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Introduction

Let G/H be a semisimple symmetric space, that is, G is a connected semi-
simple real Lie group with an involution ¢, and H is an open subgroup of
the group of fixed points for ¢ in G. The main purpose of this paper is to
study an explicit Fourier transform on G/H. In terms of general represen-
tation theory the (‘abstract’) Fourier transform of a compactly supported
smooth function f € C2°(G/H) is given by (see [6])

(n Fmn) == [ r@ntnas
G/H
for (m, # ;) a unitary irreducible representation of G and 7 € (%;"O)H an

H-invariant distribution vector for 7. Here dx is the invariant measure on
G/H. Thus f(n)(n) is a smooth vector for .#,, depending linearly on 5. Our
goal is to obtain an explicit version of the restriction of this Fourier
transform to representations (m, # ;) in the (minimal) unitary principal se-
ries (e 5, # ¢ ,) for G/H, under the assumption that the center of G is finite.
In the sequel [10] to this paper it is proved that a function /' € C*(G/H) is
uniquely determined by the restriction of f to this series (a priori it is known
that f is determined by f).

Let 6 be a Cartan involution of G commuting with ¢, and let
g=t®p =10 qbe the £1 eigenspace decompositions of the Lie algebra g
of G, corresponding to 0 and o, respectively. Let K = G’ then K is a
maximal compact subgroup of G. The unitary principal series for G/H is a
series of parabolically induced representations 7 ; = Ind$ (¢ ® 4 ® 1), with
P = MAN a minimal ¢0-stable parabolic subgroup with the indicated Lan-
glands decomposition, ¢ a finite dimensional irreducible unitary represen-
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tation of M and / € iag. Here aq is the intersection of the Lie algebra a of 4
with q — this is a maximal abelian subspace of p N q. The unitary principal
series for G/H and its non-unitary extension (allowing 4 € ag.) was studied
in [2]. For the Fourier transform on G/H it is important to determine the
space C~(¢ : 1) of H-invariant distribution vectors for n: ;; this is done
for A in generic position in [2]. More precisely an explicit bijective linear map
j(&:2) from a finite dimensional vector space V(&) (independent of 1) to
C—(¢: )" is determined. Moreover, the dependence of j(¢: 1) on 1 € Qg
is meromorphic. An explicit Fourier transform can then be obtained by
composing the map (&, 2)— j(&: —2) with the map n— f(ne,_;)() in (1)
(see also [32]). If G/H is a Riemannian symmetric space (or equivalently, if
H = K) we obtain in this way Helgason’s Fourier transform for G/K (see
[29]). In this case the Fourier transform is holomorphic as a function of 4,
but in general it is only meromorphic, and it need not make sense for all the
representations in the unitary principal series.

The main result of this paper is the determination of a normalization
Jo(E:2) of j(¢: 4) (with a meromorphic A-dependent normalizing factor),
which is regular on iaj. The Fourier transform fof fe C>*(G/H) can then
be defined as above, but with j(& : 1) replaced by j°(& : 1), that is we define

() f(E:0) =mea(f)e /(¢ s —A) € Home (V(8), #%,)

for & as above and A € ia(*l; this Fourier transform is then real analytic as a
function of 1. When G/H is Riemannian the normalization amounts to a
division of the usual Fourier transform by Harish-Chandra’s c-function
(which is known to be non-zero for imaginary 4, see [24, Lemma 29]).

Let us explain in some detail the construction of j°(£ : 1) and the proof
of its regularity. Let A(P: P: ¢ : A) be the standard intertwining operator
from mp:; = m; to the principal series np:; induced from the parabolic
subgroup P opposite to P. It is well known that A(P: P: £ : A) depends
meromorphically on A and is bijective for generic 4. We define j°(¢ : 4) by
FE:D)=AP:P:E:2) j(P:&:2), where j(P:&:2) is constructed as
J(E:7), but with P replaced by P. It follows that j°(¢:4): V(&) —
C(¢: i)H is again a bijection, for generic 4 € ag.. Let £ C aj denote the
set of roots of a4 in g and put

(3) a;(e) = {Aea | (Redu)| <e (VaeZ)}
for € > 0. The main result mentioned above is

Theorem 1. There exists, for each finite dimensional unitary representation &
of M, a constant € > 0 such that the function A j°(&: 1) is holomorphic on
ag(€). In particular, it is regular on iag.

In order to prove the regularity of j°(¢ : ) it suffices to consider all the matrix
coefficients formed by it and the K-finite vectors in ¢ ;. The set of matrix
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coefficients formed by the unnormalized j(¢ : A) with the K-finite vectors in
H ¢, is spanned by (components of) the FEisenstein integrals, which were
defined in [3]. By construction the Eisenstein integrals E(y : 1) are K-
spherical functions on G/H (that is, functions f taking their values in a finite
dimensional representation space V; for K and satisfying f(kx) = t(k)f(x) for
all k € K,x € G/H). The Eisenstein integral depends linearly on the param-
eter Y in a certain finite dimensional vector space °%(t), and meromor-
phically on 4 € ag . The first step in the proof of Theorem I consists of the
identification of a normalization E°(y : 1) of E(y : A), such that the set of
matrix coefficients formed by j°(¢ : 1) with the K-finite vectors in ¢ ; is
spanned by components of the E°(y : A). It turns out that E°(y : 1) is es-
sentially the same as the normalized Eisenstein integral which was introduced
in [3]. The normalizing factor, which is End(°%(z))-valued and meromorphic
in /4, is determined from the asymptotic behavior of E(y : /) towards infinity
along minimal o6-stable parabolic subgroups (see Proposition 2).

The principal step in the proof of Theorem 1 is given in Theorem 2,
which states that 41— E°(y : 4) is regular on ia. This result is obtained by
induction on the split rank of G/H (the dimension of aq). The induction
results from the existence of asymptotic expansions of the normalized Ei-
senstein integral along maximal parabolic subgroups, in which the principal
part is given by a linear combination of normalized Eisenstein integrals
corresponding to symmetric spaces of lower split rank (see Theorem 4). The
results of [3], in particular the unitarity of the c-functions, recalled here in
Proposition 5, are crucial. These preliminary tools and some further basic
properties of the Eisenstein integrals are collected in Sect. 1-7. In particular,
the proof of Theorem 1 is reduced to Theorem 2 in Sect. 5. In Sect. 8 we
establish the framework for the parabolic induction, in Sects. 9-11 we dis-
cuss some general results about asymptotic expansions of eigenfunctions
depending holomorphically on 4, and in Sect. 12 we define the notion of the
principal part. In Sect. 13 we state our main result (the above mentioned
Theorem 4) about the asymptotic expansion of the Eisenstein integrals. The
proof of this result is carried out in the subsequent three sections. Finally in
Sect. 17 we give the proof of Theorem 2.

The group G is itself a symmetric space for the left times right action of
G x G. In this case (‘the group case’) the spaces V(&) are all zero or one
dimensional, and the distribution vectors j°(& : 1)y can be identified essen-
tially as multiples of the distribution kernel of the inverse of a standard
intertwining operator (for details, see [9, Lemma 2]). Thus in this case the
regularity in Theorem 1 comes down to the injectivity of this operator for A
purely imaginary, or equivalently, to the regularity of Harish-Chandra’s
Plancherel factor u(4) (for minimal parabolic subgroups). This regularity is
stated in [27, p. 142, Lemma 2]. The normalized Eisenstein integrals and their
regularity can be found in [25, Theorem 6]. In the development of the general
theory for G/H we were very much inspired by these results of Harish-
Chandra for the group case. Another major source of inspiration was
Wallach’s treatment of the asymptotic behaviour of matrix coefficients [35].
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We end this introduction by giving some references to related papers that
also deal with harmonic analysis on general semisimple symmetric spaces
G/H (for more references we refer to [6, 28]). For the minimal principal series
the H-fixed distribution vectors had previously been studied in [34, 32] and,
in the generality of the present paper, in [2-4]. As mentioned, results from
these papers are frequently used here. For the non-minimal (generalized)
principal series, which are not considered in this paper, some of the results of
the mentioned papers were generalized in [14, 16, 18]. The discrete series had
already been thoroughly studied, first of all in [21] and [33] (see [6]).

After the results presented here were obtained, there has been a rapid
development in the field. The sequel [10], in which we obtain the most
continuous part of the Plancherel decomposition for G/H, was completed.
The Plancherel formula for symmetric spaces of type G¢/Gr was obtained
[23]. Wave packets formed by Eisenstein integrals were studied, and a new
proof of Theorem 1 was given in [5]. Crucial results for the non-minimal
principal series were obtained by Delorme in [19]. Subsequently, general-
izations of the unitarity of the c-functions (the so-called Maass-Selberg re-
lations of [3]) and of the present regularity theorem (Theorem 1) for the non-
minimal principal series were established in [17]. Finally, in the fall of 1995,
the full Plancherel decomposition for G/H was announced by Delorme, [20].
Simultaneously the present authors announced a proof of the same de-
composition, under the hyphothesis of the validity of the above mentioned
generalization of Theorem 1 (now established in [17]), [13]. The results of
[17] are significant in both approaches, but apart from this the methods are
different. The work in [13] is based on results from [11, 12]. In [13] we also
establish the Paley-Wiener theorem for G/H conjectured in [10]. In partic-
ular, Theorem 4 of the present paper plays an important role in [12].

1. The Fourier transform

Let G/H be a reductive symmetric space of Harish-Chandra’s class, that is,
G is a real reductive Lie group of Harish-Chandra’s class (cf. [26]), ¢ an
involution of G, and H an open subgroup of the group G? of its fixed points.
This assumption on G/H is somewhat more general than that of the in-
troduction. Apart from this we use notation as defined above. As usual, the
Killing form on [g, g] is extended to an invariant bilinear form B on g, for
which the inner product (X,Y) = —B(X,0Y) is positive definite. We also
require the extension to be compatible with o, that is, B(6X,Y) = B(X,a7)
for all X, Y € g. The inner product (-, -) is extended linearly to the com-
plexification g, of g.

As above aq denotes a fixed maximal abelian subspace of pNq, and
P = MAN is a parabolic subgroup whose Levi part M; = MA is the cen-
tralizer in G of ay. We denote the set of such parabolic subgroups by 9’3‘"‘.
Notice that for P € ™" we have that M and M; are invariant under both
involutions 0 and o¢. Let
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Ky=MNK=MNK, Hy=MnNH, and Hy, =M NH,

then the quotients M /Ky, My /Ky, M /Hy and M, /H),, are symmetric spaces.

Furthermore we denote by m:; = mp¢, the associated representations
of the principal series. Here & belongs to My, the set of (equivalence classes
of) irreducible finite dimensional unitary representations of M, and /4 be-
longs to a?. (which is viewed as a subspace of a} by means of (-, -)). We
use the following model (‘induction on the left’) for ng ;: Let #¢ denote a
finite dimensional Hilbert space on which £(M) acts (unitarily), and let
C>®(¢: 1) =C>(P: ¢ A) denote the space of smooth #:-valued functions
f on G satisfying

f(mang) = a****E(m)f (g), formeM,aeAd,neN,ge€ G;

then 7, is the right regular representation of G on this space. Here pp € a*
denotes half the trace of the adjoint action on 1; it is easily seen that actually
pp € ag. Similarly we denote by C~>°(&: 1) the space of #z-valued gener-
alized functions on G satisfying the above rule of transformation, and by
C®(K : &) and C (K : &) the spaces of smooth, respectively generalized,
A e-valued functions on K transforming according to f(mk) = &(m)f (k) for
all m € Ky, k € K. Then restriction to K gives rise to bijective linear maps
from C*(¢: 1) and C~*°(¢: 1) onto the corresponding function spaces
C*(K : ) and C"*(K : ¢) on K, for all 4 € ag.. The Hilbert space L*(K : &)
is defined similarly; the inner product is given by

) o) = [t @lato). e

with respect to invariant measure on K. (Here and in the following sesqui-
linear Hilbert space inner products will be denoted (-|-), and the anti-
linearity is in the second variable.) When viewed as the representation space
for m;; we also denote L*(K : &) by A .

We denote by X the root system of aq in g, and by W the group
Nk(aq)/Zg(aq) which is naturally identified with the reflection group of X.
For the time being we fix a set #~ C Nk (aq) of representatives for the double
quotient Zg (aq)\Nk(aq)/Nkru(aq); the image of # in W is then a set of
representatives for W/Winy, where Wyxny is the subgroup Ngnag(aq)/
Zkru(aq) of W. The map #" > w— PwH sets up a bijective correspondence
of " with the set of open P x H cosets in G. Given an irreducible unitary
representation ¢ of M we denote by V(&) the Hilbert space given by the
formal orthogonal sum

(5) V(e) = @wew%?ﬂw

of the spaces of wHyw!-fixed vectors for ¢. Here we notice that each
w € Nk (aq) normalizes M and K (but in general not H). Moreover it follows
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from the lemma below that if V(&) is non-zero then the restriction of & to Ky,
is irreducible (so in particular ¢ € My,), and that we have

e — MO e ),

Lemma 1. There exists a connected normal closed subgroup M, of M such that
M =KyM,, M,C Hy and wMw'=M,
Sor all w € Nx(aq). In particular

M /wHyw ™' ~ Ky /w(Ky 0 Hy)w™ "

Proof. Letm, bethe Lie subalgebra of m generated by m N p. Obviously thisis
an ideal in m. Moreover it is Ad w-invariant for w € Nk (aq), and since a4 is
maximal abelian in p N q we have m N p C ) and hence m,, C ). Let M, be the
corresponding analytic subgroup of M, then wM,w~' = M, and M, C H are
obvious, and M = KyM, follows from M = Ky, exp(m N p). O

Remark. Under quite general assumptions on the pair (G, H) one has that
each of the summands of V(&) in (5) has dimension at most one. For details
about this result, which we shall not be using here, see [9] and the references
given there.

Clearly the elements of C=°(P: ¢ : )" restrict to smooth functions on
the open P x H cosets in G, and hence they can be cf:Valuated ateachw € .
Moreover, the value at w belongs to %gHMW , and according to [2,
Corollary 5.3] the map ev : C-(P: ¢ : J) = V(¢), given by the product of
all these evaluations, is bijective for generic 4 € ag.. Furthermore, by
[2, Theorem 5.10] this map allows an inverse map

JE D =jP:E:2):V(E) - C P& D)

which depends meromorphically on . (as a C~°(K : ¢) valued map). Thus
by definition we have for n € V(£) that the # :-valued generalized function
J(&: ) on G restricts to the smooth function

(6) J(E = 2)(n)(manwh) = a0 E(m)n,,

on PwH = MANwH . (Here 1,, denotes the w-component of 7, viewed as an
element of #:.) For any real number R we denote

(7) Q;(P;R) = {4 € a’, | Re(i,4) < R, (Ve € Z(P))}

where X(P) is the positive system for X corresponding to P. It follows
from [2, Proposition 5.6] (and the remark succeeding its proof) that if
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A+ pp € ag(P;0) then j(¢ : A)n is the continuous function on G given by (6)
on PwH, w € ¥, and by 0 elsewhere. Notice that if G/H is Riemannian then
V(&) is non-zero if and only if & is the trivial M-representation, in which case
V(&) ~ C. Moreover in this case j(¢ : 1) is essentially the map obtained from
the Iwasawa decomposition G = ANK by ank— a***. In particular it is
smooth for all 4 € ag. ‘

Given two minimal gf-stable parabolic subgroups P, P’ € ™" (so that
their Langlands decompositions P = MAN and P’ = MAN’ share the M and
the A4), there is a standard intertwining operator A(P':P:¢:A) from
C(P:&: ) to C~®(P : &1 A) (formally given by integration over N' NN
on the left). It depends meromorphically on 4 and is bijective for generic 4,
and by the intertwining property it maps H-invariant vectors to H-invariant
vectors. Consequently we obtain an End(V(£))-valued meromorphic map
v B(P': P: &: ]) by requiring commutativity of the diagram

coopoeyt APEPCD e
(8) j(P:f:/l)I Tj(P’:f:l)
V(&) — V().

B(P':P:¢:7)

The operator A(P' : P : £ : /) depends on the chosen normalization of the
Haar measure on N’ N N. In the following we require that this normalization
is as specified in [31, §2]. The purpose of using this particular normalization
is to make valid the product formulas for the standard intertwining oper-
ators (cf. (13 ) below).

By construction the operator B(P': P: £ : A) is invertible for generic 4.
It is a simple consequence of the definition of 4(P': P: ¢ : A) that

9) AP :P:E:0) =AP:P :&:-)).
The main result of [2] (see also [4]) asserts the much deeper analogue
(10) B(P:P:E(:)"=B(P:P:&:-0),
with respect to the Hilbert space structure of V(&) defined by the orthogonal
sum (5).
The normalized map
FE ) =P E:0): V(&) —C P& )"

is now defined as follows. Let ¢(4q) = ¢(G : 4q) be the positive constant
defined by
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c(dg) ! = /ezppmp(ﬁ))dm
N
where Hp: G — a is the map defined by x € Nexp Hp(x)MK (cf. [3,
eq. (122)]). In the diagram (8) let P’ be the parabolic subgroup P opposite to

P, and let j°(P:¢: A) be c(Aq)fl times the map that goes diagonally from
the lower right to the upper left corner, that is

DL L) — “lygp.p.s.N 1 _yp.g.
(1) J(P:E:A)=c(4y) A(P.éP.f./L) oj(P:&:A)

-1,
= c(dg) J(P:
Notice that j°(P : ¢ : 4) is independent of the particular normalization of the

Haar measure dn on N. The two equalities in (11) can be generalized as
follows

(12) j°(P:¢: Q) = C(Aq)flA(P/: P:E:2) (P& )oB(P:P:E: )7,
where P’ € ™" is arbitrary (use that
(13) AP :P:E:0)=AP:P :E:2)eA(P :P:E:0),

and similarly for B, cf. [2, Propositions 4.6 and 6.2]).
From (12) and the analogue of (13) for B we obtain the following
commutative diagram, which is analogous to (8)

cP:&: )" —>A(P/ SALSL) cpP &)
(14 e [Fwien
cmV (&) — V().
B(P':P:¢:7)

We shall now discuss the singular sets of the meromorphic maps
A= j(€:A) and A—j°(€: 7). Let Ilz(aq) denote the set of elements
p € S(ag) = P(a;) which are products of polynomials of the form
A (A,a) — ¢, where o € ¥ and ¢ € C. The product may be empty; this
means just that 1 € Iz (aq).

Lemma 2. Let P € ?g’in, Ee Mg, and R > 0 be given. Then there exists a
polynomial p € Is(aq) such that A— p(2)j(P : & : ) is holomorphic on the set
ag(P;R). Furthermore there exists p € s(aq) such that A p(2)j°(P: & 4)
is holomorphic on ay(R) = ag(P;R) N a;(P;R).

Proof. For j(£: A) this is a consequence of [3, Theorem 9.1]. For j°(¢: 1)
we must also isolate the singularities of the inverse intertwining operator



Fourier transforms on a semisimple symmetric space 525

AP :P:¢: )L)fl used in the normalization (11). Recall (cf. [31, Proposition
7.3], [2, Proposition 4.7]) that for P, P’ € #"" one defines the meromorphic
function 2 n(P': P:¢:2) € C on ag, by

AP P :E: ) oAP P E:2)=nP :P: & D).

It follows from [31, Theorem 6.6] that there exists p; € IIz(aq) such that
J=p1(L)AP : P: & J)isregular on ag(R). Furthermore, by restricting to any
K-type occurring in the principal series for & we infer from [3, Lemma 16.6]
that there exists p, € IIx(aq) such that A py(A)n(P:P:&: )~ is regular on
a;(R). Hence with p=pipy we find that L—p(l) A(P:P:¢: 2=

pUn(P:P:&:0) ' A(P: P &: J)is regular on o (R). O

Let dx be a fixed invariant measure on G/H. The Fourier transform

f=f(&:7)is defined by (2) for f € C*(G/H), ¢ € Mf, and J € age, thatis by

(15) f(&: 2= / SEFPE =D (x)de e C¥(K &), (1€ V().

G/H

Then £ (& : A) is linear as a function of y and meromorphic as a function of 4,
and it is regular on iay by Theorem 1 (to be proved later). Clearly
f—f(&: ) is a G-equivariance, when C*(K : ¢) is identified with the
representation space #°;°_; for m; ;.

Notice that strictly speaking the Fourier transform as defined above
depends on the choice of the set #  of representatives for Zg(aq)
\Nk (aq)/Nknr(aq). More precisely, if #” C Nk(aq) is another set of rep-
resentatives, and we define the space V(&) as V(&) above but with #” in
place of ¥, then there is a natural isometry R:: V(&) — V(&) (see [2,
Lemma 5.8]). The map j/(¢: 1) : V'(&) — C(P: & : 2)", defined as j(& : 1)
above, but with #” in place of ¥, is then related to j(£: A) as follows:

(16) J(&:A)eR: = j(&: A).

Moreover, the same formula holds with j replaced by j° on both sides. The
corresponding Fourier transform f’(¢: 1) is then related to f(¢: 1) by

F(E:2)oR: = f(E:A).
2. Eisenstein integrals

Eisenstein integrals for G/H were defined and analyzed in [3]. In this section
we shall give a slightly more general definition and relate it to the previous
one. This more general definition is necessary for the induction procedure in
the proof of Theorem 1.

Instead of working with scalar-valued K-finite functions on G/H it
is more convenient to consider t-spherical functions f on G/H, that is
V:-valued functions satisfying
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flhx) =<(k)f(x),  (k€K,xe€G/H).

Here (7, ;) is a finite dimensional unitary representation of K. We denote by
C(G/H : t) the space of t-spherical continuous functions from G/H into V.
The function spaces C*(G/H : 1), C**(G/H : t) and L*(G/H : t) are defined
similarly, and they are topologized in the obvious fashion with the induced
topologies from C(G/H) ® V;, C*(G/H) ® V., etc. The Eisenstein integral,
to be defined below, is a t-spherical function on G/H.

Let M be as in the previous section. We shall now define a space °€(7)
which is analogous to the space °¢(M, 1)) of cusp forms in [26, Sect.19].
However, since we are only dealing with minimal ¢f-stable parabolic sub-
groups, the actual notion of cusp forms is inessential. Let 73, denote the
restriction of © on Ky, then C®(M/wHyw™': 1)) is the space of 7y-
spherical functions on M /wHyw™!, for each w € N (aq). We define °% (1) to
be the formal direct sum over w € #~ of these spaces:

(17) °C(1) = EI—)WE%,,COO(M/WHwa1 S Tu)-

Given w € #~ we accordingly write °%,,(t) for the w-component of the space
°% (1), and if ¥ € °@(z), we write V,, for its w-component. Notice that it
follows from Lemma 1 that evaluation at e yields a linear bijection of °%,,(1)

(MNKNH )w™!
onto V" ™ hence we have

(18) O(g(‘c) ~ @wenﬂ/_ V;'W(MFWKQH)W*I
(again the sum is formal; it is not taken inside ¥;). In particular this shows
that °% (<) is finite dimensional. We equip C>(M /wHyw™! : 7)) as a Hilbert
space by means of the L’-inner product with respect to the normalized
invariant measure on the compact symmetric space M /wHyw~'. Regarding
(17) as an orthogonal sum we obtain a Hilbert space structure on °%(t). The
map (18) is an isometry if we similarly regard the sum on its right-hand side
as an orthogonal sum.

To a pair (Y, 1) of elements Y € °%(t) and 4 € aj, we associate a V-
valued function (1) on G/H by

~ a’*rey, (m)  for x = manwH
(19)  yY(i:x)= (meM,acAd,neN,weW);
0 for x ¢ Uyey PWH.

It follows from [2, Proposition 5.6] that if 2+ pp € ag(P,0) then Y(2) is
continuous on G. The z-Eisenstein integral is then defined by

(20) EW: ) (x)=E(P:¢:2)(x)= /r(k)t/;(A :k'x) dk,
for x € G/H. Then yy— E( : A) is a linear map from °é(z) to C(G/H : 7).
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Notice that the construction of the Eisenstein integrals is ‘functorial’ in
the following sense: Let (11, 7)) and (12, V5) be unitary finite dimensional
representations of K, and let ® € Homg (¥}, /5). Then ® induces a natural
map, also denoted by @, from °%(t;) to °é(t,), for which we have

Q1) En(OW) s A)(x) = (B, (Y - A)(x), (b €°%(1)).

In particular this means that if (, 7;) is reducible then the Eisenstein integral
E. decomposes as the sum of the Eisenstein integrals corresponding to the
reduction components of .

We shall now determine the relation of the Eisenstein integrals E(y : 1)
to the distributions j(¢ : 1) of the previous section. First we relate the spaces
V(&) and °%(t) to each other.

Let the finite dimensional unitary representations (t, ¥;) and (&, #¢) be
given as above. In what follows the Frobenius reciprocity theorem plays a
prominent role. We shall be using it in the following formulation. Recall
that C(K : £) is the space of continuous functions f : K — #; transforming
according to f(mk) = &(m)f (k) for k € K and m € K), and that K acts from
the right on this space, thus providing a model for the induced represen-
tation indﬁwﬂ x,,- Similarly, let C(K : ¢ : 1) denote the space of continuous
functions f : K — #: ® V; transforming according to the rule:

f(mkk'y = [Em) @ (k)" f(k), (kK € K, meKy).

Then C(K : ¢: 1) ~ [C(K : &) ® V;]¥, and Frobenius reciprocity asserts that
evaluation at the identity element of K yields an isomorphism of C(K : & : 1)
onto the finite dimensional space [#: @ V;]*". We denote this map by e.
Regarding C(K : ¢ : 1) as a Hilbert space by means of the L2-inner product
on K we have that e is an isometry.

We now define, for each w € #7, a sesqui-linear map

(22)  C(K:&:t)x A o, (1) = C(M/wHyw ™" = 1y)

by mapping the pair (f, ) to the V;-valued function m— (f(e)|&(m)n) on M.
Here (-|-) : [#: @ V;] x # ¢ — V; is the sesqui-linear map obtained from
contraction by means of (- |-).. Let # be the linear space conjugate to #’c,
then we shall view the above map (22 ) as a linear map

CK:E:0) @ A — 6, (2).

Of course one has that #: ~ # ¢ (as an M-module). This allows one to
avoid the bar in the notations, if one likes. By direct summation over w we
get a linear map T+ v, from C(K : & : 1) ® V(£) to °6(t), where V(&) is the
linear space conjugate to ¥ (&). We can now state the relation between °%/(t)
and the V' (&):
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Lemma 3. Let (t,V;) be a finite dimensional unitary representation of K.
Define for each & € Mg, a linear map T iy from C(K:¢:1)®@V(E) to
°%(t) as above by

(23) (¥ren) (m) = (7 ()G,

forf e CK:E:1),neV(E),meMandw € W . Then the sum over £ € Mz,
of the maps (dim f)l/ 21# yields a surjective isometry

@g CK:&E:t)@V(E) — °F(1).

Proof. Consider the matrix coefficient map
My : Hoe @ A € (M /wHyw™).

This map is equivariant for the obvious M-actions and its image is
C*(M /wHyw™"), the space of functions of left type & in C™(M /wHyw™").
Moreover, (dim f)l zmw is an isometry, by Lemma 1 and the Schur
orthogonality relations for K,,. Let

Ky
C (M /wHyw ™" < 1yy) ~ [Cgo (M /wHyw™") @ VT}

be the space of functions in C>®(M /wHyw™' : 1)) of left type &. (Notice
however that C®(M /wHyw~' : 1) is actually not invariant under the left
action of M.) Then, again by Lemma 1, we have that C(M /wHyw™' : 1))
is the sum over ¢ € Mp, of the spaces C*(M /wHyw™" : 1y/). Now m,, pro-
vides us with an onto isomorphism

iy = my @Iy, (A e @ VIV @A C2 (M JwHyw ™ 1),

and themap 7'— (Y7), fromC(K : £: 1) ® fngMWl to C®(M /wHyw™" : ty)
is easily identified as 7, o (e ® 1), where e is the Frobenius reciprocity map
and [ the identity map on %?’HMW . The lemma follows immediately. [J

We denote by °%¢(t) the image of C(K : ¢:1)® V(&) in °%(t). Then
°% (1) = ®:°¥ (1), and according to the proof above we have

“E:(1) = P,y CF (M /wHyw™" = ty).

Moreover °%¢(t) # 0 if and only if V(&) # 0 and &'[;, occurs in the de-
composition of 7, into irreducible Kj,-types.

Notice that the map 7'— y; also depends on 7 in a functorial way. In
fact let / be associated to (tj,V;), for j=1,2,and let ®: ¥} — V> be a K-
equivariant map. Then ® naturally induces maps ®:C(K:¢: 1) —
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C(K:¢:1)and @ : °%(1)) — °%6(12) and for f € C(K : £ : 1) and 5 € V()
we have ®(Yj...,) = Yoy c-

We are now ready to give the promised relation between E and ;. Let & be
given, and let T=f®n e C(K:&:1)® V(E). Then we obtain from (19)
and (23) that

Ur(4: manwH) = a**7 (f ()|E(m)n,,),

and comparing with (6) we see that xpNT(} cgH) = (f(e) | [j(&: A)n)(g)) for all
g € G. Hence by (20) we have

E(yy : 2)(gH) = / (k) (F(e) | 1(E + Al kg))elk
— [ 11 s Dha)ae.

Here (-|-):[#:® V] x #:— V; is the before-mentioned contraction.
Using the same contraction we define a sesqui-linear map C(K : &: 1)x
C(K:¢) — V; by

(24) (flo) = / (8o (k)) dk
K

for fe C(K:¢:1), o € C(K : €), and we finally have

(25) EWr:2)(gH) = {flm::(9)i(E: M), (g9 € G),

for T=foneCK:E:1)® V(). In particular it follows that the Eisen-
stein integral is a smooth function on G/H. A priori (25) holds when
A+ pp € ay(P,0), the range in which we have defined E(y : 1) and in which
J(&:A)n is continuous. However since all elements f € C(K : £:1) are
smooth functions on K, the sesqui-linear map in (24) makes sense for
@ € C°(K : ), and hence we get from the results of [2] cited in the pre-
vious section, that A1+ E(y : 1) extends to a meromorphic C*(G/H : 1)-
valued function on ag, for which (25) holds (in the generalized sense). Notice
that this expression shows that the components of the vector valued func-
tion E(y : /) are finite sums of (generalized) matrix coefficients of j(¢ : )y
with K-finite vectors, for all € °%(z).

The expression (25) can also be used to relate the Eisenstein integrals
E(P :y : J) constructed from different parabolic subgroups P to each other.
Using (8) and (9) it is easily seen that

(26) E(P : l//f®'l : /1) = E(P, : lpA(P:P’:if:f/lfV@B(P’:P:cf:/f)n : /1)7 (P’ P, € y?in)'
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A priori the intertwining operator A(P: P': ¢: —1) acts on C(K : ¢); the
action on C(K : & : 1) ~ [C(K : &) ® V;]" is obtained from tensoring with the
trivial action on V;.

Notice that if #” is a second choice of representatives for
Zk(aq)\Nk (aq)/Nknr(aq), then in analogy with (16) it is easily seen that
there is a natural isometry R, : °@(t) — °%(t)’ such that

(27) ERp:0)=EW:4), (e 6),

where the quantities with a prime are defined with the new set ¥ in place of
/8

We shall now relate these Eisenstein integrals to those of [3]. Let ¢ be a
finite set of equivalence classes of finite dimensional irreducible represen-
tations (u, ¥,) of K, and let Vy = C(K), be the space of K-finite functions on
K, whose isotopy types for the left regular representation are contained in o).
Thus by Peter-Weyl theory we have the linear isomorphism

(28) D

ney

where 7, is the conjugate linear space to ¥,. We provide V, with the inner
product as a subspace of L*>(K), and define 7y to be the unitary represen-
tation of K on Vy obtained from the right action. In the above expression
for Viy we thus have ty ~ 3, 1, ® u”, where 1, is the trivial representation
on V,, and where u" is the representation contragradient to u, realized on V.
The Eisenstein integrals of [3] are obtained by specializing the above
construction of the V;-valued function E. (¥ :4) to the case where
(7, V) = (19, Vo).

The map  of Lemma 3 can be somewhat simplified in the case when
(7, Vz) = (19, Vy). Let C(K : &), denote the subspace of C(K : &) consisting
of the K-finite functions whose (right) K-types belong to ¢, and let
I®6,:C(K:¢:19)=[C(K:&) @ Vy]" = C(K: &) be the linear map ob-
tained from evaluation of the elements of Vy = C(K), at e, then it is easily
seen that / ® J, maps C(K : & : 1y) bijectively onto C(K : &), (use (28)). For
feCK:&:1y) and n € V(&) it follows easily from (23) that

(W o) (m) (k) = ([(1 @ 6)/1(k ™) [E(m)m,)e,

for m € M,k € K. We shall henceforth identify C(K : £ : 7y) with C(K : &),
by means of / ® J., and we write accordingly (cf. also [3, p. 346])

(29) o) (m) (k) = (f (k) [E(m)n,)e,  (me M k€ K).

Specializing (25) to ty and applying ., we obtain (as in [3, Lemma 4.2])

(30) Ee,(r 2 2)(gH)(e) = (fIm: 1(9)i(E Dn), (9 € G),
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for T=f@neCK:&),®V(E), where (-|) now is the sesqui-linear
product (4) on C(K : &).

On the other hand, for general K-representations (z, ¥;), the Eisenstein
integral E.(y : 1) can be expressed by means of the E;, (i : 1) as follows. Let
9 be the set of K-types occurring in v, and let (g, Vy) be constructed as
above. Consider the space Vy ® V; with the K-representations 7y ® 1, and
ly ® t, where 1, denotes the trivial K- representation on ¥;, and ¢y denotes
the representation obtained from the left action on Vy. Clearly these rep-
resentations commute with each other, and hence the space

(31) (Vo ® V) ren®)

of fixed vectors for the latter action is an invariant subspace with respect to
the former action. It is now easily seen that evaluation in the identity in the
first factor of the tensor product yields a K- equivariant isomorphism of the
space (31) onto ;. Let @ : V;—=V,y ® V; be the embedding obtained from the
inverse of this isomorphism. It follows from the functorial property (21) that
we have

(32) L () : 7) = Eqyer (P(Y) : 2)

for Y € °%(t). Again by functoriality one sees that °%(1y ® 1,) ~ °@(1y) ®V,
and

(33) Ener.(W@u: A)=E,(y:1)Qu

for ¥ € °%(1y), u € V.. Using these relations we shall sometimes derive
properties of the FEisenstein integrals in the present generality from the
corresponding properties in [3].

3. Invariant differential operators

Let ID (G/H) denote the algebra of invariant differential operators on G/H.
Let U(g) be the universal enveloping algebra of the complexification of g
and recall that the right action of G on C*°(G) induces a homomorphism r
from U(g)" onto ID (G/H), whose kernel is U(g)"” N U(g)b. In the following
we shall frequently abuse notation by identifying an element D € ID (G/H)
with any X € U(g)" for which D = r(X).

Let b be a Cartan subspace for G/H (that is a maximal abelian subspace
of q consisting of semisimple elements), containing aq. Then bNp = a4 and
b = by @ aq, where by =bnN 1. Let W(b) denote the reflection group of the
root system of b in g, then the Harish- Chandra 1som0rphlsm V= Yg/u for
G/H maps D (G/H) isomorphically onto § (6)"®_ the algebra of invariants
for W(b) in the symmetric algebra S(b).

We shall now define a similar homomorphism (cf. [3, Sect. 2])
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w:D(G/H) — D (M /Hy,) ~ D (M/Hy) ® S(ag).

Here D (M,/Hy,) and ID (M /H,,) denote the algebras of invariant differ-
ential operators on the symmetric spaces M;/Hy, and M /Hy respectively,
and the isomorphism between ID (M, /Hy,) and ID (M/Hy) ® S(aq) is ob-
tained from the decomposition m; = m® aq @ a,, where ay =ankh. Let
Pe 9”‘;““ be given. We first define a homomorphism

D (G/H) — D (M, /Hy,)
by the requirement
D —'up(D) € nU(g) + U(g)h

(it is used that g = n+ m; + b, and elements of ID (M, /HM,) and U(m;)™n
are identified, as mentioned above for G/H). Let dp(m) = |det(Ad(m)], )|1/2
for m € M,, then dp(ma) = a’r for m € MAy, a € Aq, where Ay = exp ap and
Aq = exp aq. In particular we may view dp as a function on M, /HM, and
define an operator Tp : D (M;/Hy,) — D (M /Hy,) by Tp(D) = dp' o Dodp.
Equivalently Tp is given by Tp = Ip(y/m,,) @ Tp,, where T,, is the auto-
morphism of S(aq) given by T,,u(4) = u(A + pp) for u € S(aq), 4 € ag. Now
1 is defined by

(34) u = TPO ‘,up.

Notice that b is also a Cartan subspace for the symmetric space M| /Hyy, .
Let W)y, (b) be the reflection group of its root system and let VM] JHy, be the

Harish-Chandra isomorphism from ID (M, /H),,) onto S(b)WMl Then it is
easily verified that

(35) Yt /Hy, M= V6 u-

In particular it follows that u is injective, and that it is independent of the
choice of the parabolic subgroup P (as already indicated by the absence of P
as subscript).

The map s : ID (G/H) — ID (M, /Hy, ) is also denoted up; by (34), the
independence of y on P, and the relation dp = d,!' we have

(36) [1}_—, = Tpo,u.

Let w e #". Then Ad(w) maps M,/H)y, onto M;/wHy,w~ Moreover,
by con]ugatlon with w inside U(g) we get a map from U(ml) M to
U(my)"™ " which induces a map from ID (M; /Hyy, ) to ID (M /wHy, w™).
We denote thls map by D— Ad(w)D. Let

t, = Ad(w)op: D (G/H) — D (M JwHy,w™") =~ D (M /wHyw™") @ S(ag).

Let & € Mp,. The algebra ID (M /wHyw™!) acts naturally on %?HM‘W by
£, and thus we have a homomorphism of algebras
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1

& D (M/WHMW_I) — End(%gHMW’ )
Let the algebra homomorphism
u(¢): D (G/H) — End(V(€)) ® S(aq)

be defined as the direct sum over w € #~ of the maps (¢, ®I)op,. For

D e D (G/H) and 4 € aj, we denote by u(D: ¢ : ) the endomorphism of

V(&) obtained from pu(£)(D) by evaluation of its S(aq) components in A.
For each w € #" and D € ID (G/H) we have:

(37) D —'tt1p,(D) € Adw™ (WU (g) + U(g)b.

By the independence of u on P we have T,,-ip, o WU, 1p, = i, Or equivalently
(Ip (v pwrtw1) @ Tp) o Ad(W) 0 W1,y = Wy,

From (6) and (37) it then follows that

(38) D((&: ) =j(&: A)(uD: &), (neV(Q)),

for all D € D (G/H), as a meromorphic identity in A € ag. (cf. also [3,
Lemma 4.4]).

Being G-equivariant the operator A(P' : P: £: 1) is in particular inter-
twining for the actions of ID (G/H) on C~®(P: ¢ : )" and C~(P' : & : ).
By the injectivity of j(& : 1) (for generic 1), and the fact that u is independent
of the choice of parabolic subgroup, we conclude from (38) and the diagram
(8) that

(39) D :E:A)oB(P :P:E:0)=BP :P:&:N)ou(D:E:2)

as a meromorphic identity in A. In particular we have that the relation (38)
holds for j°(¢: 1) as well:

(40) D& ) = (& A)(uD = & 2)m), (mev)).

For D e D (G/H) let D* € D (G/H) be its formal (Hermitian) adjoint
with respect to the invariant measure dx on G/H. Then by [3, p. 435-436] we
have

(41) WD €)= (D € —J) € End(V(8)),

where the asterisk on the right-hand side denotes the adjoint with respect to
the Hilbert space structure of V(&). It follows immediately from the defi-
nition (15) of the Fourier transform and (40) that we have

@2)  (DAED)=F(E:onD:¢: ), (f€C(G/H)),
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where D € D (G/H) is the conjugate of D, defined by D¢ = D¢ for
¢ € C*°(G/H).

Let (t,7;) be as in Sect. 2. There is a natural action of the algebra
D (M /wHyw™") on the finite dimensional space C*(M/wHyw™:1y),
for each we #". We thus have a homomorphism of algebras r, :
D (M /wHyw™') — End(°%,(7)). Let the homomorphism

u(x) : D (G/H) — End("6(x)) ® S(ag)

be the direct sum over w € # of the maps (r, ® I)op,. Notice that it
follows from (23) that (¥ /s,),, = (Vrge,y, ), and hence

(43) :u(D ST ;L)lpj®q = ‘/(f@,u([):f:i)na

for feC(K:¢:1), neV(), and D € D (G/H) (recall that ¢, is anti-
linear as a function of # € V(&)). Using (25) we infer from (38) and (43) that

(44) DE.(Y:2)=E(u(D:7t: ) :4)

forall y € °¢(z), D € D (G/H), as a meromorphic identity in 4 € ag (cf. [3,
Lemma 4.5] for 7 = 1y).

The endomorphisms u(D: &: ) and u(D:1: 1) of V(&) and °%(1),
respectively, are diagonalizable. More precisely the following result holds.
We view by, and aj. as subspaces of b, according to the decomposition
b=D0b® ag.

Lemma 4. There exists, for each & € My, a finite set Lg of elements A € ibj,
such that the endomorphisms w(D : ¢ : 2), for /€ ay, and D € D (G/H), of
V(&) are simultaneously diagonalizable with eigenvalues of the form
(D : A+ 7) with A € L.

Similarly there exists, for each finite dimensional unitary representation
tof K, a finite set L, C iby such that the endomorphisms u(D : t: 1) € End
(°€(z)) are simultaneously diagonalizable with eigenvalues of the form
p(D: A+ 1) with A € L,.

Proof. 1t follows from [3, proof of Lemma 4.8 (see the lines following the
display (37))] that the endomorphisms &,(D), D € D (M /Hy), of Jf?“ are
simultaneously diagonalizable, with eigenvalues of the form 7y, /4, (D:A)
where A € ib,. Conjugating by w we infer that a similar statement holds for
¢,(D), D € D (M /wHyw™'). The statement about u(D : ¢ : 1) now follows
immediately from (35) and the definition of u(¢) as the direct sum of the
maps (¢, ®I)op,, and the statement for 7 is then a consequence of Lemma
3 and (43). O

4. Asymptotic expansions

Let (z, ;) be as above. It follows from the differential equation (44) that the
components of the vector valued function E. (Y : A) are ID (G/H)-finite
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functions on G/H. As such they allow converging asymptotic expansions
along the o6-stable parabolic subgroups of G (see [1]). In this section
we recall from [3] some properties of these expansions, for the minimal
oB-stable parabolic subgroups.

Recall the following ‘K4AH’-decomposition of G:

G=cl | J KajwH,  (disjoint union),

wew”

where cl denotes ‘closure’. Here 4y =expa,, where a; is the positive
chamber in aq corresponding to some (fixed) choice of positive system for X.
Using the decomposition above we see that the asymptotics of a t-spherical
function f on G/H are determined from the behavior of f(aw) for a — oo in
Ay and w € ¥ (modulo the behavior ‘along the walls” of 47w). In the fol-
lowmg we fix two parabolic subgroups P, Q € Q’mm The asymptotlc expan-
sion to be explored is that of the Eisenstein 1ntegral E(P:y : 1) along
A5 (Q)w, for all w € #°, where A} (Q) corresponds to X(Q). Notice that, for
a € Aq, the function m— E(P :  : 1)(maw) belongs to C>(M /wHyw™" : tyr),
by sphericality of the Eisenstein integral. By (17) we may view it as an element
of °%(1).

Let NZ(Q) denote the set of linear combinations of the elements from
> (Q) with coefficients in N. In view of (32), (33) it follows from [3, Lemma
14.1 and Theorem 14.2] that there exist, for each v € NX(Q) and s € W a
unique meromorphic End(°#(t)) valued function A pgp,(s:4) on ag,
such that (generically in A)

(45) E(P:y: ) (maw) =a Fe Z Za‘d_v [poip.y(s = )], (m)

veINX(Q) seW

forw e #",m € M and a € A} (Q). The convergence is absolute and uniform
on any subset of MAS(Q) of the form {ma | u(loga) > ¢,0 € Z(Q)}, € > 0.
We define the c-function

Cop(s : 4) = pojpo(s = ) € End(°%(1)).

Moreover we define the ty-spherical function Eg,(P:y:/) on
M, /wHy,w™' by

(46) Eg,(P: : A)(ma) Za” Copp(s = A, (m), (meM, acAy),

sew

and call it the (Q,w)-principal part of E(P:y : A). It is easily seen from
uniqueness of the asymptotic coefficients that the c-functions, as well as the
principal parts, of E(P : : A), depend on t in a functorial way, just as we
have earlier seen for E(P : y : 4) itself (cf. (21)).

The c-functions Cyip(s : 4) allow the following identification in terms of
intertwining operators when s = 1. Recall that the intertwining operators



536 E. van den Ban, H. Schlichtkrull

AP:Q:¢:7)acton C(K : & :1) ~ [C(K : &) @ V;]* by tensoring their usual
action on C(K : £) with the trivial action on V.

Proposition 1. Let ¢ € My, and let g, € °€(t) be given by (23) with
feCK:&¢:1),neV(E). Then

(47) CQ\P(I : )‘)l//ft}@r] = C(Aq)WA(Q:P:g“%i)f@B(Q:P:f:)f)n7
as a meromorphic identity in 4 € g
Proof. Equation (47) with P = Q follows from [3, Proposition 15.7] (use

functoriality to generalize from 7y to arbitrary 7). From (26) and uniqueness
of the asymptotic coefficients we obtain

CQIP(I : i)’pf@n = Cop(1: }~)‘PA(P;P/:g“:—z)"f@B(P':P:cj;;i)n-

Take P’ = Q, then the result easily follows by application of (47) with P = O
and (13). O

In particular we derive from (47), (43) and (39) that
(48) WD :t:2A)oCopp(l:2) = Cop(l:A)opu(D:1:A)

for all D € D(G/H).

5. The normalized Eisenstein integrals

Let (z, 7;) be any unitary finite dimensional K- representation. We define the
normalized Eisenstein integrals E°( : A) = E2(P : y : 1) € C*(G/H : 1), for
Y € °%(1), 4 € ay by (cf. [25, p. 135] in the group case)

(49) E(P:f:2)=E(P:Cpp(l:2)""Y: 7).

Obviously E°(y : ) is meromorphic as a function of 4 € ag.

Proposition 2. Let y € °€(t). Then

(50) E(Pif:2)=EP : Cop(1:2)7 2 2)

*

oo Where P'€ 7™ is arbitrary. Moreover

as a meromorphic identity in ). € a
in analogy with (25) we have

(1) E*(P iy 2 ) (gH) = (flnpes(9)° (P &2 )n), (9 € G),

forT=foneCK:E:1)x V().
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Proof. 1t suffices to prove (50) with ¥ = ;. It follows easily from (12), (9),
(25), in combination with (47) that the right-hand side of (51) equals the
right-hand side of (50), for any P'. Taking P’ = P we obtain both equa-
tions. O

In particular, if we take P'=P in (50) we obtain E°(P:y: /) =
E(P: Cpp(1: 2)~"y : 2), which shows that

(52) E(P:y:2)=E"P:y:2),

where E! is the Eisenstein integral normalized analogously to [3, Sect. 16].
We can now state our main result about the Eisenstein integrals. Recall
that for € > 0 we have defined the set ag(¢) by (3).

Theorem 2. Let (t,V;) be given. There exists € > 0 such that the normalized
Eisenstein integral E°(\y : 1) is holomorphic as a function of 1 in aa(e),for all
Y € °%(1).

The theorem will be proved in Sect. 17. For the time being let us use it to

prove the regularity of j°(¢ : 1) on ag(e), for some € > 0:

Proof of Theorem 1. Let £ € Mg, be fixed. It follows immediately from
Theorem 2 together with the normalized version of (30), which reads

EZ (Yr 2 ) (gH)(e)= (flm: 1(9))°(& - ), (T=f@neCK: &)y @V(E)),
(53)

that A+ (f]j°(¢: Z)n) € € is regular on a neighborhood of iag, for all
K-finite functions f € C>*(K : &) and all n € V(&). (Notice however that a
priori the neighborhood may depend on f.)

By Lemma 2 there exists an element p € Ilsz(aq) such that
A p(4)j°(¢ + 2)n is regular on ag(1), for each n € V(¢). We claim that p
may be chosen such that all its linear factors 1+ (A, a) — ¢ satisfy Re ¢ # 0.
This will obviously imply the asserted regularity.

In order to prove the above claim, we assume that p = [p’ where
P €Txs(aq) and /(4) = (4, ) — ¢ with Re ¢ = 0. Then it follows from the
above consequence of Theorem 2 that A— (f|p(1);°(¢: A)y) vanishes for
€171 (0)n iag, for all K-finite functions f € C*(K : ). By the density of
the K-finite vectors in C*(K : &) we conclude that A p(2);°(¢ : 1) vanishes
for 2 € 17'(0) Niag, hence also for 2 € I7'(0) N a;(1) by analytic continua-
tion. Hence / is a factor of the holomorphic function A+ p(1)/°(¢: 1) =
1(2)p'(2)j°(¢: 2) on ag(l), which means that A—p/(4);/°(¢:4) is also
holomorphic on this set.

Using this argument repeatedly we arrive in a finite number of steps at a
polynomial p with the claimed property. O

Notice that it follows from (49), (44), and (48) that
(54) DE°(y:2) =E°(u(D:t: Ay : ).
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It follows from this equation and (50) that the normalized Eisenstein
integral E°(P : : A) allows asymptotic expansions similar to (45) for all
0 € 77", with coeflicients

[poipr (s = 2) e Cpipr (12 )™, (m).

Notice that these coefficients are unique and hence independent of the
parabolic subgroup P’ € #7'". In particular the operator defined by

(55) Cop(s: 2) = Copr(s : 2)Cppr(1: 7)™
is independent of P’ (and hence, in notation analogous to that of [3,

eq. (134)], equal to CQIZIP( A)). The (O, ) -principal part of E°(P : y : 1) is
the t)-spherical function on M; /wHy,w™! given by

(56) EH,(P:y:i Za” op(s : AP, (m), (meM,acdy).

sew
Notice that with P’ = Q and s = 1 in (55) it follows from (47) and (13) that
(57) Cop(1: Dryay = Y s0Pe—i)feBP-0:50) "

The operator C, p(1:2) can be used to establish a relation between the

normalized Eisenstein integrals E°(P : : A) for different parabolic sub-
groups P. In analogy with (26) we get from (51) and (14) that

EX(P by 1 A) = EX(P' W yppre i) pampopeciiyy © 20
Combining with (57) we find

(58)  EN(P:y:i)=E(P:Cp(l:2)7':4), (PP eamm)

6. The spherical Fourier transform

If f and g are t-spherical functions on G/H then we define a sesqui-linear
pairing by

o = [ r@low
G/H

whenever the integral makes sense. Furthermore, if f € C2°(G/H : 1) then
we define the t-spherical Fourier transform F f = Zpf of f to be the me-
romorphic °(t)-valued function on aj, determined by
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(59) (FefDW) = ([IE°(P:p: =A)), (A€ age, b € °%(0)).

It follows from Theorem 2 (to be proved later) that # /(1) is regular on a
neighborhood of iaj. Notice that in analogy with (42) we obtain from (41)
and (54) that for D € D (G/H)

(60) F(Df)(A) =D :v: )F[f(A),  (f€CF(G/H :1)).

We shall now describe the relation of this Fourier transform with the
Fourier transform f+— f on C°(G/H). We first transform scalar-valued K-
finite functions on G/H into t- spherical ones, for a suitable K-representa-
tion 7 (see [26, Sect. 26], [30, p. 397] for related constructions). For any
scalar-valued K-finite function f on G/H we define a C(K)-valued function
c(f) on G/H by ¢(f)(x)(k) = f(kx) forx € G/H, k € K. Let 9 C K be a finite
set, and let Vy = C(K), be as in Sect. 2. It is easily seen that if f is K-finite of
isotypes from 9, then ¢(f)(x) € Vy for x € G/H, and ¢(f) is ty-spherical. We
denote by C°(G/H), the (closed) subspace of C2°(G/H) consisting of the K-
finite vectors of isotypes from 1}, and equip it with the induced topology.

Lemma 5. The map ¢ is a continuous bijection of CX(G/H), onto
C*(G/H : tg). Its inverse is given by F— d,0F, where 6,:Vy — C is the
map obtained from evaluation at the identity element e € K.

Proof. Easy. O

Proposition 3. Let f € C°(G/H), and let F = ¢(f) € C(G/H : ty). Then
Jorall E e My, T € C(K: &), ®@V (&) and 4 € age we have

(FEMWr) = (&= AIT),
where i € °€(ty) is determined by (29) and linearity.

Proof. The Hilbert space structure on V, is obtained from L*(K). From
(59), the definition of ¢, sphericality, and invariance of dx we find that for
any ¥ € °%(r)

(FFE)W)

F(x)(k)ES, (W = =2)(x) (k) dk dx

Il
—
—

(kx)Eg, (W = —2) (kx) (e) dk dx

Ty

I
—
—

\

- / FOE () —A)(x)(e) dx.

Let ¢ € C(K : &), and n € V(&), and suppose that y =, with T = ¢ @ 1.
Applying (53) we now have
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(FFE)W) = G/Hf(gH)W,fa(g)j"(é i =A)nle)d(gH) =
(& Dnle) = (F(E: D).
For general T the result follows by linearity. O

7. The action of the Weyl group

Let w € Nk(aq). Since w normalizes M it acts on (equivalence classes of)
representations of M. If f € C(P:¢:2) then the left translate given
by [L(w)f](x) = f(w™x) belongs to C(wPw~!':wé:wi), and the map
f— L(w)f is a bijective intertwining operator for the right actions. More-
over, this map extends to generalized functions, and hence gives rise to a
linear bijection

Lw): C®(P:&: )" = > (wPw ' wé :w).

According to [2, Lemma 6.10] there exists a unitary linear bijection
L(&,w) : V(E) — V(wé), independent of P and 4, such that the diagram

c>P: e )" ) C(wPw s wé : wi)?
(61) J(P: & /I)T Tj(wa_] cwé wi)
V() TR

is commutative (in a meromorphic sense in A). Explicitly the map L(&, w) is
constructed as follows. By transference of the left multiplication under the
canonical bijection #" — Zg(aq)\Nk(aq)/Nxru(aq) we equip #° with a
Nk (aq)-action (recall that Zg(aq) is a normal subgroup of Nk(aq)). This
action is denoted by (w,v)—w-v. If w € Ng(aq), v € # ', we choose an
element u(w,v) € Zg(aq) = K)s such that

w-v=u(w,v)wo mod Nkny(ag).

The map L(&,w) : V(&) — V(wé) is given by

[L(E, Wity = (0E) (u(w, 0))n, € AL (e gy € (&),

wé

The intertwining operator L(w) commutes with the standard intertwining
operators in the sense that we have

(62) Lw)oA(P' :P:E:0) = AWP'w ' : wPw™ - wé : wi) o L(w).
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Combining this with the diagrams (8) and (61) we obtain (62) with 4
replaced by B and L(w) by L(& w). Moreover, we obtain that the
commutativity of the diagram (61) holds with j replaced by j°. Consequently
we also have that

(63) LW)o f(P:E:0) = f(wPw™ : wé:wl)oL(E,w),

for all f € C>*(G/H). Another consequence of the diagram (61) is the
following relation (use (38 )):

(64) L(Ew)op(D:E: )= pu(D:wé:wl)oL(&w), (D e D(G/H)).

Using Lemma 3 we can combine the maps L(¢, w) to a linear endo-
morphism #(w) of °%(t), for any unitary finite dimensional representation
7 of K. This is defined by

(65) LWWr = YiomerEwr (TeCK:¢:1)® V()
for all ¢ € My,. Here L(w) : C(K : £ :7) — C(K : wé: 1) is simply given by
the left regular action on functions on K.

By a straightforward calculation, using the relevant definitions, one sees
that for every y € °¢(z) one has

[ZW),...(m) = (W), (w™ mu(w,v)w),  (w€ Ni(ag),v0 € #',m € M).

Lemma 6. The map £ is a homomorphism of Nx(aq) into the unitary group
U(°€(1)). Its kernel contains Zx(aq).

Proof. It is a straightforward consequence of the definitions that % is a
homomorphism whose image consists of unitary operators. The assertion
about the kernel follows from (66) : If w € Zx(aq) then u(w,v) =w~! and
(W)Y, (w™m) = ,(m) by Kys-sphericality. O

We denote the induced unitary representation of W in °%(z) by &£ as
well.

Lemma 7. Let P,Q € g’f‘“i“,s,w €W and y € °€(z). Then

(67) Coip(s : 1) = Coppy (swh i wl) o L(w) = L(w)o CW71QW|P(W71S 2 A),
as a meromorphic identity in /. € ag,. In particular

(68) Coip(s : 2) = Copep1 (1 :52) 0 L(s) = L(5) o Cyigqp(l : 4).

All these relations hold as well with C replaced by C°.
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Proof. The identities in (68) follow from those in (67) by taking w = s.
It follows easily from (25) and the diagram (61) that we have

(69) EwPw™ ' : LW :wl) =EP:y: 1)

for all y € °@(z) (cf. also [3, Lemma 15.4]). Since as remarked the diagram

holds as well for the normalized operator j°, we get from (51) that the re-

lation (69) holds for the normalized Eisenstein integrals as well. By unique-

ness of asymptotics we obtain the first identity in (67), with C as well as C°.
Let w € Nk(aq), then by (45) we have for each v € W~

EP:y:i)(av)=a o > N ad"  pagupult: DY, (e)

HENZ(w10w) teW

for a eAa’(w‘le). Applying t(u(w,v)w) to this expression and using
sphericality we obtain

E(P 4 : 2)(u(w, v)wav)
_ afwflﬂg Z Zam Mo [pw 1Qw|PM( /'L)lp]u(wilu(w, U)W),

HENZ(w'Ow) tEW

=ae N SN AL Wb guiplt : W),

HENZ(w-10Qw) tEW
by (66). On the other hand since waw™! € Ag(Q) we also have

E(Pl,b/l)( (w vywav) = E(P = : 2)((waw™w - v)
(waw™")Pe Z ZWGW S) [pQIP‘(S WY, (e)

veINZ(Q) seW
—1 1

=a™ e S N Y pgpp (s s A, e),

VEINZ(Q) seEW

and hence by uniqueness of asymptotics we conclude
pQ\P,v(S : /1) = g(w) opw"Qw\P,W"V(W_ls : /“)

for all v € NX(Q), s € W. Taking v = 0 we obtain the second expression for
Copp(s : 4) in (67). Finally, for C° this expression is now immediate from

(55). O

The importance of (68) lies in the fact that it allows us to recover the c-
functions Coip(s : 4) and Cpp(s : 4) from the simpler case s = 1, where they
are explicitly known from (47) and (57), respectively. We shall now derive
some consequences of (68). First of all, by combining the normalized
versions of (69) and (68) with (58) we arrive at the following functional
equation for the normalized Eisenstein integrals (cf. [3, Proposition 16.4]):
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Proposition 4. We have

(70) E°(Q: Cop(s: AW i sA) =E°(P 42 )

for all y € °%(t), s € W, Q,P € 2™ as a meromorphic identity in . € -
By uniqueness of asymptotics it follows from the above that

(71) Chio(t:54) 0 Chp(s + 4) = Cy p(ts : )

for any Q' € 2™ In particular, substituting @' =P and using that

Cpp(1 : 2) is the identity operator on “¢(t), we obtain

(72) Chiols ™" +82) o CQp(s: 4) =1.
The following relation is also a consequence of (68):
(73) Cop(s:A)ou(D:t:4) =D :1:54)oCop(s:4), (De€D(G/H)).
For s = 1 this is (48), and in general it is obtained using that
LWw)ou(D:1:A)=p(D:1:wld)o L(wW).

The latter equality follows from (65), (64) and (43). Furthermore, from
definition (55) we see that equation (73) holds with C replaced by C°.
Finally another consequence is the equation

(74) Cop(s: )" = Cpo(s™" : —sA),

as well as the normalized version with C replaced by C°. The proof of (74) is
reduced to the case s = 1 by means of (68) and the unitarity of #(w). For
s =1 it follows from (47), respectively (57), together with (9), and (10).

The following result (essentially from [3, Theorem 16.3]), which follows
immediately from (72) and the normalized version of (74), is crucial for the
proof of the regularity of E° on 4 € iag (Theorem 2). It shows that the
(Q, w)-principal part EP, (P : : A) is regular for any Q € 2",

Proposition 5. Let s € W and Q,P € ?™" be given. We have
(75) op(s: —A)%o Copls:2)=1
as a meromorphic identity in 4 € ag.. In particular the operator Cal p(s: ) on

°(t) is unitary for /. € iay, and it is regular as a function of A in this set.

The asserted regularity is a consequence of the unitarity, in view of the
Riemann boundedness theorem. Combining (70) and (75) with the definition
(59) of the t-spherical Fourier transform we have
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(76) Fof (s4) = Cop(s : )7 pf (4)

for all f € C*(G/H : 1), Q,P € ™, s € W.

8. Non-minimal parabolic subgroups

Up to now we have only considered parabolic subgroups from the set @?i“
of minimal ¢0-stable parabolic subgroups containing 44. In order to prepare
for using induction on the split rank of G/H we shall now consider arbitrary
a0-stable parabolic subgroups containing 44. Let 2, denote the set of these,
and let Q € 2, be given. Let Q = MgNg = MpApNy denote its Langlands
decomposition, then ¢ leaves the reductive group My invariant, and
MQ/HMQ = MQ/MQ N H and MIQ/HM1Q = M]Q/M]Q N H are reductive Sym-
metric spaces of Harish-Chandra’s class. The space ntp N aq is a maximal
abelian subspace of mpNpNgq, and its dimension is the split rank of
My /Hy,. If O is a proper parabolic subgroup of G then this number is
strictly smaller than the split rank of G. The above mentioned induction on
the split rank will be based on these observations. However, for reasons of
convenience we mostly work with M, rather than M.

Let 97‘“”“5 denote the set of parabolic subgroups P € Jmm contained in Q,
then it is easily seen that the map P—"P = M;p N P is a bijection of Qmm
onto the set 2™"(M,p) of minimal ¢f-stable parabolic subgroups of MlQ
containing 44. Moreover, if P has the Langlands decomposition P = MAN
then the Langlands decomposition *P = *M*A*N of *P is given by *M = M,
"A=A,"N =MpNN (compare [26.p. 113]).

We shall now relate some of the elements constructed above for the pair
(G,0) to the similar elements for (Mg, a,,,). We begin with the H-in-
variant distribution vectors j(P : ¢ : 1) on G and their analogues j(*P: £ : A)
on Mg. Clearly restriction from G to Mg (or from K to Kyp = Mp N K in the
compact picture) gives a map rp of the space C(P : ¢ : ) into the analogous
space C(*P : ¢ : A) for M.

Let Wp denote the centralizer of Ap in W. Then Wy ~ Nx,(aq)/Zx,(aq),
and we see that W) is naturally isomorphic with the Weyl group of the root
system X(ntjg,aq). In analogy with the set ¥ we fix a set ¥y C Nk, (aq)
of representatives for the double quotient Zk,(aq)\Nk,(aq)/Nkynm(aq).
Obviously the natural map Ng,(aq) — Ng(aq) induces an injection of
Zky(aq)\Nk, (aq) /Ngynu (aq) into Zg(aq)\Nk(aq)/Nkrnr(aq), and hence this
map induces an injection of #, into #". For simplicity we assume that the
choices of #p and ¥~ have been made such that in fact we have #p C %"
Since as previously mentioned the basic constructions of j(&: 1), E( : A)
etc are essentially independent of the choice of #~ (cf. (16), (27)), this as-
sumption causes no problems (though of course it cannot be realized for
all O at the same time).

Let Vp(&) = V(Mg : &) denote the subspace of V(&) = @wewa%gﬂwwil
corresponding to the direct summands labeled by we #p, and let
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pro : V(&) — V(&) be the (orthogonal) projection along the remaining
components. Then j(*P : £ : 2)maps V(&) onto C~ (P : & : 4) Mo for generic
4 € ag., and into C(*P &: )Mo for all i e ag. which satisfy 4+ p.p €
ag("P;0). Here pp = Itr(ad.,) € ay is the ‘rho’ ofthe parabolic subgroup *P of
MIQ, and a (*P 0) is deﬁned in analogy with (7). It is easily seen that
pp = Pp — pQ, where p, = 1tr(ad,,) € ag. Moreover we have (pp, o) = 0 for
all roots o € X(myp, aq). It follows that if 1+ pp € a3(P;0) then A+ p.p €
ag("P;0). Hence under this condition on 4 we immediately have that

(77) ron(P 2EA)=j(P:E: D) °opry : V(&) — C(P: ¢ A)HMIQ.

The condition on / is important, since in general it does not make sense to
restrict a distribution on G to M.

We shall now consider the relation between the standard intertwining
operators for G, that is, A(Py: Py :E:4): C¥(P:E:2) = CP¥(Py: &1 A),
and the similar operators for M.

Lemma 8. Let Q € #, and let P, P; € @;‘“5 Then the following diagram is
commutative for all generic A € ag.:

C®(P : ¢ 2) M C®(P: ¢ )

m -

cx(micip) AP

Co(Py: E: Q).

Proof. Let P; have the Langlands decomposition P; = MAN; for j = 1,2. If
C > 0, we write .</(P,, Py, C) for the set of / € age such that (Red, o) > C
for all « € X with g, C it N 1;. Then by [2, Proposition 4.1] there exists a
constant C; >0 such that for all A€ /(P,P,C;) the operator
A(Py: Py : &:]) is given by an absolutely convergent integral. In fact, if
fecCeP &), then

AP : P& D)f(x) = / f (nx) dn, (x € G).

Similarly if we write /o(P>,P;,C) for the set of 1€ aj, such that
(Re 4,a) > C for every root « of aq in ", Ny, then there exists a constant
C, > 0 such that for 1€ o/o(P>,Pi,C,) the operator ACP, :*Py: € A) is
given by the absolutely convergent integral

ACPy Py 2)g(m) = /smmw, (m € Mig),
Ny Ny
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for every g € C*(*P, : £ : 2). Since P, and P, are both contained in Q, the
intersection P N P; is contained in 0N QO = Mo, and we conclude that in
fact

(79) N> NNy =N, NN

Hence the two integrals above are over the same set. Moreover, the Haar
measures dn in both integrals are the same, and from (79) one also sees that
A (Pr, Py, C) = o o(Ps, Py, C) for all C > 0. Hence if C = max(C, C), then
for 1 € o/ (Py, P;, C) the two integrals with f', g replaced by f,f|M]Q converge
absolutely and are equal for x = m € Mp. This establishes the result for 4
contained in the non-empty open subset .o/ (Py, P, C) of ai.. Now apply
meromorphic continuation. |

Combining (77) for Py, P, and (78) with the diagram (8) and its analogue
for My, it is plausible to expect that we have

(80) B('Py:"Py: & A)oprg =prgoB(Py: P : &1 0): V(E) — Vp(&)

for P, Py, Q as in Lemma 8. However, since (77) was only valid for 4 in a
certain region depending on P, in general with no overlap to the region for a
different parabolic subgroup, it seems difficult to derive (80) this way. We
shall now derive it in another way.

Lemma 9. Let Q€ P, and let P,P, € 9’2“5 Then the endomorphism
B(Py : Py : &2 A) of V(&) preserves the subspace Vo(&), and we have (80) for all
generic A € ag.

Proof. We will prove this proposition by a o-split rank one reduction. The
following lemma paves the way. Recall from [2, Sect. 7], that two parabolic
subgroups P, P, € ,Wranm are called o—adjacent if Py # P, and all aq-roots in
i Ny are proportional.

Lemma 10. Let Q € 2, and let P, P, € 7/2“5 Then Py and P, are g-adjacent if
and only if *Py and *P, are o Mleadjacent parabolic subgroups of Mig.

Proof. This is immediate from (79) and the definition of adjacency. O

We continue the proof of Lemma 9. There exists a sequence of parabolic
subgroups Pj’., 1 < j < n, contained in 9{,“‘5, such that P{ = P, P, = P, and
P, and "P;, | are (0|Mp)-adjacent for all 1 < j < n. By Lemma 10 the par-
abolic subgroups P} and P}, are g-adjacent, and by the product formula for
the B-endomorphism in [2, Prop. 6.2], applied for G as well as for Mg, we
see that it suffices to prove the result in the case that P, and P, are adjacent.

Thus assume that P, P, € @2“5 are g-adjacent. Then the aq-roots in
ny N ity are proportional, and belong to the root system of aq in mjp. Let
be the smallest aq-root in 1, Ny, and let s, denote the associated reflection
in W. Then s, € Wp. Recall from the previous section the action
(w,v)—>w-v of W on ", defined via transference of the multiplication
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action under the natural bijection % = W [Wgon. In particular, if v € Wy
and w € #p, then v-w € #p. Hence the multiplication by s, maps #y to
itself. Moreover, it follows from [2, Lemma 7.2] that for every w € W the
space V(& w) + V(& s W) is invariquu under B(P, : P : ¢: ). Here V(& w)
denotes the direct summand %gHMW of ¥ (&). In particular this shows that
Vo(€), as well as its orthocomplement, is invariant under B(P, : Py : & : 4).
In order to verify (80) it now suffices to prove the meromorphic identity

(81) B, :P:E:m=B(P:"P:&: )y

for n € V(& w), for all w € #. Without loss of generality we may assume
that 1 € #". For n € V (&, 1) the identity (81) is a consequence of the fact
that the g-split rank one reduction given in [2, Lemma 7.4] gives identical
results for G and for M.

To verify the identity in general we fix an element w € #p. Pick
v € Nk, (aq) such that v- 1 = w, and observe that conjugation by v preserves
c-adjacency and that *(vPv~') = v*Pv~! for all P € 250

Recall from the previous section the endomorphism L(&,v) of V(&). Tt
maps V (&, u) isomorphically onto V' (vé,v-u), for all u € #°, hence in par-
ticular V' (&,1) onto V(vé, w). It is easily seen that the restriction of L(¢,v) to
Vo(&) coincides with its analogue Lo(¢, v) for Mjp (one can for example use
(77) and the diagram (61)). Let n € V(&, 1), then (81) has been established
above. Applying L(,v) to it and using (62) (for B instead of 4, and for G as
well as for M|p), we obtain

B(vPyw ™' s wP ot vé vd)y = B Py i oPot s vé ol

for all #' = L(& v)n € L(&v)(V (&, 1)) = V(vé,w). Since the g-adjacent pair
PP e 97";‘8, as well as & and 4 were arbitrary, the proof is complete. []

Let (Mg : Aq) be defined as c(4q) = ¢(G : 4q) but for the group Mg. It
follows from (77), (11) and (80) that the relation (77) holds as well with
JP:&:2) replaced by ¢(G:A4q)j°(P:&:A) and j(P:E:4) by
c(Mig : Aq)j°(P : € : A), for A in the same region as before.

The relation between the Eisenstein integral E(P : 1 : 1) for G and its
analogue for Mg is much more subtle than these relations between the H-
fixed distribution vectors (see Theorem 4 below). However, a simple relation
between the c-functions can be derived from (57) and Lemmas 8 and 9. In
order to discuss this we let *%p(t) = "¢ (Mg : 7l¢,) be the subspace of
°% (1) = Dyenw C°(M /wHyw™ ' : 1) corresponding to the direct summands
labeled by w € #p, and denote again by pry : °6(1) — *%p(1) the (or-
thogonal) projection along the remaining components. Recall from Lemma
3 the map T'+— y; from C(K : & : 1) @ V(&) to °%(t), and let T — - denote
also the similar map (for M) from C(Kg: ¢ 1lg,) ® V(&) to °€p(t). Let
e:C(K:¢:1) = [#: 2 V)M and ep: C(Kp: ¢: Tlg,) = [He® V5 de-
note the Frobenius reciprocity maps given by evaluation at the identity, then
clearly the restriction ro maps C(K : ¢ : 7) into C(Kg : ¢ : 7[g), and we have
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egorg = e. By the bijectivity of the Frobenius maps we have that rp maps
C(K : ¢ : ) isomorphically onto C(Kp : £ : /g, ). It is now obvious from (23)
that we have

(82) prQ‘/’f@n = l//er®prQ11 € O(gQ(T)

forall f € C(K : ¢:1),n € V(&). The following result is a generalization of a
result of Harish-Chandra in the group case (cf. [27, p. 153. Lemma 4]), but
its proof is quite different.

Proposition 6. Let Q € #,, and let P, P, € ﬂm‘é‘ and s € Wy. Then the
endomorphism Cyp, p (s : 1) of °€ () preserves the subspace °€o(t), and we have

proo Cpp (s 4) = Copp (s 1 4) 0 pry,
Jor generic 2 € ag.

Proof. For s =1 this follows immediately from (57), (82), and Lemmas 8
and 9. In order to obtain it in general we shall use (68) and its analogue for
M. We need the analogue of . (s) for Mo. As in the proof of Lemma 9 we
have, for v € Nk, (aq), that the endomorphism L(¢,v) of V(&) maps Vp(&)
into Vp(v&), and that its restriction to Vp(&) coincides with its analogue
Lo(&,v) for Mip. From (65) and (82) we conclude that the map #(s) for
s € Wy preserves “%p(7), and its restriction to this space coincides with its
analogue Zo(s) for M. The result follows easily. O

Finally in this section we shall relate the endomorphisms u(D : ¢ : A) and
p(D :t: ) of V(&) and °@(1), respectively, with their analogues for M;o. We
denote these analogues by p(D: &:2) and uf(D: t|g, : 2), respectively,
where now D € ID (Mp/Hy,,). Recall from Sect. 3 the injective homo-
morphism yu from D (G/H) to D (M;/Hy,). When defining this homo-
morphism we assumed that P = M|N = MAN € #™", but actually the
minimality of P was not essential. Repeating the steps of this definition we
get an injective homomorphism

Ho = Too i : D (G/H) — I (Mig/Hi,)
determined by
D —up(D) € npU(g) + U(g)h

and Tp(D) = dy' < Dodp for D € D (Mg/Hyy,), where
12
do(m) = |det(Ad(m)|,,)|  for m € M.

In analogy with the map wp = yup (cf. (36 )) we also let y, = g : D (G/H) —
D (MIQ/HMIQ)' Then
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(83) o = Too g,

Furthermore, we also have the analogous maps ID(Mig/Hy,) —
ID (M1/Hu,) of p, wp, and pp for the parabolic subgroup *P in Mg.

Denoting these by ¢, | QP, and ,ul%, respectively, we have

pe=Tpo S, uS=Tpoul,
where

D — y5(D) € "nU(mig) + U(mig)(mig ND).

Since n ="n® ny it follows from the above that jup = pgpo Ko, and that
dp = d-pdp on M;. Using that dyp = 1 on My one now easily sees that

(84) p=pCopp.

In particular this shows that p, actually only depends on the Levi compo-
nent M of Q. Furthermore, by inspection of the definitions of u(D : & : 4)
and u(D : T : 1) we see that these endomorphisms preserve Vp(&) and °%p(7),
respectively, and that

(85) proou(D: &) = pf(up(D) : & A)opry
and
(86) proou(D:1: 1) = p(up(D) : tlg, © 4) o Prg;

for all D € D (G/H).

9. The asymptotic behavior of eigenfunctions

In this section we collect some definitions and results from [3, Sect. 12] and
[1, Sect. 5].

Let || ||, : G — [1,00] be the distance function defined as follows. Let
aqs be the intersection of the root hyperplanes kera (o« € X) in °aq, and
let °aq be its orthocomplement in aq. Moreover, put Aqs = exp agz and
°Aq = exp °aq. Then 4y >~ °4q X Ags, and for a € °4q, b € Agz we define:

|ab|, = max a* el1°¢?],
acX

In view of the Cartan decomposition G = KA4H the distance function is
now completely determined by:

Hkah”u': Ha”o'a (k€K7 aeAQa hEH)
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We define
I/, = sup [lx[|; "L/ (x)]
xeG

for every r € R and any function f: G/H — C. Moreover, we define
C.(G/H) to be the space of continuous functions f:G/H — C with
If]l, < co. Equipped with the norm || - ||, this space is a Banach space. It is
invariant under the left regular representation of G. The associated space
C>*(G/H) of smooth vectors is a Fréchet space. In analogy with [7, (2.7)] it is
seen that given D € ID (G/H) there exists a constant s > 0 such that D maps
C*(G/H) continuously into C¥ (G/H), for all r € R.

Let b Caq be a Cartan subspace containing aq, and let y = )¢y :

D (G/H)>S(6)""™ be the Harish-Chandra isomorphism, as in Sect. 3. If
veb,, then we write &.°(G/H) for the space of smooth functions
f: G/H — C satisfying the system of differential equations:

Df =y(D:v)f, (D e D (G/H)).

If » € R, then the space &77.(G/H) = &7 (G/H)NCX(G/H) is a closed
subspace of C2°(G/H), hence a Fréchet space. We define

&7 (G/H) = Upno 635(G/H).

It follows from [3, Lemma 12.3] that the K-finite elements of &°(G/H)
belong to this space. Notice that 67, (G/H) is a D (G/H)-invariant subspace
of C>*(G/H).

Recall that b = by @ a4 is the decomposition of b in +1-eigenspaces for 0.
According to this decomposition we view by, and ag. as subspaces of b,. Let
A € by, be fixed from now on, and let 4 denote a parameter in ag.. Let
O = MpAgNy € ?; be fixed, let X(Q) denote the set of roots o € > with
g, C g, let agq = ap N aq, and put

aéq ={X € agq|a(X) > 0 for all « € Z(Q)}.

The purpose of this section is to study the asymptotic behavior along
Ap, = expay, of functions f € 6%, (G/H). Our starting point is the
following result. If V' is a finite dimensional real linear space, then by P, (V)
we denote the space of polynomial functions f : ¥ — € of degree at most m.
Let the set Xp(A, 4) C apge be given by

Xo(A, 2) = {0} U{[w(A +2) = po = Wlloy, | wE W(D),n € NE(Q)},
where NX(Q) is the set of linear combinations of elements from X(Q) with

non-negative integral coefficients. Finally, let d : [0,00] — N be the locally
bounded function of [3, Proposition 12.4]. From [3, Theorem 12.8] we have:
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Proposition 7. Let 4 € af.

(a) Let f € 6%, .(G/H) and x € G. Then there exist unique polynomials
D.e(Olf . x) on agq of degree at most d(|Rel| + [Reé|), for & € Xo(A, 1), such
that

(87) flrexpX) ~ > pie(Olf,x, X)€Y (1 — o0)
Eexy(A,2)

at every Xo € aj,.

(b) Let r € R, & € Xg(A,2), and put d = d(|Rel| + |Re&|). Then there
exists a number ¥ € R such that f— p;:(O|f) is a continuous linear map
from &%, ; (G/H) into C*(G) @ Pa(agq), equivariant for the left regular ac-
tions of G on &%, ; (G/H) and C*(G).

Remark. The asymptotic symbol ~, and the phrase ‘at X;’, means the fol-
lowing (cf. [7, Sect. 3]). There exist, for each real number N, a neighborhood
U of X in agq and constants € > 0, C > 0 such that

(88) flxexptX) = > pie(Qlf,x,1X) €M) < CeV
EeXp(A,2)
Re¢(Xo)>N

forall X e U, t > 0.

Before proceeding we list some properties of the coefficients in the
expansion which will be needed in the sequel. Fix 1€ aj and f €
X1, (G/H). An element ¢ € aj,. will be called an exponent along Q of f"if
& e Xp(A,2) and p; ¢(0|f,-) is not identically zero. The set of exponents
along Q of f is denoted by E(Q|f). By [3, Lemma 13.1] we have

(89) p.e(Olf . xma, X) = p; «(Olf ,x,X + loga)a

for all & € E(Q|f), x € G, m € Hy,,, X € agq, and a € Agq.

It will be convenient to use the following notations. For a given x € G we
denote by E(Q|f,x) the set of & € E(Q|f) for which p, :(Q|f,x) # 0. Then
obviously E(Q|f) is the union over x € G of the sets E(Q|f,x).

We define the partial ordering <o on ag,, by

n 2o M <= ny—m € NE(Q),,,-

The <p-maximal elements of E(Q|f) are called the leading exponents along
0 of f; the set of these is denoted by EL(Q|f). Let ¢ € EL(Q|f) and let
x € G, X € agq. By (89) the function ¢ € C*(M)p) defined by ¢(m) =
P2.e(Olf,xm, X) is right Hy,,-invariant, and by [3, Corollary 13.3] it satisfies
the system of differential equations

(90) (D)o =7(D: A+ 72, (D eDD(G/H)).
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Here the map p, : D(G/H) — D (Mig/Hu,,) is defined by (83).

For general functions f € &%, ,.(G/H) the expansion (87) holds as-
ymptotically in the sense of (88). However, if f is K-finite it follows from the
asymptotic theory in [1] that it actually converges absolutely and locally
uniformly in X € agq. Since we shall need also this theory, we recall the basic
properties.

It will be convenient to use the following notation. As above, let Q € 2,
be fixed, and fix a basis I" for a*Qq. If m € N' then we use the usual multi-
index notation |m|=73" rm,. Moreover, if H € aj,, then we put
H™ =T1Lcr7(H)™. Let 7 be a system of positive roots for X containing
2(Q). Let A denote the set of simple roots in £*, and put A(Q) = AN Z(Q).
Then restriction to agq maps A(Q) bijectively onto a set A,(Q) of linearly
independent elements in ap,. If H € agq then we define the element
z(H) € €49 by

2(H), = e for ac AQ).
LZEQ)D be the open unit disk in €. Then the map H — z(H) maps aJQFq into
D&,

For the moment let 7 be a finite dimensional complex vector space, and
let f be an arbitrary K-finite V-valued function on G/H which is also
D (G/H)-finite. Then according to [1, Theorem 5.3], there exists a finite
subset S C ap,, such that the natural map § — ap,./ZA,(0) is injective, and
moreover a positive integer d and for each s € S, m € NT, |m| <d, a holo-
morphic function f; : DAQ) — 7 such that for all H € aéq we have:

o1 flexpH) =Y H"e"f,,(z(H)).

seS,|m|<d

Being holomorphic the functions f;, have (V-valued) Taylor expansions

fim@) = Y coumz,  (zeD"9)

HENA,(Q)

Here we have writteq = [Lea) 2o if = D ueAQ) yaa\apq. Substitut@ng
these Taylor expansions in (91) we obtain the following converging
expansion when H € a},

(92) flexpH) = > ceuH"e M.
EeS—NA(Q)
|m|<d

Let E(Q|f,e) denote the set of elements & € S — NA,(Q) for which ¢¢,, # 0
for some m.

Let now f € &%, .(G/H) be K-finite. The asymptotic theory for K- and
D (G/H)-finite functions just outlined applies to f and thus in addition to
(87) we have the converging expansion (92). By holomorphy of the f;,, the
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latter expansion is an asymptotic expansion if A tends radially to infinity in
agq, hence by uniqueness of asymptotics it coincides with the expansion (87)
at x = e. We conclude that

E(Q|f7 e) = E(Q|fv e) cS-— NA;(Q)

and moreover that

pic(Qlf e H) = > cewH™,  (¢€E(Qlf,e), H € agy).

|m|<d

10. Transitivity of asymptotics

If P,O € #, and P C Q, then the expansions along P and Q of a function
f € &X,,.(G/H) are related. The following theorem gives this relation. As
in Sect. 8 let *P =P NMp, then “P has the Langlands decomposition
*P = MpAp*N, where *N = Np N Mip. Let al q denote the set of elements
H € apq with a(H) >0 for all o € £("P) = X(P)\X(Q), and put A%, =
exp(a’p,). In particular we have af, C ol

Theorem 3. Let two a0-stable parabolic subgroups P and Q be given such that
AqCPCQ. Let Neby, A€ ay, and [ € &X,; (G/H). Then

E(Olf) € {nlo,, | n € E(PID)}.
Moreover, if [ is K-finite then we have:

(93) pie(0lfa,X) = Z Piy (Plf,a,X)

nGE(P\f
Mlagy =¢

forall ¢ € E(Q|f). X € agq, and a € A?LPq. The series is absolutely convergent.

Remark. For the Riemannian case (i.e. when H is compact) and if P is
minimal, this result is a consequence of [8, Theorem 3.1]. Notice that in /oc.
cit. it is not required that f be K-finite, but then the expansions (87) and (93)
are asymptotic and need not converge. We expect that an analogous result
should hold in the present case. However, since as mentioned our applica-
tions will be to K-finite functions we do not need such a more general result.
In the proof of Theorem 3 we follow [8].

Proof. We first prove (93). Let f € 6%, ,.(G/H) be K-finite. Then the
asymptotic theory outlined at the end of the previous section applies to f,
and we have
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flexpH) = Y pie(Plf e, H)e ™, (H € afy).
CEE(PIf e)

In the following, let Hy always denote an element of a;}q. Moreover, H;
will always denote an element of apy. Given R we write aéq (R) for the set of
X € agq with o(X) > R for all o € A(Q).

Let Hj be fixed for the moment. We fix R > 0 such that for A, € aEq (R)
we have Hy + H, € aj, (here we have used that the roots of A\A(Q) vanish
on agq).

Let H) € a5, (R) and ¢ > 1. Then substituting H = Hy + tH) € ap, in the
above expansion we obtain:

f(exp HoexptH,) = Z [ Z pre(Plf, e, Hy + tHl)eé(H‘))} M),
NEB(PIT )y, CEPIf.0)
Clagy=n

Notice that the series between square brackets converges absolutely by the
holomorphy of the f;,, in (91). Moreover, again by holomorphy of these
functions, the above expansion is an asymptotic expansion as ¢t — oco. By
uniqueness of asymptotics we conclude that E(Q|f,exp Hy) C E(P|f, e)|aQq7
and that for all n € E(P|f e)|,, we have:
piJ?(Q‘fv eXpHOaHl) = Z pf--,i(P|fveaH0 +H1)eé(HO)'
CEE(P|f e)
Clagg=n

This expansion converges absolutely and holds for all H; € agq (R). Since it
is polynomial in Hj, it holds in fact for all A, € apq. By using the trans-
formation rule (89) we get (93).

To establish the assertion about the set of exponents, notice that for K-
finite /° we have proved that E(Q|f,exp Ho) C E(P|f)|,,, - By density of the
K-finite functions in 6%, , .(G/H), for all » € R, and continuity of the maps
f=pia(Olf) and f—p;(P|f), we see that for general f we also have
E(Q|f,exp Hy) C E(P|f)|,,,- By equivariance of the maps f'— p;,(Q|f) we

conclude from this that E(Q|f,x) C E(P|f)|, forallx € G. O

Aoq

11. Asymptotic expansions of holomorphic families

The set of exponents occurring in the expansion (87) can be limited dras-
tically if /" is part of an analytic family. Let Qo C ag, be an open subset. If /
is a function Qy x G/H — C then if 1 € Qy, we shall write f; for the function
G/H — C, x— f(4,x). Let A € by be fixed.

Definition 1. We define &.(G/H,A,Qy) to be the space of functions
[ Qo x G/H — C satisfying the following two conditions:
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(a) for every 4 € Qq the function f; belongs to &%, .(G/H);
(b) for every Ay € € there exists a constant v € R such that 21— f;, maps a
neighborhood of Ay holomorphically into C°(G/H).

Notice that, as mentioned earlier, each element D € ID (G/H) maps
& (G/H) to itself for all v € ag, and C7°(G/H) continuously to C (G/H)
for all r€ R and some s>0. Consequently, D maps the space
E.(G/H, A, Q) to itself.

The above mentioned limitation on the set of exponents is expressed in
the following proposition. Let Q € 2, be arbitrary. We denote by X,(Q) the
set of elements in ap, obtained by restriction of an element from X(Q). For

/4 € ag, we define the set
X(0,7) = {52~ pg)lag, — 15 € W, 1€ NZAO)} € e

Proposition 8. Let Qg be an open subset of oy, and let f € &.(G/H, A, ).
Then for every L € Qy we have:

E(0lf) € X(Q, ).

Proof. For Q € Wani“ this was established in the proof of [3, Theorem 13.7].
(In particular this means that eqn. (107) in /loc. cit. holds for all 1 € Qy, and
not just for 4 € a(’;’c.) _

Let now QO be arbitrary, and fix P € 2" such that P C Q. Let 1 € Qy,
and suppose that ¢ € E(Q|f;). Then by Theorem 3 we have that ¢ = n\agq for
some n € E(P|f). Moreover, by the first part of this proof we have
that n € X(P,4), hence there exist s € W and p &€ NX(P) such that
n=sk—pp— p. It follows that &= (si— pp — ,u)\aQq. Since the roots in
Z(P)\Z(Q) restrict to zero on agq we have that pp|, = pglq,, and uly, €
N X,(Q), and hence ¢ € X(Q, 2). O

According to the above result, the asymptotic expansion (87) holds with
f replaced by f; and with Xp(A, 1) replaced by the smaller set X (0, 1). The
following result asserts that the asymptotic expansion for f; obtained in this
way depends holomorphically on 4 in a suitable sense.

Proposition 9. Let [ € 6.(G/H,A,Q), and fix Ay € Qy and &y € X(0, X).
For J. € Q, let E(A) be the set of elements £ € X(Q, 1) of the form

é = (S/’L - pQ)|L’qu M
where s € W and p € NX,(Q) satisfy the equation
So = (s4o — PQ)|aQq —H

Then there exists an open neighborhood Q C Qg of Jy and a constant ¥ € IR
such that the map:
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(/’LvX) = Z pA,é(Q'fm aX)

¢eE(4)
is continuous from Q x agq to C*(G), and in addition holomorphic in A.

Proof. For J € Qp, let E¢(4) be the union of the set {0} N {&,} with the set
of elements of the form

&= [W(A+/1)*PQ]|

where w € W(b) and u € NZ,(Q)) satisfy

—ue XQ(A7 )u),

Agq

& = PW(A + o) = polluy, — o

Then according to [3, Theorem 12.9], there exists an open neighborhood
Q C Q of 4y and a constant 7 € R such that the above assertion holds with
Eo(4) instead of E(1). (Notice that in that theorem there is a slight error in
the definition of the set Z(1), denoted Z((4) in the present notation.) In view
of Proposition 8§ it suffices to show that Q may be chosen so that

(94) E() = E(A)NX(0,7) for ALeQ.

Obviously the inclusion ‘C’ holds in (94). It therefore remains to prove the
converse inclusion.

~ Fix a bounded open neighborhood ¥V of &, in ap, such that
V' NX(0,4) ={&}. Then there exists an open neighborhood U of 4y in Q
such that ¥ NX(Q,4) C E() for A € U. Shrinking U if necessary, we may
also assume that Eg(1) C V for A € Q, from which the inclusion ‘D’ in (94)
then follows. O

Following [3, p. 399] we define

\ ok *
aqcf{ian

| (ha")¢Z (aex) |,

where oY = 2(o, o) ' as usual. We recall that ‘ag. Is the complement of a
locally finite union of hyperplanes. Moreover, if 4 € ‘ag., and s,7 € W, then
sA—th € ZX = s = t. Analogously we have the following result.

Lemma 11. There exists a subset “ag, C ag. with the following properties:
(a) The set “ag, is the complement of a locally finite union of proper affine
subspaces in ag.
(b) Let 4 € “ag, and Q € P, be arbitrary, and suppose that s,t € W are
such that (sA —tA)|, € ZX,(0). Then Wys = Wpt.

| agq

Proof. Fix Q as in (b) and let s, € W. Define V(Q,s,t) to be the set of
4 € ag, for which (sd —14)|,, € ZX,(Q). We claim that for Wps # Wt the
set V(Q, s, t) is a locally finite union of proper affine subspaces. It suffices to
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establish this claim, for its validity implies that the desired result holds with
“ag. equal to the complement of the union of the finitely many sets V(Q,s,t)
where Q is arbitrary and s, € W, Wps # Wpt.

Fix P € 9’{,‘““ such that P C Q. Then X(P) is a positive system for X
which contains the set £(Q). Let A be the set of simple roots in £(P), and
put A(Q) = ANZ(Q) and Ay = A\A(Q). Then ay, is the intersection of the
root hyperplanes kera, o € Ag. If & € A, we write w, for the element of the
real linear span RX of X satisfying (w,, f) = dup.

If v € ag., then the condition that v|aQq € Z%,(Q) is equivalent to the
condition v € CAp + ZA(Q), which in turn is equivalent to the condition
that (v,w,) € Z for every o € A(Q). From this we see that the set V' (Q,s,?)
equals the union of the following sets, parametrized by n € Z*©) .

V(O,s,1,n) = {z € | (sh—thw) =n, (V€ AQ)) }

Suppose V(0Q,s,t,n) = ag.- Then it follows that n =0 and that for all
a € A(Q) we have s~ 'w, =t 'w,. This implies that #s~' centralizes the
fundamental weights orthogonal to Ay, hence belongs to the subgroup of W
generated by the reflections s,, @ € Ag, i.e. to Wy. Thus we see that for
s,t € W with Wps # Wot the set V(Q, s, t,n) is a proper affine subspace of ag,
for any n. Since it is clear that the collection of V(Q,s,t,n) is locally finite
this establishes the claim. O

*

Let Qp be an open subset of aj., and suppose that A € by,
f€b(G/H, A Q). If 2€Qp, s€ W and p € NZ,(Q), then we denote
the wvalue at zero of the C*(G)-valued polynomial function

Xpr,(Aszpr)\“Qqfu(Q|f17 -, X) by

(95) pQ,H(f 18 j‘) ::p/l,(x)u—pQ)\an —u(Q‘.fb 70) S COO(G)

Obviously (95) remains unchanged if we replace s by any element from the
coset Wps. Therefore we shall also use the notation pg ,(f :s: A) for left
cosets s € Wp\W.

*

Proposition 10. Let A € by, let Qo be an open subset of ag., and assume
that f € §.(G/H, A, Q). Let s€ W, and p€ NZ,.(Q). Then for every
4 € Qo N ‘ag. we have

(96) pi,(s/l*ﬂgﬂagqfu(QU‘/la 7X) :pQ,,u(f P8 })7 (X € aQQ)'

Moreover, po (f : s : A) is holomorphic as a C*(G)-valued function of J. on
Qp N “aflc and allows a meromorphic extension to €.

If Ao € Qq, then there exists an open neighborhood Q of o in Qy and a
constant ¥’ € R such that pg,(f : s : 1) defines a meromorphic C*(G)-valued
function of A on Q.
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Proof. If Q € ﬁ‘fin this is just [3, Theorem 13.10]. In the general case we fix
Pe H?‘;‘i“ such that P C Q. We define a linear representation L of G in
6.(G/H, A, Q) by Ly(f), = Ly(f3), g € G. The subspace of K-finite elements
for this action is denoted by &.(G/H,A, Q). Let K denote the set of
equivalence classes of finite dimensional unitary irreducible representations
of K, and for d € K let y; be its character and put os= dim(d)y;.
Furthermore, let

(1), (x) = / 3 () (L), ()

K

for £ € 6.(G/H,A,Q), + € Qo and x € G/H. Then f° € &.(G/H, A, Qp)x
and we have

©7) =Y

sek

in the topology of C*(G/H), for all 1 € Qy, with r locally independent of 1
(as in item (b) of Definition 1).

Fix 2 € QN ag, and let &= (s2 — py)l,,, — 1€ X(Q,4). Fix a € Ay
Let f € 6.(G/H, A, Q). If E¢ E(O|f;), then p; :(O|f) = 0 and (96) follows.
Thus assume that ¢ € E(Q|f;). Then the expansion (93) of Theorem 3 holds.
By the first sentence of the proof this implies that

pfl,f(Q'f/l,a’X) = Z p7~-,71(P|f7.7 e,0)a", (a € A:quaX € aQQ)'
n€E(PIf)
Mgy =¢

In particular it follows that X — p; :(Q|f;,a,X) is a constant function. By
continuity of the map g p, :(0Q|g,a,X) and density of K-finite functions
(cf.(97)) we now infer that the polynomial X — p; :(0|f},a,X) is constant
forall f € £.(G/H, A, Q). By equivariance of the map f'— p; :(O|f7, -, X) it
finally follows that the polynomial function X — p; :(Q|f,x,X) is constant
for every f and all x € G. This establishes (96).

The assertion about holomorphy is proved as follows. Let 4y € Qp N“a*

qe’
fix & € X(0Q,%0), and for 4 € QyN “ag, define () as in Proposition 9.
There exist s € W and u € NX,.(Q) such that &, = (sdo — ,OQ)|aQq —u If

te W, veNL.(Q) and (tdg — pg)l,, — v = Co, then it follows that (sig—

A9q

t)no)|aQq — p+v=0. Since 49 € “ag, this implies that y = v and Wps = Wot.
Hence 54|, = t4],,, for all 1 € Q, and thus we see that E(1) has only one
element:

2() = { (2= po)lag, — 1 }-

From Proposition 9 it now follows that (96) depends holomorphically on A4
when this variable is restricted to a suitable neighborhood of 4.
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Finally it remains to prove the assertions about meromorphy. Fix
sE€ W, ueNE.(Q) and 4y € Q. Put &y = (sdo — pQ)|aQq — u and let IT be
the set of pairs (¢,v) € Wo\W x NZ,(Q) such that (t40 — pp)ls,, — Vv = So-
For X € agq and 4 € Q9 N “ay, we define the following function in C*(G) :

(98) Y(X, 1) = Z Poy(f it A)elt*reX)

(z,v)ell

Define E(4) as in Proposition 9. Then for 1€ QN “aj, the map
(t,v) = (tA = pg)la,, — v is a bijection from IT onto E(4). Thus, taking (96)
into account we see that

99) WX, = > pre(Olfi - X)et™.

EeE(4)

We now see that by Proposition 9 there exists an open neighborhood Q of 4
in Qy and a constant 7 € R such that for every X € apq the map 21— (X, 1)
extends to a holomorphic C°(G)-valued map on Q.

For /. € “ag, the elements (14 — py)l,, — v, (¢,v) € IT are mutually dif-
ferent. Therefore the exponential functions =P~ on agq are linearly in-
dependent. Thus we may fix elements X; € agq, / € Il such that the
determinant

det( el=Po™)X) + (¢ ) e TI, 1 € 1T )

is a non-trivial holomorphic function of 4. By Cramer’s rule this implies that
the functions po,(f :¢:4), (t,v) € I may be solved as C*(G)-valued
meromorphic functions of A from the system which arises if in (98) one
substitutes for X the values X;, [ € II. O

In the final part of the above proof we have seen that for a holomorphic
family of eigenfunctions the coefficients in the expansion (87) can be re-
trieved from the coefficients pg ,(f, s, 1), s € Wo\W, n € NZ,(Q) introduced
in (95). We formulate this result as a separate lemma.

Lemma 12. Let A€by, let Qy be an open subset of ay., and let
f€E(G/H, A Q). Moreover, let Ay € Qo, & € X(Q, Ay). Then the mero-
morphic function

(100) P 3T poulf s s A)x) el e W)
seWp\W,veNZ,(Q)
(s20=pg)lagy —r=C0
has a removable singularity at 2 = 2 fogﬂ everyx € Gand X € agq. Moreover,
it has the limit value p;, ¢, (O|f3,% X )e*™) at Jg.

Proof. Fix x € G and X € ag, and let ¢(/) be the function given in (100).
Define IT, Z(1) and y/(X, ) as in the final part of the above proof. Then for
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A€ QN “ag, we have ¢(4) = Y(X, 4)(x). The result now follows from (99)
by application of Proposition 9. O

12. Principal parts of families of eigenfunctions

Let Q be a non-empty open subset of ag.. Then &.(G/H, Q) will denote the
space of functions f : Q x G/H — € which may be expressed as finite sums
S =>_Afa, wWhere A ranges over a finite subset of by, and where
fa € E(G/H, A, Q). If A, Ay € by, are conjugate under the centralizer
Wy, (b) of aq in W(b), then one readily checks that
E(G/H,\,Q) = 6.(G/H,A2,Q). On the other hand if {Aj,...,A,} is a
finite set of mutually non-Wj,, (b)-conjugate elements of by, and if
fi € 6.(G/H,A;,Q) (i=1,...,m), then we claim that > !, f; = 0 (identic-
ally in 2) only if fj = ... =/, = 0. Indeed assume that ", f; = 0, then
applying the operator D —y(D: A,, + A) we obtain > /" [y(D: A;+ A)—
(D : Ay + Afiy =0, forall D € D (G/H), /. € Q. Invoking induction on m
we see that for each i=1,...m—1 we have f; =0 or y(D: A;+ 1) =
P(D: An+A) forall D € D (G/H), A € Q. However, the latter possibility is
excluded by the non-W,, (b)-conjugacy of A; and A,. Hence fi =...=
fm—1 =0, and then also f,, = 0. This establishes our claim.

Thus, abusing notations slightly, we have the direct sum of linear spaces:

6.(G/H,.Q = @ &.(G/H A Q).
AEb; /Wi, (D)

Hence by linearity all definitions and results of the previous section extend
to families f € &.(G/H, Q).

If V is a finite dimensional complex linear space, then by &.(G/H,V,Q)
we denote the space of functions f: Q x G/H — V all of whose vector
components belong to £.(G/H,Q). Thus

&.(G/H,V.Q) ~ &,(G/H,Q) &¢ V,

and again we see that all definitions and results of the previous section
extend to families f € &,(G/H,V,Q) by identity on the second tensor
component. This will be used from now on.

From now on let (z, V;) be a finite dimensional unitary representation of
K. Then by &£.(G/H,t,Q) we denote the space of f € §.(G/H, V;,Q2) which
are t-spherical in the sense that

Solkx) = (k) f;(x), (xeG/H, k€K, 1€Q).

Let f € 6.(G/H,1,Q), and let Q € 2,. Then we define the Q-principal
part of f, denoted fp, by

(101) So(A:m) =dy(m) Z poo(f s A)(m)

SEWQ\W
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for m € Myp, 4 € Q. Clearly fp(4: -) is a smooth V;-valued function on
Mio/Hy,,, depending meromorphically on /. Furthermore, using the equi-
variance of the map f — ppoo(f :s:A) one readily verifies that fp(4: -) is
t|g,-spherical. Finally we notice that dp(ma) = dp(m)a’e for m € Mo,
a € Agq, and hence it follows from the transformation rule (89) that

So(A: ma) = dy(m) Z a* poo(f s 2)(m), (meMyg,ac Agyq).

seWp\w

The following property of the Q-principal part shows that it is closely
related to Harish-Chandra’s notion of the constant term (see [26, p. 153]).
Recall that for € > 0 we have defined the set ag(€) by (3).

Lemma 13. There exists a constant €y > 0 such that if 0 < e < ¢y then the
function . fo(4 : m) is regular on ag(e) for every f € £.(G/H, 1, a;(€)) and
m € M,g. Moreover, given a compact subset A" C a/,, there exists € > 0 such

that for all f € 6.(G/H,t,a3(€)), m € Mg, and 7 € a;(e) we have
(102) oM dy(m) f(mexptX) — fo(l: mexptX) — 0
as t — oo, uniformly in X € A'.

Proof. Let 0 = min,ens,(o)\foy V| then e >0 can be chosen such that
[Redl,, | <0/2 forall 2 € ag(e). Let 0 <€ < e, fix /g € ag(e) and w € IV,
and put & = (Wl — pg)l,,,- Let TI be the set of pairs (s,v) € Wo\W
xINX,(Q) for which (sdo — pg)ls, — V=<, then it follows easily that
IT C Wo\W x {0}. Hence Lemma 12 shows that the function

;LH Z pQ’()(‘f oS )L)(m)
SEWQ\W

(s20) o, =(Wo)

lagg lagg

is regular near Ao, with the limit value p;, ¢ (O|fs,,m,0) at Ag. Since w was
arbitrary we obtain the asserted regularity. Moreover, let a compact subset
A C ap, be given. Then if e > 0 is sufficiently small, (Resi —v) (X) < 0 for
all X € A, 2 € ay(e), s € W, and v € NZ,(Q)\{0}. The property (102) is
now a consequence of (88). O

The notion of principal part can be extended to meromorphic families of
eigenfunctions as follows. Given a complex manifold U, we write O(U) for
the algebra of holomorphic functions U — €, and .#(U) for the algebra of
meromorphic functions U — C.

Let .#.(G/H,t,Q) be the space of maps A—f), Q — C*(G/H)®V
such that for every 49 € Q there exists an open neighborhood Qg of 4y in Q
and a holomorphic function ¢ € 0(€)), not identically zero, such that
A @(L)f; belongs to &.(G/H,t,Qyp).

Then Q ~».#,(G/H,,Q) defines a sheaf on ag. which is isomorphic to
the tensor product of the ®-module sheaves .# and Q ~» &§.(G/H,t,Q). The
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principal part map f+ fp is a morphism of sheaves of (-modules and
therefore has a unique .#-linear extension to the sheaf .#.(G/H,1,").

13. The principal part of the Eisenstein integrals

It is easily seen that the Eisenstein integrals belong to the space of
meromorphic families of eigenfunctions just defined, with Q = a?.. In fact
we have the following stronger result. Recall that for R € R the set ag (P,R)
is defined by (7), and that the set Ilx(aq) C S(a) has been defined above
Lemma 2.

Lemma 14. Let P € 2™ s € °%(t), and R € R. Then there exists a poly-
nomial p € Ms(aq) such that J— p(2)E(P 1 1) is regular on ai(P,R).
Moreover, if p is any polynomial in Ils(aq) with this property, then the family

Ep(P ) (4,x) = p(A)EP : Y : ) (x)

belongs to &.(G/H,V,a;(P,R)). In particular it follows that the family
A= E(P :y 2 4) belongs to M (G/H 7, ag,).

The above statements hold as well (with a possibly different polynomial p)
when the Eisenstein integral E is replaced by the normalized Eisenstein integral
E° and the set o} (P,R) is replaced by a;(P,R).

Proof. See [3, Proposition 10.3, Lemma 14.1, and Corollary 16.2] (cf. (52);
use functoriality to generalize from 1y to arbitrary 7). O

Corollary 1. Let P € 2™y € °%(1), x € G, and Q € P,. Then for ). € age
generic we have the expansion

E(P:y: A)(x exptX) ~ E Po(E(P: 2 2): s 2)(x)el e ) (¢ o0)
SGWQ\W,
veNE,(Q)

at every Xy € aaq, as well as the similar expansion for E°(P : { : ).

Proof. By Lemma 14 and the remarks of the previous section we can apply
Propositions 7, 9, and 10. O

The corollary allows us to define the Q-principal parts Eg(P :  : ) and
Ey(P 2 4) of the Eisenstein integrals. If O € ™1 then this notion coin-
cides with the notions introduced in Sections 4-5, see (46) and (56), with
w = 1. From Lemma 13 we now obtain:

Corollary 2. Let € > 0 and let p € IIz(aq) be a polynomial such that the
meromorphic function i p(A)E(P 1 1) is regular on ag(e). Let € be suf-
ficiently small. Then the function

= Epo(P:ty: 1) :=p(A)Eg(P: ¥ : 1)
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is regular on ag(e). Moreover, given a compact subset A" C aEq there exists
€ > 0 such that for all m € Mg and J € ag(€) we have

0N dy(m)E, (P : 2)(mexptX) — E,o(P:  : 2)(mexptX) — 0,

as t — oo, uniformly in X € A'.
The above statements hold as well with the Eisenstein integral E replaced
by the normalized Eisenstein integral E°.

Our next goal is to determine the Q-principal part of the normalized
Eisenstein integral for all Q € #,. Notice that it is an immediate conse-
quence of the functional equation (58) that

(103) EOQ(P':ll/:)V):EZz(P:C;‘P,(l AW A).
This will allow us to reduce the problem to the case that Q contains P.

Lemma 15. Let P, P, € yamin and assume Py, P, C Q. Then for s € Wy and
t € W we have the following identity of meromorphic functions on a

(104) prooCpyp (st 4) = Cop,p (s 1 t4) o prgo Cpy p (£ 1 4).

x
qe *

Moreover we have

(105) E°("Py s pro[Chp, (st : W] : st2) = E°CPy : prolChy (2 )W) : 1)
Sor all y € °% (7).

Proof. Using (71) we may rewrite the left-hand side of (104) as

prQO C}O)ZIPI (S . t;L) OCI(;I‘PI (t . )\/)

In view of Proposition 6 we may rewrite this in turn as the expression on the
right-hand side. This proves (104). Inserting this expression in (105) and
applying Proposition 4 we obtain the proof of (105). O

In particular we see from (105) with P, = P, = P C Q that the Eisenstein
integral

E°("P: pro[Chpp(t: A)Y] = 12)
only depends on the coset [t] = Wpt, for any t € W.

Theorem 4. Let P € 2™ and P C Q. Then the Q-principal part of the
normalized Eisenstein integral is given by

(106) EyP:y:2)= > E(P:pro[Chp(t: Y] : th)
[fewp\W

Jor all y € °%(t), as a meromorphic identity in /. € ag,.



564 E. van den Ban, H. Schlichtkrull

In the group case this result is given in [25, Theorem 7]. In the Riem-
annian case it is then obtained by specializing to the trivial K x K-type (see
also [22, Theorem 5.9.4]). The proof will be given in the next three sections.
The idea is to show that both members of the equation are functions in
C®(Mip/Hy,, : Tl KQ) which are annihilated by the same cofinite ideal in
D (Mip/Hp,,). From this it follows that the two members of the equation
allow converging expansions of polynomial exponential type. We will then
determine the possible leading exponents and the associated leading coeffi-
cients, and show that they are the same for the functions in both sides of the
equation. This will finally allow us to conclude the equality.

14. Asymptotic expansions on M;q

In this section we will study the system of differential equations on Mg
satisfied by the principal parts of the Eisenstein integrals. We shall see that
the solutions to this system have asymptotic expansions, and we shall de-
termine the possible leading exponents.

Let (z, ¥;) be a finite dimensional unitary representation of K, and let Q
be an open subset of a;.. If D € ID(G/H) then it is easily verified that
if fe#.(G/H,1,Q), then the family Df:Ar— D(f;) belongs to
M (G/H,t,Q) as well. Hence it makes sense to form its Q-principal part
(Df)g, for any O € ;. We now have:

Lemma 16. Let f € 4. (G/H,1,Q). Then for all D € D (G/H) we have:
to(D) fo = (Df )y

Proof. This follows easily from (101), (90) and (83). |

In particular it follows from the differential equations (44) and (54) that
we have

(107) to(D)Eg(P 2 4) = Eo(P: (D :t: )2 A)

forally € °%(t), D € D (G/H), as well as the same relation with E replaced
by E°.

Since D (Mo/Hy,,) is a finite py(ID (G/H))-module, it follows in par-
ticular that Eg(P : y : 4) and ER(P :  : 1) are D (Myo/H,,)-finite functions
in C*(Mig/Hp, : 1| KQ). Therefore the theory of converging expansions
of [1] (see Sect. 9) is applicable.

For the moment assume that F € C*(Mig/Hu, :7lg,) s a
D (Myo/Hwm,,)-finite function. If P e 2™ is contained in Q, then
*P = Mip N P is a minimal ¢0-stable parabolic subgroup of My containing
Aq. Let Z("P) = Z(P)\Z(Q) be the associated system of positive roots, and
let 4%, be the associated positive chamber in 4. Then according to (92 ) the
function F has a converging series expansion of the form
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(108) F(a) = chv,m log"aa*, (a € Afpy).
Em

Here ¢ ranges over a set of the form § — NZ(*P), where S C agc is a finite
subset, m € N' is a multiindex with |m| < d, and the coefficients c;,, belong
to ¥;. In fact, since the restriction of F to Aq has values in the space VM5
the coefficients c¢,, belong to that space as well.

Notice that F is determined by the expansion (108 ), in the sense that if
all the coefficients cg,, vanish, then F = 0. Indeed, since the expansion
converges, the vanishing of the coefficients implies that /' vanishes on A;},q.
By sphericality this implies that F vanishes on KQAquHM] o» Which is open in
M. Being Kp-spherical and ID (Mp/Hy,)-finite the function F is real
analytic, and we conclude that F = 0.

As before the set of elements ¢ € § — NZ(*P), for which there exists
m € N' such that c;,, # 0, is denoted by E(*P|F,e). The set of <.p-maximal
elements in E(*P|F,e) is denoted by E,("P|F,e). Clearly this is a finite set.
The function

a— E cemloghaas € pMOKOH
E€EL("P|F.e),m

on Aq is called the leading part along *P of F. Notice that if E,("P|F,e) is
empty then F = 0 according to the discussion above.

We recall from Lemma 4 that the space °%(tr) has a finite direct sum
decomposition in simultaneous eigenspaces for the endomorphisms
u(D:7: 1), and that every simultaneous eigenvalue is of the form
(D : A+ 2), with A € b.. Therefore the following result is of particular
interest to us.

If A€ by, let a;i(A) C aj, be the set defined in [3, Eqn. (99)]. Then
ag.(A) is the complement of a locally finite union of hyperplanes. In
particular it is an open dense subset of ag.

Lemma 17. Let P € 2™ Q€ 2, and assume P C Q. Fix A €b;.. Let
4 € ay(A), and suppose that F € C*(Mig/Hu,, : t|x,) satisfies the system

(109) tig(D)F =y(D: A+ A)F, (D € D (G/H)).
Then E.("P|F,e) C Wi — p.p.

Proof. Suppose that ¢ € E;("P|F,e), and let c¢,, € V; be the coefficients of
the expansion (108). Fix mo € N' such that c;,, # 0 and c¢,, = 0 for all
m € N' with |m| > |m|. Define ¢ : M, /Hy, — V; by

p(kaHy,) = a“t(k)ce m,, (k€ Ky, a € 4y).

Note that this definition makes sense because M;/Hy, ~ (K /Ky N Hyr) X
Aq (cf. Lemma 1) and c¢ , € I/TK»:ﬂfLW_
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Let 12 and /4 be the maps ID (Myg/Hp,y,) — ID (M /Hyy, ) corresponding
to *P (cf. Section 8). Notice that p.p = pp — py. As in [3, Corollary 13.3] one
shows that (109) implies:

WS (pg(D)p =3(D: A+ 2)g, (D€ D(G/H)).

Using (84) we obtain ,ui%on =T_p, o 1p- Hence ¢ := (dQ|M])_lqo satisfies
the system

(D)o = 9(D: A+7)p,  (DeD(G/H)).

According to [3, Proposition 13.5] this implies that ¢ has Aq-exponents
contained in W1 — pp. Hence ¢ has exponents contained in W1 — p.p, and it
follows that & belongs to this set. |

15. The leading part of the principal part of the Eisenstein integral

Let O be a g0-stable parabolic subgroup containing P € ™", Then from
(107) and the theory of the previous section we see that it makes sense to
speak of the leading part along *P of the O-principal part E5(P : i : 1) of the
normalized Eisenstein integral. This leading part can be determined using
transitivity of asymptotics.

Proposition 11. Let P € ?/’?i“, 0 € P,, and assume P C Q. Then there exists
an open dense subset Q C af. such that for all y € °%(t), A € Q the function
EQ(P :y i A) has the leading part

(110)  am Yo rr [Chplu: ] () € VKM (a e dy)

uew
along *P.

Proof. By Lemma 4 and linearity we may fix yy € °@(t) so that there exists a
Aeby, such that u(D:t: )Yy =y(D:A+ )y for all DeID(G/H),
4 € ag.. Write

F,=E)(P:y:12).

Then F; is a function in C*(Mig/Hy,, : lg,), which depends meromor-
phically on 4 € ag.. Moreover, from (107) we see that F; satisfies the system
(109).

Let Q be any non-empty dense open subset of “a . such that i F; is
regular on Q, and assume moreover that Q C a;.(A). From now on we will
always assume that A € Q. By Lemma 17 we know that

(111) E,(‘P|F,,e) C Wi — p.p.
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Put f; = E°(P :  : 1). Then F) is the Q-principal part of f;. Shrinking Q
if necessary we may assume that also 1+ f; is regular on Q. According to
(101) we have

(112) Fy=dp Y poolf:t: 2|y,

tEWQ\W

Of course we may replace the set of summation Wp\W by any set of
representatives in W.

We will now use transitivity of asymptotics to expand the right-hand side
of (112) along *P. Let a € A%,. By definition we have for 7 € ¥ that

pQ,O(f Y }")(a) :p/l,(t)v—l’g)‘ngq (Q|ﬂa a, 0)
By Theorem 3 the latter expression equals

(113) > pu(Plfia,0).
nEE(Pf;)

Mgy =(t2=P0)lag,

In view of Lemma 14 we can apply Proposition 8 to f, and hence
E(P|f;) C{vi—pp—v|veEW, veENI(P)}.

Let y = vl —pp—v(ve W, veNZ(P)). If n has the same restriction to agq
as th— pg, then since Q C"ag it follows from Lemma 11 that v € Wot.
Moreover we must then have that v € NAy, where Ap = A\X(Q). Thus we
see that (113) equals

Z p/l,st/l—pp—v(P|fiva70) = Z pP,v(f DSt l)(e)aﬂ)ﬁplgiv'

NS WQ,VG]NAQ SGWQ,VENAQ

Since dp(a) = a*¢ and pp = py + p-p we finally obtain

do(a)poo(f : t:2)(a) = Z pro(f 2 stz ) (e)a P,

NS WQ.VG]NAQ

Inserting these expansions for t € Wp\W in (112) we now obtain

Fi(a) = Z pro(f i u: A)(e)a =P,

uchW,velNAg

By uniqueness of asymptotics this must be the same as the expansion (108)
along ATPq for F). By (111) the leading part is

ZPP,o(f w2 (e)arr,

ueW

and by (56) (with w = 1) this is identical to (110). O
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16. Proof of Theorem 4

We first determine the differential equations satisfied by the right-hand side
of Equation (106). Essentially these differential equations are identical to the
differential equation satisfied by the left-hand side (cf. (107)).

Lemma 18. Let P € ,@;“i“, 0 € P, and assume P C Q. Then for every t € W
and all € °€(t) we have:

to(D) E°("P: pro[Cpp(t : A)Y] : t2) = E°("P 2 pro[Cpip(t : A)p(D = T2 2)Y] = 14)
for all D e D(G/H).

Proof. This is a straightforward consequence of the differential equations
(54), applied to the Eisenstein integrals for Mg, and of (86), (73), the latter
with C replaced by C°. O

Because of this lemma the theory of Sect. 14 can be applied to the
Eisenstein integral E°("P : prQ[C}’,‘P( )Y 1 th) on Mg, and we may speak
of the leading part along *P of this function.

Lemma 19. Let P € @?i", 0 € P, and assume P C Q. Then there exists an
open dense subset Q C ag. such that for all € °%(t),2€ Q. t €W the
function

E°("P: pro[Cppp(t : Y] : 12)

has the leading part

(114) a— Z @] [Cpp(u: 2)Y];(e), (a € 4q)

ueWpt

along *P

Proof. By (56) the Eisenstein integral E°("P : " : 1) has the principal part

ma— Z a‘”)‘[CfP‘*P(s St (m)

SEWQ
along *P, for all Y € °@p(r). If we insert y* = pry[Cpp(r : A)y] and use
Lemma 15 we easily obtain (114). O

By summation over Wp\W it follows from this lemma that the function
on the right-hand side of (106) has the leading part

a— Zaui P [Chp(u s )Y (e) € PR, (a € 4q)
uew

along *P, that is, exactly the same as that of the left-hand side (cf. (110)).
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Proof of Theorem 4. Let F; and G, denote the left- and right-hand side of
(106), respectively. By Lemma 4 we may fix ¥ € °%(t) so that there exists a
A €by, such that p(D:7: )Yy =y(D: A+ )y for all DeD(G/H),
4 € ag. Let Q be any non-empty open dense subset of ag.(A) such that
A F;, G, are regular on Q. Then F; and G satisfy the differential equation
(109) for 1 € Q, and hence by Lemma 17

EL(*P|F1 — Gi,e) CWi- Pp-

Shrinking Q if necessary, we may assume that it allows the conclusions of
Proposition 11 and Lemma 19. Hence, as mentioned above, F; and G; have
the same leading part, and we conclude that E;("P|F, — G;, e) is empty. This
implies that F; — G, =0 for 4 € Q, and hence F), and G, are identical as
meromorphic functions in 4. O

17. Proof of Theorem 2

Recall that this theorem asserts the regularity of the normalized Eisenstein
integrals on a neighborhood of iag. We shall prove this by induction on the
split rank dim a4 of G/H.

Let agz = Nyes kera and °G = Nyey(g) ker [y| (cf. [1, Sect. 1]), then
Aqs := exp(aqz) is central in G, and G/H ~ Aqs x °G/(°GNH). For this
reason we call 44x the vectorial part of G/H. One readily checks from the
definition of the Eisenstein integral that E°(P: : A)(ax) = a’E°(°GN P :
¥ i Algne, ) (x), for x € °G/ ("GN H), a € Aqs. We thus see that the assertion
of Theorem 2 holds for the symmetric space G/H if and only if it holds for
°G/(°GNH).

In the course of the proof we shall be using the Schwartz functions on
G/H (see [3, Sect. 17] for the notion of Schwartz functions on G/H, and for
the topology on the Schwartz space). Let ¥(G/H : 1) denote the Fréchet
space consisting of the t-spherical L>-Schwartz functions f : G/H — V,. The
space C>°(G/H : 1) is a dense subspace. We need the following result.

Proposition 12. Assume that the vectorial part Aqs of G/H is trivial, and let
f € C®(G/H : 1) be a D(G/H)-finite function such that for all maximal
parabolic subgroups Q € P, containing Aq and all m € My and X € agq we
have:

lim 0™ f(m exp tX) = 0.

—00
Then f belongs to the Schwartz space €(G/H : 7).

Proof. We start by recalling some further results from [1]. Let P € 2™" be
arbitrary and let X* = X(P). Let cq be the associated positive Weyl
chamber.
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Let Q € 2, with Q D P. Then Q is standard with respect to £, so that
al is a wall for ag. According to [1, Theorem 5.3] the asymptotic behavior
of a ID(G/H)-finite function f € C>*(G/H : 7) along this wall may be
described as follows.

Let a;r be the intersection of the closure of af with mg, and put
Ay =exp(® cq) Then there exist analytic functions qe AL X agg — W,
polynomlal in the second component, such that for all *a G*A+ and all
a € A, with *aa € A7 we have:

fCaa) =3 g:(aloga)a
<

Here the summation extends over a subset of ap,. of the form § — NZ,(Q),
with S a finite subset of ag,,.. The convergence is absolute. Notice that this
expansion is a refinement of (92); the latter is obtained at "a =e. By
uniqueness of asymptotics the functions g are uniquely determined, and
therefore so is the set E(Q|f) of ¢ € ap, such that g # 0. Arguing as in the
proof of Theorem 3 (or inspecting [1, proof of Theorem 5.3]) we see that
E(Olf) = E(P|f)],,, for 0O P.

If QO is max1mal the hypothesis of the lemma implies that for every
¢ € E(Q|f) and X € a5, we have (Re &+ py)(X) < 0. Let now ¢ € E(P[f).
Then ¢, € E(Q|f) and since pp has restriction py on agq it follows that

(115) Reé+pp <0 on aj.

If « is a simple root in X%, let L, be the set of points X € aq such that
2(X) > 0 and such that f(X) = 0 for all simple roots f# # o. Then L, = a},
for a suitable maximal g0-stable parabolic subgroup Q D P; in fact
0 = Zs(L,)P. Thus by (115) we see that Reé + pp is strictly negative on L,
for all £ € E(Q|f). This being valid for every simple root it follows that

(116) Reé+pp <0 on cl(ag)\{0}

(here we have used the assumption that A4z = {1}). The estimate (116) is
valid for each P € 27" and all ¢ € E(P|f). It now follows from [1, Theorem
6.4] that f is square integrable, and from [1, Theorem 7.3] that f belongs to
the Schwartz space. |

Proof of Theorem 2. The main steps of the proof are summarized in the
following four lemmas. If the split rank of G/H is zero then aj, = {0},
G = M, hence G/H ~ M /H), is compact (cf. Lemma 1), and one readily
sees that E°(P : yy : 0) = . Thus the statement is trivially verified for spaces
of split rank 0.

Let now G/H be a space of split rank » > 1, and assume that the result
has been proved already for all Harish-Chandra class reductive symmetric
spaces of split rank strictly smaller than r. As we have seen above, we may
assume that the vectorial part of G/H is trivial.
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The basic idea of the proof is that the regularity of the Eisenstein
integral is governed by the principal parts of its asymptotic expansions
along (maximal) parabolic subgroups Q. The following lemma asserts that
these principal parts are regular for imaginary values of the spectral
parameter.

Lemma 20. Let P € 2™, O € 2,\{G}, and let \y € °% (). Then as a function
of Z the Q-principal part E)(P : = 2) of E°(P : = 2) is regular on iaj.

Proof. Using (103) and the unitarity of the c-function occurring there (cf.
Proposition 5) we see that it suffices to establish the lemma in the case that
O D P. But then the principal part is given by (106). The Eisenstein integrals
occurring in the right hand side of (106) are regular functions of 4 on iag, by
the induction hypothesis, since the split rank of °Mo/(°MipNH) =
My/Hy, is less than r when Q is proper. Moreover, the c-functions
occurring in (106) are also regular, by the unitarity of the c-functions
(Proposition 5). O

It is convenient to introduce the set P consisting of all p € ITx(aq) with
the property that the function

A= E (P 2) = p(AE*(P:y 2 4)

is regular on a(P, 1), for each y € °%(z). It follows from Lemma 14 that P
is non-empty. To establish the regularity of £°(P : ) : 1) on ag(e) for some
€ > 0 it obviously suffices to show that

(117) p ' (0)nial =10
for some p € P.

Lemma 21. Suppose that p € P vanishes at /o € iag. Then for every y € °€ ()
the function E,(P:y : ) is ID(G/H)-finite and belongs to the Schwartz
space €(G/H : 7).

Proof. Put Ej (P :y: 4) =p(A)EG(P : ¢ : 2). Then it follows from the
lemma above that E;Q(P 21 Ag) = 0 for Q € 2, proper. Using Corollary 2
we obtain

lim ¢0™) ES(P 2 < 2g)(m exptX) =0

t—00

for all m € Mp, X € aaq. The lemma is now an immediate consequence of
Proposition 12. U

To complete the proof of Theorem 2 we need the following lemma.
Given p € P, we define, as in [3, Sect. 19], a continuous linear map
Zp: €(G/H : t) — S (ia;) ® °%(t) by
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(Fof W) = [IE,(P =2 2)), (b €°F()),

for f € 6(G/H : 1), /€ iag.

Lemma 22. Let p € P, and let f € €(G/H : 1) be a D (G/H)-finite function.
Then Z,f = 0.

Proof. Let L € D (G/H) denote the canonical image of the Casimir element
(it is the Laplace-Beltrami operator associated with the pseudo-Riemannian
structure on G/H induced by B). Then by ID (G/H)-finiteness there exist a
positive integer m and constants ay, ..., a,_; € C such that

D:=L"+4a,L" '+ .. +q

annihilates /. In view of (60), which is valid also for Schwartz functions f by
the density of C°(G/H : 1) in ¥(G/H : 1), this implies that

(118) WD ) Zf (2) = Z(Df)(2) =0,

for all 4 € iay. The End(°%(r))-valued polynomial function A+ pu(D: 7 : )
on iag has highest degree homogeneous part equal to (2, 2)" times the id-
entity operator. Hence det u(D : 7 : 1) is not identically zero, and therefore
(118) implies that #,f = 0. O

Lemma 23. Suppose that p € P vanishes at o € iag. Then E;(P Yidg) =0
Sor all y € °% (7).

Proof. Fix § € °¢(t). Then by Lemma 21 the function f := E(P : { : /o) is
a ID (G/H)-finite 7-spherical Schwartz function. From Lemma 22 we then
obtain that:

1) = SIESP 2 )5, = (oS (Ao)l) = O,

and it follows that f = 0. O

We can now complete the proof of Theorem 2 by an argument similar to the
one used in the proof of Theorem 1 (see Sect. 5). Choose some p € P, and
suppose that (117) does not hold. Then p has a linear factor / € P vanishing
at a point of iag. This factor must be of the form /(4) = (4,a) — ¢, with
o € ¥ and ¢ a purely imaginary number. Thus H := /='(0) N iag is a codi-
mension | hyperplane in iag. Let y € °%(t). Then it follows from Lemma 23
that E°(P:y : -) vanishes on H, and hence on the connected set
I710) N aji(ﬁ, 1), by analytic continuation. Therefore / is a factor of the
holomorphic function A+ E;(P: 4 : 1) on ai(P,1), and by definition it
follows that /~'p € P. Using this argument repeatedly we arrive in a finite
number of steps at a p € P such that (117) holds. O
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It follows from Theorem 2 that the results of [3, Sect. 19] are valid with

7 =1 (see loc. cit. for the meaning of this notation). In particular we get the
following result (cf. loc. cit., Thm. 19.1).

Corollary 4. The Fourier transform % defines a continuous linear map from
%(G/H :7) into S (ia}) ® °6(7).
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