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Introduction

Let G=H be a semisimple symmetric space, that is, G is a connected semi-
simple real Lie group with an involution r, and H is an open subgroup of
the group of ®xed points for r in G. The main purpose of this paper is to
study an explicit Fourier transform on G=H . In terms of general represen-
tation theory the (`abstract') Fourier transform of a compactly supported
smooth function f 2 C1c �G=H� is given by (see [6])

f̂ �p��g� � p�f �g �
Z

G=H

f �x�p�x�g dx;�1�

for p;Hp� � a unitary irreducible representation of G and g 2 Hÿ1
p

ÿ �H
an

H -invariant distribution vector for p. Here dx is the invariant measure on
G=H . Thus f̂ �p��g� is a smooth vector forHp, depending linearly on g. Our
goal is to obtain an explicit version of the restriction of this Fourier
transform to representations p;Hp� � in the (minimal) unitary principal se-
ries �pn;k;Hn;k� for G=H , under the assumption that the center of G is ®nite.
In the sequel [10] to this paper it is proved that a function f 2 C1c �G=H� is
uniquely determined by the restriction of f̂ to this series (a priori it is known
that f is determined by f̂ ).

Let h be a Cartan involution of G commuting with r, and let
g � k� p � h� q be the �1 eigenspace decompositions of the Lie algebra g
of G, corresponding to h and r, respectively. Let K � Gh, then K is a
maximal compact subgroup of G. The unitary principal series for G=H is a
series of parabolically induced representations pn;k � IndG

P �n
 k
 1�, with
P � MAN a minimal rh-stable parabolic subgroup with the indicated Lan-
glands decomposition, n a ®nite dimensional irreducible unitary represen-
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tation of M and k 2 ia�q. Here aq is the intersection of the Lie algebra a of A
with q ± this is a maximal abelian subspace of p \ q. The unitary principal
series for G=H and its non-unitary extension (allowing k 2 a�qc) was studied
in [2]. For the Fourier transform on G=H it is important to determine the
space Cÿ1�n : k�H of H -invariant distribution vectors for pn;k; this is done
for k in generic position in [2]. More precisely an explicit bijective linear map
j�n : k� from a ®nite dimensional vector space V �n� (independent of k) to
Cÿ1�n : k�H is determined. Moreover, the dependence of j�n : k� on k 2 a�qc
is meromorphic. An explicit Fourier transform can then be obtained by
composing the map �n; k� 7! j�n : ÿk� with the map g 7! f̂ �pn;ÿk��g� in (1)
(see also [32]). If G=H is a Riemannian symmetric space (or equivalently, if
H � K) we obtain in this way Helgason's Fourier transform for G=K (see
[29]). In this case the Fourier transform is holomorphic as a function of k,
but in general it is only meromorphic, and it need not make sense for all the
representations in the unitary principal series.

The main result of this paper is the determination of a normalization
j��n : k� of j�n : k� (with a meromorphic k-dependent normalizing factor),
which is regular on ia�q. The Fourier transform f̂ of f 2 C1c �G=H� can then
be de®ned as above, but with j�n : k� replaced by j��n : k�, that is we de®ne

f̂ n : k� � � pn;ÿk�f � � j� n : ÿk� � 2 HomC V �n�;H1
n;ÿk

� �
�2�

for n as above and k 2 ia�q; this Fourier transform is then real analytic as a
function of k. When G=H is Riemannian the normalization amounts to a
division of the usual Fourier transform by Harish-Chandra's c-function
(which is known to be non-zero for imaginary k, see [24, Lemma 29]).

Let us explain in some detail the construction of j��n : k� and the proof
of its regularity. Let A� �P : P : n : k� be the standard intertwining operator
from pP ;n;k � pn;k to the principal series p �P ;n;k induced from the parabolic
subgroup �P opposite to P . It is well known that A� �P : P : n : k� depends
meromorphically on k and is bijective for generic k. We de®ne j��n : k� by
j��n : k� � A� �P : P : n : k�ÿ1j� �P : n : k�, where j� �P : n : k� is constructed as
j�n : k�, but with P replaced by �P . It follows that j��n : k� : V �n� !
Cÿ1�n : k�H is again a bijection, for generic k 2 a�qc. Let R � a�q denote the
set of roots of aq in g and put

a�q��� �
�
k 2 a�qc

�� jhRek; aij < �; �8a 2 R�	�3�

for � > 0. The main result mentioned above is

Theorem 1. There exists, for each ®nite dimensional unitary representation n
of M , a constant � > 0 such that the function k 7! j��n : k� is holomorphic on
a�q���. In particular, it is regular on ia�q.

In order to prove the regularity of j��n : k� it su�ces to consider all the matrix
coe�cients formed by it and the K-®nite vectors inHn;k. The set of matrix
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coe�cients formed by the unnormalized j�n : k� with the K-®nite vectors in
Hn;k is spanned by (components of) the Eisenstein integrals, which were
de®ned in [3]. By construction the Eisenstein integrals E�w : k� are K-
spherical functions on G=H (that is, functions f taking their values in a ®nite
dimensional representation space Vs for K and satisfying f �kx� � s�k�f �x� for
all k 2 K; x 2 G=H ). The Eisenstein integral depends linearly on the param-
eter w in a certain ®nite dimensional vector space �C�s�, and meromor-
phically on k 2 a�qc. The ®rst step in the proof of Theorem 1 consists of the
identi®cation of a normalization E��w : k� of E�w : k�, such that the set of
matrix coe�cients formed by j��n : k� with the K-®nite vectors in Hn;k is
spanned by components of the E��w : k�. It turns out that E��w : k� is es-
sentially the same as the normalized Eisenstein integral which was introduced
in [3]. The normalizing factor, which is End��C�s��-valued and meromorphic
in k, is determined from the asymptotic behavior of E�w : k� towards in®nity
along minimal rh-stable parabolic subgroups (see Proposition 2).

The principal step in the proof of Theorem 1 is given in Theorem 2,
which states that k 7!E��w : k� is regular on ia�q. This result is obtained by
induction on the split rank of G=H (the dimension of aq). The induction
results from the existence of asymptotic expansions of the normalized Ei-
senstein integral along maximal parabolic subgroups, in which the principal
part is given by a linear combination of normalized Eisenstein integrals
corresponding to symmetric spaces of lower split rank (see Theorem 4). The
results of [3], in particular the unitarity of the c-functions, recalled here in
Proposition 5, are crucial. These preliminary tools and some further basic
properties of the Eisenstein integrals are collected in Sect. 1±7. In particular,
the proof of Theorem 1 is reduced to Theorem 2 in Sect. 5. In Sect. 8 we
establish the framework for the parabolic induction, in Sects. 9±11 we dis-
cuss some general results about asymptotic expansions of eigenfunctions
depending holomorphically on k, and in Sect. 12 we de®ne the notion of the
principal part. In Sect. 13 we state our main result (the above mentioned
Theorem 4) about the asymptotic expansion of the Eisenstein integrals. The
proof of this result is carried out in the subsequent three sections. Finally in
Sect. 17 we give the proof of Theorem 2.

The group G is itself a symmetric space for the left times right action of
G� G. In this case (`the group case') the spaces V �n� are all zero or one
dimensional, and the distribution vectors j��n : k�g can be identi®ed essen-
tially as multiples of the distribution kernel of the inverse of a standard
intertwining operator (for details, see [9, Lemma 2]). Thus in this case the
regularity in Theorem 1 comes down to the injectivity of this operator for k
purely imaginary, or equivalently, to the regularity of Harish-Chandra's
Plancherel factor l�k� (for minimal parabolic subgroups). This regularity is
stated in [27, p. 142, Lemma 2]. The normalized Eisenstein integrals and their
regularity can be found in [25, Theorem 6]. In the development of the general
theory for G=H we were very much inspired by these results of Harish-
Chandra for the group case. Another major source of inspiration was
Wallach's treatment of the asymptotic behaviour of matrix coe�cients [35].
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We end this introduction by giving some references to related papers that
also deal with harmonic analysis on general semisimple symmetric spaces
G=H (for more references we refer to [6, 28]). For the minimal principal series
the H -®xed distribution vectors had previously been studied in [34, 32] and,
in the generality of the present paper, in [2±4]. As mentioned, results from
these papers are frequently used here. For the non-minimal (generalized)
principal series, which are not considered in this paper, some of the results of
the mentioned papers were generalized in [14, 16, 18]. The discrete series had
already been thoroughly studied, ®rst of all in [21] and [33] (see [6]).

After the results presented here were obtained, there has been a rapid
development in the ®eld. The sequel [10], in which we obtain the most
continuous part of the Plancherel decomposition for G=H , was completed.
The Plancherel formula for symmetric spaces of type GC=GR was obtained
[23]. Wave packets formed by Eisenstein integrals were studied, and a new
proof of Theorem 1 was given in [5]. Crucial results for the non-minimal
principal series were obtained by Delorme in [19]. Subsequently, general-
izations of the unitarity of the c-functions (the so-called Maass-Selberg re-
lations of [3]) and of the present regularity theorem (Theorem 1) for the non-
minimal principal series were established in [17]. Finally, in the fall of 1995,
the full Plancherel decomposition for G=H was announced by Delorme, [20].
Simultaneously the present authors announced a proof of the same de-
composition, under the hyphothesis of the validity of the above mentioned
generalization of Theorem 1 (now established in [17]), [13]. The results of
[17] are signi®cant in both approaches, but apart from this the methods are
di�erent. The work in [13] is based on results from [11, 12]. In [13] we also
establish the Paley-Wiener theorem for G=H conjectured in [10]. In partic-
ular, Theorem 4 of the present paper plays an important role in [12].

1. The Fourier transform

Let G=H be a reductive symmetric space of Harish-Chandra's class, that is,
G is a real reductive Lie group of Harish-Chandra's class (cf. [26]), r an
involution of G, and H an open subgroup of the group Gr of its ®xed points.
This assumption on G=H is somewhat more general than that of the in-
troduction. Apart from this we use notation as de®ned above. As usual, the
Killing form on �g; g� is extended to an invariant bilinear form B on g, for
which the inner product hX ; Y i � ÿB�X ; hY � is positive de®nite. We also
require the extension to be compatible with r, that is, B�rX ; Y � � B�X ; rY �
for all X ; Y 2 g. The inner product h � ; � i is extended linearly to the com-
plexi®cation gc of g.

As above aq denotes a ®xed maximal abelian subspace of p \ q, and
P � MAN is a parabolic subgroup whose Levi part M1 � MA is the cen-
tralizer in G of aq. We denote the set of such parabolic subgroups by Pmin

r .
Notice that for P 2 Pmin

r we have that M and M1 are invariant under both
involutions h and r. Let
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KM � M \ K � M1 \ K; HM � M \ H ; and HM1
� M1 \ H ;

then the quotients M=KM , M1=KM , M=HM and M1=HM1
are symmetric spaces.

Furthermore we denote by pn;k � pP ;n;k the associated representations
of the principal series. Here n belongs to Mbfu, the set of (equivalence classes
of) irreducible ®nite dimensional unitary representations of M , and k be-
longs to a�qc which is viewed as a subspace of a�c

ÿ
by means of h � ; � i�. We

use the following model (`induction on the left') for pn;k: Let Hn denote a
®nite dimensional Hilbert space on which n�M� acts (unitarily), and let
C1�n : k� � C1�P : n : k� denote the space of smoothHn-valued functions
f on G satisfying

f �mang� � ak�qP n�m�f �g�; for m 2 M ; a 2 A; n 2 N ; g 2 G;

then pn;k is the right regular representation of G on this space. Here qP 2 a�

denotes half the trace of the adjoint action on n; it is easily seen that actually
qP 2 a�q. Similarly we denote by Cÿ1�n : k� the space of Hn-valued gener-
alized functions on G satisfying the above rule of transformation, and by
C1�K : n� and Cÿ1�K : n� the spaces of smooth, respectively generalized,
Hn-valued functions on K transforming according to f �mk� � n�m�f �k� for
all m 2 KM , k 2 K. Then restriction to K gives rise to bijective linear maps
from C1�n : k� and Cÿ1�n : k� onto the corresponding function spaces
C1�K : n� and Cÿ1�K : n� on K, for all k 2 a�qc. The Hilbert space L2�K : n�
is de®ned similarly; the inner product is given by

hf jgi �
Z
K

hf �k�jg�k�in dk�4�

with respect to invariant measure on K. (Here and in the following sesqui-
linear Hilbert space inner products will be denoted h � j � i, and the anti-
linearity is in the second variable.) When viewed as the representation space
for pn;k we also denote L2�K : n� by Hn;k.

We denote by R the root system of aq in g, and by W the group
NK�aq�=ZK�aq� which is naturally identi®ed with the re¯ection group of R.
For the time being we ®x a setW � NK�aq� of representatives for the double
quotient ZK�aq�nNK�aq�=NK\H �aq�; the image of W in W is then a set of
representatives for W =WK\H , where WK\H is the subgroup NK\H �aq�=
ZK\H �aq� of W . The mapW 3 w 7! PwH sets up a bijective correspondence
of W with the set of open P � H cosets in G. Given an irreducible unitary
representation n of M we denote by V �n� the Hilbert space given by the
formal orthogonal sum

V �n� �aw2WH
wHM wÿ1
n�5�

of the spaces of wHM wÿ1-®xed vectors for n. Here we notice that each
w 2 NK�aq� normalizes M and K (but in general not H ). Moreover it follows
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from the lemma below that if V �n� is non-zero then the restriction of n to KM

is irreducible (so in particular n 2 Mbfu), and that we have

HwHM wÿ1
n �Hw�M\H\K�wÿ1

n ; �w 2W�:

Lemma 1. There exists a connected normal closed subgroup Mn of M such that

M � KM Mn; Mn � HM and wMnwÿ1 � Mn

for all w 2 NK�aq�. In particular

M=wHM wÿ1 ' KM=w�KM \ HM �wÿ1:

Proof. Letmn be theLie subalgebraofm generatedbym \ p.Obviously this is
an ideal in m. Moreover it is Ad w-invariant for w 2 NK�aq�, and since aq is
maximal abelian in p \ q we havem \ p � h and hencemn � h. Let Mn be the
corresponding analytic subgroup of M , then wMnwÿ1 � Mn and Mn � H are
obvious, and M � KM Mn follows from M � KM exp�m \ p�. (

Remark. Under quite general assumptions on the pair �G;H� one has that
each of the summands of V �n� in (5) has dimension at most one. For details
about this result, which we shall not be using here, see [9] and the references
given there.

Clearly the elements of Cÿ1�P : n : k�H restrict to smooth functions on
the open P � H cosets in G, and hence they can be evaluated at each w 2W.
Moreover, the value at w belongs to HwHM wÿ1

n , and according to [2,
Corollary 5.3] the map ev : Cÿ1�P : n : k�H ! V �n�; given by the product of
all these evaluations, is bijective for generic k 2 a�qc. Furthermore, by
[2, Theorem 5.10] this map allows an inverse map

j�n : k� � j�P : n : k� : V �n� ! Cÿ1�P : n : k�H

which depends meromorphically on k (as a Cÿ1�K : n� valued map). Thus
by de®nition we have for g 2 V �n� that theHn-valued generalized function
j�n : k�g on G restricts to the smooth function

j�n : k��g��manwh� � ak�qP n�m�gw�6�

on PwH � MANwH . (Here gw denotes the w-component of g, viewed as an
element of Hn.) For any real number R we denote

a�q�P ; R� � fk 2 a�qc j Rehk; ai < R; �8a 2 R�P��g�7�

where R�P � is the positive system for R corresponding to P . It follows
from [2, Proposition 5.6] (and the remark succeeding its proof) that if
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k� qP 2 a�q�P ; 0� then j�n : k�g is the continuous function on G given by (6)
on PwH , w 2W, and by 0 elsewhere. Notice that if G=H is Riemannian then
V �n� is non-zero if and only if n is the trivial M-representation, in which case
V �n� ' C. Moreover in this case j�n : k� is essentially the map obtained from
the Iwasawa decomposition G � ANK by ank 7! ak�q. In particular it is
smooth for all k 2 a�qc.

Given two minimal rh-stable parabolic subgroups P ; P 0 2 Pmin
r (so that

their Langlands decompositions P � MAN and P 0 � MAN 0 share the M and
the A), there is a standard intertwining operator A�P 0 : P : n : k� from
Cÿ1�P : n : k� to Cÿ1�P 0 : n : k� (formally given by integration over N 0 \ �N
on the left). It depends meromorphically on k and is bijective for generic k,
and by the intertwining property it maps H -invariant vectors to H -invariant
vectors. Consequently we obtain an End�V �n��-valued meromorphic map
k 7!B�P 0 : P : n : k� by requiring commutativity of the diagram

Cÿ1�P : n : k�H ������������!A�P 0 : P : n : k�
Cÿ1�P 0 : n : k�H

j�P : n : k�
x??? x???j�P 0 : n : k�

V �n� �����������!
B�P 0 : P : n : k�

V �n�:

�8�

The operator A�P 0 : P : n : k� depends on the chosen normalization of the
Haar measure on N 0 \ �N . In the following we require that this normalization
is as speci®ed in [31, §2]. The purpose of using this particular normalization
is to make valid the product formulas for the standard intertwining oper-
ators (cf. (13 ) below).

By construction the operator B�P 0 : P : n : k� is invertible for generic k.
It is a simple consequence of the de®nition of A�P 0 : P : n : k� that

A�P 0 : P : n : k�� � A�P : P 0 : n : ÿ�k�:�9�

The main result of [2] (see also [4]) asserts the much deeper analogue

B�P 0 : P : n : k�� � B�P : P 0 : n : ÿ�k�;�10�

with respect to the Hilbert space structure of V �n� de®ned by the orthogonal
sum (5).

The normalized map

j��n : k� � j��P : n : k� : V �n� ! Cÿ1�P : n : k�H

is now de®ned as follows. Let c�Aq� � c�G : Aq� be the positive constant
de®ned by
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c�Aq�ÿ1 �
Z
�N

e2qP �HP ��n�� d�n;

where HP : G! a is the map de®ned by x 2 N expHP �x�MK (cf. [3,
eq. (122)]). In the diagram (8) let P 0 be the parabolic subgroup �P opposite to
P , and let j��P : n : k� be c�Aq�ÿ1 times the map that goes diagonally from
the lower right to the upper left corner, that is

j��P : n : k� � c�Aq�ÿ1A� �P : P : n : k�ÿ1 � j� �P : n : k�
� c�Aq�ÿ1j�P : n : k� �B� �P : P : n : k�ÿ1:

�11�

Notice that j��P : n : k� is independent of the particular normalization of the
Haar measure d�n on �N . The two equalities in (11) can be generalized as
follows

j��P : n : k� � c�Aq�ÿ1A�P 0 : P : n : k�ÿ1 � j�P 0 : n : k� �B� �P : P 0 : n : k�ÿ1;�12�

where P 0 2 Pmin
r is arbitrary (use that

A� �P : P : n : k� � A� �P : P 0 : n : k� �A�P 0 : P : n : k�;�13�

and similarly for B, cf. [2, Propositions 4.6 and 6.2]).
From (12) and the analogue of (13) for B we obtain the following

commutative diagram, which is analogous to (8)

Cÿ1�P : n : k�H ������������!A�P 0 : P : n : k�
Cÿ1�P 0 : n : k�H

j��P : n : k�
x??? x???j��P 0 : n : k�

cmV �n� �����������!
B� �P 0 : �P : n : k�

V �n�:

�14�

We shall now discuss the singular sets of the meromorphic maps
k 7! j�n : k� and k 7! j��n : k�. Let PR�aq� denote the set of elements
p 2 S�aq� � P �a�q� which are products of polynomials of the form
k 7! hk; ai ÿ c, where a 2 R and c 2 C. The product may be empty; this
means just that 1 2 PR�aq�.

Lemma 2. Let P 2 Pmin
r , n 2 Mbfu and R > 0 be given. Then there exists a

polynomial p 2 PR�aq� such that k 7! p�k�j�P : n : k� is holomorphic on the set
a�q�P ; R�. Furthermore there exists p 2 PR�aq� such that k 7! p�k�j��P : n : k�
is holomorphic on a�q�R� � a�q�P ; R� \ a�q� �P ; R�.

Proof. For j�n : k� this is a consequence of [3, Theorem 9.1]. For j��n : k�
we must also isolate the singularities of the inverse intertwining operator
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A� �P : P : n : k�ÿ1 used in the normalization (11). Recall (cf. [31, Proposition
7.3], [2, Proposition 4.7]) that for P ; P 0 2 Pmin

r one de®nes the meromorphic
function k 7! g�P 0 : P : n : k� 2 C on a�qc by

A�P : P 0 : n : k� �A�P 0 : P : n : k� � g�P 0 : P : n : k�I :

It follows from [31, Theorem 6.6] that there exists p1 2 PR�aq� such that
k 7! p1�k�A�P : �P : n : k� is regular on a�q�R�. Furthermore, by restricting to any
K-type occurring in the principal series for n we infer from [3, Lemma 16.6]
that there exists p2 2 PR�aq� such that k 7! p2�k�g� �P :P :n :k�ÿ1 is regular on
a�q�R�. Hence with p � p1p2 we ®nd that k 7! p�k� A� �P : P : n : k�ÿ1 �
p�k�g� �P : P : n : k�ÿ1A�P : �P : n : k� is regular on a�q�R�. (

Let dx be a ®xed invariant measure on G=H . The Fourier transform
f 7! f̂ �n : k� is de®ned by (2) for f 2 C1c �G=H�, n 2 Mbfu and k 2 a�qc, that is by

f̂ �n : k�g �
Z

G=H

f �x�j��n : ÿk��g��� x�dx 2 C1�K : n�; �g 2 V �n��:�15�

Then f̂ �n : k� is linear as a function of g and meromorphic as a function of k,
and it is regular on ia�q by Theorem 1 (to be proved later). Clearly
f 7! f̂ �n : k�g is a G-equivariance, when C1�K : n� is identi®ed with the
representation space H1

n;ÿk for pn;ÿk.
Notice that strictly speaking the Fourier transform as de®ned above

depends on the choice of the set W of representatives for ZK�aq�
nNK�aq�=NK\H �aq�. More precisely, if W0 � NK�aq� is another set of rep-
resentatives, and we de®ne the space V 0�n� as V �n� above but with W0 in
place of W, then there is a natural isometry Rn : V �n� ! V 0�n� (see [2,
Lemma 5.8]). The map j0�n : k� : V 0�n� ! Cÿ1�P : n : k�H , de®ned as j�n : k�
above, but with W0 in place of W, is then related to j�n : k� as follows:

j0�n : k� �Rn � j�n : k�:�16�

Moreover, the same formula holds with j replaced by j� on both sides. The
corresponding Fourier transform f̂ 0�n : k� is then related to f �n : k� by
f̂ 0�n : k� �Rn � f̂ �n : k�.

2. Eisenstein integrals

Eisenstein integrals for G=H were de®ned and analyzed in [3]. In this section
we shall give a slightly more general de®nition and relate it to the previous
one. This more general de®nition is necessary for the induction procedure in
the proof of Theorem 1.

Instead of working with scalar-valued K-®nite functions on G=H it
is more convenient to consider s-spherical functions f on G=H , that is
Vs-valued functions satisfying
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f �kx� � s�k�f �x�; �k 2 K; x 2 G=H�:

Here �s; Vs� is a ®nite dimensional unitary representation of K. We denote by
C�G=H : s� the space of s-spherical continuous functions from G=H into Vs.
The function spaces C1�G=H : s�, C1c �G=H : s� and L2�G=H : s� are de®ned
similarly, and they are topologized in the obvious fashion with the induced
topologies from C�G=H� 
 Vs, C1�G=H� 
 Vs, etc. The Eisenstein integral,
to be de®ned below, is a s-spherical function on G=H .

Let M be as in the previous section. We shall now de®ne a space �C�s�
which is analogous to the space �C�M ; sM� of cusp forms in [26, Sect.19].
However, since we are only dealing with minimal rh-stable parabolic sub-
groups, the actual notion of cusp forms is inessential. Let sM denote the
restriction of s on KM , then C1�M=wHM wÿ1 : sM � is the space of sM -
spherical functions on M=wHM wÿ1, for each w 2 NK�aq�. We de®ne �C�s� to
be the formal direct sum over w 2W of these spaces:

�C�s� �aw2WC1�M=wHM wÿ1 : sM �:�17�

Given w 2W we accordingly write �Cw�s� for the w-component of the space
�C�s�; and if w 2 �C�s�; we write ww for its w-component. Notice that it
follows from Lemma 1 that evaluation at e yields a linear bijection of �Cw�s�
onto V w�M\K\H�wÿ1

s , hence we have

�C�s� 'aw2WV w�M\K\H�wÿ1
s�18�

(again the sum is formal; it is not taken inside Vs). In particular this shows
that �C�s� is ®nite dimensional. We equip C1�M=wHM wÿ1 : sM � as a Hilbert
space by means of the L2-inner product with respect to the normalized
invariant measure on the compact symmetric space M=wHM wÿ1. Regarding
(17) as an orthogonal sum we obtain a Hilbert space structure on �C�s�. The
map (18) is an isometry if we similarly regard the sum on its right-hand side
as an orthogonal sum.

To a pair �w; k� of elements w 2 �C�s� and k 2 a�qc we associate a Vs-
valued function ~w�k� on G=H by

~w�k : x� �
ak�qP ww�m� for x � manwH

�m 2 M ; a 2 A; n 2 N ;w 2W�;
0 for x =2 [w2W PwH .

8<:�19�

It follows from [2, Proposition 5.6] that if k� qP 2 a�q�P ; 0� then ~w�k� is
continuous on G. The s-Eisenstein integral is then de®ned by

E�w : k��x� � Es�P : w : k��x� �
Z
K

s�k� ~w�k : kÿ1x� dk;�20�

for x 2 G=H . Then w 7!E�w : k� is a linear map from �C�s� to C�G=H : s�.

526 E. van den Ban, H. Schlichtkrull



Notice that the construction of the Eisenstein integrals is `functorial' in
the following sense: Let �s1; V1� and �s2; V2� be unitary ®nite dimensional
representations of K, and let U 2 HomK�V1; V2�. Then U induces a natural
map, also denoted by U, from �C�s1� to �C�s2�, for which we have

Es2�U�w1� : k��x� � U�Es1�w1 : k��x��; �w1 2 �C�s1��:�21�

In particular this means that if �s; Vs� is reducible then the Eisenstein integral
Es decomposes as the sum of the Eisenstein integrals corresponding to the
reduction components of s.

We shall now determine the relation of the Eisenstein integrals E�w : k�
to the distributions j�n : k� of the previous section. First we relate the spaces
V �n� and �C�s� to each other.

Let the ®nite dimensional unitary representations �s; Vs� and �n;Hn� be
given as above. In what follows the Frobenius reciprocity theorem plays a
prominent role. We shall be using it in the following formulation. Recall
that C�K : n� is the space of continuous functions f : K !Hn transforming
according to f �mk� � n�m�f �k� for k 2 K and m 2 KM , and that K acts from
the right on this space, thus providing a model for the induced represen-
tation indK

KM
njKM

. Similarly, let C�K : n : s� denote the space of continuous
functions f : K !Hn 
 Vs transforming according to the rule:

f �mkk0� � �n�m� 
 s�k0�ÿ1� f �k�; �k; k0 2 K; m 2 KM �:

Then C�K : n : s� ' �C�K : n� 
 Vs�K , and Frobenius reciprocity asserts that
evaluation at the identity element of K yields an isomorphism of C�K : n : s�
onto the ®nite dimensional space �Hn 
 Vs�KM . We denote this map by e.
Regarding C�K : n : s� as a Hilbert space by means of the L2-inner product
on K we have that e is an isometry.

We now de®ne, for each w 2W, a sesqui-linear map

C K : n : s� � �HwHM wÿ1
n ! �Cw�s� � C1 M=wHM wÿ1 : sM

ÿ ��22�

by mapping the pair �f ; g� to the Vs-valued function m 7! hf �e�jn�m�gi on M .
Here h � j � i : �Hn 
 Vs� �Hn ! Vs is the sesqui-linear map obtained from
contraction by means of h � j � in. Let �Hn be the linear space conjugate toHn,
then we shall view the above map (22 ) as a linear map

C K : n : s� � 
 �HwHM wÿ1
n ! �Cw�s�:

Of course one has that �Hn 'Hn_ (as an M-module). This allows one to
avoid the bar in the notations, if one likes. By direct summation over w we
get a linear map T 7!wT from C�K : n : s� 
 �V �n� to �C�s�, where �V �n� is the
linear space conjugate to V �n�. We can now state the relation between �C�s�
and the V �n�:

Fourier transforms on a semisimple symmetric space 527



Lemma 3. Let �s; Vs� be a ®nite dimensional unitary representation of K.
De®ne for each n 2 Mbfu a linear map T 7!wT from C�K : n : s� 
 �V �n� to
�C�s� as above by

wf
g

� �
w
�m� � f �e�jn�m�gwh i�23�

for f 2 C�K : n : s�, g 2 V �n�, m 2 M and w 2W. Then the sum over n 2 Mbfu
of the maps �dim n�1=2w yields a surjective isometry

an C�K : n : s� 
 �V �n� ! �C�s�:

Proof. Consider the matrix coe�cient map

mw : Hn 
 �Hn
wHM wÿ1 ! C1 M=wHM wÿ1

ÿ �
:

This map is equivariant for the obvious M-actions and its image is
C1n �M=wHM wÿ1�, the space of functions of left type n in C1�M=wHM wÿ1�.
Moreover, �dim n�1=2mw is an isometry, by Lemma 1 and the Schur
orthogonality relations for KM . Let

C1n M=wHM wÿ1 : sM
ÿ � ' C1n M=wHM wÿ1

ÿ �
 Vs

h iKM

be the space of functions in C1�M=wHM wÿ1 : sM� of left type n. (Notice
however that C1�M=wHM wÿ1 : sM � is actually not invariant under the left
action of M .) Then, again by Lemma 1, we have that C1�M=wHM wÿ1 : sM �
is the sum over n 2 Mbfu of the spaces C1n �M=wHM wÿ1 : sM �. Now mw pro-
vides us with an onto isomorphism

~mw � mw 
 IVs : Hn 
 Vs� �KM
 �HwHM wÿ1
n ! C1n M=wHM wÿ1 : sM

ÿ �
;

and themapT 7! �wT �w fromC�K : n : s� 
 �HwHM wÿ1
n toC1�M=wHM wÿ1 : sM �

is easily identi®ed as ~mw � �e
 I�, where e is the Frobenius reciprocity map
and I the identity map on �HwHM wÿ1

n . The lemma follows immediately. (

We denote by �Cn�s� the image of C�K : n : s� 
 �V �n� in �C�s�. Then
�C�s� � �n

�Cn�s�, and according to the proof above we have

�Cn�s� �aw2WC1n M=wHM wÿ1 : sM
ÿ �

:

Moreover �Cn�s� 6� 0 if and only if V �n� 6� 0 and n_jKM
occurs in the de-

composition of sM into irreducible KM -types.
Notice that the map T 7!wT also depends on s in a functorial way. In

fact let wj be associated to �sj; Vj�, for j � 1; 2, and let U : V1 ! V2 be a K-
equivariant map. Then U naturally induces maps U : C�K : n : s1� !
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C�K : n : s2� and U : �C�s1� ! �C�s2� and for f1 2 C�K : n : s1� and g 2 �V �n�
we have U�w1

f1
g� � w2
Uf1
g:

We are now ready to give the promised relation between E and j. Let n be
given, and let T � f 
 g 2 C�K : n : s� 
 �V �n�. Then we obtain from (19)
and (23) that fwT �k : manwH� � ak�qP f �e�jn�m�gwh i;

and comparing with (6) we see that fwT �k : gH� � hf �e� j �j�n: �k�g��g�i for all
g 2 G. Hence by (20) we have

E wT : k� ��gH� �
Z
K

s kÿ1
ÿ �hf �e� j �j n : �k

ÿ �
g��kg�idk

�
Z
K

hf �k� j �j n : �k
ÿ �

g��kg�idk:

Here h � j � i : �Hn 
 Vs� �Hn ! Vs is the before-mentioned contraction.
Using the same contraction we de®ne a sesqui-linear map C�K : n : s��
C�K :n� ! Vs by

hf jui �
Z
K

hf �k�ju�k�i dk�24�

for f 2 C�K : n : s�, u 2 C�K : n�, and we ®nally have

E�wT : k��gH� � hf jpn;�k�g�j�n : �k�gi; �g 2 G�;�25�

for T � f 
 g 2 C�K : n : s� 
 �V �n�. In particular it follows that the Eisen-
stein integral is a smooth function on G=H . A priori (25) holds when
k� qP 2 a�q�P ; 0�, the range in which we have de®ned E�w : k� and in which
j�n : �k�g is continuous. However since all elements f 2 C�K : n : s� are
smooth functions on K, the sesqui-linear map in (24) makes sense for
u 2 Cÿ1�K : n�, and hence we get from the results of [2] cited in the pre-
vious section, that k 7!E�w : k� extends to a meromorphic C1�G=H : s�-
valued function on a�qc for which (25) holds (in the generalized sense). Notice
that this expression shows that the components of the vector valued func-
tion E�w : k� are ®nite sums of (generalized) matrix coe�cients of j�n : �k�g
with K-®nite vectors, for all w 2 �C�s�.

The expression (25) can also be used to relate the Eisenstein integrals
E�P : w : k� constructed from di�erent parabolic subgroups P to each other.
Using (8) and (9) it is easily seen that

E�P : wf
g : k� � E�P 0 : wA�P :P 0:n:ÿk�ÿ1f
B�P 0:P :n:�k�g : k�; �P ; P 0 2 Pmin
r �:�26�
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A priori the intertwining operator A�P : P 0 : n : ÿk� acts on C�K : n�; the
action on C�K : n : s� ' �C�K : n� 
 Vs�K is obtained from tensoring with the
trivial action on Vs.

Notice that if W0 is a second choice of representatives for
ZK�aq�nNK�aq�=NK\H �aq�, then in analogy with (16) it is easily seen that
there is a natural isometry Rs : �C�s� ! �C�s�0 such that

E0�Rsw : k� � E�w : k�; �w 2 �C�s��;�27�

where the quantities with a prime are de®ned with the new setW0 in place of
W.

We shall now relate these Eisenstein integrals to those of [3]. Let # be a
®nite set of equivalence classes of ®nite dimensional irreducible represen-
tations �l; Vl� of K, and let V# � C�K�# be the space of K-®nite functions on
K, whose isotopy types for the left regular representation are contained in #.
Thus by Peter-Weyl theory we have the linear isomorphism

V# '
X
l2#

Vl 
 �Vl;�28�

where �Vl is the conjugate linear space to Vl. We provide V# with the inner
product as a subspace of L2�K�, and de®ne s# to be the unitary represen-
tation of K on V# obtained from the right action. In the above expression
for V# we thus have s# '

P
l2# 1l 
 l_, where 1l is the trivial representation

on Vl, and where l_ is the representation contragradient to l, realized on �Vl.
The Eisenstein integrals of [3] are obtained by specializing the above
construction of the Vs-valued function Es�w : k� to the case where
�s; Vs� � �s#;V#�.

The map w of Lemma 3 can be somewhat simpli®ed in the case when
�s; Vs� � �s#;V#�. Let C�K : n�# denote the subspace of C�K : n� consisting
of the K-®nite functions whose (right) K-types belong to #, and let
I 
 de : C�K : n : s#� � �C�K : n� 
 V#�K ! C�K : n� be the linear map ob-
tained from evaluation of the elements of V# � C�K�# at e, then it is easily
seen that I 
 de maps C�K : n : s#� bijectively onto C�K : n�# (use (28)). For
f 2 C�K : n : s#� and g 2 V �n� it follows easily from (23) that

�wf
g�w�m��k� � h��I 
 de�f ��kÿ1�jn�m�gwin;

for m 2 M ; k 2 K. We shall henceforth identify C�K : n : s#� with C�K : n�#
by means of I 
 de, and we write accordingly (cf. also [3, p. 346])

�wf
g�w�m��k� � hf �kÿ1�jn�m�gwin; �m 2 M ; k 2 K�:�29�

Specializing (25) to s# and applying de we obtain (as in [3, Lemma 4.2])

Es#�wT : k��gH��e� � hf jpn;�k�g�j�n : �k�gi; �g 2 G�;�30�
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for T � f 
 g 2 C�K : n�# 
 �V �n�, where h�j�i now is the sesqui-linear
product (4) on C�K : n�.

On the other hand, for general K-representations �s; Vs�, the Eisenstein
integral Es�w : k� can be expressed by means of the Es#�w : k� as follows. Let
# be the set of K-types occurring in s_, and let �s#;V#� be constructed as
above. Consider the space V# 
 Vs with the K-representations s# 
 1s and
`# 
 s, where 1s denotes the trivial K- representation on Vs, and `# denotes
the representation obtained from the left action on V#. Clearly these rep-
resentations commute with each other, and hence the space

�V# 
 Vs��`#
s��K��31�

of ®xed vectors for the latter action is an invariant subspace with respect to
the former action. It is now easily seen that evaluation in the identity in the
®rst factor of the tensor product yields a K- equivariant isomorphism of the
space (31) onto Vs. Let U : Vs,!V# 
 Vs be the embedding obtained from the
inverse of this isomorphism. It follows from the functorial property (21) that
we have

UEs�w : k� � Es#
1s�U�w� : k��32�

for w 2 �C�s�. Again by functoriality one sees that �C�s# 
 1s� ' �C�s#� 
Vs

and

Es#
1s�w
 u : k� � Es#�w : k� 
 u�33�

for w 2 �C�s#�, u 2 Vs. Using these relations we shall sometimes derive
properties of the Eisenstein integrals in the present generality from the
corresponding properties in [3].

3. Invariant di�erential operators

Let D �G=H� denote the algebra of invariant di�erential operators on G=H .
Let U�g� be the universal enveloping algebra of the complexi®cation of g
and recall that the right action of G on C1�G� induces a homomorphism r
from U�g�H onto D �G=H�, whose kernel is U�g�H \ U�g�h. In the following
we shall frequently abuse notation by identifying an element D 2 D �G=H�
with any X 2 U�g�H for which D � r�X �.

Let b be a Cartan subspace for G=H (that is a maximal abelian subspace
of q consisting of semisimple elements), containing aq. Then b \ p � aq and
b � bk � aq, where bk � b \ k. Let W �b� denote the re¯ection group of the
root system of bc in gc, then the Harish-Chandra isomorphism c � cG=H for
G=H maps D �G=H� isomorphically onto S�b�W �b�, the algebra of invariants
for W �b� in the symmetric algebra S�b�.

We shall now de®ne a similar homomorphism (cf. [3, Sect. 2])
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l : D �G=H� ! D �M1=HM1
� ' D �M=HM � 
 S�aq�:

Here D �M1=HM1
� and D �M=HM � denote the algebras of invariant di�er-

ential operators on the symmetric spaces M1=HM1
and M=HM respectively,

and the isomorphism between D �M1=HM1
� and D �M=HM� 
 S�aq� is ob-

tained from the decomposition m1 � m� aq � ah, where ah � a \ h. Let
P 2 Pmin

r be given. We ®rst de®ne a homomorphism

8lP : D �G=H� ! D �M1=HM1
�

by the requirement

Dÿ8lP �D� 2 n U�g� � U�g�h

(it is used that g � n�m1 � h, and elements of D �M1=HM1
� and U�m1�HM1

are identi®ed, as mentioned above for G=H ). Let dP �m� � det�Ad�m�jn�
�� ��1=2

for m 2 M1, then dP �ma� � aqP for m 2 MAh, a 2 Aq, where Ah � exp ah and
Aq � exp aq. In particular we may view dP as a function on M1=HM1

and
de®ne an operator TP : D �M1=HM1

� ! D �M1=HM1
� by TP �D� � dÿ1P �D � dP .

Equivalently TP is given by TP � ID �M=HM � 
 TqP
; where TqP

is the auto-
morphism of S�aq� given by TqP

u�k� � u�k� qP � for u 2 S�aq�, k 2 aq. Now
l is de®ned by

l � TP � 8lP :�34�
Notice that b is also a Cartan subspace for the symmetric space M1=HM1

.
Let WM1

�b� be the re¯ection group of its root system and let cM1=HM1
be the

Harish-Chandra isomorphism from D �M1=HM1
� onto S�b�WM1

�b�. Then it is
easily veri®ed that

cM1=HM1
�l � cG=H :�35�

In particular it follows that l is injective, and that it is independent of the
choice of the parabolic subgroup P (as already indicated by the absence of P
as subscript).

The map 8l �P : D �G=H� ! D �M1=HM1
� is also denoted l0P ; by (34), the

independence of l on P , and the relation d �P � dÿ1P we have

l0P � TP � l:�36�

Let w 2W. Then Ad�w� maps M1=HM1
onto M1=wHM1

wÿ1. Moreover,
by conjugation with w inside U�g� we get a map from U�m1�HM1 to
U�m1�wHM1

wÿ1 , which induces a map from D �M1=HM1
� to D �M1=wHM1

wÿ1�.
We denote this map by D 7!Ad�w�D. Let

lw � Ad�w� � l : D �G=H� ! D �M1=wHM1
wÿ1� ' D �M=wHM wÿ1� 
 S�aq�:

Let n 2 Mbfu. The algebra D �M=wHM wÿ1� acts naturally onHwHM wÿ1
n by

n, and thus we have a homomorphism of algebras
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nw : D �M=wHM wÿ1� ! End�HwHM wÿ1
n �:

Let the algebra homomorphism

l�n� : D �G=H� ! End�V �n�� 
 S�aq�

be de®ned as the direct sum over w 2W of the maps �nw 
 I� � lw. For
D 2 D �G=H� and k 2 a�qc we denote by l�D : n : k� the endomorphism of
V �n� obtained from l�n��D� by evaluation of its S�aq� components in k.

For each w 2W and D 2 D �G=H� we have:

Dÿ8lwÿ1Pw�D� 2 Adwÿ1�n�U�g� � U�g�h:�37�

By the independence of l on P we have Twÿ1Pw � 8lwÿ1Pw � l, or equivalently

�ID �M=wHM wÿ1� 
 Tq� �Ad�w� � 8lwÿ1Pw � lw:

From (6) and (37) it then follows that

D�j�n : k�g� � j�n : k��l�D : n : k�g�; �g 2 V �n��;�38�

for all D 2 D �G=H�, as a meromorphic identity in k 2 a�qc (cf. also [3,
Lemma 4.4]).

Being G-equivariant the operator A�P 0 : P : n : k� is in particular inter-
twining for the actions of D �G=H� on Cÿ1�P : n : k�H and Cÿ1�P 0 : n : k�H .
By the injectivity of j�n : k� (for generic k), and the fact that l is independent
of the choice of parabolic subgroup, we conclude from (38) and the diagram
(8) that

l�D : n : k� �B�P 0 : P : n : k� � B�P 0 : P : n : k� � l�D : n : k��39�

as a meromorphic identity in k. In particular we have that the relation (38)
holds for j��n : k� as well:

D�j��n : k�g� � j��n : k��l�D : n : k�g�; �g 2 V �n��:�40�

For D 2 D �G=H� let D� 2 D �G=H� be its formal (Hermitian) adjoint
with respect to the invariant measure dx on G=H . Then by [3, p. 435±436] we
have

l�D� : n : k� � l�D : n : ÿ�k�� 2 End�V �n��;�41�

where the asterisk on the right-hand side denotes the adjoint with respect to
the Hilbert space structure of V �n�. It follows immediately from the de®-
nition (15) of the Fourier transform and (40) that we have

�Df �b�n : k� � f̂ �n : k� � l� �D : n : �k��; �f 2 C1c �G=H��;�42�
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where �D 2 D �G=H� is the conjugate of D, de®ned by �D/ � D �/ for
/ 2 C1�G=H�.

Let �s; Vs� be as in Sect. 2. There is a natural action of the algebra
D �M=wHM wÿ1� on the ®nite dimensional space C1�M=wHM wÿ1 : sM �,
for each w 2W. We thus have a homomorphism of algebras rw :
D �M=wHM wÿ1� ! End��Cw�s��: Let the homomorphism

l�s� : D �G=H� ! End��C�s�� 
 S�aq�
be the direct sum over w 2W of the maps �rw 
 I� �lw. Notice that it
follows from (23) that rw�wf
g�w � �wf
nwgw

�w and hence

l�D : s : k�wf
g � wf
l� �D:n:�k�g;�43�

for f 2 C�K : n : s�, g 2 V �n�, and D 2 D �G=H� (recall that wf
g is anti-
linear as a function of g 2 V �n�). Using (25) we infer from (38) and (43) that

DEs�w : k� � Es�l�D : s : k�w : k��44�

for all w 2 �C�s�, D 2 D �G=H�, as a meromorphic identity in k 2 a�qc (cf. [3,
Lemma 4.5] for s � s#).

The endomorphisms l�D : n : k� and l�D : s : k� of V �n� and �C�s�,
respectively, are diagonalizable. More precisely the following result holds.
We view b�kc and a�qc as subspaces of b�c , according to the decomposition
b � bk � aq.

Lemma 4. There exists, for each n 2 Mbfu, a ®nite set Ln of elements K 2 ib�k
such that the endomorphisms l�D : n : k�, for k 2 a�qc and D 2 D �G=H�, of
V �n� are simultaneously diagonalizable with eigenvalues of the form
c�D : K� k� with K 2 Ln.

Similarly there exists, for each ®nite dimensional unitary representation
s of K, a ®nite set Ls � ib�k such that the endomorphisms l�D : s : k� 2 End
��C�s�� are simultaneously diagonalizable with eigenvalues of the form
c�D : K� k� with K 2 Ls.

Proof. It follows from [3, proof of Lemma 4.8 (see the lines following the
display (37))] that the endomorphisms ne�D�, D 2 D �M=HM �, of HHM

n are
simultaneously diagonalizable, with eigenvalues of the form cM=HM

�D : K�
where K 2 ib�k. Conjugating by w we infer that a similar statement holds for
nw�D�, D 2 D �M=wHM wÿ1�. The statement about l�D : n : k� now follows
immediately from (35) and the de®nition of l�n� as the direct sum of the
maps �nw 
 I� � lw, and the statement for s is then a consequence of Lemma
3 and (43). (

4. Asymptotic expansions

Let �s; Vs� be as above. It follows from the di�erential equation (44) that the
components of the vector valued function Es�w : k� are D �G=H�-®nite
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functions on G=H . As such they allow converging asymptotic expansions
along the rh-stable parabolic subgroups of G (see [1]). In this section
we recall from [3] some properties of these expansions, for the minimal
rh-stable parabolic subgroups.

Recall the following `KAH '-decomposition of G:

G � cl
[

w2W
KA�q wH ; (disjoint union),

where cl denotes `closure'. Here A�q � exp a�q , where a�q is the positive
chamber in aq corresponding to some (®xed) choice of positive system for R.
Using the decomposition above we see that the asymptotics of a s-spherical
function f on G=H are determined from the behavior of f �aw� for a!1 in
A�q and w 2W (modulo the behavior `along the walls' of A�q w). In the fol-
lowing we ®x two parabolic subgroups P ;Q 2 Pmin

r . The asymptotic expan-
sion to be explored is that of the Eisenstein integral E�P : w : k� along
A�q �Q�w, for all w 2W, where A�q �Q� corresponds to R�Q�. Notice that, for
a 2 Aq; the functionm 7!E�P : w : k��maw� belongs toC1�M=wHM wÿ1 : sM �;
by sphericality of the Eisenstein integral. By (17) we may view it as an element
of �C�s�.

Let NR�Q� denote the set of linear combinations of the elements from
R�Q� with coe�cients in N. In view of (32), (33) it follows from [3, Lemma
14.1 and Theorem 14.2] that there exist, for each m 2 NR�Q� and s 2 W a
unique meromorphic End��C�s�� valued function k 7! pQjP ;m�s : k� on a�qc
such that (generically in k)

E�P : w : k��maw� � aÿqQ
X

m2NR�Q�

X
s2W

askÿm�pQjP ;m�s : k�w�w�m��45�

for w 2W, m 2 M and a 2 A�q �Q�. The convergence is absolute and uniform
on any subset of MA�q �Q� of the form fma j a�log a� > �; a 2 R�Q�g, � > 0.
We de®ne the c-function

CQjP �s : k� � pQjP ;0�s : k� 2 End��C�s��:

Moreover we de®ne the sM -spherical function EQ;w�P : w : k� on
M1=wHM1

wÿ1 by

EQ;w�P : w : k��ma� �
X
s2W

ask�CQjP �s : k�w�w�m�; �m 2 M ; a 2 Aq�;�46�

and call it the �Q;w�-principal part of E�P : w : k�. It is easily seen from
uniqueness of the asymptotic coe�cients that the c-functions, as well as the
principal parts, of E�P : w : k�, depend on s in a functorial way, just as we
have earlier seen for E�P : w : k� itself (cf. (21)).

The c-functions CQjP �s : k� allow the following identi®cation in terms of
intertwining operators when s � 1. Recall that the intertwining operators
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A�P : Q : n : k� act on C�K : n : s� ' �C�K : n� 
 Vs�K by tensoring their usual
action on C�K : n� with the trivial action on Vs.

Proposition 1. Let n 2 Mbfu and let wf
g 2 �C�s� be given by (23) with

f 2 C�K : n : s�, g 2 V �n�. Then

CQjP �1 : k�wf
g � c�Aq�wA�Q:P :n:ÿk�f
B� �Q:P :n:�k�g;�47�

as a meromorphic identity in k 2 a�qc.

Proof. Equation (47) with P � �Q follows from [3, Proposition 15.7] (use
functoriality to generalize from s# to arbitrary s). From (26) and uniqueness
of the asymptotic coe�cients we obtain

CQjP �1 : k�wf
g � CQjP 0 �1 : k�wA�P :P 0:n:ÿk�ÿ1f
B�P 0:P :n:�k�g:

Take P 0 � �Q, then the result easily follows by application of (47) with P � �Q
and (13). (

In particular we derive from (47), (43) and (39) that

l�D : s : k� �CQjP �1 : k� � CQjP �1 : k� � l�D : s : k��48�

for all D 2 D�G=H�:

5. The normalized Eisenstein integrals

Let �s; Vs� be any unitary ®nite dimensional K- representation. We de®ne the
normalized Eisenstein integrals E��w : k� � E�s�P : w : k� 2 C1�G=H : s�, for
w 2 �C�s�, k 2 a�qc by (cf. [25, p. 135] in the group case)

E��P : w : k� � E�P : CP jP �1 : k�ÿ1w : k�:�49�

Obviously E��w : k� is meromorphic as a function of k 2 a�qc.

Proposition 2. Let w 2 �C�s�. Then

E��P : w : k� � E�P 0 : CP jP 0 �1 : k�ÿ1w : k��50�

as a meromorphic identity in k 2 a�qc, where P 0 2 Pmin
r is arbitrary. Moreover

in analogy with (25) we have

E��P : wT : k��gH� � hf jpP ;n;k�g�j��P : n : �k�gi; �g 2 G�;�51�

for T � f 
 g 2 C�K : n : s� 
 �V �n�.
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Proof. It su�ces to prove (50) with w � wT . It follows easily from (12), (9),
(25), in combination with (47) that the right-hand side of (51) equals the
right-hand side of (50), for any P 0. Taking P 0 � P we obtain both equa-
tions. (

In particular, if we take P 0 � �P in (50) we obtain E��P : w : k� �
E� �P : CP j �P �1 : k�ÿ1w : k�, which shows that

E��P : w : k� � E1� �P : w : k�;�52�
where E1 is the Eisenstein integral normalized analogously to [3, Sect. 16].

We can now state our main result about the Eisenstein integrals. Recall
that for � > 0 we have de®ned the set a�q��� by (3).

Theorem 2. Let �s; Vs� be given. There exists � > 0 such that the normalized
Eisenstein integral E��w : k� is holomorphic as a function of k in a�q���, for all
w 2 �C�s�.

The theorem will be proved in Sect. 17. For the time being let us use it to
prove the regularity of j��n : k� on a�q���, for some � > 0:

Proof of Theorem 1. Let n 2 Mbfu be ®xed. It follows immediately from
Theorem 2 together with the normalized version of (30), which reads

E�s#�wT : k��gH��e�� hf jpn;�k�g�j��n : �k�gi; �T � f 
 g 2 C�K : n�# 
 �V �n��;
�53�
that k 7! hf jj��n : �k�gi 2 C is regular on a neighborhood of ia�q, for all
K-®nite functions f 2 C1�K : n� and all g 2 V �n�. (Notice however that a
priori the neighborhood may depend on f .)

By Lemma 2 there exists an element p 2 PR�aq� such that
k 7! p�k�j��n : k�g is regular on a�q�1�; for each g 2 V �n�. We claim that p
may be chosen such that all its linear factors k 7! hk; ai ÿ c satisfy Re c 6� 0.
This will obviously imply the asserted regularity.

In order to prove the above claim, we assume that p � lp0 where
p0 2 PR�aq� and l�k� � hk; ai ÿ c with Re c � 0. Then it follows from the
above consequence of Theorem 2 that k 7! hf jp��k�j��n : �k�gi vanishes for
�k 2 lÿ1�0� \ ia�q, for all K-®nite functions f 2 C1�K : n�. By the density of
the K-®nite vectors in C1�K : n� we conclude that k 7! p�k�j��n : k� vanishes
for k 2 lÿ1�0� \ ia�q, hence also for k 2 lÿ1�0� \ a�q�1� by analytic continua-
tion. Hence l is a factor of the holomorphic function k 7! p�k�j��n : k� �
l�k�p0�k�j��n : k� on a�q�1�, which means that k 7! p0�k�j��n : k� is also
holomorphic on this set.

Using this argument repeatedly we arrive in a ®nite number of steps at a
polynomial p with the claimed property. (

Notice that it follows from (49), (44), and (48) that

DE��w : k� � E��l�D : s : k�w : k�:�54�
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It follows from this equation and (50) that the normalized Eisenstein
integral E��P : w : k� allows asymptotic expansions similar to (45) for all
Q 2 Pmin

r , with coe�cients

�pQjP 0;m�s : k� �CP jP 0 �1 : k�ÿ1w�w�m�:

Notice that these coe�cients are unique and hence independent of the
parabolic subgroup P 0 2 Pmin

r . In particular the operator de®ned by

C�QjP �s : k� � CQjP 0 �s : k�CP jP 0 �1 : k�ÿ1�55�

is independent of P 0 (and hence, in notation analogous to that of [3,
eq. (134)], equal to C1

Qj �P �s : k�). The �Q;w�-principal part of E��P : w : k� is
the sM -spherical function on M1=wHM1

wÿ1 given by

E�Q;w�P : w : k��ma� �
X
s2W

ask�C�QjP �s : k�w�w�m�; �m 2 M ; a 2 Aq�:�56�

Notice that with P 0 � �Q and s � 1 in (55) it follows from (47) and (13) that

C�QjP �1 : k�wf
g � wA�Q:P :n:ÿk�f
B� �P : �Q:n:�k�ÿ1g:�57�

The operator C�QjP �1 : k� can be used to establish a relation between the
normalized Eisenstein integrals E��P : w : k� for di�erent parabolic sub-
groups P . In analogy with (26) we get from (51) and (14) that

E��P : wf
g : k� � E��P 0 : wA�P :P 0:n:ÿk�ÿ1f
B� �P 0: �P :n:�k�g : k�:

Combining with (57) we ®nd

E��P : w : k� � E��P 0 : C�P jP 0 �1 : k�ÿ1w : k�; �P ; P 0 2 Pmin
r �:�58�

6. The spherical Fourier transform

If f and g are s-spherical functions on G=H then we de®ne a sesqui-linear
pairing by

hf jgi �
Z

G=H

hf �x�jg�x�is dx;

whenever the integral makes sense. Furthermore, if f 2 C1c �G=H : s� then
we de®ne the s-spherical Fourier transform Ff �FP f of f to be the me-
romorphic �C�s�-valued function on a�qc determined by
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hFP f �k�jwi � hf jE��P : w : ÿ�k�i; �k 2 a�qc;w 2 �C�s��:�59�

It follows from Theorem 2 (to be proved later) that Ff �k� is regular on a
neighborhood of ia�q. Notice that in analogy with (42) we obtain from (41)
and (54) that for D 2 D �G=H�

F�Df ��k� � l�D : s : k�Ff �k�; �f 2 C1c �G=H : s��:�60�

We shall now describe the relation of this Fourier transform with the
Fourier transform f 7! f̂ on C1c �G=H�. We ®rst transform scalar-valued K-
®nite functions on G=H into s- spherical ones, for a suitable K-representa-
tion s (see [26, Sect. 26], [30, p. 397] for related constructions). For any
scalar-valued K-®nite function f on G=H we de®ne a C�K�-valued function
1�f � on G=H by 1�f ��x��k� � f �kx� for x 2 G=H , k 2 K. Let # � bK be a ®nite
set, and let V# � C�K�# be as in Sect. 2. It is easily seen that if f is K-®nite of
isotypes from #, then 1�f ��x� 2 V# for x 2 G=H , and 1�f � is s#-spherical. We
denote by C1c �G=H�# the (closed) subspace of C1c �G=H� consisting of the K-
®nite vectors of isotypes from #, and equip it with the induced topology.

Lemma 5. The map 1 is a continuous bijection of C1c �G=H�# onto
C1c �G=H : s#�. Its inverse is given by F 7! de � F , where de : V# ! C is the
map obtained from evaluation at the identity element e 2 K.

Proof. Easy. (

Proposition 3. Let f 2 C1c �G=H�# and let F � 1�f � 2 C1c �G=H : s#�. Then
for all n 2 Mbfu, T 2 C�K : n�# 
 �V �n� and k 2 a�qc we have

hFF �k�jwT i � hf̂ �n : k�jT i;
where wT 2 �C�s#� is determined by (29) and linearity.

Proof. The Hilbert space structure on V# is obtained from L2�K�. From
(59), the de®nition of 1, sphericality, and invariance of dx we ®nd that for
any w 2 �C�s�

hFF �k�jwi �
Z

G=H

Z
K

F �x��k�E�s#�w : ÿ�k��x��k� dk dx

�
Z

G=H

Z
K

f �kx�E�s#�w : ÿ�k��kx��e� dk dx

�
Z

G=H

f �x�E�s#�w : ÿ�k��x��e� dx:

Let u 2 C�K : n�# and g 2 V �n�, and suppose that w � wT with T � u
 g.
Applying (53) we now have
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hFF �k�jwi �
Z

G=H
f �gH�hpn;ÿk�g�j��n : ÿk�gjuid�gH� �

hf̂ �n : k�gjui � hf̂ �n : k�jwi:

For general T the result follows by linearity. (

7. The action of the Weyl group

Let w 2 NK�aq�. Since w normalizes M it acts on (equivalence classes of)
representations of M . If f 2 C�P : n : k� then the left translate given
by �L�w�f ��x� � f �wÿ1x� belongs to C�wPwÿ1 : wn : wk�, and the map
f 7! L�w�f is a bijective intertwining operator for the right actions. More-
over, this map extends to generalized functions, and hence gives rise to a
linear bijection

L�w� : Cÿ1�P : n : k�H ! Cÿ1�wPwÿ1 : wn : wk�H :

According to [2, Lemma 6.10] there exists a unitary linear bijection
L�n;w� : V �n� ! V �wn�, independent of P and k, such that the diagram

Cÿ1�P : n : k�H �����!L�w�
Cÿ1�wPwÿ1 : wn : wk�H

j�P : n : k�
x??? x???j�wPwÿ1 : wn : wk�

V �n� �����!
L�n;w�

V �wn�

�61�

is commutative (in a meromorphic sense in k). Explicitly the map L�n;w� is
constructed as follows. By transference of the left multiplication under the
canonical bijection W! ZK�aq�nNK�aq�=NK\H �aq� we equip W with a
NK�aq�-action (recall that ZK�aq� is a normal subgroup of NK�aq�). This
action is denoted by �w; v� 7!w � v: If w 2 NK�aq�; v 2W; we choose an
element u�w; v� 2 ZK�aq� � KM such that

w � v � u�w; v�wv mod NK\H �aq�:

The map L�n;w� : V �n� ! V �wn� is given by

�L�n;w�g�w�v � �wn��u�w; v��gv 2H�w�v�HM �w�v�ÿ1
wn ; �v 2W; g 2 V�n��:

The intertwining operator L�w� commutes with the standard intertwining
operators in the sense that we have

L�w� �A�P 0 : P : n : k� � A�wP 0wÿ1 : wPwÿ1 : wn : wk� � L�w�:�62�
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Combining this with the diagrams (8) and (61) we obtain (62) with A
replaced by B and L�w� by L�n;w�. Moreover, we obtain that the
commutativity of the diagram (61) holds with j replaced by j�. Consequently
we also have that

L�w� � f̂ �P : n : k� � f̂ �wPwÿ1 : wn : wk� � L�n;w�;�63�

for all f 2 C1c �G=H�. Another consequence of the diagram (61) is the
following relation (use (38 )):

L�n;w� � l�D : n : k� � l�D : wn : wk� � L�n;w�; �D 2 D �G=H��:�64�

Using Lemma 3 we can combine the maps L�n;w� to a linear endo-
morphism L�w� of �C�s�, for any unitary ®nite dimensional representation
s of K. This is de®ned by

L�w�wT � w�L�w�
L�n;w��T ; �T 2 C�K : n : s� 
 V �n� ��65�

for all n 2 Mbfu. Here L�w� : C�K : n : s� ! C�K : wn : s� is simply given by
the left regular action on functions on K.

By a straightforward calculation, using the relevant de®nitions, one sees
that for every w 2 �C�s� one has

�L�w�w�w�v�m� � s�w�wv�wÿ1m u�w; v�w�; �w 2 NK�aq�; v 2W;m 2 M�:
�66�

Lemma 6. The map L is a homomorphism of NK�aq� into the unitary group
U��C�s��. Its kernel contains ZK�aq�:

Proof. It is a straightforward consequence of the de®nitions that L is a
homomorphism whose image consists of unitary operators. The assertion
about the kernel follows from (66) : If w 2 ZK�aq� then u�w; v� � wÿ1 and
s�w�wv�wÿ1m� � wv�m� by KM -sphericality. (

We denote the induced unitary representation of W in �C�s� by L as
well.

Lemma 7. Let P ;Q 2 Pmin
r ; s;w 2 W and w 2 �C�s�. Then

CQjP �s : k� � CQjwPwÿ1�swÿ1 : wk� �L�w� �L�w� �Cwÿ1QwjP �wÿ1s : k�;�67�

as a meromorphic identity in k 2 a�qc. In particular

CQjP �s : k� � CQjsPsÿ1�1 : sk� �L�s� �L�s� �Csÿ1QsjP �1 : k�:�68�

All these relations hold as well with C replaced by C�.
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Proof. The identities in (68) follow from those in (67) by taking w � s.
It follows easily from (25) and the diagram (61) that we have

E�wPwÿ1 : L�w�w : wk� � E�P : w : k��69�

for all w 2 �C�s� (cf. also [3, Lemma 15.4]). Since as remarked the diagram
holds as well for the normalized operator j�, we get from (51) that the re-
lation (69) holds for the normalized Eisenstein integrals as well. By unique-
ness of asymptotics we obtain the ®rst identity in (67), with C as well as C�.

Let w 2 NK�aq�, then by (45) we have for each v 2W

E�P : w : k��av� � aÿqwÿ1Qw

X
l2NR�wÿ1Qw�

X
t2W

atkÿl�pwÿ1QwjP ;l�t : k�w�v�e�

for a 2 A�q �wÿ1Qw�. Applying s�u�w; v�w� to this expression and using
sphericality we obtain

E�P : w : k��u�w; v�wav�
� aÿwÿ1qQ

X
l2NR�wÿ1Qw�

X
t2W

atkÿl s�w��pwÿ1QwjP ;l�t : k�w�v�wÿ1u�w; v�w�;

� aÿwÿ1qQ
X

l2NR�wÿ1Qw�

X
t2W

atkÿl�L�w�pwÿ1QwjP ;l�t : k�w�w�v�e�;

by (66). On the other hand since wawÿ1 2 A�q �Q� we also have

E�P : w : k��u�w; v�wav� � E�P : w : k���wawÿ1�w � v�
� �wawÿ1�ÿqQ

X
m2NR�Q�

X
s2W

�wawÿ1�skÿm�pQjP ;m�s : k�w�w�v�e�

� aÿwÿ1qQ
X

m2NR�Q�

X
s2W

awÿ1skÿwÿ1m�pQjP ;m�s : k�w�w�v�e�;

and hence by uniqueness of asymptotics we conclude

pQjP ;m�s : k� �L�w� � pwÿ1QwjP ;wÿ1m�wÿ1s : k�

for all m 2 NR�Q�, s 2 W . Taking m � 0 we obtain the second expression for
CQjP �s : k� in (67). Finally, for C� this expression is now immediate from
(55). (

The importance of (68) lies in the fact that it allows us to recover the c-
functions CQjP �s : k� and C�QjP �s : k� from the simpler case s � 1, where they
are explicitly known from (47) and (57), respectively. We shall now derive
some consequences of (68). First of all, by combining the normalized
versions of (69) and (68) with (58) we arrive at the following functional
equation for the normalized Eisenstein integrals (cf. [3, Proposition 16.4]):
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Proposition 4. We have

E��Q : C�QjP �s : k�w : sk� � E��P : w : k��70�

for all w 2 �C�s�, s 2 W , Q; P 2 Pmin
r , as a meromorphic identity in k 2 a�qc.

By uniqueness of asymptotics it follows from the above that

C�Q0 jQ�t : sk� �C�QjP �s : k� � C�Q0 jP �ts : k��71�

for any Q0 2 Pmin
r . In particular, substituting Q0 � P and using that

C�P jP �1 : k� is the identity operator on �C�s�, we obtain

C�P jQ�sÿ1 : sk� �C�QjP �s : k� � I :�72�

The following relation is also a consequence of (68):

CQjP �s : k� � l�D : s : k� � l�D : s : sk� �CQjP �s : k�; �D 2 D �G=H��:�73�

For s � 1 this is (48), and in general it is obtained using that

L�w� �l�D : s : k� � l�D : s : wk� �L�w�:

The latter equality follows from (65), (64) and (43). Furthermore, from
de®nition (55) we see that equation (73) holds with C replaced by C�.

Finally another consequence is the equation

CQjP �s : k�� � CP jQ�sÿ1 : ÿs�k�;�74�

as well as the normalized version with C replaced by C�. The proof of (74) is
reduced to the case s � 1 by means of (68) and the unitarity of L�w�. For
s � 1 it follows from (47), respectively (57), together with (9), and (10).

The following result (essentially from [3, Theorem 16.3]), which follows
immediately from (72) and the normalized version of (74), is crucial for the
proof of the regularity of E� on k 2 ia�q (Theorem 2). It shows that the
�Q;w�-principal part E�Q;w�P : w : k� is regular for any Q 2 Pmin

r .

Proposition 5. Let s 2 W and Q; P 2 Pmin
r be given. We have

C�QjP �s : ÿ�k�� �C�QjP �s : k� � I�75�

as a meromorphic identity in k 2 a�qc. In particular the operator C�QjP �s : k� on
�C�s� is unitary for k 2 ia�q, and it is regular as a function of k in this set.

The asserted regularity is a consequence of the unitarity, in view of the
Riemann boundedness theorem. Combining (70) and (75) with the de®nition
(59) of the s-spherical Fourier transform we have
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FQf �sk� � C�QjP �s : k�FP f �k��76�

for all f 2 C1c �G=H : s�, Q; P 2 Pmin
r , s 2 W .

8. Non-minimal parabolic subgroups

Up to now we have only considered parabolic subgroups from the set Pmin
r

of minimal rh-stable parabolic subgroups containing Aq. In order to prepare
for using induction on the split rank of G=H we shall now consider arbitrary
rh-stable parabolic subgroups containing Aq. Let Pr denote the set of these,
and let Q 2 Pr be given. Let Q � M1QNQ � MQAQNQ denote its Langlands
decomposition, then r leaves the reductive group MQ invariant, and
MQ=HMQ � MQ=MQ \ H and M1Q=HM1Q � M1Q=M1Q \ H are reductive sym-
metric spaces of Harish-Chandra's class. The space mQ \ aq is a maximal
abelian subspace of mQ \ p \ q, and its dimension is the split rank of
MQ=HMQ . If Q is a proper parabolic subgroup of G then this number is
strictly smaller than the split rank of G. The above mentioned induction on
the split rank will be based on these observations. However, for reasons of
convenience we mostly work with M1Q rather than MQ.

Let Pmin
r;Q denote the set of parabolic subgroups P 2 Pmin

r contained in Q,
then it is easily seen that the map P 7! �P � M1Q \ P is a bijection of Pmin

r;Q
onto the set Pmin

r �M1Q� of minimal rh-stable parabolic subgroups of M1Q

containing Aq. Moreover, if P has the Langlands decomposition P � MAN
then the Langlands decomposition �P � �M�A�N of �P is given by �M � M ,
�A � A, �N � MQ \ N (compare [26.p. 113]).

We shall now relate some of the elements constructed above for the pair
�G; r� to the similar elements for �M1Q; rjM1Q

�. We begin with the H -in-
variant distribution vectors j�P : n : k� on G and their analogues j��P : n : k�
on M1Q. Clearly restriction from G to M1Q (or from K to KQ � MQ \ K in the
compact picture) gives a map rQ of the space C�P : n : k� into the analogous
space C��P : n : k� for M1Q.

Let WQ denote the centralizer of AQ in W . Then WQ ' NKQ�aq�=ZKQ�aq�,
and we see that WQ is naturally isomorphic with the Weyl group of the root
system R�m1Q; aq�: In analogy with the set W we ®x a set WQ � NKQ�aq�
of representatives for the double quotient ZKQ�aq�nNKQ�aq�=NKQ\H �aq�.
Obviously the natural map NKQ�aq� ! NK�aq� induces an injection of
ZKQ�aq�nNKQ�aq�=NKQ\H �aq� into ZK�aq�nNK�aq�=NK\H �aq�, and hence this
map induces an injection ofWQ intoW. For simplicity we assume that the
choices of WQ and W have been made such that in fact we have WQ �W.
Since as previously mentioned the basic constructions of j�n : k�, E�w : k�
etc are essentially independent of the choice of W (cf. (16), (27)), this as-
sumption causes no problems (though of course it cannot be realized for
all Q at the same time).

Let VQ�n� � V �M1Q : n� denote the subspace of V �n� � �w2WHwHM wÿ1
n

corresponding to the direct summands labeled by w 2WQ, and let

544 E. van den Ban, H. Schlichtkrull



prQ : V �n� ! VQ�n� be the (orthogonal) projection along the remaining
components. Then j��P : n : k�mapsVQ�n�ontoCÿ1��P : n : k�HM1Q for generic

k 2 a�qc, and into C��P : n : k�HM1Q for all k 2 a�qc which satisfy k� q�P 2
a�q��P ; 0�. Here q�P � 1

2 tr�ad�n� 2 a�q is the `rho' of the parabolic subgroup
�P of

M1Q, and a�q��P ; 0� is de®ned in analogy with (7). It is easily seen that
q�P � qP ÿ qQ, where qQ � 1

2 tr�adnQ� 2 a�q. Moreover we have hqQ; ai � 0 for
all roots a 2 R�m1Q; aq�. It follows that if k� qP 2 a�q�P ; 0� then k� q�P 2
a�q��P ; 0�. Hence under this condition on k we immediately have that

rQ � j�P : n : k� � j��P : n : k� � prQ : V �n� ! C��P : n : k�HM1Q :�77�

The condition on k is important, since in general it does not make sense to
restrict a distribution on G to M1Q.

We shall now consider the relation between the standard intertwining
operators for G, that is, A�P2 : P1 : n : k� : C1�P1 : n : k� ! C1�P2 : n : k�,
and the similar operators for M1Q.

Lemma 8. Let Q 2 Pr and let P1; P2 2 Pmin
r;Q . Then the following diagram is

commutative for all generic k 2 a�qc:

C1�P1 : n : k� ������������!A�P2 : P1 : n : k�
C1�P2 : n : k�

rQ

???y ???yrQ

C1��P1 : n : k� �������������!A��P2 : �P1 : n : k�
C1��P2 : n : k�:

�78�

Proof. Let Pj have the Langlands decomposition Pj � MANj for j � 1; 2: If
C > 0; we write A�P2; P1;C� for the set of k 2 a�qc such that hRe k; ai > C
for all a 2 R with ga � �n2 \ n1: Then by [2, Proposition 4.1] there exists a
constant C1 > 0 such that for all k 2A�P2; P1;C1� the operator
A�P2 : P1 : n : k� is given by an absolutely convergent integral. In fact, if
f 2 C1�P1 : n : k�; then

A�P2 : P1 : n : k�f �x� �
Z

N2\ �N1

f �nx� dn; �x 2 G�:

Similarly if we write AQ�P2; P1;C� for the set of k 2 a�qc such that
hRe k; ai > C for every root a of aq in �n2 \ ��n1, then there exists a constant
C2 > 0 such that for k 2AQ�P2; P1;C2� the operator A��P2 : �P1 : n : k� is
given by the absolutely convergent integral

A��P2 : �P1 : n : k�g�m� �
Z

�N2\��N1

g�nm� dn; �m 2 M1Q�;
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for every g 2 C1��P1 : n : k�: Since P1 and P2 are both contained in Q, the
intersection P2 \ �P1 is contained in Q \ �Q � M1Q, and we conclude that in
fact

N2 \ �N1 � �N2 \ ��N1:�79�

Hence the two integrals above are over the same set. Moreover, the Haar
measures dn in both integrals are the same, and from (79) one also sees that
A�P2; P1;C� �AQ�P2; P1;C� for all C > 0: Hence if C � max�C1;C2�; then
for k 2A�P2; P1;C� the two integrals with f ; g replaced by f ; f jM1Q

converge
absolutely and are equal for x � m 2 M1Q: This establishes the result for k
contained in the non-empty open subset A�P2; P1;C� of a�qc: Now apply
meromorphic continuation. (

Combining (77) for P1; P2 and (78) with the diagram (8) and its analogue
for MQ, it is plausible to expect that we have

B��P2 : �P1 : n : k� � prQ � prQ �B�P2 : P1 : n : k� : V �n� ! VQ�n��80�

for P1; P2;Q as in Lemma 8. However, since (77) was only valid for k in a
certain region depending on P , in general with no overlap to the region for a
di�erent parabolic subgroup, it seems di�cult to derive (80) this way. We
shall now derive it in another way.

Lemma 9. Let Q 2 Pr and let P1; P2 2 Pmin
r;Q . Then the endomorphism

B�P2 : P1 : n : k� of V �n� preserves the subspace VQ�n�, and we have (80) for all
generic k 2 a�qc.

Proof. We will prove this proposition by a r-split rank one reduction. The
following lemma paves the way. Recall from [2, Sect. 7], that two parabolic
subgroups P1; P2 2 Pmin

r are called r±adjacent if P1 6� P2 and all aq-roots in
�n1 \ n2 are proportional.

Lemma 10. Let Q 2 Pr and let P1; P2 2 Pmin
r;Q . Then P1 and P2 are r-adjacent if

and only if �P1 and �P2 are rjM1Q
±adjacent parabolic subgroups of M1Q:

Proof. This is immediate from (79) and the de®nition of adjacency. (

We continue the proof of Lemma 9. There exists a sequence of parabolic
subgroups P 0j ; 1 � j � n, contained in Pmin

r;Q , such that P 01 � P1; P 0n � P2; and
�P 0j and

�P 0j�1 are �rjM1Q�-adjacent for all 1 � j < n: By Lemma 10 the par-
abolic subgroups P 0j and P 0j�1 are r-adjacent, and by the product formula for
the B-endomorphism in [2, Prop. 6.2], applied for G as well as for M1Q, we
see that it su�ces to prove the result in the case that P1 and P2 are adjacent.

Thus assume that P1; P2 2 Pmin
r;Q are r-adjacent. Then the aq-roots in

n2 \ �n1 are proportional, and belong to the root system of aq in m1Q: Let a
be the smallest aq-root in n2 \ �n1; and let sa denote the associated re¯ection
in W : Then sa 2 WQ: Recall from the previous section the action
�w; v� 7!w � v of W on W, de®ned via transference of the multiplication
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action under the natural bijection W!� W =WK\H : In particular, if v 2 WQ

and w 2WQ, then v � w 2WQ. Hence the multiplication by sa maps WQ to
itself. Moreover, it follows from [2, Lemma 7.2] that for every w 2 W the
space V �n;w� � V �n; sa � w� is invariant under B�P2 : P1 : n : k�. Here V �n;w�
denotes the direct summandHwHM wÿ1

n of V �n�. In particular this shows that
VQ�n�, as well as its orthocomplement, is invariant under B�P2 : P1 : n : k�.

In order to verify (80) it now su�ces to prove the meromorphic identity

B�P2 : P1 : n : k�g � B��P2 : �P1 : n : k�g�81�

for g 2 V �n;w�, for all w 2WQ. Without loss of generality we may assume
that 1 2W. For g 2 V �n; 1� the identity (81) is a consequence of the fact
that the r-split rank one reduction given in [2, Lemma 7.4] gives identical
results for G and for M1Q.

To verify the identity in general we ®x an element w 2WQ. Pick
v 2 NKQ�aq� such that v � 1 � w, and observe that conjugation by v preserves
r-adjacency and that ��vPvÿ1� � v�Pvÿ1 for all P 2 Pmin

r;Q .
Recall from the previous section the endomorphism L�n; v� of V �n�. It

maps V �n; u� isomorphically onto V �vn; v � u�, for all u 2W, hence in par-
ticular V �n; 1� onto V �vn;w�. It is easily seen that the restriction of L�n; v� to
VQ�n� coincides with its analogue LQ�n; v� for M1Q (one can for example use
(77) and the diagram (61)). Let g 2 V �n; 1�, then (81) has been established
above. Applying L�n; v� to it and using (62) (for B instead of A, and for G as
well as for M1Q), we obtain

B�vP2vÿ1 : vP1vÿ1 : vn : vk�g0 � B�v�P2vÿ1 : v�P1vÿ1 : vn : vk�g0

for all g0 � L�n; v�g 2 L�n; v��V �n; 1�� � V �vn;w�. Since the r-adjacent pair
P1; P2 2 Pmin

r;Q , as well as n and k were arbitrary, the proof is complete. (

Let c�M1Q : Aq� be de®ned as c�Aq� � c�G : Aq� but for the group M1Q. It
follows from (77), (11) and (80) that the relation (77) holds as well with
j�P : n : k� replaced by c�G : Aq�j��P : n : k� and j��P : n : k� by
c�M1Q : Aq�j���P : n : k�, for k in the same region as before.

The relation between the Eisenstein integral E�P : w : k� for G and its
analogue for M1Q is much more subtle than these relations between the H -
®xed distribution vectors (see Theorem 4 below). However, a simple relation
between the c-functions can be derived from (57) and Lemmas 8 and 9. In
order to discuss this we let �CQ�s� � �C�M1Q : sjKQ

� be the subspace of
�C�s� � �w2WC1�M=wHM wÿ1 : s� corresponding to the direct summands
labeled by w 2WQ, and denote again by prQ : �C�s� ! �CQ�s� the (or-
thogonal) projection along the remaining components. Recall from Lemma
3 the map T 7!wT from C�K : n : s� 
 �V �n� to �C�s�, and let T 7!wT denote
also the similar map (for M1Q) from C�KQ : n : sjKQ

� 
 �V �n� to �CQ�s�. Let
e : C�K : n : s� ! �Hn 
 Vs�KM and eQ : C�KQ : n : sjKQ

� ! �Hn 
 Vs�KM de-
note the Frobenius reciprocity maps given by evaluation at the identity, then
clearly the restriction rQ maps C�K : n : s� into C�KQ : n : sjKQ

�, and we have
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eQ � rQ � e. By the bijectivity of the Frobenius maps we have that rQ maps
C�K : n : s� isomorphically onto C�KQ : n : sjKQ

�. It is now obvious from (23)
that we have

prQwf
g � wrQ f 
 prQg 2 �CQ�s��82�

for all f 2 C�K : n : s�, g 2 V �n�. The following result is a generalization of a
result of Harish-Chandra in the group case (cf. [27, p. 153. Lemma 4]), but
its proof is quite di�erent.

Proposition 6. Let Q 2 Pr, and let P1; P2 2 Pmin
r;Q and s 2 WQ. Then the

endomorphism C�P2jP1�s : k� of �C�s� preserves the subspace �CQ�s�, and we have
prQ �C�P2jP1�s : k� � C��P2j�P1�s : k� � prQ;

for generic k 2 a�qc.

Proof. For s � 1 this follows immediately from (57), (82), and Lemmas 8
and 9. In order to obtain it in general we shall use (68) and its analogue for
M1Q. We need the analogue ofL�s� for M1Q. As in the proof of Lemma 9 we
have, for v 2 NKQ�aq�, that the endomorphism L�n; v� of V �n� maps VQ�n�
into VQ�vn�, and that its restriction to VQ�n� coincides with its analogue
LQ�n; v� for M1Q. From (65) and (82) we conclude that the map L�s� for
s 2 WQ preserves �CQ�s�, and its restriction to this space coincides with its
analogue LQ�s� for M1Q. The result follows easily. (

Finally in this section we shall relate the endomorphisms l�D : n : k� and
l�D : s : k� of V �n� and �C�s�, respectively, with their analogues for M1Q. We
denote these analogues by lQ�D : n : k� and lQ�D : sjKQ

: k�, respectively,
where now D 2 D �M1Q=HM1Q�. Recall from Sect. 3 the injective homo-
morphism l from D �G=H� to D �M1=HM1

�. When de®ning this homo-
morphism we assumed that P � M1N � MAN 2 Pmin

r , but actually the
minimality of P was not essential. Repeating the steps of this de®nition we
get an injective homomorphism

lQ � TQ � 8lQ : D �G=H� ! D �M1Q=HM1Q�

determined by

Dÿ 8lQ�D� 2 nQU�g� � U�g�h

and TQ�D� � dÿ1Q �D � dQ for D 2 D �M1Q=HM1Q�, where

dQ�m� � det�Ad�m�jnQ
�

��� ���1=2 for m 2 M1Q:

In analogy with the map l0P � 8l �P (cf. (36 )) we also let l
0
Q � 8l �Q : D �G=H� !

D �M1Q=HM1Q�. Then

548 E. van den Ban, H. Schlichtkrull



l0Q � TQ � lQ:�83�

Furthermore, we also have the analogous maps D �M1Q=HM1Q� !
D �M1=HM1

� of l, 8lP , and l0P for the parabolic subgroup �P in M1Q.

Denoting these by lQ, 8lQ
�P , and l0Q�P , respectively, we have

lQ � T�P � 8l
Q
�P ; l0Q�P � T�P � lQ;

where

Dÿ 8lQ
�P �D� 2 �n U�m1Q� � U�m1Q��m1Q \ h�:

Since n ��n� nQ it follows from the above that 8lP � 8lQ
�P �

8lQ, and that
dP � d�P dQ on M1. Using that dQ � 1 on MQ one now easily sees that

l � lQ � lQ:�84�

In particular this shows that lQ actually only depends on the Levi compo-
nent M1Q of Q. Furthermore, by inspection of the de®nitions of l�D : n : k�
and l�D : s : k� we see that these endomorphisms preserve VQ�n� and �CQ�s�,
respectively, and that

prQ � l�D : n : k� � lQ�lQ�D� : n : k� � prQ�85�

and

prQ � l�D : s : k� � lQ�lQ�D� : sjKQ
: k� � prQ;�86�

for all D 2 D �G=H�.

9. The asymptotic behavior of eigenfunctions

In this section we collect some de®nitions and results from [3, Sect. 12] and
[1, Sect. 5].

Let k � kr : G! �1;1� be the distance function de®ned as follows. Let
aqR be the intersection of the root hyperplanes ker a �a 2 R� in �aq; and
let �aq be its orthocomplement in aq: Moreover, put AqR � exp aqR and
�Aq � exp �aq: Then Aq ' �Aq � AqR, and for a 2 �Aq; b 2 AqR we de®ne:

kabkr � max
a2R

aa ej log bj:

In view of the Cartan decomposition G � KAqH the distance function is
now completely determined by:

kkahkr � kakr; �k 2 K; a 2 Aq; h 2 H�:
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We de®ne

kf kr � sup
x2G
kxkÿr

r jf �x�j

for every r 2 R and any function f : G=H ! C: Moreover, we de®ne
Cr�G=H� to be the space of continuous functions f : G=H ! C with
kf kr <1: Equipped with the norm k � kr this space is a Banach space. It is
invariant under the left regular representation of G: The associated space
C1r �G=H� of smooth vectors is a FreÂ chet space. In analogy with [7, (2.7)] it is
seen that given D 2 D �G=H� there exists a constant s � 0 such that D maps
C1r �G=H� continuously into C1r�s�G=H�, for all r 2 R.

Let b � q be a Cartan subspace containing aq, and let c � cG=H :
D �G=H�!� S�b�W �b� be the Harish-Chandra isomorphism, as in Sect. 3. If
m 2 b�c ; then we write E1m �G=H� for the space of smooth functions
f : G=H ! C satisfying the system of di�erential equations:

Df � c�D : m�f ; �D 2 D �G=H��:

If r 2 R; then the space E1m;r�G=H� :� E1m �G=H� \ C1r �G=H� is a closed
subspace of C1r �G=H�; hence a FreÂ chet space. We de®ne

E1m;��G=H� � [r>0 E
1
m;r�G=H�:

It follows from [3, Lemma 12.3] that the K-®nite elements of E1m �G=H�
belong to this space. Notice that E1m;��G=H� is a D �G=H�-invariant subspace
of C1�G=H�.

Recall that b � bk � aq is the decomposition of b in �1-eigenspaces for h.
According to this decomposition we view b�kc and a�qc as subspaces of b�c . Let
K 2 b�kc be ®xed from now on, and let k denote a parameter in a�qc: Let
Q � MQAQNQ 2 Pr be ®xed, let R�Q� denote the set of roots a 2 R with
ga � nQ; let aQq � aQ \ aq, and put

a�Qq � fX 2 aQq j a�X � > 0 for all a 2 R�Q�g:

The purpose of this section is to study the asymptotic behavior along
A�Qq � exp a�Qq of functions f 2 E1K�k;��G=H�: Our starting point is the
following result. If V is a ®nite dimensional real linear space, then by Pm�V �
we denote the space of polynomial functions f : V ! C of degree at most m:
Let the set XQ�K; k� � a�Qqc be given by

XQ�K; k� � f0g [
��w�K� k� ÿ qQ ÿ l�jaQq

�� w 2 W �b�; l 2 NR�Q�	;
where NR�Q� is the set of linear combinations of elements from R�Q� with
non-negative integral coe�cients. Finally, let d : �0;1� ! N be the locally
bounded function of [3, Proposition 12.4]. From [3, Theorem 12.8] we have:
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Proposition 7. Let k 2 a�qc:
(a) Let f 2 E1K�k;��G=H� and x 2 G: Then there exist unique polynomials

pk;n�Qjf ; x� on aQq of degree at most d�jRekj � jRenj�; for n 2 XQ�K; k�; such
that

f �x exp tX � �
X

n2XQ�K;k�
pk;n�Qjf ; x; tX � etn�X � �t!1��87�

at every X0 2 a�Qq:
(b) Let r 2 R; n 2 XQ�K; k�; and put d � d�jRekj � jRenj�: Then there

exists a number r0 2 R such that f 7! pk;n�Qjf � is a continuous linear map
from E1K�k;r�G=H� into C1r0 �G� 
 Pd�aQq�; equivariant for the left regular ac-
tions of G on E1K�k;r�G=H� and C1r0 �G�:

Remark. The asymptotic symbol �, and the phrase `at X0', means the fol-
lowing (cf. [7, Sect. 3]). There exist, for each real number N , a neighborhood
U of X0 in a�Qq and constants � > 0, C > 0 such that

jf �x exp tX � ÿ
X

n2XQ�K;k�
Ren�X0��N

pk;n�Qjf ; x; tX � etn�X �j � Ce�Nÿ��t�88�

for all X 2 U , t � 0.
Before proceeding we list some properties of the coe�cients in the

expansion which will be needed in the sequel. Fix k 2 a�qc and f 2
E1K�k;��G=H�. An element n 2 a�Qqc will be called an exponent along Q of f if
n 2 XQ�K; k� and pk;n�Qjf ; �� is not identically zero. The set of exponents
along Q of f is denoted by E�Qjf �: By [3, Lemma 13.1] we have

pk;n�Qjf ; xma;X � � pk;n�Qjf ; x;X � log a�an�89�

for all n 2 E�Qjf �, x 2 G, m 2 HM1Q , X 2 aQq, and a 2 AQq:

It will be convenient to use the following notations. For a given x 2 G we
denote by E�Qjf ; x� the set of n 2 E�Qjf � for which pk;n�Qjf ; x� 6� 0: Then
obviously E�Qjf � is the union over x 2 G of the sets E�Qjf ; x�:

We de®ne the partial ordering �Q on a�Qqc by

g1 �Q g2 () g2 ÿ g1 2 NR�Q�jaQq
:

The �Q-maximal elements of E�Qjf � are called the leading exponents along
Q of f ; the set of these is denoted by EL�Qjf �: Let n 2 EL�Qjf � and let
x 2 G, X 2 aQq. By (89) the function u 2 C1�M1Q� de®ned by u�m� �
pk;n�Qjf ; xm;X � is right HM1Q -invariant, and by [3, Corollary 13.3] it satis®es
the system of di�erential equations

l0Q�D�u � c�D : K� k�u; �D 2 D �G=H��:�90�
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Here the map l0Q : D�G=H� ! D �M1Q=HM1Q� is de®ned by (83).
For general functions f 2 E1K�k;��G=H� the expansion (87) holds as-

ymptotically in the sense of (88). However, if f is K-®nite it follows from the
asymptotic theory in [1] that it actually converges absolutely and locally
uniformly in X 2 a�Qq. Since we shall need also this theory, we recall the basic
properties.

It will be convenient to use the following notation. As above, let Q 2 Pr

be ®xed, and ®x a basis C for a�Qq: If m 2 NC then we use the usual multi-
index notation jmj �Pc2C mc: Moreover, if H 2 a�Qq; then we put
H m �Qc2C c�H�mc : Let R� be a system of positive roots for R containing
R�Q�: Let D denote the set of simple roots in R�; and put D�Q� � D \ R�Q�:
Then restriction to aQq maps D�Q� bijectively onto a set Dr�Q� of linearly
independent elements in a�Qq: If H 2 aQq then we de®ne the element
z�H� 2 CD�Q� by

z�H�a � eÿa�H� for a 2 D�Q�:

Let D be the open unit disk in C. Then the map H 7! z�H� maps a�Qq into
DD�Q�:

For the moment let V be a ®nite dimensional complex vector space, and
let f be an arbitrary K-®nite V -valued function on G=H which is also
D �G=H�-®nite. Then according to [1, Theorem 5.3], there exists a ®nite
subset S � a�Qqc such that the natural map S ! a�Qqc=ZDr�Q� is injective, and
moreover a positive integer d and for each s 2 S, m 2 NC, jmj � d, a holo-
morphic function fs;m : DD�Q� ! V ; such that for all H 2 a�Qq we have:

f �expH� �
X

s2S;jmj�d

H mes�H�fs;m�z�H��:�91�

Being holomorphic the functions fs;m have (V -valued) Taylor expansions

fs;m�z� �
X

l2NDr�Q�
csÿl;m zl; �z 2 DD�Q��:

Here we have written zl � Qa2D�Q� zla
a if l �Pa2D�Q� laajaQq

: Substituting
these Taylor expansions in (91) we obtain the following converging
expansion when H 2 a�Qq :

f �expH� �
X

n2SÿNDr�Q�
jmj�d

cn;mHmen�H�:�92�

Let E�Qjf ; e� denote the set of elements n 2 S ÿNDr�Q� for which cn;m 6� 0
for some m.

Let now f 2 E1K�k;��G=H� be K-®nite. The asymptotic theory for K- and
D �G=H�-®nite functions just outlined applies to f and thus in addition to
(87) we have the converging expansion (92). By holomorphy of the fs;m the

552 E. van den Ban, H. Schlichtkrull



latter expansion is an asymptotic expansion if H tends radially to in®nity in
a�Qq, hence by uniqueness of asymptotics it coincides with the expansion (87)
at x � e. We conclude that

E�Qjf ; e� � E�Qjf ; e� � S ÿNDr�Q�

and moreover that

pk;n�Qjf ; e;H� �
X
jmj�d

cn;mHm; �n 2 E�Qjf ; e�; H 2 aQq�:

10. Transitivity of asymptotics

If P ;Q 2 Pr and P � Q, then the expansions along P and Q of a function
f 2 E1K�k;��G=H� are related. The following theorem gives this relation. As
in Sect. 8 let �P � P \M1Q, then

�P has the Langlands decomposition
�P � MP AP

�N , where �N � NP \M1Q. Let a��Pq denote the set of elements
H 2 aPq with a�H� > 0 for all a 2 R��P � � R�P �nR�Q�; and put A��Pq �
exp�a��Pq�: In particular we have a�Pq � a��Pq.

Theorem 3. Let two rh-stable parabolic subgroups P and Q be given such that
Aq � P � Q. Let K 2 b�kc; k 2 a�qc; and f 2 E1K�k;��G=H�: Then

E�Qjf � � �gjaQq

�� g 2 E�Pjf�	:
Moreover, if f is K-®nite then we have:

pk;n�Qjf ; a;X � �
X

g2E�Pjf�
gjaQq

�n

pk;g�P jf ; a;X ��93�

for all n 2 E�Qjf �, X 2 aQq, and a 2 A��Pq: The series is absolutely convergent.

Remark. For the Riemannian case (i.e. when H is compact) and if P is
minimal, this result is a consequence of [8, Theorem 3.1]. Notice that in loc.
cit. it is not required that f be K-®nite, but then the expansions (87) and (93)
are asymptotic and need not converge. We expect that an analogous result
should hold in the present case. However, since as mentioned our applica-
tions will be to K-®nite functions we do not need such a more general result.
In the proof of Theorem 3 we follow [8].

Proof. We ®rst prove (93). Let f 2 E1K�k;��G=H� be K-®nite. Then the
asymptotic theory outlined at the end of the previous section applies to f ,
and we have
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f �expH� �
X

n2E�P jf ;e�
pk;n�P jf ; e;H�en�H�; �H 2 a�Pq�:

In the following, let H0 always denote an element of a��Pq. Moreover, H1

will always denote an element of aQq: Given R we write a�Qq�R� for the set of
X 2 aQq with a�X � > R for all a 2 D�Q�:

Let H0 be ®xed for the moment. We ®x R > 0 such that for H1 2 a�Qq�R�
we have H0 � H1 2 a�Pq (here we have used that the roots of DnD�Q� vanish
on aQq).

Let H1 2 a�Qq�R� and t � 1: Then substituting H � H0 � tH1 2 a�Pq in the
above expansion we obtain:

f �expH0 exp tH1� �
X

g2E�P jf ;e�jaQq

h X
n2E�P jf ;e�

njaQq
�g

pk;n�P jf ; e;H0 � tH1�en�H0�
i
etg�H1�:

Notice that the series between square brackets converges absolutely by the
holomorphy of the fs;m in (91). Moreover, again by holomorphy of these
functions, the above expansion is an asymptotic expansion as t!1: By
uniqueness of asymptotics we conclude that E�Qjf ; expH0� � E�P jf ; e�jaQq

;
and that for all g 2 E�P jf ; e�jaQq

we have:

pk;g�Qjf ; expH0;H1� �
X

n2E�P jf ;e�
njaQq

�g

pk;n�P jf ; e;H0 � H1�en�H0�:

This expansion converges absolutely and holds for all H1 2 a�Qq�R�: Since it
is polynomial in H1; it holds in fact for all H1 2 aQq: By using the trans-
formation rule (89) we get (93).

To establish the assertion about the set of exponents, notice that for K-
®nite f we have proved that E�Qjf ; expH0� � E�P jf �jaQq

: By density of the
K-®nite functions in E1K�k;r�G=H�, for all r 2 R, and continuity of the maps
f 7! pk;g�Qjf � and f 7! pk;n�P jf �; we see that for general f we also have
E�Qjf ; expH0� � E�P jf �jaQq

: By equivariance of the maps f 7! pk;g�Qjf � we
conclude from this that E�Qjf ; x� � E�P jf �jaQq

for all x 2 G. (

11. Asymptotic expansions of holomorphic families

The set of exponents occurring in the expansion (87) can be limited dras-
tically if f is part of an analytic family. Let X0 � a�qc be an open subset. If f
is a function X0 � G=H ! C then if k 2 X0; we shall write fk for the function
G=H ! C; x 7! f �k; x�: Let K 2 b�kc be ®xed.

De®nition 1. We de®ne E��G=H ;K;X0� to be the space of functions
f : X0 � G=H ! C satisfying the following two conditions:
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(a) for every k 2 X0 the function fk belongs to E
1
K�k;��G=H�;

(b) for every k0 2 X0 there exists a constant r 2 R such that k 7! fk maps a
neighborhood of k0 holomorphically into C1r �G=H�:
Notice that, as mentioned earlier, each element D 2 D �G=H� maps
E1m;��G=H� to itself for all m 2 a�qc, and C1r �G=H� continuously to C1r�s�G=H�
for all r 2 R and some s � 0. Consequently, D maps the space
E��G=H ;K;X0� to itself.

The above mentioned limitation on the set of exponents is expressed in
the following proposition. Let Q 2 Pr be arbitrary. We denote by Rr�Q� the
set of elements in a�Qq obtained by restriction of an element from R�Q�. For
k 2 a�qc we de®ne the set

X �Q; k� � �skÿ qQ�jaQq
ÿ l j s 2 W ; l 2 NRr�Q�

n o
� a�Qqc:

Proposition 8. Let X0 be an open subset of a�qc and let f 2 E��G=H ;K;X0�.
Then for every k 2 X0 we have:

E�Qjfk� � X �Q; k�:

Proof. For Q 2 Pmin
r this was established in the proof of [3, Theorem 13.7].

(In particular this means that eqn. (107) in loc. cit. holds for all k 2 X0; and
not just for k 2 a�0qc:)

Let now Q be arbitrary, and ®x P 2 Pmin
r such that P � Q: Let k 2 X0;

and suppose that n 2 E�Qjfk�: Then by Theorem 3 we have that n � gjaQq
for

some g 2 E�P jf �: Moreover, by the ®rst part of this proof we have
that g 2 X �P ; k�; hence there exist s 2 W and l 2 NR�P � such that
g � skÿ qP ÿ l: It follows that n � �skÿ qP ÿ l�jaQq

: Since the roots in
R�P �nR�Q� restrict to zero on aQq we have that qP jaQq

� qQjaQq
and ljaQq

2
N Rr�Q�, and hence n 2 X �Q; k�: (

According to the above result, the asymptotic expansion (87 ) holds with
f replaced by fk and with XQ�K; k� replaced by the smaller set X �Q; k�: The
following result asserts that the asymptotic expansion for fk obtained in this
way depends holomorphically on k in a suitable sense.

Proposition 9. Let f 2 E��G=H ;K;X0�; and ®x k0 2 X0 and n0 2 X �Q; k0�:
For k 2 X0; let N�k� be the set of elements n 2 X �Q; k� of the form

n � �skÿ qQ�jaQq
ÿ l;

where s 2 W and l 2 NRr�Q� satisfy the equation

n0 � �sk0 ÿ qQ�jaQq
ÿ l:

Then there exists an open neighborhood X � X0 of k0 and a constant r0 2 R
such that the map:
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�k;X � 7!
X

n2N�k�
pk;n�Qjfk; �;X �

is continuous from X� aQq to C1r0 �G�; and in addition holomorphic in k:

Proof. For k 2 X0; let N0�k� be the union of the set f0g \ fn0g with the set
of elements of the form

n � w�K� k� ÿ qQ

� �jaQq
ÿ l 2 XQ�K; k�;

where w 2 W �b� and l 2 NRr�Q�� satisfy
n0 � �w�K� k0� ÿ qQ�jaQq

ÿ l:

Then according to [3, Theorem 12.9], there exists an open neighborhood
X � X0 of k0 and a constant r0 2 R such that the above assertion holds with
N0�k� instead of N�k�: (Notice that in that theorem there is a slight error in
the de®nition of the set N�k�; denoted N0�k� in the present notation.) In view
of Proposition 8 it su�ces to show that X may be chosen so that

N�k� � N0�k� \ X �Q; k� for k 2 X:�94�
Obviously the inclusion `�' holds in (94). It therefore remains to prove the
converse inclusion.

Fix a bounded open neighborhood V of n0 in a�Qqc such that
�V \ X �Q; k0� � fn0g: Then there exists an open neighborhood U of k0 in X
such that V \ X �Q; k� � N�k� for k 2 U . Shrinking U if necessary, we may
also assume that N0�k� � V for k 2 X, from which the inclusion `�' in (94)
then follows. (

Following [3, p. 399] we de®ne

8a�qc � k 2 a�qc j hk; a_i =2Z �8a 2 R�
n o

;

where a_ � 2ha; aiÿ1a as usual. We recall that 8a�qc is the complement of a
locally ®nite union of hyperplanes. Moreover, if k 2 8a�qc; and s; t 2 W ; then
skÿ tk 2 ZR) s � t: Analogously we have the following result.

Lemma 11. There exists a subset 8 8a�qc � a�qc with the following properties:
(a) The set 8 8a�qc is the complement of a locally ®nite union of proper a�ne

subspaces in a�qc.
(b) Let k 2 8 8a�qc and Q 2 Pr be arbitrary, and suppose that s; t 2 W are

such that �skÿ tk�jaQq
2 ZRr�Q�: Then WQs � WQt:

Proof. Fix Q as in (b) and let s; t 2 W . De®ne V �Q; s; t� to be the set of
k 2 a�qc for which �skÿ tk�jaQq

2 ZRr�Q�: We claim that for WQs 6� WQt the
set V �Q; s; t� is a locally ®nite union of proper a�ne subspaces. It su�ces to
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establish this claim, for its validity implies that the desired result holds with
8 8a�qc equal to the complement of the union of the ®nitely many sets V �Q; s; t�
where Q is arbitrary and s; t 2 W ; WQs 6� WQt:

Fix P 2 Pmin
r such that P � Q: Then R�P� is a positive system for R

which contains the set R�Q�: Let D be the set of simple roots in R�P �; and
put D�Q� � D \ R�Q� and DQ � DnD�Q�: Then aQq is the intersection of the
root hyperplanes ker a; a 2 DQ: If a 2 D; we write xa for the element of the
real linear span RR of R satisfying hxa; bi � dab:

If m 2 a�qc; then the condition that mjaQq
2 ZRr�Q� is equivalent to the

condition m 2 CDQ � ZD�Q�; which in turn is equivalent to the condition
that hm;xai 2 Z for every a 2 D�Q�: From this we see that the set V �Q; s; t�
equals the union of the following sets, parametrized by n 2 ZD�Q� :

V �Q; s; t; n� � k 2 a�qc j hskÿ tk;xai � na �8a 2 D�Q��
n o

:

Suppose V �Q; s; t; n� � a�qc: Then it follows that n � 0 and that for all
a 2 D�Q� we have sÿ1xa � tÿ1xa: This implies that tsÿ1 centralizes the
fundamental weights orthogonal to DQ; hence belongs to the subgroup of W
generated by the re¯ections sa; a 2 DQ; i.e. to WQ: Thus we see that for
s; t 2 W with WQs 6� WQt the set V �Q; s; t; n� is a proper a�ne subspace of a�qc;
for any n: Since it is clear that the collection of V �Q; s; t; n� is locally ®nite
this establishes the claim. (

Let X0 be an open subset of a�qc; and suppose that K 2 b�kc;
f 2 E��G=H ;K;X0�: If k 2 X0, s 2 W and l 2 NRr�Q�, then we denote
the value at zero of the C1�G�-valued polynomial function
X 7! pk;�skÿqQ�jaQq

ÿl�Qjfk; �;X � by

pQ;l�f : s : k� :� pk;�skÿqQ�jaQq
ÿl�Qjfk; �; 0� 2 C1�G�:�95�

Obviously (95) remains unchanged if we replace s by any element from the
coset WQs: Therefore we shall also use the notation pQ;l�f : s : k� for left
cosets s 2 WQnW .

Proposition 10. Let K 2 b�kc; let X0 be an open subset of a�qc; and assume
that f 2 E��G=H ;K;X0�: Let s 2 W ; and l 2 NRr�Q�: Then for every
k 2 X0 \ 8a�qc we have

pk;�skÿqQ�jaQq
ÿl�Qjfk; �;X � � pQ;l�f : s : k�; �X 2 aQq�:�96�

Moreover, pQ;l�f : s : k� is holomorphic as a C1�G�-valued function of k on
X0 \ 8 8a�qc and allows a meromorphic extension to X0:

If k0 2 X0; then there exists an open neighborhood X of k0 in X0 and a
constant r0 2 R such that pQ;l�f : s : k� de®nes a meromorphic C1r0 �G�-valued
function of k on X:
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Proof. If Q 2 Pmin
r this is just [3, Theorem 13.10]. In the general case we ®x

P 2 Pmin
r such that P � Q: We de®ne a linear representation L of G in

E��G=H ;K;X0� by Lg�f �k � Lg�fk�; g 2 G. The subspace of K-®nite elements
for this action is denoted by E��G=H ;K;X0�K : Let K̂ denote the set of
equivalence classes of ®nite dimensional unitary irreducible representations
of K, and for d 2 K̂ let vd be its character and put ad � dim�d��vd.
Furthermore, let

�f d�k�x� �
Z
K

ad�k��Lkf �k�x�dk

for f 2 E��G=H ;K;X0�, k 2 X0 and x 2 G=H . Then f d 2 E��G=H ;K;X0�K
and we have

fk �
X
d2K̂

�f d�k;�97�

in the topology of C1r �G=H�, for all k 2 X0, with r locally independent of k
(as in item (b) of De®nition 1).

Fix k 2 X0 \ 8a�qc and let n � �skÿ qQ�jaQq
ÿ l 2 X �Q; k�: Fix a 2 A��Pq:

Let f 2 E��G=H ;K;X0�K : If n =2E�Qjfk�; then pk;n�Qjf � � 0 and (96) follows.
Thus assume that n 2 E�Qjfk�: Then the expansion (93) of Theorem 3 holds.
By the ®rst sentence of the proof this implies that

pk;n�Qjfk; a;X � �
X

g2E P jfk� �
gjaQq

�n

pk;g�P jfk; e; 0�ag; �a 2 A��Pq;X 2 aQq�:

In particular it follows that X 7! pk;n�Qjfk; a;X � is a constant function. By
continuity of the map g 7! pk;n�Qjg; a;X � and density of K-®nite functions
(cf.�97)) we now infer that the polynomial X 7! pk;n�Qjfk; a;X � is constant
for all f 2 E��G=H ;K;X0�: By equivariance of the map f 7! pk;n�Qjfk; �;X � it
®nally follows that the polynomial function X 7! pk;n�Qjfk; x;X � is constant
for every f and all x 2 G: This establishes (96).

The assertion about holomorphy is proved as follows. Let k0 2 X0 \ 8 8a�qc;
®x n0 2 X �Q; k0�; and for k 2 X0 \ 8 8a�qc de®ne N�k� as in Proposition 9.
There exist s 2 W and l 2 NRr�Q� such that n0 � �sk0 ÿ qQ�jaQq

ÿ l: If
t 2 W ; m 2 NRr�Q� and �tk0 ÿ qQ�jaQq

ÿ m � n0; then it follows that �sk0ÿ
tk0�jaQq

ÿ l� m � 0: Since k0 2 8 8a�qc this implies that l � m and WQs � WQt.
Hence skjaQq

� tkjaQq
for all k 2 X, and thus we see that N�k� has only one

element:

N�k� � �skÿ qQ�jaQq
ÿ l

n o
:

From Proposition 9 it now follows that (96) depends holomorphically on k
when this variable is restricted to a suitable neighborhood of k0:
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Finally it remains to prove the assertions about meromorphy. Fix
s 2 W ; l 2 NRr�Q� and k0 2 X0: Put n0 � �sk0 ÿ qQ�jaQq

ÿ l and let P be
the set of pairs �t; m� 2 WQnW �NRr�Q� such that �tk0 ÿ qQ�jaQq

ÿ m � n0:
For X 2 aQq and k 2 X0 \ 8 8a�qc we de®ne the following function in C1�G� :

w�X ; k� �
X
�t;m�2P

pQ;m�f : t : k�e�tkÿqQÿm��X �:�98�

De®ne N�k� as in Proposition 9. Then for k 2 X0 \ 8 8a�qc the map
�t; m� 7! �tkÿ qQ�jaQq

ÿ m is a bijection from P onto N�k�: Thus, taking (96)
into account we see that

w�X ; k� �
X

n2N�k�
pk;n�Qjfk; �;X �en�X �:�99�

We now see that by Proposition 9 there exists an open neighborhood X of k
in X0 and a constant r0 2 R such that for every X 2 aQq the map k 7!w�X ; k�
extends to a holomorphic C1r0 �G�-valued map on X:

For k 2 8 8a�qc the elements �tkÿ qQ�jaQq
ÿ m; �t; m� 2 P are mutually dif-

ferent. Therefore the exponential functions etkÿqQÿm on aQq are linearly in-
dependent. Thus we may ®x elements Xl 2 aQq; l 2 P such that the
determinant

det� e�tkÿqQÿm��Xl� ; �t; m� 2 P; l 2 P �
is a non-trivial holomorphic function of k: By Cramer's rule this implies that
the functions pQ;m�f : t : k�; �t; m� 2 P may be solved as C1r0 �G�-valued
meromorphic functions of k from the system which arises if in (98) one
substitutes for X the values Xl; l 2 P: (

In the ®nal part of the above proof we have seen that for a holomorphic
family of eigenfunctions the coe�cients in the expansion (87) can be re-
trieved from the coe�cients pQ;l�f ; s; k�; s 2 WQnW ; l 2 NRr�Q� introduced
in (95). We formulate this result as a separate lemma.

Lemma 12. Let K 2 b�kc; let X0 be an open subset of a�qc; and let
f 2 E��G=H ;K;X0�: Moreover, let k0 2 X0; n0 2 X �Q; k0�: Then the mero-
morphic function

k 7!
X

s2WQnW ; m2NRr�Q�
�sk0ÿqQ�jaQq

ÿm�n0

pQ;m�f : s : k��x� e�skÿqQÿm��X ��100�

has a removable singularity at k � k0 for every x 2 G and X 2 aQq.Moreover,
it has the limit value pk0;n0�Qjfk0 ; x;X �en0�X � at k0.

Proof. Fix x 2 G and X 2 aQq and let u�k� be the function given in (100).
De®ne P;N�k� and w�X ; k� as in the ®nal part of the above proof. Then for
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k 2 X0 \ 8 8a�qc we have u�k� � w�X ; k��x�: The result now follows from (99)
by application of Proposition 9. (

12. Principal parts of families of eigenfunctions

Let X be a non-empty open subset of a�qc: Then E��G=H ;X� will denote the
space of functions f : X� G=H ! C which may be expressed as ®nite sums
f �PK fK; where K ranges over a ®nite subset of b�kc; and where
fK 2 E��G=H ;K;X�: If K1;K2 2 b�kc are conjugate under the centralizer
WM1
�b� of aq in W �b�, then one readily checks that

E��G=H ;K1;X� � E��G=H ;K2;X�. On the other hand if fK1; . . . ;Kmg is a
®nite set of mutually non-WM1

�b�-conjugate elements of b�kc, and if
fi 2 E��G=H ;Ki;X� (i � 1; . . . ;m), then we claim that

Pm
i�1 fi � 0 (identic-

ally in k) only if f1 � . . . � fm � 0. Indeed assume that
Pm

i�1 fi � 0, then
applying the operator Dÿ c�D : Km � k� we obtain

Pmÿ1
i�1 �c�D : Ki � k�ÿ

c�D : Km � k��fi;k � 0, for all D 2 D �G=H�, k 2 X. Invoking induction on m
we see that for each i � 1; . . . mÿ 1 we have fi � 0 or c�D : Ki � k� �
c�D : Km � k� for all D 2 D �G=H�, k 2 X. However, the latter possibility is
excluded by the non-WM1

�b�-conjugacy of Ki and Km. Hence f1 � . . . �
fmÿ1 � 0, and then also fm � 0. This establishes our claim.

Thus, abusing notations slightly, we have the direct sum of linear spaces:

E��G=H ;X� � a
K2b�kc=WM1

�b�
E��G=H ;K;X�:

Hence by linearity all de®nitions and results of the previous section extend
to families f 2 E��G=H ;X�:

If V is a ®nite dimensional complex linear space, then by E��G=H ; V ;X�
we denote the space of functions f : X� G=H ! V all of whose vector
components belong to E��G=H ;X�: Thus

E��G=H ; V ;X� ' E��G=H ;X� 
C V ;

and again we see that all de®nitions and results of the previous section
extend to families f 2 E��G=H ; V ;X� by identity on the second tensor
component. This will be used from now on.

From now on let �s; Vs� be a ®nite dimensional unitary representation of
K: Then by E��G=H ; s;X� we denote the space of f 2 E��G=H ; Vs;X� which
are s-spherical in the sense that

fk�kx� � s�k�fk�x�; �x 2 G=H ; k 2 K; k 2 X�:
Let f 2 E��G=H ; s;X�; and let Q 2 Pr. Then we de®ne the Q-principal

part of f ; denoted fQ; by

fQ�k : m� � dQ�m�
X

s2WQnW
pQ;0�f : s : k��m��101�
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for m 2 M1Q; k 2 X: Clearly fQ�k : �� is a smooth Vs-valued function on
M1Q=HM1Q , depending meromorphically on k: Furthermore, using the equi-
variance of the map f 7! pQ;0�f : s : k� one readily veri®es that fQ�k : �� is
sjKQ

-spherical. Finally we notice that dQ�ma� � dQ�m�aqQ for m 2 M1Q,
a 2 AQq, and hence it follows from the transformation rule (89) that

fQ�k : ma� � dQ�m�
X

s2WQnW
ask pQ;0�f : s : k��m�; �m 2 M1Q; a 2 AQq�:

The following property of the Q-principal part shows that it is closely
related to Harish-Chandra's notion of the constant term (see [26, p. 153]).
Recall that for � > 0 we have de®ned the set a�q��� by (3).

Lemma 13. There exists a constant �0 > 0 such that if 0 < � � �0 then the
function k 7! fQ�k : m� is regular on a�q��� for every f 2 E��G=H ; s; a�q���� and
m 2 M1Q. Moreover, given a compact subsetK � a�Qq there exists � > 0 such
that for all f 2 E��G=H ; s; a�q����, m 2 M1Q, and k 2 a�q��� we have

etqQ�X �dQ�m� f �m exp tX � ÿ fQ�k : m exp tX � ! 0�102�

as t!1, uniformly in X 2K.

Proof. Let d � minm2NRr�Q�nf0g jmj then �0 > 0 can be chosen such that
jRekjaQq

j < d=2 for all k 2 a�q��0�. Let 0 < � � �0, ®x k0 2 a�q��� and w 2 W ,
and put n0 � �wk0 ÿ qQ�jaQq

. Let P be the set of pairs �s; m� 2 WQnW
�NRr�Q� for which �sk0 ÿ qQ�jaQq

ÿ m � n0, then it follows easily that
P � WQnW � f0g. Hence Lemma 12 shows that the function

k 7!
X

s2WQnW
�sk0�jaQq

��wk0�jaQq

pQ;0�f : s : k��m�

is regular near k0, with the limit value pk0;n0�Qjfk0 ;m; 0� at k0. Since w was
arbitrary we obtain the asserted regularity. Moreover, let a compact subset
K � a�Qq be given. Then if � > 0 is su�ciently small, �Re skÿ m� �X � < 0 for
all X 2K, k 2 a�q���, s 2 W , and m 2 NRr�Q�nf0g. The property (102) is
now a consequence of (88). (

The notion of principal part can be extended to meromorphic families of
eigenfunctions as follows. Given a complex manifold U ; we write O�U� for
the algebra of holomorphic functions U ! C; andM�U� for the algebra of
meromorphic functions U ! C:

Let M��G=H ; s;X� be the space of maps k 7! fk; X! C1�G=H� 
 V
such that for every k0 2 X there exists an open neighborhood X0 of k0 in X
and a holomorphic function u 2 O�X0�, not identically zero, such that
k 7!u�k�fk belongs to E��G=H ; s;X0�:

Then X ,M��G=H ; s;X� de®nes a sheaf on a�qc which is isomorphic to
the tensor product of the O-module sheavesM and X ,E��G=H ; s;X�: The
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principal part map f 7! fQ is a morphism of sheaves of O-modules and
therefore has a unique M-linear extension to the sheaf M��G=H ; s; ��:

13. The principal part of the Eisenstein integrals

It is easily seen that the Eisenstein integrals belong to the space of
meromorphic families of eigenfunctions just de®ned, with X � a�qc. In fact
we have the following stronger result. Recall that for R 2 R the set a�q�P ;R�
is de®ned by (7), and that the set PR�aq� � S�a�q� has been de®ned above
Lemma 2.

Lemma 14. Let P 2 Pmin
r ; w 2 �C�s�; and R 2 R: Then there exists a poly-

nomial p 2 PR�aq� such that k 7! p�k�E�P : w : k� is regular on a�q�P ;R�:
Moreover, if p is any polynomial in PR�aq� with this property, then the family

Ep�P : w� : �k; x� 7! p�k�E�P : w : k��x�

belongs to E��G=H ; V ; a�q�P ;R��: In particular it follows that the family
k 7!E�P : w : k� belongs to M��G=H ; s; a�qc�:

The above statements hold as well (with a possibly di�erent polynomial p)
when the Eisenstein integral E is replaced by the normalized Eisenstein integral
E� and the set a�q�P ;R� is replaced by a�q� �P ;R�.

Proof. See [3, Proposition 10.3, Lemma 14.1, and Corollary 16.2] (cf. (52);
use functoriality to generalize from s# to arbitrary s). (

Corollary 1. Let P 2 Pmin
r ; w 2 �C�s�; x 2 G, and Q 2 Pr. Then for k 2 a�qc

generic we have the expansion

E�P : w : k��x exp tX � �
X

s2WQnW ;
m2NRr�Q�

pQ;m�E�P : w : k� : s : k��x�e�skÿqQÿm��tX ��t!1�

at every X0 2 a�Qq, as well as the similar expansion for E��P : w : k�.

Proof. By Lemma 14 and the remarks of the previous section we can apply
Propositions 7, 9, and 10. (

The corollary allows us to de®ne the Q-principal parts EQ�P : w : k� and
E�Q�P : w : k� of the Eisenstein integrals. If Q 2 Pmin

r then this notion coin-
cides with the notions introduced in Sections 4-5, see (46) and (56), with
w � 1. From Lemma 13 we now obtain:

Corollary 2. Let � > 0 and let p 2 PR�aq� be a polynomial such that the
meromorphic function k 7! p�k�E�P : w : k� is regular on a�q���: Let � be suf-
®ciently small. Then the function

k 7!Ep;Q�P : w : k� :� p�k�EQ�P : w : k�
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is regular on a�q���: Moreover, given a compact subset K � a�Qq there exists
� > 0 such that for all m 2 M1Q and k 2 a�q��� we have

etqQ�X �dQ�m�Ep�P : w : k��m exp tX � ÿ Ep;Q�P : w : k��m exp tX � ! 0;

as t!1; uniformly in X 2K.
The above statements hold as well with the Eisenstein integral E replaced

by the normalized Eisenstein integral E�.

Our next goal is to determine the Q-principal part of the normalized
Eisenstein integral for all Q 2 Pr. Notice that it is an immediate conse-
quence of the functional equation (58) that

E�Q�P 0 : w : k� � E�Q�P : C�P jP 0 �1 : k�w : k�:�103�

This will allow us to reduce the problem to the case that Q contains P :

Lemma 15. Let P1; P2 2 Pmin
r and assume P1; P2 � Q. Then for s 2 WQ and

t 2 W we have the following identity of meromorphic functions on a�qc :

prQ �C�P2jP1�st : k� � C��P2j�P1�s : tk� � prQ �C�P1jP1�t : k�:�104�

Moreover we have

E���P2 : prQ�C�P2jP1�st : k�w� : stk� � E���P1 : prQ�C�P1jP1�t : k�w� : tk��105�

for all w 2 �C�s�.

Proof. Using (71) we may rewrite the left-hand side of (104) as

prQ �C�P2jP1�s : tk� �C�P1jP1�t : k�:
In view of Proposition 6 we may rewrite this in turn as the expression on the
right-hand side. This proves (104). Inserting this expression in (105) and
applying Proposition 4 we obtain the proof of (105). (

In particular we see from (105) with P1 � P2 � P � Q that the Eisenstein
integral

E���P : prQ�C�P jP �t : k�w� : tk�

only depends on the coset �t� � WQt, for any t 2 W .

Theorem 4. Let P 2 Pmin
r and P � Q: Then the Q-principal part of the

normalized Eisenstein integral is given by

E�Q�P : w : k� �
X

�t�2WQnW
E���P : prQ�C�P jP �t : k�w� : tk��106�

for all w 2 �C�s�, as a meromorphic identity in k 2 a�qc.
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In the group case this result is given in [25, Theorem 7]. In the Riem-
annian case it is then obtained by specializing to the trivial K � K-type (see
also [22, Theorem 5.9.4]). The proof will be given in the next three sections.
The idea is to show that both members of the equation are functions in
C1�M1Q=HM1Q : sjKQ

� which are annihilated by the same co®nite ideal in
D �M1Q=HM1Q�: From this it follows that the two members of the equation
allow converging expansions of polynomial exponential type. We will then
determine the possible leading exponents and the associated leading coe�-
cients, and show that they are the same for the functions in both sides of the
equation. This will ®nally allow us to conclude the equality.

14. Asymptotic expansions on M1Q

In this section we will study the system of di�erential equations on M1Q

satis®ed by the principal parts of the Eisenstein integrals. We shall see that
the solutions to this system have asymptotic expansions, and we shall de-
termine the possible leading exponents.

Let �s; Vs� be a ®nite dimensional unitary representation of K; and let X
be an open subset of a�qc: If D 2 D �G=H� then it is easily veri®ed that
if f 2M��G=H ; s;X�, then the family Df : k 7!D�fk� belongs to
M��G=H ; s;X� as well. Hence it makes sense to form its Q-principal part
�Df �Q, for any Q 2 Pr. We now have:

Lemma 16. Let f 2M��G=H ; s;X�. Then for all D 2 D �G=H� we have:

lQ�D� fQ � �Df �Q:

Proof. This follows easily from (101), (90) and (83). (

In particular it follows from the di�erential equations (44) and (54) that
we have

lQ�D�EQ�P : w : k� � EQ�P : l�D : s : k�w : k��107�

for all w 2 �C�s�, D 2 D �G=H�, as well as the same relation with E replaced
by E�.

Since D �M1Q=HM1Q� is a ®nite lQ�D �G=H��-module, it follows in par-
ticular that EQ�P : w : k� and E�Q�P : w : k� are D �M1Q=HM1Q�-®nite functions
in C1�M1Q=HM1Q : sjKQ

�: Therefore the theory of converging expansions

of [1] (see Sect. 9) is applicable.

For the moment assume that F 2 C1�M1Q=HM1Q : sjKQ
� is a

D �M1Q=HM1Q�-®nite function. If P 2 Pmin
r is contained in Q, then

�P � M1Q \ P is a minimal rh-stable parabolic subgroup of M1Q containing
Aq: Let R��P � � R�P �nR�Q� be the associated system of positive roots, and
let A��Pq be the associated positive chamber in Aq: Then according to (92 ) the
function F has a converging series expansion of the form
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F �a� �
X
n;m

cn;m log
ma an; �a 2 A��Pq�:�108�

Here n ranges over a set of the form S ÿNR��P�, where S � a�qc is a ®nite
subset, m 2 NC is a multiindex with jmj � d, and the coe�cients cn;m belong
to Vs. In fact, since the restriction of F to Aq has values in the space V M\K\H

s ;
the coe�cients cn;m belong to that space as well.

Notice that F is determined by the expansion (108 ), in the sense that if
all the coe�cients cn;m vanish, then F � 0. Indeed, since the expansion
converges, the vanishing of the coe�cients implies that F vanishes on A��Pq.
By sphericality this implies that F vanishes on KQA��PqHM1Q , which is open in
M1Q. Being KQ-spherical and D �M1Q=HM1Q�-®nite the function F is real
analytic, and we conclude that F � 0.

As before the set of elements n 2 S ÿNR��P �, for which there exists
m 2 NC such that cn;m 6� 0, is denoted by E��P jF ; e�: The set of ��P -maximal
elements in E��P jF ; e� is denoted by EL��P jF ; e�: Clearly this is a ®nite set.
The function

a 7!
X

n2EL��P jF ;e�;m
cn;m log

ma an 2 V M\K\H
s

on Aq is called the leading part along �P of F . Notice that if EL��P jF ; e� is
empty then F � 0 according to the discussion above.

We recall from Lemma 4 that the space �C�s� has a ®nite direct sum
decomposition in simultaneous eigenspaces for the endomorphisms
l�D : s : k�; and that every simultaneous eigenvalue is of the form
c�D : K� k�; with K 2 b�kc: Therefore the following result is of particular
interest to us.

If K 2 b�kc; let a�0qc�K� � a�qc be the set de®ned in [3, Eqn. (99)]. Then
a�0qc�K� is the complement of a locally ®nite union of hyperplanes. In
particular it is an open dense subset of a�qc:

Lemma 17. Let P 2 Pmin
r ; Q 2 Pr and assume P � Q. Fix K 2 b�kc: Let

k 2 a�0qc�K�; and suppose that F 2 C1�M1Q=HM1Q : sjKQ
� satis®es the system

lQ�D�F � c�D : K� k�F ; �D 2 D �G=H��:�109�

Then EL��P jF ; e� � W kÿ q�P :

Proof. Suppose that n 2 EL��P jF ; e�; and let cn;m 2 Vs be the coe�cients of
the expansion (108). Fix m0 2 NC such that cn;m0

6� 0 and cn;m � 0 for all
m 2 NC with jmj > jm0j: De®ne u : M1=HM1

! Vs by

u�kaHM1
� � ans�k�cn;m0

; �k 2 KM ; a 2 Aq�:

Note that this de®nition makes sense because M1=HM1
' �KM=KM \ HM ��

Aq (cf. Lemma 1) and cn;m0
2 V KM\HM

s :
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Let lQ and l0Q�P be the maps D �M1Q=HM1Q� ! D �M1=HM1
� corresponding

to �P (cf. Section 8). Notice that q�P � qP ÿ qQ. As in [3, Corollary 13.3] one
shows that (109) implies:

l0Q�P �lQ�D��u � c�D : K� k�u; �D 2 D �G=H��:

Using (84) we obtain l0Q�P � lQ � TÿqQ
� l0P : Hence ~u :� �dQjM1

�ÿ1u satis®es
the system

l0P �D�~u � c�D : K� k�~u; �D 2 D �G=H��:

According to [3, Proposition 13.5 ] this implies that ~u has Aq-exponents
contained in W kÿ qP : Hence u has exponents contained in W kÿ q�P , and it
follows that n belongs to this set. (

15. The leading part of the principal part of the Eisenstein integral

Let Q be a rh-stable parabolic subgroup containing P 2 Pmin
r . Then from

(107) and the theory of the previous section we see that it makes sense to
speak of the leading part along �P of the Q-principal part E�Q�P : w : k� of the
normalized Eisenstein integral. This leading part can be determined using
transitivity of asymptotics.

Proposition 11. Let P 2 Pmin
r ; Q 2 Pr, and assume P � Q: Then there exists

an open dense subset X � a�qc such that for all w 2 �C�s�; k 2 X the function
E�Q�P : w : k� has the leading part

a 7!
X
u2W

aukÿq�P C�P jP �u : k�w
h i

1
�e� 2 V M\K\H

s ; �a 2 Aq��110�

along �P :

Proof. By Lemma 4 and linearity we may ®x w 2 �C�s� so that there exists a
K 2 b�kc such that l�D : s : k�w � c�D : K� k�w for all D 2 D �G=H�;
k 2 a�qc: Write

Fk � E�Q�P : w : k�:

Then Fk is a function in C1�M1Q=HM1Q : sjKQ
�; which depends meromor-

phically on k 2 a�qc:Moreover, from (107) we see that Fk satis®es the system
(109).

Let X be any non-empty dense open subset of 88a�qc such that k 7! Fk is
regular on X, and assume moreover that X � a�0qc�K�. From now on we will
always assume that k 2 X: By Lemma 17 we know that

EL��P jFk; e� � W kÿ q�P :�111�
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Put fk � E��P : w : k�: Then Fk is the Q-principal part of fk: Shrinking X
if necessary we may assume that also k 7! fk is regular on X: According to
(101) we have

Fk � dQ

X
t2WQnW

pQ;0�f : t : k�jM1Q
:�112�

Of course we may replace the set of summation WQnW by any set of
representatives in W .

We will now use transitivity of asymptotics to expand the right-hand side
of (112) along �P . Let a 2 A��Pq. By de®nition we have for t 2 W that

pQ;0�f : t : k��a� � pk;�tkÿqQ�jaQq
�Qjfk; a; 0�:

By Theorem 3 the latter expression equalsX
g2E P jfk� �

gjaQq
��tkÿqQ�jaQq

pk;g�P jfk; a; 0�:�113�

In view of Lemma 14 we can apply Proposition 8 to f , and hence

E�P jfk� � vkÿ qP ÿ m j v 2 W ; m 2 NR�P �f g:

Let g � vkÿ qP ÿ m �v 2 W ; m 2 NR�P ��: If g has the same restriction to aQq

as tkÿ qQ; then since X � 88a�qc it follows from Lemma 11 that v 2 WQt.
Moreover we must then have that m 2 NDQ, where DQ � DnR�Q�. Thus we
see that (113) equalsX

s2WQ;m2NDQ

pk;stkÿqPÿm�P jfk; a; 0� �
X

s2WQ;m2NDQ

pP ;m�f : st : k��e�astkÿqPÿm:

Since dQ�a� � aqQ and qP � qQ � q�P we ®nally obtain

dQ�a�pQ;0�f : t : k��a� �
X

s2WQ;m2NDQ

pP ;m�f : st : k��e�astkÿq�Pÿm:

Inserting these expansions for t 2 WQnW in (112) we now obtain

Fk�a� �
X

u2W ;m2NDQ

pP ;m�f : u : k��e�aukÿq�Pÿm:

By uniqueness of asymptotics this must be the same as the expansion (108)
along A��Pq for Fk. By (111) the leading part isX

u2W

pP ;0�f : u : k��e�aukÿq�P ;

and by (56) (with w � 1) this is identical to (110). (
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16. Proof of Theorem 4

We ®rst determine the di�erential equations satis®ed by the right-hand side
of Equation (106). Essentially these di�erential equations are identical to the
di�erential equation satis®ed by the left-hand side (cf. (107)).

Lemma 18. Let P 2 Pmin
r , Q 2 Pr and assume P � Q: Then for every t 2 W

and all w 2 �C�s� we have:

lQ�D�E���P : prQ�C�P jP �t :k�w� : tk�� E���P : prQ�C�P jP �t :k�l�D : s : k�w� : tk�

for all D 2 D �G=H�:

Proof. This is a straightforward consequence of the di�erential equations
(54), applied to the Eisenstein integrals for M1Q, and of (86), (73), the latter
with C replaced by C�. (

Because of this lemma the theory of Sect. 14 can be applied to the
Eisenstein integral E���P : prQ�C�P jP �t : k�w� : tk� on M1Q, and we may speak
of the leading part along �P of this function.

Lemma 19. Let P 2 Pmin
r , Q 2 Pr and assume P � Q: Then there exists an

open dense subset X � a�qc such that for all w 2 �C�s� ; k 2 X ; t 2 W the
function

E���P : prQ�C�P jP �t : k�w� : tk�

has the leading part

a 7!
X

u2WQt

aukÿq�P �C�P jP �u : k�w�1�e�; �a 2 Aq��114�

along �P .

Proof. By (56) the Eisenstein integral E���P : w� : tk� has the principal part

ma 7!
X
s2WQ

astk�C��P j�P �s : tk�w��1�m�

along �P , for all w� 2 �CQ�s�. If we insert w� � prQ�C�P jP �t : k�w� and use
Lemma 15 we easily obtain (114). (

By summation over WQnW it follows from this lemma that the function
on the right-hand side of (106) has the leading part

a 7!
X
u2W

aukÿq�P �C�P jP �u : k�w�1�e� 2 V M\K\H
s ; �a 2 Aq�

along �P , that is, exactly the same as that of the left-hand side (cf. (110)).
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Proof of Theorem 4. Let Fk and Gk denote the left- and right-hand side of
(106), respectively. By Lemma 4 we may ®x w 2 �C�s� so that there exists a
K 2 b�kc such that l�D : s : k�w � c�D : K� k�w for all D 2 D �G=H�;
k 2 a�qc: Let X be any non-empty open dense subset of a�0qc�K� such that
k 7! Fk;Gk are regular on X. Then Fk and Gk satisfy the di�erential equation
(109) for k 2 X, and hence by Lemma 17

EL��P jFk ÿ Gk; e� � W kÿ q�P :

Shrinking X if necessary, we may assume that it allows the conclusions of
Proposition 11 and Lemma 19. Hence, as mentioned above, Fk and Gk have
the same leading part, and we conclude that EL��P jFk ÿ Gk; e� is empty. This
implies that Fk ÿ Gk � 0 for k 2 X, and hence Fk and Gk are identical as
meromorphic functions in k. (

17. Proof of Theorem 2

Recall that this theorem asserts the regularity of the normalized Eisenstein
integrals on a neighborhood of ia�q. We shall prove this by induction on the
split rank dim aq of G=H .

Let aqR � \a2R ker a and �G � \v2X �G� ker jvj (cf. [1, Sect. 1]), then
AqR :� exp�aqR� is central in G, and G=H ' AqR � �G=��G \ H�. For this
reason we call AqR the vectorial part of G=H . One readily checks from the
de®nition of the Eisenstein integral that E��P : w : k��ax� � akE���G \ P :
w : kj�g\aq��x�; for x 2 �G=��G \ H�; a 2 AqR: We thus see that the assertion
of Theorem 2 holds for the symmetric space G=H if and only if it holds for
�G=��G \ H�.

In the course of the proof we shall be using the Schwartz functions on
G=H (see [3, Sect. 17] for the notion of Schwartz functions on G=H , and for
the topology on the Schwartz space). Let C�G=H : s� denote the FreÂ chet
space consisting of the s-spherical L2-Schwartz functions f : G=H ! Vs. The
space C1c �G=H : s� is a dense subspace. We need the following result.

Proposition 12. Assume that the vectorial part AqR of G=H is trivial, and let
f 2 C1�G=H : s� be a D �G=H�-®nite function such that for all maximal
parabolic subgroups Q 2 Pr containing Aq and all m 2 MQ and X 2 a�Qq we
have:

lim
t!1 etqQ�X �f �m exp tX � � 0:

Then f belongs to the Schwartz space C�G=H : s�:

Proof. We start by recalling some further results from [1]. Let P 2 Pmin
r be

arbitrary and let R� � R�P �. Let a�q be the associated positive Weyl
chamber.
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Let Q 2 Pr with Q � P : Then Q is standard with respect to R�; so that
a�Qq is a wall for a�q : According to [1, Theorem 5.3] the asymptotic behavior
of a D �G=H�-®nite function f 2 C1�G=H : s� along this wall may be
described as follows.

Let ��a�q be the intersection of the closure of a�q with mQ; and put
� �A�q � exp���a�q �: Then there exist analytic functions qn :� �A�q � aQq ! Vs;
polynomial in the second component, such that for all �a 2� �A�q and all
a 2 A�Qq with

�aa 2 A�q we have:

f ��aa� �
X

n

qn��a; log a� an:

Here the summation extends over a subset of a�Qqc of the form S ÿNRr�Q�;
with S a ®nite subset of a�Qqc: The convergence is absolute. Notice that this
expansion is a re®nement of (92); the latter is obtained at �a � e. By
uniqueness of asymptotics the functions qn are uniquely determined, and
therefore so is the set E�Qjf � of n 2 a�Qqc such that qn 6� 0. Arguing as in the
proof of Theorem 3 (or inspecting [1, proof of Theorem 5.3]) we see that
E�Qjf � � E�P jf �jaQq

for Q � P .
If Q is maximal the hypothesis of the lemma implies that for every

n 2 E�Qjf � and X 2 a�Qq we have �Re n� qQ��X � < 0: Let now n 2 E�P jf �:
Then njaQq

2 E�Qjf � and since qP has restriction qQ on aQq it follows that

Re n� qP < 0 on a�Qq:�115�

If a is a simple root in R�; let La be the set of points X 2 aq such that
a�X � > 0 and such that b�X � � 0 for all simple roots b 6� a: Then La � a�Qq
for a suitable maximal rh-stable parabolic subgroup Q � P ; in fact
Q � ZG�La�P : Thus by (115) we see that Ren� qP is strictly negative on La

for all n 2 E�Qjf �. This being valid for every simple root it follows that

Re n� qP < 0 on cl�a�q �nf0g�116�

(here we have used the assumption that AqR � f1g). The estimate (116) is
valid for each P 2 Pmin

r and all n 2 E�P jf �: It now follows from [1, Theorem
6.4] that f is square integrable, and from [1, Theorem 7.3] that f belongs to
the Schwartz space. (

Proof of Theorem 2. The main steps of the proof are summarized in the
following four lemmas. If the split rank of G=H is zero then a�qc � f0g;
G � M1; hence G=H ' M=HM is compact (cf. Lemma 1), and one readily
sees that E��P : w : 0� � w: Thus the statement is trivially veri®ed for spaces
of split rank 0.

Let now G=H be a space of split rank r � 1; and assume that the result
has been proved already for all Harish-Chandra class reductive symmetric
spaces of split rank strictly smaller than r: As we have seen above, we may
assume that the vectorial part of G=H is trivial.
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The basic idea of the proof is that the regularity of the Eisenstein
integral is governed by the principal parts of its asymptotic expansions
along (maximal) parabolic subgroups Q: The following lemma asserts that
these principal parts are regular for imaginary values of the spectral
parameter.

Lemma 20. Let P 2 Pmin
r , Q 2 PrnfGg, and let w 2 �C�s�: Then as a function

of k the Q-principal part E�Q�P : w : k� of E��P : w : k� is regular on ia�q:

Proof. Using (103) and the unitarity of the c-function occurring there (cf.
Proposition 5) we see that it su�ces to establish the lemma in the case that
Q � P : But then the principal part is given by (106). The Eisenstein integrals
occurring in the right hand side of (106) are regular functions of k on ia�q; by
the induction hypothesis, since the split rank of �M1Q=��M1Q \ H� �
MQ=HMQ is less than r when Q is proper. Moreover, the c-functions
occurring in (106) are also regular, by the unitarity of the c-functions
(Proposition 5). (

It is convenient to introduce the set P consisting of all p 2 PR�aq� with
the property that the function

k 7!E�p�P : w : k� :� p�k�E��P : w : k�

is regular on a�q� �P ; 1�; for each w 2 �C�s�: It follows from Lemma 14 that P
is non-empty. To establish the regularity of E��P : w : k� on a�q��� for some
� > 0 it obviously su�ces to show that

pÿ1�0� \ ia�q � ;�117�

for some p 2 P.

Lemma 21. Suppose that p 2 P vanishes at k0 2 ia�q: Then for every w 2 �C�s�
the function E�p�P : w : k0� is D �G=H�-®nite and belongs to the Schwartz
space C�G=H : s�:

Proof. Put E�p;Q�P : w : k� � p�k�E�Q�P : w : k�: Then it follows from the
lemma above that E�p;Q�P : w : k0� � 0 for Q 2 Pr proper. Using Corollary 2
we obtain

lim
t!1 etqQ�X � E�p�P : w : k0��m exp tX � � 0

for all m 2 MQ; X 2 a�Qq. The lemma is now an immediate consequence of
Proposition 12. (

To complete the proof of Theorem 2 we need the following lemma.
Given p 2 P; we de®ne, as in [3, Sect. 19], a continuous linear map
Fp : C�G=H : s� !S�ia�q� 
 �C�s� by
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hFpf �k�jwi � hf jE�p�P : w : k�i; �w 2 �C�s��;

for f 2 C�G=H : s�; k 2 ia�q:

Lemma 22. Let p 2 P; and let f 2 C�G=H : s� be a D �G=H�-®nite function.
Then Fpf � 0:

Proof. Let L 2 D �G=H� denote the canonical image of the Casimir element
(it is the Laplace-Beltrami operator associated with the pseudo-Riemannian
structure on G=H induced by B). Then by D �G=H�-®niteness there exist a
positive integer m and constants a0; . . . ; amÿ1 2 C such that

D :� Lm � amÿ1Lmÿ1 � � � � � a0

annihilates f : In view of (60), which is valid also for Schwartz functions f by
the density of C1c �G=H : s� in C�G=H : s�, this implies that

l�D : s : k�Fpf �k� �Fp�Df ��k� � 0;�118�

for all k 2 ia�q: The End��C�s��-valued polynomial function k 7! l�D : s : k�
on ia�q has highest degree homogeneous part equal to hk; kim times the id-
entity operator. Hence det l�D : s : k� is not identically zero, and therefore
(118) implies that Fpf � 0: (

Lemma 23. Suppose that p 2 P vanishes at k0 2 ia�q: Then E�p�P : w : k0� � 0
for all w 2 �C�s�.

Proof. Fix w 2 �C�s�: Then by Lemma 21 the function f :� E�p�P : w : k0� is
a D �G=H�-®nite s-spherical Schwartz function. From Lemma 22 we then
obtain that:

hf jf i � hf jE�p�P : w : k�ik�k0 � hFpf �k0�jwi � 0;

and it follows that f � 0: (

We can now complete the proof of Theorem 2 by an argument similar to the
one used in the proof of Theorem 1 (see Sect. 5). Choose some p 2 P; and
suppose that (117) does not hold. Then p has a linear factor l 2 P vanishing
at a point of ia�q: This factor must be of the form l�k� � hk; ai ÿ c; with
a 2 R and c a purely imaginary number. Thus H :� lÿ1�0� \ ia�q is a codi-
mension 1 hyperplane in ia�q: Let w 2 �C�s�: Then it follows from Lemma 23
that E�p�P : w : �� vanishes on H; and hence on the connected set
lÿ1�0� \ a�q� �P ; 1�; by analytic continuation. Therefore l is a factor of the
holomorphic function k 7!E�p�P : w : k� on a�q� �P ; 1�; and by de®nition it
follows that lÿ1p 2 P: Using this argument repeatedly we arrive in a ®nite
number of steps at a p 2 P such that (117) holds. (
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It follows from Theorem 2 that the results of [3, Sect. 19] are valid with
p � 1 (see loc. cit. for the meaning of this notation). In particular we get the
following result (cf. loc. cit., Thm. 19.1).

Corollary 4. The Fourier transform F de®nes a continuous linear map from
C�G=H : s� into S�ia�q� 
 �C�s�:
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