-invariant and maximally
split. It is also a Cartan subspace for the pair (m1F ,m1F ∩h) (where m1F =mF +aF ). Let
b′ be an arbitrary Cartan subspace for this pair; it is sufficient to prove that b′ is conjugate
to b under MF ∩H. Moreover, we may assume that b′ is θ-invariant. Since b′ has the
same dimension as b and is contained in q, it is a Cartan subspace for (g, h), and therefore
it is conjugate to b under H. It follows that b′ is a maximally split Cartan subspace
for (g, h), by conjugacy. Thus, b and b′ are also maximally split Cartan subspaces for
(m1F ,m1F ∩h); from this it follows that they are conjugate under MF ∩H. �

In what follows we assume that G is linear, in order to be able to apply [25, Theorem]
(see, however, [25, p. 388, (i)]).

Lemma 11.2. If X is not compact and has one conjugacy class of Cartan subspaces
then the discrete series for X is empty.

Proof. If the discrete series is not empty there is a compact Cartan subspace ac-
cording to [25, Theorem]. If all Cartan subspaces are conjugate this would then imply
that all Cartan subspaces are compact, which is only possible if X is compact. �

Theorem 11.3. If X has one conjugacy class of Cartan subspaces then Kt
F =0 for

all F �=∅. Moreover, in that case,

JF = I. (11.1)

Proof. The proof of the first statement is by induction on the rank of Σ. The second
statement, the identity (11.1), is an immediate consequence, in view of Theorem 7.1.
Assume that the first statement is true for all reductive symmetric spaces for which the
corresponding root system has lower rank than Σ. Let F⊂∆, F �=∅,∆, and consider the
generalized Eisenstein integral as defined in Definition 10.7. The induction hypothesis
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implies that the kernel K(m :m′) in (10.6) vanishes. Hence CF,v={0} for all v∈WF , and
it follows from (10.15) that Kt

F =0. As an immediate consequence we have Tt
F =0.

It remains to prove that Kt
∆=0 if ∆ �=∅. By (9.1) we may assume that A∆q={0}.

By the inversion formula (Theorem 7.1) and (5.12) we have Tt
∆f=f−JFf for all f∈

C∞
c (X :τ), and hence Tt

∆f belongs to the Schwartz space of X (cf. [7, Theorem 1]).
However, as Tt

∆f is annihilated by a cofinite ideal in D(G/H) (cf. Lemma 6.3) it then
follows that Tt

∆f belongs to the discrete part of L2(G/H)⊗Vτ (since it generates a
subrepresentation of finite length). Now Tt

∆=0 by Lemma 11.2, and it follows from
(5.10) that Kt

∆=0. �

12. Application: The Fourier transform of rapidly decreasing functions

The Fourier transform F is injective when defined on C∞
c (X :τ) (cf. Theorem 2.1). On

the other hand, its extension to the L2-type Schwartz space C(X :τ) (see [9, §6]) will
in general not be injective because of the possible presence of non-trivial discrete or
intermediate series. In this section we extend the injectivity to a certain function space
S(X :τ) that lies between C∞

c (X :τ) and C(X :τ). We also extend our Fourier inversion
formula to this space.

Let ‖ · ‖ be the function on X defined by ‖kaH‖=e|log a| for k∈K, a∈Aq; then
‖x‖�1. We define ‖f‖r=supx∈X ‖x‖−r|f(x)| for r∈R, f∈C(X). The space

Cr(X)= {f ∈C(X) | ‖f‖r <∞}

is a Banach space, invariant under the left regular representation of G. The Fréchet
space of smooth vectors for this representation is given by

C∞
r (X)= {f ∈C∞(X) | f(u; · )∈Cr(X), ∀u∈U(g)}

with the continuous seminorms f �→νr,u(f):=‖f(u; · )‖r, u∈U(g). Clearly, C∞
c (X)⊂

C∞
r (X) with continuous inclusion. We define

S(X)=
⋂

r∈R

C∞
r (X)

and provide this space with the seminorms νu,r, u∈U(g), r∈R. It follows easily that
S(X) is a Fréchet space, and that the inclusion map C∞

c (X)→S(X) is continuous. Fol-
lowing [29, 7.1.2] we call S(X) the space of rapidly decreasing functions on X.
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Lemma 12.1. The subspace C∞
c (X) is dense in S(X).

Proof. We shall prove the following statement, from which the density in S(X)
immediately follows. Let f∈C∞(X). There exists a sequence fn∈C∞

c (X) with the
following property. Let r∈R and assume that f∈C∞

r (X). Then fn→f in C∞
r+s(X) for

all s>0.
Let {ψt}⊂C∞

c (X), t>0, be as in [3, Lemma 2.2] for some ε>0. Fix s>0 and u∈U(g).
We have ψt(x)=1 for ‖x‖�et and supx∈X,t>0 |ψt(u;x)|<∞. Hence

νu,s(ψt−1)= sup
‖x‖�et

‖x‖−s|(ψt−1)(u;x)|�Ce−ts.

We conclude that ψt→1 in C∞
s (X) as t→∞. Let fn=ψnf∈C∞

c (X). The proof is
now completed by the observation that pointwise multiplication is continuous from
C∞

s (X)×C∞
r (X) to C∞

s+r(X). The latter is readily seen from the Leibniz rule. �

In [21, p. 134] the term zero Schwartz space is used for S(X) because it is the
intersection of the Lp-type Schwartz spaces Cp(X), p>0. Let Cr(X :τ), C∞

r (X :τ) and
S(X :τ) denote corresponding spaces of τ -spherical functions. Then

S(X : τ)=
⋂

r∈R

C∞
r (X : τ),

and we have the continuous inclusions

C∞
c (X : τ)⊂S(X : τ)⊂ C(X : τ).

Lemma 12.2. Let R∈R, let p be as in Proposition 3.1 and let ω⊂a∗q(P,R) be open
and bounded. There exists r∈R such that the integral (2.4) that defines the Fourier
transform Ff(λ) converges for all f∈Cr(X :τ) and generic λ∈ω+ia∗q. The Fourier
transform is a meromorphic �C-valued function of λ, and there exist constants N∈N
and C>0 such that

‖p(λ)Ff(λ)‖�C(1+|λ|)N‖f‖r (12.1)

for all λ∈ω+ia∗q, f∈Cr(X :τ). Moreover, for each n∈N there exists a continuous semi-
norm ν on C∞

r (X) such that

‖p(λ)Ff(λ)‖� (1+|λ|)−nν(f) (12.2)

for all λ∈ω+ia∗q, f∈C∞
r (X :τ).

Proof. We note that the estimate of the normalized Eisenstein integral stated in
Lemma 4.3 can be sharpened as follows, by the same references as given in the proof.
There exists r0∈R and for every u∈U(g) an integer N�0 such that

sup
x∈X

λ∈a
∗
q(P,R)

(1+|λ|)−N‖x‖−r0−|Re λ|‖p(λ)E∗(λ :u;x)‖<∞. (12.3)
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We take u=1. Then, for all r∈R,

‖p(λ)Ff(λ)‖=
∥∥∥∫

X

p(λ)E∗(λ :x)f(x) dx
∥∥∥ �C(1+|λ|)N‖f‖r

∫
X

‖x‖r0+|Re λ|+r dx

where C is the supremum in (12.3). Since ‖x‖−m is integrable on X for m sufficiently
large (cf. [9, equation (3.1)]), we have

∫
X
‖x‖r0+|Re λ|+r dx<∞ for −r sufficiently large.

The statements up to and including (12.1) follow. The statement concerning (12.2) is
obtained from (12.1) in the same manner as [9, Proposition 8.3]. �

It follows from Lemma 12.2 that for all generic η∈a∗q there exists a real number r

such that the Fourier transform Ff is defined and meromorphic in a neighborhood of
η+ia∗q for all f∈Cr(X :τ). It then follows from (12.2) and Lemma 4.2 that TηFf is well
defined and belongs to C∞(X+ :τ) for all f∈C∞

r (X :τ). Moreover, the map f �→TηFf is
a continuous linear operator from C∞

r (X :τ) to C∞(X+ :τ) (cf. (12.2) and (4.2)).

Proposition 12.3. Let R<0 be such that π(λ) �=0 for all λ∈a∗q(P,R), and let
η∈a∗q(P,R). There exists r∈R such that if f∈C∞

r (X :τ) and Ff=0 on η+ia∗q, then
f=0.

Proof. For f∈C∞
c (X :τ) we have TηFf=T Ff , by the definition of the pseudo-wave

packet T Ff , and hence TηFf=f on X+ by Theorem 4.7.
Let ω be a bounded neighborhood of η and let r∈R be as in Lemma 12.2. Let r′<r.

Then for f∈C∞
r′ (X :τ) there exists, according to the proof of Lemma 12.1, a sequence

fn∈C∞
c (X :τ) such that fn→f in C∞

r (X :τ). Since TηFfn=fn on X+ we conclude by
continuity that

TηFf = f (12.4)

for f∈C∞
r′ (X :τ). In particular, if Ff=0 on η+ia∗q then f=0. �

Lemma 12.4. The integral (2.4) that defines the Fourier transform Ff(λ) converges
for all f∈S(X :τ) and generic λ∈a∗qC; it is a meromorphic �C-valued function of λ.

Moreover, let R∈R and let p be as in Proposition 3.1. Then for each compact set
ω⊂a∗q(P,R) and each n∈N there exists a continuous seminorm ν on S(X :τ) such that

‖p(λ)Ff(λ)‖� (1+|λ|)−nν(f)

for all λ∈ω+ia∗q, f∈S(X :τ).

Proof. This is immediate from Lemma 12.2. �

In particular, Ff belongs to the space P(a∗q,H)⊗�C (see §5) for all f∈S(X :τ), and
if P(a∗q,H) is topologized as in [11, §1.5], then the final estimate in Lemma 12.4 amounts
to the continuity of the map F :S(X :τ)→P(a∗q,H)⊗�C. The following theorem is an
immediate consequence of Proposition 12.3.
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Theorem 12.5. The map F :S(X :τ)→P(a∗q,H)⊗�C is injective.

We can also write down the inversion formula for the Fourier transform on S(X :τ).
The function TηFf∈C∞(X+ :τ) is defined for all f∈S(X :τ) and all generic η∈a∗q by the
remarks preceding Proposition 12.3. As usual we define the pseudo-wave packet T Ff as
TηFf for η sufficiently antidominant; it is independent of η by Lemma 4.2. Then (12.4)
implies the following.

Theorem 12.6. Let f∈S(X :τ). Then T Ff(x)=f(x) for all x∈X+.

The space S(X) is contained in L2(X), and hence the L2-Fourier transform F defined
in [9, §18] can be applied to functions in S(X). Recall that F is defined by continuous
extension of the map f∈C∞

c (X) �→f̂(ξ, λ)∈L2(K:ξ)⊗V (ξ)∗, where f̂(ξ, λ) is defined in
[9, §4], for ξ∈M̂H and generic λ∈a∗qC. In [9, Theorem 15.5] we saw that the injectivity
of the τ -spherical Fourier transform F on C∞

c (X :τ) for all τ implies injectivity of F on
C∞

c (X). The same proof applies to S(X), and we conclude:

Corollary 12.7. Let f∈S(X). If Ff=0 then f=0.

Notice that in the case of a group considered as a symmetric space the injectivity
of the Fourier transform on S(X) (as well as on C∞

c (X)) is a consequence of Harish-
Chandra’s subquotient theorem together with the abstract Plancherel formula. There
exists a generalized subquotient (in fact, subrepresentation) theorem for reductive sym-
metric spaces (see [17, Theorem 1]), but it does not allow one to conclude similarly
the injectivity, because in general, for special values of λ, there are H-fixed distribution
vectors in the σ-minimal principal series other than those used to define the Fourier
transform.

Appendix A. On the functional equation for spherical distributions

The purpose of this appendix is to give a proof of Lemma 3.2. If it were not for the
assertion that the polynomial p is real, this lemma would be an immediate consequence
of [5, Theorem 9.1]. The additional assertion can be derived from [26, Theorem 11.4] if
it is assumed that the identity component of G is linear (which is a general assumption
in [26]). In order to cover the generality of the present paper, and for convenience, a proof
based on [5] is given below. We shall follow the proof of [5, Theorem 9.1], and indicate
where the arguments have to be sharpened in order to obtain the extra assertion. In
particular, we use in this appendix the notation from [5].

Let S⊂a∗q\{0} be as in [5, §7]. There it is stated that S⊂a∗qC, but it is obvious that
one can take S⊂a∗q. In [5, p. 356] the concept of S-polynomial growth of a function on
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a∗qC is defined for finite sets S⊂a∗qC\{0}. If S⊂a∗q we define (S,R)-polynomial growth
similarly, but with ΠS,R instead of ΠS . We shall establish Lemma 3.2 by means of the fol-
lowing Theorem A.1, which improves the functional equation for j(ξ :λ), [5, Theorem 9.3],
exactly in the way needed. Let (π, F ) be a finite-dimensional irreducible representation
of G that is both K-spherical and H-spherical (i.e., it has both a non-trivial K-fixed
vector and a non-trivial H-fixed vector). Then this representation has a lowest weight
µ∈a∗q (with respect to P ), which belongs to the set Λ(aq) (see [5, p. 354]).

Let ξ∈M̂H (=M̂ps in the notation of [5]). In [5, p. 365] a differential operator

Dµ(ξ :λ):C−∞(P : ξ :λ+µ)→C−∞(P : ξ :λ)

is defined for generic λ∈a∗qC, and it is asserted in [5, Lemma 9.2] that the map λ �→
q(λ)Dµ(ξ :λ) is polynomial on a∗qC for a suitable q∈ΠS(aq). Going through the proof
of the cited lemma one sees that q can be taken in ΠS,R(aq), if the polynomial q in
[5, Proposition 8.3] can be taken from ΠS,R(aq). The latter polynomial is constructed by
means of [5, Lemma 7.2], in which q can be taken from ΠS,R(aq) provided η1, η2 belong
to the real span of Σ(g, j). In the application of [5, Lemma 7.2] on [5, p. 361] we do have
this property of η1, η2, and hence indeed we see that we can take q∈ΠS,R(aq) in both
[5, Proposition 8.3] and [5, Lemma 9.2].

Theorem A.1. There exists a rational End(V (ξ))-valued function λ �→Rµ(ξ :λ) on
a∗qC of (S,R)-polynomial growth such that

j(P : ξ :λ)=Dµ(ξ :λ)�j(P : ξ :λ+µ)�Rµ(ξ :λ).

Before giving the proof of Theorem A.1 we notice that based on it and the pre-
vious remark about [5, Lemma 9.2] we can repeat the proof of [5, Theorem 9.1] and
obtain (Σ,R)-polynomial growth in the latter result. Thus Lemma 3.2 follows from
Theorem A.1.

Proof. The proof of [5, Theorem 9.3] is given on [5, p. 369]. For the improvement
asserted in Theorem A.1 we must establish that the polynomials q in [5, Lemma 9.9] and
q1, q2 in [5, Proposition 9.11] can be taken in ΠS,R(aq). We have already seen that this
is the case for q, and we thus turn to the proof of [5, Proposition 9.11], which is based
on [5, Lemma 9.13]. The latter result can be improved as in the following Lemma A.2.
The claimed improvement of [5, Proposition 9.11], that q1, q2∈ΠS,R(aq), then follows
immediately as on [5, p. 372]. �

Let Q∈Pmin
σ and assume that µ∈Λ(aq) is Q-dominant. Let

ψµ(Q : ξ): a∗qC →End(V (ξ, 1))

be the rational function in [5, Lemma 9.13]. Its exact definition will be recalled in the
following proof.
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Lemma A.2. There exist polynomials q1, q2∈ΠΣ,R(aq) and a constant c �=0 such
that

ψµ(Q : ξ :λ)= c
q1(λ)
q2(λ)

IV (ξ,1) (A.1)

for λ∈a∗qC.

Remark. The rational function q1/q2 is in fact determined explicitly in the following
proof. It is given by an equation that involves Harish-Chandra’s c-function for the
Riemannian form Gd/Kd of G/H, cf. Lemma A.5 and (A.9).

Proof. We first recall how ψµ(Q: ξ) is defined. Let Hξλ denote the space Hξ equipped
with the representation ξ⊗λ⊗1 of Q, and consider the G-equivariant map

Tµ:C−∞(Q : ξ :λ)⊗F →C−∞ IndG
Q(Hξλ⊗F |Q)

determined by
Tµ(f⊗v)(x)= f(x)⊗π(x)v.

On the level of K-finite vectors, Tµ is an isomorphism (see [5, p. 359], where the map
is denoted ϕλ). Let pµ(Q : ξ :λ) denote the endomorphism of C−∞(Q : ξ :λ)⊗F given
by projection along the infinitesimal character Λ+λ+µ (where Λ is the infinitesimal
character of ξ), cf. [5, Proposition 8.3]. We refer to [5, p. 361] for the definitions of
b(Z, λ)∈C and D(Z, λ)∈Z(g) for Z∈Z(g), λ∈a∗qC. Both objects depend polynomially
on λ, and there exists Z∈Z(g) such that b(Z, · ) is not the zero polynomial. Then

pµ(Q : ξ :λ)= b(Z, λ)−1[IndG
Q(ξ⊗λ⊗1)⊗π](D(Z, λ)), (A.2)

cf. [5, p. 362]. In particular, we see that pµ(Q : ξ :λ) acts as a differential operator.
It follows from [5, p. 370, below (75)] that Tµ maps the image of pµ(Q : ξ :λ) into the
subspace C−∞ IndG

Q(Hξλ⊗Fµ) of C−∞ IndG
Q(Hξλ⊗F |Q). Here Fµ is the one-dimensional

subspace in F of vectors of weight µ; it carries the representation 1⊗µ⊗1 of Q (cf.
[5, Proposition 5.5]).

Fix a non-zero vector eµ in Fµ. Then there is a natural G-equivariant isomorphism

Sµ:C−∞(Q : ξ :λ+µ)
∼→C−∞ IndG

Q(Hξλ⊗Fµ);

the image of f∈C−∞(Q : ξ :λ+µ) is the generalized function

Sµf(x)= f(x)⊗eµ

on G. Conversely, let e∗−µ∈F ∗ be the (unique) vector of weight −µ such that e∗−µ(eµ)=1.
Then testing with e∗−µ on the second component of Hξ⊗F induces a G-equivariant linear
map

tµ:C−∞ IndG
Q(Hξλ⊗F |Q)→C−∞(Q : ξ :λ+µ), (A.3)
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whose restriction to C−∞ IndG
Q(Hξλ⊗Fµ) is the inverse of Sµ. We define

T̃µ := tµ�Tµ:C−∞(Q : ξ :λ)⊗F →C−∞(Q : ξ :λ+µ).

Let eH∈F be a non-zero H-fixed vector, then

T̃µ[pµ(Q : ξ :λ)(j(Q : ξ :λ)η⊗eH)]∈C−∞(Q : ξ :λ+µ)H

for all η∈V (ξ), by equivariance of pµ(Q : ξ :λ) and T̃µ. We define the endomorphism
ψ̃µ(Q : ξ :λ) of V (ξ) by

ψ̃µ(Q : ξ :λ)η =ev(T̃µ[pµ(Q : ξ :λ)(j(Q : ξ :λ)η⊗eH)])

where
ev:C−∞(Q : ξ :λ+µ)H →V (ξ)

is the evaluation map. Since by definition j(Q : ξ :λ+µ) is the inverse to ev, and since
Tµ�pµ(Q : ξ :λ) maps into C−∞ IndG

Q(Hξλ⊗Fµ), on which Sµ�tµ=I, we have, equivalently,
that ψ̃µ(Q : ξ :λ) is determined by

Tµ[pµ(Q : ξ :λ)(j(Q : ξ :λ)η⊗eH)]=Sµ[j(Q : ξ :λ+µ)ψ̃µ(Q : ξ :λ)η] (A.4)

for η∈V (ξ). Note that ψ̃µ(Q : ξ :λ) maps each component V (ξ, w) of V (ξ) to itself, since
pµ(Q : ξ :λ) as well as T̃µ are support-preserving maps. The map ψµ(Q : ξ) in (A.1) is the
restriction of ψ̃µ(Q : ξ) to V (ξ, 1).

In the following it will be convenient to have some of the above-mentioned notions
from [5, §8] available in a slightly more general setting. In [5, §8] it is assumed that
the finite-dimensional irreducible representation ξ of M is unitary and has a non-trivial
vector fixed by w(M∩H)w−1 for some w∈W. Moreover, the linear form λ on aq is
extended to a linear form on a with trivial restriction to ah=a∩h. It is these assumptions
on the representation ξ⊗λ⊗1 of Q that we temporarily want to relax. It will also
be convenient to deal with the σ-Langlands decomposition Q=MσAqN , instead of the
ordinary Langlands decomposition Q=MAN . We recall that Mσ=MAh where Ah=
exp ah. We assume that (ξ,Hξ) is a finite-dimensional irreducible representation of Mσ,
the infinitesimal character Λ of which is real with respect to the roots of j in mσ (recall
that j is a Cartan subalgebra of g, defined as below [5, Corollary 5.3]). For λ∈a∗qC we then
consider the representation ξ⊗λ⊗1 of Q=MσAqN , and we use the notation C(Q : ξ :λ)
for the underlying space of the normally induced representation IndG

Q(ξ⊗λ⊗1).
The maps Tµ, T̃µ and Sµ make sense in this generality. It is seen as in [5, Proposi-

tion 8.1] that Tµ maps pµ(Q : ξ :λ)(C(Q : ξ :λ)K⊗F ) bijectively onto the space of K-finite
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vectors in IndG
Q(Hξλ⊗Fµ), and hence its composition T̃µ with (A.3) restricts to an iso-

morphism
T̃µ: pµ(Q : ξ :λ)(C(Q : ξ :λ)K⊗F )

∼→C(Q : ξ :λ+µ)K

for S-generic λ∈a∗qC
The definitions of b(Z, λ) and D(Z, λ) immediately generalize to the present setting,

and the analogue of [5, Lemma 8.4] holds; it states that (A.2) holds on the K-finite level,
for S-generic λ∈a∗qC.

Before giving the proof of Lemma A.2 we establish an analogous result, in which
H-fixed vectors are replaced by K-fixed vectors. The space HM∩K

ξ is either trivial or
one-dimensional. At present we assume the latter and define

ε(Q : ξ :λ):HM∩K
ξ →C(Q : ξ :λ)

by
[ε(Q : ξ :λ)ζ](namk)= aλ+�Qξ(m)ζ

for n∈N , a∈Aq, m∈Mσ, k∈K and ζ∈HM∩K
ξ . Then ε(Q : ξ :λ) is a bijection of HM∩K

ξ

onto C(Q : ξ :λ)K ; its inverse is given by the evaluation at the identity element.
Viewed as a function on G/K, ε(Q : ξ :λ)ζ is a joint eigenfunction for D(G/K).

This can be seen by factoring the Harish-Chandra homomorphism D(G/K)→S(a0)
through D(Mσ/M∩K)⊗S(aq), in analogy with [5, Lemma 4.4]; the function m �→ξ(m)ζ
on Mσ/M∩K is a joint eigenfunction for D(Mσ/M∩K) (we recall that a0=j∩p is a
Cartan subalgebra for the pair (G,K)). The eigenvalue homomorphism D(G/K)→C is
obtained from the character Λ1+λ on a0, where Λ1 denotes the restriction to a0∩mσ of
the infinitesimal character Λ of ξ.

Let eK∈F be a non-zero K-fixed vector and let ζ∈HM∩K
ξ . Then for generic λ∈a∗qC

the function T̃µ[pµ(Q : ξ :λ)(ε(Q : ξ :λ)ζ⊗eK)] belongs to C(Q : ξ :λ+µ)K , and hence its
value at the identity is given by φµ(Q : ξ :λ)ζ for some complex scalar φµ(Q : ξ :λ). In
analogy with (A.4) we obtain

Tµ[pµ(Q : ξ :λ)(ε(Q : ξ :λ)ζ⊗eK)]=φµ(Q : ξ :λ)Sµ[ε(Q : ξ :λ+µ)ζ]. (A.5)

Lemma A.3. There exist polynomials q1, q2∈ΠΣ,R(aq) and a constant c �=0 such
that

φµ(Q : ξ :λ)= c
q1(λ)
q2(λ)

.

Proof. Fix Z∈Z(g) such that b(Z, · ) �=0, and define an element uλ∈Z(g) depending
rationally on λ∈a∗qC by

uλ = b(Z, λ)−1D(Z, λ).
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The elements of Z(g) act on functions on G by the right regular representation R, and
it follows from (A.2) and (A.5) that

R(uλ)(Tµ[ε(Q : ξ :λ)ζ⊗eK ])=φµ(Q : ξ :λ)Sµ[ε(Q : ξ :λ+µ)ζ]. (A.6)

Let e∗K be the K-fixed element of F ∗ determined by e∗K(eK)=1. Then testing the ex-
pression on either side of (A.6) with e∗K on the second component we obtain

R(uλ)[ε(Q : ξ :λ)ζ( · )⊗e∗K(π( · )eK)]= e∗K(eµ)φµ(Q : ξ :λ)ε(Q : ξ :λ+µ)ζ (A.7)

on G. We now observe that e∗K(π( · )eK) equals ϕµ+�0 , the elementary spherical function
on G/K determined by the parameter µ+�0. Moreover, we have∫

K

[ε(Q : ξ :λ)ζ](kx) dk =ϕΛ1+λ(x)ζ. (A.8)

Indeed, both sides of (A.8) are HM∩K
ξ -valued joint eigenfunctions for D(G/K) with the

same parameter Λ1+λ, and they both take the value ζ when x is the identity. Integrating
(A.7) over K we thus obtain

R(uλ)[ϕΛ1+λϕµ+�0 ] = e∗K(eµ)φµ(Q : ξ :λ)ϕΛ1+λ+µ.

However, from the asymptotic expansions of the involved functions it follows (see
[28, Theorem 4.5 and Lemma 4.6]) that

R(uλ)[ϕΛ1+λϕµ+�0 ] =
c(µ+�0)c(Λ1+λ)

c(Λ1+λ+µ)
ϕΛ1+λ+µ,

where c: a∗0C→C denotes Harish-Chandra’s c-function associated with the Riemannian
symmetric space G/K. We conclude that

φµ(Q : ξ :λ)=
c(µ+�0)c(Λ1+λ)

e∗K(eµ)c(Λ1+λ+µ)
. (A.9)

The desired statement now follows from the Gindikin–Karpelevic formula for c, cf. also
[28, Corollary 4.7]. �

We shall now translate (A.5) into an algebraic statement that will be used in the
proof of Lemma A.2.

Let C� denote C equipped with the structure of a U(m+a+n)-module defined by
�=�Q on a and the trivial action on m+n. Note that since Q is σθ-stable, then so is �,
that is, it vanishes on ah. Given a finite-dimensional U(m+a+n)-module V we shall
write

Homm+a+n(U(g), V )
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for the space of (m+a+n)-homomorphisms U(g)→V ; here U(g) is viewed as a right
U(m+a+n)-module. Moreover, we define the U(g)-module

IG
Q(V ) :=Homm+a+n(U(g), V⊗C�),

where the module structure is determined by

u·F (v)=F (ǔv)

with u �→ǔ the principal antiautomorphism of U(g).
We now consider a finite-dimensional representation (δ, Vδ) of Q. We shall then

also use the notation IG
Q(Vδ) for the U(g)-module defined as above by means of the

U(m+a+n)-module structure on Vδ that arises from δ. On the other hand, we consider
the normally induced representation IndG

Q(δ). The underlying representation space con-
sists of the space C(Q : δ) of continuous functions G→Vδ, transforming according to the
rule

f(manx)= a�δ(man)f(x), man∈Q, x∈G.

We define Cω
Q(Q : δ) to be the space of germs along Q of Vδ-valued real-analytic functions,

defined, and satisfying the above transformation rule, for x in some left Q-invariant neigh-
borhood of e. Via differentiation from the right we equip this space with the structure
of a U(g)-module. Note that taking germs along Q induces a natural U(g)-equivariant
embedding

C(Q : δ)K ↪→Cω
Q(Q : δ).

Given f∈Cω
Q(Q : δ), we define the map ι(f):U(g)→Vδ⊗C� by

ι(f)(v)= [L(v)f ](e)⊗1.

We view ι(f) as the power series of f at e. One readily verifies that ι is an equivariant
embedding of the U(g)-module Cω

Q(Q : δ) into IG
Q(Vδ).

It is readily seen that Z(g) acts globally finitely on IG
Q(Vδ). Given Λ0∈ j∗C we denote

by pΛ0 the projection in IG
Q(Vδ) onto the generalized eigenspace for Z(g) determined by

the infinitesimal character Λ0.

Fix ζ∈HM∩K
ξ and denote by ε̄K(λ) the unique k-invariant element of IG

Q(Hξλ⊗F |Q)
determined by ε̄K(λ)(1)=ζ⊗eK⊗1. Similarly, we denote by ε̄µ(λ) the unique k-invariant
element of IG

Q(Hξλ⊗Fµ) determined by ε̄µ(λ)(1)=ζ⊗eµ⊗1. Then one readily sees that

ε̄K(λ)= ι(Tµ[ε(Q : ξ :λ)ζ⊗eK ]), ε̄µ(λ)= ι(Sµ[ε(Q : ξ :λ+µ)ζ]). (A.10)
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Lemma A.4. For generic λ∈a∗qC we have the following identity in IG
Q(Hξλ⊗F |Q):

pΛ+λ+µ [ε̄K(λ)]=φµ(Q : ξ :λ)ε̄µ(λ).

Proof. Since ι and Tµ are U(g)-equivariant maps we obtain from (A.10) that

pΛ+λ+µ [ε̄K(λ)]= ι(Tµ[pµ(Q : ξ :λ)(ε(Q : ξ :λ)ζ⊗eK)]).

Applying (A.5) and (A.10) we obtain the desired identity. �

We now return to our original assumption on (ξ,Hξ), that it belongs to M̂H . Our
goal is to give the proof of Lemma A.2. For this we may as well assume that V (ξ, 1)=
HM∩H

ξ �=0, otherwise there is nothing to prove. Since M is of Harish-Chandra’s class,
the representation ξ has an infinitesimal character. This implies that the m-module Hξ

is a multiple of an irreducible representation, which we denote by (ξ0,Hξ0). It follows
that we may assume that

Hξ =Hξ0⊗E,

with E a finite-dimensional complex linear space, and such that

ξ(X)= ξ0(X)⊗I, X∈m.

From the fact that HM∩H
ξ �=0 it follows that ξ0 possesses a non-trivial m∩h-invariant

vector. The space Hm∩h

ξ0
is one-dimensional, and moreover,

HM∩H
ξ ⊂Hm∩h

ξ0
⊗E.

Let g+ and g− denote the (+1)- and (−1)-eigenspaces for the involution σθ, respec-
tively. Then gd :=g+⊕ig− is a real form of the complexification gC of g. It is called the
dual real form of g. We denote the complex linear extensions of σ and θ to gC by σC

and θC, respectively. Let σd and θd denote the restrictions to gd of θC and σC, respec-
tively. Then θd is a Cartan involution of gd, and σd is an involution of gd that commutes
with θd. We have associated eigenspace decompositions gd=kd⊕pd=hd⊕qd. Note that
pd∩qd=p∩q, and hence ad

q :=aq is maximal abelian in pd∩qd. Note that the root space
decomposition of gC relative to aq is stable under the conjugations determining the real
forms g and gd. Hence Σd, the collection of roots of ad

q in gd, equals Σ.
Let Gd be a connected group of Harish-Chandra’s class with Lie algebra gd to which

both involutions θd and σd lift. Standard notations introduced in the context of G will
also be used for Gd; a superscript d will indicate that an object originally defined for
G,H,K is defined in exactly the same way, but with (Gd,Hd,Kd) in place of (G,H,K).
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In this spirit, let Ad
q be the image of ad

q under exp: gd→Gd. Moreover, let Qd be the
minimal σd-parabolic subgroup containing Ad

q, determined by the system Σ+ of positive
roots for Σd=Σ, and let Qd=Md

σAd
qN

d be its σd-Langlands decomposition. This is
compatible with the σ-Langlands decomposition of Q, in the sense that md

σ=mσC∩gd

and nd=nC∩gd.
We extend the representation ξ0 of m in Hξ0 to a representation ξ1 of mσ=m⊕ah

by triviality on ah. The restriction to md
σ of the complexification of ξ1 is denoted by ξd

1 .
The representation ξd

1 is irreducible, and possesses a one-dimensional subspace of vectors
that are annihilated by [mσC∩hC]∩gd=md

σ∩kd. We fix such a vector (non-trivial) and
denote it ζd. Since Md

σ is a group of Harish-Chandra’s class, it follows that ξd
1 lifts to a

unique Md
σ∩Kd-spherical representation, also denoted ξd

1 .
The finite-dimensional irreducible representation (π, F ) of G is K-spherical, hence

the associated infinitesimal representation of gC in F is irreducible. Let πd denote the
restriction to gd of this infinitesimal representation. Then, since π is also H-spherical,
πd has a non-trivial kd-fixed vector. Since Gd is of Harish-Chandra’s class, the represen-
tation πd lifts to a unique Kd-spherical representation of Gd in F d :=F , which is again
denoted by πd. Note that µ is an extremal ad

q-weight of πd. We assume that µ is Q-
dominant; then µ is also Qd-dominant. As before we select a non-trivial vector eµ=ed

µ in
the weight space Fµ of F . Moreover, we select a non-trivial H-fixed vector eH∈F ; then
eH is Kd-fixed as well, and we put ed

K :=eH .
According to Lemma A.4, applied to Gd, we now have for generic λ∈a∗qC=ad∗

qC that

pΛ+λ+µ(ε̄d
K(λ))=φd

µ(Qd : ξd
1 :λ) ε̄d

µ(λ) (A.11)

in the representation space

IGd

Qd(Hξd
1λ⊗F d|Qd)=Hommd

σ⊕ad
q⊕nd(U(gd),Hξd

1λ⊗F⊗C�d).

Here Hξd
1λ denotes Hξ0 , equipped with the U(md

σ+ad
q+nd)-module structure ξd

1⊗λ⊗1.
Note that U(gd)=U(g) and (md

σ+ad
q+nd)C=(mσ+aq+n)C; hence, the space in the above

equation equals

IG
Q(Hξ1λ⊗F |Q) = Hommσ+aq+n(U(g),Hξ1λ⊗F⊗C�)

=Homm+a+n(U(g),Hξ0λ⊗F⊗C�).

It follows that we have a natural isomorphism of U(g)-modules:

IG
Q(Hξλ⊗F |Q)� IGd

Qd(Hξd
1λ⊗F d|Qd)⊗E; (A.12)

here U(g) acts on the first component of the tensor product on the right-hand side.
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Lemma A.5. The function ψµ(Q : ξ): a∗qC→End(V (ξ, 1)) is given by

ψµ(Q : ξ :λ)=φd
µ(Qd : ξd

1 :λ)IV (ξ,1). (A.13)

Proof. We recall that

V (ξ, 1)�HM∩H
ξ ⊂Hm∩h

ξ0
⊗E =Hm

d∩k
d

ξd
1

⊗E =Cζd⊗E,

where ζd is the fixed md∩kd-invariant vector for ξd
1 . For each η∈V (ξ, 1) we have accord-

ingly η=ζd⊗ηE for a uniquely determined ηE∈E.
We consider the germ γ1(λ) along Q of the function Tµ[j(Q : ξ :λ)η⊗eH ], which

restricts to a real-analytic map QH→Hξ⊗F . Then γ1(λ)∈Cω
Q IndG

Q(Hξλ⊗F |Q). Via
the identification (A.12) we may view the associated formal power series ι(γ1(λ)) as an
element of IGd

Qd(Hξd
1λ⊗F d|Qd)⊗E; it is kd⊗I-invariant, and its value at 1∈U(gd) equals

ζd⊗ed
K⊗1⊗ηE . From this we obtain that

ι(γ1(λ))= ε̄d
K(λ)⊗ηE . (A.14)

We consider similarly the germ γ2(λ)∈Cω
Q IndG

Q(Hξλ⊗Fµ) along Q of the function
Sµ[j(Q : ξ :λ+µ)η]. Its formal power series, viewed as an element of IG

d

Qd(Hξd
1λ⊗F d

µ )⊗E

is kd⊗I-invariant, and its value at 1∈U(gd) equals ζd⊗ed
µ⊗1⊗ηE . It follows that

ι(γ2(λ))= ε̄d
µ(λ)⊗ηE . (A.15)

It follows from (A.14) that

ι�pµ(Q : ξ :λ)[γ1(λ)]= pΛ+λ+µ�ι[γ1(λ)]= pΛ+λ+µ [ε̄d
K(λ)]⊗ηE ,

which by (A.11) and (A.15) equals φd
µ(Qd :ξd

1 :λ) times ι[γ2(λ)]. Since ι is an embedding,
it follows that

pµ(Q : ξ :λ)[γ1(λ)]=φd
µ(Qd : ξd

1 :λ)γ2(λ)

on a neighborhood of e, for generic λ∈a∗qC. We conclude that

Tµ[pµ(Q : ξ :λ)(j(Q : ξ :λ)η⊗eH)]=φd
µ(Qd : ξd

1 :λ)Sµ[j(Q : ξ :λ+µ :x)η]

on HQ, and comparing this with (A.4) we obtain (A.13). �

Finally, Lemma A.2 follows from Lemmas A.5 and A.3. �



78 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

Appendix B. Induction of relations

In this appendix we recall a result from [12] that is used in §§ 8 and 10. We first introduce
the notion of a Laurent functional and discuss its relation to the previously defined notion
of a Laurent operator. Let V be a real linear space, equipped with a positive definite
inner product 〈 · , · 〉, and let VC denote its complexification, equipped with the complex
linear extension of the inner product 〈 · , · 〉.

Let X be a (possibly empty) finite set of non-zero elements of V , such that Rξ1 �=Rξ2

for all distinct ξ1, ξ2∈X. By an X-hyperplane in VC we mean an affine hyperplane of the
form H=a+α⊥

HC, with a∈VC, αH∈X. Note that αH is uniquely determined in view of
our assumption on X; hence the polynomial function lH :VC→C, z �→〈αH , z−a〉 is also
uniquely determined, and we have H= l−1

H (0). A locally finite collection of X-hyperplanes
in VC is called an X-configuration in VC.

If a∈VC, then we denote the (finite) collection of all X-hyperplanes containing a by
H(a,X). Moreover, we denote by M(a,X) the ring of germs of meromorphic functions
at a whose singular locus at a is contained in the germ of

⋃
H(a,X) at a. By NX

we denote the space of functions X→N. For d∈NX we define the polynomial function
πa,d=πa,X,d:VC→C by

πa,d(z)=
∏
ξ∈X

〈ξ, z−a〉d(ξ), z∈VC.

By Oa=Oa(VC) we denote the ring of germs of holomorphic functions at a. Then

M(a,X)=
⋃

d∈NX

π−1
a,dOa.

We define the space M(a,X)∗laur of X-Laurent functionals at a to be the space of linear
functionals L:M(a,X)→C such that for every d∈NX there exists an element ud∈S(V )
such that

Lϕ=ud[πa,dϕ](a),

for all ϕ∈π−1
a,dOa. It is immediate from this definition that the string (ud)d∈NX is uniquely

determined by L; we denote it by uL.

Remark B.1. Let Ta: z �→z+a denote translation by a in VC. Pullback under Ta

induces an isomorphism of rings T ∗
a :Oa→O0, ϕ �→ϕ�Ta. Moreover, T ∗

a (πa,d)=π0,d for
every d∈NX , and we see that pullback under Ta also induces an isomorphism of
rings T ∗

a :M(a,X)→M(0,X). From the definition of an X-Laurent functional one sees
that transposition induces a linear map Ta∗:M(0,X)∗laur→M(a,X)∗laur. Obviously,
Ta∗ is a linear isomorphism; moreover, one readily checks that uTa∗L=uL for every
L∈M(0,X)∗laur.
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We shall now investigate which strings (ud)d∈NX arise from Laurent functionals,
following the method of [11, §1.3]. We write �d=π0,d and equip the space NX with the
partial ordering � defined by d′�d if and only if d′(ξ)�d(ξ) for every ξ∈X. If d′�d then
we define d−d′ componentwise as suggested by the notation.

In [11, §1.3] we defined S←(V,X) as the linear space of strings (ud)d∈NX satisfying

ud(�d−d′ ϕ)(0)=ud′(ϕ)(0), (B.1)

for all d′, d∈NX with d′�d, and for every germ ϕ∈O0. This space is a projective limit
space in a natural way, see [11] for details.

Lemma B.2. The map L�→uL is a linear isomorphism from M(a,X)∗laur onto
S←(V,X).

Proof. In view of Remark B.1 we may as well assume that a=0. Let L∈M(0,X)∗laur,
and let uL=(ud)d∈NX be the associated string in S(V ). Then for all d′, d with d′�d we
have �d−d′ =π0,dπ−1

0,d′ . Hence, for every ϕ∈O0,

ud(�d−d′ ϕ)(0)=L(π−1
0,d′ ϕ)=ud′(ϕ)(0),

so that (B.1) holds. It follows that uL∈S←(V,X). Obviously the map L→uL is a linear
injection. We will finish the proof by establishing its surjectivity.

Let u∈S←(V,X). For d∈NX we define Ld:π−1
0,dO0→C by Ld(ψ)=ud(π0,dψ)(0). If

d, d′∈NX , d′�d, then from (B.1) it follows that Ld=Ld′ on π−1
0,d′O0. Therefore, there

exists a unique L∈M(0,X)∗ such that L=Ld on π−1
0,dO0 for every d∈NX . By definition

we have L∈M(0,X)∗laur and uL=u. �

In the following we shall see that the notion of a Laurent functional is closely related
to the notion of a Laurent operator introduced in [11], see also §5. For this, we need
some notation as well as a slight generalization of the concept of a Laurent operator from
the setting of a real X-configuration to that of an arbitrary one.

By an X-subspace in VC we mean any non-empty intersection of X-hyperplanes
in VC. We denote the set of such affine subspaces by A=A(VC,X). For L∈A there
exists a unique real linear subspace VL⊂V such that L=a+VLC for some a∈VC. The
intersection V ⊥

LC∩L consists of a single point, called the central point of L; we denote
it by c(L). The space L is said to be real if c(L)∈V ; this means precisely that L is the
complexification of an affine subspace of V .

For an X-configuration H we define M(VC,H) to be the space of meromorphic func-
tions on VC whose singular locus is contained in

⋃
H. If H consists of real hyperplanes,

we put HV ={H∩V |H∈H}; then M(VC,H) equals the space M(V,HV ) defined in §5.
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If L∈A we write H(L,X) for the collection of X-hyperplanes containing L, and
X(L)={αH |H∈H(L,X)}. From the assumptions on X it follows that X(L)=X∩V ⊥

L .
Let Xr be the orthogonal projection of X\X(L) onto VL. Let X0

r be a subset of Xr

such that for every ξ∈Xr there exists a unique ξ0∈X0
r with ξ∈Rξ0. Translation by c(L)

induces an affine isomorphism from VLC onto L. Via this isomorphism we equip L with
the structure of a complex linear space together with a real form with inner product;
moreover, we write XL for the image of X0

r in L. If H is an X-configuration in VC, then
HL={H∩L |H∈H, ∅�H∩L�H} is an XL-configuration in L.

We can now define the space Laur(VC, L,H) of Laurent operators from M(VC,H) to
M(L,HL) as in [11, §1.3], see also §5. Lemma 1.5 of [11] is now readily seen to generalize
to the present setting. It provides us with an isomorphism

Laur(VC, L,H) �−→S←(V ⊥
L ,X(L)), R �→uR. (B.2)

Lemma B.3. Assume that L∈A, and let H be an X-configuration in VC containing
H(L,X).

(a) If ϕ∈M(VC,H), then for w∈L\
⋃

HL the function z �→ϕ(w+z) is meromorphic
on V ⊥

LC, with a germ at 0 that belongs to M(0,X(L)).
(b) If L∈M(0,X(L))∗laur is a Laurent functional in V ⊥

LC, then for ϕ∈M(VC,H)
the function

L∗ϕ:w �→L(ϕ(w+ · ))

belongs to the space M(L,HL). The operator L∗:M(VC,H)→M(L,HL) is a Laurent
operator.

(c) The map L�→L∗ is an isomorphism from M(0,X(L))∗laur onto Laur(VC, L,H).
This isomorphism corresponds with the identity on S←(V ⊥

L ,X(L)), via the isomorphisms
of Lemma B.2 and equation (B.2).

Proof. (a) Let w∈L\
⋃

HL. Assume that H∈H is a hyperplane containing w. Then
H∩L �=∅ and from w /∈

⋃
HL it follows that H∈H(L,X). Thus, any hyperplane H∈H

containing w satisfies V ⊥
L �⊂VH , hence w+V ⊥

LC �⊂H. It follows that
⋃
H has a non-empty

complement in w+V ⊥
LC. Hence if ϕ∈M(VC,H), then ϕw: z �→ϕ(w+z) is a meromorphic

function on V ⊥
LC. The germ (ϕw)0 has its singular locus contained in the union of

the hyperplanes Hw :=−w+(w+V ⊥
LC)∩H, with H∈H, H�w, hence with H∈H(L,X).

We note that w∈H implies Hw=V ⊥
LC∩H; the latter is an X(L)-hyperplane in V ⊥

LC,
containing 0. This proves (a).

(b) Let L∈M(0,X(L))∗laur and put uL=(ud)d∈NX(L) . If d′ is a map H→N, then
via the bijection H(L,X)�X(L), we may identify d′|H(L,X) with an element d∈NX(L).
For ϕ∈H(VC,H, d′) we then have L∗ϕ(w)=ud(π0,dϕw)(0). We now observe that π0,d=
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π0,X(L),d equals the polynomial qL,d′ defined in [11, equation (1.5)]. Hence L∗ is a Laurent
operator from M(VC,H) to M(L,HL).

(c) From the reasoning in (b) we see that the element uL of S←(V ⊥
L ,X(L)) equals

the element uL∗ corresponding to L∗ under the isomorphism of (B.2). It follows that
the map L�→L∗ corresponds to the identity on S←(V ⊥

L ,X(L)). In particular, it is an
isomorphism from M(0,X(L)∗laur onto Laur(VC, L,H). �

Remark B.4. In particular, we may apply the above lemma with L={a}. Then
V ⊥

L =V and X(L)=X; hence for H an X-configuration containing H(a,X), we have
M(0,X)∗laur�Laur(VC, {a},H). Composing with the isomorphism Ta∗ discussed in Re-
mark B.1 we obtain an isomorphism

M(a,X)∗laur �Laur(VC, {a},H).

We have HL=∅; hence M(L,HL)�C naturally via evaluation at a, and we may identify
Laur(VC, {a},H) with a subspace of M(VC,H)∗. If L∈M(a,X)∗laur, then the associated
Laurent operator L∗∈M(VC,H)∗ is given by L∗(ϕ)=L(ϕa).

Let M(∗ ,X)∗laur denote the disjoint union of the spaces M(a,X)∗laur, a∈VC. A map
L:VC→M(∗ ,X)∗laur with La :=L(a)∈M(a,X)∗laur for all a∈VC is called a section of
M(∗ ,X)∗laur. The closure of the set {a∈VC |La �=0} is called the support of L, and
denoted by suppL. A finitely supported section of M(∗ ,X)∗laur is called an X-Laurent
functional on VC. The space of such Laurent functionals is denoted by M(VC,X)∗laur.
If S is a subset of VC, we put

M(S,X)∗laur = {L∈M(VC,X)∗laur | suppL⊂S},

and call this the space of X-Laurent functionals supported on S. If Ω is an open subset
of VC, then by M(Ω) we denote the ring of meromorphic functions on Ω. Moreover, if
a∈Ω, then by M(Ω, a,X) we denote the subring of those ϕ∈M(Ω) whose germ ϕa at a

belongs to M(a,X). If S⊂Ω, we define

M(Ω, S,X) :=
⋂

a∈S

M(Ω, a,X).

Finally, we write M(Ω,X) for M(Ω,Ω,X). In particular, M(VC,X) is the ring of mero-
morphic functions whose singular locus is contained in the union of an X-configuration.

There is a natural pairing M(S,X)∗laur×M(Ω, S,X)→C given by

Lϕ=
∑

a∈suppL
Laϕa.
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The pairing naturally induces a linear map M(S,X)∗laur→M(Ω, S,X)∗ which is injective;
however, we will not need this injectivity here.

If E is a finite-dimensional complex linear space, ψ∈M(Ω, S,X)⊗E and L∈
M(S,X)∗laur, then we shall write Lψ for (L⊗IE)ψ.

Now assume that L∈A, and let the sets X(L)⊂V ⊥
L and XL⊂L be as defined in

Remark B.1.

Lemma B.5. Let L be an X(L)-Laurent functional on V ⊥
LC, and let ϕ∈M(VC,X).

Then for w in the complement of an XL-configuration in L, the function z �→ϕ(w+z)
belongs to M(V ⊥

LC, suppL,X(L)). Moreover, the function

L∗ϕ:w �→L(ϕ(w+ · ))

belongs to the space M(L,XL).

Proof. It suffices to prove the assertions for a Laurent functional L whose support
consists of a single point a∈V ⊥

LC. Composing L with a translation if necessary, we may
as well assume that a=0 (use Remark B.1).

Let ϕ∈M(VC,X). Then there exists an X-configuration H in VC containing
H(L,X), such that ϕ∈M(VC,H). All assertions now follow from Lemma B.3. �

We now specialize to the setting of a reductive symmetric space. We take V =a∗q
and X=�Σ+, the set of indivisible roots in Σ+. The space M(a∗qC,�Σ+) is denoted by
M(a∗qC,Σ). Moreover, with notation as in §8, let F⊂∆ and let ΣF :=Σ∩a∗⊥Fq denote the
set of roots of a⊥Fq in mF . Note that if λ∈a∗⊥Fq and L=λ+a∗FqC, then V ⊥

L =a∗⊥Fq and X(L)
equals the set �Σ+

F of indivisible roots in Σ+
F . By a ΣF -Laurent functional on a∗⊥FqC we

mean a �Σ+
F -Laurent functional on a∗⊥FqC.

The following theorem is proved in [12]. Its displayed equations concern equalities
between meromorphic functions, in view of Lemma B.5.

Theorem B.6. Let v∈FW. Let L1,L2 be ΣF -Laurent functionals on a∗⊥FqC, and
let φ1, φ2∈M(a∗qC,Σ)⊗�CF,v. Assume that

L1(E�(XF,v : · :m)φ1(ν+ · ))=L2(E+(XF,v : · :m)φ2(ν+ · ))

for all m∈XF,v,+ and generic ν∈a∗FqC. Define ψi=(I⊗ iF,v)φi∈M(a∗qC,Σ)⊗�C for
i=1, 2. Then, for every x∈X+,

L1(E�(ν+ · :x)ψ1(ν+ · ))=L2

( ∑
s∈W F

E+,s(ν+ · :x)ψ2(ν+ · )
)

, (B.3)

as an identity of Vτ -valued meromorphic functions in the variable ν∈a∗FqC.

The following result is a dual version of the above theorem.
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Corollary B.7. Let v∈FW. Let L1,L2 be ΣF -Laurent functionals on a∗⊥FqC, and
let φ1, φ2∈M(a∗qC,Σ)⊗(�CF,v)∗. Assume that

L1(φ1(ν+ · )E∗(XF,v : · :m))=L2(φ2(ν+ · )E∗
+(XF,v : · :m)) (B.4)

for all m∈XF,v,+ and generic ν∈a∗FqC. Define ψi=(I⊗pr∗F,v)φi∈M(a∗qC,Σ)⊗�C∗ for
i=1, 2. Then, for every x∈X+,

L1(ψ1(ν+ · )E∗(ν+ · :x))=L2

(
ψ2(ν+ · )

∑
s∈W F

E∗
+,s(ν+ · :x)

)
, (B.5)

as an identity of V ∗
τ -valued meromorphic functions in the variable ν∈a∗FqC.

Proof. We prove this corollary by dualization of Theorem B.6.
If ψ∈M(a∗⊥FqC,ΣF ), then the function ψ∨:λ �→ψ(−λ̄) is readily seen to belong to

M(a∗⊥FqC,ΣF ) as well. If L is a ΣF -Laurent functional on a∗⊥FqC, then there is a unique
ΣF -Laurent functional L∨ on a∗⊥FqC such that

L∨(ψ∨)= (L(ψ))∗, (B.6)

where the star denotes conjugation of a complex number. If H is a finite-dimensional
complex Hilbert space, then we shall use the following notation. If v∈H, then by v∗ we
denote the element of the dual Hilbert space H∗ determined by v∗(w)=〈w |v〉, for w∈H.
If ψ∈M(a∗⊥FqC,ΣF )⊗H, then we define the function ψ∨∈M(a∗⊥FqC,ΣF )⊗H∗ by

ψ∨(λ)=ψ(−λ̄)∗.

With this notation, equation (B.6) still holds if L is a ΣF -Laurent functional on a∗⊥FqC

and if ψ∈M(a∗⊥FqC,ΣF )⊗H.
Let now L1,L2, φ1, φ2 be as in the corollary. Then replacing ν by −ν̄ in (B.4) and

applying a star to both sides of the resulting equation, we obtain that

L∨
1 (E�(XF,v : · :m)φ∨

1 (ν+ · ))=L∨
2 (E+(XF,v : · :m)φ∨

2 (ν+ · ))

for all m∈XF,v,+ and generic ν∈a∗FqC. Applying Theorem B.6 with L∨
i , φ∨

i in place of
Li, φi, respectively, we then obtain, for all x∈X+, that

L∨
1 (E�(ν+ · :x) iF,v φ∨

1 (ν+ · ))=L∨
2

( ∑
s∈W F

Es,+(ν+ · :x) iF,v φ∨
2 (ν+ · )

)
(B.7)

as a meromorphic identity in ν. We now observe that

[iF,v(φ∨
i (µ))]∗ =pr∗F,v(φi(−µ̄))=ψi(−µ̄).
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Thus, applying a star to both sides of (B.7) and inserting −ν̄ for ν we obtain (B.5), for
all x∈X+ and for generic ν. Since both members of (B.5) are meromorphic functions
of ν, by Lemma B.5, equation (B.5) holds as an identity of meromorphic functions. �

Remark B.8. The above results have two features that are worthwhile noting ex-
plicitly. First of all, the results enable us to extend certain sums of ‘partial’ Eisenstein
integrals to smooth functions on all of X. Indeed, a priori the expression on the right-
hand side of equation (B.3) is only defined for x∈X+. However, the expression on the
left-hand side of the equation is a smooth function of x∈X.

Secondly the above results are also of interest if L2=0. In that case the statements
amount to asserting that the Eisenstein integrals satisfy relations of a particular type, if
certain leading coefficients in their expansions along the wall A+

Fqv satisfy these relations.
The title of this section is motivated by the well-known fact that taking such leading
coefficients essentially inverts the procedure of parabolic induction.
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Petite matrice B. J. Funct. Anal., 136 (1996), 422–509.

[19] — Troncature pour les espaces symétriques réductifs. Acta Math., 179 (1997), 41–77.
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