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Abstract. We prove the Plancherel formula for spherical Schwartz func-
tions on a reductive symmetric space. Our starting point is an inversion
formula for spherical smooth compactly supported functions. The latter for-
mula was earlier obtained from the most continuous part of the Plancherel
formula by means of a residue calculus. In the course of the present paper
we also obtain new proofs of the uniform tempered estimates for normal-
ized Eisenstein integrals and of the Maass–Selberg relations satisfied by the
associated C-functions.
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1. Introduction

In this paper and its sequel [15] we determine the Plancherel decomposition
for a reductive symmetric space X = G/H. Here G is a real reductive Lie
group of Harish-Chandra’s class and H is an open subgroup of the group Gσ

of fixed points for an involution σ of G. In the present paper we establish
the Plancherel formula for K -finite (spherical) Schwartz functions on X,
with K a σ -invariant maximal compact subgroup of G. In [15] we shall
derive the Plancherel decomposition, in the sense of representation theory,
from it.

The space X carries a G-invariant measure dx; accordingly the regular
representation L of G in L2(X) is unitary. The Plancherel decomposition
amounts to an explicit decomposition of L as a direct integral of irreducible
unitary representations. The reductive group G is a symmetric space of its
own right, for the left times right action of G × G. In this ‘case of the
group’, the explicit Plancherel decomposition was obtained in the sixties
and early seventies in the work of Harish-Chandra, see [30], [31], [32].
His ideas, in particular those on the role of Eisenstein integrals and the
Maass–Selberg relations satisfied by them, have been a major influence in
our work. On the other hand, our approach to the Plancherel formula is
via a residue calculus, and thus in a sense closer in spirit to the work of
R.P. Langlands on the spectral decomposition in the theory of automorphic
forms, see [37].

The results of this paper and [15] were found and announced in the fall
of 1995 when both authors were visitors of the Mittag–Leffler Institute in
Djursholm, Sweden. At the same time P. Delorme announced his proof of
the Plancherel theorem. His results have appeared in a series of papers,
partly in collaboration with J. Carmona, [19], [23], [24]. At the time of the
announcement we relied on the theorem of Carmona and Delorme on the
Maass–Selberg relations for Eisenstein integrals, [19], Thm. 2, which in
turn relied on Delorme’s paper [23]. On the other hand, we also announced
the proof of a Paley–Wiener theorem for reductive symmetric spaces, gen-
eralizing Arthur’s theorem [1] for the case of the group. The proof of the
Paley–Wiener theorem has now appeared in [16], which is independent of
the present paper and [15]. The present paper as well as [15] and [16] rely
on [12] and [14].

Since the time of announcement we have been able to derive the Maass–
Selberg relations from those associated with the most continuous part of
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the decomposition; these had been obtained earlier in [5], [6]. The resulting
proof of the Plancherel theorem in the present paper and [15] is independent
of the one in [24]; moreover, it follows a completely different approach. Fi-
nally, we mention that T. Oshima has announced a Plancherel formula
in [39], p. 604, but the details have not appeared. For a more extensive
survey of recent developments, we refer the reader to [13].

For Riemannian symmetric spaces, the Plancherel formula is due to
Harish-Chandra [27] and [28], p. 48. Later, it became incorporated in the
above mentioned formula for the group. For further results in harmonic an-
alysis on Riemannian symmetric spaces, we refer the reader to the references
given in [35].

For reductive symmetric spaces of type GC/GR, the Plancherel for-
mula is due to P. Harinck, [26]. Earlier, the Plancherel decomposition
had been determined for specific non-Riemannian spaces of rank one, by
V.F. Molchanov, J. Faraut, G. van Dijk and others; see [33], p. 185, for
references.

We first give a rough outline of the contents of this paper and its se-
quel [15]. The following global picture should be kept in mind. We first
concentrate on the Plancherel formula for K -finite functions, with K ⊂ G
a maximal compact subgroup that is chosen to be σ -stable. The latter con-
dition is equivalent to the condition that the Cartan involution θ determined
by K commutes with σ. The building blocks of the formula will be dis-
crete series representations of X and generalized principal series of the
form IndG

P (ξ ⊗ ν ⊗ 1), with P = MP AP NP a σθ-stable parabolic sub-
group of G with the indicated Langlands decomposition, ξ a discrete series
representation of XP := MP/MP ∩ H and ν contained in the space ia∗Pq
of unitary characters of AP/AP ∩ H. For purposes of exposition this in-
troduction is written under the simplifying assumption that the number of
open H-orbits on P\G is one. In general the open orbits are parametrized
by a finite set PW of representatives, and then one should take for ξ the
discrete series representations of all the spaces XP,v := MP/MP ∩ vHv−1,
v ∈ PW .

In [10] we obtained the most continuous part of the Plancherel decom-
position; this is the part built up from representations obtained by induc-
tion from a minimal σθ-stable parabolic subgroup P0 = M0 A0 N0. Here
M0/M0 ∩ H is compact, so the theory of the discrete series did not critically
enter at this stage. On the level of K -finite functions the most continuous
part of the formula is described via a Fourier transform F0, which in turn
is defined in terms of Eisenstein integrals E◦(P0 : λ). The latter are es-
sentially matrix coefficients of the principal series induced from P0 and
behave finitely under the action of the algebra D(X) of invariant differential
operators on X.

From the most continuous part of the Plancherel decomposition we de-
rived in [12] a Fourier inversion formula for functions in C∞

c (X : τ), the
space of smooth compactly supported τ-spherical functions on X, with τ
a finite dimensional unitary representation of K. This formula expresses
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a function f in terms of the meromorphic extension of F0 f to the complex-
ification of ia∗P0q.

The strategy of the present paper is to put the inversion formula in a form
that makes it valid for functions in the Schwartz space C(X : τ). This
requires the introduction of Eisenstein integrals E◦(P : ν), for imaginary
ν ∈ ia∗Pq, via residues of the Eisenstein integrals E◦(P0 : · ). To show that
these residual Eisenstein integrals define Fourier transforms on the Schwartz
space we need the Maass–Selberg relations. It is here that the theory of the
discrete series, initiated by M. Flensted-Jensen in [25] and further developed
by T. Oshima and T. Matsuki in [40], enters. In our proofs we do not need
the full classification of the discrete series. However, for the theory of the
constant term developed in [17] to apply, both the necessity of the rank
condition and the fact that the infinitesimal D(X)-characters of discrete
series representations are real and regular (see Theorem 16.1, due to [40]),
play a crucial role.

The resulting inversion formula for Schwartz functions is called the
spherical Plancherel formula, see Theorems 21.2 and 23.1. It naturally
leads to the spherical Plancherel formula for L2-functions, Theorem 23.4.
The present paper finishes at this point, where it is not yet clear that the
residual Eisenstein integrals are related to induced representations. This
fact will be established in the second paper [15] by using the vanishing
theorem of [14]. The contributions of all K -types can then be collected
and lead to the representation theoretic Plancherel formula. At the end of
the second paper it will also be shown that the residual Eisenstein inte-
grals E◦(P : ν) equal the normalized Eisenstein integrals introduced in
Delorme’s paper [22]. The idea is to use the automatic continuity theorem
of W. Casselman and N.R. Wallach ([20], [43]) to show that the residual
Eisenstein integrals are matrix coefficients. An asymptotic analysis then
completes the identification.

We shall now give a more detailed outline of the present paper. The first
few sections concern preliminaries. In particular, in Sect. 5 we specify the
normalizations of the residual operators and the measures used in the rest
of the paper. In Sect. 6 we give a formulation of the vanishing theorem
of [14], in a form suitable for this paper. Let aq be a maximal abelian
subspace of p ∩ q, the intersection of the −1 eigenspaces in g for θ and σ ,
respectively. Let Pσ denote the set of σθ-stable parabolic subgroups of G
containing Aq := exp aq. For each Q ∈ Pσ we introduce a space E

hyp
Q (X : τ)

of families { fν} of spherical generalized eigenfunctions on X, depending
meromorphically on the parameter ν ∈ a∗QqC. Here aQq := aQ ∩ q. The
vanishing theorem asserts that fν = 0 for all ν, as soon as the coefficient of
eν−ρQ in the asymptotic expansion along Q vanishes, for all ν in a non-empty
open subset of a∗QqC.

In Sect. 8 we recall the inversion formula of [12]. Let Σ be the root
system of aq in g and let W be the associated Weyl group. Let ∆ be the
system of simple roots associated with the minimal element P0 from Pσ . For
each F ⊂ ∆, let PF = MF AF NF denote the associated standard parabolic
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subgroup in Pσ . Then the inversion formula is of the form

f =
∑

F⊂∆

t
(
a
+
Fq

)
T t

F f,

where

T t
F f(x) = t

(
a
+
Fq

) |W |
∫

iaFq+εF

∫

X
Kt

F(ν : x : y) f(y) dy dµF(ν). (1.1)

Here t is a choice of W-invariant even residue weight on Σ and εF is
an element of a+Fq, sufficiently close to zero (if F = ∆, we may take
εF = 0). Moreover, dµF is a suitable choice of Lebesgue measure on
ia∗Fq + εF . The kernel functions Kt

F(ν : x : y) ∈ End(Vτ ) are obtained
from residual operators acting on a combination of normalized and partial
Eisenstein integrals for P0, see [12] for details. They are meromorphic in
the variable ν ∈ a∗QqC and smooth spherical and D(X)-finite in both of the
variables x, y ∈ X. Essentially, the idea is that the kernel Kt

F determines
the projection onto the part of L2(X : τ) determined by the induction from
the standard parabolic subgroup PF .

To make the above formula valid for Schwartz functions it is necessary
to establish it with εF = 0, for every F. This can be achieved by using
Cauchy’s formula, once we have established the regularity at ia∗Fq of the
kernel functions Kt

F(ν, x, y) in the variable ν. In addition to this we need
estimates that are tempered in the variables x, y with uniformity in ν ∈ ia∗Qq.

All this is taken care of by a long inductive argument, that ranges over the
Sects. 12–21. We shall describe the structure of the argument, which goes
by induction on the σ -split rank of G, at a later stage in this introduction.

In Sect. 9 we recall the definition of the generalized Eisenstein integral
E◦

F(ν), for ν ∈ a∗FqC. In [12], Def. 10.7, see also [14], Remark 16.12, this
Eisenstein integral was defined by means of a linear combination of residual
operators (a so called Laurent functional) applied to the Eisenstein integral
E◦(P0 : λ) with respect to the variable λ. As a family in the parameter ν,
the generalized Eisenstein integral belongs to E

hyp
PF

(X : τ). Hence, in view
of the vanishing theorem, it can be characterized uniquely in terms of its
asymptotic behavior along PF; see Theorem 9.3.

In Corollary 10.6 we show that the generalized Eisenstein integral is
tempered for regular imaginary values of ν. This fact can be derived from
a limitation on the asymptotic exponents, see Theorem 10.5, caused by
the support of the residual operators. Here Thm. 3.15 of [11] is crucial.
In the next section, in Proposition 11.6, we establish uniformly moderate
estimates for the generalized Eisenstein integrals. These estimates come
from similar estimates for E◦(P0 : · ), which survive the application of the
residual operators.

In Sect. 12 we start with the preparation of the long inductive argument
mentioned above. The reductive symmetric pair (G, H) is said to be of
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residue type if the following two conditions are fulfilled, (a) G has compact
center modulo H and (b) the operator T t

∆ is the projection onto the discrete
part L2

d(X : τ) of L2(X : τ) (which may be trivial). Condition (b) implies
that the mentioned operator, and hence the associated ‘discrete’ kernel Kt

∆,
is independent of the particular choice of residue weight t. Moreover, from
condition (b) it follows that L2

d(X : τ) is finite dimensional, a result known
for all pairs (G, H) as a consequence of [40], see also Remark 12.7.

We proceed with the induction in Sect. 13. A parabolic subgroup P ∈ Pσ

is said to be of residue type if the pair (MP, MP ∩ H) is. A subset F ⊂ ∆ is
said to be of residue type, if the associated standard parabolic subgroup PF
is. In the course of the inductive argument, many results in Sects. 12–21
will initially be proved under the assumption that (G, H) or a parabolic
subgroup from Pσ is of residue type. Such results will always be indicated
with the abbreviation (RT) following their declaration. The chain of results
marked (RT) is needed in the induction step of Theorem 21.2, where by
induction on the σ -split rank of G it is shown that all groups from Pσ are
of residue type. In particular, also all pairs (G, H), with G having compact
center modulo H , are of residue type. It thus follows that the results marked
(RT) are valid in the generality stated (see also Remark 12.2).

The kernel Kt
F(ν : · : · ) is determined by its asymptotic expansion

along PF × PF , in view of the vanishing theorem. The coefficient of eν−ρF ⊗
e−ν−ρF in this expansion is essentially the discrete kernel of MF/MF ∩ H. If
F is of residue type, then the discrete kernel, and hence Kt

F , is independent
of the particular choice of t. Therefore, so is the generalized Eisenstein
integral. From then on we call this Eisenstein integral the normalized one
and denote it by E◦(PF : ν). It is a meromorphic function of ν ∈ a∗FqC,
with values in C∞(X) ⊗ Hom(A2,F, Vτ ), where A2,F = L2

d(XF : τF ).
(Without the simplifying assumption mentioned above, the latter space is
replaced by a suitable direct sum over FW .) The unique characterization of
the normalized Eisenstein integral by means of the vanishing theorem then
allows us to define it for PF replaced by any parabolic subgroup P ∈ Pσ

of residue type. In the case of the group, the characterization allows us
to identify the normalized Eisenstein integral with Harish-Chandra’s, as
defined in [29], §6, Thm. 6; see Remark 13.9.

The definition of the normalized Eisenstein integral in turn allows us to
define a kernel function KP for arbitrary P ∈ Pσ of residue type, general-
izing the kernels for standard parabolic subgroups of residue type. In terms
of the normalized Eisenstein integrals, the kernel is given by the formula

KP(ν : x : y) = |WP|−1 E◦(P : ν : x)E∗(P : ν : y). (1.2)

Here WP is the subgroup of W that corresponds to the Weyl group of XP,
and E∗(P : ν : · ) is the dualized Eisenstein integral. The latter is the
function in C∞(X) ⊗ Hom(Vτ ,A2,P) defined by

E∗(P : ν : y) := E◦(P : −ν̄ : y)∗.
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Two parabolic subgroups P, Q ∈ Pσ are said to be associated, notation
P ∼ Q, if their σ -split components aPq and aQq are conjugate under W.
If P, Q ∈ Pσ are associated, and if one of them is of residue type, then so
is the other. Moreover, the set

W(aQq | aPq) = {s|aPq | s ∈ W, s(aPq) ⊂ aQq}
is non-empty. The main result of the section is Theorem 13.23, which asserts
that the kernel function is unchanged if P, ν are replaced by Q, sν, with
Q ∼ P and s ∈ W(aQq | aPq). For P minimal, this result is a consequence
of the Maass–Selberg relations for the Eisenstein integral E◦(P : · ), in
view of (1.2). For arbitrary P of residue type the result follows from the
minimal case by W-equivariance properties of the residue calculus.

In Sect. 14 we describe the action of D(X) on the normalized Eisenstein
integral E◦(P : ν), for P of residue type. The diagonalization of D(XP) on
L2

d(XP : τP ), where τP := τ|K∩P , induces a simultaneous diagonalization
of the action of D(X) on the Eisenstein integral, in view of the vanishing
theorem, see Corollary 14.4. In the next section this result is used to show that
the uniform moderate estimates of the Eisenstein integral can be improved
to uniform tempered estimates, exploiting a technique that goes back to [5]
and [42]

In Sect. 16 we recall the mentioned result of [40] on theD(X)-characters
of the discrete series in Theorem 16.1. This result is of crucial importance for
Sect. 17, where we determine the constant term of the normalized Eisenstein
integral. In addition we use the theory of the constant term as developed
in [17], see also [30].

The constant term of E◦(P : ν) along a Q ∈ Pσ with Q ∼ P describes
eρQ times the top order asymptotic behavior along Q; it is given by

E◦
Q(P : ν : ma)ψ =

∑

s∈W(aQq|aPq)

asν
[
C◦

Q|P(s : ν)ψ
]
(m), (1.3)

for ν ∈ a∗Pq generic, a ∈ AQq and m ∈ XQ. Here C◦
Q|P(s : ν), the normal-

ized C-function, is a meromorphic Hom(A2,P,A2,Q)-valued function of
ν ∈ a∗PqC. For the description of the constant term without the simplifying
assumption mentioned above, see Corollary 17.7.

In Sect. 18 we derive the Maass–Selberg relations from the invariance
property of the kernel (1.2) mentioned above. They assert the following
identity of meromorphic functions in the variable ν ∈ a∗Pq,

C◦
Q|P(s : −ν̄)∗C◦

Q|P(s : ν) = I,

for P, Q ∈ Pσ associated and of residue type, and for s ∈ W(aQq | aPq).
In particular, it follows that the normalized C-functions are unitary for
imaginary ν. This in turn shows that the constant term (1.3) is regular for
imaginary ν. By a result from [7] this implies that the Eisenstein integral
E◦(P : ν) is regular for imaginary ν, see Theorem 18.8. Because of the
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uniform tempered estimates formulated in Corollary 18.12, it becomes pos-
sible to define a spherical Fourier transform FP in the next section by the
formula

FP f(ν) =
∫

X
E∗(P : ν : x) f(x) dx, (1.4)

for f ∈ C(X : τ), the space of τ-spherical Schwartz functions on X.
Proposition 19.6 asserts that FP is a continuous linear map into the Euclidean
Schwartz space S(ia∗Pq) ⊗ A2,P, if P is of residue type. In Sect. 20 it is
shown, using a result from [7], that the adjoint wave packet transform, given
by the formula

JPϕ(x) =
∫

ia∗Pq

E◦(P : ν : x)ϕ(ν) dµP(ν) (1.5)

is a continuous linear map from S(ia∗Pq) ⊗ A2,P into C(X : τ), see Theo-
rem 20.3. Here dµP is Lebesgue measure on ia∗Pq, normalized as in Sect. 5.

In Sect. 21 the long inductive argument is completed as follows. In the
proof of Theorem 21.2, it is shown that every P ∈ Pσ is of residue type,
by induction on the σ -split rank of G. The hypothesis of the induction step
implies that one may assume that G has compact center modulo H and that
every F � ∆ is of residue type. In view of the regularity of the normalized
Eisenstein integrals, hence of the kernels KF(ν : · : · ), for F � ∆ and
ν ∈ ia∗Fq, the formula (1.1) becomes valid with εF = 0 for every subset
F ⊂ ∆ (recall that ε∆ = 0). Moreover, by the definition of the transforms
FF := FPF and JF := JPF , it takes the form

f = T t
∆ f +

∑

F�∆

[W : WF] t(PF )JFFF f.

From this one reads off that T t
∆ maps C∞

c (X : τ) into C(X : τ), from which
it readily follows that T t

∆ is the restriction to C∞
c (X : τ) of the orthogonal

projection onto L2
d(X : τ). This argument completes the induction step;

moreover, at the same time it shows that

I =
∑

F⊂∆

[W : WF] t(PF )JFFF (1.6)

on C∞
c (X : τ) and hence on C(X : τ) by continuity and density. It is at this

point that the role of the residue weight in the harmonic analysis becomes
clear. Define the equivalence relation ∼ on the powerset 2∆ by F ∼ F ′ ⇐⇒
PF ∼ PF ′ . Then by the Maass–Selberg relations the composed transform
JFFF only depends on the class of F in 2∆/∼. Collecting the terms in
(1.6) according to such classes we obtain, by an easy counting argument,
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the following Fourier inversion formula which is independent of the choice
of residue weight

I =
∑

[F]∈2∆/∼
[W : W∗

F]JFFF, (1.7)

with W∗
F the normalizer of aFq in W. In other words, the residue weight

describes the weight by which an element in the class of F contributes to
the above inversion formula.

In Sect. 22 we give a precise description of the kernels and images of the
Fourier transforms and their adjoints. This leads to the spherical Plancherel
theorem for Schwartz functions, Theorem 23.1 and the similar theorem for
L2-functions, Theorem 23.4. In particular, the summands in (1.7) extend
to L2(X : τ) and become orthogonal projections onto mutually orthogonal
subspaces.

We are grateful to the organizers of the special year at the Mittag–Leffler
Institute, during which these results were found, and we thank Mogens
Flensted-Jensen for several helpful discussions. We are also grateful to
Jacques Carmona and Patrick Delorme for informing us about their results
on the Maass–Selberg relations, which played a crucial role for us, as
mentioned above.

2. Notation and preliminaries

Throughout this paper, G will be a real reductive group of Harish-Chandra’s
class, σ an involution of G and H an open subgroup of Gσ , the set of fixed
points for σ. The associated reductive symmetric space is denoted by

X = G/H.

The algebra of G-invariant differential operators on X is denoted by D(X).
We fix a Cartan involution θ of G that commutes with σ; thus, the

associated maximal compact subgroup K = Gθ is σ -invariant. We follow
the convention to denote Lie groups with roman capitals, and their Lie
algebras with the corresponding gothic lower cases. In particular, g denotes
the Lie algebra of G. The infinitesimal involutions of g associated with θ
and σ are denoted by the same symbols.

We equip g with a G-invariant non-degenerate bilinear form B that
restricts to the Killing form on [g, g], that is positive definite on p, negative
definite on k, and for which σ is symmetric. Then 〈X , Y 〉 := −B(X, θY )
defines a positive definite inner product on g for which the involutions θ and
σ are symmetric. Accordingly, the decompositions g = k⊕p = h⊕q into the
+1 and −1 eigenspaces of these involutions, respectively, are orthogonal.
If v ⊂ g is a linear subspace, we agree to identify v∗ with a linear subspace
of g via the inner product 〈· , ·〉. Finally, we equip the linear dual g∗ of g
with the dual inner product, and the complexified dual g∗

C
with its complex

bilinear extension.
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We fix a maximal abelian subspace aq of p∩q and denote the associated
system of restricted roots by Σ = Σ(g, aq). This is a, possibly non-reduced,
root system; the associated Weyl group is denoted by W = W(Σ). We recall
that W � NK (aq)/ZK(aq), naturally. Accordingly, the natural image of
NK∩H(aq) in W is denoted by WK∩H .

If P is a parabolic subgroup of G, we denote its Langlands decompos-
ition by P = MP AP NP and put M1P := MP AP . A parabolic subgroup
that is invariant under the composed involution σθ is called a σ -parabolic
subgroup. The set of σ -parabolic subgroups containing Aq := exp aq is
finite and denoted by Pσ .

We shall briefly recall the structure of the parabolic subgroups from Pσ ,
meanwhile fixing notation. For details we refer to [14], §2. If P ∈ Pσ ,

then MP and AP are σ -invariant, and σNP = θNP = N̄P . The algebra aP
is σ -invariant, hence decomposes as aP = aPh ⊕ aPq, the vector sum of
the intersections of aP with h and q, respectively. We put APq := exp aPq
and MPσ := MP(AP ∩ H) and call P = MPσ APq NP the σ -Langlands
decomposition of P.

As usual, we denote by ρP the linear functional 1
2 tr [ad( · )|nP ] ∈ a∗P. The

following lemma is of importance in the theory of induced representations.

Lemma 2.1 Let P ∈ Pσ . Then ρP belongs to a∗Pq.

Proof: The algebras aP and nP are σθ-invariant, hence −σρP = σθρP
= ρP. This implies that ρP vanishes on aPh, hence belongs to a∗Pq. ��

The space aPq is contained in aq. Let ΣP denote the collection of roots
from Σ that vanish on aPq. Then

aPq = ∩α∈ΣP ker α.

The subgroup of W generated by the reflections in the roots of ΣP is denoted
by WP. It equals the centralizer of aPq in W.

Let Σ(P) be the collection of roots from Σ that occur in nP as an
aq-weight. Then nP is the vectorial direct sum of the root spaces gα, for
α ∈ Σ(P). We put

Σr(P) := Σ(nP, aPq) = {α|aPq | α ∈ Σ(P)}.
The set

a
+
Pq := {X ∈ aPq | α(X) > 0 for all α ∈ Σ(P)}

is non-empty. Therefore, the elements of Σr(P) are non-zero linear func-
tionals on aPq. Moreover, a+Pq is a connected component of the complement
a

reg
Pq of the union of their null spaces. We put A+

Pq := exp a+Pq.

The collection of weights in Σr(P) that cannot be expressed as a sum of
two elements of Σr(P) is denoted by ∆r(P). We recall from [14], beginning
of Sect. 3, that the set ∆r(P) is linearly independent overR and spans Σr(P)
over N.
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If X ∈ aq, then X ∈ p, hence adX diagonalizes with real eigenvalues.
It is well known that the sum of the eigenspaces for the non-negative
eigenvalues is a parabolic subalgebra of g. Its θ-stable Levi component m1X
and its nilpotent radical nX are given by

m1X = ker adX, nX = ⊕α∈Σ, α(X )>0 gα.

The associated parabolic subgroup of G is denoted by PX . If P ∈ Pσ and
X ∈ a+Pq, then it follows from [14], Eqn. (2.4), that P = PX . From σθX = X
it follows that PX ∈ Pσ .

Let ∼ be the relation of parabolic equivalence on aq, with respect to
the root system Σ. Thus, X ∼ Y if and only if for each α ∈ Σ we have
α(X) > 0 ⇐⇒ α(Y ) > 0. It readily follows from the definition given
above that X ∼ Y ⇐⇒ PX = PY .

Lemma 2.2 The map P �→ a
+
Pq is a bijection from Pσ onto the set aq/∼

of parabolic equivalence classes.

Proof: If P ∈ Pσ and X ∈ a+Pq then P = PX, as said above. Hence,
the map X �→ PX is a surjection from aq onto Pσ . By the last assertion
before Lemma 2.2, the map factors to a bijection from aq/ ∼ onto Pσ .
If X ∈ aq, let P = PX . Then Σ(P) = {α ∈ Σ | α(X) > 0}, hence
ΣP = {α ∈ Σ | α(X) = 0}, and we see that [X] = a+Pq. Thus, P �→ a

+
Pq is

the inverse to [X] �→ PX . ��
It follows from the description in Lemma 2.2 that the Weyl group W

acts on the finite set Pσ . We recall from [11], Def. 3.2, that a residue weight
on Σ is a map a∗q/∼→ [0, 1] such that for every Q ∈ Pσ ,

∑

P∈Pσ , aPq=aQq

t
(
a
+
Pq

) = 1. (2.1)

The collection of residue weights on Σ is denoted by WT(Σ). Via the
bijection of Lemma 2.2, a weight t ∈ WT(Σ) will also be viewed as a map
t : Pσ → [0, 1]. A residue weight t ∈ WT(Σ) is said to be W-invariant if
t(wa+Pq) = t(a+Pq) for all P ∈ Pσ and w ∈ W, and even if t(a+Pq) = t(−a+Pq)

for all P ∈ Pσ .
Let P min

σ the collection of minimal elements in Pσ . Then P �→ a
+
Pq is

a bijection from P min
σ onto the collection of open chambers for Σ in aq. To

emphasize this, we shall also write a+q (P) := a+Pq and A+
q (P) := A+

Pq for
P ∈ P min

σ . Accordingly, W acts simply transitively on P min
σ . Note that for

P ∈ P min
σ , Σ(P) = Σr(P) is a positive system for Σ and ∆(P) := ∆r(P)

the associated collection of simple roots.
We fix a system Σ+ of positive roots for Σ; let ∆ be the associated

collection of simple roots. Given F ⊂ ∆ we define

aFq := ∩α∈F ker α
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and denote by a+Fq the subset of elements X ∈ aFq such that β(X) > 0
for β ∈ ∆ \ F. Then a+Fq is a parabolic equivalence class. The associated
parabolic subgroup PF is called the standard parabolic subgroup determined
by F. We adopt the convention to replace an index or superscript PF by F.
In particular, the Langlands decomposition of PF is denoted by PF =
MF AF NF and the centralizer of aFq in W by WF . Let

W F := {s ∈ W | s(F) ⊂ Σ+}.
Then the canonical map W → W/WF induces a bijection W F → W/WF .

We write P0 for P∅, P0 = MAN0 for its Langlands decomposition and
M1 := MA. Then P = M1 NP for every P ∈ P min

σ .
If P ∈ Pσ and v ∈ NK (aq), we define

XP,v := MP/MP ∩ vHv−1. (2.2)

Here MP is a real reductive group of Harish-Chandra’s class and MP∩vHv−1

is an open subgroup of the group of fixed points for the involution
σv : MP → MP defined by σv(m) = vσ(v−1mv)v−1. Thus, the space
in (2.2) is a reductive symmetric space in the class under consideration.
Moreover, θ|MP is a Cartan involution of MP that commutes with σv; the
associated maximal compact subgroup is KP := K ∩ MP.

Note that as (an isomorphism class of) a MP-homogeneous space, the
symmetric space XP,v depends on v through its class in the double coset
space WP\W/WK∩H . Throughout this paper, PW will denote a choice of
representatives in NK (aq) of WP\W/WK∩H . In general, if f is a surjective
map from a set A onto a set B, then by a choice of representatives for B
in A, we mean a subset B ⊂ A such that f |B : B → B is a bijection.

Let ∗aPq denote the orthocomplement of aPq in aq. Then
∗
aPq = mP ∩ aq.

Moreover, for every v ∈ NK (aq), this space is the analogue of aq for the
triple (MP, KP, MP ∩ vHv−1), see [14], text following (3.4).

In analogy with (2.2), we define X1P,v := M1P/M1P ∩ vHv−1, for
P ∈ Pσ and v ∈ NK (aq). The multiplication map MP × APq → M1P
induces a diffeomorphism

X1P,v � XP,v × APq. (2.3)

If v = e, we agree to omit v in the notation of the spaces in this product, so
that X1P = M1P/M1P ∩ H � MP/MP ∩ H × APq.

We end this section with collecting some basic facts about θ-stable
Cartan subspaces of q, meanwhile fixing notation. We define the dual real
form gd of g as the real form of gC given by gd = ker(σ θ− I )⊕i ker(σ θ+ I ).
Let θC and σC be the complex linear extensions of θ and σ, respectively. Then
θd := σC|gd is a Cartan involution of gd and σd := θC|gd is an involution of
gd commuting with θd.
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If v is any σ - and θ-stable subspace of g, then dv := vC ∩ gd is a σd- and
θd-stable subspace of gd, whose complexification equals that of v.

If b is a θ-stable Cartan subspace of q, then b = bk⊕bp, where bk := b∩k
and bp := b ∩ p. Moreover,

d
b := ibk ⊕ bp

is a σd-stable maximal abelian subspace of pd. We denote by Σ(b) the root
system of db in gd, by W(b) the associated Weyl group and by I(b) the
space of W(b)-invariants in S(b), the symmetric algebra of bC. Moreover,
we denote the associated Harish-Chandra isomorphism by

γdb : U(gd)k
d
/U(gd)k

d ∩ U(gd)kd → I(b). (2.4)

As usual, if l is a real Lie algebra, we denote by U(l) the universal algebra
of its complexification. Via the natural isomorphism

D(X) � U(g)h/U(g)h ∩ U(g)h = U(gd)k
d
/U(gd)k

d ∩ U(gd)kd, (2.5)

see [5], Lemma 2.1, we shall identify the algebra D(X) with the algebra on
the left-hand side of (2.4) and thus view the Harish-Chandra isomorphism
γdb as an algebra isomorphism from D(X) onto I(b); as such it is denoted
by γ = γb.

If P ∈ Pσ and b a θ-stable Cartan subspace of q containing aPq, we
agree to write ∗bP := b ∩ mP. Then ∗bP is a θ-stable Cartan subspace of
mP ∩ q and

b = ∗
bP ⊕ aPq, (2.6)

with orthogonal summands. If P is minimal, then b is maximally split, and
we suppress the index P, so that b = ∗b⊕aq. We shall write W(∗bP) for the
Weyl group of the pair (mPC,

∗bP). Via the decomposition (2.6) this Weyl
group is naturally identified with WP(b), the centralizer of aPq in W(b).

3. Weyl groups

In this section we discuss a straightforward generalization of well known
results on Weyl groups, see [30], p. 111.

If a1 and a2 are abelian subspaces of p, then following [30], p. 112, we
define the set

W(a2 | a1) := {s ∈ Hom(a1, a2) | ∃ g ∈ G : s = Ad(g)|a1}.
From the definition it is obvious that the set W(a2 | a1) consists of injective
linear maps. In particular, if dim a1 = dim a2, it consists of linear isomor-
phisms. Finally, if a1 = a2, the set is a subgroup of GL(a1) = GL(a2). We
note that W(a1 | a1) naturally acts from the right on W(a2 | a1), whereas
W(a2 | a2) naturally acts from the left. If dim a1 = dim a2, then both of
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these actions are transitive and free. If ap is a maximal abelian subspace
of p, then by W(g, ap) we denote the Weyl group of Σ(g, ap), the root
system of ap in g.

Lemma 3.1 Let a1 and a2 be abelian subspaces of p.

(a) The set W(a1 | a2) is finite.
(b) If ϕ ∈ Int(gC) maps a1 into a2 then ϕ|a1 ∈ W(a2 | a1).
(c) If s ∈ W(a2 | a1), then there exists a k ∈ Ke such that s = Ad(k)|a1 .
(d) Assume that a1 and a2 are contained in a maximal abelian subspace ap

of p. Then

W(a2 | a1) = {t ∈ Hom(a1, a2) | ∃s ∈ W(g, ap) : t = s|a1}.
Proof: All assertions are immediate consequences of Corollaries 1, 2 and 3
of [30], p. 112. ��
Corollary 3.2

(a) W = W(aq | aq).
(b) Let ap be a maximal abelian subspace of p, containing aq. Then the

map k �→ Ad(k)|aq is a surjection from NKe(aq) ∩ NKe(ap) onto W.

Proof: The map k �→ Ad(k)|aq induces a natural isomorphism
NK (aq)/ZK (aq) � W, see, e.g., [4], Lemma 1.2. Hence, W ⊂ W(aq | aq).
For the converse inclusion, select a maximal abelian subspace ap of p, con-
taining aq. Then by Lemma 3.1 (d), any element t ∈ W(aq | aq) is the
restriction of an element s ∈ W(g, ap). There exists a k ∈ NKe(ap) such that
s = Ad(k)|ap . The element k necessarily normalizes aq. Thus, we obtain
the converse inclusion and also the validity of assertion (b). ��

The following lemma generalizes Lemma 1 of [30], p. 111. Let aq be
a maximal abelian subspace of p∩ q. Let ap be a maximal abelian subspace
of p containing aq, and j a Cartan subalgebra of g containing ap. We denote
by W(gC, jC) the Weyl group of the root system of jC in gC.

Lemma 3.3 Two elements of aq are conjugate under Int(gC) if and only if
they are conjugate under any one of the following groups

W(gC, jC), W(g, ap), W = W(g, aq), NKe(ap) ∩ NKe(aq).

Moreover, given P ∈ P min
σ and H ∈ aq, there is a unique element H0 ∈

cl a+q (P) which is conjugate to H under W.

Proof: If P ∈ P min
σ , then a+q (P) is the open positive chamber for the

positive system Σ(P) of the root system Σ. Also, W is the Weyl group
of Σ. Thus, the final assertion follows by a well known property of Weyl
groups. We turn to the assertions about equivalence of conjugation.

For the first two listed groups the equivalence follows from Lemma 1
in [30], p. 111. For the equivalence for the third group, let H1, H2 ∈ aq
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and assume that H2 = ϕ(H1) for some ϕ ∈ Int(gC). We may fix P ∈ P min
σ

such that H1 ∈ cl (a+q (P)). There exists a s ∈ W such that s−1(H2) ∈
cl (a+q (P)). Fix a choice Σ+(g, ap) of positive roots for Σ(g, ap) that is
compatible with Σ(P), and let a+p be the associated positive chamber. Then
cl (a+q (P)) ⊂ cl (a+p ). Since W is naturally isomorphic to NK (aq)/ZK (aq),

the elements s−1(H2) and H1 are conjugate under Int(gC). Hence, they
are already conjugate under W(g, ap). Being both contained in cl (a+p ), the
elements must be equal and we conclude that H2 = s(H1). The equivalence
for the third group now follows.

Using Corollary 3.2 (b), we immediately obtain the equivalence for the
fourth group from the one for the third. ��
Lemma 3.4 Let a be a linear subspace of aq and assume that ϕ ∈ Int(gC)
maps a into aq. Then there exists a s ∈ W such that s|a = ϕ|a.
Proof: The proof is identical to the proof of Cor. 2 in [30], p. 112, with use
of Lemma 3.3 instead of [30], Lemma 1. ��
Corollary 3.5 Let a1, a2 be linear subspaces of aq, then

W(a2 | a1) = {t ∈ Hom(a1, a2) | ∃ s ∈ W : t = s|a1}.
We briefly interrupt our discussion of Weyl groups to collect some useful

facts about conjugacy classes of the parabolic subgroups from Pσ .

Lemma 3.6 Let ap be a maximal abelian subspace of p, containing aq,
and let Q ∈ Pσ .

(a) There exists a k ∈ NKe(aq) ∩ NKe(ap) such that kQk−1 is standard.
(b) If F, F ′ ⊂ ∆ are such that PF and PF ′ are conjugate under G, then

F = F ′.
(c) There exists a unique subset F ⊂ ∆ such that Q is conjugate to PF

under G.

(d) If P ∈ Pσ is conjugate to Q under G, then it is already conjugate to Q
under NKe(aq) ∩ NKe(ap).

Proof: There exists a s ∈ W such that the parabolic equivalence class
s(a+Qq) is contained in cl a+q (P0), hence equals a+Fq, for some F ⊂ ∆. It
follows that sQs−1 = PF, see Sect. 2. Now apply Corollary 3.2 (b) to
obtain (a).

For (b), we note that PF and PF ′ both contain the minimal standard
σ -parabolic subgroup P0. Hence, PF = PF ′, by [30], p. 111, Lemma 2.
This implies that F = F ′, see Sect. 2. Assertions (c) and (d) both follow
from combining (a) and (b). ��

We end this section with a discussion of automorphisms connecting
θ-stable Cartan subspaces of q; see Sect. 2 for basic notation.
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If b1 and b2 are two θ-stable abelian subspaces of q, then we define

W(b2 | b1) :=
{
ϕ|b1C | ϕ ∈ Int(gC), ϕ

(d
b1

) ⊂ d
b2

}
. (3.1)

Note that db2 and db1 are abelian subspaces of pd. Using the notation of
the first part of this section, relative to the algebra gd = kd ⊕ pd with
the indicated Cartan decomposition, we see that complex linear extension
induces a natural isomorphism

W
(

db2 | db1
) � W(b2 | b1).

In particular, it follows from this that the set in (3.1) is finite. Moreover, if
b1 and b2 are contained in p ∩ q, the notation (3.1) is consistent with the
notation introduced earlier in this section.

Lemma 3.7 Let b1 and b2 two θ-stable subspaces of a fixed θ-stable Cartan
subspace d of q. Then

W(b2 | b1) =
{
s|b1C | s ∈ W(d), s

(d
b1

) ⊂ d
b2

}
.

Proof: This follows from Corollary 3.5 applied with a1 = db1, a2 = db2
and ap = dd. ��

If s ∈ W(b2 | b1), then by s∗ we denote the map b∗2C → b∗1C given by
pull-back, i.e.,

s∗ν := ν ◦ s,
(
ν ∈ b∗2C

)
.

If b1, b2 ⊂ q are two θ-stable Cartan subspaces, then db1 and db2 are
conjugate under an interior automorphism of gd that commutes with θd;
hence, the set W(b2 | b1) is non-empty and consists of isomorphisms. If
s is any isomorphism from this set, we denote its natural extension to the
symmetric algebras by s as well. This extension maps I(b1) into I(b2).

Lemma 3.8 Let b1, b2 be θ-stable Cartan subspaces of q. Then W(b2 | b1)
�= ∅. Moreover, if s ∈ W(b2 | b1), then

s ◦ γb1 = γb2 .

Proof: The first assertion follows from the discussion preceding the lemma.
Let Kd be the analytic subgroup of Int(gC) generated by eadkd . Then

by Lemma 3.1, applied to db1,
db2 ⊂ pd, there exists an element k ∈ Kd

such that s = k|db1
. The action of k induces the identity on U(gd )k

d
/U(kd)k

d∩
U(gd)kd. Hence, if D belongs to the latter algebra, then sγb1(D) =
kγb1(k

−1 · D) = γb2(D). ��
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4. Laurent functionals and operators

In this section we briefly recall the concept of Laurent functional, introduced
in [14]; meanwhile, we fix notation that will be used in the rest of the paper.
For details we refer to Sects. 10 and 11 of [14].

Let V be a finite dimensional real linear space, equipped with a positive
definite inner product 〈 · , · 〉. Its complexification VC is equipped with the
complex bilinear extension of the inner product. We write P(V ) for the
algebra of polynomial functions VC → C, and S(V ) for the symmetric
algebra of VC. We identify the latter algebra with the algebra of translation
invariant differential operators on V, which in turn is identified with the
algebra of translation invariant holomorphic differential operators on VC. In
both settings, u ∈ V is identified with the differential operator f �→ d f( · )u.

Let X be a finite subset of non-zero elements of V. By an X-hyperplane
in VC we mean an affine hyperplane of the form H = a + ξ⊥

C
, with a ∈ VC

and ξ ∈ X. The hyperplane H is said to be real if a may be chosen in V. By

ΠX(V ) (4.1)

we denote the collection of polynomial functions p ∈ P(VC) with zero locus
p−1(0) equal to a finite union of X-hyperplanes. The subset consisting of p
with zero locus a finite union of real X-hyperplanes is denoted by ΠX,R(V ).
Note that ΠX(V ) consists of all polynomial functions that may be written
as a non-zero multiple of a product of factors of the form 〈ξ , · 〉 − c, with
ξ ∈ X and c ∈ C. The subset ΠX,R(V ) consists of such products with c ∈ R
in all factors.

By an X-configuration in VC we mean a locally finite collection of X-
hyperplanes in VC. The configuration is said to be real if all its hyperplanes
are real. If a ∈ VC, then by M(VC, a, X) we denote the space of germs at a
of meromorphic functions with singular locus contained in the union of the
hyperplanes a + ξ⊥

C
, for ξ ∈ X. Let NX denote the space of maps X → N.

For d ∈ NX we define the polynomial function πa,d ∈ ΠX(V ) by

πa,d(z) =
∏

ξ∈X

〈ξ , z − a〉d .

Let Oa(VC) denote the space of germs of holomorphic functions at a. Then
M(VC, a, X) is the union of the spaces π−1

a,dOa(VC) for d ∈ NX . The space
M(VC, a, X)∗laur of X-Laurent functionals at a is defined as the subspace of
M(VC, a, X)∗ consisting of L with the property that for every d ∈ NX there
exists a uL,d ∈ S(V ) such that

Lϕ = [uL,dπa,dϕ](a), for all ϕ ∈ π−1
a,dOa(VC).

The element uL belongs to a projective limit space S←(V, X) whose defin-
ition is suggested by the above, see [14], Sect. 10, for more details. Moreover,
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the map L �→ uL defines a linear isomorphism

M(VC, a, X)∗laur
�−→ S←(V, X), (4.2)

see [14], Lemma 10.4.
The space on the left-hand side of the above isomorphism only depends

on X through its proportionality class. More precisely, a finite set X ′ ⊂
V \{0} is said to be proportional to X if every element of one of the sets X, X ′
is proportional to an element of the other set. If X and X ′ are proportional
sets, then M(VC, a, X)∗laur = M(VC, a, X ′)∗laur, see [14], Lemma 10.3.

If Ω ⊂ VC is open and E a complete locally convex space, then a (densely
defined) E-valued function f on Ω is said to be meromorphic if for every
z0 ∈ Ω there exists an open neighborhood Ω0 of z0 and a holomorphic
function g ∈ O(Ω0) such that g f |Ω0 is a holomorphic E-valued function
on Ω. The space of E-valued meromorphic functions on Ω is denoted by
M(Ω, E). A point z ∈ Ω is said to be a regular point of f ∈ M(Ω, E) if f
is holomorphic in a neighborhood of z. The collection of regular points of
f is denoted by reg f.

Let H be an X-configuration in VC. By M(VC,H, E) we denote the
space of meromorphic functions VC → E with singular locus contained in
∪H . We agree to write M(VC,H) := M(VC,H,C).

The space M(VC,H, E) is topologized as follows. Let X0 ⊂ X be
minimal subject to the condition that X0 and X are proportional. For each
X-hyperplane H ⊂ VC there exists a unique αH ∈ X0 and a unique first
order polynomial function lH of the form z �→ 〈αH , z〉 − c, with c ∈ C,

such that H = l−1
H (0).

We denote by NH the space of maps H → N. For d ∈ NH and ω ⊂ VC
a bounded subset, we define the polynomial function πω,d ∈ ΠX(V ) by

πω,d =
∏

H∈H
H∩ω�=∅

ld(H )
H . (4.3)

A change of choice of X0 only causes a change of this polynomial by
a non-zero factor. If E is a complete locally convex space, we define
M(VC,H, d, E) to be the space of meromorphic E-valued functions ϕ on VC
with the property that πω,dϕ is holomorphic on ω, for every bounded open
subset ω ⊂ VC. This space is equipped with the weakest locally convex top-
ology that makes every map ϕ �→ πω,dϕ|ω continuous from M(VC,H, d, E)
to O(ω, E). This topology is complete; it is Fréchet if E is. We equip NH

with the partial ordering � defined by d � d′ ⇐⇒ ∀H ∈ H : d(H) ≤
d′(H). We now have

M(VC,H, E) = ∪d∈NH M(VC,H, d, E).

Accordingly, we equip the space on the left-hand side with the direct limit
locally convex topology.
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Any non-empty intersection of X-hyperplanes in VC is called an X-
subspace of VC. An X-subspace L of VC may be written as L = a + VLC,

with VL ⊂ V a real linear subspace. Let V⊥
LC denote the complexification

of its orthocomplement. The intersection V⊥
LC ∩ L consists of a single point

c(L), called the central point of L. Via the translation x �→ c(L) + x from
VLC onto L we equip L with the structure of a complex linear space, together
with a real form with a positive definite inner product on it.

If H is an X-configuration and L ⊂ V an X-affine subspace, we define
HL to be the collection of affine hyperplanes in L of the form H ∩ L, with
H ∈ H a hyperplane that properly intersects L. Let X(L) := X∩V⊥

L and let
Xr ⊂ VL be the image of X \X(L) under the orthogonal projection onto VL .
The image of Xr in L under translation by c(L) is denoted by X L . Thus,
(L, X L) is the analogue of (VC, X). The collection HL is a X L-configuration
in L.

If L is a Laurent functional in M(V⊥
LC, 0, X(L))∗laur, then L induces

a continuous linear map

L∗ : M(VC,H) → M(L,HL),

given by the formula

L∗ϕ(ν) := L[ϕ( · + ν)], (4.4)

for ϕ ∈ M(VC,H) and generic ν ∈ L. The map L∗ belongs to the space
Laur (VC, L,H) of Laurent operators M(VC,H) → M(L,HL), as defined
in [11], Sect. 1.3, see also [14], Sect. 11. It follows from the definition of
Laurent operator combined with the isomorphism M(V⊥

LC, 0, X(L))∗laur �
S←(V⊥

L , X(L)) given by (4.2) that the map L �→ L∗ defines a linear
surjection

M(VL, X(L), 0)∗laur → Laur (VC, L,H) → 0. (4.5)

Accordingly, a Laurent operator may alternatively be defined as any con-
tinuous linear operator M(VC,H) → M(L,HL) of the form L∗ with L
a Laurent functional from the space on the left-hand side of (4.5).

More generally, if L ∈ M(VL, X(L), 0)∗laur and if E is a complete
locally convex space then the algebraic tensor product L∗⊗ IE has a unique
extension to a continuous linear map M(VC,H, E) → M(L,HL, E) that
we briefly denote by L∗ again.

The concept of Laurent functional may be extended as follows, see [14],
Def. 10.8. Let M(VC, ∗, X)∗laur be the disjoint union of the spaces
M(VC, a, X)∗laur, for a ∈ VC. An X-Laurent functional on VC is defined
to be a finitely supported section of M(VC, ∗, X)∗laur, i.e., a map L : VC →
M(VC, ∗, X)∗laur with La ∈ M(VC, a, X)∗laur for every a ∈ VC and with
supp L := {a ∈ VC | La �= 0} a finite set. The set of all X-Laurent func-
tionals on VC naturally forms a complex linear space, denoted M(VC, X)∗laur.

Let H, L be as before. If a ∈ VC we denote by HL(a) the X L-
configuration consisting of all hyperplanes H ′ in L for which there exists
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a H ∈ H such that H ′ = L ∩ [(−a) + H]. If S ⊂ V⊥
LC is a finite subset, we

put

HL(S) = ∪a∈SHL(a). (4.6)

Let now L ∈ M(V⊥
C

, X)∗laur and put S = supp L. Then from the above
discussion it follows in a straightforward manner that the formula (4.4)
defines a continuous linear map L∗ : M(VC,H) → M(L,HL(S)). As
above, if E is a complete locally convex space, then the tensor product map
L∗ ⊗ IE has a unique extension to a continuous linear map

L∗ : M(VC,H, E) → M(L,HL(S), E); (4.7)

see [14], Cor. 11.6.
By M(VC, X, E) we denote the space of meromorphic E-valued func-

tions on VC with singular locus contained in the union of an X-configuration.
Every Laurent functional L ∈ M(V⊥

LC, X(L))∗laur determines a unique con-
tinuous linear map L∗ : M(VC, X, E) → M(L, X L, E) such that L∗
restricts to the map (4.7) for every X-configuration H in VC. See [14],
Lemma 11.8, for details.

5. Normalization of residues and measures

For the explicit determination of the constants in the Plancherel formula, it
is of importance to specify the precise normalizations of residual operators
and measures that will be used in the rest of this paper.

Let P0 be the standard parabolic subgroup in P min
σ and let t ∈ WT(Σ)

be a W-invariant residue weight, see Sect. 2. Let b be a W-invariant positive
definite inner product on a∗q. Associated with the data Σ+, t, b, we defined
in [11], beginning of Subsect. 3.4, for each subset F ⊂ ∆ and every element
λ ∈ ∗a∗Fq, a universal residue operator

Rest
λ+a∗Fq

:= ResP0,t
λ+a∗Fq

, (5.1)

which encodes the procedure of taking a residue along the affine subspace
λ + a∗FqC of a∗qC. In [11], text below Eqn. (3.6), this residue operator is
introduced as an element of a project limit space S←(∗a∗Fq, Σ̄

+
F ), defined

in [11], §1.3; here Σ̄+
F denotes the collection of indivisible roots in Σ+ ∩

∗a∗Fq. However, to make the residue operator into an object as canonical as
possible, we shall prefer to view it as a Laurent functional.

Applying the results of Sect. 4 with V = ∗a∗Fq, X = ΣF, X0 = Σ̄+
F and

a = 0, we obtain an isomorphism

M
(∗
a
∗
FqC, 0,ΣF

)∗
laur � S←

(∗
a
∗
Fq, Σ̄

+
F

)
. (5.2)
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In the present paper, the universal residue operator (5.1) is accordingly
viewed as an element of the space M(∗a∗FqC, 0,ΣF )∗laur of ΣF -Laurent func-
tionals at the origin in ∗a∗FqC.

By Eqn. (4.5), with V = a∗q, X = Σ and L = λ + a∗Fq, we see
that L �→ L∗ induces a surjective linear map from M(∗a∗FqC,ΣF )∗laur onto
Laur (a∗qC, λ+a∗FqC,H). In this context we omit the star in the notation, and
use the notation (5.1) also for the Laurent operator defined by the universal
residue operator. Thus, (4.4) becomes

(
Rest

λ+a∗Fq
ϕ
)
(ν) = Rest

λ+a∗Fq
[ϕ( · + ν)],

for every ϕ ∈ M(a∗qC,H) and ν ∈ a∗FqC generic. In this way the notation
becomes compatible with the notation of [11].

All definitions in [11] are given with reference to the fixed W-invariant
inner product b on a∗q, denoted 〈 · , · 〉 in [11], so that a priori the universal
residue operator depends on the particular choice of the inner product.
However, as we will show, the dependence is through certain measures
determined by b. To explain this, it is convenient to first introduce some
general terminology.

If v is a real finite dimensional vector space, let ◦∧(v) denote the one
dimensional real linear space of densities on v, i.e., the space of maps
ω : vn → R, where n = dim v, transforming according to the rule
ω ◦ An = | det A|ω, for all A ∈ End(v). Evaluation at the origin induces
a natural isomorphism from the space of translation invariant densities on v,
where v is viewed as a manifold, onto ◦∧(v); we shall identify accordingly.
Consequently, via integration the space ◦∧(v) may be identified with the
space of Radon measures Rdλ, where dλ is a choice of Lebesgue measure
on v. If v is equipped with a positive definite inner product, then by the
normalized density on v we mean the unique element ω ∈ ◦∧(v) such that
ω(e1, . . . , en) = 1, for every orthonormal basis e1, . . . , en of v.

We shall often encounter the situation that v = ib with b a subspace
of a real linear space V ; here multiplication by i is defined in the com-
plexification VC of V. If V comes equipped with a positive definite inner
product 〈 · , · 〉, we extend it to VC by complex bilinearity, and equip ibwith
the positive definite inner product −〈 · , · 〉. Accordingly, in this setting it
makes sense to speak of the normalized density on ib.

Let dµ ∈ ◦∧ (ib). If λ ∈ VC, then we shall adopt the convention to
also denote by dµ the density on the real affine subspace λ + ib of VC,
obtained by transportation under the translation X �→ λ+ X, ib→ λ+ ib.
Accordingly, by unoriented integration, the density dµ determines a real
Radon measure on λ + ib, which we shall denote by the same symbol.

We now return to the dependence of the residue operator (5.1) on the
choice of b. For every α ∈ Σ, the orthogonal reflection sα is independent
of the particular choice of b, and therefore so are the root hyperplanes α⊥,
and, more generally, the root spaces a∗Fq and their orthocomplements ∗a∗Fq,

for F ⊂ ∆. Combining this observation with the uniqueness statement
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of [11], Theorem 1.13, it follows that the residue operator Rest
λ+a∗Fq

can be
completely defined in terms of the data Σ+, t, λ + a∗Fq and b; moreover, it
depends on the latter datum through the quotient measure on i∗a∗Fq of the
normalized Lebesgue measures dλ on ia∗q and dµF on ia∗Fq.

To keep track of constants coming from comparing residue operators
related to different choices of the mentioned inner product we shall introduce
a version of the residue operator (5.1) that is independent of the choice of b.

The unnormalized residue operator is defined as the unique Laurent
functional

Rest
λ+a∗Fq

∈ M
(∗a∗FqC, 0,ΣF

)∗
laur ⊗ Hom

(◦∧(
ia∗q

)
, ◦∧(

ia∗Fq

))
(5.3)

satisfying the following requirement. Let (5.1) be defined relative to the
given choice of b and let dλ ∈ ◦∧ (ia∗q) and dµF ∈ ◦∧ (ia∗Fq) be the
normalized densities associated with b. Then the requirement is that

Rest
λ+a∗Fq

(ϕ)(dλ) = Rest
λ+a∗Fq

(ϕ) dµF , (5.4)

for ϕ ∈ M(∗a∗FqC, 0,ΣF ). From the above mentioned dependence of (5.1)
on b through the quotient density on i∗a∗Fq of dλ and dµF , it follows that
the residue operator in (5.3) only depends on the data Σ+, t, F, λ and not
on the choice of b. In other words, if (5.1), dλ and dµF had been defined
relative to an arbitrary W-invariant inner product on aq, then formula (5.4)
would be valid as well.

Suppose now that for each F ⊂ ∆ a non-trivial density dµF ∈ ◦∧(ia∗Fq)

is given. In particular, dλ := dµ∅ is given. Then we can use the formula
(5.4) to define residual operators Rest

λ+a∗Fq
. With this definition, the integral

formula of [11], Thm. 3.16, is valid.
In the rest of this paper, we fix a choice dx of invariant measure on X. In

the rest of this section we will describe how this choice determines all other
choices of normalization of measures, and, by the preceding discussion, all
choices of normalization of residual operators.

As in [10], §3, the measure dx determines a choice da of Haar measure
on Aq, and a choice dλ of Lebesgue measure on ia∗q. A change of the
measure dx by a multiplication by a positive factor c causes a change of da
by the same factor. This in turn causes a change of the measure dλ by
the factor c−1. It follows that the product measure dx dλ on X × ia∗q is
independent of the particular choice of the measure dx.

In order to be able to use the formula (5.2) of [12], we normalize the
Lebesgue measures dµF of ia∗Fq, for F ⊂ ∆, as in the text following the
mentioned formula. We describe this normalization in a somewhat more
general setting, in terms of the above terminology. Let B be the bilinear
form of g, fixed in the beginning of Sect. 2. Via restriction and dualization,
B induces a positive definite inner product on a∗q, which we denote by B
as well. Let c > 0 be the positive constant such that dλ corresponds to the
density on ia∗q, normalized relative to the inner product cB.
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If P ∈ Pσ , then dµP denotes the Lebesgue measure on ia∗Pq normalized
with respect to cB. If a∗Gq = {0}, which occurs if and only if G has a compact
center modulo H, we agree that dµG has total volume 1, in accordance
with [12], text following (5.2).

The residual operators Rest
λ+a∗Fq

are now normalized by (5.4) and with

respect to the choices of normalizations of measures made. All results of [11]
and [12] needed in this paper are valid with the normalization of measures
and residual operators just described.

If P ∈ Pσ, we denote by dλP the choice of Lebesgue measure on i∗a∗Pq
for which

dλ = dλP dµP . (5.5)

If v ∈ PW , then by the above discussion of the normalization of dλ, applied
to the space XP,v, a choice dxP,v of invariant measure on XP,v corresponds
in one-to-one fashion with a choice of Lebesgue measure dλP,v on i∗a∗Pq.

Throughout this paper we agree to select dxP,v so that dλP,v = dλP.
We end this section with the observation that for P, Q ∈ Pσ with aPq

and aQq conjugate under W, the measures dµP and dµQ are W-conjugate.
Indeed, this follows from the W-invariance of the inner product B. From
(5.5) we see that the measures dλP and dλQ are W-conjugate as well.

6. A vanishing theorem

Let Q ∈ Pσ . Throughout this paper, we assume (τ, Vτ ) to be a finite
dimensional unitary representation of K. In this section we introduce a space
E

hyp
Q (X : τ) of meromorphic families of D(X)-finite τ-spherical functions

and show that the vanishing theorem of [14] applies to it.
Let areg

q denote the set of regular elements in aq for the root system Σ

and put Areg
q := exp areg

q . We define a subset of X by

X+ := K Areg
q H.

According to [14], Sect. 2, this set is open dense in X. Let W ⊂ NK (aq) be
a choice of representatives for W/WK∩H . Then, for each P ∈ P min

σ ,

X+ = ∪v∈W K A+
PqvH (disjoint union).

By C∞(X+ : τ) we denote the space of smooth functions f : X+ → Vτ that
are τ-spherical, i.e.,

f(kx) = τ(k) f(x) (x ∈ X+, k ∈ K ).

By A(X+ : τ) we denote the subspace of f ∈ C∞(X+ : τ) that behave
finitely under the action of the algebra D(X). Moreover, we denote the
subspaces of these spaces consisting of functions that extend smoothly
from X+ to all of X by C∞(X : τ) and A(X : τ), respectively.
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Let P ∈ Pσ and v ∈ NK (aq). We put KP := K ∩ MP and define XP,v,+
to be the analogue of the set X+ for the triple (MP, KP, MP ∩ vHv−1). In
particular, XP,v,+ is an open dense subset of XP,v.

We define the function RP,v : M1P →] 0,∞[ as in [14], Sect. 3. Accord-
ing to [14], Lemma 3.2, this function is left KP- and right M1P ∩ vHv−1-
invariant. Moreover, if P �= G, a ∈ Aq and u ∈ NKP (aq), then

RP,v(au) = max
α∈Σ(P)

a−α.

Finally, RP,v ≥ 1 on XP,v. The function RP,v is of importance for the de-
scription of a domain of convergence for the series expansion that describes
the asymptotic behavior of a function from A(X+ : τ) along (P, v). To be
more precise, we define, for 0 < r < 1,

A+
Pq(r) := {a ∈ APq | ∀α ∈ ∆r(P) : a−α < r}.

Then the following property, see [14], Lemma 3.3, is relevant for the men-
tioned description of the domain of convergence. For m ∈ XP,v and a ∈ APq,

m ∈ XP,v,+, a ∈ A+
Pq

(
RP,v(m)−1

) ⇒ mavH ∈ X+.

We can now describe the mentioned series expansion along (P, v), together
with a domain of convergence. According to [14], Lemma 5.3 and Thm. 3.4,
a function f ∈ A(X+ : τ) admits a converging series expansion of the form

f(mav) =
∑

ξ∈E

aξqξ (P, v | f, log a, m), (6.1)

for m ∈ XP,v,+ and a ∈ A+
Pq(RP,v(m)−1). The set E in (6.1) is a subset of

a∗PqC contained in a set of the form E0 − N∆r(P) := E0 + (−N∆r(P)),

with E0 ⊂ a∗PqC finite. In addition, there exists a k ∈ N such that, for every
ξ ∈ E, the expression qξ(P, v | f ) belongs to Pk(aPq, C∞(XP,v,+ : τP )),
the space of polynomial functions aPq → C∞(XP,v,+ : τP ) of degree at
most k. Here τP stands for τ|KP .

The series on the right-hand side of (6.1) converges neatly in the sense
of [14], Def. 1.2, for each m ∈ XP,v,+, and for a in the indicated range
(depending on m). The functions qξ are uniquely determined by these prop-
erties.

The set of ξ ∈ E for which qξ (P, v | f ) �= 0 is called the set of exponents
of f along (P, v), and denoted by Exp (P, v | f ). We agree to write qξ = 0
for ξ ∈ a∗PqC \ E.

Using the above terminology we shall introduce the space E
hyp
Q (X : τ) in

a number of steps. First, following [14], Def. 12.1, we introduce a suitable
space of meromorphic families of spherical functions. We agree to write P0
for the standard minimal σ -parabolic subgroup. An index or superscript P0
will be replaced by 0. In particular, X0,v = XP0,v and τ0 = τP0 . Note that
X0,v = XP,v and τ0 = τP for every P ∈ P min

σ .
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Definition 6.1 Let Q ∈ Pσ and let Y ⊂ ∗a∗QqC be a finite subset. We define

C ep,hyp
Q,Y (X+ : τ) (6.2)

to be the space of functions f : a∗QqC × X+ → Vτ , meromorphic in the
first variable, for which there exist a constant k ∈ N, a Σr(Q)-hyperplane
configuration H in a∗QqC and a function d : H → N such that the following
conditions are fulfilled.

(a) The function λ �→ fλ belongs to M(a∗QqC,H, d, C∞(X+ : τ)).

(b) For every P ∈ P min
σ and v ∈ NK (aq) there exist (necessarily unique)

functions qs,ξ (P, v | f ) in Pk(aq)⊗M(a∗QqC,H, d, C∞(X0,v : τ0)), for
s ∈ W/WQ and ξ ∈ −sWQY + N∆(P), with the following property.
For all λ ∈ a∗QqC \ ∪H, m ∈ X0,v and a ∈ A+

q (P),

fλ(mav) =
∑

s∈W/WQ

asλ−ρP
∑

ξ∈−sWQY+N∆(P)

a−ξ qs,ξ (P, v | f, log a)(λ, m),

(6.3)

where the ∆(P)-exponential polynomial series with coefficients in Vτ

converges neatly on A+
q (P).

(c) For every P ∈ P min
σ , v ∈ NK (aq) and s ∈ W/WQ, the series

∑

ξ∈−sWQY+N∆(P)

a−ξqs,ξ (P, v | f, log a)

converges neatly on A+
q (P), as an exponential polynomial series with

coefficients in the space M(a∗QqC,H, d, C∞(X0,v : τ0)).

Finally, we define

C ep,hyp
0 (X+ : τ) := C ep,hyp

P0,{0} (X+ : τ). (6.4)

Remark 6.2 If Q′ ∈ Pσ and aQ ′q = aQq, then Σr(Q) ⊂ Σr(Q′) ∪
[−Σr(Q′)]. Hence, the notions of Σr(Q)- and Σr(Q′)-configuration co-
incide. It follows that the space (6.2) depends on Q through its σ -split
component aQq.

It is sufficient to require conditions (b) and (c) either for all P ∈ P min
σ

and a fixed v, or for a fixed P ∈ P min
σ and all v in a choice of representatives

for W/WK∩H in NK (aq); see [14], Rem. 7.2, for details.

If f ∈ C ep,hyp
Q,Y (X+ : τ), then following [14], Def. 12.4, we define the

asymptotic degree of f, denoted dega( f ), to be the smallest integer k for
which there exist H, d such that the conditions of Definition 6.1 are fulfilled.
Moreover, we denote by H f the smallest Σr(Q)-configuration in a∗QqC such
that the conditions of Definition 6.1 are fulfilled with k = dega( f ) and
for some d : H f → N. We denote by d f the �-minimal map H f → N



478 E.P. van den Ban, H. Schlichtkrull

for which the conditions of the definition are fulfilled with H = H f and
k = dega f. Finally, we put rega( f ) := a∗QqC \ ∪H f .

We extend aq to a Cartan subspace b of q; clearly, b is θ-stable. If µ ∈ b∗
C
,

then Iµ := ker γ( · : µ) is an ideal of codimension one in D(X).
If P∈Pσ , we write DP for the set of finitely supported maps δ : ∗b∗PC→N,

see (2.6). For δ ∈ DP and λ ∈ a∗PqC we define the ideal Iδ,λ in D(X) by

Iδ,λ :=
∏

Λ∈supp δ

I δ(Λ)
Λ+λ.

This ideal is cofinite, since it is a product of finitely generated cofinite ideals.
Following [14], Def. 12.8, we introduce the following space of mero-

morphic families of D(X)-finite functions.

Definition 6.3 Let Q ∈ Pσ and δ ∈ DQ. Then for Y ⊂ ∗a∗QqC a finite subset
we define

E
hyp
Q,Y (X+ : τ : δ)

to be the space of functions f ∈ C ep,hyp
Q,Y (X+ : τ) such that, for all λ ∈

a∗QqC \H f , the function fλ : x �→ f(λ, x) is annihilated by the cofinite ideal
Iδ,λ.

Finally, we define

E
hyp
0 (X+ : τ : δ) := E

hyp
P0,{0}(X+ : τ : δ).

Following [14], Def. 12.8, we introduce the following subspace of mero-
morphic families of D(X)-finite functions in C∞(X+ : τ) satisfying a cer-
tain additional assumption. Let P 1

σ be the collection of parabolic subgroups
P ∈ Pσ whose σ -split component aPq has codimension one in aq.

Definition 6.4 Let Q ∈ Pσ . Then for δ ∈ DQ and Y ⊂ ∗a∗QqC a finite subset
we define E

hyp
Q,Y (X+ : τ : δ)glob to be the space of families f ∈ E

hyp
Q,Y (X+ :

τ : δ) satisfying the following condition.

For every s ∈ W, every P ∈ P 1
σ with saQq �⊂ aPq and all v ∈ NK (aq),

there exists an open dense subset Ω of rega f with the following property.
For every λ ∈ Ω, every ξ ∈ sλ|aPq +WPsWQY |aPq −ρP −N∆r(P) and
all X ∈ aPq, the function m �→ qξ(P, v | fλ, X, m), originally defined
on XP,v,+, extends smoothly to all of XP,v.

Remark 6.5 In [14], Def. 9.5 and Def. 8.4, a family f satisfying the property
stated in the above display was said to be [s]-global along (P, v).

Definition 6.6 Let Q ∈ Pσ . For δ ∈ DQ and Y ⊂ ∗a∗Qq a finite subset, we
define E

hyp
Q,Y (X : τ : δ) to be the space of families f ∈ E

hyp
Q,Y (X+ : τ : δ)glob

satisfying the following condition.
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For all ν in the complement of a locally finite union of analytic null-sets,
the function fν, initially defined on X+, extends to a smooth function
on all of X.

Finally, we define

E
hyp
Q,Y (X : τ) := ∪δ E

hyp
Q,Y (X : τ : δ) and

E
hyp
Q (X : τ) := ∪Y E

hyp
Q,Y (X : τ),

where δ runs over DQ and Y over the collection of finite subsets of ∗a∗Qq.

Remark 6.7 One readily verifies that the space E
hyp
Q,Y (X : τ : δ) depends on

Q through its split component aQq. See also Remark 6.2.

Remark 6.8 If G has compact center modulo H, then aGq = {0}. Therefore,
the map f �→ f0 defines an embedding of E

hyp
G (X : δ) into A(X : τ), the

space ofD(X)-finite functions in C∞(X : τ). We claim that this map is in fact
a bijection. To see this, let g ∈ A(X : τ). Then by [3], Thm. 5.3, the family
f : a∗GqC × X → Vτ defined by f0 = g belongs to C ep,hyp

G,Y (X+ : τ) for some
finite subset Y ⊂ ∗a∗GqC = a∗qC. Moreover, D(X)g is a finite dimensional
space. In the notation introduced before Definition 6.3, let S be the set of
Λ ∈ ∗b∗GC = b∗C such that D(X)g has a non-trivial subspace on which D(X)
acts by the character γ( · : Λ). Then there exists a map δ : ∗b∗PC → N

supported by S, such that g is annihilated by Iδ,0. It is now readily seen that
the family f belongs to E

hyp
G,Y (X : τ : δ).

Lemma 6.9 Let f ∈ E
hyp
Q (X : τ) and put H = H f and d = d f .

Then ν �→ fν is a meromorphic C∞(X : τ)-valued function in the space
M(a∗QqC,H, d, C∞(X : τ)).

Proof: This follows by using condition (a) of Definition 6.1 and applying
Cor. 18.2 of [14]. ��
Remark 6.10 Let δ ∈ DQ and let Y ⊂ ∗a∗QqC be a finite subset. It can be

shown that every family f ∈ E
hyp
Q,Y (X+ : τ : δ) that satisfies the displayed

condition of Definition 6.6 automatically belongs to E
hyp
Q,Y (X+ : τ : δ)glob,

hence to E
hyp
Q (X : τ). In case max δ ≤ 1, this follows from [5], Thm. 12.8.

For general δ ∈ DQ one may proceed along similar lines, see also [42],
Chap. 4. However, we shall not need such a result in the present paper,
since in all cases where we could apply it, the property of Definition 6.4
has already been established in [14] for the functions involved. The present
remark justifies the notation used.

The following special case of the vanishing theorem of [14] will play an
important role in the rest of this paper.
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Theorem 6.11 (Vanishing theorem) Let Q ∈ Pσ be standard and let
QW ⊂ NK (aq) be a choice of representatives for WQ\W/WK∩H . Let f ∈
E

hyp
Q (X : τ) and assume that there exists a non-empty open subset Ω ⊂ rega f

such that, for each v ∈ QW ,

qν−ρP (P, v | fν) = 0, (ν ∈ Ω).

Then f = 0.

Proof: This is a special case of [14], Thm. 12.10. ��
We shall often use the vanishing theorem in combination with the fol-

lowing lemma to relate families of eigenfunctions.

Lemma 6.12 Let P, Q ∈ Pσ , let s ∈ W be such that saPq = aQq and

assume that f ∈ E
hyp
P,Y (X : τ), with Y ⊂ ∗a∗PqC a finite subset. Then the

family f s : a∗QqC × X → Vτ , defined by f s(ν, x) = f(s−1ν, x), belongs to

E
hyp
Q,sY(X : τ).

Proof: In view of Remark 6.7 we may assume that Q = sPs−1. There
exists a δ ∈ DP such that f ∈ E

hyp
P,Y (X : τ : δ). By Lemma 3.7 there exists

a s̃ ∈ W(b) such that s = s̃|aq . The element s̃ maps ∗bPC onto ∗bQC. Let s̃∗
denote its transpose ∗b∗QC → ∗b∗PC. Then δ ◦ s̃∗ ∈ DQ. Moreover, one readily

checks from the definitions that f s ∈ E
hyp
Q,sY(X : τ : δ ◦ s̃∗). ��

7. Meromorphy of asymptotic expansions

Let f belong to the space E
hyp
Q (X : τ), defined in Definition 6.6. The

mentioned definition refers back to Definition 6.1, according to which, for
v ∈ NK (aq) and for P a minimal group in Pσ, the function fν admits
an expansion along (P, v) that depends meromorphically on the parameter
ν ∈ a∗QqC in a well defined sense. It follows from [14] that an analogous
result holds for arbitrary P ∈ Pσ . For its formulation, we need a particular
type of subset of the symmetric space XP,v. For 1 ≤ R ≤ ∞, we define the
set

XP,v,+[R] := {x ∈ XP,v,+ | RP,v(x) < R};
see [14], Eqn. (3.7) for details.

We also need an equivalence relation ∼P|Q on W to describe asymptotic
exponents along (P, v) without redundance. The relation is defined by

s ∼P|Q t ⇐⇒ ∀ν ∈ a∗Qq : sν|aPq = tν|aPq . (7.1)

If Y ⊂ ∗a∗QqC is a finite subset and σ ∈ W/∼P|Q, we put

σ · Y := {sη|aPq | s ∈ σ, η ∈ Y };
see [14], §6, for details. We recall from [14], Lemma 6.5, that W/∼P|Q�
W/WQ, if P ∈ P min

σ and Q ∈ Pσ .
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Proposition 7.1 Let Q ∈ Pσ, δ ∈ DQ and Y ⊂ ∗a∗Qq a finite subset. Let f
be a family in C ep,hyp

Q,Y (X+ : τ) and put k = dega f.
Let P ∈ Pσ and v ∈ NK (aq). Then Exp (P, v | fν) ⊂ W(ν + Y )|aPq −

ρP − N∆r(P), for every ν ∈ rega f. Moreover, there exist unique functions

qσ,ξ (P, v | f ) ∈ Pk(aPq) ⊗ M
(
a
∗
QqC,H f , d f , C∞(XP,v,+ : τP )

)
,

for σ ∈ W/∼P|Q and ξ ∈ −σ ·Y +N∆r(P), such that, for every ν ∈ rega f,

fν(mav) =
∑

σ∈W/∼P|Q

aσν−ρP
∑

ξ∈−σ ·Y+N∆r(P)

a−ξqξ (P, v | f, log a)(ν, m),

for all m ∈ XP,v,+ and a ∈ A+
Pq(RP,v(m)−1), where the exponential poly-

nomial series in the variable a with coefficients in Vτ is neatly convergent
in the indicated range. In particular, for all ν in an open dense subset of
a∗QqC and all σ ∈ W/∼P|Q and ξ ∈ −σ · Y + N∆r(P),

qσ,ξ(P, v | f )(X, ν) = qσν|aPq−ρP−ξ (P, v | fν, X), (X ∈ aPq). (7.2)

Finally, for each σ ∈ W/∼P|Q and every R > 1, the series
∑

ξ∈−σ ·Y+N∆r(P)

a−ξqσ,ξ(P, v | f, log a)

converges neatly on A+
Pq(R−1) as a ∆r(P)-exponential polynomial series

with coefficients in M(a∗QqC, C∞(XP,v,+[R] : τP).

Proof: This follows from [14], Thm. 7.7 and Lemma 12.7. ��
The following result is based on the meromorphic nature of the series

in the above proposition. It may be considered a natural companion to [14],
Lemma 7.9.

Lemma 7.2 Let Q ∈Pσ , Y ⊂ ∗a∗QqC a finite subset and f ∈ C ep,hyp
Q,Y (X+ : τ).

Let P ∈ Pσ , v ∈ NK (aq). Assume that for every σ ∈ W/∼P|Q a set
Eσ ⊂ −σ ·Y +N∆r(P) is given such that, for ν in a non-empty open subset
Ω of rega f,

Exp (P, v | fν) ⊂
⋃

σ∈W/∼P|Q

σν|aPq − ρP − Eσ . (7.3)

Then (7.3) holds for every ν ∈ reg f.

Proof: Let σ0 ∈ W/ ∼P|Q and ξ ∈ −σ0 · Y + N∆r(P) be such that
qσ0,ξ (P, v | f ) �= 0. By Proposition 7.1 there exists an open dense subset
Ω ⊂ rega f such that, for all ν ∈ Ω, (7.2) is valid. In particular, it follows
that, for ν ∈ Ω, σ0ν|aPq −ρP −ξ ∈ Exp (P, v | fν); hence, σ0ν|aPq −ρP −ξ
belongs to the union on the right-hand side of (7.3). By [14], Lemma 6.2,
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the sets σν|aPq + σ · Y − N∆r(P), for σ ∈ W/∼P|Q, are mutually disjoint,
for ν in an open dense subset Ω′ of Ω. It follows that ξ ∈ Eσ0 .

From the above and Proposition 7.1 we conclude that for all σ ∈ W/∼P|Q
and ξ ∈ (−σ ·Y+N∆r(P))\Eσ , the meromorphic function ν �→ qσ,ξ(P, v |
f, ν) is zero. Hence, for ν ∈ rega f,

fν(mav) =
∑

σ∈W/∼P|Q

aσν−ρP
∑

ξ∈Eσ

a−ξ qσ,ξ(P, v | f )(log a, ν, m), (7.4)

for m ∈ XP,v,+ and a ∈ A+
Pq(RP,v(m)−1). Thus, the inclusion (7.3) holds

for ν ∈ rega f. It remains to extend the domain of its validity to all of reg f.
Let R ≥ 1. Then for each σ ∈ W/∼P|Q, the series

Fσ (a) =
∑

ξ∈Eσ

a−ξ qσ,ξ(P, v | f )(log a) (7.5)

converges as a ∆r(P)-exponential polynomial series in a ∈ A+
Pq(R−1),

with coefficients in the space M(a∗QqC,H, d, C∞(XP,v,+[R] : τP)); here
H = H f and d = d f .

Let ν0 ∈ a∗QqC be such that the meromorphic C∞(X+ : τ)-valued func-
tion ν �→ fν is regular at ν0. Let H(ν0) be the collection of H ∈ H
that contain ν0. Since H is a Σr(Q)-configuration in a∗QqC, the collec-
tion H(ν0) is finite and there exists a bounded open neighborhood ω
of ν0 in reg ( f ) such that H(ν0) = {H ∈ H | H ∩ ω �= ∅}. Put
π = πω,d, see (4.3). Then ϕ �→ πϕ|ω defines a continuous linear map from
M(a∗QqC,H, d, C∞(XP,v,+[P] : τP )) into O(a∗QqC, C∞(XP,v,+[R] : τP)).
In particular, the series (7.5) multiplied with π converges neatly on A+

Pq (R−1)

as an exponential polynomial series with values in the space
O(ω, C∞(XP,v,+[R] : τP)).

It follows from [14], Lemma 10.5, that there exists a u ∈ S(a∗Qq), such
that ϕ(ν0) = u(πϕ)(ν0), for ϕ ∈ O(ω). We apply this to ν �→ fν. Then,

f(ν0, mav) = u[π( · ) f( · , mav)](ν0)

=
∑

σ∈W/∼P|Q

aσν0−ρP

k∑

j=1

pσ, j(log a)Uσ, j[π( · )Fσ (a)( · , m)](ν0),

with finitely many pσ, j ∈ P(aPq) and Uσ, j ∈ S(a∗Qq), as is readily seen by
application of the Leibniz rule. Note that deg pσ, j + order(Uσ, j) ≤ l :=
order(u).

From [14], Lemma 1.10, we obtain that the elements Uσ, j ∈ S(a∗Qq),

viewed as constant coefficient differential operators in the variable ν, may be
applied termwise to the series for π( · )Fσ (a)( · , m), without disturbing the
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nature of the convergence of the series. This leads to the existence of poly-
nomial functions q̄σ,ξ ∈ Pk+l(aPq) ⊗ C∞(XP,v,+ : τP), for σ ∈ W/∼P|Q,
ξ ∈ Eσ , such that

fν0(mav) =
∑

σ∈W/∼P|Q

aσν0−ρP
∑

ξ∈Eσ

a−ξ q̄σ,ξ(log a, m),

for a ∈ A+
Pq(R−1) and m ∈ XP,v,+[R]. The series on the right-hand side

converges neatly as a ∆r(P)-exponential polynomial series on A+
Pq(R−1),

with coefficients in C∞(XP,v,+[R] : τP). It follows that the inclusion (7.3)
is valid for ν = ν0. ��

8. Fourier inversion

In this section we recall the Fourier inversion formula from [12] that will
be the starting point for the derivation of the spherical Plancherel formula.

Let W ⊂ NK (aq) be a choice of representatives for W/WK∩H . This
choice determines the space ◦C = ◦C(τ), defined as the formal Hilbert
direct sum of finite dimensional Hilbert spaces

◦C :=
⊕

v∈W

C∞(
M/M ∩ vHv−1 : τ0

)
, (8.1)

where τ0 denotes the restriction of τ to K0 := K ∩ M. Given P ∈ P min
σ ,

and ψ ∈ ◦C, we define the normalized Eisenstein integral E◦(P : ψ) as
in [9], §5. This Eisenstein integral is a meromorphic C∞(X : τ)-valued
function on a∗qC, which depends linearly on ψ. It naturally arises in repre-
sentation theory, essentially as a sum of matrix coefficients of the minimal
principal series of X. However, it can also be characterized by some of its
analytic properties, as follows.

Proposition 8.1 Let P ∈ P min
σ and ψ ∈ ◦C. The function ν �→ E◦(P :

ψ : ν) is the unique family in E
hyp
P (X : τ) with the following property. For

each v ∈ W and for ν in a dense open subset of a∗qC,

qν−ρP (P, v | E◦(P : ψ : ν), · , m) = ψv(m).

Here qν−ρP is the coefficient in the expansion (6.1) for f = E◦(P : ψ : ν).

Remark 8.2 It is implicit in the above formulation that the function on the
left-hand side of the above equation is constant as a polynomial function
of the variable indicated by the dot. It is known that for ν in a dense open
subset of a∗qC, there are no terms with log a in the expansion (6.1) with
f = E◦(P : ψ : ν); see [10], Thm. 7.5.
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Proof: Uniqueness follows from the vanishing theorem, Thm. 6.11. Thus,
it suffices to show that, for ψ ∈ ◦C, the C∞(X : τ)-valued meromorphic
function f : ν �→ E◦(ψ : ν) on a∗qC satisfies the properties mentioned
above. By linearity with respect to ψ we may assume that ψ ∈ ◦C[Λ], for
some Λ ∈ ib∗k = i∗b∗P, in the notation of [14], text preceding Lemma 14.3.
It now follows from [14], Lemma 14.5, that f ∈ E

hyp
P (X+ : τ : δΛ)glob,

where δΛ is the characteristic function of the subset {Λ} of ∗b∗PC. Finally, it
follows from [9], beginning of Sect. 5, that ν �→ fν is a C∞(X : τ)-valued
meromorphic function on a∗qC. Therefore, f ∈ E

hyp
P (X : τ).

Combining [9], Eqns. (49), (45) and the display following the latter
equation, we finally obtain that

qν−ρP (P, v | fν : · : m) = [
pP|P,0(1 : ν)CP|P(1 : ν)−1ψ

]
v
(m) = ψv(m),

for each v ∈ W and all m ∈ M. ��
Lemma 8.3 Let P ∈ P min

σ and ψ ∈ ◦C. Let f be the family in E
hyp
P (X : τ)

defined by fν = E◦(P : ψ : ν), for ν ∈ a∗qC. Then the Σ(P)-configuration
H f , defined as in the text preceding Definition 6.3, is real.

Proof: In view of [14], Eqn. (14.12), it suffices to prove a similar statement
for the function f of [14], Lemma 14.3. We observe that in the proof of
the mentioned lemma, H f is shown to be contained in a Σ(P)-configur-
ation H ′′. This configuration is given as H ′′ = t−1H ∪ H ′ with t ∈ W.
Now H is real by [14], Cor. 14.2. It therefore remains to show that H ′ is
real. For this it suffices to show that the singular locus of the normalized
C-function C◦

P|P(t : · ) is the union of a real Σ-configuration. By [14],
Eqn. (14.6), it suffices to show that the singular loci of CP|P(1 : · )−1 and
CP|P(t : · ) are likewise. In view of [5], Cor. 15.5, it suffices to show that
the functions CQ|P(1 : · )±1, for Q ∈ P min

σ , all have a singular locus equal
to the union of a real Σ-configuration. The latter assertion follows by the
argument following the proof of Lemma 3.2 in [12]. ��

We write E◦(P : · ) for the meromorphic C∞(X, Hom(◦C, Vτ))-valued
function on a∗qC given by

E◦(P : ν : x)ψ = E◦(P : ψ : ν : x),

for x ∈ X, ψ ∈ ◦C and generic ν ∈ a∗qC. Following [12], Eqn. (2.3), we
define the dualized Eisenstein integral as the C∞(X, Hom(Vτ ,

◦C))-valued
meromorphic function on a∗qC given by

E∗(P : ν : x) := E◦(P : −ν̄ : x)∗.

Finally, we introduce the partial Eisenstein integrals E+,s(P : · ), for s ∈ W,
as in [12], Eqn. (2.9), see also [14], Eqn. (14.11). Let 1 ⊗ τ denote the
natural representation of K in Hom(◦C, Vτ) � ◦C∗ ⊗ Vτ . Then the partial
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Eisenstein integrals are meromorphic C∞(X+ : 1 ⊗ τ)-valued functions
on a∗qC. Moreover, for ν ∈ a∗qC a regular point, the partial Eisenstein integral
E+,s(P : ν) is D(X)-finite. By [14], Lemma 5.3, it therefore has converging
expansions like (6.1), but with qξ (Q, v | E+,s(P : ν)) a C∞(XQ,v,+ : 1⊗τ)-
valued polynomial function on aQq; see [14], Def. 2.1, for details. The
exponents of the partial Eisenstein integrals are restricted by

Exp (P, v | E+,s(P : ν)) ⊂ sλ − ρP − N∆(P),

for all v ∈ W . Finally, according to [14], Eqn. (165),

E◦(P : ν) =
∑

s∈W

E+,s(P : ν) on X+.

The mentioned properties determine the partial Eisenstein integrals com-
pletely, see [14], Lemma 2.2.

We shall now investigate the dependence of the Eisenstein integrals on
the choice of W . To this purpose, let �W be a second choice of representatives
for W/WK∩H in NK (aq). We denote by �◦C the associated space define
by (8.1), with �W in place of W . The associated Eisenstein and partial
Eisenstein integrals are similarly indicated with a backprime.

Lemma 8.4 There exists a unique linear map R : ◦C → �◦C such that

E◦(P : ν : x) = �E◦(P : ν : x) ◦ R, (8.2)

for all x ∈ X and generic ν ∈ a∗qC. The map R is an isometric isomorphism.

Proof: For every w ∈ W , let �w denote the unique element of �W that
represents the same class in W/WK∩H . Then for every w ∈ W we may
select an element lw ∈ K0 such that �w ∈ lwwNK∩H(aq). The right regular
action Rlw : C∞(M) → C∞(M) induces a linear isomorphism Rw from
C∞(M/M ∩ wHw−1 : τ0) onto C∞(M/M ∩ �wH �w−1 : τ0). Let R : ◦C
→ �◦C be the direct sum of the isomorphisms Rw, for w ∈ W . Then
obviously R is an isometry. Let ψ ∈ ◦C. Then by Proposition 8.1 the map
g : ν �→ �E◦(P : ν : x) ◦ Rψ belongs to E

hyp
P (X : τ). Moreover, it follows

from the same proposition that

qν−ρP (P, �w | gν, · , m) = (Rψ)�w(m), (8.3)

for ν ∈ rega(g), w ∈ W and m ∈ M. Also, by the definition of R,

(Rψ)�w(m) = ψw(mlw), (8.4)

for each w ∈ W and all m ∈ M.
On the other hand, still by Proposition 8.1, the map f : ν �→ E◦(P :

ν : x)ψ belongs to E
hyp
P (X : τ) as well, and for ν ∈ rega( f ), w ∈ W and

m ∈ M,

qν−ρP (P, w | fν, · , m) = ψw(m).
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This equation remains valid if we replace w in the expression on the left-
hand side by any element w̄ of wNK∩H (aq), see [14], Lemma 3.7. Now
�w = lww̄, for some w̄ ∈ wNK∩H(aq); hence, applying [14], Lemma 3.6,
with v = w̄ and u = lw, we obtain that

qν−ρP (P, �w | fν, · , m) = ψw(mlw). (8.5)

Comparing (8.5) with (8.3) and (8.4) and applying the uniqueness statement
of Proposition 8.1, we infer that f = g. On the other hand, if R : ◦C → �◦C
is a linear map such that (8.2) is valid, then f = g, hence (8.3) and (8.5)
are equal. This implies (8.4) and shows that R is uniquely determined by
the requirement (8.2). ��
Lemma 8.5 Let P ∈ P min

σ and s ∈ W. Then, for all x ∈ X+, y ∈ X and
generic ν ∈ a∗qC, the element

E+,s(P : ν : x)E∗(P : ν : y) ∈ End(Vτ ) (8.6)

does not depend on the choice of W made in the text preceding (8.1).

Proof: Let R be the isometry of Lemma 8.4. From the fact that the partial
Eisenstein integrals are uniquely determined by the properties mentioned
in the text above Lemma 8.4, it follows that they satisfy the transformation
property (8.2) with on both sides E◦ replaced by E+,s, for s ∈ W. See
also [14], Lemma 2.2.

On the other hand, taking adjoints of the homomorphisms on both sides
of (8.2), and substituting −ν̄ for ν, we obtain that

E∗(P : ν : x) = R∗ ◦ �E∗(P : ν : x),

for all x ∈ X and generic ν ∈ a∗qC. From the unitarity of R it now follows
that the endomorphism (8.6) does not change if we replace E+,s and E∗ by
�E+,s and �E∗, respectively. ��

In the following we consider Eisenstein integrals associated with the
standard parabolic subgroup P0 ∈ P min

σ , but suppress the symbol P0 in the
notation. Moreover, we agree to write E+ for E+,1. We recall from [12],
p. 41, that the meromorphic functions ν �→ E◦(ν) and ν �→ E+(ν) have
singular sets that are locally finite unions of real Σ-hyperplanes in a∗qC. Let
H be the collection of the singular hyperplanes for E◦( · ) and E+( · ). Let
t ∈ WT(Σ) be a W-invariant even residue weight, see the text following
(2.1). Associated with the data Σ+, t, we define, for each subset F ⊂ ∆
and every element λ ∈ ∗a∗FqC, the residue operator Rest

λ+a∗Fq
as in §5, with

respect to the normalization of the Lebesgue measures dλ of a∗q and dµF of
a∗Fq given at the end of that section.

The data Σ+, F and H determine a finite subset Λ(F) of −R+F, the
negative of the closed cone spanned by F, see [12], Eqn. (5.1), where
between the set brackets the requirement ‘for some t’ should be added. We
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now recall, from [12], Eqn. (5.7), the definition of the kernel Kt
F(ν : x : y)

∈ End(Vτ), for (x, y) ∈ X+ × X and generic ν ∈ a∗FqC, by

Kt
F(ν :x : y) =

∑

λ∈Λ(F)

Rest
λ+a∗Fq




∑

s∈W F

E+(s · : x) ◦ E∗(s · : y)



 (λ + ν).

(8.7)

From the definition it follows that ν �→ Kt
F(ν : · : · ) is a meromorphic

function on a∗FqC with values in the space C∞(X+ × X : τ ⊗ τ∗) and with
singularities along the hyperplanes of a real Σr(F)-configuration. Here
τ ⊗ τ∗ denotes the tensor product representation of K × K in End(Vτ) �
Vτ ⊗ V ∗

τ .
The residue operators in (8.7) depend on the choices of dλ and dµF , see

the discussion in Sect. 5; therefore, so does the kernel Kt
F .

Lemma 8.6 Let the data (G, H, K, τ, aq,Σ
+) be fixed as above. Let F⊂∆

and let t ∈ WT(Σ) be a W-invariant even residue weight. These data
completely determine Kt

F dµF dy, the product of the kernel Kt
F, defined by

(8.7), with the product measure dµF dy on ia∗Fq × X.

In particular, Kt
F dµF dy is independent of the particular choice of W ,

made in the text preceding (8.1), and of the choices of B and dy, made in
Sects. 2 and 5.

Proof: Put

kF( · ) =
∑

s∈W F

E+(s · : x) ◦ E∗(s · : y).

It follows from Lemma 8.5 that kF depends only on the data mentioned,
and not on W , B, dy. Moreover, from (8.7) and (5.4), it follows that

Kt
F(ν : x : y)dµFdy =

∑

λ∈Λ(F)

Rest
λ+a∗Fq

(kF(· + ν))(dλ)dy.

The occurring residue operators only depend on the data mentioned, and
the product measure dλ dy only depends on the choice of (G, H, K, aq), by
the discussion in Sect. 5. All assertions now follow. ��
Remark 8.7 Since dµF and dy do not depend on the choice of W , it follows
that the same holds for the kernel Kt

F . This fact has already silently been
exploited in [12], text below Lemma 8.1, where the choice of W is adapted
to the set F.

According to [12], Cor. 10.10, the kernel Kt
F(ν : x : y) extends smoothly

to all of X in the variable x; more precisely, Kt
F is a meromorphic

C∞(X × X, End(Vτ ))-valued function on a∗FqC with singularities along
real Σr(F)-hyperplanes.
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From [12], Eqn. (5.5) and (5.8), we recall the definition of the linear
operator T t

F from C∞
c (X : τ) to C∞(X+ : τ) by

T t
F f(x) = |W | t(a+Fq)

∫

εF+ia∗Fq

∫

X
Kt

F(ν : x : y) f(y) dy dµF(ν), (8.8)

for f ∈ C∞
c (X : τ) and x ∈ X+. Here dµF is the translate by εF of the

Lebesgue measure on ia∗Fq normalized as in Sect. 5. Moreover, εF is a point
in the chamber a+Fq, arbitrary but sufficiently close to the origin.

Remark 8.8 If G has compact center modulo H, then a∆q = {0} and
t(a+∆q) = 1. Moreover, the above is to be understood so that integration
relative to dµ∆ means evaluation in 0; also, ε∆ = 0. In this case we agree
to write Kt

∆(x : y) = Kt
∆(0 : x : y), so that the formula for T t

∆ becomes

T t
∆ f(x) = |W |

∫

X
Kt

∆(x : y) f(y) dy (8.9)

for f ∈ C∞
c (X : τ) and x ∈ X+.

In [12], Cor. 10.11, it is shown that in fact T t
F maps into C∞(X : τ) and

defines a continuous linear operator C∞
c (X : τ) → C∞(X : τ). Moreover,

by [12], Thm. 1.2, it follows that

I =
∑

F⊂∆

T t
F on C∞

c (X : τ). (8.10)

Lemma 8.9 Let (G, H, K, τ, aq,Σ
+) and (F, t) be data as in Lemma 8.6.

These data determine the operator T t
F, defined by (8.8), completely.

Proof: This follows from Lemma 8.6. ��
We finish this section with a discussion of how the kernels Kt

F and the
operators T t

F behave under isomorphisms of reductive symmetric spaces.
Let ϕ : G → �G be an isomorphism of reductive groups of Harish-

Chandra’s class, and put �H = ϕ(H), �K = ϕ(K ), �τ := τ ◦ϕ−1, �aq =
ϕ(aq). Let �Σ be the root system of �aq in �g and let �W denote the associated
Weyl group. The isomorphism ϕ naturally induces the linear isomorphism
a∗qC → �a∗qC given by

ν �→ �ν := ν ◦ϕ−1|�aq .

This isomorphism restricts to an isomorphism of root systems Σ → �Σ. Let
Σ+ be a positive system for Σ and �Σ+ the corresponding positive system
for �Σ. Let ∆ and �∆ be the collections of simple roots for Σ+ and �Σ+,
respectively. We denote by �F the image in �∆ of a subset F ⊂ ∆.

The map ϕ also naturally induces a bijection from WT(Σ) onto WT(�Σ),
which we denote by t �→ �t. If t ∈ WT(Σ) is W-invariant and even, then
�t ∈ WT(�Σ) is �W-invariant and even.
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We put X = G/H and �X = �G/�H. Then the map ϕ factors to a dif-
feomorphism ϕ̄ : X → �X. This diffeomorphism induces the isomorphism
ϕ∗ : C∞(X : τ) → C∞(�X : �τ), given by f �→ f ◦ ϕ̄−1. It maps C∞

c (X : τ)
onto C∞

c (�X : �τ). We select invariant measures dx and �dx on X and �X,
respectively. As in Sect. 5, this choice determines Lebesgue measures dλ
and �dλ on ia∗q and i �a∗q, respectively. As in Sect. 2 we fix bilinear forms
B and �B on g and �g, respectively. These choices determine densities dµF
and dµ�F on ia∗Fq and i �a∗�Fq, respectively.

Let K
�t
�F be the analogue of the kernel Kt

F for the data (�G, �H, �K, �τ, �aq,�Σ+, �F, �t, �dx, �B) in place of (G, H, K, τ, aq,Σ
+, F, t, dx, B). Moreover,

let T
�t
�F be the associated analogue of the operator T t

F .

Lemma 8.10 Let notation be as above. Then

K
�t
�F(�ν : ϕ̄(x) : ϕ̄(y))ϕ∗(dµ�F) ϕ̄∗(�dy) = Kt

F(ν : x : y) dµFdy, (8.11)

for x, y ∈ X and generic ν ∈ a∗qC. Moreover, the corresponding operators
are related by

T
�t
�F ◦ϕ∗ = ϕ∗ ◦ T t

F on C∞
c (X : τ). (8.12)

Proof: In view of Lemma 8.6 it suffices to prove the identity (8.11) in case
�W , �dx and �B are compatible with W , dx and B, via ϕ. It then follows
from the definition of the kernels that

K
�t
�F(�ν : ϕ̄(x) : ϕ̄(y)) = Kt

F(ν : x : y),

whence (8.11).
Equation (8.12) now follows by combining (8.11) with (8.8) and using

the relations induced by ϕ between the data associated with G and �G. ��

9. The generalized Eisenstein integral

In this section we shall use the vanishing theorem to give an alternative char-
acterization of the generalized Eisenstein integral defined in [12], Def. 10.7.
This characterization, which is in the spirit of Proposition 8.1, will be used
throughout the paper.

For the moment we assume the G has compact center modulo H. Then,
with notation as in Remark 8.8, we define the space

At(X : τ) := span
{

Kt
∆( · : y)v | y ∈ X+, v ∈ Vτ

}
. (9.1)

This space equals the space Cν of [12], Eqn. (10.2), with F = ∆ and ν = 0.
It is finite dimensional and consists of D(X)-finite functions in Cω(X : τ),
see [12], Lemma 10.1. We adopt the new notation (9.1) instead of Cν to
avoid confusion with the space defined by (8.1).
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Lemma 9.1 Let G have compact center modulo H, and let t ∈ WT(Σ)
be a W-invariant even residue weight. Then the space At(X : τ) equals the
image T t

∆(C∞
c (X : τ)).

Proof: From [12], Lemma 10.2, it follows that Kt
∆ extends to a real analytic

function X × X → End(Vτ ) � Vτ ⊗ V ∗
τ which is τ ⊗ τ∗-spherical.

By density of X+ in X, continuity of Kt
∆ and finite dimensionality of the

space At(X : τ), it follows that the latter contains the function Kt
∆( · : y)v

for every y ∈ X and v ∈ Vτ . This implies that T t
∆ maps C∞

c (X : τ) into
At(X : τ).

To see that the converse inclusion holds, suppose that ξ is a linear
functional of At(X : τ), vanishing on im (T t

∆). Then it suffices to show that
ξ = 0.

For every x ∈ X and η ∈ V ∗
τ , let ξx,η denote the linear functional

ϕ �→ η(ϕ(x)) on At(X : τ). The intersection of the kernels of these linear
functionals, as x ∈ X and η ∈ V ∗

τ , is zero. Therefore, these linear functionals
span the dual of At (X : τ), and we see that there exist n ≥ 1, x1, . . . , xn ∈ X
and η1, . . . , ηn ∈ V ∗

τ , such that ξ = ∑n
j=1 ξx j ,η j . In view of (8.9), the fact

that ξ vanishes on im (T t
∆) implies that

n∑

j=1

∫

X
η j K t

∆(x j : y) f(y) dy = 0

for all f ∈ C∞
c (X : τ). By sphericality of Kt

∆ in the second variable,
the above integral also vanishes for all functions f ∈ C∞

c (X, Vτ ). Hence,∑
j η j K t

∆(x j : · ) = 0 as a function in C∞(X, V ∗
τ ). It follows that

ξ(K∆( · : y)v) = 0, for all y ∈ X+ and v ∈ Vτ . In view of (9.1), this
implies that ξ = 0. ��

We now assume that G is arbitrary again. Let F ⊂ ∆ and let FW ⊂
NK (aq) be a choice of representatives for WF\W/WK∩H . If t ∈ WT(Σ) we
denote by ∗t the induced residue weight of ΣF , see [11], Eqn. (3.16). Let t
be W-invariant and even; then ∗t is WF-invariant and even.

If v ∈ FW , let K
∗t
F (XF,v : m : m′), for m, m′ ∈ XF,v, denote the

analogue of Kt
∆ for the symmetric space XF,v. Note that MF has a compact

center, so that the discussion of the beginning of this section applies to
MF instead of G. In particular, the data (MF , HF, KF , τF , ∗aFq,Σ

+
F , ∗t)

determine the finite dimensional space

A
∗t(XF,v : τF ) = span

{
K

∗t
F (XF,v : · : m′) | m′ ∈ XF,v,+

}
.

Note that this space was denoted CF,v in [12], Eqn. (10.7). We define

A
∗t
F = ⊕v∈FW A

∗t(XF,v : τF ); (9.2)
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this formal direct sum was denoted CF in [12], Def. 10.7. The natural pro-
jections and embeddings associated with the above direct sum are denoted
by

prF,v : A
∗t
F → A

∗t(XF,v : τF ) and iF,v : A
∗t(XF,v : τF ) → A

∗t
F ,

for v ∈ FW . Given ψ ∈ A
∗t
F we shall also write ψv := prF,vψ.

The generalized Eisenstein integral E◦
F (ψ : ν), defined in [12], Def. 10.7,

is a function in C∞(X : τ) that depends linearly on ψ ∈ A
∗t
F and meromor-

phically on ν ∈ a∗FqC. We shall not repeat the definition here, but instead
give a characterization based on the vanishing theorem, Theorem 6.11. The
following result will allow us to show that E◦

F(ψ : · ) belongs to the space
of families E

hyp
F (X : τ) introduced in Definition 6.6 with Q = PF . For its

formulation, we recall some notation from [12], §8.
In the rest of this section we write E◦(λ : x) := E◦(P0 : λ : x). Similarly,

if v ∈ FW , we write E◦(X1F,v : ν : m) for the normalized Eisenstein integral
of X1F,v, associated with the minimal parabolic subgroup M1F ∩ P0. The
analogue of the space ◦C for the latter Eisenstein integral is

◦CF,v := ⊕w∈WF,v
C∞(

M/M ∩ wvHv−1w−1 : τ0
)
. (9.3)

Here WF,v ⊂ NMF∩K (aq) is a choice of representatives for WF/WKF∩vHv−1 ;
see [12], Eqn. (8.2). Adapting the set W if necessary, we may assume that
WF,v ⊂ W . Then W is the disjoint union of the sets WF,v, for v ∈ FW ,
see [12], Lemma 8.1. Accordingly, iF,v denotes the natural inclusion
◦CF,v → ◦C, defined as the identity on each component of (9.3). More-
over,

◦C = ⊕v∈FW iF,v(
◦CF,v). (9.4)

We denote the associated projection operator ◦C → ◦CF,v by prF,v, for
v ∈ FW .

Lemma 9.2 Let L be a Laurent functional in M(∗a∗FqC,ΣF )∗laur⊗◦C. Then
the family g : a∗FqC → C∞(X : τ), defined by

g(ν, x) := L[E◦(ν + · : x)]

belongs to E
hyp
F,Y (X : τ), with Y = supp L. Moreover, if v ∈ FW , then for ν

in a dense open subset of a∗FqC,

qν−ρF (PF, v | gν, X, m) = L
[
E◦(X1F,v : · + ν : m) ◦ prF,v

]
, (9.5)

for all X ∈ aFq and m ∈ XF,v,+. Here prF,v denotes the projection associated
with (9.4).
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Proof: It suffices to prove the result for a Laurent functional of the form
L = L′ ⊗ ψ, with L′ ∈ M(∗a∗FqC,ΣF )∗laur and ψ ∈ ◦C. Define the family
f by f(ν : x) := E◦(ν : x)ψ.

It follows from [9], p. 52, Lemma 14, that there exists a locally finite
collection H of Σ-hyperplanes in a∗qC and a map d : H → N such that f
belongs to M(a∗qC,H, d, C∞(X : τ)). From [14], Lemma 13.1, applied with
Q = PF, it follows that g is a meromorphic function on a∗FqC with values
in C∞(X : τ).

It follows from [14], Lemma 14.5, that there exists a δ ∈ DP such
that f belongs to E

hyp
0 (X+ : τ : δ)hglob, see [14], Def. 13.10, for the

definition of the latter space. According to [14], Thm. 13.12, this implies
that g ∈ E

hyp
F,Y (X+ : τ)glob. We conclude that g ∈ E

hyp
F,Y (X : τ).

The family f equals the family fW defined in [14], Prop. 15.4. It follows
from that proposition, applied with Q = PF and with L′ in place of L,
that (9.5) holds for each v ∈ FW , generic ν ∈ a∗FqC and all X ∈ a∗Fq and
m ∈ XF,v,+. Combining this with [14], Theorem 7.7, Eqn. (7.14), we see
that (9.5) holds for all ν in a dense open subset of a∗FqC, every v ∈ FW ,
X ∈ a∗Fq and all m ∈ XF,v,+. ��
Theorem 9.3 Let ψ ∈ A

∗t
F . Then g : ν �→ E◦

F(ψ : ν) is the unique family
in E

hyp
F (X : τ) with the following property. For all ν in some non-empty open

subset of a∗FqC and each u ∈ FW ,

qν−ρF (PF, u | gν)(X, m) = ψu(m), (X ∈ aFq, m ∈ XF,v,+). (9.6)

Remark 9.4 If F = ∆ and G has compact center modulo H, then aFq = {0}
and f �→ f0 defines a bijection from E

hyp
F (X : τ) onto A(X : τ), the space

of D(X)-finite functions in C∞(X : τ), see Remark 6.8. Moreover, FW
consists of one element which one may take to be 1, MF/MF ∩ H � X, and
A

∗t
F � At(X : τ). Finally, with notation as in the above theorem, g0 = ψ,

so that ψ �→ E◦
F(ψ : 0) is the inclusion map At(X : τ) → A(X : τ).

Remark 9.5 In the proof of Theorem 9.3, we will encounter the set

Λ(XF,v, F) ⊂ −R+F, (9.7)

which is defined to be the analogue of the set Λ(∆) of (8.7), for the data
(XF,v,

∗aFq,Σ
+
F ) in place of (X, aq,Σ

+).

Proof: Uniqueness follows from the vanishing theorem, Theorem 6.11;
hence, it suffices to prove existence.

In view of (9.2), we may assume that ψ ∈ A
∗t(XF,v : τF ) for some

v ∈ FW . According to [12], Eqn. (10.9), we may then express ψ as follows

ψ(m) =
∑

λ∈Λ(XF,v,F)

Res
∗t
λ

[
E◦(XF,v : − · : m)Φ( · )], (m ∈ XF,v),

(9.8)
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where

Φ(λ) =
k∑

j=1

E∗
+(XF,v : −λ : m j)v j ∈ ◦CF,v,

(
λ ∈ ∗a∗FqC

)
,

with {m1, . . . , mk} a finite subset of XF,v,+, and {v1, . . . , vk} a finite subset
of Vτ . We now note that

RF :=
∑

λ∈Λ(XF,v,F)

Res
∗t
λ (9.9)

is a Laurent functional in M(∗a∗FqC,ΣF )∗laur; moreover, according to [12],
Def. 10.7, the generalized Eisenstein integral is given by

g(ν, x) = RF
[
E◦(ν − · : x) ◦ iF,vΦ( · )].

Define the Laurent functional L0 ∈ M(∗a∗FqC,ΣF )∗laur ⊗ ◦C by

L0ϕ := RF[ϕ(− · ) ◦ iF,vΦ( · )], (9.10)

for ϕ ∈ M(∗a∗FqC,ΣF ) ⊗ ◦C∗. Then the generalized Eisenstein integral is
given by

g(ν, x) = L0[E◦(ν + · : x)].

It now follows from Lemma 9.2 that g ∈ E
hyp
F (X : τ) and that, for ν in an

open dense subset of a∗FqC and all X ∈ aFq and m ∈ XF,v,+,

qν−ρF (PF, u | gν, X, m)

= L0
[
E◦(XF,v : ν + · : m) ◦ prF,u

]

= RF
[
E◦(XF,v : ν − · : m) ◦ prF,u ◦ iF,vΦ( · )]. (9.11)

If u �= v, then the latter expression equals 0. Since also ψu = 0, the identity
(9.6) then follows. On the other hand, if u = v, then prF,u ◦ iF,vΦ( · ) =
Φ( · ); hence, (9.11) equals the expression on the right-hand side of (9.8),
and since ψv = ψ, the identity (9.6) follows. ��
Corollary 9.6 There exists a locally finite collection H0 of hyperplanes
in a∗FqC such that the following holds. Let ψ ∈ A

∗t
F and let g be defined

as in Theorem 9.3. Then the meromorphic function ν �→ gν is regular
on the complement of ∪H0. Moreover, for every u ∈ FW , X ∈ aFq and
m ∈ XF,v,+, formula (9.6) holds for all ν ∈ a∗FqC \ ∪H0.
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Proof: Let 1̄ denote the image of 1 in W/∼PF |PF , see (7.1). Let

ν �→ q1̄,0(PF, u | g)(ν, X, m) (9.12)

be the function in M(a∗FqC,Σr(F), Vτ ), defined as in Proposition 7.1.
By [14], Thm. 7.7, there exists a locally finite collection H0 of hyper-
planes in a∗FqC such that ν �→ gν is regular on a∗FqC \ ∪H0 and for every
u ∈ FW , all X ∈ aFq and m ∈ XF,u,+,

q1̄,0(PF, u | g)(ν, X, m) = qν−ρF (PF, u | gν, X, m), (9.13)

for all ν ∈ a∗FqC \ ∪H0. By linearity in ψ and finite dimensionality of the

space A
∗t
F , the collection H0 can be chosen independent of ψ. Combination

of (9.13) and (9.6) gives that the meromorphic function (9.12) is constant
and equal to ψu(m). In view of (9.13) it now follows that (9.6) holds for all
X ∈ aFq, m ∈ XF,u,+ and ν ∈ a∗FqC \ ∪H0. ��

From the uniqueness statement in Theorem 9.3 it follows that the general-
ized Eisenstein integral E◦

F(ψ) ∈ E
hyp
F (X : τ) depends linearly on ψ ∈ A

∗t
F .

We agree to write E◦
F(ν : x)ψ := E◦

F(ψ : ν : x), for x ∈ X and generic
ν ∈ a∗FqC. Accordingly, we view the generalized Eisenstein integral as
a meromorphic function on a∗FqC with values in C∞(X : τ ⊗ 1); here τ ⊗ 1

denotes the tensor product representation in Hom(A
∗t
F , Vτ ) � Vτ ⊗ (A

∗t
F )∗.

In accordance with [14], Def. 10.7, we put

E◦
F,v(ν : x) := E◦

F(ν : x) ◦ iF,v ∈ Hom
(
A

∗t(XF,v : τF ), Vτ

)
, (9.14)

for v ∈ FW , x ∈ X and generic ν ∈ a∗FqC.

Lemma 9.7 Let v ∈ FW and let ψ ∈ A
∗t(XF,v : τF ).

(a) There exists a Laurent functional L ∈ M(∗a∗FqC,ΣF )∗laur ⊗ ◦CF,v such
that

ψ(m) = L
[
E◦(XF,v : · : m)

]
, (m ∈ XF,v). (9.15)

(b) There exists a functional as in (a) with support contained in Λ(XF,v, F),
the set introduced in Remark 9.5. In particular, the support of this
functional is real.

(c) If L is any Laurent functional as in (a), then, for all x ∈ X,

E◦
F,v(ν : x)ψ = L

[
E◦(ν + · : x) ◦ iF,v

]

as an identity of meromorphic functions in ν ∈ a∗FqC.

Proof: As in the proof of Theorem 9.3 we may express ψ by (9.8). Let L0 be
defined as in (9.10) and let the Laurent functional L ∈ M(∗a∗FqC,ΣF )∗laur ⊗◦CF,v be defined by Lϕ = L0(ϕ( · ) ◦ prF,v), for ϕ ∈ M(∗a∗FqC,ΣF )⊗◦C∗

F,v.

Since prF,v ◦ iF,v = I on ◦CF,v, it follows from (9.10), (9.9) and (9.8) that
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L satisfies (9.15). We observe that supp L ⊂ supp RF ⊂ Λ(X F,v, F); in
particular, L has support contained in ∗a∗Fq. This establishes (a) and (b).

Now assume that L is a Laurent functional as in (a). Let L′ be the Laurent
functional in M(∗a∗FqC,ΣF )∗laur⊗◦C defined by L′ϕ = L(ϕ( · ) ◦ iF,v). Then
it follows from Lemma 9.2 that the family g : a∗FqC × X → Vτ defined by

g(ν, x) = L′[E◦(ν + · : x)]
belongs to E

hyp
F (X : τ) and satisfies, for u ∈ FW , ν in an open dense subset

of a∗FqC and all X ∈ aFq and m ∈ XF,u,

qν−ρF (PF , u | gν) = L′[E◦(XF,v : · ) ◦ prF,u

]

= L
[
E◦(XF,v : · ) ◦ prF,u ◦ iF,v

]

= prF,u ◦ iF,vψ.

Here we note that the last equality is obvious for u �= v, since then
prF,u ◦ iF,v = 0. On the other hand, if u = v, then prF,u ◦ iF,v = I on
A

∗t(XF,v : τF ) and the equality follows from the assumption on ψ. It now
follows from Theorem 9.3 that g(ν, x) = E◦

F(ν : x) ◦ iF,vψ. ��
Combining the above result with Lemma 8.3, we obtain the following

information on the asymptotic coefficients of the generalized Eisenstein
integral. We put

Y(F) := ∪v∈FW Λ(XF,v, F). (9.16)

This is a finite subset of −R+F, which in turn is contained in ∗a∗Fq.

Lemma 9.8 Let F ⊂ ∆ and ψ ∈ A
∗t
F . The family f : (ν, x) �→ E◦

F(ν : x)ψ
belongs to E

hyp
F,Y(F)(X : τ). Moreover, the Σr(F)-configuration H f , defined

in the text preceding Definition 6.3, is real.
Put k = dega f and let Q ∈ Pσ , u ∈ NK (aq). Then, for every σ ∈

W/∼Q|PF and all ξ ∈ −σ · Y(F) + ∆r(Q),

qσ,ξ(Q, u | f ) ∈ Pk(aQq) ⊗ M
(
a∗FqC,H f , d f , C∞(XQ,u : τQ)

)
. (9.17)

Proof: From Theorem 9.3 it follows that f ∈ E
hyp
F,Y (X : τ), with Y a finite

subset of ∗a∗FqC.

For the first two assertions we may assume that fν = E◦
F,v(ν)ψ, with

ψ ∈ A
∗t(XF,v : τF ). Select L ∈ M(∗a∗FqC,ΣF )∗laur ⊗ ◦CF,v as in Lem-

ma 9.7 (b). According to Lemma 8.3 there exists a real Σ-configuration H
in a∗qC such that for every ψ′ ∈ ◦CF,v, the family g : λ �→ E◦(λ)iF,vψ

′,
which belongs to E

hyp
0 (X : τ), satisfies Hg ⊂ H . It now follows from

Lemma 9.7 (c), combined with [14], Prop. 13.2, that Y ⊂ Y(F) and that
H f ⊂ HF(Y(F)), with the latter set defined as in [14], Eqn. (11.6). It
follows from the mentioned definition and the fact that H and Y(F) are
real, that HF(Y(F)) and hence H f are real. It remains to establish (9.17).
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Let Q, u, σ be as asserted. With a reasoning as above, it follows from
Lemma 9.7, combined with [14], Lemma 14.5 and Proposition 13.9, that
f is holomorphically σ -global along (Q, u) (see [14], Definition 13.6).
Let ξ ∈ −σ · Y + N∆r(Q). Then (9.17) follows by application of [14],
Proposition 13.8. ��

10. Temperedness of the Eisenstein integral

In this section we show that the generalized Eisenstein integral E◦
F(ν)ψ,

defined in the previous section, is tempered for regular values of ν in ia∗Fq.
Let us first recall the notion of temperedness. Following [5], p. 415, we

define the function Θ : X → R by

Θ(x) =
√

Ξ(xσ(x)−1),

where Ξ is the elementary spherical function ϕ0 associated with the Rie-
mannian symmetric space G/K.

Moreover, we define the function lX : X → [0,∞[, denoted τ in [5], by

lX(kah) = | log a|, (k ∈ K, a ∈ Aq, h ∈ H). (10.1)

Definition 10.1 A D(X)-finite function f in C∞(X : τ) is said to be
tempered if there exists a d ∈ N such that

sup
X

(1 + lX)−dΘ−1‖ f ‖ < ∞. (10.2)

The space of these functions is denoted by Atemp(X : τ).

The following lemma gives a criterion for temperedness in terms of
exponents. We assume that Pmin ⊂ P min

σ is a choice of representatives
for P min

σ /WK∩H and that W ⊂ NK (aq) is a choice of representatives for
W/WK∩H . We also assume that P1 is a fixed element of P min

σ .

Lemma 10.2 Let f ∈ C∞(X : τ) be a D(X)-finite function. Then the
following conditions are equivalent.

(a) f ∈ Atemp(X : τ).
(b) For each P ∈ Pmin and every ξ ∈ Exp (P, e | f ) the estimate Re ξ +

ρP ≤ 0 holds on a+q (P).

(c) For each v ∈ W and every ξ ∈ Exp (P1, v | f ) the estimate Re ξ +
ρP1 ≤ 0 holds on a+q (P1).

Proof: By sphericality and the decomposition G = cl ∪P∈Pmin K A+
q (P)H,

see [3], Cor. 1.4 and top of p. 232, the estimate (10.2) is equivalent to the
requirement that, for each P ∈ Pmin,

sup
a∈A+

q (P)

(1 + | log a|)−dΘ(a)−1‖ f(a)‖ < ∞.
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By [5], Prop. 17.2, there exist constants C > 0 and N ∈ N such that, for
each P ∈ Pmin,

a−ρP ≤ Θ(a) ≤ C (1 + | log a|)N a−ρP
(
a ∈ A+

q (P)
)
.

Therefore, (10.2) is equivalent to the existence of a constant d′ ∈ N such
that, for each P ∈ Pmin,

sup
a∈A+

q (P)

(1 + | log a|)−d′aρP‖ f(a)‖ < ∞.

According to [3], Thm. 6.1, this condition is in turn equivalent to (b).
This establishes the equivalence of (a) and (b), for any choice of Pmin.
The equivalence of (b) and (c) follows from the observation that {v−1 P1v |
v ∈ W} is a choice of representatives for P min

σ /WK∩H combined with the
fact that Exp (v−1 P1v, e | f ) = v−1Exp (P1, v | f ), for v ∈ W , by [14],
Lemma 3.6. ��

If G has compact center modulo H and t ∈ WT(Σ) is a W-invariant even
residue weight, then according to [12], Lemma 10.3, there exists, for every
choice of Hilbert structure on the space At(X : τ), a unique endomorphism
α = αt of this space, such that

Kt
∆(x : y) = e(x) ◦α ◦ e(y)∗, (10.3)

for x, y ∈ X+. Here the map e(x) : At(X : τ) → Vτ is defined by ϕ �→ ϕ(x).
The corresponding function e, with values in

Hom(At(X : τ), Vτ ) � Vτ ⊗ At(X : τ)∗,

is a τ ⊗ 1-spherical real analytic function on X. We recall from [12],
Lemma 10.3, that α is self-adjoint and bijective.

In the following we assume that t ∈ WT(Σ) is a W-invariant even
residue weight and that F ⊂ ∆. We equip each finite dimensional space
A

∗t(XF,v : τF ), for v ∈ FW , with a positive definite inner product. More-
over, we equip the direct sum space A

∗t
F , defined by (9.2), with the direct

sum inner product, denoted 〈 · | · 〉. Here and in the following, we use a bar
in the notation of an inner product to indicate its sesquilinearity. Moreover,
all such inner products will be antilinear in the second variable.

Let α
∗t
F,v = αF,v be the analogue of the endomorphism α for (XF,v, τF ),

and let α
∗ t
F = αF ∈ End(A

∗t) be the direct sum of the αF,v , for v ∈ FW . Then
αF is self-adjoint and bijective. Moreover, according to [12], Prop. 10.9, see
also Lemma 10.2, we have, for x, y ∈ X,

Kt
F(ν : x : y) = E◦

F(ν : x) ◦αF ◦ E∗
F(ν : y) (10.4)

as an identity of End(Vτ )-meromorphic functions in the variable ν ∈ a∗FqC.

Here E∗
F denotes the dual generalized Eisenstein integral, defined by

E∗
F(ν : y) := E◦

F(−ν̄ : y)∗ ∈ Hom
(
Vτ ,A

∗t
F

)
, (10.5)

for y ∈ X and generic ν ∈ a∗FqC.
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Lemma 10.3 There exists a locally finite collection H1 of affine hyper-
planes in a∗FqC, such that ν �→ E∗

F(ν) is regular on a∗FqC \ ∪H1, and such
that the following holds. For every ν ∈ a∗FqC \ ∪H1,

span
{

E∗
F(ν : y)v | y ∈ X+, v ∈ Vτ

} = A
∗t
F . (10.6)

Proof: Let H0 be the collection of hyperplanes of Corollary 9.6 and let H1
be the image of H0 under the map ν �→ −ν̄. In view of (10.5) the function
ν �→ E∗

F(ν) is regular on the complement of ∪H1.

Let ν ∈ a∗FqC \ ∪H1 and let ψ ∈ A
∗t
F . Assume that

〈ψ | E∗
F(ν : y)v〉 = 0 for all y ∈ X+, v ∈ Vτ .

Using (10.5) we see that E◦
F(−ν̄)ψ = 0. It now follows from Corollary 9.6

that ψu = 0 for each u ∈ FW . Hence, ψ = 0 and (10.6) follows. ��
In the following we write ρ = ρP0, where P0 denotes the standard

parabolic subgroup in P min
σ .

Lemma 10.4 Let v ∈ Vτ and y ∈ X+. Then the family f : (ν, x) �→
Kt

F(ν : x : y)v belongs to E
hyp
F (X : τ). Moreover, for every ν ∈ reg f and

each u ∈ W ,

Exp (P0, u | fν) ⊂ W F(ν + Λ(F)) − ρ − N∆, (10.7)

where Λ(F) denotes the finite subset of −R+F introduced in (8.7).

Proof: The first assertion follows from (10.4) and Theorem 9.3.
According to [12], Prop. 3.1, the function λ �→ E∗(P0 : λ : y)v belongs

to the space M(a∗qC,Σ) ⊗ ◦C(τ). Combining this with [14], Lemma 14.3,
we deduce that the family h : a∗qC × X+ → Vτ, defined by

h(λ, x) =
∑

s∈W F

E+,s(P0 : λ : x)E∗(P0 : λ : y)v

belongs to E
hyp
0 (X+ : τ), hence to C ep,hyp

0 (X+ : τ). Using [14], Eqn. (14.13),
we see that if s ∈ W, µ ∈ N∆ and u ∈ NK (aq), then

qs,µ(P0, u | h) �= 0 ⇒ s ∈ W F. (10.8)

In the notation of Sect. 5, define the Laurent functional L ∈ M(∗a∗FqC,ΣF )∗laur
by

L =
∑

λ∈Λ(F)

Rest
λ+a∗Fq

;



Plancherel decomposition I 499

then supp L ⊂ Λ(F). It follows from (8.7) that f = L∗h. From [14],
Prop. 13.2 (b), it now follows that there exists an open dense subset Ω ⊂ a∗FqC
such that, for ν ∈ Ω,

Exp (P0, u | fν) ⊂ {s(ν + λ) − ρ − µ | s ∈ W, λ ∈ Λ(F),

µ ∈ N∆, qs,µ(P0, v | h) �= 0}.
In view of (10.8) this implies that the inclusion (10.7) holds for ν ∈ Ω.

From f ∈ E
hyp
F (X : τ) it follows in particular that there exists a finite subset

Y ⊂ ∗a∗FqC such that f ∈ C ep,hyp
F,Y (X+ : τ). The canonical map W → W/WF

restricts to a bijection s �→ s̄ from W F onto W/WF . For s ∈ W F we put
Es̄ = −sΛ(F) + N∆. We now apply Lemma 7.2, with Q = PF, P = P0,
so that W/∼P|Q� W/WF, and with Eσ as just defined, for σ ∈ W/WF .
Then it follows that the inclusion (10.7) holds for ν ∈ reg f. ��
Theorem 10.5 Let ψ ∈ A

∗t
F and p ∈ ΠΣr(F)(a

∗
Fq). Then g : (ν, x) �→

p(ν)E◦
F(ν : x)ψ defines a family in E

hyp
F (X : τ). Moreover, for each v ∈ W

and every ν ∈ reg g,

Exp (P0, v | gν) ⊂ W F(ν + Λ(F)) − ρ − N∆, (10.9)

where Λ(F) denotes the finite subset of −R+F introduced above (8.7).

Proof: The first assertion follows from Theorem 9.3. By Lemma 10.3 there
exists a ν0 ∈ a∗FqC and elements y j ∈ X+ and v j ∈ Vτ , for 1 ≤ j ≤ r, such
that αF ◦ E∗

F(ν0 : y j)v j , 1 ≤ j ≤ r is a basis for A
∗t
F . Define meromorphic

A
∗t
F -valued functions on a∗FqC by ψ j := αF ◦ E∗

F( · : y j)v j , for 1 ≤ j ≤ r.
By standard arguments involving analyticity and linear algebra it follows
that (ψ j(ν) | 1 ≤ j ≤ r) is a basis for A

∗t
F , for ν in an open dense subset

of a∗FqC. Moreover, ψ ∈ A
∗t
F may be expressed as a linear combination

ψ = ∑
1≤ j≤r c j(ν)ψ j(ν), with meromorphic functions c j : a∗FqC → C.

Using (10.4) we now deduce that

g(ν : x) =
r∑

j=1

c j(ν)p(ν)Kt
F(ν : x : y j)v j ,

as an identity of meromorphic functions in the variable ν ∈ a∗FqC. From
Lemma 10.4 it follows that there exists a dense open subset Ω ⊂ a∗FqC such
that ν �→ gν is regular on Ω and such that, for ν ∈ Ω, the inclusion (10.9)
is valid. From g ∈ E

hyp
F (X : τ) it follows that there exists a finite subset

Y ⊂ ∗a∗FqC such that g ∈ C ep,hyp
F,Y (X+ : τ). By the same argument as at the

end of the proof of Lemma 10.4 we now conclude that the inclusion (10.9)
is valid for every ν ∈ reg g. ��
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Corollary 10.6 Let notation be as in Theorem 10.5. Then, for each ν ∈
ia∗Fq ∩ reg g,

gν ∈ Atemp(X : τ).

Proof: Let ν ∈ ia∗Fq ∩ reg g. Then from (10.9) it follows that every (P0, v)-
exponent of gν is of the form ξ = s(ν+η)−ρ−µ, with s ∈ W F, η ∈ Λ(F)
and µ ∈ N∆. Now Λ(F) ⊂ −R+F, hence sη ∈ −R+Σ+. It follows that
Re ξ + ρ = sη − µ ∈ −R+∆, hence Re ξ + ρ ≤ 0 on A+

q (P0). In view of
Lemma 10.2, this implies that gν ∈ Atemp(X : τ). ��

11. Initial uniform estimates

In this section we shall derive estimates for the generalized Eisenstein
integrals E◦

F(ν), with uniformity in the parameter ν ∈ a∗FqC, from similar
estimates for the normalized Eisenstein integral E◦(λ) = E◦(P0 : λ). The
idea is that estimates of the latter survive the application of certain Laurent
functionals.

We start with an investigation of the type of estimates involved. For
Q ∈ Pσ and R ∈ R, we define

a∗Qq(Q, R) := {
ν ∈ a∗QqC | Re 〈ν , α〉 < R, ∀α ∈ Σr(Q)

}
.

The closure of this set is denoted by ā∗Qq(Q, R). It is readily seen to consist
of all elements ν ∈ a∗QqC with Re 〈ν , α〉 ≤ R for all α ∈ Σr(Q).

In the following lemma we assume that S is a finite subset of a∗Qq \ {0}
and we use the notation of Sect. 4.

Lemma 11.1 Let R ∈ R, p ∈ ΠS(a
∗
Qq), u ∈ S(a∗Qq) and n ∈ N. Then for

every real number R− < R and every δ > 0 there exists a constant C > 0
with the following property.

Assume that V is any complete locally convex space, s a continuous
seminorm on V and b > 0 a constant. Moreover, let f : a∗Qq(Q, R) → V
be a holomorphic function satisfying the estimate

s(p(ν) f(ν)) ≤ (1 + |ν|)neb|Re ν|,

for all ν ∈ a∗Qq(Q, R). Then

s(u f(ν)) ≤ C(1 + |ν|)nebδeb|Re ν|,

for all ν ∈ a∗Qq(Q, R−).

Proof: It suffices to prove this on the one hand for u = 1 and p arbitrary
and on the other hand for p = 1 and u arbitrary. In the first case the proof
is essentially the same as that of Lemma 6.1 in [5], which is based on an
application of Cauchy’s integral formula.

In the second case the proof relies on a straightforward application of
Cauchy’s integral formula. ��
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Let H be a Σ-configuration in a∗qC. For Y ⊂ ∗a∗QqC a finite subset, we
define the Σr(Q)-configuration HQ(Y ) = Ha∗QqC

(Y ) in a∗QqC as in (4.6),
with L = a∗QqC and S = Y, see also [14], text preceding Cor. 11.6. Thus, for
ν ∈ a∗QqC, we have

ν ∈ a∗QqC\ ∪ HQ(Y ) ⇐⇒
{∀λ ∈ Y ∀H ∈ H : λ + ν ∈ H ⇒ λ + a∗QqC ⊂ H}.

Let now L ∈ M(∗a∗QqC,ΣQ)∗laur have support contained in the finite subset Y
of ∗a∗QqC. For any locally convex space V we have an associated continuous
linear operator L∗ as in (4.7). The following result expresses the continuity
with uniformity in the space V.

Lemma 11.2 Let H, Y,L be as above, and let d : H → N be a map.
Then there exists a map d′ : HQ(Y ) → N with the following property. For
any locally convex space V, the prescription

L∗ f(ν) = L[ f( · + ν)]
defines a continuous linear operator

L∗ : M
(
a
∗
qC,H, d, V

) → M
(
a
∗
QqC,HQ(Y ), d′, V

)
.

Proof: This is Cor. 11.6 of [14]. ��
A real Σr(Q)-configuration H ′ in a∗QqC consists of hyperplanes of the

form

Hα,s :=
{
ν ∈ a∗QqC | 〈α , ν〉 = s

}
,

with α ∈ Σr(Q) and s ∈ R. The configuration H ′ is called Q-bounded
if there exists a constant s0 ∈ R such that Hα,s ∈ H ′ ⇒ s ≥ s0, for all
α ∈ Σr(Q), s ∈ R. See [11], text before Lemma 3.1, for the similar notion
for Q minimal.

Lemma 11.3 Let Q ∈ Pσ, P ∈ P min
σ and P ⊂ Q. Let Y ⊂ ∗a∗Qq be a finite

subset.

(a) If H is a P-bounded real Σ-configuration in a∗qC, then HQ(Y ) is
a Q-bounded real Σr(Q)-configuration in a∗QqC.

(b) If H ′ is a Q-bounded real Σr(Q)-configuration in a∗QqC, then for every
R ∈ R the collection {H ∈ H ′ | H ∩ ā∗Qq(Q, R) �= ∅} is finite.

(c) If H ′ is as in (b), then for every R ∈ R there exists a constant R+ > R
such that H ∩ ā∗Qq(Q, R) �= ∅ ⇐⇒ H ∩ a∗Qq(Q, R+) �= ∅, for every
H ∈ H ′.
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Proof: There exists t0 ∈ R such that the hyperplanes in H are all of the
form Hβ,t, with β ∈ Σ(P) and t ∈ [t0,∞[. Let η ∈ Y and assume that
−η + Hβ,t intersects a∗QqC in a proper hyperplane H ′. Then it follows that
the restriction α = β|aQq is non-zero, hence belongs to Σr(Q). Moreover,
H ′ = Hα,s with s = t − 〈β , η〉. Let m be the maximum of the numbers
〈β , η〉, for β ∈ Σ(P) \ΣQ and η ∈ Y and put s0 = t0 −m. Then it follows
that every hyperplane from HQ(Y ) is of the form Hα,s, with α ∈ Σr(Q)
and s ≥ s0. This establishes (a).

To prove (b), fix α ∈ Σr(Q) and put Iα,R = {s ∈ R | Hα,s ∈ H, Hα,s ∩
ā∗Qq(Q, R) �= ∅}, for every R > 0. Then it suffices to show that Iα,R is
finite. Since H is locally finite, the set Iα,R is discrete, and since H is
Q-bounded, the set Iα,R is bounded from below. If h ∈ Hα,s ∩ ā∗Qq(Q, R),

then s = 〈α , h〉 ≤ R. It follows that the set Iα,R is bounded from above
by R. Hence, Iα,R is finite.

For (c) we observe that R ≤ R′ ⇒ Iα,R ⊂ Iα,R′. Fix R′ > R. Using
that Iα,R′ is discrete, we see that we may choose R+ ∈ ] R, R′ [ sufficiently
close to R so that Iα,R+ = Iα,R for all α ∈ Σr(Q). The constant R+ has the
required property. ��

If H ′ is a Q-bounded real Σr (Q)-configuration ina∗QqC, and d′ : H ′ → N

a map, then, for R ∈ R, we define the polynomial function πQ,R,d′ on a∗QqC
in analogy with (4.3) by

πQ,R,d′ :=
∏

H

ld′(H )
H ,

where the product is taken over the collection of H ∈ H ′ whose intersection
with ā∗Qq(Q, R) is non-empty; this collection is finite by Lemma 11.3 (b).
It follows from Lemma 11.3 (c) that πQ,R,d′ = πQ,R+,d′, for R+ > R
sufficiently close to R.

Proposition 11.4 Let Q ∈ Pσ , P ∈ P min
σ and P ⊂ Q. Let Y ⊂ ∗a∗Qq be

a finite subset and let L ∈ M(∗a∗QqC,ΣQ)∗laur be a Laurent functional with
supp L ⊂ Y. Let H be a P-bounded Σ-configuration in a∗qC, d : H → N

a map, and let d′ : HQ(Y ) → N be associated with the above data as
in Lemma 11.2. Let M > maxη∈Y |Re η| and assume that R, R′ ∈ R are
constants with Y + a∗Qq(Q, R′) ⊂ a∗q(P, R−) for some R− < R.

There exists a constant k ∈ N and for every n ∈ N a constant C > 0
with the following property.

If V is a complete locally convex space, s a continuous seminorm on V ,
b > 0 a positive constant and ϕ a function in M(a∗qC,H, d, V ) satisfying
the estimate

s(πP,R,d(λ)ϕ(λ)) ≤ (1 + |λ|)neb|Re λ|,
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for all λ ∈ a∗q(P, R), then the function L∗ϕ ∈ M(a∗QqC,HQ(Y ), d′, V )

satisfies the estimate

s(πQ,R′,d′(ν)L∗ϕ(ν)) ≤ C(1 + |ν|)n+kebMeb|Re ν|

for all ν ∈ a∗Qq(Q, R′).

Proof: It suffices to prove this for the case that supp L consists of a single
point λ0 ∈ Y. Let H0 be the collection of H ∈ H containing λ0 + a∗QqC.

Then for every H ∈ H0 there is a unique indivisible root αH ∈ ΣQ ∩Σ(P)

such that H = λ0 + (α⊥
H)C. We define the affine function lH : a∗qC → C

by lH(λ) = 〈λ − λ0 , αH〉. Then H = l−1
H (0). We define the polynomial

function q0 : a∗qC → C by

q0 =
∏

H∈H0

ld(H )
H .

From the definition of the space of Laurent functionals in M(∗a∗QqC,ΣQ)∗laur
supported at λ0, see §4, it follows that there exists a u ∈ S(∗a∗Qq) such that
on a function f ∈ (q0|∗a∗QqC

)−1Oλ0 the action of the Laurent functional is
given by L f = u(q0|∗a∗QqC

f )(λ0). It follows that for ϕ ∈ M(a∗qC,H, d, V )

and ν ∈ a∗QqC \ ∪HQ(Y ),

L∗ϕ(ν) = L(ϕ( · + ν)) = u(q0( · )ϕ( · + ν))(λ0) = u(q0ϕ)(λ0 + ν).

As in the proof of [11], Lemma 1.2, we infer that there exist a polynomial
function π ∈ ΠΣr(Q)(a

∗
Qq) and finitely many qj ∈ P(a∗Qq) and u j ∈ S(a∗q),

all independent of V, s, b and ϕ, such that

π(ν) u(q0ϕ)(λ0 + ν) =
∑

j

q j(ν)u j(πP,R,dϕ)(λ0 + ν), (11.1)

for ν ∈ a∗Qq(Q, R′). Multiplying both sides of (11.1) with a suitable poly-
nomial function we see that we may as well assume that π = π0πQ,R′,d′,
for some π0 ∈ ΠΣr (Q)(a

∗
Qq). We obtain

π0(ν)ψ(ν) =
∑

j

q j(ν)u j(πP,R,dϕ)(λ0 + ν), (11.2)

where we have written ψ = πQ,R′,d′L∗ϕ.

Let k be the maximum of the degrees of the polynomials qj . Then there
exists a constant D > 0, independent of V, s, b and ϕ, such that for every j,

|qj(ν)| ≤ D(1 + |ν|)k,
(
ν ∈ a∗QqC

)
. (11.3)
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Put m = maxη∈Y |Re η| and fix δ > 0 such that m +2δ < M. We may select
constants R′+ > R′ and R− < R such that Y + ā∗Qq(Q, R′+) ⊂ a∗q(P, R−).

Adapting R′+ if necessary, we may in addition assume that

πQ,R′+,d′ = πQ,R′,d′, (11.4)

see the text preceding the proposition.
Let now n ∈ N and b > 0, and assume that ϕ satisfies the hypotheses of

the proposition. It follows from Lemma 11.1, applied with P in place of Q,
that there exist constants C j > 0, independent of V, s, b and ϕ, such that

s(u j(πP,R,d ϕ)(λ)) ≤ C j(1 + |λ|)nebδeb|Re λ|, (11.5)

for λ ∈ a∗q(P, R−).

Using the estimate 1 + |λ0 + ν| ≤ (1 + |λ0|)(1 + |ν|) and combining
(11.2), (11.3) and (11.5), we obtain

s(π0(ν)ψ(ν)) ≤ C ′(1 + |ν|)n+kebδeb(|Re ν|+m),
(
ν ∈ a∗Qq(Q, R′

+)
)
,

with

C ′ = D(
∑

j

C j)(1 + |λ0|)n.

From (11.4) we see that the function ψ is holomorphic on a∗Qq(Q, R′+). We
may therefore apply Lemma 11.1 with ψ, π0, C ′ and [C ′ebδ+bm]−1s in place
of f, p, u and s, and with R′+, R′ in place of R, R−, respectively. Using that
m + 2δ < M, we obtain the desired estimate, with C > 0 a constant that is
independent of V, s, b and ϕ. ��

In the rest of the section we shall apply the above results to Eisenstein
integrals. We start with a suitable estimate for Eisenstein integrals associated
with minimal σ -parabolic subgroups.

Lemma 11.5 Let P ∈ P min
σ . Then there exists a P̄-bounded real Σ-

configuration H in a∗qC and a map d : H → N such that the function λ �→
E◦(P : λ) belongs to the space M(a∗qC,H, d, C∞(X) ⊗ Hom(◦C, Vτ)).

Let R ∈ R and let p ∈ ΠΣ(a∗q) be a polynomial such that the function
λ �→ p(λ)E◦(P : λ) is holomorphic on a neighborhood of ā∗q(P̄, R). Then
there exists a constant r > 0 and for every u ∈ U(g) constants n ∈ N and
C > 0 such that

‖p(λ)E◦(P : λ : u; x)‖ ≤ C(1 + |λ|)ne(r+|Re λ|)lX(x), (11.6)

for all λ ∈ ā∗q(P̄, R) and x ∈ X. (See (10.1) for the definition of the function
lX.)

Proof: First assume that τ = τϑ, defined as in [9], text after Eqn. (28),
with ϑ ⊂ K̂ a finite subset. Then for x ∈ Aq the estimate (11.6) follows
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from [5], Corollary 16.2 and Proposition 10.3, combined with the fact that
E◦(P : λ) = E1(P̄ : λ), see [9], Eqn. (52). In view of the decomposition
X = K Aq(eH), the estimate now follows for general x ∈ X by sphericality
of the Eisenstein integral. Finally, for general τ the estimate follows by
application of the ‘functorial’ dependence of the Eisenstein integral on τ,
see [9], Eqn. (32). ��

We can now prove the following analogous result for the generalized
Eisenstein integral.

Proposition 11.6 Let F ⊂ ∆, v ∈ FW and let t ∈ WT(Σ) be a W-
invariant even residue weight.

There exists a P̄F-bounded, real Σr(F)-hyperplane configuration HF in
a∗FqC and a map dF : HF → N such that ν �→ E◦

F(ν) belongs to the space

M
(
a
∗
QqC,HF, dF, C∞(X) ⊗ Hom

(
A

∗t
F , Vτ

))
.

Moreover, if R′ ∈ R and if p is any polynomial in ΠΣr(F)(a
∗
Fq) such that

ν �→ p(ν)E◦
F,v(ν) is holomorphic on a neighborhood of ā∗Fq(P̄F , R′), then

there exist a constant r > 0 and for every u ∈ U(g) constants n ∈ N and
C > 0, such that

‖p(ν)E◦
F,v(ν : u; x)‖ ≤ C(1 + |ν|)ne(r+|Re ν|)lX(x), (11.7)

for all ν ∈ ā∗Fq(P̄F, R′) and x ∈ X.

Remark 11.7 This result is a sharpening of the estimate given in [12],
Lemma 10.8.

Proof: According to Lemma 9.7 (b, c), the generalized Eisenstein integral
may be expressed as

E◦
F,v(ν : x)ψ = L∗

[
E◦(P0 : · : x) ◦ iF,v

]
(ν), (11.8)

with L ∈ M(a∗FqC,ΣF )∗laur ⊗ ◦CF,v a Laurent functional whose support is
contained in a finite subset Y ⊂ ∗a∗Qq. Let H, d be associated with P = P0

as in Lemma 11.5. Let HF := HF(Y ) and dF := d′ be associated with
the data P = P0, Q = PF , H, d, L as in Lemma 11.2, then HF is a real
P̄F-bounded Σr(F)-configuration, by Lemma 11.3. The first assertion of
the proposition follows by application of Lemma 11.2.

Fix R ∈ R such that a∗Fq(P̄F, R′) + Y ⊂ a∗q(P̄0, R−) for some R− < R.

Let r be the constant of Lemma 11.5 applied with P0, R and π P̄0,R,d in place
of P, R and p, respectively. Fix u ∈ U(g). Then according to Lemma 11.5
there exist constants n0 ∈ N and C0 > 0, such that for all x ∈ X,

‖π P̄0,R,d(λ)E◦(P0 : λ : u; x) ◦ iF,v‖ ≤ C0(1 + |λ|)n0e(r+|Re λ|)lX(x),
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for all λ ∈ ā∗q(P̄0, R). Let x ∈ X. We apply Proposition 11.4 to the function
ϕ = ϕx from M(a∗qC,H, d, Hom(◦CF,v, Vτ )), given by

ϕx = E◦(P0 : · : u; x) ◦ iF,v,

with the constant b = lX(x) and the seminorm s = C−1
0 e−rb‖ · ‖. Let

M > maxη∈Y |Re η|. Then we obtain the estimate

‖π P̄F ,R′,dF
(ν)L∗(ϕx)(ν)‖ ≤ C1(1 + |ν|)n0+ke(r+|Re ν|+M)lX(x),

for ν ∈ a∗Fq(P̄F, R′), with constants k ∈ N and C1 > 0 that are independent
of x, ν. We now note that

L∗(ϕx) = L∗
(
E◦(P0 : · : u; x) ◦ iF,v

)
(ν)

= L∗
(
E◦(P0 : · ) ◦ iF,v

)
(ν)(u; x)

= E◦
F,v(ν : u; x),

as a meromorphic identity in ν ∈ a∗QqC. The second of the above identities
involves the interchange of u and L∗, which is allowed by the continu-
ity of L∗, see Lemma 11.2. The third identity is obtained by application
of (11.8). Thus, we obtain, for all x ∈ X and all ν ∈ a∗Fq(P̄F , R′), the
estimate

‖π P̄F ,R′,dF
(ν)E◦

F,v(ν : u; x)‖ ≤ C1(1 + |ν|)n0+ke(r+|Re ν|+M)lX(x).

This proves the result for the particular polynomial p = π P̄F ,R′,dF
. For

p equal to a multiple of π P̄F ,R′,dF
the result now also follows, since any

polynomial from Pd (a∗Fq), d ∈ N, can be estimated from above by a function
of the form C(1 + |ν|)d.

Let p now be an arbitrary element of ΠΣr (F)(a
∗
Fq) satisfying the hypoth-

esis. Fix R′+ > R′. Then an estimate of type (11.7) holds on a∗Fq(P̄F, R′+)

with pπ P̄F ,R′+,dF
in place of p. By application of Lemma 11.1 this implies an

estimate of the form (11.7), with the required dependences of the constants.
��

12. Symmetric pairs of residue type

By L2
d(X) we denote the discrete part of L2(X), i.e., the closed span in

L2(X) of all the irreducible closed subspaces of L2(X). Accordingly we
define

L2
d(X : τ) := (

L2
d(X) ⊗ Vτ

) ∩ L2(X : τ).

For the following definition we recall from Sect. 8 that the data (G, H, K, τ,
aq,Σ

+) together with a W-invariant even residue weight t ∈ WT(Σ) deter-
mine the continuous linear operator T t

∆ : C∞
c (X : τ) → C∞(X : τ). If G

has a compact center modulo H, then this operator is given by the formula
(8.9).
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Definition 12.1 The reductive symmetric pair (G, H) is said to be of
residue type if the following conditions are fulfilled.

(a) The group G has a compact center modulo H.
(b) For any choice of the data (K, aq), the following requirement is fulfilled.

For every finite dimensional unitary representation τ of K, every choice
Σ+ of positive roots for Σ and every W-invariant even residue weight
t ∈ WT(Σ), the operator T t

∆ : C∞
c (X : τ) → C∞(X : τ) is the

restriction of the orthogonal projection L2(X : τ) → L2
d(X : τ).

Remark 12.2 The above definition is given for technical reasons. Together
with Definition 13.1, where the notion of residue type for a parabolic sub-
group from Pσ will be introduced, it plays a role in a long chain of reasoning
that will be used in an induction step in the proof of Theorem 21.2. (The
induction goes by induction on the σ -split rank of G.) As part of the men-
tioned theorem it is asserted that in fact every pair (G, H) with G having
compact center modulo H and every group from Pσ is of residue type.

In the course of the chain of reasoning, many results will first be proved
under the assumption that an involved parabolic subgroup from Pσ or an
involved reductive symmetric pair (G, H) is of residue type. Such results
will be marked with (RT) after their declaration. The additional hypotheses
will be clearly stated at the beginning of their proofs. Within the chain of
reasoning, until Theorem 21.2, the results marked (RT) will only be used
if these additional hypotheses are assumed to be fulfilled. The mentioned
theorem implies that the additional hypotheses are in fact always fulfilled
so that in the end the results marked (RT) are valid as stated.

Within the chain of reasoning, it also happens that definitions need extra
hypotheses concerning residue type in order to be valid. These definitions
will be marked (RT) as well. The extra hypotheses are stated in a subsequent
remark. Within the chain of reasoning such definitions will only be used if
the extra hypotheses are assumed to be fulfilled. In the end Theorem 21.2
implies that the extra hypotheses are always fulfilled, so that the definitions
marked (RT) are valid as stated.

Remark 12.3 If aq = {0}, then X is compact and the operator T∆ is under-
stood to be the identity operator of C∞

c (X : τ). Thus, conditions (a) and (b)
of the definition are fulfilled and in this case (G, H) is of residue type.

Remark 12.4 It follows from Lemma 8.10 that the notion of residue type
is stable under isomorphisms of reductive symmetric pairs.

Remark 12.5 Condition (b) of the definition is valid as soon as a particular
choice of the data (K, aq) satisfies the mentioned requirement. Indeed,
assume that (K, aq) satisfies the requirement and let �K ⊂ G be a second
σ -invariant maximal compact subgroup, g = �k ⊕ �p the associated Cartan
decomposition, and �aq ⊂ q ∩ �p an associated maximal abelian subspace.
Then there exists a (unique) g ∈ exp(h∩p) such that gKg−1 = �K, see [38],
p. 153. Now Ad(g)aq is maximal abelian in �p ∩ q, hence there exists an
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element k ∈ �Ke ∩ He such that Ad(kg)aq = �aq. Let ϕ : G → G be
conjugation by kg, then ϕ maps the data (G, H, K, aq) onto (G, H, �K, �aq).
In view of Lemma 8.10 it follows that the requirement in (b) for the pair
(K, aq) is equivalent to the similar requirement for the pair (�K, �aq).

We recall from [5], §17, that the Schwartz space C(X : τ) is defined to
be the space of functions f ∈ C∞(X : τ) such that, for every u ∈ U(g) and
n ∈ N,

su,n( f ) := sup
x∈X

(1 + lX)nΘ(x)−1‖u f(x)‖ < ∞; (12.1)

see also the beginning of Sect. 10. The Schwartz space is equipped with the
Fréchet topology determined by the seminorms su,n. By [3], Lemma 7.2, the
operators from D(X) act on C(X : τ) by continuous linear endomorphisms.
We define A2(X : τ) to be the space of D(X)-finite functions in C(X : τ).

Lemma 12.6 (RT) Let G have compact center modulo H. Then, for every
W-invariant even residue weight t ∈ WT(Σ),

At(X : τ) = L2
d(X : τ) = A2(X : τ). (12.2)

In particular, the space A2(X : τ) is finite dimensional.

Remark 12.7 The fact that L2
d(X : τ) is finite dimensional is also an imme-

diate consequence of the classification of the discrete series in [40]. In the
present paper it would not have been advantageous to use this known fact.
Only the spectral properties of the discrete series as formulated in Theo-
rem 16.1 are needed. The mentioned finite dimensionality naturally follows
from the finite dimensionality of At(X : τ), by the nature of our argument.

Proof: We give the proof under the assumption that (G, H) is of residue
type, see Remark 12.2. It follows from Definition 12.1 (b) that
T t

∆(C∞
c (X : τ)) is dense in L2

d(X : τ). By Lemma 9.1 it follows that
At(X : τ) is dense in L2

d(X : τ). By finite dimensionality of the first of
these spaces, the first equality in (12.2) follows. In particular, it follows
that the space L2

d(X : τ) consists of smooth D(X)-finite functions; by [3],
Thm. 7.3 with p = 2 it is therefore contained in A2(X : τ). Conversely, if
f ∈ A2(X : τ), then f is K -finite and D(X)-finite. Hence, by a well known
result of Harish-Chandra its (g, K )-span in C(X, Vτ) is a (g, K )-module of
finite length; see [41], p. 312, Thm. 12 and [42], p. 112, Thm. 4.2.1. The clo-
sure of this span in L2(X)⊗Vτ is therefore a finite direct sum of irreducible
representations. The mentioned closure contains f ; hence, f ∈ L2

d(X : τ).
��

Assume that G has compact center modulo H and that t ∈ WT(Σ)
is a W-invariant even residue weight. We recall that a choice of Hilbert
structure on the space At(X : τ) uniquely determines an endomorphism
α = αt ∈ End(At(X : τ)) such that (10.3) holds.
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Lemma 12.8 (RT) Assume that G has compact center modulo H and let
t ∈ WT(Σ) be a W-invariant even residue weight.

(a) Assume that the space At(X : τ) is equipped with the restriction of
the inner product from L2(X) ⊗ Vτ , see (12.2). Then the endomor-
phism α, determined by (10.3), equals |W |−1 times the identity operator
of At(X : τ).

(b) The kernel Kt
∆ is independent of the residue weight t.

Proof: We give the proof under the assumption that (G, H) is of residue
type, see Remark 12.2. It follows from (12.2) that the real analytic τ ⊗ 1-
spherical function e on X attains its values in Hom(L2

d(X : τ), Vτ ) �
Vτ ⊗ L2

d(X : τ)∗. Hence, e∗ : y �→ e(y)∗ is a real analytic 1 ⊗ τ∗-spherical
function on X, with values in Hom(Vτ , L2

d(X : τ)).

We define the continuous linear operator P : C∞
c (X : τ) → L2

d(X : τ)
by

P f =
∫

X
e(y)∗ f(y) dy.

Then one readily verifies that 〈P f |ψ〉 = 〈 f |ψ〉 for every ψ ∈ L2
d(X : τ).

It follows that P equals the restriction to C∞
c (X : τ) of the orthogonal

projection L2(X : τ) → L2
d(X : τ). Hence, P = T t

∆. Combining this with
(8.9) we obtain that, for all x ∈ X and all f ∈ C∞

c (X : τ),

|W |
∫

X
Kt

∆(x : y) f(y) dy = T t
∆ f(x) = e(x)(P f )

=
∫

X
e(x) ◦ e(y)∗ f(y) dy.

Since e(x) ◦ e( · )∗ and Kt
∆(x : · ) are smooth and τ∗ ⊗1-spherical functions

on X, with values in End(Vτ ), it follows from the above identities that
|W |Kt

∆(x : y) = e(x) ◦ e(y)∗ for all x, y ∈ X. This implies (10.3) with α

equal to |W |−1 IL2
d(X:τ). Hence, (a) holds. Assertion (b) is now immediate. ��

13. The normalized Eisenstein integral

In this section we shall define the normalized Eisenstein integral, initially
for the class of parabolic subgroups introduced in the following definition,
see Remark 12.2.

Definition 13.1 A parabolic subgroup P ∈ Pσ is said to be of residue type
(relative to H) if for every v ∈ NK (aq) the pair (MP, MP ∩ vHv−1) is of
residue type. A subset F ⊂ ∆ is said to be of residue type if the associated
standard σ -parabolic subgroup PF is of residue type.
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Remark 13.2 In view of Remark 12.4 it suffices to require the above con-
dition for v in a choice of representatives PW ⊂ NK (aq) of WP\W/WK∩H .

Remark 13.3 We write ◦G for MG, the Langlands M-component of G
viewed as a parabolic subgroup. Thus, ◦G equals the intersection of the
kernels ker |χ|, for χ : G → C

∗ a character. By the previous remark,
G (viewed as an element from Pσ ) is of residue type relative to H if and
only if the pair (◦G, ◦G ∩ H) is of residue type. If G has compact center
modulo H , then the pair (◦G, ◦G ∩ H) is of residue type if and only if
(G, H) is.

Definition 13.4 Two parabolic subgroups P, Q ∈ Pσ are said to be asso-
ciated if their σ -split components aPq and aQq are conjugate under W. The
equivalence relation of associatedness is denoted by ∼ .

Lemma 13.5 Assume that P ∈ Pσ is of residue type. Then every Q ∈ Pσ

with Q ∼ P has the same property.

Proof: If Q ∼ P, there exists a k ∈ NK (aq) such that aQq = Ad(k)aPq.

From this it follows that MQ = kMPk−1. If v ∈ NK (aq), then MQ ∩
vHv−1 equals k(MP ∩ wHw−1)k−1, with w = k−1v ∈ NK (aq). The pair
(MP, MP ∩ wHw−1) is of residue type, and by Remark 12.4 we conclude
that (MQ, MQ ∩ vHv−1) is of residue type as well. ��
Let P ∈ Pσ . We equip the space XP,v, for v ∈ PW , with the invariant
measure dxP,v specified at the end of Sect. 5. The space A2(XP,v : τP ) is
equipped with the inner product from L2(XP,v, Vτ ), for v ∈ PW . Moreover,
the space A2,P = A2,P,PW is defined to be the formal direct sum

A2,P :=
⊕

v∈PW

A2(XP,v : τP ), (13.1)

equipped with the direct sum inner product. The space A2,P is finite di-
mensional by Lemma 12.6. Application of this lemma requires P to be of
residue type, see Remark 12.2.

We agree to denote by prP,v : A2,P → A2(XP,v : τP) the natural pro-
jection operator, for v ∈ PW , and by iP,v the associated natural embedding
operator.

In the following we shall use the characterization of the generalized
Eisenstein integral by its asymptotic behavior, see Theorem 9.3, to define
an Eisenstein integral for arbitrary parabolic subgroups.

Proposition 13.6 (RT)

(a) Let P ∈ Pσ . For every ψ ∈ A2,P there exists a unique family E◦(P : ψ)

∈ E
hyp
P (X : τ) with the following property. For all ν in a non-empty open

subset of a∗PqC, each v ∈ PW , every X ∈ aPq and every m ∈ XP,v,+,

qν−ρP (P, v | E◦(P : ψ : ν), X, m) = ψv(m).
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(b) Let F ⊂ ∆. Then, for every W-invariant even residue weight t ∈
WT(Σ), the space A

∗t
F equals A2,F := A2,PF ; here we assume that in

the definition of both spaces the same set FW has been used. Moreover,
for every ψ ∈ A2,F,

E◦(PF : ψ : ν : x) = E◦
F(ν : x)ψ,

for all x ∈ X and generic ν ∈ a∗FqC.

Proof: Here we prove (a) under the assumption that P is of residue type
and (b) under the assumption that F is of residue type, see Remark 12.2.

Uniqueness follows from Theorem 6.11. Thus, it suffices to establish
existence. We will first do this for P of residue type and equal to a standard
parabolic subgroup PF, with F ⊂ ∆. Let t ∈ WT(Σ) be any W-invariant
even residue weight. Let ∗t be the induced residue weight of ΣF . Then it
follows from Lemma 12.6, applied to the pair (MF, MF ∩ vHv−1), that
A

∗t(XF,v : τF ) = A2(XF,v : τF ). Moreover, if ψ ∈ A2(XF,v : τF ), then
E◦(PF : ψ) := E◦

F( · )ψ satisfies the desired property, by Theorem 9.3.
Now assume that P is general and of residue type, let PW ⊂ NK (aq)

be a choice of representatives for WP\W/WK∩H and let ψ ∈ A2,P. There
exists a u ∈ NK (aq) such that u−1 Pu = PF , with F ⊂ ∆. Moreover, PF is
of residue type, by Lemma 13.5. The set FW = u−1(PW ) is a choice of
representatives for WF\W/WK∩H in NK (aq). For v ∈ PW , let ρτ,u be the
linear isomorphism from C∞(XF,u−1v,+ : τF ) onto C∞(XP,v,+ : τP), defined
as in [14], Eqn. (3.24). We define the function ψ′ ∈ A2,F by ψ′

u−1v
= ρ−1

τ,uψv,
for v ∈ PW . Define the meromorphic family f : a∗PqC → C∞(X : τ) by

fν(x) = E◦(PF : ψ′ : u−1ν : x
)
,

for x ∈ X and generic ν ∈ a∗PqC. By Theorem 9.3 and Lemma 6.12, the
family f belongs to E

hyp
P (X : τ). Moreover, it follows from [14], Lemma 3.6,

that, for v ∈ PW and ν in a dense open subset of a∗PqC,

qν−ρP (P, v | fν) =
[
Ad(u−1)∗ ⊗ ρτ,u

]
qu−1ν−ρF

(
PF, u−1v | fν

)

= ρτ,uψ
′
u−1v

= ψv.

This establishes the result with E◦(P : ψ) = f. ��
From the uniqueness assertion in Proposition 13.6 it follows that the

meromorphic function E◦(P : ψ) : a∗PqC → C∞(X : τ) depends linearly
on ψ.

Definition 13.7 (RT) Let P ∈ Pσ . For ψ ∈ A2,P, let E◦(P : ψ) denote
the unique family in E

hyp
P (X : τ) of Proposition 13.6 (a).

The meromorphic C∞(X, Hom(A2,P, Vτ ))-valued function E◦(P : · )
= E◦(X : P : · ) on a∗PqC, defined by

E◦(P : ν : x)ψ = E◦(P : ψ : ν : x),
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for ψ ∈ A2,P, x ∈ X and generic ν ∈ a∗QqC, is called the normalized Eisen-
stein integral associated with the parabolic subgroup P (and the choice PW ).

The meromorphic C∞(X, Hom(Vτ ,A2,P))-valued function E∗(P : · )
on a∗PqC defined by

E∗(P : ν : x) = E◦(P : −ν̄ : x)∗,

for ψ ∈ A2,P, x ∈ X, and generic ν ∈ a∗PqC, is called the dual Eisenstein
integral associated with P.

Remark 13.8 The above definition requires the validity of Proposition 13.6,
which inside the chain of reasoning leading up to Theorem 21.2, requires
P to be of residue type, see Remark 12.2.

Remark 13.9 In the case of the group, the normalized Eisenstein integral
defined above is essentially equal to the one defined by Harish-Chandra [29],
§6, Thm. 6. This is seen as follows. Let �G be a real reductive group of
Harish-Chandra’s class, let G = �G × �G, let σ : G → G be the involution
given by (�x, �y) �→ (�y, �x) and let H = Gσ be the diagonal subgroup.
Then (�x, �y) �→ �x(�y)−1 induces a G-diffeomorphism Φ : G/H → �G.
Let �g = �k⊕ �p be a Cartan decomposition, �θ the associated involution and
put θ = �θ× �θ. Then θ is a Cartan involution commuting with σ. Let �K and
K = �K × �K be the associated maximal compact subgroups of �G and G,
respectively, and let (τ, Vτ ) be a finite dimensional unitary representation
of K. Let τ1, τ2 be the unitary representations of �K in Vτ defined by
τ1(
�k) = τ(�k, 1) and τ2(

�k) = τ(1, �k). Let �τ denote the pair of commuting
representations (τ1, τ2). Then pull-back by Φ induces a linear isomorphism
Φ∗ from the space C∞(�G : �τ) of smooth �τ-spherical functions on �G,
onto C∞(G/H : τ).

Let a�p be maximal abelian in �p, then aq := {(X,−X) | X ∈ a�p} is
maximal abelian in p ∩ q. Let �P ⊂ �G be a parabolic subgroup containing
A�p. Then P := �P× � P̄ belongs to Pσ . Moreover, the map (X, Y ) �→ X−Y
is surjective from aP = a�P×a�P onto a�P and induces a linear isomorphism
from aPq = aP ∩ aq onto a�P, mapping a+Pq onto a+�P. The complexified
adjoint map ϕ∗ is the linear isomorphism from a∗�PC onto a∗PqC given by
�ν �→ (�ν,−�ν).

We observe that MP = M�P × M�P, so that XP = M�P × M�P/H ∩ MP,
which is MP-diffeomorphic to M�P under the map ΦP induced by restricting
Φ. It is readily seen that Φ∗

P restricts to a linear bijection from the finite
dimensional space L2

d(M�P : �τM�P ) onto L2
d(XP : τP ) = A2,P. Let ψ ∈

L2
d(XP : τP ) and consider the family f : a∗qC × G → Vτ defined by fν =

Φ∗E◦(�P : Φ∗−1
P ψ : ϕ∗−1ν/i), where the normalized Eisenstein integral

is Harish-Chandra’s. By holomorphy of Harish-Chandra’s unnormalized
Eisenstein integral combined with meromorphy and the product structure of
Harish-Chandra’s C-function C�P|�P(1 : �ν), it follows that the family fν ∈
C∞(X : τ) satisfies condition (a) of Definition 6.1. Via the subrepresentation
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theorem of [21], combined with induction by stages, Harish-Chandra’s
Eisenstein integral can be realized by matrix coefficients of the minimal
principal series of �G. Using this information it can be deduced that f
satisfies the remaining conditions (b), (c) of Definition 6.1. In fact, it is
now readily checked that f belongs to the space Chyp

P (X : τ), defined in
Definition 6.6. Moreover, from the information on the constant term of
Harish-Chandra’s Eisenstein integral, see [29], §5, Thm. 5, it follows that
qν−ρP (P, 1 | fν, X, m) = ψ(m), in the notation of Proposition 13.6, for
generic ν ∈ ia∗Pq. By meromorphy it now follows that the family f satisfies
the condition of Proposition 13.6 (a) (note that we may take PW = {1}
here). Hence,

Φ∗E◦(�P : Φ∗−1
P ψ : ϕ∗−1ν/i

) = E◦(P : ν)ψ.

Remark 13.10 At the end of the sequel to this paper, [15], we will show
that the normalized Eisenstein integral introduced above coincides (up to
a change from ν to −ν) with the one introduced by J. Carmona and P. De-
lorme in [19].

Remark 13.11 If G has compact center modulo H, then AGq = {0} and
A2,G = A2(G/H : τ). In view of Lemma 12.6, it follows from Remark 9.4
that E◦(G : 0 : x) equals the evaluation map evx : A2(X : τ) → Vτ ,
ψ �→ ψ(x). Accordingly, E∗(G : 0 : x) = ev∗

x ∈ Hom(Vτ ,A2(X : τ)).

The following result describes the dependence of the normalized Eisen-
stein integral on a member P of a class in Pσ/W, as well as on the choice
of PW .

Lemma 13.12 (RT) Let P ∈ Pσ , let s ∈ W, and let Q := sPs−1. Let
PW and QW be choices of representatives in NK (aq), for WP\W/WK∩H
and WQ\W/WK∩H , respectively. Then there exists a unique linear map
RP(s) : A2,P → A2,Q such that

E◦(Q : sν : x) ◦ RP(s) = E◦(P : ν : x), (13.2)

for x ∈ X and generic ν ∈ a∗PqC. The map RP(s) is bijective and unitary.

Proof: We give the proof under the assumption that P is of residue
type, see Remark 12.2. Left multiplication by s induces a bijective map
WP\W/WK∩H → WQ\W/WK∩H . Via the natural bijections PW →
WP\W/WK∩H and QW → WQ\W/WK∩H we transfer the induced map
to a bijection s̄ : PW → QW .

Let ψ ∈A2,P and define the meromorphic family f : a∗QqC→C∞(X : τ)

by

fλ(x) = E◦(P : s−1λ : x)ψ, (13.3)

for x ∈ X and generic λ ∈ a∗QqC. Then f ∈ E
hyp
Q (X : τ), by Lemma 6.12.

Select v ∈ PW . We may select a representative us in NK (aq) of a Weyl



514 E.P. van den Ban, H. Schlichtkrull

group element from sWP such that usv = s̄(v)ws for some ws ∈ NK∩H(aq).
Note that XQ,usv = XQ,s̄(v). Hence, we may define the bijective linear map

ρτ,us : A2(XP,v : τP ) → A2(XQ,s̄(v) : τQ)

as in [14], Eqn. (3.24). This map is unitary in view of the choice of invariant
measures on XP,v and XQ,s̄(v), specified at the end of Sect. 5.

It follows from [14], Lemmas 3.7 and 3.6, that

qλ−ρQ (Q, s̄(v) | fλ) = qλ−ρQ (Q, usv | fλ)

= [
Ad

(
u−1

s

)∗ ⊗ ρτ,us

]
qs−1λ−ρP

(P, v | fλ)
= ρτ,usψv, (13.4)

for generic λ ∈ a∗QqC. Hence, by Definition 13.7,

fλ(x) = E◦(Q : λ : x)ψ′, (13.5)

with ψ′
s̄(v) = ρτ,usψv for v ∈ PW . We define the bijective linear map

RP(s) : A2,P → A2,Q by

(RP(s)ψ)s̄(v) = ρτ,usψv. (13.6)

Then ψ′ = RP(s)ψ and (13.2) follows from (13.3) and (13.5) by substituting
sν for λ. From the definition it follows that RP(s) is unitary.

To establish uniqueness, let RP(s) : A2,P → A2,Q be a linear map.
Let ψ ∈ A2,P, define f as above, and define the meromorphic family
g : a∗QqC → C∞(X : τ) by gλ = E◦(Q : λ : · )RP(s)ψ. Then

qλ−ρQ (Q, s̄(v) | gλ) = (RP(s)ψ)s̄(v). (13.7)

Now assume that (13.2) holds. Then g = f ; combining (13.4) and (13.7)
we obtain (13.6). ��

Let P ∈ Pσ . Then for all x, y ∈ X, the meromorphic End(Vτ)-valued
function on a∗PqC given by

ν �→ E◦(P : ν : x)E∗(P : ν : y) (13.8)

depends a priori on the choice of the set PW .

Corollary 13.13 (RT) Let P ∈ Pσ . Then for every x, y ∈ X the function
(13.8) is independent of the particular choice of PW .

Proof: Here we assume that P is of residue type, see Remark 12.2. The
result then follows from application of Lemma 13.12, with s = 1. ��
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Proposition 13.14 (RT) Let P ∈ Pσ . There exists a P̄-bounded, real
Σr(P)-hyperplane configuration H = HP in a∗PqC and a map d = dP :
H → N such that ν �→ E◦(P : ν) belongs to the space

M
(
a∗PqC,H, d, C∞(X) ⊗ Hom(A2,P, Vτ )

)
.

Moreover, if R ∈ R and if p is any polynomial in ΠΣr (P)(a
∗
Pq) such that

ν �→ p(ν)E◦(P : ν) is holomorphic on a neighborhood of ā∗Pq(P̄, R), then
there exist a constant r > 0 and for every u ∈ U(g) constants n ∈ N and
C > 0, such that

‖p(ν)E◦(P : ν : u; x)‖ ≤ C(1 + |ν|)ne(r+|Re ν|)lX(x), (13.9)

for all ν ∈ ā∗Pq(P̄, R) and x ∈ X.

Proof: Here we prove the result for P of residue type, see Remark 12.2.
We first assume that P = PF with F ⊂ ∆ of residue type. In this case,

E◦(P : ν) = E◦
F(ν), by Proposition 13.6. Hence, the result follows from

Proposition 11.6 by summation over FW , see (9.14) and (9.2).
Next, let P ∈ Pσ be a general parabolic subgroup of residue type.

There exists a s ∈ W such that sPs−1 = PF, by Lemma 3.6 (c). Since
P is of residue type, PF is of residue type as well, see Lemma 13.5. By
Lemma 13.12 and Proposition 13.6 there exists a unitary map RP(s) :
A2,P → AF,2 such that

E◦(PF : sν : x) ◦ RP(s) = E◦(P : ν : x)

for all x and generic ν ∈ a∗PqC. The result now follows by application of the
first part of the proof. ��

The following result limits the exponents of the normalized Eisenstein
integral along a minimal parabolic subgroup. To formulate it we need the
following notation. Let Q ∈ Pσ and let P ∈ P min

σ be such that P ⊂ Q. We
put

∆Q(P) := {α ∈ ∆(P) | α|aQq = 0};
W P|Q := {t ∈ W | t(∆Q(P)) ⊂ Σ(P)}.

Let s ∈ W be the unique element such that P = sP0s−1. Then s−1 Qs
contains P0 hence equals PF for some subset F ⊂ ∆; note that F is
uniquely determined by Q in view of Lemma 3.6. We define

Λ(P|Q) := sΛ(F),

where Λ(F) is the finite subset of −R+F introduced in (8.7). We note that
Λ(P|Q) is a finite subset of −R+∆Q(P).
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Proposition 13.15 (RT) Let Q ∈ Pσ and let P ∈ P min
σ be contained in Q.

Let ψ ∈ A2,Q and q ∈ ΠΣr (Q)(a
∗
Qq). Then f : (ν, x) �→ q(ν)E◦(Q : ν : x)ψ

defines a family in E
hyp
Q (X : τ). Moreover, for each v ∈ NK (aq) and every

ν ∈ reg f,

Exp (P, v | fν) ⊂ W P|Q(ν + Λ(P|Q)) − ρP − N∆(P). (13.10)

In particular, fν ∈ Atemp(X : τ), for every ν ∈ ia∗Qq ∩ reg f.

Remark 13.16 For P minimal, the assertion about temperedness is due
to [5], Thm. 19.2, in view of [9], Eqn. (52). For general P the assertion
about temperedness is due to [22], Thm. 1, in view of Remark 13.10.

Proof: We give the proof under the assumption that Q is of residue type, see
Remark 12.2. Let s ∈ W and F ⊂ ∆ be as in the text preceding the corollary.
Let the polynomial function p : a∗FqC → C be defined by p(ν) = q(sν).
Then p ∈ ΠΣr (F)(a

∗
Fq). It follows from Lemma 13.12 with PF in place

of P that f(ν, x) = g(s−1ν, x), for x ∈ X and generic ν ∈ a∗QqC, where
g : (λ, x) �→ p(λ)E◦

F (λ : x)RPF (s)−1ψ. By Theorem 10.5 the family g
belongs to E

hyp
F (X : τ). By Lemma 6.12 it follows that f ∈ E

hyp
Q (X : τ).

Moreover, let ν ∈ reg f ; then s−1ν ∈ reg g and by the last mentioned
theorem it follows that, for every u ∈ NK (aq),

Exp (P0, u | fν) = Exp (P0, u | gs−1ν)

⊂ W F(s−1ν + Λ(F)) − ρ − N∆.

On the other hand, by [14], Lemma 3.6, it follows that, for v ∈ NK (aq),

Exp (P, v | fν) = sExp
(
P0, s̄−1v | fν

)
,

where s̄ is any representative of s in NK (aq). We conclude that

Exp (P, v | fν) ⊂ sW Fs−1(ν + sΛ(F)) − ρP − N∆(P).

Now sΛ(F) = Λ(P|Q) by definition. Moreover, one readily verifies that
sW Fs−1 = W P|Q. Hence, (13.10) follows. The final assertion follows from
the similar assertion for g, which in turn follows by application of Corol-
lary 10.6. ��

In the theory of the constant term, we shall need the following result on
the coefficients of the asymptotic expansions of the Eisenstein integral.

Lemma 13.17 (RT) Let P ∈ Pσ and let ψ ∈ A2,P. The family f : (ν, x)
�→ E◦(P : ν : x)ψ belongs to E

hyp
P,Y (X : τ), for a suitable finite subset

Y ⊂ ∗a∗Pq. Moreover, the Σr(P)-configuration H f , defined as in the text
before Definition 6.3, is real.

Let k = dega f. Then for every Q ∈ Pσ , v ∈ NK (aq), each σ ∈ W/∼Q|P
and all ξ ∈ −σ · Y + N∆r(Q),

qσ,ξ(Q, v | f ) ∈ Pk(aQq) ⊗ M
(
a
∗
PqC,H f , d f , C∞(XQ,v : τQ)

)
. (13.11)
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Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. In view of Lemma 3.6 (a), there exist s ∈ W and F ⊂ ∆
such that P = sPFs−1. In view of Lemma 13.12 with P and PF in place
of Q and P, respectively, we may as well assume that P = PF for some
F ⊂ ∆. In this case we have E◦(P : ν) = E◦

F(ν) by Proposition 13.6.
Hence, the result follows from Lemma 9.8. ��
Lemma 13.18 (RT) Let F ⊂ ∆ and let t ∈ WT(Σ) be a W-invariant even
residue weight. Then, for all x, y ∈ X,

Kt
F(ν : x : y) = |WF |−1 E◦(PF : ν : x) ◦ E∗(PF : ν : y), (13.12)

as an identity of End(Vτ )-valued meromorphic functions in the variable
ν ∈ a∗FqC.

In particular, the function Kt
F does not depend on the residue weight t,

nor on the choice of FW .

Proof: We give the proof under the assumption that F is of residue type,
see Remark 12.2. From Proposition 13.6 (b) we recall that A

∗t
F = A2,F.

Accordingly, we equip the space A
∗t
F with the inner product described in

the text preceding (13.1). As in the text preceding (10.4), this choice of
inner product determines an endomorphism αF,v ∈ End(A

∗t(XF,v : τF )),
for each v ∈ FW . The endomorphism αF,v is the analogue for the space
XF,v of the endomorphism α, described in (10.3). Thus, αF,v = |WF |−1 I, by
Lemma 12.8. Let αF ∈ End(A

∗t
F ) be the direct sum of the αF,v, for v ∈ FW .

Then from (10.4) we obtain that

Kt
F(ν : x : y) = |WF |−1 E◦

F(ν : x)E◦
F(−ν̄ : y)∗,

for all x, y ∈ X and generic ν ∈ a∗FqC. Now use Definition 13.7 and Propo-
sition 13.6 to conclude the validity of (13.12). It is now obvious that Kt

F
does not depend on t; it follows by application of Corollary 13.13 that it
does not depend on FW either. ��
Remark 13.19 In view of Lemma 13.18 we agree to omit t in the notation
Kt

F .

Definition 13.20 (RT) Let P ∈ Pσ . We define the meromorphic function
KP : a∗PqC → C∞(X × X, End(Vτ )) by

KP(ν : x : y) = |WP|−1 E◦(P : ν : x)E∗(P : ν : y),

for x, y ∈ X and generic ν ∈ a∗PqC.

In the chain of reasoning leading up to Theorem 21.2 this definition
requires P to be of residue type, since only then the Eisenstein integral is
well-defined, see Remark 12.2.
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Remark 13.21 If P = PF, for F ⊂ ∆, then K P = KF , in view of Lem-
ma 13.18.

Lemma 13.22 (RT) Let P ∈ Pσ . Then, for every s ∈ W and all x, y ∈ X,

KP(ν : x : y) = KsPs−1(sν : x : y)

as a meromorphic identity in ν ∈ a∗PqC.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. Put Q = sPs−1. Since the inner product cB, speci-
fied in Sect. 5, is W-invariant, the normalized measures dµP and dµQ are
s-conjugate. Moreover, since WQ = sWPs−1, we have |WQ | = |WP|. The
result now follows from combining Definition 13.20 and Lemma 13.12. ��
Theorem 13.23 (RT) Let P, Q ∈ Pσ be associated parabolic subgroups.
Then for every s ∈ W(aQq | aPq), and all x, y ∈ X,

KQ(sν : x : y) = KP(ν : x : y), (13.13)

as an identity of End(Vτ )-valued meromorphic functions of the variable
ν ∈ a∗PqC.

Proof: We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. Since P and Q are associated, dim aQq = dim aPq;
hence, s is a linear bijection from aPq onto aQq. From Corollary 3.5 it
follows that there exists w ∈ W such that w(aPq) = aQq and w|aPq = s.

Assume first that P = PF and Q = PF ′, with F, F ′ ⊂ ∆. Then the
result follows from [12], Lemma 6.2, since Kt

F = K PF and Kt
F ′ = K PF′ , for

any W-invariant even residue weight t, see Remarks 13.19 and 13.21.
Next assume that P and Q are arbitrary. Then the result follows by using

Lemma 3.6 (a) and Lemma 13.22. ��

14. Eigenvalues for the Eisenstein integral

In this section we investigate the action of D(X) on the normalized Eisen-
stein integral.

Let P ∈ Pσ . We define the algebra homomorphism µP : D(X) →
D(X1P) as in [5], text following (20). Here X1P := X1P,e = M1P/M1P ∩ H .
Let b ⊂ q be a θ-stable Cartan subspace containing aPq and let γb be the
associated Harish-Chandra isomorphism from D(X) onto I(b). Let WP(b)
denote the centralizer of aPq in W(b), and IP(b) the ring of WP(b)-invariants
in S(b). Moreover, let γ X1P

b
denote the associated Harish-Chandra isomorph-

ism D(X1P) → IP(b). Then we recall from [5], Eqn. (21), that

γ
X1P
b

◦µP = γb. (14.1)
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If v ∈ NK (aq), then following [14], text above Lemma 4.12, we define
the algebra homomorphism µv

P : D(G/vHv−1) → D(X1P,v) as µP for the
triple (G, vHv−1, P) instead of (G, H, P). Moreover, we define the algebra
homomorphism µP,v : D(X) → D(X1P,v) by

µP,v = µv
P ◦ Ad(v), (14.2)

where Ad(v) denotes the isomorphism D(X) → D(G/vHv−1) induced by
the adjoint action by v. Since APq is central in M1P, it follows from (2.3)
that

D(X1P,v) � D(XP,v) ⊗ S(aPq). (14.3)

Accordingly, if D ∈ D(X), we shall write µP,v(D : · ) for µP,v(D), viewed
as a D(XP,v)-valued polynomial function on a∗PqC. If D ∈ D(X), ν ∈ a∗PqC,

and v ∈ PW , then µP,v(D : ν) ∈ D(XP,v) acts on the space A2(XP,v : τP )
(see the text preceding Lemma 12.6) by an endomorphism that we denote
by µ

P,v
(D : ν). The direct sum of these endomorphisms, for v ∈ PW , is an

endomorphism of the space A2,P, denoted µ
P
(D : ν).

Lemma 14.1 (RT) Let P ∈ Pσ . Then

DE◦(P : ν) = E◦(P : ν)µ
P
(D : ν), (D ∈ D(X)).

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let ψ ∈ A2,P. Then the family f : a∗PqC × X → Vτ ,

defined by

f(ν, x) = E◦(P : ν : x)ψ,

belongs to E
hyp
P (X : τ), by Proposition 13.6. Let D ∈ D(X). The family

D f : (ν, x) �→ D fν(x) belongs to E
hyp
P (X : τ) as well, by Definition 6.6

and [14], Lemma 9.8. Moreover, by [14], Lemma 6.2, there exists a dense
open subset Ω of a∗PqC such that, for ν ∈ Ω, the element ν− ρP is a leading
exponent of fν along (P, v). Hence, by [14], Lemma 4.12, it follows that,
for ν ∈ Ω, X ∈ aPq and m ∈ XP,v,+,

qν−ρP (P, v | D f )(X, ν, m) = µP,v(D)ϕν(exp Xm),

where the function ϕν : X1P,v,+ → Vτ is defined by

ϕν(ma) = aνqν−ρP (P, v | fν, log a, ν, m), (14.4)

for a ∈ APq and m ∈ XP,v,+. By Proposition 13.6, the expression on the
right-hand side of (14.4) equals aνψv(m), and we see that

qν−ρP (P, v | D f )(X, ν, m) = µP,v(D : ν)ψv(m), (14.5)

for ν in a dense open subset of a∗PqC, m ∈ XP,v,+ and X ∈ aPq.
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On the other hand, ν �→ µ
P
(D : ν)ψ is a polynomial A2,P-valued

function on a∗PqC. It readily follows that the family

g : (ν, x) �→ E◦(P : ν : x) µ
P
(D : ν)ψ

belongs to E
hyp
P (X : τ). Moreover, by Proposition 13.6, it follows that

qν−ρP (P, v | g)(X, ν, m) = µP,v(D : ν)ψv(m), (14.6)

for each v ∈ PW , ν in a dense open subset of a∗PqC, all X ∈ aPq and all
m ∈ XP,v,+. It follows from (14.5) and (14.6) that the family D f − g ∈
E

hyp
P (X : τ) satisfies all hypotheses of Theorem 6.11. Therefore, D f = g.

��
In the rest of this section we shall study the eigenvalues of the endomor-

phism µ
P
(D : ν) of A2,P. For a start, we collect some facts about the action

of D(X) on A2(X : τ).
Let L2

d(X) be the discrete part of L2(X), defined as in the beginning
of Sect. 12. It follows from [2], Thm. 1.5, that the space L2

d(X) admits
a decomposition as an orthogonal direct sum of closed G-invariant sub-
spaces on each of which D(X) acts by scalars (in the distribution sense).
Let b be a θ-stable Cartan subspace of q. We denote by L(X, b) the collec-
tion of infinitesimal characters Λ ∈ b∗

C
for which the associated character

γ( · : Λ) = γb( · : Λ) of D(X) occurs as a simultaneous eigenvalue in the
decomposition mentioned.

The elements of the D(X)-module A2(X : τ) are D(X)-finite and belong
to L2

d(X)⊗ Vτ . It follows that A2(X : τ) splits as an algebraic direct sum of
D(X)-submodules on which the action ofD(X) is by infinitesimal characters
from L(X, b). More precisely, for Λ ∈ b∗

C
we put

A2(X : τ : Λ) := { f ∈ A2(X : τ) | D f = γ(D : Λ) f, ∀D ∈ D(X)}.
This space is finite dimensional by [2], Lemma 3.9. It depends on Λ through
its class [Λ] in b∗

C
/W(b); we therefore also denote it with [Λ] in place

of Λ. Let L(b, τ) = L(X, b, τ) denote the collection of Λ ∈ b∗
C

for which
A2(X : τ : Λ) �= 0. Then L(b, τ) is a W(b)-invariant subset of L(X, b)
and we have the following algebraic direct sum decomposition into joint
eigenspaces for D(X),

A2(X : τ) =
⊕

Λ∈L(b,τ)/W(b)

A2(X : τ : Λ). (14.7)

The summands in this decomposition are finite dimensional and mutually
orthogonal with respect to the inner product from L2(X : τ). Moreover, the
decomposition is finite by Lemma 12.6. In the chain of reasoning leading
up to Theorem 21.2, finiteness of the decomposition requires (G, H) to be
of residue type, see Remark 12.2.
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Lemma 14.2 Let b1, b2 ⊂ q be two θ-stable Cartan subspaces. Each
element s from W(b2 | b1), which set is non-empty by Lemma 3.8, maps
L(b1, τ) bijectively onto L(b2, τ).

Proof: This follows by application of Lemma 3.8. ��
Lemma 14.3 Let P ∈ Pσ and v ∈ NK (aq). Then aP ∩ Ad(v)q = aPq.

Proof: aP∩Ad(v)q = Ad(v)(av−1 Pv∩q) = Ad(v)(av−1 Pv∩aq) = aP∩aq =
aPq. ��

Let now b be a Cartan subspace of q containing aq and let v ∈ NK (aq).
Then bv := Ad(v)b is a Cartan subspace of Ad(v)q, which contains aq. In
particular, bv contains aPq, hence is contained in the latter’s centralizerm1P.
We write ∗bP,v := bv ∩mP. Then

bv = ∗bP,v ⊕ aPq.

In view of Lemma 14.3 this is the analogue of the decomposition (2.6) for
the Cartan subspace bv related to symmetric pair (m1P,m1P ∩ Ad(v)h).
The restriction of Ad(v) to b determines an element of Hom(b, bv) that
we denote by v̄. The restriction v̄|aq is an element of W. The latter set
equals W(aq | aq), by Corollary 3.5; hence, by Lemma 3.7, applied with
b, aq, aq in place of d, b1, b2, there exists an element s ∈ W(b) such that
s = v̄ on aq. It readily follows that v̄ ◦ s−1 ∈ Hom(b, bv) equals the identity
on aPq, hence maps ∗bP isomorphically onto ∗bP,v. Note that this map maps
W(∗bP)-orbits onto W(∗bP,v)-orbits. The induced map from ∗b∗PC/W(∗bP)
to (∗bP,v)

∗
C
/W(∗bP,v) is bijective and depends on v, but is independent of

the particular choice of s. Given Λ ∈ ∗b∗PC, we define

A2(XP,v : τP : Λ) := A2
(
XP,v : τP : v̄ ◦ s−1Λ

)
. (14.8)

Moreover, we define LP,v(b, τ) to be the set of Λ ∈ ∗b∗PC for which the
above space is non-trivial. Then

v̄ ◦ s−1 LP,v(b, τ) = L
(
XP,v,

∗bP,v, τP
)
. (14.9)

Thus, LP,v(b, τ) is a W(∗bP)-invariant subset of ∗b∗PC.

Corollary 14.4 (RT) Let P ∈ Pσ and let b ⊂ q be a θ-stable Cartan
subspace containing aq. Then

A2,P =
⊕

v∈PW

⊕

Λ∈LP,v(b,τ)/W(∗bP )

iP,vA2(XP,v : τP : Λ), (14.10)

with a finite orthogonal direct sum of finite dimensional spaces. If D ∈ D(X)
and ν ∈ a∗PqC, then for every v ∈ PW and Λ ∈ LP,v(b, τ),

µ
P,v

(D : ν) = γb(D : Λ + ν)I on iP,vA2(XP,v : τP : Λ).
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Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. By (13.1) the space A2,P is the orthogonal direct sum of
the spaces A2(XP,v : τP), as v ∈ PW . Fix v ∈ PW . By the assumption
on P, the pair (MP, MP ∩ vPv−1) is of residue type, hence A2(XP,v : τP) is
finite dimensional and by (14.7) it is the orthogonal direct sum of the spaces
A2(XP,v : τP : Λ′), with Λ′ ∈ L(XP,v,

∗bP,v, τP )/W(∗bP,v). It now follows
from (14.8) and (14.9) that A2(XP,v : τP ) is the orthogonal direct sum of the
spaces A2(XP,v : τP : Λ), for Λ ∈ LP,v(b, τ)/W(∗bP); moreover, the sum
is finite and the summands are finite dimensional. This establishes (14.10),
with the asserted properties.

Let Λ ∈ LP,v(b, τ). Then by (14.9), Λ′ := v̄s−1Λ belongs to
L(XP,v,

∗bP,v, τP ). Let now ψ ∈ A2(XP,v : τP : Λ). Then, writing Dv =
Ad(v)D for D ∈ D(X),

µ
P,v

(D : ν)ψ = µv
P(Dv : ν)ψ

= γ
XP,v
∗bP,v

(
µv

P(Dv : ν) : Λ′)ψ

= γ
X1P,v

bv

(
µv

P(Dv) : Λ′ + ν
)
ψ.

In the last equation we have used that γ
X1P,v

bv
= γ

XP,v
∗bP,v

⊗ I, in accordance

with (14.3). Combining (14.1) for the triple (G/vHv−1, bv, P) in place of
(G/H, b, P) with (14.2), we obtain that

µ
P,v

(D : ν)ψ = γ
G/vHv−1

bv
(Dv : Λ′ + ν)ψ

= γb(D : Ad(v)−1(Λ′ + ν))ψ

= γb(D : s ◦ Ad(v)−1(Λ′ + ν))ψ

= γb(D : Λ + ν)ψ. ��
We define LP(b, τ) ⊂ ∗b∗PC to be the union of the sets LP,v(b, τ), for

v ∈ PW . Moreover, for Λ in this union, we put

A2,P(Λ) :=
⊕

v∈PW

iP,vA2(XP,v : τP : Λ).

Corollary 14.5 (RT) Let P ∈ Pσ . Then

A2,P =
⊕

Λ∈LP(b,τ)/W(∗bP )

A2,P(Λ).

Moreover, if Λ ∈ LP(b, τ) and ψ ∈ A2,P(Λ), then, for every D ∈ D(X),

DE◦(P : ν)ψ = γb(D : Λ + ν)E◦(P : ν)ψ,

as a meromorphic C∞(X : τ)-valued identity in ν ∈ a∗PqC.
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Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. The result follows from Corollary 14.4 combined with
Lemma 14.1. ��

We end this section with a description of the action of D(X) on the
dualized Eisenstein integral. For D ∈ D(X) we define the formal adjoint
D∗ ∈ D(X) by

〈D f | g〉 = 〈 f | D∗g〉, (14.11)

for all f, g ∈ C∞
c (X); here 〈 · | · 〉 denotes the inner product from L2(X).

The canonical anti-automorphism X �→ X∨ of U(g) induces an anti-
automorphism of U(g)H/U(g)H ∩U(g)h � D(X), which we also denote by
D �→ D∨. If D ∈ D(X), let D̄ be its complex conjugate, i.e. the differential
operator with complex conjugate coefficients. Then D∗ = D̄∨, for every
D ∈ D(X).

We recall from [3], Lemma 7.2, that D restricts to a continuous linear
endomorphism of C(X); by density of C∞

c (X) in C(X) it follows that
(14.11) also holds for all f, g ∈ C(X).

Lemma 14.6 Let P ∈ Pσ, v ∈ NK (aq) and D ∈ D(X). Then

µP,v(D∗) = µP,v(D)∗. (14.12)

Proof: We note that µP,e = µP; hence, for v = e, the result follows by
the same argument as in [5], proof of Lemma 19.3. For general v the result
follows by application of (14.2). ��
Lemma 14.7 (RT) Let P ∈ Pσ . Then, for every D ∈ D(X) and all
ν ∈ a∗PqC,

µ
P
(D : ν)∗ = µ

P
(D∗ : −ν̄). (14.13)

Proof: We give the proof under the assumption that P is of residue type, see
Remark 12.2. Let v ∈ PW . The decomposition X1P,v � XP,v× APq induces
an isomorphism D(X1P,v) � D(XP,v) ⊗ S(aPq). Accordingly (u ⊗ p)∗ =
u∗ ⊗ p∗, for all u ∈ D(XP,v) and p ∈ S(aPq). Moreover, p∗(ν) = p(−ν̄),
for ν ∈ a∗PqC. Hence, (u ⊗ p)∗(ν) = p(−ν̄)u∗ = [u ⊗ p(−ν̄)]∗ and we
see that u∗(ν) = u(−ν̄)∗ for u ∈ D(X1P,v) and ν ∈ a∗PqC. Applying this to
(14.12) it follows that for D ∈ D(X) and ν ∈ a∗PqC we have µP,v(D : ν)∗ =
µP,v(D∗ : −ν̄). By the argument in the text preceding Lemma 14.6, applied
to XP,v in place of X, we infer that

〈µP,v(D : ν) f | g〉 = 〈 f |µP,v(D∗ : −ν̄)g〉,
for all f, g ∈ C(XP,v : τP ). Here 〈 · | · 〉 denotes the L2-inner product. In
particular, the equation holds for f, g in the subspace A2(X : τP), which
is finite dimensional, since P is of residue type. Hence, µ

P,v
(D : ν)∗ =

µ
P,v

(D∗ : −ν̄). By orthogonality of the direct sum decomposition in (13.1),

the result follows by summation over v ∈ PW . ��
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Lemma 14.8 (RT) Let P ∈ Pσ . Then for every D ∈ D(X),

DE∗(P : ν) = µ
P
(D∨ : ν)E∗(P : ν),

as a meromorphic identity in ν ∈ a∗PqC.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. By linearity, we may assume that D is real. It then follows
from the definition of the dual Eisenstein integral, see Definition 13.7,
combined with Lemma 14.1, that

DE∗(P : ν) = µ
P
(D : −ν̄)∗E∗(P : ν).

The lemma now follows by application of Lemma 14.7, in view of the fact
that D∗ = D∨. ��

15. Uniform tempered estimates

In this section we present straightforward generalizations of results of [5],
Sect. 18, to a setting involving families { fν} of eigenfunctions on X, with
holomorphic dependence on a parameter ν ∈ a∗QqC, where Q ∈ Pσ . A simi-
lar generalization has been given in [22], Sect. 9. The generalized results
allow us to sharpen uniformly moderate estimates of type (13.9) to uniform
tempered estimates. In particular, we obtain estimates of the latter type for
the normalized Eisenstein integral.

We fix Q ∈ Pσ , a θ-stable Cartan subspace b of q containing aq and an
element Λ ∈ ∗b∗QC, cf. (2.6). For ε > 0, we put

a
∗
Qq(ε) :=

{
X ∈ a∗QqC | |Re X| < ε

}
.

The closure of this set is denoted by ā∗Qq(ε).

Definition 15.1 Let ε > 0. We define E(Q : Λ : ε) = E(X : Q : Λ : ε)
to be the space of smooth functions f : a∗Qq(ε) × X → C satisfying the
following conditions.

(a) The function f is holomorphic in its first variable.
(b) For every ν ∈ a∗Qq(ε), the function fν : x �→ f(ν, x) satisfies the

following system of differential equations

D fν = γ(D : Λ + ν) fν, (D ∈ D(X)).

Note that in this definition it is not required that f is K -finite, or spherical,
from the left. We also have the following analogue of the space M(Λ, ε)
defined in [5], Sect. 18.
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Definition 15.2 Let ε > 0. A function f ∈ E(Q : Λ : ε) is called
uniformly moderate of exponential rate r ≥ 0 if for every u ∈ U(g) there
exist constants n ∈ N and C > 0 such that

‖Lu fν(x)‖ ≤ C(1 + |ν|)nerlX(x),

for all ν ∈ a∗Qq(ε) and x ∈ X. The space of all such functions is denoted by
Eum(Q : Λ : ε : r).

Lemma 15.3 (RT) Let Q ∈ Pσ and let ε > 0. There exists a polynomial
function p ∈ ΠΣr (Q),R(a

∗
Qq) such that the C∞(X)⊗Hom(A2,Q, Vτ )-valued

meromorphic function ν �→ p(ν)E◦(Q : ν) is regular on ā∗Qq(ε) and such
that the following holds. There exists a constant r > 0 such that for every
Λ ∈ LQ(b, τ), ψ ∈ A2,Q(Λ) and η ∈ V ∗

τ , the family f : (ν, x) �→
η(p(ν)E◦(Q : ν : x)) belongs to Eum(Q : Λ : ε : r).

Proof: We give the proof under the assumption that Q is of residue type,
see Remark 12.2. Let R > 0 be such that a∗Qq(ε) ⊂ a∗Qq(Q̄, R). Then by
Proposition 13.14 there exists a polynomial function p ∈ ΠΣr (Q)(a

∗
Qq) such

that the C∞(X) ⊗ Hom(A2,Q, Vτ )-valued meromorphic function F : ν �→
p(ν)E◦(Q : ν) is holomorphic on a neighborhood of ā∗Qq(Q̄, R). Moreover,
there exists r ′ > 0 and for every u ∈ U(g) constants n ∈ N and C > 0 such
that

‖Lu Fν(x)‖ ≤ C(1 + |ν|)ne(r′+|Re ν|)lX(x),

for x ∈ X, ν ∈ ā∗Qq(Q̄, R). Put r = r ′ + ε. Then it follows that F is
holomorphic on a neighborhood of ā∗Qq(ε) and satisfies the estimates

‖Lu Fν(x)‖ ≤ C(1 + |ν|)nerlX(x) (15.1)

for x ∈ X and ν ∈ a∗Qq(ε). Let f be defined as in the lemma. Then Lu fν(x) =
η(Lu Fν(x)ψ). Hence, it follows from the above and from Corollary 14.5
that f ∈ E(Q : Λ : ε). Finally, it follows from the estimates (15.1) that
f ∈ Eum(Q : Λ : ε : r). ��

We also have the following obvious generalization of the notion of
uniformly tempered families; see [5], Sect. 18. For ν ∈ a∗QqC and x ∈ X we
put

|(ν, x)| := (1 + |ν|)(1 + lX(x)).

Definition 15.4 Let ε > 0. A function f ∈ E(Q : Λ : ε) is called
uniformly tempered of scale s if for every u ∈ U(g) there exist constants
n ∈ N and C > 0 such that

|Lu fν(x)| ≤ C|(ν, x)|nΘ(x)es|Re ν|lX(x),

for all ν ∈ a∗Qq(ε) and all x ∈ X. The space of all such functions is denoted
by T (Q : Λ : ε : s).
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If f ∈ Eum(Q : Λ : ε : r), then for every ν ∈ a∗QqC the function fν
belongs to the space E∞

Λ+ν,∗(X), defined in [5], p. 392, see also p. 387. If g
is any function in the latter space, then, viewed as a function on G, it has an
asymptotic expansion along every parabolic subgroup P ∈ Pσ of the form

g(x exp tX) ∼
∑

ξ∈Z−N∆r(P)

pξ (P | g, x, X)etξ(X ),

as t → ∞, for x ∈ G and X ∈ a+Pq. Here Z is a finite subset of a∗PqC
and there exists a d ∈ N such that the pξ (P | g) are smooth functions
G → Pd(aPq), for all ξ. Moreover, the functions pξ (P | g) are uniquely
determined, see [5], Theorem 12.8. Accordingly, we may define the set of
exponents of g along the parabolic subgroup P by

Exp (P | g) := {ξ ∈ Z − N∆r(P) | pξ (P | g) �= 0}. (15.2)

We define the partial ordering �P on a∗PqC by

λ �P µ ⇐⇒ µ − λ ∈ ∆r(P),
(
λ,µ ∈ a∗PqC

)
.

The �P-maximal elements in the set (15.2) are called the leading exponents
of g along P. The set of these leading exponents is denoted by Exp L(P | g).

Remark 15.5 The above notions of asymptotic coefficients and exponents
are related to the similar notions introduced in Sect. 6, as follows.

Let f ∈ A(X : τ) and assume that every vector component η ◦ f, for
η ∈ V ∗

τ , belongs to E∞
Λ+ν,∗(X). For P ∈ Pσ, let Exp ( f | P) denote the

union of the sets Exp (η ◦ f | P), for η ∈ V ∗
τ ; by sphericality of f this union

equals the union with index η ranging over any generating subset of the
K -module V ∗

τ . If u ∈ NK (aq), then it readily follows from the definitions
that Exp (P, u | f ) ⊂ Exp (P | f ). Moreover, by uniqueness of asymptotics
we have, for ξ ∈ Exp (P, u | f ), that

η(qξ (P, u | f, X, m)) = pξ (P | η ◦ f, mu, X), (m ∈ MP, X ∈ aPq),

for all η ∈ V ∗
τ .

Lemma 15.6 Let ν ∈ a∗QqC and assume that g ∈ E∞
Λ+ν,∗(X). Let P ∈ P min

σ .

Then for every ξ ∈ Exp L(P | g) there exists a s ∈ W(b) such that ξ +ρP =
s(ν + Λ)|aq .

Proof: We recall that aq ⊂ b. Let Σ+(b) be a choice of positive roots
for Σ(b) that is compatible with Σ(P). Let g+

C
be the associated sum of

the positive root spaces and let m+
C

be its intersection with mC. Let δ :=
1
2 tr [ad( · )|g+

C

] ∈ b∗
C

and let δ0 := 1
2 tr [ad( · )|m+

C

] ∈ ib∗k. Then δ = δ0 + ρP.

Let ξ be a leading exponent along P. Then by [5], Cor. 13.3 and
Lemma 13.1, the function ϕ ∈ C∞(M1) defined by

ϕ(ma) = aξ pξ (P | g, m, log a), (m ∈ Mσ , a ∈ Aq),
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is right Mσ ∩ H-invariant and satisfies the following system of differential
equations

µ′
P(D)ϕ = γ(D : Λ + ν)ϕ, (D ∈ D(X)).

Here µ′
P is defined as in [5], Sect. 2. Now Mσ/Mσ ∩ H � M10/M10 ∩ H,

naturally, so that ϕ may be viewed as a function in C∞(X10). By (14.3) with
P = P0 and v = e we haveD(X10) � D(X0)⊗S(aq). Since pξ is polynomial
in log a, the second component of the tensor product acts on ϕ with a single
generalized eigenvalue u �→ u(ξ). On the other hand, we recall from [5],
Lemma 4.8, that the action of D(X0) on C∞(X0)K0 allows a simultaneous
diagonalization with eigenvalues of the form D �→ γ X0(D : Λ0 + δ0), with
Λ0 ∈ ib∗k. It follows that there exists a Λ0 ∈ ib∗k such that

γ X0(µ′
P(D : ξ) : Λ0 + δ0) = γ(D : Λ + ν), (D ∈ D(X)).

The expression on the left-hand side of this expression can be rewritten as
γP(D : Λ0 + ξ + δ0 + ρP) = γ(D : Λ0 + ξ + δ), from which we conclude
that Λ0 + ξ + δ ∈ W(b)(Λ + ν). Since (Λ0 + δ)|aq = ρP, it follows that
ξ + ρP = s(ν + Λ)|aq, for some s ∈ W(b). ��

We can now generalize [5], Theorem 18.3. For an appropriate formula-
tion we need the following definition.

Definition 15.7 We say that the exponents of a family f ∈ Eum(Q : Λ :
ε : r) are tempered along a minimal σ -parabolic subgroup P ∈ P min

σ if for
every ν ∈ a∗Qq(ε) the set of exponents Exp (P | fν) satisfies the following
condition. For every ξ ∈ Exp (P | fν), there exists a s ∈ W(b) such that

(a) Re (sΛ) ≤ 0 on a+q (P),

(b) ξ ∈ s(ν + Λ)|aq − ρP − N∆(P).

We denote by Eum
T (Q : Λ : ε : r) the space of functions f ∈ Eum(Q : Λ :

ε : r), such that for every P ∈ P min
σ the exponents of f along P are

tempered.

Remark 15.8 If Q is a minimal σ -parabolic subgroup, then it follows by
application of [5], Thm. 13.7, that Eum(Q : Λ : ε : r) = Eum

T (Q : Λ : ε : r).

Theorem 15.9 Let Q ∈ Pσ and let r > 0. Then there exists a s > 0 such
that for sufficiently small ε > 0,

Eum
T (Q : Λ : ε : r) ⊂ T (Q : Λ : ε : s).

Proof: The proof is a straightforward, but somewhat tedious, adaptation of
the proof of [5], Theorem 18.3, with trivial alterations because of the change
of the parameter set. Conditions (a) and (b) of Definition 15.7 are to be used
in place of [5], Theorem 13.7, see the proof of [5], Proposition 18.14, to keep
track of the exponents occurring in the asymptotic expansions considered.
If Q is minimal, then the mentioned Theorem 13.7 implies conditions (a)
and (b) for any family f ∈ Eum(Q : Λ : ε : r); see Remark 15.8. ��
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Remark 15.10 Another version of Theorem 15.9 is given by [22], Thm. 3.
However, in that paper the requirement on the exponents in Definition 15.7
is replaced by the requirement that the function fν is tempered for every
ν ∈ ia∗q. By an additional argument it is then shown that this requirement
is equivalent to the one of Definition 15.7, see [22], Lemma 23. We shall
not need this result, since by Proposition 13.15 the needed information on
the exponents is known for the normalized Eisenstein integrals to which
Theorem 15.9 will be applied.

Definition 15.11 Let Q ∈ Pσ , Λ ∈ ∗b∗QC, ε > 0 and s > 0. Then by
T (Q, τ,Λ, ε, s) we denote the space of smooth functions f : a∗Qq(ε) × X
→ Vτ such that

(a) for every η ∈ V ∗
τ the family η ◦ f : (ν, x) �→ η( f(ν, x)) belongs to

T (Q,Λ, ε, s);
(b) fν is τ-spherical for every ν ∈ a∗Qq(ε).

Theorem 15.12 (RT) Let Q ∈ Pσ . There exists a polynomial function p ∈
ΠΣr (Q),R(a

∗
Qq) and constants s > 0 and ε > 0 such that the meromorphic

C∞(X)⊗Hom(A2,Q, Vτ )-valued function ν �→ p(ν)E◦(Q : ν) is holomor-
phic on a∗Qq(ε), and such that the following holds. For each Λ ∈ LQ(b, τ)

and every ψ ∈ A2,Q(Λ) the family f : (ν, x) �→ p(ν)E◦(Q : ν : x)ψ
belongs to T (Q, τ,Λ, ε, s).

Remark 15.13 For Q minimal, this result is due [5], Thm. 19.2, in view
of [9], Eqn. (52). For general Q, a similar result for an unnormalized version
of the Eisenstein integral is due to [22], Thm. 4.

Proof: We give the proof under the assumption that Q is of residue type,
see Remark 12.2. Fix ε > 0. There exist p ∈ ΠΣr (Q),R(a

∗
Qq) and r > 0 as

in Lemma 15.3. Fix Λ ∈ LQ(b, τ) and ψ ∈ A2,Q(Λ). Define f : (ν, x) �→
p(ν)E◦(Q : ν : x)ψ. Let η ∈ V ∗

τ and define F : (ν, x) �→ η( f(ν, x)). Then
by finite dimensionality of A2,Q and Vτ it suffices to show that there exist
ε′ > 0 and s > 0 such that F ∈ T (Q : Λ : ε′ : s).

In view of Theorem 15.9 it suffices to show that F ∈ Eum
T (Q : Λ : ε : r).

In view of Lemma 15.3 the function F belongs to Eum(Q : Λ : ε : r). Let
P ∈ P min

σ . Then it remains to be verified that the exponents of F along P
are tempered in the sense of Definition 15.7.

There exists a v ∈ NK (aq) such that P1 := v−1 Pv ⊂ Q. The meromor-
phic C∞(X : τ)-valued function ν �→ fν is regular on a∗Qq(ε). Moreover,
from Proposition 13.15 and [14], Lemma 3.6, it follows that, for ν ∈ reg f,

Exp (P, e | fν) = vExp
(
P1, v

−1 | fν
)

⊂ vW P1|Q(ν + Λ(P1|Q)) − ρP − N∆(P).

Thus, let ν0 ∈ a∗Qq(ε) be fixed, and let ξ ∈ Exp (P | Fν0). Then we
may select s ∈ vW P1|Q and ξ0 ∈ −sΛ(P1|Q) + N∆(P) such that ξ =
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sν0 − ρP − ξ0. Since f ∈ EQ(X : τ), see Definition 13.7, it follows from
Definitions 6.6, 6.4 and 6.3 that f ∈ C ep,hyp

Q,Y (X+ : τ), for a suitable finite
subset Y ⊂ ∗a∗QqC. By Definition 6.1 and [14], Lemma 6.2, it follows that
sν − ρP − ξ0 ∈ Exp (P, e | fν), for ν in an open dense subset of a∗QqC.

Let ξ1 be a �P-minimal element in −sΛ(P1|Q) + N∆(P) with the
property that ξ1 �P ξ0 and that sν − ξ1 − ρP ∈ Exp (P, e | fν) for ν in
an open dense subset of a∗QqC. Then for ν in an open dense subset Ω of
a∗QqC, the element sν− ξ1 − ρP is a leading exponent of fν along (P, e). By
Lemma 15.6 it follows that

sν − ξ1 − ρP ∈ W(b)(ν + Λ)|aq − ρP,

for ν ∈ Ω. This implies in turn that there exists t ∈ W(b) such that sν−ξ1 =
t(ν+Λ)|aq, for all ν ∈ a∗QqC. Hence, sν = tν|aq for all ν ∈ a∗QqC and −ξ1 =
tΛ|aq . Now −ξ1 ∈ sΛ(P1|Q) − N∆(P) ⊂ −s(R+∆Q(P1)) − N∆(P) ⊂
−R+∆(P), hence Re (tΛ)|aq = −ξ1 ≤ 0 on a+q (P). We complete the proof
by observing that

ξ = sν − ρP − ξ0

= sν − ξ1 − ρP − (ξ0 − ξ1) ∈ t(ν + Λ)|aq − ρP − N∆(P).
��

16. Infinitesimal characters of the discrete series

In this section we describe a restriction on the set L(X, b) ofD(X)-characters
of the discrete series, see the text before (14.7). The main result is due to
T. Oshima and T. Matsuki, [40].

Let b ⊂ q be a θ-stable Cartan subalgebra. If Λ ∈ b∗
C

then by IΛ we
denote the kernel of γb( · : Λ) in D(X). We denote by C(X : Λ) the space
of L2-Schwartz functions on X annihilated by IΛ. If C(X : Λ) is non-trivial,
then it contains a non-trivial K -finite function f. By a well known result
of Harish-Chandra, the closed G-span of f in L2(X) is a subrepresentation
of finite length; see [41], p. 312, Thm. 12 and [42], p. 112, Thm. 4.2.1.
Therefore, the mentioned closed G-span is contained in L2

d(X) and we
deduce that Λ ∈ L(X, b). Conversely, if Λ ∈ L(X, b), then there exists
a non-trivial K -finite function f ∈ L2

d(X) that is annihilated by IΛ . From [3],
Thm. 7.3, it follows that f belongs to C(X : Λ) and we see that the latter
space is non-trivial. We conclude that

L(X, b) = {Λ ∈ b∗
C
| C(X : Λ) �= 0}. (16.1)

Theorem 16.1 Assume that the space L2
d(X) is non-trivial. Then there

exists a compact Cartan subspace t ⊂ q. Moreover, each Λ ∈ L(X, t)
belongs to it∗ and is regular with respect to Σ(t).



530 E.P. van den Ban, H. Schlichtkrull

Remark 16.2 This result, which plays a crucial role in the description of the
constant term of the normalized Eisenstein integral in Sect. 17, is essentially
due to T. Oshima and M. Matsuki, [40]. However, we have to be a bit careful
here, since in our situation G is assumed to be of Harish-Chandra’s class,
whereas in [40] it is assumed that G is semisimple.

Proof: Fix a Cartan subspace b ⊂ q that is fundamental, i.e., its compact
part bk = b ∩ k is of maximal dimension. Then the assumption that L2

d(X)
is non-trivial is equivalent to the assumption that L(X, b) is non-empty. We
must show that under this assumption b is compact, and all elements of
L(X, b) belong to ib∗ and are regular.

Let X◦ = Ge/Ge ∩ H be the connected component of the origin in X.
If Λ ∈ b∗

C
then restriction defines a linear map r : C(X : Λ) → C(X◦ : Λ).

Conversely, extension by zero defines a linear embedding j : C(X◦ : Λ) →
C(X : Λ). Now r ◦ j = I, hence r is surjective. If the space C(X : Λ)
is non-trivial, then by G-invariance it follows that r is non-zero, hence
its image is non-trivial. On the other hand, if C(X◦ : Λ) is non-trivial,
then C(X : Λ) is non-trivial, by injectivity of j. Thus, from (16.1) we
see that L(X, b) = L(X◦, b). Therefore, we may as well assume that G is
connected.

Let a∆q be the intersection in aq of the root spaces ker α, α ∈ Σ. This
space is central in g. Hence, a∆q ⊂ b and the group A∆q := exp a∆q is
central in G.

The algebra U(a∆q) naturally embeds into D(X) and into I(b); accord-
ingly, γ restricts to the identity on U(a∆q). Let Λ ∈ L(X, b) and let f be
a non-trivial function in C(X : Λ). Then it follows that RX f = Λ(X) f for
all X ∈ a∆q. Let Λ0 := Λ|a∆q. Then it follows that f(ax) = aΛ0 f(x) for all
x ∈ X and a ∈ A∆q. Since f is a non-trivial Schwartz function, this implies
that a∆q = 0.

Let c be the center of g. Then it follows that cq := c ∩ q is contained in
b ∩ k. Let g1 := [g, g]. Then b = cq ⊕ b1, with b1 = b ∩ g1. Accordingly,
I(b) = U(cq) ⊗ I(b1).

Let G1 be the analytic subgroup of G with Lie algebra g1 and let
H1 = G1 ∩ H. The embeddings cq ⊂ g and g1 ⊂ g induce embeddings
U(cq) ⊂ D(X) and D(G1/H1) ⊂ D(X), via which we identify. Accord-
ingly, D(X) = U(cq) ⊗ D(G1/H1); moreover, the map γ : D(X) → I(b)
corresponds with the tensor product of IU(cq) and γ1, the Harish-Chandra
isomorphism for (G1, H1, b1).

If Λ ∈ L(X, b), let Λc := Λ|cq and Λ1 := Λ|b1 . Then U(cq) � S(cq)
acts by the character Λc on the non-trivial space C(X : Λ). This char-
acter must therefore be an infinitesimal character of the compact group
exp(cq), hence belongs to ic∗q. On the other hand, D(G1/H1) acts by the
character γ1( · : Λ1) on C(X : Λ). Restriction to G1/H1 therefore induces
a map C(X : Λ) → C(G1/H1,Λ1), which is non-zero by G-invariance
and non-triviality of the space C(X : Λ). Hence, Λ1 ∈ L(G1/H1, b1). If b1
is contained in k, then so is b and if Λ1 ∈ ib∗1 then Λ = Λc + Λ1 ∈ ib∗;
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finally, if Λ1 is regular, then so is Λ. Therefore, we may as well assume that
g is semisimple from the start.

Let Z(G) denote the center of G and put Z H := Z(G) ∩ H. Since Z H
is discrete and central, �G := G/Z H is a Lie group with algebra naturally
isomorphic with g. The involution σ factors to an involution �σ of �G.
Moreover, �H := H/Z H, viewed as a subgroup of �G, is an open subgroup
of �G

�σ . The associated symmetric space �X := �G/�H is naturally diffeo-
morphic with X and it is readily seen that L(X, b) = L(�X, b). Therefore,
it suffices to prove the assertions for �X and we see that we may as well
assume from the start that Z H = {e}.

From now on we assume that G is connected and semisimple, and that
Z H = {e}. The natural map π : G/He → G/H is a finite covering, hence
induces a linear embedding π∗ : C(G/H) → C(G/He) by pull-back. Via
the isomorphism (2.5) we may identify the algebrasD(G/H) andD(G/He),
so that π∗(D f ) = Dπ∗ f, for f ∈ C(G/H). Thus, if Λ ∈ L(X, b), then
the image of C(G/H : Λ) in C(G/He) is a non-trivial subspace annihilated
by the ideal IΛ, from which we see that Λ ∈ L(G/He, b). It follows that
we may as well assume that H is connected. We will do so from now
on.

Let gd be the dual real form of gC defined as in Sect. 2. Via ad we
identify gC with the Lie algebra of the complex adjoint group GC of G;
accordingly, we denote by Gd, Kd and Hd the analytic subgroups of GC

with Lie algebras gd, kd and hd, respectively. Via Ad we may identify K ∩H
with a connected subgroup of GC. Accordingly, the map (k, X) �→ k exp X
is a diffeomorphism from (K ∩ H) × i[k ∩ q] onto Hd. Hence, for every
finite dimensional representation (π, V ) of K there exists a unique finite
dimensional representation (πd, V ) of Hd such that the infinitesimal repre-
sentations associated with π and πd have the same complex linear exten-
sion to kC. It follows that Flensted-Jensen’s dualization procedure, see [25],
Thm. 2.3, defines an injective linear map f �→ f d (denoted f �→ f η

in [25]) from the space C∞(G/H)K of K -finite smooth functions on G/H
into the space C∞(Gd/Kd)Hd of Hd-finite smooth functions on Gd/Kd.
The map is determined by the property that, for every f ∈ C∞(G/H)K and
all u ∈ U(kC),

Lu f |Aq = Lu f d|Aq .

We note that the left Hd-types of f d are all of the form πd, with π a fi-
nite dimensional irreducible representation of K. We also note that for
f ∈ C∞(G/H)K , the condition f ∈ L2(G/H) can be entirely rephrased
in terms of the function f d; in fact it is equivalent to the condition that
Lu f d|Aq ∈ L2(Aq, J da), for all u ∈ U(k), with J the Jacobian associated
with the decomposition G = K Aq H, see [10], (3.1).

Let D �→ Dd denote the natural algebra isomorphism from D(X)
onto D(Xd), corresponding to (2.5). Then (D f )d = Dd f d, for every
f ∈ C∞(G/H)K . Moreover, we recall from the text after (2.5) that Dd =
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γad
p

−1 ◦ γb(D), where we have written ad
p for the maximal abelian subspace

db = bC∩ gd of pd. Now assume that Λ ∈ L(X, b). Then there exists a non-
trivial K -finite function f ∈ C(X : Λ). It follows that f d ∈ C∞(Gd/Kd)Hd

satisfies the system of differential equations D f d = γad
p
(D : Λ) f d, for

D ∈ D(Gd/Kd).
It follows from the above discussion, that the theorem of [40], p. 359,

as well as its proof, can be entirely formulated in terms of the function
f d, and therefore applies without change, see [40], p. 388, note (i) added
in proof. In particular, we may draw the following conclusions. In the
notation of the cited theorem, we may take ad

p as above, and we may
select a positive system Σ(ad

p)
+ for Σ(gd, ad

p) such that Re Λ is domin-
ant. The hypothesis of part (i) of the cited theorem is fulfilled, since the
non-trivial function f belongs to the space AK(G/H,Mλ) ∩ L2(G/H),
with λ = Λ. It follows that b is compact, i.e., is contained in k ∩ q.
In the cited theorem we may now take t = b and a′p = ib. Thus,
ad
p = a′p, and it follows from part (i) of the cited theorem that Λ is regu-

lar.
We note that W(a′p | ad

p) = W(ad
p), so that the elements x̄ j = Ad(x j)|ad

p

of the cited theorem belong to W(ad
p). It follows from part (iii) of the cited

theorem that, for some j, the element x̄ jΛ = λ j belongs to ad∗
p . This implies

that Λ ∈ ad∗
p = ib∗. ��

Corollary 16.3 Let b ⊂ q be a θ-stable Cartan subspace. If L(X, b) �= ∅
then there exists a Cartan subspace t ⊂ q with t ⊂ k. Moreover, let t be an
element of the set W(t | b), which is non-empty by Lemma 3.8. Then, for
every Λ ∈ L(X, b), the element tΛ belongs to it∗ and is regular relative to
the root system Σ(t).

Proof: Assume that L(X, b) �= ∅. Then, by definition, L2
d(X) �= 0. By

Theorem 16.1 there exists a compact Cartan subspace t ⊂ q. Let t ∈ W(b, t).
Then by Lemma 14.2 the element t maps L(X, t) bijectively onto L(X, b).
The assertion now follows from Theorem 16.1. ��

In the rest of this section we fix a Cartan subspace b ⊂ q containing aq.
If P ∈ Pσ , then the θ-stable Cartan subspace ∗bP of mP ∩ q is defined as in
the text before (2.6).

Lemma 16.4 Let P ∈ Pσ , v ∈ NK (aq) and assume that LP,v(b, τ) �= ∅.

Then there exist a Cartan subspace b̂ ⊂ m1v−1 Pv ∩ q and an element t ∈
W(b̂ | b) with the following properties.

(a) ∗b̂ := b̂ ∩mv−1 Pv is compact, i.e., contained in k;
(b) t = Ad(v)−1 on aPq;
(c) the elements of tLP,v(b, τ) belong to i ∗b̂∗ and are regular relative to

Σ(mv−1 PvC,
∗b̂).
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Proof: From (14.9) it follows that L(XP,v,
∗bP,v, τP ) �= ∅. Hence, by

Corollary 16.3 there exists a Cartan subspace t of mP ∩ Ad(v)(q) that
is contained in k. Now b̂ = Ad(v)−1(t ⊕ aPq) is a Cartan subspace of
m1v−1 Pv ∩ q that satisfies condition (a), with ∗b̂ = Ad(v)−1t.

Fix t1 ∈ W(b̂ | b). Then t−1
1 Ad(v)−1aPq ⊂ db. Since db is maximal

abelian in pd, it follows from Lemma 3.1 (d) that there exists a t2 ∈ W(b)

such that t2 = t−1
1 Ad(v)−1 on aPq. It follows that t = t1t2 ∈ W(b̂ | b)

satisfies requirement (b).
Finally, let Λ ∈ LP,v(b, τ). Then, in the notation of (14.9), the elem-

ent Λ′ := Ad(v)s−1Λ belongs to L(XP,v,
∗bP,v, τP). The element t′ =

Ad(v)tsAd(v)−1 belongs to W(b̂v | bv) and equals the identity on aPq,
hence restricts to an element of W(t | ∗bP,v). By Corollary 16.3 it follows
that t′Λ′ belongs to it∗ and is regular relative to Σ(mPC, t). We now observe
that t′Λ′ = Ad(v)tΛ. Hence, tΛ belongs to i∗b̂ and is regular with respect
to Σ(mv−1 PvC,

∗b̂). ��
Remark 16.5 Let P, v, b̂, t be as in Lemma 16.4. Then it follows from
Lemma 3.8 that, for all Λ ∈ LP,v(b, τ), ν ∈ a∗PqC and D ∈ D(X),

γb(D : Λ + ν) = γ
b̂
(D : tΛ + tν).

Corollary 16.6 Let P ∈ Pσ and let Λ ∈ LP(b, τ). Then 〈Λ , α〉 ∈ R \ {0},
for each α ∈ Σ(mPC,

∗bP).

Proof: Select v ∈ PW such that Λ ∈ LP,v(b, τ). Let b̂, t be associated
as in Lemma 16.4. Then by (a) and (b) of the mentioned lemma, t maps
b = ∗bP ⊕ aPq onto b̂ = ∗b̂⊕ av−1 Pvq, preserving the decompositions. The
assertion now follows from Lemma 16.4 (a) and (c). ��

17. The constant term of the Eisenstein integral

In this section we describe the constant term of the normalized Eisenstein
integral, introduced in Definition 13.7. We start by recalling the notion of
the constant term introduced in [17].

If f ∈ Atemp(X : τ), see Def. 10.1, then in particular f ∈ A(X+ : τ)
and f has an expansion of the form (6.1). It follows from Lemma 10.2 (c)
combined with [14], Thm. 3.5, that, for each Q ∈ Pσ and every v ∈ NK (aq),

ξ ∈ Exp (Q, v | f ) ⇒ Re ξ + ρQ ≤ 0 on a
+
Qq.

We define the function fQ,v : X1Q,v,+ → Vτ by

fQ,v(ma) = dQ(ma)
∑

ξ∈Exp (Q,v| f )

Re ξ+ρQ=0

aξqξ (Q, v | f, log a, m),
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for m ∈ XQ,v,+, a ∈ AQq. Here dQ : M1Q → R is defined by dQ(m) =√| det Ad(m)|nQ |. Note that dQ = 1 on MQ and on AQ ∩ H. Hence, dQ

factors to a function on X1Q,v; in fact, dQ(ma) = aρQ , for m ∈ MQσ and
a ∈ AQq.

We note that, for v ∈ NK (aq), the function Rv f : x �→ f(xv) belongs
to the space Atemp(G/vHv−1 : τ).

Proposition 17.1

(a) If u, v ∈ NK (aq), then (Rv f )Q,u = fQ,uv.
(b) The function fQ,v extends uniquely to smooth function on X1Q,v. This

extension is the unique function in Atemp(X1Q,v : τQ) such that

lim
t→∞(dQ(m exp tX) f(m exp tXv) − fQ,v(m exp tX)) = 0,

for every m ∈ M1Q and X ∈ a+Qq.

Proof: The first assertion follows from [14], Lemma 3.7. In view of (a) it
suffices to prove the second assertion for v = e. In this case the assertion
follows from [17], proof of Thm. 1. ��

Thus, for v = e, the function fQ,v coincides with the constant term of
f along Q, introduced by [17], which in turn generalizes Harish-Chandra’s
notion of the constant term for the case of the group, see [30], Sect. 21,
Thm. 1. We shall therefore call fQ,v the constant term of f along (Q, v).
The following result, which generalizes a result of Harish-Chandra, see [30],
Sect. 21, Lemma 1, is essentially given in [17], Thm. 1 (b).

Lemma 17.2 (Transitivity of the constant term) Let P, Q ∈ Pσ be such
that P ⊂ Q. Put ∗1P := M1Q ∩ P. Let v ∈ NK (aq) and u ∈ NK Q (aq). Then

( fQ,v)∗1P,u = f P,uv.

Proof: For v = u = e the result is equivalent to [17], Thm. 1(b). Let
now v ∈ NK (aq) and u ∈ NK Q (aq) be general. Then right translation by
u defines a linear isomorphism Ru : A(X1Q,v : τQ) → A(X1Q,uv : τQ).
Hence, applying Proposition 17.1 (b) we find that

Ru( fQ,v) = fQ,uv. (17.1)

Applying Proposition 17.1 (a) we see that

fQ,uv = (Ruv f )Q,e and ( fQ,v)∗1P,u = (Ru fQ,v)∗1P,e. (17.2)

Combining (17.1) with (17.2), and using the first line of the proof and
Proposition 17.1 (a), we finally obtain that

( fQ,v)∗1P,u = ((Ruv f )Q,e)∗1P,e = (Ruv f )P,e = f P,uv. ��
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The following transformation rule for the constant term will also be
useful to us. If u, v ∈ NK (aq), we define the map ρτ,u : C∞(X1Q,v : τQ) →
C∞(X1uQu−1,uv : τuQu−1) in accordance with [14], Eqn. (3.24), by

ρτ,uϕ(m) = τ(u)ϕ(u−1mu), (m ∈ M1uQu−1).

One readily checks that ρτ,u maps Atemp(X1Q,v : τQ) into Atemp(X1uQu−1,uv :
τuQu−1).

Lemma 17.3 Let f ∈ Atemp(X : τ) and let Q ∈ Pσ and u, v ∈ NK (aq).
Then

fuQu−1,uv = ρτ,u fQ,v. (17.3)

Proof: From the definition of dQ one readily verifies that duQu−1 (umu−1) =
dQ(m), for m ∈ M1Q. The result now follows by a straightforward appli-
cation of Proposition 17.1 (b). See [14], Lemma 3.6, for a similar proof.

��
Assume that Ω ⊂ ia∗Pq is open, and f : Ω × X → Vτ a smooth map

such that fν : x �→ f(ν, x) belongs to Atemp(X : τ) for every ν ∈ Ω. If
Q ∈ Pσ and v ∈ NK (aq), we shall write fQ,v for the map Ω×X1Q,v → Vτ

defined by

fQ,v(ν, m) = ( fν)Q,v(m), (ν ∈ Ω, m ∈ X1Q,v).

We now turn our attention to the normalized Eisenstein integral E◦(P : · )
where P ∈ Pσ is assumed to be of residue type. In the end it will follow
that any P ∈ Pσ is of this type, see Remark 12.2, so that this is really no
restriction on P. Let ΩP be the set of points in ia∗Pq where the function
ν �→ E◦(P : ν) is regular. Then for ν ∈ ΩP and ψ ∈ A2,P, the function
E◦(P : ν : · )ψ belongs to Atemp(X : τ), see Proposition 13.15. In accor-
dance with the above, we denote its constant term along (Q, v), for Q ∈ Pσ

and v ∈ NK (aq), by E◦
Q,v(P : ν : · )ψ.

Proposition 17.4 (RT) Let P, Q ∈ Pσ and u ∈ NK (aq).

(a) The function E◦
Q,u(P : · ) extends to a meromorphic C∞(X1Q,u,

Hom(A2,P, Vτ ))-valued function on a∗PqC, with singular set equal to
a locally finite union of real Σr(P)-hyperplanes.

(b) There exists a ε > 0 such that, for every ψ ∈ A2,P and p ∈ ΠΣr (P)(a
∗
Pq)

with the property that ν �→ p(ν)E◦(P : ν : · )ψ is regular on a∗Pq(ε),

the function ν �→ p(ν)E◦
Q,u(P : ν : · )ψ is regular on a∗Pq(ε) as well.

(c) If E◦
Q,u(P : · ) �= 0, then W(aPq | aQq) is non-empty.

(d) Let W(aPq | aQq) be non-empty. Then there exist unique meromorphic
functions E◦

Q,u,s(P : · ) : a∗PqC → Hom(A2,P, C∞(XQ,u : τQ)), for
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s ∈ W(aPq | aQq), such that, for all m ∈ XQ,u and a ∈ AQq,

E◦
Q,u(P : ν : ma) =

∑

s∈W(aPq|aQq)

as∗ν E◦
Q,u,s(P : ν : m), (17.4)

as an identity of meromorphic functions in the variable ν ∈ a∗QqC. Here
s∗ν = ν ◦ s, see Sect. 3. The singular locus of any of the meromorphic
functions E◦

Q,u,s(P : · ), for s ∈ W(aPq | aQq), is the union of a locally
finite collection of real Σr(P)-hyperplanes.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2.

(a): Let ψ ∈ A2,P, and define f : (ν, x) �→ E◦(P : ν : x)ψ. Then
f ∈ E

hyp
P,Y (X : τ), with Y ⊂ ∗a∗Pq a finite subset, see Lemma 13.17. In

particular, it follows that f ∈ C ep,hyp
P,Y (X+ : τ), see Sect. 6. The set H := H f

is a real Σr(P)-configuration in a∗PqC, again by Lemma 13.17.
Let H0 be the collection of H ∈ H with H ∩ ia∗Pq �= ∅. Then H0 is

finite, since H is real. For every H ∈ H0 we select a first degree polynomial
function lH ∈ P1(a

∗
Pq) with H = l−1

H (0), and put

π0 =
∏

H∈H0

ld(H )
H ,

with d = d f . Select ε0 > 0 such that H ∈ H, H∩a∗Pq(ε0) �= ∅ ⇒ H ∈ H0.
Then the family f 0 : (ν, x) �→ π0(ν) f(ν, x) belongs to O(a∗Pq(ε0),

C∞(X : τ)). Moreover, in view of Lemma 13.17, for every σ ∈ W/∼Q|P
and ξ ∈ −σ · Y + N∆r(Q), the function

q0
σ,ξ(Q, u | f ) := π0 qσ,ξ(Q, u | f )

belongs to Pk(aQq) ⊗ O(a∗Pq(ε0), C∞(XQ,u : τQ)); here k = dega f. It
follows from [14], Lemma 12.7, that

f 0
ν (mau) =

∑

σ∈W/∼Q|P

aσν−ρQ
∑

ξ∈−σ ·Y+N∆r(Q)

a−ξq0
σ,ξ(Q, u | f, log a)(ν, m),

for every m ∈ XQ,u,+, and a ∈ A+
Qq(RQ,u(m)−1), where the second series

converges neatly in a. For every ν ∈ ΩP, the function f 0
ν belongs to

Atemp(X : τ), see Proposition 13.15. Since Y is real, it follows by uniqueness
of asymptotics, for all m ∈ XQ,u,+ and a ∈ AQq, that

(
f 0
ν

)
Q,u

(ma) =
∑

σ∈W/∼Q|P
0∈−σ ·Y+N∆r(Q)

aσνq0
σ,0(Q, u | f, log a)(ν, m). (17.5)
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By density and continuity, this expression holds for all m ∈ XQ,u and
a ∈ AQq. On the other hand, by the characterization of the constant term in
Proposition 17.1 (b), it follows that, for ν ∈ ΩP,

(
f 0
ν

)
Q,u

= π0(ν)( fν)Q,u.

Using Lemma 13.17 once again, we infer from (17.5) that ν �→ E◦
Q,u(P : ν)ψ

= ( fν)Q,u extends to a meromorphic C∞(X1Q,u : τQ)-valued function
on a∗PqC with singular set contained in ∪H f . This establishes (a).

We will first establish the remaining assertions under the assumption
that u = e.

(b): Let Λ ∈ LP(b, τ), ψ ∈ A2,P(Λ) and define f as above. For
p ∈ ΠΣr(P)(a

∗
Pq) we put f p(ν, x) = p(ν) f(ν, x).

According to Theorem 15.12, there exist q ∈ ΠΣr (a
∗
Pq),R(a

∗
Pq) and con-

stants ε0 > 0 and s0 > 0, all independent of Λ and ψ, such that fq is
holomorphic on a∗Pq(ε0) and belongs to T (P, τ,Λ, ε0, s0). Let ε1 be any
constant with 0 < ε1 < ε0. If p ∈ ΠΣr(P)(a

∗
Pq) is such that f p is holo-

morphic on a∗Pq(ε1), then clearly f pq ∈ T (P, τ,Λ, ε0, s0). By a repeated
application of Cauchy’s integral formula to f pq(ν, x), with polydiscs of size
O((1 + lX(x))−1), it now follows that f p ∈ T (P, τ,Λ, ε′1, s0), for every ε′1
with 0 < ε′1 < ε1. See [5], Lemma 6.1, for a more detailed indication of
how to use Cauchy’s formula.

Let v ∈ PW be such that Λ ∈ LP,v(b, τ), let b̂, t be as in Lemma 16.4 and
put P̂ = v−1 Pv. Then, in view of Remark 16.5, the family f̂ p : a∗P̂qC

×X → Vτ

defined by f̂ p(µ, x) = f p(t−1µ, x) belongs to T (P̂, τ, tΛ, ε0, s0).

Since tΛ ∈ i∗b̂∗, by Lemma 16.4 (c), we may apply [17], Thm. 3,
which in turn is based on [5], Thm. 12.9. Let ε′1 < ε1 < ε0 be as above.
According to the mentioned theorem there exists a constant ε̄′1 > 0 such
that for every F ∈ T (P̂, τ, tΛ, ε′1, s0), and all m ∈ X1Q,e, the function
ν �→ (Fν)Q,e is holomorphic on a∗

P̂q
(ε̄′1). From the proof of [17], Thm. 3,

it follows that this holds with ε̄′1 = min(ε′1, ε̄), where ε̄ > 0 is the constant
of [17], Lemma 5. The latter constant only depends on Λ; the set LP(b, τ) is
finite, hence we may chose ε̄ simultaneously for all Λ under consideration.
We now fix ε > 0 such that ε < min(ε0, ε̄). Assume that the hypothesis of
part (b) of the theorem is fulfilled. If we apply the above discussion to the
functions f p and F = f̂ p, with ε1 = ε, then ε̄′1 = ε′1, and it follows that
the function ν �→ (( f p)ν)Q,e(m) = p(ν)E◦

Q,e(P : ν : m)ψ is holomorphic
on a∗Pq(ε

′
1), for all m ∈ XQ,e. In view of part (a) of the theorem, it follows

that ν �→ p(ν)E◦
Q,e(P : ν)ψ is holomorphic on a∗Pq(ε

′
1) as a function with

values in C∞(X1Q,e : τQ). This holds for every ε′1 < ε, whence the desired
assertion.

(c): From the hypothesis with v = e it follows that there exists
a Λ ∈ LP(b, τ) and a ψ ∈ A2,P(Λ) such that E◦

Q,u(P : ·)ψ �= 0. Let Ω′
P

be the set of ν ∈ ΩP such that Λ + ν is a Σ(b)-regular element of b∗
C
. It
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follows from Lemma 16.4 that Λ is regular with respect to Σ(mPC,
∗bP).

Therefore, Ω′
P is open dense in ΩP, hence in ia∗Pq. We infer that we may

select ν ∈ Ω′
P such that ( fν)Q,e �= 0, with notation as introduced in part (a)

of this proof.
Fix v ∈ PW such that Λ ∈ LP,v(b, τ). Let (b̂, t) be as in Lemma 16.4

and put P̂ := v−1 Pv. Then tΛ belongs to i∗b̂∗ and is regular relative to
Σ(m P̂C,

∗b̂). Now fν ∈ Atemp(X : τ) and by Remark 16.5,

D fν = γ
b̂
(D : tΛ + tν) fν, (17.6)

for all D ∈ D(X). Since tΛ ∈ i∗b̂∗, tν ∈ iaP̂q and tΛ + tν is regular with
respect to Σ(b̂), it follows from [17], Thm. 2, that the set W(aP̂q | aQq)

is non-empty. The map s �→ t−1 ◦ s is a bijection from the latter set onto
W(aPq | aQq), which set is therefore non-empty as well.

(d): Uniqueness of the functions E◦
Q,e,s(P : · ) is obvious, by linear

independence of the functions a �→ as∗ν for generic ν. We fix Λ and ψ as
in part (b) of the proof and define f as in part (a). We define the set Ω′

P
as in (c). Let Ω′′

P be the open dense subset consisting of ν ∈ Ω′
P with s∗ν

mutually different, for s ∈ W(aPq | aQq). Let v, b̂, t, P̂ be as in part (c) of
the proof, and fix ν ∈ Ω′′

P. In view of (17.6), it follows from [17], Thm. 2,
that there exists a collection of functions ftν,ŝ,Q ∈ C∞(X1Q,e : τQ), for
ŝ ∈ W(aP̂q | aQq), such that

( fν)Q,e(m) =
∑

ŝ∈W(aP̂q|aQq)

ftν,ŝ,Q(m), (m ∈ X1Q,e);

and

ftν,ŝ,Q(ma) = aŝ∗tν ftν,ŝ,Q(m), (m ∈ X1Q,e, a ∈ AQq).

Combining these equations, substituting ts for ŝ and writing fν,s,Q = ftν,ts,Q,
we see that, for all m ∈ XQ,e and a ∈ AQq,

( fν)Q,e(ma) =
∑

s∈W(aPq|aQq)

as∗ν fν,s,Q(m). (17.7)

For every s ∈ W(aPq | aQq) there exists an element s̃ ∈ W such that
s = s̃|aQq, see Corollary 3.5. It follows that s∗ν = s̃−1ν|aQq, for all ν ∈ a∗PqC.

Using the definition of ∼Q|P we see that the class of s̃−1 in W/∼Q|P is
uniquely determined by s. We denote this class by σs. Comparing (17.5) and
(17.7) we see by uniqueness of asymptotics that X �→ qσs,0(Q, e | f, X)(ν)
is constant as a C∞(XQ,e : τQ)-valued function on aQq and that

fν,s,Q(m) = qσs ,0(Q, e | f, 0)(ν, m),

for all m ∈ XQ,e. We define E◦
Q,e,s(P : ν : m)ψ := qσs ,0(Q, e | f, 0)(ν, m).

Then (17.4) applied to ψ follows for ν ∈ Ω′′
P. Finally, the assertions on
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meromorphy follow from the fact that qσs,0(Q, e | f, 0) ∈ M(a∗PqC,H f , d f ,

C∞(XQ,e : τQ)), by Lemma 13.17.
It remains to establish (b)–(d) under the assumption that u ∈ NK (aq) is

arbitrary. Assertion (b) follows from the already established assertion with
u = e by application of Lemma 17.3 with u, e in place of u, v, respectively.

To prove (c), we assume that E◦
Q,u(P : · ) �= 0 and put Q′ = u−1 Qu.

Using Lemma 17.3 we infer that E◦
Q ′,e(P : · ) �= 0. Hence, from the

already established assertion (c) with Q′, e in place of Q, u it follows that
W(aPq | aQ ′q) �= ∅. Since s �→ Ad(u)−1 ◦ s ◦ Ad(u) induces a bijection from
W(aPq | aQq) onto W(aPq | aQ ′q), it follows that W(aPq | aQq) �= ∅.

Finally, assertion (d) follows from the already established assertion with
u−1 Qu, e in place of Q, u by applying Lemma 17.3 once more in a similar
fashion as above. ��

If P, Q are associated parabolic subgroups in Pσ , see Def. 13.4, then
W(aPq | aQq) is a non-empty finite set of isomorphisms from aQq onto aPq;
moreover, the natural left action of W(aPq) as well as the natural right action
of W(aQq) on this set is free and transitive.

Proposition 17.5 (RT) Let P, Q ∈ Pσ be associated and let v ∈ NK (aq).
Then, for each s ∈ W(aPq | aQq) and every ψ ∈ A2,P, the meromorphic

C∞(XQ,v : τ)-valued function ν �→ E◦
Q,v,s(P : ν : · )ψ on a∗PqC, defined as

in (17.4), attains its values in the finite dimensional space A2(XQ,v : τQ).

Proof: We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. Fix ψ ∈ A2,P. Let ν ∈ ΩP and define the function
f ∈ Atemp(X1Q,v : τQ) by

f(m) = E◦
Q,v(P : ν : m)ψ (m ∈ XQ,v).

We recall from Sect. 2 that ∗aQq is maximal abelian in Ad(v)q. Let RQ be
a proper parabolic subgroup of MQ that contains ∗AQq and is stable under
the involution σvθ. In the notation of Sect. 2, RQ is of the form PX , for
some X ∈ ∗aQq, relative to (MQ, θ) in place of (G, θ). Since X is fixed
under σθ, it follows that RQ is σθ-stable as well. The σv-split component
of the Lie algebra of RQ equals aRQ ∩ Ad(v)q = aRQ ∩ ∗aQq = aRQ ∩ q,
hence equals the σ -split component. We therefore denote it by aRQq; the
associated positive chamber is denoted by a+RQq.

Since AQ is central in M1Q, and stable under both σv and σ, the group
R1Q = RQ AQ is a parabolic subgroup of M1Q that contains Aq and is stable
under both involutions σvθ and σθ. The associated σv-split component
equals Aq = ∗AQq AQq, which is also equal to the σ -split component of
R1Q . Accordingly, the positive chamber is given by A+

R1Q q = A+
RQ q AQq.

We now claim that every ξ ∈ Exp (R1Q, e | f ) satisfies

Re ξ + ρR1Q ≤ 0 on a
+
R1Qq. (17.8)
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Indeed, for R1Q minimal this follows from Lemma 10.2. For general R1Q,
it follows by application of [14], Thm. 3.5.

On the other hand, it is readily seen that R = R1Q NQ is an element of
Pσ and that R1Q = ∗1R := R ∩ M1Q . By application of Lemma 17.2,

fR1Q,e = E◦
R,v(P : ν)ψ.

From RQ � MQ we infer that R � Q, hence aQq � aRq, from which
we see that dim aRq > dim aPq; hence, W(aPq | aRq) = ∅. From Proposi-
tion 17.4 (b) it now follows that the function on the right-hand side of the
above equality is zero. We conclude that fR1Q,e = 0 for every RQ as above.
By definition of the constant term it follows that every ξ ∈ Exp (R1Q, e | f )
satisfies Re ξ + ρR1Q �= 0 in addition to (17.8). Put fs = E◦

Q,v,s(P : ν)ψ.
Then

f(am) =
∑

s∈W(aPq|aQq)

as∗ν fs(m),

for m ∈ XQ,v and a ∈ AQq. It follows that every fs belongs to
Atemp(XQ,v : τQ). Moreover, every ξ ∈ Exp (RQ, e | fs) satisfies Re ξ +
ρRQ ≤ 0 on a+RQq and Re ξ + ρRQ �= 0. In particular, if RQ is a maxi-
mal θσv-stable parabolic subgroup in MQ, it follows that every exponent
ξ ∈ Exp (RQ , e | fs) satisfies Re ξ + ρRQ < 0 on a+RQq. This implies that
( fs)RQ ,e = 0; hence, fs ∈ A2(XQ,v : τQ), by [9], Prop. 12.

Let s ∈ W(aPq | aQq). We have shown that the function ϕ : ν �→
E◦

Q,v,s(P : ν)ψ attains its values in A2(XQ,v : τQ) for ν ∈ ΩP. Since
Q is of residue type, A2(XQ,v : τQ) is a finite dimensional subspace of
C∞(XQ,v : τQ) by Lemma 12.6. By meromorphy it now follows that ϕ is
A2(XQ,v : τQ)-valued. ��

If P, Q ∈ Pσ are associated, then s �→ s−1 defines a bijection from
W(aQq | aPq) onto W(aPq | aQq). In this case we write, for s ∈ W(aQq |
aPq),

sν := (s−1)∗ν = ν ◦ s−1,
(
ν ∈ a∗PqC

)
.

Definition 17.6 (RT) Let P, Q ∈ Pσ be be associated. For each s ∈
W(aQq | aPq) we define the meromorphic Hom(A2,P,A2,Q)-valued func-
tion C◦

Q|P(s : · ) on a∗PqC by

[
C◦

Q|P(s : ν)ψ
]
v
= E◦

Q,v,s−1(P : ν)ψ, (v ∈ QW ).

In the chain of reasoning leading up to Theorem 21.2, this definition requires
P to be of residue type, since it depends on the validity of Definition 13.7;
see Remark 12.2.
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Corollary 17.7 (RT) Let P, Q ∈ Pσ . For each s ∈ W(aQq | aPq), the
Hom(A2,P,A2,Q)-valued meromorphic function C◦

Q|P(s : · ) on a∗PqC has
a singular locus equal to a locally finite union of real Σr(P)-hyperplanes.

Let ν ∈ ia∗Pq be a regular point for E◦(P : · ) and the C-functions
C◦

Q|P(s : · ), as s ∈ W(aQq | aPq). Let ψ ∈ A2,P. Then the function
E◦(P : ν)ψ, which belongs to Atemp(X : τ) by Proposition 13.15, has the
following constant term along (Q, v), for v ∈ QW ,

E◦
Q,v(P : ν : ma)ψ =

∑

s∈W(aQq|aPq)

asν
[
C◦

Q|P(s : ν)ψ
]
v
(m), (17.9)

for all m ∈ XQ,v and a ∈ AQq.

Proof: We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. The result is an immediate consequence of Proposi-
tions 17.4 and 17.5 combined with Definition 17.6. ��
Remark 17.8 Formula (17.9) above generalizes Harish-Chandra’s formula
for the constant term of the normalized Eisenstein integral in [29], Thm. 5–6,
see also [31], Thm. 14.1. Accordingly, the functions C◦

Q|P(s : · ), for s ∈
W(aQq | aPq), will be called normalized C-functions.

In the context of reductive symmetric spaces, for minimal P the above
result is due to [5], Eqn. (133), in view of [9], Eqn. (52). For general P the
result is due to [19], Eqn. (5.3). See also Remark 13.10.

Remark 17.9 Note that it follows from the characterization of the normal-
ized Eisenstein integral in Proposition 13.6 that

C◦
P|P(1 : ν) = I,

(
ν ∈ a∗PqC

)
.

18. The Maass–Selberg relations

In this section we derive the Maass–Selberg relations for the normalized
C-functions. As a first step we use the vanishing theorem to prove the
following functional equation for the Eisenstein integral.

Proposition 18.1 (RT) Let P, Q ∈ Pσ be associated parabolic subgroups.
Then, for each s ∈ W(aQq | aPq) and all x ∈ X,

E◦(P : ν : x) = E◦(Q : sν : x) C◦
Q|P(s : ν),

as a meromorphic identity in ν ∈ a∗PqC.

Proof: We give the proof under the assumption that P is of residue
type, see Remark 12.2. Fix ψ ∈ A2,P. By Corollary 17.7, the function
ν �→ C◦

Q|P(s : ν)ψ belongs to M(a∗PqC,H,A2,Q), for some locally finite
collection H of Σr(P)-hyperplanes in a∗PqC. It follows that the function
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λ �→ C◦
Q|P(s : s−1λ)ψ belongs to M(a∗QqC, sH,A2,Q). Here sH is a lo-

cally finite collection of Σr(Q)-hyperplanes in a∗QqC. By Proposition 13.6,

the family (λ, x) �→ E◦(Q : λ : x)ψQ belongs to E
hyp
Q (X : τ), for every

ψQ ∈ A2,Q. We conclude that the family

f : (λ, x) �→ E◦(Q : λ : x)C◦
Q|P(s : s−1λ)ψ (18.1)

belongs to E
hyp
Q (X : τ) as well. For λ in the complement Ω of a locally finite

union of hyperplanes in ia∗Qq, the function fλ belongs to Atemp(X : τ), and
its constant term along (Q, v), for v ∈ QW , is given by

( fλ)Q,v(ma) =
∑

t∈W(aQq|aQq)

atλ
[
prvC◦

Q|Q(t : λ)C◦
Q|P(s : s−1λ)ψ

]
(m);

see Corollary 17.7. Taking Remark 17.9 into account, we see that
qλ−ρQ (Q, v | fλ)(X, m) = [prvC◦

Q|P(s : s−1λ)ψ](m), for all λ ∈ Ω,
X ∈ aQq and m ∈ XQ,v,+. By application of [14], Thm. 7.7, Eqn. (7.14), it
follows that

q1̄,0(Q, v | f, X)(λ, m) = [
prvC◦

Q|P(s : s−1λ)ψ
]
(m), (18.2)

for generic λ ∈ ia∗Qq, X ∈ aQq and m ∈ XQ,v,+. By meromorphy this
actually holds as an identity of meromorphic functions in λ.

On the other hand, it follows from Definition 13.7 combined with
Lemma 6.12 that the family

g : (λ, x) �→ E◦(P : s−1λ : x)ψ (18.3)

belongs to E
hyp
Q (X : τ). Moreover, for λ in the complement of a locally finite

union of hyperplanes in ia∗Qq, the function gλ belongs to Atemp(X : τ), and
its constant term along (Q, v) is given by

(gλ)Q,v(ma) =
∑

t∈W(aQq|aPq)

ats−1λ
[
prvC◦

Q|P(t : s−1λ)ψ
]
(m).

This implies that, for every X ∈ aQq,

q1̄,0(Q, v | g, X)(λ, · ) = prvC◦
Q|P(s : s−1λ)ψ, (18.4)

as a meromorphic identity in λ ∈ a∗QqC. From (18.2) and (18.4) it follows

that the family f − g ∈ E
hyp
Q (X : τ) satisfies the hypothesis of the vanishing

theorem, Theorem 6.11. Hence, f = g. It follows that the meromorphic
C∞(X : τ)-valued function ν �→ fsν − gsν on a∗PqC is zero. This implies the
result, in view of (18.1) and (18.3). ��
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Corollary 18.2 (RT) Let P, Q ∈ Pσ be associated parabolic subgroups.
Then, for each s ∈ W(aQq|aPq) and all x ∈ X,

E∗(P : ν : x) = C◦
Q|P(s : −ν̄)∗ E∗(Q : sν : x),

as a meromorphic identity in ν ∈ a∗QqC.

Proof: We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. The result follows from Proposition 18.1 combined
with Definition 13.7. ��

We shall now derive the Maass–Selberg relations for the normalized
C-functions from the invariance properties of the kernel KP, formulated in
Theorem 13.23.

Theorem 18.3 (RT) Let P, Q ∈ Pσ be associated. Then for each s ∈
W(aQq | aPq),

C◦
Q|P(s : ν)C◦

Q|P(s : −ν̄)∗ = I, (18.5)

as an identity of meromorphic End(A2,Q)-valued functions in the variable
ν ∈ a∗PqC;
Remark 18.4 For the case of the group the above result was announced by
Harish-Chandra in [29], Thm. 6, with a proof appearing in [32], Lemma 17.1
(see also Remark 13.9). For the Riemannian case H = K, which is a special
case of that of the group, the relations were proved in [34], Thm. 6.6.

For general reductive symmetric spaces and minimal P the result is due
to [5], Thm. 16.3, combined with [6], in view of [9], text after Eqn. (55).
For general P the result is due to J. Carmona and P. Delorme, [19], Thm. 2
and Prop. 5 (vi). See also Remark 13.10.

Proof: We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. It follows from Definition 13.20 that

|WQ | KQ(sν : x : y) = E◦(Q : sν : x)E∗(Q : sν : y), (18.6)

for all x, y ∈ X, as an identity of meromorphic functions in ν ∈ a∗PqC. On the
other hand, from the mentioned definition combined with Proposition 18.1
and Corollary 18.2 it follows that

|WP| KP(ν : x : y) = E◦(P : ν : x)E∗(P : ν : y)
= E◦(Q : sν : x)C◦

Q|P(s : ν)C◦
Q|P(s : −ν̄)∗E∗(Q : sν : y), (18.7)

for x, y ∈ X, and generic ν ∈ a∗PqC. Now |WP| = |WQ | since P and Q are
associated. Hence, using Theorem 13.23 we infer that

E◦(Q : sν : x)E∗(Q : sν : y)
= E◦(Q : sν : x)C◦

Q|P(s : ν)C◦
Q|P(s : −ν̄)∗E∗(Q : sν : y) (18.8)
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for all x, y ∈ X, as identities of meromorphic functions in the variable
ν ∈ a∗PqC. Let v ∈ QW , and take x = mav with m ∈ XQ,v,+ arbitrary and
a tending to infinity in A+

Qq. Comparing the coefficients of asν−ρQ in the
asymptotic expansions along (Q, v) of the resulting expressions on both
sides of (18.8), using Definition 13.7, we obtain that

prQ,v ◦ E∗(Q : sν : y)

= prQ,v ◦ C◦
Q|P(s : ν)C◦

Q|P(s : −ν̄)∗E∗(Q : sν : y),

for all y ∈ X, as an identity of meromorphic functions in the variable
ν ∈ a∗PqC. Taking adjoints and substituting −ν̄ for ν we now obtain

E◦(Q : sν : y) ◦ iQ,v = E◦(Q : sν : y)C◦
Q|P(s : ν)C◦

Q|P(s : −ν̄)∗ ◦ iQ,v.

(18.9)

Fix w ∈ QW , and put y = ma w, with m ∈ XQ,w,+ arbitrary and a ∈ A+
Qq

tending to infinity. Comparing the coefficients of asν−ρQ in the expansions
along (Q, w) of the functions on both sides of (18.9), we obtain

prQ,w ◦ iQ,v = prQ,w ◦ C◦
Q|P(s : ν)C◦

Q|P(s : −ν̄)∗ ◦ iQ,v, (18.10)

as a meromorphic identity in the variable ν ∈ a∗PqC. This holds for arbitrary
v,w ∈ QW; in view of the direct sum decomposition (13.1) with Q in place
of P, the equality (18.10) therefore remains valid if the maps prQ,w and iQ,v

are replaced by the identity map of A2,Q. ��
Remark 18.5 Conversely, if the Maass–Selberg relations (18.5) hold, then
the expression on the right-hand side of (18.7) equals the one on the right-
hand side of (18.6); hence (13.13), the invariance property of the kernel KP,
follows. Thus, the Maass–Selberg relations are equivalent to the invariance
properties of the kernel.

Corollary 18.6 (RT) Let P, Q ∈ Pσ be associated parabolic subgroups
and let s ∈ W(aQq | aPq). Then there exists a constant ε > 0 such that the
meromorphic Hom(A2,P,A2,Q)-valued function C◦

Q|P(s : · ) is regular on
a∗Pq(ε).

Proof: We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. The corollary is a straightforward consequence of
Corollary 17.7 and Theorem 18.3, combined with the lemma below. ��
Lemma 18.7 Let P ∈ Pσ . Let V be a complete locally convex space, and
let ϕ be a V-valued meromorphic function on a∗PqC, with singular locus
sing ϕ contained in a locally finite collection of real Σr(P)-hyperplanes.
Assume that for every λ0 ∈ ia∗Pq there exists an open neighborhood ω of λ0

in ia∗Pq such that ϕ is bounded on ω \ sing ϕ. Then there exists a ε > 0 such
that ϕ is holomorphic on a∗Pq(ε).
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Proof: Since the collection H of singular hyperplanes of ϕ is a real Σr(P)-
configuration, the number of H ∈ H with H ∩ a∗Pq(ε

′) ∩ H �= ∅ is finite,
for every ε′ > 0. Hence, there exists a p ∈ ΠΣr (P),R(a

∗
Pq) of minimal

degree such that ϕp : λ �→ p(λ)ϕ(λ) is holomorphic on a neighborhood of
ia∗Pq. Clearly ϕp is holomorphic on a∗Pq(ε), for a suitable ε > 0. Assume
that deg p ≥ 1. Then there exists a α ∈ Σr(P) and a constant c ∈ R
such that l : λ �→ 〈α , · 〉 − c is a divisor of p. By minimality of p it
follows that h := ia∗Pq ∩ l−1(0) is non-empty. From the hypothesis we
infer that ϕp = 0 on h. By analytic continuation it follows that ϕp = 0 on
hC ∩ a∗Pq(ε) = l−1(0) ∩ a∗Pq(ε). By a straightforward argument involving
power series expansion in the coordinate function l, it now follows that
l−1ϕp is holomorphic on a∗Pq(ε). This contradicts the minimality of p.

Hence, deg p = 0 and the result follows. ��
Theorem 18.8 (RT) Let P ∈ Pσ . Then there exists a constant ε > 0
such that ν �→ E◦(P : ν) is a holomorphic C∞(X, Hom(A2,P, Vτ ))-valued
function on a∗Pq(ε).

Remark 18.9 For the group case the above result is due to Harish-
Chandra [32]. For general reductive symmetric spaces and for P mini-
mal, the result is due to [9], Thm. 2. For non-minimal P it is due to [19],
Thm. 3(i).

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let Λ ∈ LP(b, τ) and fix ψ ∈ A2,P(Λ) and η ∈ V ∗

τ . Let
ε0 > 0; then the family F : (λ, x) �→ ηE◦(P : λ : x)ψ belongs to the space
IImer(Λ, ε0) defined in [7], Def. 3. From Corollary 17.7 and Corollary 18.6
it follows that F satisfies the hypotheses of [7], Thm. 2. Hence, there exists a
ε1 > 0 such that F belongs to the space II′(Λ, ε1). In particular, this implies
that λ �→ Fλ is holomorphic on a∗Pq(ε) for some ε > 0. The theorem now
follows by linearity and finite dimensionality of Vτ and A2,P. ��
Proposition 18.10 (RT) Let P ∈ Pσ . Then there exist constants ε > 0
and s > 0 and for every u ∈ U(g) constants n ∈ N and C > 0, such that the
function ν �→ E◦(P : ν) is a holomorphic C∞(X, Hom(A2,P, Vτ ))-valued
function on a∗Pq(ε) satisfying the estimate

‖E◦(P : ν : u; x)‖ ≤ C|(ν, x)|nΘ(x)es|Re ν|lX(x),
(
ν ∈ a∗Pq(ε), x ∈ X

)
.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. By finite dimensionality of Vτ and A2,P, it follows from
Theorem 15.12 and Definition 15.4 that there exists a p ∈ ΠΣr (P),R(a

∗
Pq) and

constants ε > 0 and s > 0 such that ν �→ p(ν)E◦(P : ν) is a holomorphic
function on a∗Pq(ε), with values in C∞(X) ⊗ Hom(A2,P, Vτ ). Moreover, it
satisfies the following estimates. For every u ∈ U(g) there exist constants
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n ∈ N and C > 0 such that

‖p(ν)E◦(P : ν : u; x)‖ ≤ C|(ν, x)|nΘ(x)es|Re ν|lX(x),
(
ν ∈ a∗Pq(ε), x ∈ X

)
. (18.11)

If we choose ε > 0 sufficiently small, then by Theorem 18.8, the func-
tion ν �→ E◦(P : ν) is already holomorphic on a∗Pq(ε). By a straightfor-
ward application of Cauchy’s integral formula, involving polydiscs of size
O((1+ lX(x))−1), it follows that for ε > 0 sufficiently small, the following
is true. For every u ∈ U(g) there exist n ∈ N and C > 0 such that the
estimate (18.11) holds with p = 1. ��
Corollary 18.11 (RT) Let P ∈ Pσ . Then there exist constants ε > 0 and
s > 0 and for every u ∈ U(g) constants n ∈ N and C > 0, such that the
function ν �→ E∗(P : ν) is a holomorphic C∞(X, Hom(Vτ ,A2,P))-valued
function on a∗Pq(ε) satisfying the estimate

‖E∗(P : ν : u; x)‖ ≤ C|(ν, x)|nΘ(x)es|Re ν|lX(x),
(
ν ∈ a∗Pq(ε), x ∈ X

)
.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. In view of Definition 13.7, the result follows from Propo-
sition 18.10. ��
Corollary 18.12 (RT) Let P ∈ Pσ . Then, for all U ∈ S(a∗Pq) and u ∈
U(g), there exist constants m ∈ N and C > 0 such that

‖E∗(P : ν;U : u; x)‖ ≤ C|(ν, x)|mΘ(x),
(
ν ∈ ia∗Pq, x ∈ X

)
.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. The result follows from the estimate of the previous
corollary, by a straightforward application of Cauchy’s integral formula
involving polydiscs of size O((1 + lX(x))−1). ��

19. The spherical Fourier transform

We recall from [5], Cor. 17.6, that there exists a constant N ∈ N such that

(1 + lX)−NΘ2 ∈ L1(X). (19.1)

Combining the estimate (12.1) with (19.1) and the estimate of Corol-
lary 18.12, we see that the integral in the following definition converges
absolutely.

Definition 19.1 (RT) Let P ∈ Pσ . If f ∈ C(X : τ), we define its Fourier
transform FP f : ia∗Pq → A2,P by

FP f(ν) =
∫

X
E∗(P : ν : x) f(x) dx,

(
ν ∈ ia∗Pq

)
.
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The above definition depends on the validity of the estimate of Corol-
lary 18.12. Thus, within the chain of reasoning leading up to Theorem 21.2,
the use of this definition requires P to be of residue type, see Remark 12.2.

Remark 19.2 If G has compact center modulo H, then aGq = {0} and
A2,G = A2(G/H : τ). Moreover, using Remark 13.11 we infer that f �→
FG f(0) is the restriction to C(X : τ) of the orthogonal projection L2(X : τ)
→ L2

d(X : τ) = A2,G.

Lemma 19.3 (RT) Let P ∈ Pσ . Then for every U ∈ S(a∗Pq) there exists
a constant m ∈ N and a continuous seminorm s on C(X : τ) such that

sup
ν∈ia∗Pq

(1 + |ν|)−m‖FP f(ν;U)‖ ≤ s( f ),

for all f ∈ C(X : τ). In particular, the Fourier transform FP maps C(X : τ)
continuous linearly into C∞(ia∗Pq) ⊗ A2,P.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. The result follows from the estimates (19.1) and (12.1)
combined with the estimate of Corollary 18.12. ��
Lemma 19.4 (RT) Let P ∈ Pσ . Then for every D ∈ D(X) and all f ∈
C(X : τ),

FP(D f )(ν) = µ
P
(D : ν)FP f(ν),

(
ν ∈ ia∗Pq

)
. (19.2)

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. From [3], Lemma 7.2, we recall that every D ∈ D(X) acts
by a continuous linear endomorphism on C(X : τ). Since FP : C(X : τ)
→ C∞

c (ia∗Pq) ⊗ A2,P is continuous, it suffices to prove the identity (19.2)
for f in the dense subspace C∞

c (X : τ) of C(X : τ). For such f the identity
is an immediate consequence of Lemma 14.8. ��

Let Ω be the image in D(X) of the Casimir operator defined by the
bilinear form B on g, see Sect. 2.

Lemma 19.5 (RT) Let P ∈ Pσ and let ε > 0.

(a) µ
P
(Ω : ν) = −|ν|2 I + O(|ν|) as ν ∈ a∗Pq(ε), |ν| → ∞.

(b) There exists a constant R > 0 such that for every ν ∈ a∗Pq(ε) with
|ν| ≥ R the endomorphism µ

P
(Ω : ν) is invertible and the operator

norm of its inverse satisfies the estimate

|ν|2 ∥∥µ
P
(Ω : ν)−1

∥∥ ≤ 2. (19.3)
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Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let 〈 · , · 〉 denote the complex bilinear form on a∗PqC that
extends the dual of the given bilinear form on aPq. There exists a first order
polynomial function µ

1
: a∗PqC → End(A2,P) such that

µ
P
(Ω : ν) = 〈ν , ν〉I + µ

1
(ν),

(
ν ∈ a∗PqC

)
. (19.4)

Indeed, this follows by application of Corollary 14.4. It follows by a straight-
forward estimation that, for ν ∈ a∗Pq(ε),

〈ν , ν〉 = −|ν|2 + O(|ν|) as |ν| → ∞. (19.5)

Using that ‖µ1(ν)‖ = O(|ν|) we obtain (a) from (19.4) and (19.5). From
(a) it follows that −|ν|−2µ

P
(Ω : ν) = I + O(|ν|−1). Hence, (b) follows. ��

In the following result, S(ia∗Pq) denotes the Euclidean Schwartz space
of ia∗Pq.

Proposition 19.6 (RT) Let P ∈ Pσ . Then the Fourier transform FP maps
C(X : τ) continuous linearly into S(ia∗Pq) ⊗ A2,P.

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. Moreover, we use the argumentation of [5], p. 436, com-
pletion of the proof of Theorem 19.1, with FP in place of Fπ. Let us
label the first two displayed formulas in the mentioned text in [5] by (E1)
and (E2), respectively. The estimate (19.3) generalizes the estimate of [5],
Lemma 19.4.

Let R > 0 be as in Lemma 19.5 (b) for some choice of ε > 0 and let
u ∈ S(a∗Pq) and M ∈ N. In view of the last assertion of Lemma 19.3 it
suffices to prove the analogue of (E1), i.e., it suffices to prove the existence
of a continuous seminorm s on C(X : τ) such that

‖FP f(ν; u)‖ ≤ (1 + |ν|)−Ms( f ),

for every f ∈ C(X : τ) and all ν ∈ ia∗Pq with |ν| ≥ R. As in [5] this is
done by induction on the order of u, by using Lemma 19.3 instead of (E2)
and by using Lemmas 19.4 and 19.5 instead of [5], Lemmas 19.3 and 19.4,
respectively. ��

We end this section with a result on the Fourier transform of a compactly
supported smooth function. If S > 0 we write

XS := {x ∈ X | lX(x) ≤ S}.
Then XS is a K -invariant compact subset of X. We write C∞

S (X : τ) for
the closed subspace of C∞(X : τ) consisting of functions with support
contained in XS.
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Proposition 19.7 (RT) Let P ∈ Pσ and let ε > 0 be as in Corollary 18.11.
For every f ∈ C∞

c (X : τ), the Fourier transform FP( f ) extends to a holo-
morphic function on a∗Pq(ε) with values in A2,P. Moreover, let S > 0. Then
for every m ∈ N there exists a continuous seminorm pm on C∞

S (X : τ) such
that, for every f ∈ C∞

S (X : τ),

‖FP f(ν)‖ ≤ (1 + |ν|)−m pm( f ),
(
ν ∈ a∗Pq(ε)

)
. (19.6)

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. The assertion about holomorphy is a straightforward
consequence of the holomorphy of the Eisenstein integral as formulated
in Corollary 18.11. Let n ∈ N be the constant of the mentioned corollary
associated with u = 1. Let S > 0. Then it straightforwardly follows from
the estimate of Corollary 18.11 that there exists a continuous seminorm p0
on C∞

S (X : τ) such that, for every f ∈ C∞
S (X : τ),

‖FP f(ν)‖ ≤ (1 + |ν|)n p0( f ),
(
ν ∈ a∗Pq(ε)

)
. (19.7)

Let R > 0 be associated with ε > 0 as in Lemma 19.5. Then it follows from
the above estimate that, for every k ∈ N and for ν ∈ a∗Pq(ε) with |ν| ≥ R,

|ν|2k‖FP f(ν)‖ = |ν|2k‖µ
P
(Ω : ν)−kFP(Ωk f )(ν)‖ (19.8)

≤ (1 + |ν|)n p0(2
kΩk f ). (19.9)

Taking k ∈ N such that n − 2k ≤ m we see that there exists a continuous
seminorm p′m on CS(X : τ) such that for every f ∈ C∞

S (X : τ) the estimate
(19.6) holds for all ν ∈ a∗Pq(ε) with |ν| ≥ R. From (19.7) it follows that
there exists a constant C > 0 such that the estimate (19.6) holds with C p0
in place of pm, for all ν ∈ a∗Pq(ε) with |ν| < R. Take for pm any continuous
seminorm with pm ≥ max(C p0, p′m); then the desired assertion follows. ��

We end this section with another useful result.

Lemma 19.8 (RT) Let P ∈ Pσ and assume that aPq �= 0. Then FP
vanishes on A2(X : τ).

Proof: We give the proof under the assumption that P is of residue type, see
Remark 12.2. Fix f ∈ A2(X : τ). Then there exists a non-trivial polynomial
q in one variable such that q(Ω) f = 0. In view of Lemma 19.4 it follows
that q(µ

P
(Ω : ν))FP f(ν) = 0 for all ν ∈ ia∗Pq. From Lemma 19.5 it follows

that the polynomial function ν �→ det q(µ
P
(Ω : ν)) is not identically zero.

Hence, FP f vanishes on an open dense subset of ia∗Pq. By smoothness of
FP f it follows that FP f = 0. ��
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20. The wave packet transform

It follows from the estimate in Proposition 18.10 that the integral in the
following definition is absolutely convergent. We agree to write dν for the
Lebesgue measure dµP(ν) on ia∗Pq, normalized as in Sect. 5.

Definition 20.1 (RT) Let P ∈ Pσ . Then for every ϕ ∈ S(ia∗PqC) ⊗ A2,P,

we define the wave packet JPϕ : X → Vτ by

JPϕ(x) :=
∫

ia∗Pq

E◦(P : ν : x) ϕ(ν) dν (x ∈ X).

This definition depends on the validity of the estimate of Proposi-
tion 18.10, which in the chain of reasoning leading up to Theorem 21.2
requires P to be of residue type, see Remark 12.2.

Note that the wave packet JPϕ is a smooth τ-spherical function.

Remark 20.2 If G has compact center modulo H, then AGq = {0} and
A2,G = A2(G/H : τ). In this case the measure dν = dµG has total volume 1
(end of Sect. 5), and using Remark 13.11 we infer that JGϕ = ϕ(0).
Accordingly, JG is naturally identified with the inclusion map A2(X : τ)
→ C∞(X : τ).

Theorem 20.3 (RT) Let P ∈ Pσ . Then the wave packet map JP maps
S(ia∗Pq) ⊗ A2,P continuous linearly into the Schwartz space C(X : τ).

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let Λ ∈ LP(b, τ) and fix ψ ∈ A2,P(Λ). We recall from
the proof of Theorem 18.8 that the family F defined by

F(ν, x) = E◦(P : ν : x)ψ

has components with respect to a basis of Vτ that are functions of type II′(Λ)
in the sense of [7]. Hence, by [7], Thm. 1, the map α �→ Wα,F, where

Wα,F(x) =
∫

ia∗Pq

α(ν)F(ν, x) dν,

is continuous linear from S(ia∗Pq) into C(X : τ). We note that Wα,F =
JP(α ⊗ ψ). Hence, the result follows by using linearity, the finite dimen-
sionality of A2,P (see Corollary 14.4) and the decomposition (14.10) of the
latter space. ��

Let P ∈ Pσ and D ∈ D(X). In the following lemma we write µ
P
(D)

for the endomorphism of S(ia∗Pq) ⊗ A2,P given by

[µ
P
(D)ϕ](ν) = µ

P
(D : ν)(ϕ(ν)),

for ϕ ∈ S(ia∗Pq) ⊗ A2,P and ν ∈ ia∗Pq.
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Lemma 20.4 (RT) Let P ∈ Pσ and D ∈ D(X). Then

D ◦JP = JP ◦µ
P
(D) on S(ia∗Pq) ⊗ A2,P. (20.1)

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. The operator D defines a continuous linear endomorphism
of C(X : τ), by [3], Lemma 7.2. In view of Theorem 20.3 it follows that
both sides of the equation are continuous linear maps from S(ia∗Pq)⊗A2,P

to C(X : τ). Hence, by density it suffices to prove the equality when applied
to an element ϕ ∈ C∞

c (ia∗Pq) ⊗ A2,P. But then the result is an immediate
consequence of Lemma 14.1 by differentiation under the integral sign, in
view of Definition 20.1. ��

We equip C(X : τ) with the restriction of the L2-inner product 〈 · | · 〉
from L2(X : τ). Similarly, for P ∈ Pσ, we equip S(ia∗Pq) ⊗ A2,P with the
restriction of the L2-type inner product 〈 · | · 〉 from L2(ia∗Pq)⊗A2,P. With
respect to these structures the Fourier transform FP and the wave packet
map JP are adjoint in the following sense.

Lemma 20.5 (RT) Let P ∈ Pσ . Then the continuous linear operators
FP : C(X : τ) → S(ia∗Pq) ⊗ A2,P and JP : S(ia∗Pq) ⊗ A2,P → C(X : τ)

are adjoint in the sense that, for all f ∈ C(X : τ) and ϕ ∈ S(ia∗Pq)⊗A2,P,

〈FP f |ϕ〉 = 〈 f |JPϕ〉. (20.2)

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. By continuity and density it suffices to prove (20.2) for all
f ∈ C∞

c (X : τ) and ϕ ∈ C∞
c (ia∗Pq) ⊗ A2,P. For such f and ϕ, the formula

follows by an application of Fubini’s theorem. ��

21. Fourier inversion for Schwartz functions

In this section we show that the Fourier inversion formula (8.10), established
in [12], implies an inversion formula for Schwartz functions, formulated in
terms of the Fourier transforms and the wave packet maps introduced in the
previous sections.

The crucial first step is the following.

Proposition 21.1 (RT) Let F ⊂ ∆. Then for every W-invariant even
residue weight t ∈ WT(Σ),

T t
F = [W : WF ] t

(
a
+
Fq

)
JFFF on C∞

c (X : τ). (21.1)

Proof: We give the proof under the assumption that PF is of residue type,
see Remark 12.2. In case F = ∆ and G has compact center modulo H,
then aFq = aGq = {0} and the proof below has to be read according to the
conventions indicated in Remarks 8.8, 9.4, 13.11, 19.2 and 20.2.
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Let f ∈ C∞
c (X : τ) and x ∈ X+. It follows from (8.8) that

T t
F f(x) = |W | t

(
a
+
Fq

) ∫

ia∗Fq+εF

∫

X
Kt

F(ν : x : y) f(y) dy dµF(ν),

for all εF ∈ a+Fq sufficiently close to zero. In view of (13.12) and Defin-
ition 19.1, this equality may be rewritten as

T t
F f(x) = [W : WF ] t

(
a
+
Fq

) ∫

ia∗Fq+εF

E◦(PF : ν : x)FF f(ν) dµF(ν).

(21.2)

Since the expressions on both sides of the equation extend smoothly to all
of X in the variable x, it follows that (21.2) holds for all x ∈ X. From Theo-
rem 18.8 and Proposition 19.7 it follows that ν �→ E◦(PF : ν : x)FF f(ν)
is holomorphic on a∗Fq(ε), for some ε > 0. Moreover, from the mentioned
results it also follows that for every N > 0, there exists a constant CN > 0
such that

‖E◦(PF : ν : x)FF f(ν)‖ ≤ CN(1 + |ν|)−N , (ν ∈ a∗Fq(ε)).

This estimate allows us to take the limit of (21.2) for εF → 0; thus, using
Definition 20.1 and observing that dµF(ν) = dν on ia∗Fq, we obtain (21.1).

��
The proof of the following result involves an induction step using the

long chain of results marked (RT), see Remark 12.2.

Theorem 21.2 (a) Every P ∈ Pσ is of residue type.
(b) If t is any W-invariant even residue weight for Σ, then

f =
∑

F⊂∆

[W : WF] t
(
a
+
Fq

)
JFFF f, (21.3)

for every f ∈ C(X : τ).
(c) The pair (G, H) is of residue type if and only if G has a compact center

modulo H.

Proof: We first show that (c) and (b) follow from (a). Thus, assume (a).
Then viewed as a parabolic subgroup, G is of residue type. By Remark 13.3
it follows that the pair (◦G, ◦G ∩ H) is of residue type. Moreover, if G
has compact center modulo H, then (G, H) is of residue type. If the center
of G is not compact modulo H, then (G, H) is not of residue type, by
Definition 12.1 (a). This establishes (c).

We now turn to (b). Let f be a W-invariant even residue weight for Σ.
Then for each F ⊂ ∆, the parabolic subgroup PF is of residue type so
that Proposition 21.1 applies. It now follows from (8.10) combined with
(21.1) that (21.3) holds for every f ∈ C∞

c (X : τ). Finally, the validity of (b)
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follows by density of C∞
c (X : τ) and continuity of each of the JFFF, for

F ⊂ ∆ (Proposition 19.6 and Theorem 20.3 apply with P = PF , since PF
is of residue type).

It remains to prove (a). We will do this by induction on dim Aq, the
σ -split rank of G. First, assume that dim Aq = 0. Then X is compact, hence
the pair (G, H) is of residue type, see Remark 12.3. It follows that G,
viewed as a parabolic subgroup, is of residue type, see Remark 13.3. Since
Pσ = {G}, this establishes (a) in case dim Aq = 0.

Thus, assume that dim Aq ≥ 1 and that (a) has been established for all
pairs (G′, σ ′) with G′ of σ -split rank smaller than dim Aq.

If the center of G is not compact modulo H, then ◦Aq := ◦G∩ Aq � Aq.
Hence, it follows by the inductive hypothesis that every σ -parabolic sub-
group of ◦G containing ◦Aq is of residue type. Denote the set of these
parabolic subgroups by ◦Pσ . Then G = ◦G × C, where C =
exp(center (g)∩p) and P �→ PC is a bijection from ◦Pσ onto Pσ . Moreover,
MPC = MP for every P ∈ Pσ(

◦G). In view of Definition 13.1 it follows that
every parabolic subgroup from Pσ is of residue type as well, whence (a).

Thus, we may assume that G has compact center modulo H; then a∆q

= 0. By the inductive hypothesis, the symmetric pairs (MF, MF ∩ vHv−1),
for F � ∆ and v ∈ NK (aq), satisfy condition (a). In particular, MF, viewed
as a parabolic subgroup of MF, is of residue type relative to vHv−1. Since
◦MF = MF, it follows by Remark 13.3 that the pairs (MF , MF ∩ vHv−1),
are all of residue type. In view of Definition 13.1 it now follows that the
standard parabolic subgroups PF, for F � ∆, are all of residue type.

Let t be a W-invariant even residue weight on Σ. Then T t
∆ is a contin-

uous linear operator from C∞
c (X : τ) into the finite dimensional subspace

At
∆(X : τ) of C∞(X : τ); all functions in this subspace are D(X)-finite, see

the text after (9.1).
Proposition 21.1 applies for every subset F � ∆. Hence, from (8.10)

and (21.1) it follows that

T t
∆ = I −

∑

F�∆

[W : WF ] t
(
a
+
Fq

)
JFFF (21.4)

as an operator from C∞
c (X : τ) into C∞(X : τ). Applying Proposition 19.6

and Theorem 20.3 we infer that T t
∆ extends to a continuous linear map from

C(X : τ) into At
∆(X : τ) ∩ C(X : τ); moreover, the latter intersection is

continuously contained in A2(X : τ). By density of C∞
c (X : τ), the validity

of the identity (21.4) extends to the space C(X : τ).
By repeated application of Lemma 19.8, with P = PF, F � ∆, it

follows from (21.4) that T t
∆ = I on A2(X : τ). Finally, by application of

Lemma 20.5 to (21.4) it follows that T t
∆ is symmetric with respect to the L2-

inner product on C(X : τ). We conclude that T t
∆ is the orthogonal projection

from C(X : τ) onto A2(X : τ); in particular, it follows that the latter space
is finite dimensional. Moreover, since A2(X : τ) is dense in L2

d(X : τ) it
follows that A2(X : τ) = L2

d(X : τ) and that T t
∆ is the restriction of the
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orthogonal projection L2(X : τ) → L2
d(X : τ). From this we conclude that

(G, H) is of residue type, see Definition 12.1 and Remark 12.5. Hence,
P∆ = G is of residue type. It follows that all standard parabolic subgroups
in Pσ are of residue type. Since every P ∈ Pσ is associated with a standard
one, see Lemma 3.6, assertion (a) follows by application of Lemma 13.5. ��

We define the equivalence relation ∼ on the collection of subsets of ∆
by F ∼ F ′ ⇐⇒ PF ∼ PF ′ .

Lemma 21.3 Let t be a W-invariant even residue weight on Σ and let
F ⊂ ∆. Then

∑

F ′⊂∆

F ′∼F

t
(
a
+
F ′q

) = |W(aFq)|−1.

Proof: Let Pσ (AFq) denote the collection of all P ∈ Pσ with σ -split
component APq equal to AFq. Moreover, let S denote the collection of all
subsets F ′ ⊂ ∆ with F ′ ∼ F. For every P ∈ Pσ (AFq) there exists a unique
FP ⊂ ∆ such that sPs−1 = PFP , for some s ∈ W, see Lemma 3.6. Clearly,
FP ∼ F. Moreover, the map p : P �→ FP is surjective from Pσ (AFq) onto S.
If F ′ ∈ S, let WF ′,F denote the collection of s ∈ W mapping aFq onto aF ′q.
Then the map s �→ s−1 PF ′s from WF ′,F onto p−1(F ′) factors to a bijection
from W(aF ′q | aFq) onto p−1(F ′). Starting from (2.1) with Q = PF we now
obtain that

1 =
∑

P∈Pσ (AFq)

t
(
a
+
Pq

)

=
∑

F ′⊂∆

F ′∼F

∑

s∈W(aF′q|aFq)

t
(
s−1

(
a
+
F ′q

))

=
∑

F ′⊂∆

F ′∼F

|W(aF ′q | aFq)| t
(
a
+
F ′q

)
.

For every F ′ ⊂ ∆ with F ′ ∼ F, the group W(aFq) acts freely and transitively
from the right on W(aF ′q | aFq). Hence, |W(aF ′q | aFq)| = |W(aFq)| and
the result follows. ��
Lemma 21.4 Let P, Q ∈ Pσ be associated parabolic subgroups and let
s ∈ W(aPq | aQq). Then

(a) FP f(sν) = C◦
P|Q(s : ν)FQ f(ν), for all f ∈ C(X : τ) and ν ∈ ia∗Qq;

(b) JPFP = JQFQ as endomorphisms of C(X : τ).

Proof: It follows from Corollary 18.2 combined with the Maass–Selberg
relations (18.5), that

E∗(P : sν : x) = C◦
P|Q(s : ν)E∗(Q : ν : x),
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for all x ∈ X and all ν ∈ ia∗Qq. Now (a) follows by Definition 19.1. The
linear bijection s from ia∗Qq onto ia∗Pq maps the chosen Lebesgue measures
onto each other, see Sect. 5. Hence, for f ∈ C(X : τ),

JPFP f(x) =
∫

ia∗Qq

E◦(P : sν : x)FP f(sν) dν. (21.5)

Applying (a) and Proposition 18.1 we obtain that

E◦(P : sν : x)FP f(sν) = E◦(P : sν : x)C◦
P|Q(s : ν)FQ f(ν)

= E◦(Q : ν : x)FQ f(ν).

Substituting the obtained identity in the right-hand side of (21.5) we ob-
tain (b). ��
Remark 21.5 Let P ∈ Pσ . Then it follows from part (b) of the above lemma
that the continuous linear endomorphism JP ◦FP of C(X : τ) depends on
P through its equivalence class in Pσ/∼ .

If P ∈ Pσ, we agree to write W∗
P for the normalizer of aPq in W. Then

W(aPq) � W∗
P/WP.

Theorem 21.6 Let f ∈ C(X : τ). Then

f =
∑

[P]∈Pσ/∼
[W : W∗

P] JPFP f.

Remark 21.7 In view of Remark 13.10, this theorem corresponds to part
(iii) of Thm. 2 in Delorme’s paper [24]. Note that in the latter theorem con-
stants |W(aPq)|−1, for P ∈ Pσ, appear in place of the constants [W : W∗

P].
This is due to a different normalization of measures, as will be explained in
the sequel [15] to this paper.

Proof: We observe that [W : WP]|W(aPq)|−1 = [W : W∗
P], for P ∈ Pσ .

Since every P ∈ Pσ is associated with a standard parabolic subgroup, see
Lemma 3.6, the result now follows from Theorem 21.2, Lemma 21.3 and
Remark 21.5. ��

22. Properties of the Fourier transforms

The purpose of this section is to establish relations between the different
Fourier and wave packet transforms FP and JQ, as P, Q ∈ Pσ . We shall
also determine the image of FP and the kernel of JQ . The relation between
the several Fourier transforms is given by Lemma 21.4 (a).

Lemma 22.1 Let P, Q, R ∈Pσ be associated. Then, for all s ∈ W(aQq|aPq)
and t ∈ W(aRq|aQq),

C◦
R|P(ts : ν) = C◦

R|Q(t : sν) ◦ C◦
Q|P(s : ν),

(
ν ∈ ia∗Pq

)
.
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Proof: The above identity is an immediate consequence of the functional
equation for the Eisenstein integral, see Proposition 18.1, and the definition
of the C-function, see Definition 17.6. ��

In particular, from the above lemma with P = Q = R combined with
the Maass–Selberg relations, see Theorem 18.3, we see that we may define
a unitary representation γP of W(aPq) in L2(ia∗Pq) ⊗ A2,P by

[γP(s)ϕ](ν) = C◦
P|P(s : s−1ν)ϕ(s−1ν),

(
ν ∈ ia∗Pq

)
,

for ϕ ∈ L2(ia∗Pq) ⊗ A2,P. The associated collection of W(aPq)-invariants
in L2(ia∗Pq)⊗A2,P is denoted by (L2(ia∗Pq)⊗A2,P)W(aPq). The orthogonal
projection from the first onto the latter space is denoted by

PW(aPq) : L2(ia∗Pq

) ⊗ A2,P → (
L2(ia∗Pq

) ⊗ A2,P
)W(aPq)

.

The intersection of the latter space with S(ia∗Pq) ⊗ A2,P consists of the
functions ϕ ∈ S(ia∗Pq) ⊗ A2,P satisfying

ϕ(sν) = C◦
P|P(s : ν)ϕ(ν),

(
s ∈ W(aPq), ν ∈ ia∗Pq

)
, (22.1)

and is denoted by (S(ia∗Pq) ⊗ A2,P)W(aPq).

Corollary 22.2 Let P ∈ Pσ . The image of C(X : τ) under the Fourier
transform FP is contained in the space (S(ia∗Pq) ⊗ A2,P)W(aPq).

Proof: Let f ∈ C(X : τ). Then it follows from Lemma 21.4(a) with P = Q
that ϕ := FP f satisfies (22.1). ��

We can now state the first main result of this section.

Theorem 22.3 Let P, Q ∈ Pσ .

(a) If P and Q are not associated, then FQ ◦JP = 0.
(b) If P and Q are associated, then [W : W∗

P]FQ ◦JP ◦FP = FQ on
C(X : τ).

(c) If P and Q are associated, then, for each s ∈ W(aQq | aPq), every
ϕ ∈ S(ia∗Pq) ⊗ A2,P and all ν ∈ ia∗Pq,

FQ ◦JP ϕ (sν) = [
W : W∗

P

]−1
C◦

Q|P(s : ν)PW(aPq)ϕ(ν).

In particular, FP ◦JP = [W : W∗
P]−1 PW(aPq).

The proof is analogous to the proof of Theorem 16.6 in [10], with
adaptations to deal with the present more general situation. In the course
of the proof we need two lemmas. The first of these is a straightforward
generalization of Lemma 16.11 in [10].
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Lemma 22.4 Let P ∈ Pσ, let b ⊂ q be a θ-stable Cartan subspace
containing aPq and let Λ ∈ ∗b∗PC. Then for λ in the complement of a finite
union of affine hyperplanes in a∗PqC, the map D �→ d[γ(D : Λ + · )](λ) is
surjective from D(X) onto aPqC.

Proof: The proof is a straightforward modification of the proof of Lem-
ma 16.12 in [10]. In that proof one should everywhere put aPq in place
of aq and ∗bP in place of bk. In particular, πaq should be replaced by the
projection πaPq : b∗C → a∗PqC along the subspace ∗b∗PC. ��

The next lemma is a consequence of Lemma 16.4, which in turn heavily
relies on the information about the infinitesimal characters of discrete series
stated in Theorem 16.1.

Lemma 22.5 Let P, Q ∈ Pσ , let b ⊂ q be a θ-stable Cartan subspace
containing aq and let Λ1 ∈ LP(b, τ) and Λ2 ∈ LQ(b, τ). Let ν1 ∈ ia∗Pq be
such that Λ1 + ν1 is regular with respect to Σ(b), let ν2 ∈ ia∗Qq and assume
that Λ1 + ν1 and Λ2 + ν2 are conjugate under W(b). Then P and Q are
associated, and ν1 and ν2 are conjugate under W(aQq | aPq).

Proof: Let s ∈ W(b) be such that s(Λ1+ν1) = Λ2+ν2. Select v1 ∈ PW and
v2 ∈ QW such that Λ1 ∈ L P,v1(b, τ) and Λ2 ∈ L Q,v2(b, τ). Let (b̂1, t1) and

(b̂2, t2) be associated with P, v1 and Q, v2, respectively, as in Lemma 16.4.
Then t1Λ1 + t1ν1 and t2Λ2 + t2ν2 are conjugate under t2st−1

1 ∈ W(b̂2 | b̂1).

It follows by application of [17], Lemma 2, that t1aPq = Ad(v1)
−1aPq

and t2aQq = Ad(v2)
−1aQq are conjugate under t2st−1

1 . This implies that
s(aPq) = aQq. It follows that s|aPq ∈ W(aQq | aPq), see Lemma 3.7; hence,
P ∼ Q. It also follows by [17], Lemma 2, that t2st−1

1 maps t1ν1 onto t2ν2;
hence, sν1 = ν2. ��

The following lemma collects some properties of the composition
FQ ◦JP needed in the proof of Theorem 22.3.

Lemma 22.6 Let P, Q ∈ Pσ . Then the composition T := FQ ◦JP is
a continuous linear map from S(ia∗Pq)⊗A2,P to S(ia∗Qq)⊗A2,Q. Moreover,
it satisfies the following properties.

(a) µ
Q
(D) ◦ T = T ◦µ

P
(D) for all D ∈ D(X).

(b) T maps into (S(ia∗Qq) ⊗ A2,Q)W(aQq).

Proof: The continuity of T follows from Theorem 20.3 combined with
Proposition 19.6. Property (a) follows from Lemma 20.4 combined with
Lemma 19.4. Finally, (b) follows from Corollary 22.2. ��
Proposition 22.7 Let P, Q ∈ Pσ . There exists an open dense W(aQq)-
invariant subset Ω ⊂ ia∗Qq with the following property. Let T be any
continuous linear map from S(ia∗Pq) ⊗ A2,P to S(ia∗Qq) ⊗ A2,Q satisfying
the properties of Lemma 22.6.
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(a) If P and Q are not associated, then T = 0.
(b) If P and Q are associated and s0 ∈ W(aPq | aQq), then there exists

a unique smooth function β : Ω → Hom(A2,P,A2,Q) such that

T ϕ(ν) = PW(aQq)

(
β s∗0ϕ

)
(ν), (22.2)

for all ϕ ∈ C∞
c (s0Ω) ⊗ A2,P and ν ∈ Ω.

Proof: For every ν ∈ ia∗Qq, we define the distribution uν ∈ D ′(ia∗Pq) ⊗
Hom(A2,P,A2,Q) by

uν(ϕ) = T (ϕ)(ν),
(
ϕ ∈ C∞

c

(
ia∗Pq

) ⊗ A2,P
)
.

Then it follows from condition (a) that

uν ◦µ
P
(D) = µ

Q
(D : ν)uν, (D ∈ D(X)).

Let now Λ1 ∈ LP(b, τ) and ψ1 ∈ A2,P(Λ1). Let Λ2 ∈ LQ(b, τ) and
ψ2 ∈ A2,Q(Λ2). We define the distribution vν ∈ D ′(ia∗Pq) by vν( f ) =
〈uν( f ⊗ ψ1) |ψ2〉, for f ∈ C∞

c (ia∗Pq). It follows that

[γb(D : Λ1 + · ) − γb(D : Λ2 + ν)]vν = 0. (22.3)

Each element Λ from the finite set LQ(b, τ) is regular with respect to
Σ(mQC,

∗bQ), see Corollary 16.6. Let Ω0 be the set of ν ∈ ia∗Qq such that
Λ + ν is regular with respect to Σ(b), for every Λ ∈ LQ(b, τ). Then Ω0 is
the complement of a finite union of hyperplanes in ia∗Qq, hence open dense.

Let ν ∈ Ω0 and let Λ1,Λ2 be as above. Moreover, let ν1 ∈ ia∗Pq and
assume that ν /∈ W(aQq | aPq)ν1. Then by Lemma 22.5, the elements
Λ1 + ν1 and Λ2 + ν are not conjugate under W(b). Hence, there exists a
D ∈ D(X) such that the polynomial function in front of vν in (22.3) does
not vanish at ν1. This implies that vν vanishes in a neighborhood of ν1.
Let ϕ ∈ C∞

c (ia∗Pq) ⊗ A2,P. Then it follows from the above by linearity
that T (ϕ)(ν) = uν(ϕ) = 0 for all ν ∈ Ω0 with ν /∈ W(aQq | aPq)supp ϕ.
By density and continuity, this implies that the function T (ϕ) vanishes on
ia∗Qq \ W(aQq | aPq)supp ϕ. Hence,

supp T ϕ ⊂ W(aQq | aPq)supp ϕ.

If P and Q are not associated, then it follows that the latter set has empty
interior in ia∗Qq, hence T ϕ = 0 by continuity. This establishes (a).

From now on, we assume that P ∼ Q. Then it follows from the above
that

supp uν ⊂ W(aPq | aQq)ν, (22.4)

for every ν ∈ ia∗Qq.

Let Ω1 be the set of ν ∈ ia∗Qq whose stabilizer in W(aQq) is trivial. Then
Ω1 contains the complement of a finite union of hyperplanes in ia∗Qq hence is
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open dense in ia∗Qq. Since W(aQq) acts simply transitively on W(aPq | aQq)

from the right, we see that if ν ∈ Ω1, the points sν, for s ∈ W(aPq | aQq),
are mutually different.

Let Ω′
2 be the set of µ ∈ ia∗Pq such that for every Λ1 ∈ LP(b, τ) the

map D �→ d[γb(D : Λ1 + · )](µ) is surjective from D(X) onto a∗PqC. Then
Ω′

2 is an open subset of ia∗Pq containing the complement of a finite union of
hyperplanes, see Lemma 22.4. It follows that Ω2 = ∩s∈W(aPq|aQq)s

−1Ω′
2 is

a similar subset of ia∗Qq. We define Ω := Ω1 ∩ Ω2.

Let now ν ∈ Ω. We claim that the distribution uν has order zero. To
prove the claim, fix Λ1,Λ2, ψ1, ψ2 as before, and define v = vν as above.
Then by linearity, it suffices to show that v has order zero. Since supp (v) ⊂
W(aPq | aQq)ν, by (22.4), it follows by our assumption on Ω1 that we may
express v uniquely as a sum of distributions vs, for s ∈ W(aPq | aQq), with
supp vs ⊂ {sν}. From (22.3) it follows that each vs satisfies the equations

ϕDvs = 0, (D ∈ D(X)),

where ϕD : ia∗Pq → C is given by ϕD = γb(D : Λ1 + · ) − γb(D : Λ + ν).

It follows from our assumption on Ω2 that the collection of differentials
dϕD(sν), for D ∈ D(X), spans a∗PqC. Now apply [10], Lemma 16.10, to
conclude that vs has order zero, for each s ∈ W(aPq | aQq). This establishes
the claim that vν has order zero.

It also follows from the above that

uν =
∑

s∈W(aPq|aQq)

δsν ⊗ Es(ν),

with Es(ν) a unique element of Hom(A2,P,A2,Q), for s ∈ W(aPq | aQq).
We conclude that, for every ϕ ∈ C∞

c (ia∗Pq) ⊗ A2,P and all ν ∈ Ω,

T ϕ(ν) =
∑

s∈W(aPq|aQq)

Es(ν)ϕ(sν). (22.5)

Fix s0 ∈ W(aPq | aQq). Let ν0 ∈ Ω. By the assumption on Ω1 there exists an
open neighborhood U of ν0 in Ω such that the sets sU are mutually disjoint,
for s ∈ W(aPq | aQq). For ϕ ∈ C∞

c (s0U) ⊗ A2,P we have

T (ϕ)(ν) = Es0(ν)ϕ(s0ν).

We conclude that Es0 is smooth on U. It follows that Es0 ∈ C∞(Ω) ⊗
Hom(A2,P,A2,Q). From the above asserted uniqueness of the Es and the
transformation property of T ϕ stated in Lemma 22.6 (b), it follows that

Es0(tν) = C◦
Q|Q(t : ν)Es0t(ν), (t ∈ W(aQq)).
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If we combine this with (22.5) we obtain, for all ϕ ∈ C∞
c (s0Ω)⊗A2,P, and

all ν ∈ Ω, that

T ϕ(ν) =
∑

t∈W(aQq)

C◦
Q|Q(t : ν)−1 Es0(tν)ϕ(s0tν)

= |W(aQq)|PW(aQq)

(
Es0s∗0ϕ

)
(ν).

This establishes the result with β = |W(aQq)|Es0 . ��
Proof of Theorem 22.3: If P �∼ Q, then it follows from Lemma 22.6
combined with Proposition 22.7 that FQ ◦JP = 0.

To prove (b) we note that if f ∈ C∞
c (X : τ), then it follows from

Theorem 21.6 that f = ∑
[R]∈Pσ/∼[W : W∗

R]JRFR f. Applying FQ to both
sides of this equation, it follows by (a) that

FQ f = [
W : W∗

R

]
FQJRFR f

for each R ∈ Pσ with R ∼ Q; in particular, we may take R = P. Thus, (b)
follows by continuity and density.

We shall first prove (c) under the assumption that P = Q and s = 1. Put
T = FP ◦JP. From Lemma 22.6 and Proposition 22.7 we deduce that

T ψ(ν) = PW(aPq)(βψ)(ν),

for all ψ ∈ C∞
c (Ω) ⊗ A2,P and ν ∈ Ω; here Ω ⊂ ia∗Pq is an open

dense subset, and β ∈ C∞(Ω) ⊗ End(A2,P). It follows from Lemma 20.5
that the operator T is symmetric with respect to the L2-inner product on
S(iaPq)⊗A2,P. Let ϕ ∈ S(iaPq)⊗A2,P. Then for all ψ ∈ C∞

c (Ω)⊗A2,P,

〈T ϕ |ψ〉 = 〈ϕ |T ψ〉 = 〈ϕ |PW(aPq)(βψ)〉 = 〈β∗PW(aPq)ϕ |ψ〉.
This implies that, for all ϕ ∈ S(ia∗Pq) ⊗ A2,P, T ϕ = β∗PW(aPq)ϕ on Ω. We
claim that in fact β∗ = [W : W∗

P]−1 I on Ω.
To prove the claim we note that it follows from the established part (b)

with P = Q that FP = [W : W∗
P]T FP. We infer that, for f ∈ C∞

c (X : τ)
and ν ∈ Ω,

FP f(ν) = [W : W∗
P]T FP f(ν)

= [W : W∗
P]β(ν)∗PW(aPq)FP f(ν)

= [W : W∗
P]β(ν)∗FP f(ν).

In the last equality we have used Corollary 22.2. The claim now follows by
application of Lemma 22.8 below. We infer that for all ϕ ∈ S(iaPq)⊗A2,P,

we have T ϕ = [W : W∗
P]−1 PW(aPq)ϕ on Ω, hence on ia∗Pq, by continuity

and density. This establishes part (c) of the theorem for P = Q and s = 1.
For a general pair of associated parabolic subgroups P, Q and a general
s ∈ W(aPq | aQq) the assertion follows by application of Lemma 21.4 (a).

��
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Lemma 22.8 Let P ∈ Pσ and let ν ∈ ia∗Pq have trivial stabilizer in W(aPq).

Then f �→ FP f(ν) maps C∞
c (X : τ) onto A2,P.

Proof: The proof is a reduction to the lemma below, in a way completely
analogous to the proof of [10], Lemma 16.13. ��
Lemma 22.9 Let P ∈ Pσ and let ν ∈ ia∗Pq have trivial stabilizer in W(aPq).

Then for every ψ ∈ A2,P \ {0}, the Eisenstein integral E◦(P : ν)ψ does not
vanish identically on X.

Proof: The proof is completely analogous to the proof of [10], Lem-
ma 16.14, involving the constant term of the Eisenstein integral along P.

��
Proposition 22.10 Let P ∈ Pσ .

(a) The map PW(aPq) restricts to a continuous linear projection from
S(ia∗Pq) ⊗ A2,P onto (S(ia∗Pq) ⊗ A2,P)W(aPq). This projection is orth-
ogonal with respect to the given L2-inner product.

(b) JP ◦ PW(aPq) = JP.

(c) The kernel of JP equals the kernel of PW(aPq).

Proof: It follows from Theorem 22.3 (c) that PW(aPq) = [W : W∗
P]FP ◦JP.

It now follows from application of Lemma 22.6, that PW(aPq) is a continuous
linear endomorphism of S(ia∗Pq )⊗A2,P, with image contained in (S(ia∗Pq )⊗
A2,P)W(aPq). The latter space is contained in (L2(ia∗Pq) ⊗ A2,P)W(aPq), on
which space PW(aPq) equals the identity. Hence, PW(aPq) is a projection and
(a) readily follows.

Starting from Theorem 22.3 (b) with P = Q, we obtain by taking
adjoints and applying Lemma 20.5, that

JP ◦ [W : W∗
P]FP ◦JP = JP.

Assertion (b) now follows by application of Theorem 22.3 (c).
From (b) it follows that ker PW(aPq) ⊂ ker JP. The converse inclusion

follows by Theorem 22.3 (c). ��
Proposition 22.11 Let P ∈ Pσ . Then the image of FP equals (S(ia∗Pq) ⊗
A2,P)W(aPq).

Proof: That im (FP) ⊂ (S(ia∗Pq) ⊗ A2,P)W(aPq) was asserted in Corol-
lary 22.2. For the converse inclusion, let ϕ ∈ (S(ia∗Pq)⊗A2,P)W(aPq). Then

ϕ = PW(aPq)ϕ = FP
([

W : W∗
P

]
JPϕ

) ∈ im (FP),

in view of Theorem 22.3 (c). ��
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23. The spherical Plancherel theorem

In this final section we establish the Plancherel theorem for functions from
C(X : τ) and L2(X : τ). If P ∈ Pσ , then by CP(X : τ) we denote the image
of the operator JP in C(X : τ).

Theorem 23.1 Let P ∈ Pσ .

(a) The space CP(X : τ) is closed in C(X : τ) and depends on P ∈ Pσ

through its class in Pσ/∼ .
(b) The spaces ker FP and CP(X : τ) are each other’s orthocomplement in

C(X : τ).
(c) The space C(X : τ) admits the following finite direct sum decomposition

C(X : τ) =
⊕

[R]∈Pσ/∼
CR(X : τ). (23.1)

The summands are mutually orthogonal with respect to the L2-inner
product on C(X : τ).

(d) For each P ∈ Pσ , the operator [W : W∗
P]JP ◦FP is the projection onto

CP(X : τ) along the remaining summands in the above direct sum.

Remark 23.2 For the case of the group this result, together with Propo-
sitions 22.10 and 22.11, is a consequence of Harish-Chandra’s Plancherel
theorem for K -finite Schwartz functions, see Remark 13.9 and [32], §27.
See also [1], Ch. III, §1, for a review of the Plancherel theorem for spherical
Schwartz functions.

For general symmetric spaces, the result, together with Propos-
itions 22.10 and 22.11, is equivalent to Thm. 2 in Delorme’s paper [24], in
view of Remark 13.10. See also Remark 21.7.

Proof: If Q ∈ Pσ , Q �∼ P, then, by Theorem 22.3 (a),

FQ = 0 on CP(X : τ). (23.2)

In view of Theorem 21.6 this implies that

[W : W∗
P]JPFP = I on CP(X : τ). (23.3)

We infer that CP(X : τ) = im (JPFP). By Remark 21.5 it follows that
CP(X : τ) depends on P through its class in Pσ/∼ . This establishes
the second assertion of (a). From Theorem 21.6 we see that C(X : τ) is
the vector sum of the spaces CR(X : τ), for [R] ∈ Pσ/∼ . To establish
the orthogonality of the summands, let P, Q ∈ Pσ, P �∼ Q, let f ∈
CP(X : τ) and ψ ∈ S(ia∗Qq) ⊗ A2,Q. Then 〈 f |JQψ〉 = 〈FQ f |ψ〉 = 0,

by Lemma 20.5 and (23.2). This establishes (c). Combining (c) with (23.2)
and (23.3), we obtain (d). From (c) it follows that CP(X : τ) is closed,
whence (a).
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It remains to establish (b). From (23.2) it follows that ker FP contains
the part C0 of the sum (23.1) consisting of the summands with R �∼ P. On
the other hand, ker FP ∩ CP(X : τ) = 0 by (23.3) and we conclude that
ker FP = C0. The latter space equals the orthocomplement of CP(X : τ),
by the orthogonality of the sum (23.1). ��

We denote by L2
P(X : τ) the closure in L2(X : τ) of CP(X : τ). This

space depends on P through its class in Pσ/∼ .

Corollary 23.3 The space L2(X : τ) admits the following orthogonal dir-
ect sum decomposition into closed subspaces

L2(X : τ) =
⊕

[P]∈Pσ/∼
L2

P(X : τ).

Proof: Since C(X : τ) is dense in L2(X : τ), the result is an immediate
consequence of Theorem 23.1 (c). ��

We recall that a continuous linear map between Hilbert spaces
T : H1 → H2 is called a partial isometry if T is an isometry from (ker T )⊥
into H2. In particular, this means that im T is a closed subspace of H2.

Theorem 23.4 Let P ∈ Pσ .

(a) The operator FP extends uniquely to a continuous linear map from
L2(X : τ) to L2(ia∗Pq) ⊗ A2,P, denoted FP.

(b) The operator JP extends uniquely to a continuous linear map from
L2(ia∗Pq)⊗A2,P to L2(X : τ), denoted JP. This extension is the adjoint
of the extended operator FP.

(c) The extended operator [W : W∗
P]1/2FP is a partial isometry from

L2(X : τ) onto the space (L2(ia∗Pq)⊗A2,P)W(aPq), with kernel equal to
the orthocomplement of L2

P(X : τ).

(d) The extended operator [W : W∗
P]1/2JP is a partial isometry from

L2(ia∗Pq)⊗A2,P onto L2
P(X : τ) with kernel equal to the orthocomple-

ment of (L2(ia∗Pq) ⊗ A2,P)W(aPq).

(e) Let Pσ ⊂ Pσ be a choice of representatives for the classes in Pσ/∼.
Then

I =
∑

R∈Pσ

[
W : W∗

R

]
JRFR on L2(X : τ).

Remark 23.5 In view of Remark 13.10, this result corresponds to part (iv)
of Theorem 2 in [24]. See also Remark 23.2.

Proof: Fix Pσ as in (e). Let f ∈ C(X : τ). Then it follows from Theo-
rem 23.1 (c) and (d), combined with Lemma 20.5 that

‖ f ‖2 = 〈 f | f 〉 =
∑

R∈Pσ

[
W : W∗

R

] 〈 f |JRFR f 〉 =
∑

R∈Pσ

[
W : W∗

R

] ‖FR f ‖2.
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In particular, this equation holds for a choice of Pσ with P ∈ Pσ . It follows
that FP is continuous with respect to the L2-topologies. By density of
C(X : τ) in L2(X : τ), it follows that FP has a unique continuous linear
extension L2(X : τ) → L2(ia∗Pq) ⊗ A2,P. Hence (a).

Since JP is the adjoint of FP with respect to the L2-inner products on
the Schwartz spaces, it follows that the adjoint of the extension of FP is
a continuous linear extension of JP to a continuous linear operator from
L2(ia∗Pq)⊗A2,P to L2(X : τ). This extension is unique by density of S(ia∗Pq)

in L2(ia∗Pq). This proves (b).
By continuity and density, the formula in (e) follows from Theorem 21.6.

From Theorem 23.1 (b) and (c) it follows that, for R ∈ Pσ with R �∼ P,
FP = 0 on CR(X : τ), hence on L2

R(X :, τ), by continuity and density.
Put F̃P := [W : W∗

P]1/2FP and J̃P := [W : W∗
P]1/2JP. Using (e) we infer

that ker F̃P = L2
P(X : τ)⊥ and that J̃P ◦ F̃P is the orthogonal projection

from L2(X : τ) onto L2
P(X : τ). Since J̃P = F̃ ∗

P , it follows that F̃P is
isometric from L2

P(X : τ) onto im F̃P and that J̃P is isometric from im F̃P

onto L2
P(X : τ). It follows from Theorem 22.3 and continuity and density

that F̃P ◦ J̃P = PW(aPq) on L2(ia∗Pq) ⊗ A2,P. Hence,

im (F̃P) = F̃P
(
L2

P(X : τ)
) = im (PW(aPq)) =

(
L2(ia∗Pq

) ⊗ A2,P
)W(aPq)

and (c) follows. Finally, (d) follows from (c) by taking adjoints. ��
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