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Abstract. We prove the Plancherel formula for spherical Schwartz func-
tions on a reductive symmetric space. Our starting point is an inversion
formula for spherical smooth compactly supported functions. The latter for-
mula was earlier obtained from the most continuous part of the Plancherel
formula by means of a residue calculus. In the course of the present paper
we also obtain new proofs of the uniform tempered estimates for normal-
ized Eisenstein integrals and of the Maass—Selberg relations satisfied by the
associated C-functions.
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1. Introduction

In this paper and its sequel [15] we determine the Plancherel decomposition
for a reductive symmetric space X = G/H. Here G is a real reductive Lie
group of Harish-Chandra’s class and H is an open subgroup of the group G°
of fixed points for an involution o of G. In the present paper we establish
the Plancherel formula for K-finite (spherical) Schwartz functions on X,
with K a o-invariant maximal compact subgroup of G. In [15] we shall
derive the Plancherel decomposition, in the sense of representation theory,
from it.

The space X carries a G-invariant measure dx; accordingly the regular
representation L of G in L?(X) is unitary. The Plancherel decomposition
amounts to an explicit decomposition of L as a direct integral of irreducible
unitary representations. The reductive group G is a symmetric space of its
own right, for the left times right action of G x G. In this ‘case of the
group’, the explicit Plancherel decomposition was obtained in the sixties
and early seventies in the work of Harish-Chandra, see [30], [31], [32].
His ideas, in particular those on the role of Eisenstein integrals and the
Maass—Selberg relations satisfied by them, have been a major influence in
our work. On the other hand, our approach to the Plancherel formula is
via a residue calculus, and thus in a sense closer in spirit to the work of
R.P. Langlands on the spectral decomposition in the theory of automorphic
forms, see [37].

The results of this paper and [15] were found and announced in the fall
of 1995 when both authors were visitors of the Mittag—Leffler Institute in
Djursholm, Sweden. At the same time P. Delorme announced his proof of
the Plancherel theorem. His results have appeared in a series of papers,
partly in collaboration with J. Carmona, [19], [23], [24]. At the time of the
announcement we relied on the theorem of Carmona and Delorme on the
Maass—Selberg relations for Eisenstein integrals, [19], Thm. 2, which in
turn relied on Delorme’s paper [23]. On the other hand, we also announced
the proof of a Paley—Wiener theorem for reductive symmetric spaces, gen-
eralizing Arthur’s theorem [1] for the case of the group. The proof of the
Paley—Wiener theorem has now appeared in [16], which is independent of
the present paper and [15]. The present paper as well as [15] and [16] rely
on [12] and [14].

Since the time of announcement we have been able to derive the Maass—
Selberg relations from those associated with the most continuous part of
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the decomposition; these had been obtained earlier in [5], [6]. The resulting
proof of the Plancherel theorem in the present paper and [15] is independent
of the one in [24]; moreover, it follows a completely different approach. Fi-
nally, we mention that T. Oshima has announced a Plancherel formula
in [39], p. 604, but the details have not appeared. For a more extensive
survey of recent developments, we refer the reader to [13].

For Riemannian symmetric spaces, the Plancherel formula is due to
Harish-Chandra [27] and [28], p. 48. Later, it became incorporated in the
above mentioned formula for the group. For further results in harmonic an-
alysis on Riemannian symmetric spaces, we refer the reader to the references
given in [35].

For reductive symmetric spaces of type G./Gg, the Plancherel for-
mula is due to P. Harinck, [26]. Earlier, the Plancherel decomposition
had been determined for specific non-Riemannian spaces of rank one, by
V.F. Molchanov, J. Faraut, G. van Dijk and others; see [33], p. 185, for
references.

We first give a rough outline of the contents of this paper and its se-
quel [15]. The following global picture should be kept in mind. We first
concentrate on the Plancherel formula for K-finite functions, with K C G
a maximal compact subgroup that is chosen to be o-stable. The latter con-
dition is equivalent to the condition that the Cartan involution 6 determined
by K commutes with o. The building blocks of the formula will be dis-
crete series representations of X and generalized principal series of the
form Ind$ (€ ® v ® 1), with P = MpApNp a o6-stable parabolic sub-
group of G with the indicated Langlands decomposition, £ a discrete series
representation of Xp := Mp/Mp N H and v contained in the space i aj;q
of unitary characters of Ap/Ap N H. For purposes of exposition this in-
troduction is written under the simplifying assumption that the number of
open H-orbits on P\G is one. In general the open orbits are parametrized
by a finite set ”'W of representatives, and then one should take for & the
discrete series representations of all the spaces Xp, := Mp/Mp N vHv !,
vePw.

In [10] we obtained the most continuous part of the Plancherel decom-
position; this is the part built up from representations obtained by induc-
tion from a minimal o6-stable parabolic subgroup Py = MyAyNy. Here
My/MyN H is compact, so the theory of the discrete series did not critically
enter at this stage. On the level of K-finite functions the most continuous
part of the formula is described via a Fourier transform %, which in turn
is defined in terms of Eisenstein integrals E°(Py : A). The latter are es-
sentially matrix coefficients of the principal series induced from P, and
behave finitely under the action of the algebra ID(X) of invariant differential
operators on X.

From the most continuous part of the Plancherel decomposition we de-
rived in [12] a Fourier inversion formula for functions in C°(X : 1), the
space of smooth compactly supported t-spherical functions on X, with 7
a finite dimensional unitary representation of K. This formula expresses
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a function f in terms of the meromorphic extension of £ f to the complex-
ification of iap .

The strategy of the present paper is to put the inversion formula in a form
that makes it valid for functions in the Schwartz space C(X : 7). This
requires the introduction of Eisenstein integrals E°(P : v), for imaginary
VEI a”;,q, via residues of the Eisenstein integrals E°(Fy : -). To show that
these residual Eisenstein integrals define Fourier transforms on the Schwartz
space we need the Maass—Selberg relations. It is here that the theory of the
discrete series, initiated by M. Flensted-Jensen in [25] and further developed
by T. Oshima and T. Matsuki in [40], enters. In our proofs we do not need
the full classification of the discrete series. However, for the theory of the
constant term developed in [17] to apply, both the necessity of the rank
condition and the fact that the infinitesimal ID(X)-characters of discrete
series representations are real and regular (see Theorem 16.1, due to [40]),
play a crucial role.

The resulting inversion formula for Schwartz functions is called the
spherical Plancherel formula, see Theorems 21.2 and 23.1. It naturally
leads to the spherical Plancherel formula for L2-functions, Theorem 23.4.
The present paper finishes at this point, where it is not yet clear that the
residual Eisenstein integrals are related to induced representations. This
fact will be established in the second paper [15] by using the vanishing
theorem of [14]. The contributions of all K-types can then be collected
and lead to the representation theoretic Plancherel formula. At the end of
the second paper it will also be shown that the residual Eisenstein inte-
grals E°(P : v) equal the normalized Eisenstein integrals introduced in
Delorme’s paper [22]. The idea is to use the automatic continuity theorem
of W. Casselman and N.R. Wallach ([20], [43]) to show that the residual
Eisenstein integrals are matrix coefficients. An asymptotic analysis then
completes the identification.

We shall now give a more detailed outline of the present paper. The first
few sections concern preliminaries. In particular, in Sect. 5 we specify the
normalizations of the residual operators and the measures used in the rest
of the paper. In Sect. 6 we give a formulation of the vanishing theorem
of [14], in a form suitable for this paper. Let a4 be a maximal abelian
subspace of p N ¢, the intersection of the —1 eigenspaces in g for 6 and o,
respectively. Let &, denote the set of o 6-stable parabolic subgroups of G
containing Ay := exp aq. Foreach Q € £, we introduce a space Sgyp X:17)
of families { f,} of spherical generalized eigenfunctions on X, depending
meromorphically on the parameter v € aj, .. Here agq := ag N q. The
vanishing theorem asserts that f, = 0 for all v, as soon as the coefficient of
€'~ P2 in the asymptotic expansion along Q vanishes, for all v in a non-empty
open subset of aj, ..

In Sect. 8 we recall the inversion formula of [12]. Let X be the root
system of a4 in g and let W be the associated Weyl group. Let A be the
system of simple roots associated with the minimal element P, from &%, . For
each F' C A, let Pr = MpArNp denote the associated standard parabolic
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subgroup in &,. Then the inversion formula is of the form

=Y t(af) Thf,

FcA

where

Ty f(x) = 1(af,) W] /

iapq+er

/XK;(v tx 1Y) f) dy dup(v).  (1.1)

Here ¢ is a choice of W-invariant even residue weight on ¥ and ef is
an element of a;q, sufficiently close to zero (if FF = A, we may take
er = 0). Moreover, dup is a suitable choice of Lebesgue measure on
i a’;q + ep. The kernel functions K7.(v : x : y) € End(V;) are obtained
from residual operators acting on a combination of normalized and partial
Eisenstein integrals for Py, see [12] for details. They are meromorphic in
the variable v € a*QqC and smooth spherical and ID(X)-finite in both of the
variables x, y € X. Essentially, the idea is that the kernel K ; determines
the projection onto the part of L>(X : 7) determined by the induction from
the standard parabolic subgroup Pr.

To make the above formula valid for Schwartz functions it is necessary
to establish it with e = 0, for every F. This can be achieved by using
Cauchy’s formula, once we have established the regularity at iay, of the

kernel functions K’(v, x, y) in the variable v. In addition to this we need
estimates that are tempered in the variables x, y with uniformity in v € iajp,.
All this is taken care of by a long inductive argument, that ranges over the
Sects. 12-21. We shall describe the structure of the argument, which goes
by induction on the o-split rank of G, at a later stage in this introduction.
In Sect. 9 we recall the definition of the generalized Eisenstein integral
E%.(v), forv e a}’;qc. In [12], Def. 10.7, see also [14], Remark 16.12, this
Eisenstein integral was defined by means of a linear combination of residual
operators (a so called Laurent functional) applied to the Eisenstein integral
E°(Py : 1) with respect to the variable A. As a family in the parameter v,

the generalized Eisenstein integral belongs to 8;?’ (X : 7). Hence, in view
of the vanishing theorem, it can be characterized uniquely in terms of its
asymptotic behavior along Pp; see Theorem 9.3.

In Corollary 10.6 we show that the generalized Eisenstein integral is
tempered for regular imaginary values of v. This fact can be derived from
a limitation on the asymptotic exponents, see Theorem 10.5, caused by
the support of the residual operators. Here Thm. 3.15 of [11] is crucial.
In the next section, in Proposition 11.6, we establish uniformly moderate
estimates for the generalized Eisenstein integrals. These estimates come
from similar estimates for E°(P, : -), which survive the application of the
residual operators.

In Sect. 12 we start with the preparation of the long inductive argument
mentioned above. The reductive symmetric pair (G, H) is said to be of
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residue type if the following two conditions are fulfilled, (a) G has compact
center modulo H and (b) the operator 7', is the projection onto the discrete
part L3(X : 1) of L*(X : 7) (which may be trivial). Condition (b) implies
that the mentioned operator, and hence the associated ‘discrete’ kernel K,
is independent of the particular choice of residue weight ¢. Moreover, from
condition (b) it follows that LEZ(X : 7) is finite dimensional, a result known
for all pairs (G, H) as a consequence of [40], see also Remark 12.7.

We proceed with the induction in Sect. 13. A parabolic subgroup P € %
is said to be of residue type if the pair (Mp, Mp N H) is. Asubset F C A'is
said to be of residue type, if the associated standard parabolic subgroup Pg
is. In the course of the inductive argument, many results in Sects. 12-21
will initially be proved under the assumption that (G, H) or a parabolic
subgroup from £ is of residue type. Such results will always be indicated
with the abbreviation (RT) following their declaration. The chain of results
marked (RT) is needed in the induction step of Theorem 21.2, where by
induction on the o-split rank of G it is shown that all groups from &, are
of residue type. In particular, also all pairs (G, H), with G having compact
center modulo H, are of residue type. It thus follows that the results marked
(RT) are valid in the generality stated (see also Remark 12.2).

The kernel K7.(v : - : -) is determined by its asymptotic expansion
along Pr x Pp,in view of the vanishing theorem. The coefficient of ¢" "7 ®
e~ V~PF in this expansion is essentially the discrete kernel of Mp/Mp N H. If
F is of residue type, then the discrete kernel, and hence K, is independent
of the particular choice of z. Therefore, so is the generalized Eisenstein
integral. From then on we call this Eisenstein integral the normalized one
and denote it by E°(Pg : v). It is a meromorphic function of v € a}’;qc,
with values in C*°(X) ® Hom(, f, V;), where A, p = L(21(XF D TR).
(Without the simplifying assumption mentioned above, the latter space is
replaced by a suitable direct sum over ©“W.) The unique characterization of
the normalized Eisenstein integral by means of the vanishing theorem then
allows us to define it for Pr replaced by any parabolic subgroup P € £,
of residue type. In the case of the group, the characterization allows us
to identify the normalized Eisenstein integral with Harish-Chandra’s, as
defined in [29], §6, Thm. 6; see Remark 13.9.

The definition of the normalized Eisenstein integral in turn allows us to
define a kernel function Kp for arbitrary P € 5, of residue type, general-
izing the kernels for standard parabolic subgroups of residue type. In terms
of the normalized Eisenstein integrals, the kernel is given by the formula

Kp(v:x:y)=|Wp| 'E°(P:v:x)E*(P:v:Yy). (1.2)

Here Wp is the subgroup of W that corresponds to the Weyl group of Xp,
and E*(P : v : -) is the dualized Eisenstein integral. The latter is the
function in C*°(X) ® Hom(V;, #4; p) defined by

E*(P:v:y):=E°(P:—v:y*
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Two parabolic subgroups P, Q € &, are said to be associated, notation
P ~ Q, if their o-split components apq and apq are conjugate under W.
If P, QO € &, are associated, and if one of them is of residue type, then so
is the other. Moreover, the set

W(Cqu | an) = {slapq |seW, s(an) C C1Qq}

is non-empty. The main result of the section is Theorem 13.23, which asserts
that the kernel function is unchanged if P, v are replaced by Q, sv, with
Q ~ Pands € W(agq | apq). For P minimal, this result is a consequence
of the Maass—Selberg relations for the Eisenstein integral E°(P : -), in
view of (1.2). For arbitrary P of residue type the result follows from the
minimal case by W-equivariance properties of the residue calculus.

In Sect. 14 we describe the action of D(X) on the normalized Eisenstein
integral E°(P : v), for P of residue type. The diagonalization of D(Xp) on
Lfl(X p : Tp), where Tp := T|gnp, induces a simultaneous diagonalization
of the action of ID(X) on the Eisenstein integral, in view of the vanishing
theorem, see Corollary 14.4. In the next section this result is used to show that
the uniform moderate estimates of the Eisenstein integral can be improved
to uniform tempered estimates, exploiting a technique that goes back to [5]
and [42]

In Sect. 16 we recall the mentioned result of [40] on the D(X)-characters
of the discrete series in Theorem 16.1. This result is of crucial importance for
Sect. 17, where we determine the constant term of the normalized Eisenstein
integral. In addition we use the theory of the constant term as developed
in [17], see also [30].

The constant term of E°(P : v) along a Q € &£, with Q ~ P describes
e”? times the top order asymptotic behavior along Q; it is given by

EQy(Pivimayy =Y  a”[Chpls: v)y]im), (1.3)

seW(aggqlapq)

for v € aj, generic, a € Agq and m € Xg. Here Cj) (s : v), the normal-
ized C-function, is a meromorphic Hom(A; p, 42 ¢)-valued function of
V € .. For the description of the constant term without the simplifying
assumption mentioned above, see Corollary 17.7.

In Sect. 18 we derive the Maass—Selberg relations from the invariance
property of the kernel (1.2) mentioned above. They assert the following
identity of meromorphic functions in the variable v € aj,

Coip(s : =D)*Cyp(s 1 v) =1,

for P, Q € &, associated and of residue type, and for s € W(apq | apq)-
In particular, it follows that the normalized C-functions are unitary for
imaginary v. This in turn shows that the constant term (1.3) is regular for
imaginary v. By a result from [7] this implies that the Eisenstein integral
E°(P : v) is regular for imaginary v, see Theorem 18.8. Because of the
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uniform tempered estimates formulated in Corollary 18.12, it becomes pos-
sible to define a spherical Fourier transform ¥p in the next section by the
formula

Fpflv) = / E*(P :v:x)f(x)dx, (1.4)
X

for f € C(X : 1), the space of t-spherical Schwartz functions on X.
Proposition 19.6 asserts that p is a continuous linear map into the Euclidean
Schwartz space §(i a’;q) ® Ay p, if P is of residue type. In Sect. 20 it is
shown, using a result from [7], that the adjoint wave packet transform, given
by the formula

Fro(x) =f E°(P:v:x)o(v)dup(v) (1.5)

*
lan

is a continuous linear map from 4§ (i aj;q) ® A, p into C(X : 1), see Theo-
rem 20.3. Here dpu p is Lebesgue measure on iajp, , normalized as in Sect. 5.

In Sect. 21 the long inductive argument is completed as follows. In the
proof of Theorem 21.2, it is shown that every P € %5 is of residue type,
by induction on the o-split rank of G. The hypothesis of the induction step
implies that one may assume that G has compact center modulo H and that
every F' C A is of residue type. In view of the regularity of the normalized
Eisenstein integrals, hence of the kernels Kp(v : - : -), for F C A and
vV EI a’gq, the formula (1.1) becomes valid with ¢ = 0 for every subset
F C A (recall that e = 0). Moreover, by the definition of the transforms
Fr = Fp, and $r := Jp,, it takes the form

F=Taf+ D) _IW:Wplt(Pr) §rFrf.

FCA

From this one reads off that 7, maps C>°(X : 1) into C(X : 7), from which
it readily follows that T} is the restriction to C2°(X : 1) of the orthogonal
projection onto L2(X : 7). This argument completes the induction step;
moreover, at the same time it shows that

I=Y [W:Welt(Pr) §rFr (1.6)

FcA

on C°(X : 1) and hence on C(X : 1) by continuity and density. It is at this
point that the role of the residue weight in the harmonic analysis becomes
clear. Define the equivalence relation ~ on the powerset 22 by F ~ F' =
Pr ~ Pp. Then by the Maass—Selberg relations the composed transform
9 rFr only depends on the class of F in 2%/~. Collecting the terms in
(1.6) according to such classes we obtain, by an easy counting argument,
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the following Fourier inversion formula which is independent of the choice
of residue weight

I= > [W:WilgrFr. (1.7)

[Fle2b /~

with W} the normalizer of apq in W. In other words, the residue weight
describes the weight by which an element in the class of F' contributes to
the above inversion formula.

In Sect. 22 we give a precise description of the kernels and images of the
Fourier transforms and their adjoints. This leads to the spherical Plancherel
theorem for Schwartz functions, Theorem 23.1 and the similar theorem for
L?-functions, Theorem 23.4. In particular, the summands in (1.7) extend
to L>(X : 7) and become orthogonal projections onto mutually orthogonal
subspaces.

We are grateful to the organizers of the special year at the Mittag—Leffler
Institute, during which these results were found, and we thank Mogens
Flensted-Jensen for several helpful discussions. We are also grateful to
Jacques Carmona and Patrick Delorme for informing us about their results
on the Maass—Selberg relations, which played a crucial role for us, as
mentioned above.

2. Notation and preliminaries

Throughout this paper, G will be a real reductive group of Harish-Chandra’s
class, o an involution of G and H an open subgroup of G, the set of fixed
points for o. The associated reductive symmetric space is denoted by

X = G/H.

The algebra of G-invariant differential operators on X is denoted by D(X).

We fix a Cartan involution 0 of G that commutes with o; thus, the
associated maximal compact subgroup K = GY is o-invariant. We follow
the convention to denote Lie groups with roman capitals, and their Lie
algebras with the corresponding gothic lower cases. In particular, g denotes
the Lie algebra of G. The infinitesimal involutions of g associated with 6
and o are denoted by the same symbols.

We equip g with a G-invariant non-degenerate bilinear form B that
restricts to the Killing form on [g, g], that is positive definite on p, negative
definite on €, and for which o is symmetric. Then (X, Y) := —B(X, 8Y)
defines a positive definite inner product on g for which the involutions 6 and
o are symmetric. Accordingly, the decompositions g = €®p = hPq into the
41 and —1 eigenspaces of these involutions, respectively, are orthogonal.
If v C g is alinear subspace, we agree to identify v* with a linear subspace
of g via the inner product (-, -). Finally, we equip the linear dual g* of g
with the dual inner product, and the complexified dual g’ with its complex
bilinear extension.
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We fix a maximal abelian subspace a4 of p N g and denote the associated
system of restricted roots by ¥ = X(g, aq). This is a, possibly non-reduced,
root system; the associated Weyl group is denoted by W = W(X). We recall
that W >~ Ng(aq)/Zk(aq), naturally. Accordingly, the natural image of
Nknu(aq) in W is denoted by Wgnp.

If P is a parabolic subgroup of G, we denote its Langlands decompos-
ition by P = MpApNp and put Mp := MpAp. A parabolic subgroup
that is invariant under the composed involution o6 is called a o-parabolic
subgroup. The set of o-parabolic subgroups containing A, := expaq is
finite and denoted by .

We shall briefly recall the structure of the parabolic subgroups from %,
meanwhile fixing notation. For details we refer to [14], §2. If P € £,
then Mp and Ap are o-invariant, and oNp = ONp = Np. The algebra ap
is o-invariant, hence decomposes as ap = app ® apq, the vector sum of
the intersections of ap with f and q, respectively. We put Apq := exp apq
and Mp, := Mp(Ap N H) and call P = Mp, ApyNp the o-Langlands
decomposition of P.

As usual, we denote by pp the linear functional %tr [ad(-)|n,] € ap. The
following lemma is of importance in the theory of induced representations.

Lemma 2.1 Let P € 5. Then pp belongs to ajp,.

Proof: The algebras ap and np are o6-invariant, hence —opp = o6pp
= pp. This implies that pp vanishes on apy, hence belongs to a’;q. |

The space apg is contained in a4. Let X denote the collection of roots
from X that vanish on apq. Then

apqg = Naexp Kera.

The subgroup of W generated by the reflections in the roots of X p is denoted
by Wp. It equals the centralizer of apq in W.

Let X(P) be the collection of roots from X that occur in np as an
aq-weight. Then np is the vectorial direct sum of the root spaces g,, for
o € X(P). We put

Z,(P) := E(np, apg) = {alap, | @ € Z(P)}.
The set
Gp ={X €apg | a(X) >0 forall e X(P))

is non-empty. Therefore, the elements of X,(P) are non-zero linear func-

tionals on apy. Moreover, a;q is a connected component of the complement

ar;'f] of the union of their null spaces. We put AJISq 1= exp a;q.

The collection of weights in X, (P) that cannot be expressed as a sum of
two elements of X, (P) is denoted by A, (P). We recall from [14], beginning
of Sect. 3, that the set A, (P) is linearly independent over R and spans %, (P)
over N.
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If X € ay, then X € p, hence adX diagonalizes with real eigenvalues.
It is well known that the sum of the eigenspaces for the non-negative
eigenvalues is a parabolic subalgebra of g. Its 6-stable Levi component m; x
and its nilpotent radical ny are given by

m;x = keradX, Ny = Buex, w(x)>0 Ga-

The associated parabolic subgroup of G is denoted by Pyx. If P € &, and
X e aJ,Sq, then it follows from [14], Eqn. (2.4), that P = Px.Fromo6X = X
it follows that Py € £,

Let ~ be the relation of parabolic equivalence on a4, with respect to
the root system X. Thus, X ~ Y if and only if for each « € ¥ we have
a(X) >0 < oY) > 0. It readily follows from the definition given
above that X ~Y <= Py = Py.

Lemma 2.2 The map P > a, pq 18 a bijection from 5, onto the set aq/~
of parabolic equivalence classes

Proof: If P € #, and X € a;q then P = Py, as said above. Hence,
the map X — Py is a surjection from aq onto &,. By the last assertion
before Lemma 2.2, the map factors to a bl]eCtIOIl from aq/ ~ onto 5.
If X € ag, let P = Pyx. Then X(P) = {o € ¥ | a(X) > 0}, hence
Tp={a € | a(X) =0}, and we see that [X] = a},. Thus, P aqu is
the inverse to [ X] — Px. O

It follows from the description in Lemma 2.2 that the Weyl group W
acts on the finite set &#,. We recall from [11], Def. 3.2, that a residue weight
on X is a map as/w — [0, 1] such that for every Q € &,

> t(ap) =1 @2.1)

PEFy, apg=agq

The collection of residue weights on X is denoted by WT(X). Via the
bijection of Lemma 2.2, a weight ¢t € WT(X) will also be viewed as a map
t: P, — [0, 1]. A residue weight r € WT(X) is said to be W-invariant if
t(wa;q) = t(aJ}Cq) for all P € £, and w € W, and even if t(a;q) = t(—a;q)
forall P € &,.

Let ™" the collection of minimal elements in #. Then P + aj, pq 18
a bljectlon from P onto the collection of open chambers for ¥ in ag. To
emphasize this, we shall also write a*(P) = an and A+(P) = AJr for
P € P™Mn Accordingly, W acts 51mply transitively on & om”‘ . Note that for
Peyg Om‘“ , X(P) = X,(P) is a positive system for X and A(P) .= A.(P)
the assocmted collection of simple roots.

We fix a system Xt of positive roots for X; let A be the associated
collection of simple roots. Given F' C A we define

arq := Nyer kera
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and denote by a;Cq the subset of elements X € apq such that S(X) > 0

for B € A\ F. Then a;q is a parabolic equivalence class. The associated
parabolic subgroup Pp is called the standard parabolic subgroup determined
by F. We adopt the convention to replace an index or superscript Pp by F.
In particular, the Langlands decomposition of Pr is denoted by Pp =
MpApNp and the centralizer of arpq in W by Wr. Let

Whi={seW|s(F)c X}

Then the canonical map W — W/Wrp induces a bijection W5 — W/Wp.
We write Py for Py, Py = MAN, for its Langlands decomposition and
M, := MA. Then P = M, Np for every P € ™"
If P € # and v € Ng(aq), we define

Xpy = Mp/Mp N vHY . (2.2)

Here M p is areal reductive group of Harish-Chandra’s class and M » Nv Hv ™!

is an open subgroup of the group of fixed points for the involution
o’ 1 Mp — Mp defined by 0¥(m) = vo(v~'mv)v~'. Thus, the space
in (2.2) is a reductive symmetric space in the class under consideration.
Moreover, 6|y, is a Cartan involution of Mp that commutes with ¢”; the
associated maximal compact subgroup is Kp := K N Mp.

Note that as (an isomorphism class of) a M p-homogeneous space, the
symmetric space Xp, depends on v through its class in the double coset
space Wp\W/Wxng. Throughout this paper, ©'W will denote a choice of
representatives in Nk (aq) of Wp\W/Wgkny. In general, if f is a surjective
map from a set A onto a set B, then by a choice of representatives for B
in A, we mean a subset 8 C A such that f|g : 8 — B is a bijection.

Let *apq denote the orthocomplement of apq in aq. Then

fapg =mpNag.

Moreover, for every v € Nk(aq), this space is the analogue of a4 for the
triple (Mp, Kp, Mp N vHv™"), see [14], text following (3.4).

In analogy with (2.2), we define X;p, := M;p/M;p N vHV"!, for
P € & and v € Ng(aq). The multiplication map Mp x Apy — Mip
induces a diffeomorphism

XlP,v ~ Xpﬁv X qu. (23)

If v = e, we agree to omit v in the notation of the spaces in this product, so
thatX]p = M]p/M]p NH >~ MP/MP N H x qu.

We end this section with collecting some basic facts about 6-stable
Cartan subspaces of q, meanwhile fixing notation. We define the dual real
form g? of g as the real form of g. given by g¢ = ker(c6—1)®iker(cO+1).
Let 6. and o be the complex linear extensions of 8 and o, respectively. Then
67 := o¢|ga is a Cartan involution of g¢ and 6 := 6|y is an involution of
g¢ commuting with 6¢.
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If v is any o- and #-stable subspace of g, then v := v, N g%is a 0%- and
6¢-stable subspace of g, whose complexification equals that of v.

If b is a 0-stable Cartan subspace of q, then b = by ®b,, where by := bN¢
and by, := b N p. Moreover,

9% :=ib, ® b,

is a 0%-stable maximal abelian subspace of p¢. We denote by % (b) the root
system of 4b in g¢, by W(b) the associated Weyl group and by I(b) the
space of W(b)-invariants in S(b), the symmetric algebra of b.. Moreover,
we denote the associated Harish-Chandra isomorphism by

yip o U@HY /UHY N U@gYed — 1(b). 2.4)

As usual, if [ is a real Lie algebra, we denote by U([) the universal algebra
of its complexification. Via the natural isomorphism

D(X) ~ U(g)"/U(g)" N Ug)h = UgH™ /UHY nU@Hed, 2.5

see [5], Lemma 2.1, we shall identify the algebra ID(X) with the algebra on
the left-hand side of (2.4) and thus view the Harish-Chandra isomorphism
ydp as an algebra isomorphism from DD(X) onto /(b); as such it is denoted
by ¥ = Ve.

If P € 7, and b a 0-stable Cartan subspace of q containing apq, we
agree to write *bp := b N'mp. Then *bp is a O-stable Cartan subspace of
mp N q and

b Z*bp@apq, (26)

with orthogonal summands. If P is minimal, then b is maximally split, and
we suppress the index P, so that b = *b @ ay. We shall write W(*b p) for the
Weyl group of the pair (mpc, *bp). Via the decomposition (2.6) this Weyl
group is naturally identified with Wp(b), the centralizer of apq in W(b).

3. Weyl groups

In this section we discuss a straightforward generalization of well known
results on Weyl groups, see [30], p. 111.

If a; and a, are abelian subspaces of p, then following [30], p. 112, we
define the set

W(ay | ay) :={s € Hom(a;, a;) [Ig€ G: s=Ad(glq}

From the definition it is obvious that the set W(a, | a;) consists of injective
linear maps. In particular, if dim a; = dim a,, it consists of linear isomor-
phisms. Finally, if a; = a5, the set is a subgroup of GL(a;) = GL(a,). We
note that W(a; | ay) naturally acts from the right on W(a, | a;), whereas
W(a, | a) naturally acts from the left. If dima; = dima,, then both of
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these actions are transitive and free. If a, is a maximal abelian subspace
of p, then by W(g, a,) we denote the Weyl group of (g, ap), the root
system of ay, in g.

Lemma 3.1 Let a; and a, be abelian subspaces of p.

(a) The set W(ay | ap) is finite.

(b) If ¢ € Int(gc) maps a; into a, then ¢lq, € W(ay | ap).

(c) Ifs € W(ay | ay), then there exists a k € K, such that s = Ad(k)|q, .

(d) Assume that ay and a, are contained in a maximal abelian subspace ay
of p. Then

W(ay | a;) = {t € Hom(ay, ap) | 3s € W(g, ap) : 1 = s]q,}.

Proof:  All assertions are immediate consequences of Corollaries 1, 2 and 3
of [30], p. 112. O

Corollary 3.2

(@) W= W(aq| ag).
(b) Let a, be a maximal abelian subspace of p, containing ay. Then the
map k +> Ad(k)|q, is a surjection from Nk, (aq) N Nk, (ay) onto W.

Proof: The map k +> Ad(k)|s, induces a natural isomorphism
Nk (aq)/Zk(ag) = W, see, e.g., [4], Lemma 1.2. Hence, W C W(aq | ag).
For the converse inclusion, select a maximal abelian subspace a; of p, con-
taining aq. Then by Lemma 3.1 (d), any element t € W(aq | aq) is the
restriction of an element s € W(g, a,). There exists ak € Nk, (ap) such that
s = Ad(k)|q,. The element k necessarily normalizes aq. Thus, we obtain
the converse inclusion and also the validity of assertion (b). |

The following lemma generalizes Lemma 1 of [30], p. 111. Let a4 be
a maximal abelian subspace of p N q. Let a, be a maximal abelian subspace
of p containing a4, and j a Cartan subalgebra of g containing a,. We denote
by W(gc, jc) the Weyl group of the root system of j¢ in ge.

Lemma 3.3 Two elements of aq are conjugate under Int(g.) if and only if
they are conjugate under any one of the following groups

W(gc,jc), W(g,ap), W=W(g,ay), Nk, (ap) N Ng,(ag).

Moreover, given P € ?(‘T"i“ and H € ay, there is a unique element Hy €

cl azlr(P) which is conjugate to H under W.

Proof: If P € ™", then aj{(P) is the open positive chamber for the
positive system X(P) of the root system X. Also, W is the Weyl group
of X. Thus, the final assertion follows by a well known property of Weyl
groups. We turn to the assertions about equivalence of conjugation.

For the first two listed groups the equivalence follows from Lemma 1
in [30], p. 111. For the equivalence for the third group, let H,, H, € aq
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and assume that H, = ¢(H;) for some ¢ € Int(gc). We may fix P € fP;“in
such that H; € cl (aa“(P)). There exists a s € W such that s™'(H,) €
cl (aj{(P)). Fix a choice X" (g, ay) of positive roots for X(g, a,) that is
compatible with X(P), and let a;r be the associated positive chamber. Then
cl (a:{(P)) Ccl (a;). Since W is naturally isomorphic to Nk (aq)/Zg (ag),
the elements s~'(H,) and H, are conjugate under Int(g.). Hence, they
are already conjugate under W(g, a,). Being both contained in cl (a;r), the
elements must be equal and we conclude that H, = s(H;). The equivalence
for the third group now follows.

Using Corollary 3.2 (b), we immediately obtain the equivalence for the
fourth group from the one for the third. O

Lemma 3.4 Let a be a linear subspace of aq and assume that ¢ € Int(gc)
maps a into aq. Then there exists a s € W such that s|q = ¢|q.

Proof: The proof is identical to the proof of Cor. 2 in [30], p. 112, with use
of Lemma 3.3 instead of [30], Lemma 1. O

Corollary 3.5 Let ay, ay be linear subspaces of aq, then
W(ay | a)) ={t e Hom(a;,m) | 3se W: t=s|q}

We briefly interrupt our discussion of Weyl groups to collect some useful
facts about conjugacy classes of the parabolic subgroups from ;.

Lemma 3.6 Let a, be a maximal abelian subspace of p, containing a,
and let Q € P,.

(a) There exists ak € Ng,(aq) N Nk, (ay) such that kQk~" is standard.

(b) If F, F’ C A are such that Pr and Pr: are conjugate under G, then
F=F.

(c) There exists a unique subset F C A such that Q is conjugate to Pr
under G.

(d) If P € &, is conjugate to Q under G, then it is already conjugate to Q
under Ng,(aq) N Nk, (ap).

Proof: There exists a s € W such that the parabolic equivalence class
s(agq) is contained in cl aa“(Po), hence equals a;q, for some FF C A. It

follows that sQs~! = Pp, see Sect. 2. Now apply Corollary 3.2 (b) to
obtain (a).

For (b), we note that Pr and Py both contain the minimal standard
o-parabolic subgroup Py. Hence, Pr = Pp/, by [30], p. 111, Lemma 2.
This implies that F = F’, see Sect. 2. Assertions (c¢) and (d) both follow
from combining (a) and (b). |

We end this section with a discussion of automorphisms connecting
0-stable Cartan subspaces of q; see Sect. 2 for basic notation.
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If b; and b, are two O-stable abelian subspaces of ¢, then we define
W(by | b)) := {plo,. | ¢ €Int(ge), (‘b)) C 62} GB.1)

Note that b, and 9b; are abelian subspaces of pd. Using the notation of
the first part of this section, relative to the algebra g¢ = £ @ p¢ with
the indicated Cartan decomposition, we see that complex linear extension
induces a natural isomorphism

W (%, | 1) = W(b, | by).

In particular, it follows from this that the set in (3.1) is finite. Moreover, if
b, and b, are contained in p N g, the notation (3.1) is consistent with the
notation introduced earlier in this section.

Lemma 3.7 Let b and b, two 0-stable subspaces of a fixed 6-stable Cartan
subspace 0 of q. Then

W(bs | b)) = {sle,c | s € W@), s(‘b;) C by}

Proof: This follows from Corollary 3.5 applied with a; = 9b;, a, = b,
and a, = 4. O

If s € W(by | by), then by s* we denote the map b3. — b]. given by
pull-back, i.e.,

s*Vi=vos, (v ebs).

If by, by, C q are two O-stable Cartan subspaces, then %b; and b, are
conjugate under an interior automorphism of g¢ that commutes with 6¢;
hence, the set W(b, | by) is non-empty and consists of isomorphisms. If
s is any isomorphism from this set, we denote its natural extension to the
symmetric algebras by s as well. This extension maps I(b;) into 1(by).

Lemma 3.8 Let by, b, be 6-stable Cartan subspaces of q. Then W(b, | by)
# (. Moreover, if s € W(by | by), then

SoVo, = Vo,-

Proof: The first assertion follows from the discussion preceding the lemma.

Let K¢ be the analytic subgroup of Int(g.) generated by ¢*4* Then
by Lemma 3.1, applied to by, %6, C pY, there exists an element k € K¢
such that s = k|ap, . The action of k induces the identity on U(g“ U n

U(g®)¥?. Hence, if D belongs to the latter algebra, then sye, (D) =
kye, (k™' - D) = yp,(D). m
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4. Laurent functionals and operators

In this section we briefly recall the concept of Laurent functional, introduced
in [14]; meanwhile, we fix notation that will be used in the rest of the paper.
For details we refer to Sects. 10 and 11 of [14].

Let V be a finite dimensional real linear space, equipped with a positive
definite inner product (-, -). Its complexification V; is equipped with the
complex bilinear extension of the inner product. We write P(V) for the
algebra of polynomial functions V. — C, and S(V) for the symmetric
algebra of V.. We identify the latter algebra with the algebra of translation
invariant differential operators on V, which in turn is identified with the
algebra of translation invariant holomorphic differential operators on V.. In
both settings, # € V is identified with the differential operator f +— d f(-)u.

Let X be a finite subset of non-zero elements of V. By an X-hyperplane
in V. we mean an affine hyperplane of the form H = a + £+, witha € V.
and £ € X. The hyperplane H is said to be real if @ may be chosen in V. By

Ix(V) “4.1)

we denote the collection of polynomial functions p € P(V.) with zero locus
p~1(0) equal to a finite union of X-hyperplanes. The subset consisting of p
with zero locus a finite union of real X-hyperplanes is denoted by ITx g (V).
Note that [Tx (V) consists of all polynomial functions that may be written
as a non-zero multiple of a product of factors of the form (¢, -) — ¢, with
& € X and ¢ € C. The subset [Ty g (V) consists of such products with ¢ € R
in all factors.

By an X-configuration in V. we mean a locally finite collection of X-
hyperplanes in V.. The configuration is said to be real if all its hyperplanes
are real. If a € V¢, then by M(V,, a, X) we denote the space of germs at a
of meromorphic functions with singular locus contained in the union of the
hyperplanes a + &2, for & € X. Let N¥ denote the space of maps X — N.
For d € NX we define the polynomial function 7, 4 € TTx(V) by

mea@) =[], z—a).

EeX

Let O,(V,) denote the space of germs of holomorphic functions at a. Then
M( Ve, a, X) is the union of the spaces na_’;@a(VC) for d € NX. The space
M(Ve, a, X);,,. of X-Laurent functionals at a is defined as the subspace of
M(Ve, a, X)* consisting of £ with the property that for every d € N there
exists a up 4 € S(V) such that

Lo =urqmaapl@, forall ¢ em, j0,(Vo).

The element u - belongs to a projective limit space S. (V, X) whose defin-
ition is suggested by the above, see [14], Sect. 10, for more details. Moreover,
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the map £ — u, defines a linear isomorphism

M(Ve, a, X)E, —> S_(V, X), (4.2)

see [14], Lemma 10.4.

The space on the left-hand side of the above isomorphism only depends
on X through its proportionality class. More precisely, a finite set X' C
V\{0} is said to be proportional to X if every element of one of the sets X, X’
is proportional to an element of the other set. If X and X’ are proportional
sets, then M (V¢, a, X)},,, = M(Ve, a, X')};,,» see [14], Lemma 10.3.

If Q@ C V.isopenand E acomplete locally convex space, then a (densely
defined) E-valued function f on €2 is said to be meromorphic if for every
zo € S there exists an open neighborhood €2 of zy and a holomorphic
function g € O () such that g f|q, is a holomorphic E-valued function
on 2. The space of E-valued meromorphic functions on 2 is denoted by
M(2, E). A point z € Q is said to be a regular point of f € M(2, E) if f
is holomorphic in a neighborhood of z. The collection of regular points of
f is denoted by reg f.

Let # be an X-configuration in V. By M(V., #, E) we denote the
space of meromorphic functions V. — E with singular locus contained in
UJH. We agree to write M(V, H) := M(V, H, C).

The space M(V., #, E) is topologized as follows. Let X C X be
minimal subject to the condition that X° and X are proportional. For each
X-hyperplane H C V. there exists a unique oy € X° and a unique first
order polynomial function /4 of the form z +— (ay, z) — ¢, with ¢ € C,
such that H = 1, (0).

We denote by N7 the space of maps # — N. Ford € N* and w C V.
a bounded subset, we define the polynomial function 7, 4 € [Tx(V) by

rea= || 15" (4.3)
Hedt
HNw#)

A change of choice of X° only causes a change of this polynomial by
a non-zero factor. If E is a complete locally convex space, we define
M(Ve, H, d, E) to be the space of meromorphic E-valued functions ¢ on V.
with the property that r,, ;¢ is holomorphic on w, for every bounded open
subset w C V.. This space is equipped with the weakest locally convex top-
ology that makes every map ¢ — m,, 49|, continuous from M(V,, #,d, E)
to @ (w, E). This topology is complete; it is Fréchet if E is. We equip N7
with the partial ordering < defined by d < d <= VH € #: d(H) <
d'(H). We now have

M(VCv ]f’ E) = UdEN’” gM(VC, Jf, d, E)

Accordingly, we equip the space on the left-hand side with the direct limit
locally convex topology.
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Any non-empty intersection of X-hyperplanes in V. is called an X-
subspace of V.. An X-subspace L of V. may be written as L = a + V,

with V; C V a real linear subspace. Let V.. denote the complexification

of its orthocomplement. The intersection V;-. N L consists of a single point
c(L), called the central point of L. Via the translation x — c(L) + x from
Viconto L we equip L with the structure of a complex linear space, together
with a real form with a positive definite inner product on it.

If # is an X-configuration and L C V an X-affine subspace, we define
F. to be the collection of affine hyperplanes in L of the form H N L, with
H € 3¢ ahyperplane that properly intersects L. Let X(L) := XN V;" and let
X, C Vi, be the image of X \ X(L) under the orthogonal projection onto V.
The image of X, in L under translation by c(L) is denoted by X ;. Thus,
(L, X 1) is the analogue of (V,, X). The collection #¢, is a X -configuration
inL.

If £ is a Laurent functional in M (V. 0, X(L))},,. then £ induces
a continuous linear map

Lyt M(Ve, H) — M(L, ),
given by the formula
L) = Lp(- + )], 4.4)

for ¢ € M(V,, #) and generic v € L. The map L, belongs to the space
Laur (Vg, L, #) of Laurent operators M (V,, #) — M (L, #), as defined
in [11], Sect. 1.3, see also [14], Sect. 11. It follows from the definition of
Laurent operator combined with the isomorphism M(VLLC 0, X(L) =
S_(Vi+, X(L)) given by (4.2) that the map £ +— £, defines a linear
surjection

MV, X(L), 0)y,,, — Laur (Ve, L, #) — 0. 4.5)

Accordingly, a Laurent operator may alternatively be defined as any con-
tinuous linear operator M (V, #) — M(L, #;) of the form L, with L
a Laurent functional from the space on the left-hand side of (4.5).

More generally, if £ € M(V., X(L),0)},, and if E is a complete
locally convex space then the algebraic tensor product £, ® /¢ has a unique
extension to a continuous linear map M (V, #, E) — M(L, #, E) that
we briefly denote by £, again.

The concept of Laurent functional may be extended as follows, see [14],
Def. 10.8. Let M(V, *, X);, be the disjoint union of the spaces
M(Ve, a, X)},,» for a € V.. An X-Laurent functional on V¢ is defined
to be a finitely supported section of M (V¢, *, X)j, ., i.6.,amap £ : Vo —
MV, %, X With £, € M(Ve, a, X)j,,, for every a € V. and with
supp L := {a € V. | £, # 0} a finite set. The set of all X-Laurent func-
tionals on V;. naturally forms a complex linear space, denoted M (V¢, X)7 .-

Let #¢, L be as before. If a € V. we denote by #,(a) the X,-
configuration consisting of all hyperplanes H' in L for which there exists
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aHeHsuchthat H =L N[(—a)+ H].IfS C VLLC is a finite subset, we
put

H1(S) = UaesHL(a). (4.6)

Let now £ € M(VZE, X)f and put S = supp £. Then from the above
discussion it follows in a straightforward manner that the formula (4.4)
defines a continuous linear map L, : M(Vg, H) — M(L, H.(S)). As
above, if E is a complete locally convex space, then the tensor product map
£, ® I has a unique extension to a continuous linear map

Ly M(Ve, H, E) = M(L, #H.(S), E); 4.7)

see [14], Cor. 11.6.

By M(V¢, X, E) we denote the space of meromorphic E-valued func-
tions on V. with singular locus contained in the union of an X-configuration.
Every Laurent functional £ € M(VLLC, X(L));,,, determines a unique con-
tinuous linear map £, : M(V;, X, E) — M(L, X, E) such that L,
restricts to the map (4.7) for every X-configuration # in V.. See [14],
Lemma 11.8, for details.

5. Normalization of residues and measures

For the explicit determination of the constants in the Plancherel formula, it
is of importance to specify the precise normalizations of residual operators
and measures that will be used in the rest of this paper.

Let Py be the standard parabolic subgroup in ™" and let € WT(X)
be a W-invariant residue weight, see Sect. 2. Let b be a W-invariant positive
definite inner product on a¥. Associated with the data 1, 7, b, we defined
in [11], beginning of Subsect. 3.4, for each subset F C A and every element
A € *ay,, a universal residue operator

Res’Ha*Fq = Resﬁ’;;q, (5.1
which encodes the procedure of taking a residue along the affine subspace
A+ a”gqc of aZC. In [11], text below Eqn. (3.6), this residue operator is
introduced as an element of a project limit space S (*aj, 1), defined
in [11], §1.3; here £\ denotes the collection of indivisible roots in £ N
“af,- However, to make the residue operator into an object as canonical as
possible, we shall prefer to view it as a Laurent functional.

Applying the results of Sect. 4 with V = *a} , X = T, X* = %} and
a = 0, we obtain an isomorphism

M (e 0, ZF) 2 S (Fafy TF)- (5.2)

laur
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In the present paper, the universal residue operator (5.1) is accordingly
viewed as an element of the space M (* a}qc, 0, XF)j,, of X p-Laurent func-
tionals at the origin in *a}. .

By Eqn. (4.5), with V = az, X =Xand L = A + a’;q, we see
that £ — £, induces a surjective linear map from M (*ajq., )i, onto
Laur (ag., A + af,., #€). In this context we omit the star in the notation, and
use the notation (5.1) also for the Laurent operator defined by the universal
residue operator. Thus, (4.4) becomes

(Res] o @)(v) =Res; . [p(- + V)],
for every ¢ € M(ag., #) and v € a} . generic. In this way the notation
becomes compatible with the notation of [11].

All definitions in [11] are given with reference to the fixed W-invariant
inner product b on a(’;, denoted (-, -)in[11], so that a priori the universal
residue operator depends on the particular choice of the inner product.
However, as we will show, the dependence is through certain measures
determined by b. To explain this, it is convenient to first introduce some
general terminology.

If v is a real finite dimensional vector space, let °A (v) denote the one
dimensional real linear space of densities on v, i.e., the space of maps
w : v — R, where n = dimv, transforming according to the rule
woA" = |det A|w, for all A € End(v). Evaluation at the origin induces
anatural isomorphism from the space of translation invariant densities on v,
where v is viewed as a manifold, onto °A(b); we shall identify accordingly.
Consequently, via integration the space °A (v) may be identified with the
space of Radon measures RdX, where dA is a choice of Lebesgue measure
on v. If v is equipped with a positive definite inner product, then by the
normalized density on v we mean the unique element @ € °A(b) such that
w(ey, ... ,e,) =1, for every orthonormal basis ey, ... , e, of v.

We shall often encounter the situation that v = ib with b a subspace
of a real linear space V; here multiplication by i is defined in the com-
plexification Vi of V. If V comes equipped with a positive definite inner
product (-, -), weextend it to V; by complex bilinearity, and equip i b with
the positive definite inner product —(- , -). Accordingly, in this setting it
makes sense to speak of the normalized density on ib.

Let du € °A(ib). If A € V., then we shall adopt the convention to
also denote by du the density on the real affine subspace A + ib of Vg,
obtained by transportation under the translation X +— A + X, ib — A +ib.
Accordingly, by unoriented integration, the density du determines a real
Radon measure on A + ib, which we shall denote by the same symbol.

We now return to the dependence of the residue operator (5.1) on the
choice of b. For every « € %, the orthogonal reflection s, is independent
of the particular choice of b, and therefore so are the root hyperplanes o,
and, more generally, the root spaces aj, and their orthocomplements a7,
for F C A. Combining this observation with the uniqueness statement
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of [11], Theorem 1.13, it follows that the residue operator Res oy, Can be
completely defined in terms of the data T, 7, A + a’;q and b; morqeover, it
depends on the latter datum through the quotient measure on i*af, of the
normalized Lebesgue measures di on iag and dup oniay,.

To keep track of constants coming from comparing residue operators
related to different choices of the mentioned inner product we shall introduce
a version of the residue operator (5.1) that is independent of the choice of b.

The unnormalized residue operator is defined as the unique Laurent
functional

Res oy € M("akye, 0, Zr)

laur ® HOIII(O/\ (iClZ), A (la;q)) (53)
satisfying the following requirement. Let (5.1) be defined relative to the
given choice of b and let dA € °A (iaj;) and dur € °A (iaj}q) be the

normalized densities associated with b. Then the requirement is that
Res) ,; (9)(dh) = Res] o () duir, (5.4)

for ¢ € M(*a’gqc, 0, X ). From the above mentioned dependence of (5.1)
on b through the quotient density on i*ay, of dA and dpuF, it follows that
the residue operator in (5.3) only depends on the data 7, ¢, F, A and not
on the choice of b. In other words, if (5.1), d\ and dur had been defined
relative to an arbitrary W-invariant inner product on a4, then formula (5.4)
would be valid as well.

Suppose now that for each ' C A a non-trivial density diur € °A(iag,)
is given. In particular, dA := duy is given. Then we can use the formula
(5.4) to define residual operators Res| at With this definition, the integral
formula of [11], Thm. 3.16, is valid. !

In the rest of this paper, we fix a choice dx of invariant measure on X. In
the rest of this section we will describe how this choice determines all other
choices of normalization of measures, and, by the preceding discussion, all
choices of normalization of residual operators.

As in [10], §3, the measure dx determines a choice da of Haar measure
on Aq, and a choice di of Lebesgue measure on iag. A change of the
measure dx by a multiplication by a positive factor c causes a change of da
by the same factor. This in turn causes a change of the measure di by
the factor ¢~!. It follows that the product measure dx di on X x i ay is
independent of the particular choice of the measure dx.

In order to be able to use the formula (5.2) of [12], we normalize the
Lebesgue measures djup of iay,, for F C A, as in the text following the
mentioned formula. We describe this normalization in a somewhat more
general setting, in terms of the above terminology. Let B be the bilinear
form of g, fixed in the beginning of Sect. 2. Via restriction and dualization,
B induces a positive definite inner product on a*, which we denote by B
as well. Let ¢ > 0 be the positive constant such t(Lat d)\ corresponds to the
density on iay, normalized relative to the inner product cB.
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If P € &, then dup denotes the Lebesgue measure on i a’;q normalized
withrespect to ¢ B. If ag;, = {0}, which occurs if and only if G has a compact
center modulo H, we agree that dug has total volume 1, in accordance
with [12], text following (5.2).

The residual operators Res; +ay, 4r€ NOW normalized by (5.4) and with

respect to the choices of normalizations of measures made. All results of [11]
and [12] needed in this paper are valid with the normalization of measures
and residual operators just described.

If P € 7, we denote by di p the choice of Lebesgue measure on i*ajp,
for which

d\ = dhpdup. (5.5)

If v € P'W, then by the above discussion of the normalization of d\, applied
to the space Xp,, a choice dxp, of invariant measure on Xp, corresponds
in one-to-one fashion with a choice of Lebesgue measure dip, on i*ap,.
Throughout this paper we agree to select dxp,, so that dhp, = dAp.

We end this section with the observation that for P, O € #, with apq
and agpq conjugate under W, the measures dup and du o are W-conjugate.
Indeed, this follows from the W-invariance of the inner product B. From
(5.5) we see that the measures dA p and dA are W-conjugate as well.

6. A vanishing theorem

Let QO € &,. Throughout this paper, we assume (z, V;) to be a finite
dimensional unitary representation of K. In this section we introduce a space

Sgyp(X : 7) of meromorphic families of D(X)-finite t-spherical functions
and show that the vanishing theorem of [14] applies to it.
Let aq® denote the set of regular elements in aq for the root system X

and put Aq® := expay®. We define a subset of X by
X4 = KAS*® H.

According to [14], Sect. 2, this set is open dense in X. Let W C Nk (aq) be
a choice of representatives for W/Wgng. Then, for each P € ™",

X4 = Upew I(A;quH (disjoint union).

By C* (X, : ) we denote the space of smooth functions f : X, — V, that
are t-spherical, i.e.,

Jlkx) = (k) f(x) (x € X5, ke K).

By A(X,; : 7) we denote the subspace of f € C*°(X, : 1) that behave
finitely under the action of the algebra D(X). Moreover, we denote the
subspaces of these spaces consisting of functions that extend smoothly
from X, to all of X by C*°(X : 1) and A(X : 1), respectively.
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Let P € # and v € Nk(aq). We put Kp := K N Mp and define Xp, 4
to be the analogue of the set X for the triple (Mp, Kp, Mp N vHv™'). In
particular, Xp, + is an open dense subset of Xp ,,.

We define the function Rp, : M;p —]0, oo [ asin[14], Sect. 3. Accord-
ing to [14], Lemma 3.2, this function is left Kp- and right M;p N vHv~!-
invariant. Moreover, if P # G, a € Aq and u € Nk, (ay), then

Rp,(au) = max a “.
aeX(P)
Finally, Rp, > 1 on Xp,. The function Rp, is of importance for the de-
scription of a domain of convergence for the series expansion that describes
the asymptotic behavior of a function from A (X : 7) along (P, v). To be
more precise, we define, for0 < r < 1,

Ab () i={a € Apy |Ya € A(P): a™® <r).

Then the following property, see [14], Lemma 3.3, is relevant for the men-
tioned description of the domain of convergence. Form € Xp,anda € Apq,

meXpy4, a€ A;Zq(Rp,v(m)*]) = mavH € X,.

We can now describe the mentioned series expansion along (P, v), together
with a domain of convergence. According to [14], Lemma 5.3 and Thm. 3.4,
a function f € A (X : v) admits a converging series expansion of the form

fmav) =" d*q:(P,v | f,loga, m), (6.1)

EeE

form € Xp, 4 and a € AJ,Sq(Rp,U(m)_l). The set E in (6.1) is a subset of
aj‘,qc contained in a set of the form Ey — NA,(P) := Ey + (—NA,(P)),
with Ey C a’;,qc finite. In addition, there exists a k € N such that, for every
& € E, the expression g:(P, v | f) belongs to Pi(apq, C*°(Xpy 4 : Tp)),
the space of polynomial functions ap; — C*(Xp, 4 : Tp) of degree at
most k. Here 7p stands for 7|k, .

The series on the right-hand side of (6.1) converges neatly in the sense
of [14], Def. 1.2, for each m € Xp, +, and for a in the indicated range
(depending on m). The functions ¢, are uniquely determined by these prop-
erties.

The setof & € E for whichg: (P, v | f) # Ois called the set of exponents
of f along (P, v), and denoted by Exp (P, v | f). We agree to write gz =0
for§ € ajpyc \ E.

Using the above terminology we shall introduce the space Sgyp(X 1 7)in
a number of steps. First, following [14], Def. 12.1, we introduce a suitable
space of meromorphic families of spherical functions. We agree to write Py
for the standard minimal o -parabolic subgroup. An index or superscript Py
will be replaced by 0. In particular, Xy, = Xp,, and 79 = 7p,. Note that
Xo., = Xp, and 79 = Tp for every P € Pmin,
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Definition 6.1 Let Q € &, andlet Y C *aj,. be a finite subset. We define

CayP(Xy 1 D) (6.2)

to be the space of functions f : ap,. X X4y — V;, meromorphic in the
first variable, for which there exist a constant £ € N, a ¥, (Q)-hyperplane
configuration # in ap, . and a function d : #¢ — N such that the following
conditions are fulfilled.

(a) The function A — f; belongs to M(aQqC, H,d,C* (X, :1).

(b) Forevery P € J omm and v € Ng(aq) there exist (necessarily unique)
functions g, ¢ (P, v | /) in Pi(ag) @ M(ap, qor Hs d,C* (X : 19)), for
s € W/Wpand § € —sWyY + NA(P), with the following property.
Forall A € aj,,. \ UH, m € Xo, and a € A:{(P),

fulmav)y = 3 a7 YT afque(Pou filoga)(hm),

seW/Wo Ec—sWoY+NA(P)
(6.3)

where the A(P)-exponential polynomial series with coefficients in V;
converges neatly on A(J{(P).
(c) Forevery P € J’;“in, v € Nk(aq) and s € W/W,, the series

Z aiéqs,f;‘(P, v| f,loga)

ge—sWoY+NA(P)

converges neatly on Aar(P), as an exponential polynomial series with
coefficients in the space M(a*QqC, H,d, C*(Xo, : 10)).

Finally, we define
,h
CoP™P(Xy 1) = CR PP (X, 1 ). (6.4)

Remark 6.2 1If Q' € £, and apq = apq, then X.(Q) C Z,(Q") U
—X,(Q)]. Hence, the notions of X,(Q)- and X,(Q’)-configuration co-
incide. It follows that the space (6.2) depends on Q through its o-split
component gq.
It is sufficient to require conditions (b) and (c) either for all P € JP“““
and a fixed v, or for a fixed P € $™" and all v in a choice of representatlves
for W/Wgknp in Nk (aq); see [14] Rem. 7.2, for details.

If f € CZy" (X4 : 1), then following [14], Def. 12.4, we define the
asymptotic degree of f, denoted deg,(f), to be the smallest integer k for
which there exist ¢, d such that the conditions of Definition 6.1 are fulfilled.
Moreover, we denote by F#, the smallest X, (Q)-configuration in a*Qq(C such
that the conditions of Definition 6.1 are fulfilled with k = deg,(f) and
for some d : #; — N. We denote by d; the <-minimal map #; — N
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for which the conditions of the definition are fulfilled with # = #; and
k = deg, f. Finally, we put reg,,(f) := ap,. \ UH;.

We extend a to a Cartan subspace b of q; clearly, b is 0-stable. If u € b,
then I, := ker y(- : ) is an ideal of codimension one in D(X).

If P € #,, we write D p for the set of finitely supported maps 6: * b} . — N,
see (2.6). For 6 € Dp and X € a’;qc we define the ideal /s, in D(X) by

. 8(A)
Iyo= [ 138
Aesuppé

This ideal is cofinite, since it is a product of finitely generated cofinite ideals.
Following [14], Def. 12.8, we introduce the following space of mero-
morphic families of D(X)-finite functions.

Definition 6.3 Let Q € 7, and§ € Dy. Thenfor Y C *a*Q qc @ finite subset
we define

e (Xy 171 8)

to be the space of functions f € CJ” PP(X, : 1) such that, for all A €
aQqC \ H, the function f; : x — f(A, x) is annihilated by the cofinite ideal

Is5..
Finally, we define

&P (Xy 1 T:8) 1= &R (X4 1T 0).

Following [14], Def. 12.8, we introduce the following subspace of mero-
morphic families of D(X)-finite functions in C*(X : 1) satisfying a cer-
tain additional assumption. Let ! be the collection of parabohc subgroups
P € #, whose o-split component apq has codimension one in ag.

Definition 6 4 Let Q € 5. Thenford € DgandY C *aj,. afinite subset
we define 8 (XJr 1 T 1 8)glob to be the space of families f € é‘hyp y (X5
T:9) satlsfymg the following condition.

Forevery s € W, every P € & w1th sapq € apq and all v € N (ay),

there exists an open dense subset Q ofreg , f with the following property.
Forevery A € Q, every € € s)»lcqu +WpsWo Y|Uqu —pp—NA,(P) and
all X € apg, the function m — g(P, v | f,, X, m), originally defined
on Xp, +, extends smoothly to all of Xp,.

Remark 6.5 In[14], Def. 9.5 and Def. 8.4, afamily f satisfying the property
stated in the above display was said to be [s]-global along (P, v).

Definition 6.6 Let Q € #,.For§ e DpandY C * aQ a finite subset, we

define &, iy y (X 1 T : ) to be the space of families f € 8 (X+ T : 8)glob
satlsfymg the following condition.
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For all v in the complement of a locally finite union of analytic null-sets,
the function f,, initially defined on X, extends to a smooth function
on all of X.

Finally, we define

ENX:D=Us €%(X:7:6) and
EP(X 1) 1= Uy 80X 1 ),

where 6 runs over Dy and Y over the collection of finite subsets of *a*Qq.

Remark 6.7 One readily verifies that the space &, byp y(X 1 7 : 8) depends on
Q through its split component agq. See also Remark 6.2.

Remark 6.8 1f G has compact center modulo H, then agq = {0}. Therefore,
the map f +— fj defines an embedding of & ylD(X 8) into A(X : 1), the
space of D(X)-finite functions in C* (X : 7). We claim that this map is in fact
a bijection. To see this, let g € A(X : 7). Then by [3], Thm. 5.3, the family
[+ e X X — V; defined by fy = g belongs to C¢- P(X, : 1) for some
finite subset ¥ C anC = aq Moreover, D(X)g is a finite dimensional
space. In the notation introduced before Definition 6.3, let S be the set of
A € *bg;. = b{ such that D(X)g has a non-trivial subspace on which D(X)
acts by the character y(- : A). Then there exists a map § : *b}. — N
supported by S, such that g is annihilated by I; . It is now readily seen that

the family f belongs to Sgy'; (X:71:9).

Lemma 6.9 Let f € §;°(X : 1) and put # = H; and d = d.
Then v — f, is a meromorphic C*°(X : t)-valued function in the space
M(ajhge, H,d, C(X 1 7).

Proof: This follows by using condition (a) of Definition 6.1 and applying
Cor. 18.2 of [14]. O

Remark 6.10 Let § € Dy and let Y C *aj, . be a finite subset. It can be
shown that every family f € 85”; (X : T :§) that satisfies the displayed
condition of Definition 6.6 automatically belongs to 85“} (X4 0 T2 8)globs

hence to Sgyp(X : 7). In case max § < 1, this follows from [5], Thm. 12.8.

For general § € Dy one may proceed along similar lines, see also [42],
Chap. 4. However, we shall not need such a result in the present paper,
since in all cases where we could apply it, the property of Definition 6.4
has already been established in [14] for the functions involved. The present
remark justifies the notation used.

The following special case of the vanishing theorem of [14] will play an
important role in the rest of this paper.
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Theorem 6.11 (Vanishing theorem) Let Q € P, be standard and let
2W C Nk(ag) be a choice of representatives for Wo\W/Wgnp. Let f €
& Qyp (X : ) and assume that there exists a non-empty open subset Q@ C reg, f

such that, for each v € Qyw,
Gv—pp (P, v | f1) =0, (v e).
Then f = 0.
Proof: This is a special case of [14], Thm. 12.10. O

We shall often use the vanishing theorem in combination with the fol-
lowing lemma to relate families of eigenfunctions.

Lemma 6.12 Let P, Q € %, let s € W be such that sapq = agq and

assume that f € 82%‘,’(){ t 1), with Y C *ap. a finite subset. Then the

Sfamily f* : a*QqC x X — V., defined by f*(v,x) = f(s~'v, x), belongs to
h

Eo (X ).

Proof: In view of Remark 6.7 we may assume that Q = sPs—!. There
exists a 8 € Dp such that f € €,0(X : 7 : §). By Lemma 3.7 there exists
a§ € W(b) such that s = §lq,. The element § maps *bpc onto *bgc. Let §*
denote its transpose *by,. — *bj . Then §o 5 € Do. Moreover, one readily

checks from the definitions that f* € ggy’EY(X tT:805%). O

7. Meromorphy of asymptotic expansions

Let f belong to the space Sgyp(X : 1), defined in Definition 6.6. The
mentioned definition refers back to Definition 6.1, according to which, for
v € Nk(aq) and for P a minimal group in J%, the function f, admits
an expansion along (P, v) that depends meromorphically on the parameter
V€ u*QqC in a well defined sense. It follows from [14] that an analogous
result holds for arbitrary P € &,. For its formulation, we need a particular
type of subset of the symmetric space Xp,. For 1 < R < oo, we define the
set

Xpv+[Rl:={x € Xpy+ | Rpy(x) < R};

see [14], Eqn. (3.7) for details.
We also need an equivalence relation ~pjp on W to describe asymptotic
exponents along (P, v) without redundance. The relation is defined by

s~pigt &= Yveap,: Vlap, = Wlap,- (7.1)
If Y C *ap, is a finite subset and o0 € W/~p|o, we put
oY :={sNlap, | s €0, nEY]

see [14], §6, for details. We recall from [14], Lemma 6.5, that W/~ p|p=~
W/Wo, it P e P and Q € 7.
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Proposition 7.1 Let Q € 7,8 € Dy and Y C *ay, a finite subset. Let f
be a family in C er”l;yp (X;+ : 1) and put k = deg,, f.

Let P € #, and v € Nk(aq). Then Exp (P, v | f,) C W(v + Vlapg, —
op —NA,(P), for every v € reg, f. Moreover, there exist unique functions

Go.c(P,v | f) € Pulapg) @ M(afye, Hydp, C¥(Xpy s 1 Tp)),
foro e W/~ppand§ € —o - Y +NA,(P), such that, for every v € reg,, f,

fulmav)y = 3" @ N afq(Pov | filoga)(v,m),

oeW/~pio ge—0-Y+NA,(P)

forallm € Xp, + and a € A;q(Rp,U(m)_l), where the exponential poly-
nomial series in the variable a with coefficients in V., is neatly convergent

in the indicated range. In particular, for all v in an open dense subset of
Ugqc and all o € W/~pjg and § € —o - Y + NA,(P),

9o (P, v | )X, V) = Govia, —pp—e (P | fo, X), (X €apg). (7.2)

Finally, for each o € W/~p|o and every R > 1, the series

> afgee(Pv] floga)

ge—o-Y+NA,(P)

converges neatly on A;q(R_l) as a A, (P)-exponential polynomial series
with coefficients in M(azqc, C*®Xpy+[R]: Tp).

Proof: This follows from [14], Thm. 7.7 and Lemma 12.7. O

The following result is based on the meromorphic nature of the series
in the above proposition. It may be considered a natural companion to [14],
Lemma 7.9.

Lemma 7.2 Let Q € 5, Y C*ay, . afinite subsetand f € C er”l;yp Xy 0.
Let P € $,,v € Ng(ag). Assume that for every o € W/ ~po a set
E, C —o-Y+NA,(P) is given such that, for v in a non-empty open subset
Q of reg, f,

Exp(Pvlfyc |J ovlay, —pr—Eo. (7.3)
oeW/~pjo

Then (7.3) holds for every v € reg f.

Proof: Let o € W/ ~pjgp and § € —op - Y + NA,(P) be such that
4oy.c(P,v | f) # 0. By Proposition 7.1 there exists an open dense subset
Q2 C reg, f such that, for all v € €2, (7.2) is valid. In particular, it follows
that, forv € 2, aov|Uqu —pp—& € Exp(P,v | f,); hence, aovlapq —pp—E&
belongs to the union on the right-hand side of (7.3). By [14], Lemma 6.2,
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the sets (ﬂ)|an +o0-Y —NA,(P), foro € W/~p|p, are mutually disjoint,
for v in an open dense subset Q' of Q. It follows that & € E.

From the above and Proposition 7.1 we conclude that forallo € W/~p|o
and§ € (—o-Y+NA,(P))\ E,, the meromorphic function v — g5 (P, v |
f.v) is zero. Hence, for v € reg,, f,

folmavy =3 @™ Y aF gae(Pv | f)lloga,v.m),  (14)

oeW/~plo §cE,

form € Xp, + and a € A;q(Rp,v(m)*l). Thus, the inclusion (7.3) holds
for v € reg, f. It remains to extend the domain of its validity to all of reg f.
Let R > 1. Then for each o € W/~p(, the series

Fol@) =) a ™ gee(P,v]| f)(loga) (7.5)

(€E,

converges as a A,(P)-exponential polynomial series in a € A;q(R*I),
with coefficients in the space M(a*QqC, H,d, C*(Xpy+[R] : Tp)); here
H = e}ef andd:df.

Let vy € ap, be such that the meromorphic C*(X. : 7)-valued func-
tion v +— f, is regular at vy. Let #€(vy) be the collection of H € #
that contain vy. Since J is a X,(Q)-configuration in a*QqC, the collec-
tion Ff(vy) is finite and there exists a bounded open neighborhood w
of vy in reg(f) such that #(vy) = {H € # | HNw # @}. Put
T = 744, see (4.3). Then ¢ — my|, defines a continuous linear map from
M(azqc, H,d, C*°(Xpy+[P] : Tp)) into (D(a*QqC, C*¥Xpy+[R] : Tp)).
In particular, the series (7.5) multiplied with = converges neatly on AJ,Sq (R7Y
as an exponential polynomial series with values in the space
O(@, C®*(Xpu +[R] : Tp)).

It follows from [14], Lemma 10.5, that there exists a u € S(a*Qq), such
that ¢(vg) = u(mwe)(vy), for ¢ € O(w). We apply this to v — f,. Then,

Sfvo, mav) = ul[n(-) f(-, mav)](vo)
k
= > a7 pojoga)Uq [(-)Fo(@)( -, m)](vo),

oeW/~pg Jj=1

with finitely many p, ; € P(apq) and U, ; € S(a*Qq), as is readily seen by
application of the Leibniz rule. Note that deg p, ; + order(U, ;) < [ :=
order(u).

From [14], Lemma 1.10, we obtain that the elements U, ; € S(a*Qq),
viewed as constant coefficient differential operators in the variable v, may be
applied termwise to the series for 7w (- ) F, (a)( -, m), without disturbing the
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nature of the convergence of the series. This leads to the existence of poly-
nomial functions g € Piyy(apq) @ C°(Xpy 4 : Tp), for o € W/~pjp,
& € E,, such that

fomav)y =" a™ " 3" a " G,e(loga, m),

oeW/~pio E€Ey

for a € A;ﬁq(Rfl) and m € Xp, +[R]. The series on the right-hand side
converges neatly as a A, (P)-exponential polynomial series on A (R™),

with coefficients in C*°(Xp, +[R] : Tp). It follows that the inclusion (7.3)
is valid for v = vy. O

8. Fourier inversion

In this section we recall the Fourier inversion formula from [12] that will
be the starting point for the derivation of the spherical Plancherel formula.

Let W C Nk(aq) be a choice of representatives for W/ Wgny. This
choice determines the space °C = °C(1), defined as the formal Hilbert
direct sum of finite dimensional Hilbert spaces

°C:=@ c*(M/MnvHY" : 7)), (8.1)

ve'w

where 15 denotes the restriction of 7 to Ky := K N M. Given P € ?;“i“,
and Y € °C, we define the normalized Eisenstein integral E°(P : ) as
in [9], §5. This Fisenstein integral is a meromorphic C*°(X : 7)-valued
function on ag., which depends linearly on 1. It naturally arises in repre-
sentation theory, essentially as a sum of matrix coefficients of the minimal
principal series of X. However, it can also be characterized by some of its
analytic properties, as follows.

Proposition 8.1 Let P € P™" and € °C. The function v — E°(P :
Y 1 v) is the unique family in Sgyp(X : T) with the following property. For
each v € W and for v in a dense open subset of ay.,

qv—pp(P’ v | EO(P : W . U)’ '$m) = Wv(m)
Here q,_,, is the coefficient in the expansion (6.1) for f = E°(P : { : v).

Remark 8.2 1t is implicit in the above formulation that the function on the
left-hand side of the above equation is constant as a polynomial function
of the variable indicated by the dot. It is known that for v in a dense open
subset of ay., there are no terms with loga in the expansion (6.1) with
f=E°(P:y:v);see[10], Thm. 7.5.
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Proof: Uniqueness follows from the vanishing theorem, Thm. 6.11. Thus,
it suffices to show that, for ¥ € °C, the C*°(X : t)-valued meromorphic
function f : v > E°(Y : v) on ag. satisfies the properties mentioned
above. By linearity with respect to ¥ we may assume that ¢ € °C[A], for
some A € iby = i*b%, in the notation of [14], text precedmg Lemma 14.3.
It now follows from [14], Lemma 14.5, that f € & yp(X+ DT D 8A)globs
where &, is the characteristic function of the subset {A} of *b’;,c. Final]y, it
follows from [9], beginning of Sect. 5, that v — f,, is a C*°(X : 7)-valued
meromorphic function on af]‘c. Therefore, f € Sgyp X:1).

Combining [9], Eqns. (49), (45) and the display following the latter
equation, we finally obtain that

Goopp(P,v | foi-im) = [pppo(l : v)Cpp(1: v)’lxlf]v(m) = Y, (m),
foreachv e Wand allm € M. O

Lemma 8.3 Let P € 2™ and € °C. Let f be the family in €5 (X : 1)
defined by f, = E°(P :  :v), for v € ay.. Then the X(P)-configuration
H, defined as in the text preceding Definition 6.3, is real.

Proof: Inview of [14], Eqn. (14.12), it suffices to prove a similar statement
for the function f of [14], Lemma 14.3. We observe that in the proof of
the mentioned lemma, #€; is shown to be contained in a X(P)-configur-
ation #". This configuration is given as #” = t~'H U H' with t € W.
Now # is real by [14], Cor. 14.2. Tt therefore remains to show that #’ is
real. For this it suffices to show that the singular locus of the normalized
C-function C‘,’)‘ p(t : ) is the union of a real X-configuration. By [14],
Eqn. (14.6), it suffices to show that the singular loci of Cpp(1 : )~ !and
Cpp(t : -) are likewise. In view of [5], Cor. 15.5, it suffices to show that
the functions Cgp(1 : DEL for Q € J’;‘“‘, all have a singular locus equal
to the union of a real X-configuration. The latter assertion follows by the
argument following the proof of Lemma 3.2 in [12]. O

We write E°(P -) for the meromorphic C* (X, Hom(°C, V;))-valued
function on ag. given by
E°(P:v:x)Yy =E°(P:vy:v:x),

for x € X, ¢ € °C and generic v € ag.. Following [12], Eqn. (2.3), we
define the dualized Eisenstein integral as the C*°(X, Hom(V;, °C))-valued
meromorphic function on ag. given by

E*(P:v:x):=E°(P:—v:x)".

Finally, we introduce the partial Eisenstein integrals £, (P : -),fors € W,
as in [12], Eqn. (2.9), see also [14], Eqn. (14.11). Let 1 ® t denote the
natural representation of K in Hom(°C, V;) >~ °C* ® V,. Then the partial
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Eisenstein integrals are meromorphic C* (X, : 1 ® t)-valued functions
on ag.. Moreover, for v € ag. aregular point, the partial Eisenstein integral
E. (P :v)is D(X)-finite. By [14], Lemma 5.3, it therefore has converging
expansions like (6.1), but with g: (Q, v | E4 (P : v))aC®(Xp v+ : 1®1)-
valued polynomial function on apq; see [14], Def. 2.1, for details. The
exponents of the partial Eisenstein integrals are restricted by

Exp (P,v | E4 (P :v)) Csi— pp— NA(P),
for all v € ‘'W. Finally, according to [14], Eqn. (165),

E°(P:v) = ZEJF,S(P :v) on X,.
seW

The mentioned properties determine the partial Eisenstein integrals com-
pletely, see [14], Lemma 2.2.

We shall now investigate the dependence of the Eisenstein integrals on
the choice of ‘W. To this purpose, let* W be a second choice of representatives
for W/Wknp in Ng(ag). We denote by ‘°@ the associated space define
by (8.1), with ‘W in place of ‘W. The associated Eisenstein and partial
Eisenstein integrals are similarly indicated with a backprime.

Lemma 8.4 There exists a unique linear map R : °C — ‘°C such that
E°(P:v:x)=‘E°(P:v:Xx)oR, (8.2)
forall x € X and generic v € ay.. The map R is an isometric isomorphism.

Proof: For every w € W, let ‘w denote the unique element of ‘W that
represents the same class in W/Wgny. Then for every w € ‘W we may
select an element ,, € K, such that ‘w € [,wNkngy (ag). The right regular
action R;, : C®(M) — C*°(M) induces a linear isomorphism R,, from
C®(M/M N wHw™" : 19) onto C®(M/M N‘wH'w™' : 75). Let R : °C
— ‘°C be the direct sum of the isomorphisms R,, for w € W. Then
obviously R is an isometry. Let ¥ € °C. Then by Proposition 8.1 the map
g:vi>‘E°(P :v:x)oRy belongs to é“?,yp(X : 7). Moreover, it follows
from the same proposition that

Qupp (P, w | gus -, m) = (RY)v, (m), (8.3)
forv ereg,(g), w € Wand m € M. Also, by the definition of R,
(RY)vw(m) = Yy (mly), (8.4)

for each w € ‘W and all m € M.
On the other hand, still by Proposition 8.1, the map f : v +— E°(P :

v : x)y¥ belongs to ngp(X : 7) as well, and for v € reg,(f), w € W and
me M,

CIUpr(Pv w | fl)’ : 7m) = l[/w(m)
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This equation remains valid if we replace w in the expression on the left-
hand side by any element w of wNgnp(aq), see [14], Lemma 3.7. Now
‘w = [,w, for some w € wNknp(ag); hence, applying [14], Lemma 3.6,
with v = w and u = [,,, we obtain that

CIUpr(Pv \U) | fva ) m) = 1/’w(”nlw) (85)

Comparing (8.5) with (8.3) and (8.4) and applying the uniqueness statement
of Proposition 8.1, we infer that f = g. On the other hand, if R : °C — ‘°C
is a linear map such that (8.2) is valid, then f = g, hence (8.3) and (8.5)
are equal. This implies (8.4) and shows that R is uniquely determined by
the requirement (8.2). |

Lemma 8.5 Let P € P™" and s € W. Then, for all x € X,y € X and

: *
generic v € Ay, the element

E s(P:v:x)E*(P:v:y) € End(V;) (8.6)
does not depend on the choice of ' W made in the text preceding (8.1).

Proof: Let R be the isometry of Lemma 8.4. From the fact that the partial
Eisenstein integrals are uniquely determined by the properties mentioned
in the text above Lemma 8.4, it follows that they satisfy the transformation
property (8.2) with on both sides E° replaced by E, ;, for s € W. See
also [14], Lemma 2.2.

On the other hand, taking adjoints of the homomorphisms on both sides
of (8.2), and substituting —¥ for v, we obtain that

E*(P:v:x)=R*-‘E*(P:v:x),

for all x € X and generic v € ag.. From the unitarity of R it now follows
that the endomorphism (8.6) does not change if we replace E ; and E* by
‘E, ; and ‘E*, respectively. |

In the following we consider Eisenstein integrals associated with the
standard parabolic subgroup Py € £™", but suppress the symbol P in the
notation. Moreover, we agree to write £, for E, ;. We recall from [12],
p. 41, that the meromorphic functions v — E°(v) and v +— E, (v) have
singular sets that are locally finite unions of real X-hyperplanes in ag.. Let
Jf be the collection of the singular hyperplanes for E°(-) and E, (). Let
t € WT(X) be a W-invariant even residue weight, see the text following
(2.1). Associated with the data 7, t, we define, for each subset F C A
and every element A € *a} ., the residue operator Res| tay, 3 in §5, with

respect to the normalization of the Lebesgue measures di of af and dup of
ay4 given at the end of that section.
The data X©*, F and J# determine a finite subset A(F) of —R, F, the

negative of the closed cone spanned by F, see [12], Eqn. (5.1), where
between the set brackets the requirement ‘for some ¢’ should be added. We
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now recall, from [12], Eqn. (5.7), the definition of the kernel K}.(v : x : y)
€ End(Vy), for (x, y) € Xy x X and generic v € ap,., by

Ki(vix:y) = Z Restx+aqu Z E (s-:x)oE*(s-:y) | (A + V).
reA(F) sewl

8.7)

From the definition it follows that v > K% (v : - : -) is a meromorphic
function on af,. with values in the space C*(X; x X : 7 ® t¥) and with
singularities along the hyperplanes of a real X,(F)-configuration. Here
T ® t* denotes the tensor product representation of K x K in End(V;) =~
Ve ®@ V2

The residue operators in (8.7) depend on the choices of dA and du g, see
the discussion in Sect. 5; therefore, so does the kernel K.

Lemma 8.6 Letthedata (G, H, K, 7, ag, Y1) be fixed as above. Let F C A
and let t € WT(X) be a W-invariant even residue weight. These data
completely determine K. djur dy, the product of the kernel K., defined by
(8.7), with the product measure djip dy on iap, x X.

In particular, K. diur dy is independent of the particular choice of ‘W,
made in the text preceding (8.1), and of the choices of B and dy, made in
Sects. 2 and 5.

Proof: Put

kp(+) = Z Ei(s- :x)oE*(s- 1 y).

sewl

It follows from Lemma 8.5 that kr depends only on the data mentioned,
and not on ‘W, B, dy. Moreover, from (8.7) and (5.4), it follows that

Kip(v:x:dupdy = Y Resh, o (kr (- +v)(d0)dy.

reA(F)

The occurring residue operators only depend on the data mentioned, and
the product measure dA dy only depends on the choice of (G, H, K, ag), by
the discussion in Sect. 5. All assertions now follow.

Remark 8.7 Since dur and dy do not depend on the choice of ‘W, it follows
that the same holds for the kernel K’.. This fact has already silently been
exploited in [12], text below Lemma 8.1, where the choice of ‘W is adapted
to the set F.

According to [12], Cor. 10.10, the kernel K. (v : x : y) extends smoothly
to all of X in the variable x; more precisely, K is a meromorphic
C>®(X x X,End(V;))-valued function on a]’;qc with singularities along
real X, (F)-hyperplanes.
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From [12], Eqn. (5.5) and (5.8), we recall the definition of the linear
operator T from C°(X : 7) to C*(X; : 1) by

Tr f(x) = W] t(ag,) / /XK}(V cx ) f(y) dy dpp(v),  (8.8)
6F+iu*1}q

for f € C(X : 1) and x € X,. Here dur is the translate by ¢ of the
Lebesgue measure on i a}’;q normalized as in Sect. 5. Moreover, ¢ is a point

in the chamber a}fq, arbitrary but sufficiently close to the origin.

Remark 8.8 If G has compact center modulo H, then apq = {0} and
t(an) = 1. Moreover, the above is to be understood so that integration
relative to dua means evaluation in 0; also, ex = 0. In this case we agree
to write K\ (x : y) = K\ (0 : x : ), so that the formula for T becomes

T4 fx) = | W] /X K'y(x 2 y) fO) dy 8.9)

for f € C°(X:1)and x € X;.

In [12], Cor. 10.11, it is shown that in fact 77 maps into C*°(X : 7) and
defines a continuous linear operator C°(X : 1) — C*(X : 7). Moreover,
by [12], Thm. 1.2, it follows that

I=Y"T; on C*X:. (8.10)

FCcA

Lemma8.9 Let (G, H, K, 1, a,, %) and (F, t) be data as in Lemma 8.6.
These data determine the operator Ty, defined by (8.8), completely.

Proof: This follows from Lemma 8.6. O

We finish this section with a discussion of how the kernels K. and the
operators T} behave under isomorphisms of reductive symmetric spaces.

Let ¢ : G — ‘G be an isomorphism of reductive groups of Harish-
Chandra’s class, and put ‘H = ¢(H), ‘K = ¢(K), 't := 109!, ‘ay =
@(agy). Let ‘X be the root system of ‘a, in ‘g and let 'W denote the associated
Weyl group. The isomorphism ¢ naturally induces the linear isomorphism
ag. — ‘a;. given by

\ —
V> Vi=Vo@ l|\aq.

This isomorphism restricts to an isomorphism of root systems ¥ — ‘X. Let
% be a positive system for ¥ and ‘X the corresponding positive system
for ‘Z. Let A and ‘A be the collections of simple roots for ¥ and ‘Tt
respectively. We denote by ‘F the image in ‘A of a subset F C A.

The map ¢ also naturally induces a bijection from WT(Z) onto WT(*X),
which we denote by 7 — ‘t. If 1 € WT(X) is W-invariant and even, then
‘t € WT('X) is ‘W-invariant and even.
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We put X = G/H and ‘X = ‘G/'H. Then the map ¢ factors to a dif-
feomorphism ¢ : X — ‘X. This diffeomorphism induces the isomorphism
@y C¥(X 1) — C°('X : ‘1), given by f > fop~!. It maps C(X : 7)
onto CX(*X : ‘). We select invariant measures dx and ‘dx on X and ‘X,
respectively. As in Sect. 5, this choice determines Lebesgue measures di
and ‘dA on i a, and i ‘az, respectively. As in Sect. 2 we fix bilinear forms
B and ‘B on g and ‘g, respectively. These choices determine densities du
and durp on i a}’;q and i‘ai‘Fq, respectively.

Let K\\’F be the analogue of the kernel K. for the data (‘G , ‘H, ‘K, ', ‘ag,
'S+, VF ' dx, Y B) inplace of (G, H, K, T, aq, T, F, t, dx, B). Moreover,
let T\\I’p be the associated analogue of the operator T}.

Lemma 8.10 Let notation be as above. Then

K (v 9 0 p(0)@" (dup) 3 (dy) = Kip (v 2 x : y)durpdy,  (8.11)

for x, y € X and generic v € ay.. Moreover, the corresponding operators
are related by

Tloge =0Tt  on  CP(X:1). (8.12)

Proof: 1In view of Lemma 8.6 it suffices to prove the identity (8.11) in case
‘W, dx and ‘B are compatible with ‘W, dx and B, via ¢. It then follows
from the definition of the kernels that

KL @) p(y) = Kh(v i x 0 y),

whence (8.11).
Equation (8.12) now follows by combining (8.11) with (8.8) and using
the relations induced by ¢ between the data associated with G and ‘G. 0O

9. The generalized Eisenstein integral

In this section we shall use the vanishing theorem to give an alternative char-
acterization of the generalized Eisenstein integral defined in [12], Def. 10.7.
This characterization, which is in the spirit of Proposition 8.1, will be used
throughout the paper.

For the moment we assume the G has compact center modulo H. Then,
with notation as in Remark 8.8, we define the space

A'X 1) i=span {K\ (-t v |y e Xy, ve V). 9.1)

This space equals the space C, of [12], Eqn. (10.2), with F = A and v = 0.
It is finite dimensional and consists of ID(X)-finite functions in C*(X : 1),
see [12], Lemma 10.1. We adopt the new notation (9.1) instead of C, to
avoid confusion with the space defined by (8.1).
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Lemma 9.1 Ler G have compact center modulo H, and let t € WT(X)
be a W-invariant even residue weight. Then the space A'(X : 1) equals the
image T} (C°(X : 1)).

Proof: From [12], Lemma 10.2, it follows that K’ extends to areal analytic
function X x X — End(V;) >~ V; ® V} which is t ® t*-spherical.

By density of X in X, continuity of Ky and finite dimensionality of the
space A'(X : 1), it follows that the latter contains the function K\ (- : y)v
for every y € X and v € V. This implies that 7§ maps C2°(X : 7) into
AX 1 7).

To see that the converse inclusion holds, suppose that & is a linear
functional of A’ (X : 7), vanishing on im (7). Then it suffices to show that
E=0.

For every x € X and n € V}, let &, , denote the linear functional
¢ — n(p(x)) on A'(X : 7). The intersection of the kernels of these linear
functionals, asx € Xandn € V7, is zero. Therefore, these linear functionals
span the dual of A’ (X : 7), and we see thatthereexistn > 1, x,... ,x, € X
and ny,...,n, € V', such that § = 27:1 &x;.n;- In view of (8.9), the fact

that & vanishes on im (7} ) implies that
> [ ki s dy =0
=17

for all f € CX(X : 7). By sphericality of K/, in the second variable,
the above integral also vanishes for all functions f € C°(X, V;). Hence,
Z,’ njKi\(x; : -) = 0 as a function in C*(X, V). It follows that
E(Ka(- : y)v) =0, forall y € X, and v € V;. In view of (9.1), this
implies that £ = 0. O

We now assume that G is arbitrary again. Let F C A and let F'W C
Nk (aq) be a choice of representatives for Wp\W/Wgny. If t € WT(XZ) we
denote by *# the induced residue weight of Xz, see [11], Eqn. (3.16). Let ¢
be W-invariant and even; then * is Wr-invariant and even.

Ifvefw, let KiXp, :m:m), for mym € Xp,, denote the
analogue of Ky for the symmetric space Xp,,. Note that M has a compact
center, so that the discussion of the beginning of this section applies to
Mp instead of G. In particular, the data (Mp, Hr, Kr, TF, *afq, E;E, *1)
determine the finite dimensional space

A (X Tp) = span {K;’(Xp,v coim) | m' e Xpa i)
Note that this space was denoted Cp, in [12], Eqn. (10.7). We define

AL = Dyeryw A Xpy: TF); (9.2)
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this formal direct sum was denoted Cr in [12], Def. 10.7. The natural pro-
jections and embeddings associated with the above direct sum are denoted
by

Py, Ap = AT Xpy i tp) and gy AKXy ) = AL

for v € ©'W. Given ¢ € A} we shall also write ¥, := pry. V.

The generalized Eisensteinintegral E. (¥ : v), definedin [12], Def. 10.7,
is a function in C*°(X : 1) that depends linearly on ¥ € eAf;f and meromor-
phically on v € aj .. We shall not repeat the definition here, but instead
give a characterization based on the vanishing theorem, Theorem 6.11. The
following result will allow us to show that E.(y : -) belongs to the space
of families é‘gyp(X : 7) introduced in Definition 6.6 with Q = Pp. For its
formulation, we recall some notation from [12], §8.

In the rest of this section we write E°(A : x) := E°(Py : A : x). Similarly,
ifv e F'W, we write E°(XF,y : v : m) for the normalized Eisenstein integral
of X, r., associated with the minimal parabolic subgroup M;r N Py. The
analogue of the space °C for the latter Eisenstein integral is

°Cry 1= Buewy, CO(M/MNwvHY 'w™': 7). (9.3)

Here Wr,, C Ny,nk(ag) is a choice of representatives for Wr/Wg .~y 15
see [12], Eqn. (8.2). Adapting the set ‘W if necessary, we may assume that
‘Wr, C W. Then ‘W is the disjoint union of the sets W, for v € W,
see [12], Lemma 8.1. Accordingly, ir, denotes the natural inclusion
°Cp,y — °C, defined as the identity on each component of (9.3). More-
over,

°C= 69ueFW iF,v(OGF,v)- (94)

We denote the associated projection operator °C — °Cp, by prp,, for
F
ve "W,

Lemma 9.2 Let L be a Laurent functional in :M(*a*gqc, Y e ®°C. Then
the family g : ap . — C*(X : 1), defined by

g, x) = LIE°(v+ - :x)]

belongs to 8?;’ (X : 1), with Y = supp L. Moreover, if v € W, then for v
in a dense open subset of aj}qc,

Gv—py (P, v | 8o X,m) = LIE°(Xipy: - +v:im)opry,]. 9.5)

forall X € apqandm € Xp,, 1. Herepry , denotes the projection associated
with (9.4).
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Proof: It suffices to prove the result for a Laurent functional of the form
L =L @Y, with L € M(*afye, ZF)jy, and ¢ € °C. Define the family
fby flv:x):=E°(v:x)y.

It follows from [9], p. 52, Lemma 14, that there exists a locally finite
collection #¢ of X-hyperplanes in ag. and a map d : # — N such that f
belongs to M(aqc, H,d, C®°(X: r)) From[14] Lemma 13.1, applied with
Q = Py, it follows that g is a meromorphic function on a7, with values
in C*(X : 7).

It follows from [14], Lemma 14.5, that there exists a 6 € Dp such
that f belongs to Sgyp(XJr © T ¢ &)nglob, see [14], Def. 13.10, for the
definition of the latter space. According to [14], Thm. 13.12, this implies
that g € gn F Y(X+ T)glob- We conclude that g € 8 (X 7).

The family f equals the family fy defined in [14] Prop. 15.4. It follows
from that proposition, applied with Q = Pp and with /£’ in place of L,
that (9.5) holds for each v € ¥'W, generic v € Ofqc and all X € af, and
m € Xpy 4. Combining this with [14], Theorem 7.7, Eqn. (7.14), we see
that (9.5) holds for all v in a dense open subset of aj;qc, every v € F'w,
X €ap andallm € Xp, 1. O

Theorem 9.3 Let € A;f. Then g : v = E3(y : v) is the unique family

in Sgyp (X : ©) with the following property. For all v in some non-empty open
subset of a’gqc and eachu € ¥'W,

Qvpr(PF, u | gv)(X’ m) = l//u(m)’ (X € ana m e XF,U,+)‘ (96)
Remark 9.4 1f F = A and G has compact center modulo H, then arq = {0}

and f +— fy defines a bijection from 8;“’ (X : 7) onto A(X : 1), the space
of D(X)-finite functions in C*°(X : 1), see Remark 6.8. Moreover, W
consists of one element which one may taketobe 1, Mg/ MrNH ~ X, and
A*’ ~ A(X : 7). Finally, with notation as in the above theorem, gg = ,
o) that Y — E%(y : 0) is the inclusion map A (X : 7) = A(X : 7).

Remark 9.5 In the proof of Theorem 9.3, we will encounter the set

AXFy, F) C —RLF, 9.7)
which is defined to be the analogue of the set A(A) of (8.7), for the data
Xrp, “arg, 1) in place of (X, aq, X1).

Proof: Uniqueness follows from the vanishing theorem, Theorem 6.11;
hence, it suffices to prove existence.

In view of (9.2), we may assume that € CA*’(XF,U : ) for some
v e F'W. According to [12], Eqn. (10.9), we may then express ¥ as follows

Ym)y= > Res[E°(Xpy:—- :m)®()],  (meXp,),
reAXF, F)

(9.8)
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where
k
P) =Y ELXpy i —himuy € °Cru (1 € aly),
j=]

with {m, ... , m} afinite subset of X, +, and {vy, ... , v} a finite subset
of V;. We now note that

Ry = Z Res,’ 9.9)

reAXFw, F)

is a Laurent functional in M(*a’gqc, Y F)j,s moreover, according to [12],
Def. 10.7, the generalized Eisenstein integral is given by

g, x) = Rp[E°(v — - 1 x)oip,®(-)].

Define the Laurent functional £o € M (*afqc, ZF)jy, @ °C by

Loy 1= Rp[p(—=-)eipy ®()], (9.10)

for ¢ € M(*apy., Xr) @ °C*. Then the generalized Eisenstein integral is
given by

g, x) = Lo[E°(v + - : x)].

It now follows from Lemma 9.2 that g € é‘?p(X : 7) and that, for v in an
open dense subset of a*gqc andall X € apqand m € Xp, 4,

qv—pF(PF’ u | 8v, X’ m)
= °CO[E"(XF,U v+ - m)oerﬁu]
= Rp[E°Xpp:v— - im)opry, oip, ®(-)]. 9.11)

If u # v, then the latter expression equals 0. Since also ¥, = 0, the identity
(9.6) then follows. On the other hand, if u = v, then pry, oip,®(:) =
®(-); hence, (9.11) equals the expression on the right-hand side of (9.8),
and since ¥, = ¥, the identity (9.6) follows. O

Corollary 9.6 There exists a locally finite collection Ho of hyperplanes
in oy such that the following holds. Let € A » and let g be defined
as in Theorem 9.3. Then the meromorphic function v +— g, is regular
on the complement of UHy. Moreover, for every u € 'W, X ¢ apq and
m € Xp,y 4, formula (9.6) holds for all v € af . \ UHo.
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Proof: Let 1 denote the image of 1 in W/~ p,p,, see (7.1). Let
V= qi,O(PF’u | g)(v’ X’m) (912)

be the function in M(aj}qc, 3, (F), V;), defined as in Proposition 7.1.
By [14], Thm. 7.7, there exists a locally finite collection #¢, of hyper-
planes in a7 . such that v — g, is regular on ay,. \ U, and for every

uefw alXeargandm € Xpy 4,

CILO(PF, u | g)(V, Xa m) = CIUpr(PF’ u | 8vs X? m)v (913)

for all v € af,. \ UHo. By linearity in  and finite dimensionality of the

space A;’, the collection #, can be chosen independent of . Combination
of (9.13) and (9.6) gives that the meromorphic function (9.12) is constant
and equal to ¥, (m). In view of (9.13) it now follows that (9.6) holds for all
X eapg, meXp, +andv € a*gqc \ UH. O

From the uniqueness statement in Theorem 9.3 it follows that the general-
ized Eisenstein integral E$.(y) € 8;” (X : 7) depends linearly on € A ..
We agree to write E3.(v : x)y := E%. (¥ : v : x), for x € X and generic
V € @y Accordingly, we view the generalized Eisenstein integral as
a meromorphic function on a}.. with values in C*(X : 7 ® 1); here 1 ® 1

denotes the tensor product representation in Hom(eAf;f, Vo)~ V., ® (.A)}lf)*.
In accordance with [14], Def. 10.7, we put

E},(v:x) = Ep(v:x)oip, € Hom(A ' (Xp, : 7)., Vi), 9.14)
for v e "W, x € X and generic v € aj..

Lemma 9.7 Letve "Wandlety € A'(Xp, : Tr).

(a) There exists a Laurent functional £ € M(* a’;qc, )i @ °Cry such
that

Y(m) = LIE°(Xp,y: - :m)], (m € Xpo). 9.15)

(b) There exists a functional as in (a) with support contained in A (X, F),
the set introduced in Remark 9.5. In particular, the support of this
functional is real.

(c) If L is any Laurent functional as in (a), then, for all x € X,

Ep vy = £[E°(v 4+ - 1x) oip’v]
as an identity of meromorphic functions in v € a’;qc.

Proof:  Asinthe proof of Theorem 9.3 we may express i by (9.8). Let £ be
defined as in (9.10) and let the Laurent functional &£ € M ("t Tr)jy, ®
°CF,y be defined by Lo = Lo(¢(-) o prp,), forp € M(*ajy., Zp) ®°Cr,.
Since pry. , oify = I on °Cg,y, it follows from (9.10), (9.9) and (9.8) that
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L satisfies (9.15). We observe that supp £ C supp Rr C A(Xpy, F); in
particular, /£ has support contained in *a’;q. This establishes (a) and (b).
Now assume that £ is a Laurent functional as in (a). Let .£” be the Laurent
functional in M (*a%qc, T )i, ® °C defined by L'9p = L(p(-)oip,). Then
it follows from Lemma 9.2 that the family g : af,. x X — V; defined by

g, x) = LTE°(v+ - 1 0)]

belongs to 8;yp (X : 7) and satisfies, for u € W, v in an open dense subset
of a*gqc and all X € apq and m € Xp,,

Gupr (Prou | 80) = L[E°(Xpo ) oprp,]
= L]E°(Xpy: *)oPrp,oipy]
= prg, olp .
Here we note that the last equality is obvious for u # v, since then
pre,oipy = 0. On the other hand, if u = v, then prp,cip, = I on

A "(XF, : T7) and the equality follows from the assumption on . It now
follows from Theorem 9.3 that g(v, x) = E3 (v : X) oip . |

Combining the above result with Lemma 8.3, we obtain the following
information on the asymptotic coefficients of the generalized Eisenstein
integral. We put

Y(F) :=Uyeryw AXpgy, F). (9.16)
This is a finite subset of —IR, F, which in turn is contained in *aj}q.

Lemma 9.8 Let F C Aandy € A?. The family f : (v, x) — E%.(v : x)¥
belongs to SE’YYP( (X 1 1). Moreover, the X, (F)-configuration #y, defined
in the text preceding Definition 6.3, is real.

Put k = deg,f and let Q € P, u € Ng(aq). Then, for every o €
W/~oip- and all § € —o - Y(F) + A.(Q),

qa’g(Q, u | f) € Pk(Cqu) (029 M(a;qc, Jff, df, COO(XQ’M . TQ)). (9]7)

Proof: From Theorem 9.3 it follows that f € 8?}’ (X : 1), with Y a finite
subset of *a’gqc.

For the first two assertions we may assume that f, = E}. (v){, with
¥ € A'(Xpy ). Select £ € M 0pges ZF)jgr ® °Cro as in Lem-
ma 9.7 (b). According to Lemma 8.3 there exists a real X-configuration #f
in ag. such that for every Y’ € °Cp.y, the family g : A > E°(V)ig, ¥/,
which belongs to 8(};yp(X : 1), satisfies #, C J¢. It now follows from
Lemma 9.7 (c), combined with [14], Prop. 13.2, that ¥ C Y(F) and that
Hy C Hp(Y(F)), with the latter set defined as in [14], Eqn. (11.6). It
follows from the mentioned definition and the fact that # and Y(F) are
real, that #r(Y(F)) and hence #; are real. It remains to establish (9.17).
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Let Q, u, o be as asserted. With a reasoning as above, it follows from
Lemma 9.7, combined with [14], Lemma 14.5 and Proposition 13.9, that
f is holomorphically o-global along (Q, u) (see [14], Definition 13.6).
Leté € —o - Y + NA,(Q). Then (9.17) follows by application of [14],
Proposition 13.8. O

10. Temperedness of the Eisenstein integral

In this section we show that the generalized Eisenstein integral E%.(v),
defined in the previous section, is tempered for regular values of v in ia7,.

Let us first recall the notion of temperedness. Following [5], p. 415, we
define the function ® : X — R by

O(x) = v E(xo(x) ),

where E is the elementary spherical function ¢, associated with the Rie-
mannian symmetric space G/K.
Moreover, we define the function Iy : X — [0, oo [, denoted 7 in [5], by

Ix(kah) = [loga|, (k€ K, a€c Ay, h € H). (10.1)

Definition 10.1 A D(X)-finite function f in C*(X : 1) is said to be
tempered if there exists a d € N such that

sup(1 + Ix) 4O~ £ < oo. (10.2)
X

The space of these functions is denoted by oAemp(X : 7).

The following lemma gives a criterion for temperedness in terms of
exponents. We assume that pmin c pmin jg a choice of representatives
for P /Wgnp and that ' W C Nk(ag) is a choice of representatives for
W/Wgnu. We also assume that P is a fixed element of #"".

Lemma 10.2 Let f € C*(X : 1) be a D(X)-finite function. Then the
following conditions are equivalent.

@) f € Aemp(X: 7).

(b) For each P € P™" and every & € Exp (P, e | f) the estimate Re& +
op < 0 holds on aj{(P).

(c) For each v € W and every & € Exp (P, v | f) the estimate Re& +
pp, < 0 holds on cq(Pl).

Proof: By sphericality and the decomposition G = ¢l Upcpmin K A:{( P)H,
see [3], Cor. 1.4 and top of p. 232, the estimate (10.2) is equivalent to the
requirement that, for each P € P™",

sup (1 + |logal)™®(a)~'|| fla)|| < oo.

aeA$ (P)
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By [5], Prop. 17.2, there exist constants C > 0 and N € N such that, for
each P € p™n,

a " <O@) < C(+|loga)¥a™ " (a e AL (P)).

Therefore, (10.2) is equivalent to the existence of a constant d' € N such
that, for each P € P™",

sup (1 + |logal)~"a’ | fl@)| < oc.

aeA$ (P)
According to [3], Thm. 6.1, this condition is in turn equivalent to (b).
This establishes the equivalence of (a) and (b), for any choice of P™".
The equivalence of (b) and (c) follows from the observation that {v=' P,v |
v € W} is a choice of representatives for 5’;“1“ /Wknan combined with the
fact that Exp ™' Piv,e | f) = v 'Exp(P;,v | f), for v € ‘W, by [14],
Lemma 3.6. |

If G has compact center modulo H andt € WT(X) is a W-invariant even
residue weight, then according to [12], Lemma 10.3, there exists, for every
choice of Hilbert structure on the space A'(X : 7), a unique endomorphism
a = o' of this space, such that

Ki(x:y) =ex)oaoce(y), (10.3)

forx, y € X, . Herethe mape(x) : A'(X : 1) — V,isdefinedby ¢ — ¢(x).
The corresponding function e, with values in

Hom(A' (X : 1), V;) =V, ® A (X : 7)%,
is a T ® 1-spherical real analytic function on X. We recall from [12],
Lemma 10.3, that « is self-adjoint and bijective.

In the following we assume that t € WT(X) is a W-invariant even
residue weight and that F C A. We equip each finite dimensional space
A*’(Xp,v : 1), for v € W, with a positive definite inner product. More-
over, we equip the direct sum space A*F’, defined by (9.2), with the direct
sum inner product, denoted (- | - ). Here and in the following, we use a bar
in the notation of an inner product to indicate its sesquilinearity. Moreover,
all such inner products will be antilinear in the second variable.

Let a}”v = ar,, be the analogue of the endomorphism « for (Xg,, TF),
and letoe*F’ = o € End(A") be the direct sum of the apy, forve F. Then
a is self-adjoint and bijective. Moreover, according to [12], Prop. 10.9, see
also Lemma 10.2, we have, for x, y € X,

Ki(v:ix:y)=Es(v:x)oapoER(v:y) (10.4)

as an identity of End(V;)-meromorphic functions in the variable v € aj..
Here E7. denotes the dual generalized Eisenstein integral, defined by

Ep(v:y) = En(—p:y)* € Hom(Vy, A}), (10.5)

for y € X and generic v € aj.
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Lemma 10.3 There exists a locally finite collection F, of affine hyper-
planes in ap ., such that v — E}.(v) is regular on oy . \ U, and such
that the following holds. For every v € o . \ UH,

span{Ex(v: y)v |y e X, ve Vo) = Af (10.6)

Proof: Let #, be the collection of hyperplanes of Corollary 9.6 and let F#¢;
be the image of #, under the map v — —7v. In view of (10.5) the function
v = E7%(v) is regular on the complement of UF.

Letv € aj,. \ U and let ¢ € A L. Assume that
(YIEr(v:yv)y=0 forall yeX,,veV,.

Using (10.5) we see that E%.(—v)y = 0. It now follows from Corollary 9.6
that v, = 0 for each u € 'W. Hence, ¥ = 0 and (10.6) follows. O

In the following we write p = pp,, where Py denotes the standard
parabolic subgroup in L.

Lemma 104 Let v € V, and y € X,. Then the family f : (v,x) >

Ki.(v : x : y)v belongs to 8;“’ (X : ©). Moreover, for every v € reg f and
eachu e W,

Exp (Po,u | f,) C W'+ A(F)) — p — NA, (10.7)
where A(F) denotes the finite subset of —R_F introduced in (8.7).

Proof: The first assertion follows from (10.4) and Theorem 9.3.

According to [12], Prop. 3.1, the function A — E*(Fp : A : y)v belongs
to the space M(af;c, Y) ® °C(7). Combining this with [14], Lemma 14.3,
we deduce that the family / : ag. x X} — V., defined by

h(ux)= Y Epo(Po:h:0)E (P Aty

sewF

belongs to &P (X, : 7), hence to C™ (X, : 7). Using [14], Eqn. (14.13),
we see thatif s € W, u € NA and u € Nk(aq), then

G (Po,u|h) #0 = se W". (10.8)

In the notation of Sect. 5, define the Laurent functional £ € M (*a} qc ) four
by

— t .
L = Z ResHa}q,
AEA(F)
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then supp L C A(F). It follows from (8.7) that f = L.h. From [14],
Prop. 13.2 (b), it now follows that there exists an open dense subset 2 C aj.
such that, for v € Q,

EXP(POaM|fv)C{S(V+A)_0_M|SEW»)\EA(F)»
/*’L ENAv qS,M(PO’U | h) #O}

In view of (10.8) this implies that the inclusion (10.7) holds for v € .
From f € &, hyp (X : 7) it follows in particular that there exists a finite subset
Y C "ajy suchthat f € Cp i hylD(X+ : 7). The canonical map W — W/Wg
restricts to a bijection s — § from W’ onto W/Wg. For s € W! we put
E; = —sA(F) + NA. We now apply Lemma 7.2, with Q = Pp, P = Py,
so that W/ ~pj o~ W/Wp, and with E, as just defined, for 0 € W/Wg.
Then it follows that the inclusion (10.7) holds for v € reg f. |

Theorem 10.5 Let ¢ € A and p € Iy, (p>(an) Then g : (v,x) —

pPW)EL (v : )Y defines afamlly in& le(X 7). Moreover, for each v € ‘W
and every v € reg g,

Exp (Po, v | g,) C W (v + A(F)) — p — NA, (10.9)
where A(F) denotes the finite subset of —R F introduced above (8.7).

Proof: The first assertion follows from Theorem 9.3. By Lemma 10.3 there
exists a vy € aj,. and elements y; € X and v; € Ve, for1 < j <r, such
that ap o E.(vo 1 yj)vj, 1 < j < risabasis for Ay . Define meromorphic
A !-valued functions on anC by ¥ :=apo Ep(- 1 yjvj, forl < j<r
By standard arguments involving analyticity and linear algebra it follows
that (y;(v) | 1 < j < r) is a basis for A?, for v in an open dense subset
of af,.. Moreover, ¥ € A? may be expressed as a linear combination
VS lejsr cj(v)¥j(v), with meromorphic functions c; : a*gqc — C.
Using (10.4) we now deduce that

r

g :ix) = c;)pMKL(v 1 x:y)v;,

j=1

as an identity of meromorphic functions in the variable v € af,.. From
Lemma 10.4 it follows that there exists a dense open subset €2 C aj. such
that v —~ g, is regular on €2 and such that, for v € 2, the inclusion (10.9)
is valid. From g € & yp(X 7) it follows that there exists a finite subset
Y C *ajy. such that g € C}; (X, : 7). By the same argument as at the
end of the proof of Lemma 10 4 we now conclude that the inclusion (10.9)
is valid for every v € reg g. O
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Corollary 10.6 Let notation be as in Theorem 10.5. Then, for each v €
oy, Nregg,

&v € Aemp(X : 7).

Proof: Letv ei aj;q Nreg g. Then from (10.9) it follows that every (P, v)-
exponent of g, is of the form & = s(v+n) —p—pu, withs € W', n € A(F)
and © € NA. Now A(F) C —R,F, hence sn € —R, X7 It follows that
Reé+ p=sn—pnu e —RA, hence Re& + p <0on A;(Po). In view of
Lemma 10.2, this implies that g, € Awemp(X : 7). O

11. Initial uniform estimates

In this section we shall derive estimates for the generalized Eisenstein
integrals E5.(v), with uniformity in the parameter v € a}’;qc, from similar
estimates for the normalized Eisenstein integral E°(L) = E°(Py : A). The
idea is that estimates of the latter survive the application of certain Laurent
functionals.

We start with an investigation of the type of estimates involved. For
0 € P, and R € R, we define

0H,(Q, R) == {v e aj,. |Re(v, @) <R, VaeZ(0)}

The closure of this set is denoted by a7,,(Q, R). It is readily seen to consist
of all elements v € a*QqC withRe (v, o) < Rforall ¢ € X,(Q).

In the following lemma we assume that S is a finite subset of a*Qq \ {0}
and we use the notation of Sect. 4.

Lemmall.l LetReR, p e l'IS(a*Qq), u € S(a*Qq) and n € N. Then for
every real number R_ < R and every § > 0 there exists a constant C > 0
with the following property.

Assume that V is any complete locally convex space, s a continuous
seminorm on 'V and b > 0 a constant. Moreover, let f : a*Qq(Q, R) —»V
be a holomorphic function satisfying the estimate

s(p(v) f(v)) < (1 + [v])"ePRev]]
forallv e a*Qq(Q, R). Then

s(u f(v)) < C(1 + |v])"ePe"Re,
forallv e a*Qq(Q, R.).

Proof: 1t suffices to prove this on the one hand for = 1 and p arbitrary
and on the other hand for p = 1 and u arbitrary. In the first case the proof
is essentially the same as that of Lemma 6.1 in [5], which is based on an
application of Cauchy’s integral formula.

In the second case the proof relies on a straightforward application of
Cauchy’s integral formula. O
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Let # be a X-configuration in a;C. For Y C *a*QqC a finite subset, we
define the %,(Q)-configuration #y(Y) = Jfaz) qc(Y ) in a*QqC as in (4.6),
with L = a*QqC and S =Y, see also [14], text preceding Cor. 11.6. Thus, for
V € ., We have

Ve Cl*QqC\UJfQ(Y) —
(VAeYVHe J#t:A+veH= L+ap,. CH}

Letnow £ € M(*ay 4 > 0 have support contained in the finite subset Y
of *aj,.. For any locally convex space V we have an associated continuous
linear operator £, as in (4.7). The following result expresses the continuity
with uniformity in the space V.

Lemma 11.2 Let #,Y, L be as above, and let d : # — N be a map.
Then there exists a map d' : Ho(Y) — N with the following property. For
any locally convex space V, the prescription

L fv) = LI + )]
defines a continuous linear operator
Lt M(ai, H,d, V) = M(ahe, Ho(Y),d, V).
Proof: This is Cor. 11.6 of [14]. O

A real X,(Q)-configuration 4’ in apqc consists of hyperplanes of the
form

H,, = {v € a*QqC | {a, v) = s},

with o € X,(Q) and s € R. The configuration #' is called Q-bounded
if there exists a constant sy € R such that H,; € #' = s > s, for all
o€ X,(0),s € R. See [11], text before Lemma 3.1, for the similar notion
for O minimal.

Lemma 11.3 LerQ € #,, P € P and P C Q. LetY C *ajy, be a finite
subset.

(a) If # is a P-bounded real X-configuration in af;c, then Hy(Y) is
a Q-bounded real %, (Q)-configuration in aj,.

(b) If #' is a Q-bounded real X, (Q)-configuration in Ugqcs then for every
R € R the collection {H € #' | HN ape(Q. R) # ¥} is finite.

(¢) If #'is as in (b), then for every R € R there exists a constant Ry > R
such that H N ap,(Q, R) #90 <= HNay (Q, Ry) # 0, for every
He #'.
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Proof: There exists ty € R such that the hyperplanes in J¢ are all of the
form Hg,, with B € X(P) and t € [fy,o0[. Let n € Y and assume that
—1 + Hpg, intersects ay, . in a proper hyperplane H ’. Then it follows that
the restriction & = f|q,, is non-zero, hence belongs to %, (Q). Moreover,
H = H,, with s =t — (B8, n). Let m be the maximum of the numbers
(B, m), for B € X(P)\ Xp and n € Y and put 5o = to — m. Then it follows
that every hyperplane from #,(Y) is of the form H,,, with @ € %,(Q)
and s > s¢. This establishes (a).

To prove (b), fixx € Z,(Q) andput Iy g ={s € R | Hyy € H, Hy 3N
d*Qq(Q, R) # 0}, for every R > 0. Then it suffices to show that I, g is
finite. Since #¢ is locally finite, the set I, g is discrete, and since # is
Q-bounded, the set /, g is bounded from below. If 1 € H, ; N Et*Qq( 0, R),
then s = (o, h) < R. It follows that the set I, g is bounded from above
by R. Hence, I, r is finite.

For (c) we observe that R < R' = I, g C I, p. Fix R* > R. Using
that /, g is discrete, we see that we may choose R, € | R, R’ [ sufficiently
close to R so that I, g, = I, g forall @ € X,(Q). The constant R, has the
required property. O

If #’ isa Q-bounded real ¥, (Q)-configuration in 0pqc- and d . H#H —N
a map, then, for R € R, we define the polynomial function g g 4 on a*QqC
in analogy with (4.3) by

d'(H
nQ,R,d’ = l_[lH( ),
H

where the product is taken over the collection of H € F’ whose intersection
with Et*Qq( 0, R) is non-empty; this collection is finite by Lemma 11.3 (b).
It follows from Lemma 11.3 (c¢) that 7o o = 7o g, a, for Ry > R
sufficiently close to R.

Proposition 11.4 Let Q € &, P € P"™ and P C Q. Let Y C *aj, be
a finite subset and let £ € M(*apqc, o)y, be a Laurent functional with
supp L C Y. Let Jt be a P-bounded X-configuration in ag., d : # — N
a map, and let d' : Hy(Y) — N be associated with the above data as
in Lemma 11.2. Let M > max,cy |Ren| and assume that R, R" € R are
constants with Y + a*Qq(Q, R) C a(’;(P, R_) for some R_ < R.

There exists a constant k € N and for every n € N a constant C > 0
with the following property.

If V is a complete locally convex space, s a continuous seminorm on 'V,
b > 0 a positive constant and ¢ a function in M(ay., #,d, V) satisfying
the estimate

s(Tpra(M)P(R)) < (14 [A])"e"Re
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for all & € ay(P, R), then the function L.¢ € M(azqc, Ho(Y),d', V)
satisfies the estimate

5o k.0 (V) Lyp(1) < C(1 + |v])" M PRV
forallv € ap, (O, R).

Proof: It suffices to prove this for the case that supp £ consists of a single
point Ay € Y. Let #, be the collection of H € #f containing Ay + a*QqC.
Then for every H € #, there is a unique indivisible root ay € Xy N X(P)
such that H = A + (ai)(c. We define the affine function /g : aj;C — C
by Iz(A) = (A — Ao, ag). Then H = ;' (0). We define the polynomial
function qq : ag. — C by

o= []m5".

He#Hy

From the definition of the space of Laurent functionals in M (* a*Q qc Y0)tur
supported at X¢, see §4, it follows that there exists a u € S(*a*Qq) such that
on a function f € (‘10|*a*Q qC)*] 0,, the action of the Laurent functional is
given by L f = u(q0|*a*Qqu)(k0). It follows that for ¢ € M(aéc, H,d, V)
and v € ap, .\ UHp(Y),

Lp(v) = L(p(- +v)) = ulqo(-)e(- +))(Ro) = u(qop)(Xo + v).

As in the proof of [11], Lemma 1.2, we infer that there exist a polynomial
function 7 € l'Iz,_(Q>(a*Qq) and finitely many ¢; € P(a*Qq) and u; € S(a(j),
all independent of V., s, b and ¢, such that

(V) u(qop) (Ao +v) = qu(V)uj(np,R,dw)()»o +v), (1L.1)
J

for v e a, (0O, R’). Multiplying both sides of (11.1) with a suitable poly-
nomial function we see that we may as well assume that 7 = momg r .,
for some 7 € I15, (g)(ap,). We obtain

oY (v) = Z q;(Wu;(7wp R.a®) (ko + V), (11.2)
J

where we have written ¢ = 7o gz L.
Let k be the maximum of the degrees of the polynomials g;. Then there
exists a constant D > 0, independent of V, s, b and ¢, such that for every j,

lg; ()| < D(1 + [v])F, (v e apye) (11.3)



504 E.P. van den Ban, H. Schlichtkrull

Put m = max,cy |Re 7| and fix § > 0 such that m +2§ < M. We may select
constants R, > R’ and R_ < R such that ¥ + apg(Q, R.) C az(P, R-).

Adapting R’_if necessary, we may in addition assume that
To.R.,d = TQ.R.d> (11.4)

see the text preceding the proposition.

Letnow n € Nand b > 0, and assume that ¢ satisfies the hypotheses of
the proposition. It follows from Lemma 11.1, applied with P in place of Q,
that there exist constants C; > 0, independent of V, s, b and ¢, such that

suj(pRa ®)M) < Cj(1 4 1), (1L.5)

for A € aj]‘(P, R_).
Using the estimate 1 + [Ag + V| < (1 4+ |A¢])(1 + |v|) and combining
(11.2), (11.3) and (11.5), we obtain

s(moW)Y(v)) < C'(1 4 [v])" e Revtm (v e a (0, R))),
with

C'= DY L+ [ra)".
7

From (11.4) we see that the function v is holomorphic on a*Qq(Q, R). We
may therefore apply Lemma 11.1 with v, 7o, C’ and [C'e?**?"]~ !5 in place
of f, p,u and s, and with R/, R in place of R, R_, respectively. Using that
m + 26 < M, we obtain the desired estimate, with C > 0 a constant that is
independent of V, s, b and . O

In the rest of the section we shall apply the above results to Eisenstein
integrals. We start with a suitable estimate for Eisenstein integrals associated
with minimal o -parabolic subgroups.

Lemma 11.5 Let P € PM". Then there exists a P-bounded real -
configuration J in ag. and amap d : 3 — N such that the function A —
E°(P : L) belongs to the space M(af;c, H,d, C*°(X) ® Hom(°C, V,)).

Let R € R and let p € Tlx(ay) be a polynomial such that the function
A+ p(A)E°(P : X) is holomorphic on a neighborhood of 63(15, R). Then
there exists a constant r > 0 and for every u € U(g) constants n € N and
C > 0 such that

IPOVE(P 2 s us )l < C(1 4 [a])" el ReAN, (11.6)

forall ) € ﬁ(’;(f’, R) and x € X. (See (10.1) for the definition of the function
Ix.)

Proof: First assume that T = 7y, defined as in [9], text after Eqn. (28),
with ¢ C K a finite subset. Then for x € A, the estimate (11.6) follows
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from [5], Corollary 16.2 and Proposition 10.3, combined with the fact that
E°(P : 1) = E'(P : 1), see [9], Eqn. (52). In view of the decomposition
X = KAq(eH), the estimate now follows for general x € X by sphericality
of the Eisenstein integral. Finally, for general t the estimate follows by
application of the ‘functorial’ dependence of the Eisenstein integral on t,
see [9], Eqn. (32). |

We can now prove the following analogous result for the generalized
Eisenstein integral.

Proposition 11.6 Let F C A, v € "W and let t € WT(Z) be a W-
invariant even residue weight.

There exists a Pp-bounded, real ., (F)-hyperplane configuration Hr in
a]’;qc and a map dr : Hp — N such that v — E%.(v) belongs to the space

M (e Hr. dp, C(X) @ Hom(A[, V;)).

Moreover, if R' € R and if p is any polynomial in ng(p)(a}q) such that

vi> p(WEL (V) is holomorphic on a neighborhood of ﬁ’;q(ﬁp, R'), then
there exist a constant r > 0 and for every u € U(g) constants n € N and
C > 0, such that

IPWES (v : u; x)[| < C(1+ [p])" e HREWDX), (11.7)
forallv e a’;,q(PF, R') and x € X.

Remark 11.7 This result is a sharpening of the estimate given in [12],
Lemma 10.8.

Proof: According to Lemma 9.7 (b, c), the generalized Eisenstein integral
may be expressed as

ES (X)) = LJE°(Py: - 1 X)oipy](), (11.8)

with £ € M(aqc, Xp)jy, ® °Cr,y a Laurent functional whose support is
contained in a finite subset Y C *a*Q q Let J#¢, d be associated with P = P,
as in Lemma 11.5. Let #r := Hr(Y) and dr := d’ be associated with
the data P = Py, Q = Pp, #, d, L as in Lemma 11.2, then J is a real
Pp-bounded X, (F )-configuration, by Lemma 11.3. The first assertion of
the proposition follows by application of Lemma 11.2.

Fix R € R such that a]’;q(lsp, RY+Y C a(’;(lso, R_) for some R_ < R.
Let r be the constant of Lemma 11.5 applied with Py, Rand 77 p ,in place
of P, R and p, respectively. Fix u € U(g). Then according to Lemma 11.5
there exist constants ny € N and Cy > 0, such that for all x € X,

170 5, g gV E°(Po = & 5 X) oipy|l < Co(l 4 [A[) 0 HREADKD,



506 E.P. van den Ban, H. Schlichtkrull

forall A € ﬁ;(f’o, R). Let x € X. We apply Proposition 11.4 to the function
¢ = @, from M(a}., #,d, Hom(°Cf,, V;)), given by

qc?
or =E°(Py: - tu;x)oipy,

with the constant b = Ix(x) and the seminorm s = C; 1e*”’|| - ||. Let
M > max,cy |[Ren|. Then we obtain the estimate

17 . g gy D L@ W < Cr(1 4 [w])"0HEelHREVFDIXE,

forv e a]’;q(Pp, R’), with constants k € N and C; > 0 that are independent
of x, v. We now note that

Li(py) = °C*(EO(P0 coolug x)OiF,v)(V)

= Lo(E°(Py: +)oiry)(0)(u; x)
= E%’v(v T U X)),

as a meromorphic identity in v € ap, .. The second of the above identities
involves the interchange of u and L., which is allowed by the continu-
ity of L, see Lemma 11.2. The third identity is obtained by application
of (11.8). Thus, we obtain, for all x € X and all v € a’;q(ﬁp, R), the
estimate

o . k R M)l
175, ga, WEZ, (v 11z )| < Cr(1 4 [v])"othetHReVHDE),

This proves the result for the particular polynomial p = 75 g, . For
p equal to a multiple of 75 L, the result now also follows, since any
polynomial from Py (aF,), d € N, canbe estimated from above by a function
of the form C(1 + |v])?.

Let p now be an arbitrary element of [Ty, () (a},) satisfying the }_1yp0th—
esis. Fix R\ > R'. Then an estimate of type (11.7) holds on g (PF, R')
with pr 5, R, dr in place of p. By application of Lemma 11.1 this implies an
estimate of the form (11.7), with the required dependences of the constants.

0

12. Symmetric pairs of residue type

By chl(X ) we denote the discrete part of L*(X), i.e., the closed span in

L?*(X) of all the irreducible closed subspaces of L?(X). Accordingly we
define

LiX:1):=(LiX)® V;) N L*(X: 7).

For the following definition we recall from Sect. 8 that the data (G, H, K, T,
ags 1) together with a W-invariant even residue weight t € WT(Z) deter-
mine the continuous linear operator 7} : CX(X : 1) —» C®°(X : 7). If G
has a compact center modulo H, then this operator is given by the formula
(8.9).
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Definition 12.1 The reductive symmetric pair (G, H) is said to be of
residue type if the following conditions are fulfilled.

(a) The group G has a compact center modulo H.

(b) Forany choice of the data (K, ag), the following requirement is fulfilled.
For every finite dimensional unitary representation t of K, every choice
T of positive roots for X and every W-invariant even residue weight
t € WT(X), the operator 7 : C*(X : 1) — C®(X : 1) is the
restriction of the orthogonal projection L*(X : 1) — Lg(X 1 7).

Remark 12.2 The above definition is given for technical reasons. Together
with Definition 13.1, where the notion of residue type for a parabolic sub-
group from &, will be introduced, it plays a role in a long chain of reasoning
that will be used in an induction step in the proof of Theorem 21.2. (The
induction goes by induction on the o-split rank of G.) As part of the men-
tioned theorem it is asserted that in fact every pair (G, H) with G having
compact center modulo H and every group from £, is of residue type.

In the course of the chain of reasoning, many results will first be proved
under the assumption that an involved parabolic subgroup from £, or an
involved reductive symmetric pair (G, H) is of residue type. Such results
will be marked with (RT) after their declaration. The additional hypotheses
will be clearly stated at the beginning of their proofs. Within the chain of
reasoning, until Theorem 21.2, the results marked (RT) will only be used
if these additional hypotheses are assumed to be fulfilled. The mentioned
theorem implies that the additional hypotheses are in fact always fulfilled
so that in the end the results marked (RT) are valid as stated.

Within the chain of reasoning, it also happens that definitions need extra
hypotheses concerning residue type in order to be valid. These definitions
will be marked (RT) as well. The extra hypotheses are stated in a subsequent
remark. Within the chain of reasoning such definitions will only be used if
the extra hypotheses are assumed to be fulfilled. In the end Theorem 21.2
implies that the extra hypotheses are always fulfilled, so that the definitions
marked (RT) are valid as stated.

Remark 12.3 1f ay = {0}, then X is compact and the operator T} is under-
stood to be the identity operator of C2°(X : 7). Thus, conditions (a) and (b)
of the definition are fulfilled and in this case (G, H) is of residue type.

Remark 12.4 1t follows from Lemma 8.10 that the notion of residue type
is stable under isomorphisms of reductive symmetric pairs.

Remark 12.5 Condition (b) of the definition is valid as soon as a particular
choice of the data (K, aq) satisfies the mentioned requirement. Indeed,
assume that (K, aq) satisfies the requirement and let ‘K C G be a second
o-invariant maximal compact subgroup, g = ‘t @ ‘p the associated Cartan
decomposition, and ‘ay C g N *p an associated maximal abelian subspace.
Then there exists a (unique) g € exp(hNp) such that gKg~! = ‘K, see [38],
p. 153. Now Ad(g)a, is maximal abelian in ‘p N q, hence there exists an
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element k € ‘K, N H, such that Ad(kg)aq = ‘aq. Let ¢ : G — G be
conjugation by kg, then ¢ maps the data (G, H, K, ay) onto (G, H, ‘K, ‘ag).
In view of Lemma 8.10 it follows that the requirement in (b) for the pair
(K, ag) is equivalent to the similar requirement for the pair ('K, ‘aq).

We recall from [5], §17, that the Schwartz space C(X : 1) is defined to
be the space of functions f € C*°(X : 1) such that, for every u € U(g) and
neN,

Sun(f) := sup(1 4+ 1x)" O )~ u f()|| < o003 (12.1)

xeX

see also the beginning of Sect. 10. The Schwartz space is equipped with the
Fréchet topology determined by the seminorms s,, ,,. By [3], Lemma 7.2, the
operators from D(X) act on C(X : t) by continuous linear endomorphisms.
We define 4, (X : ) to be the space of D(X)-finite functions in C(X : 7).

Lemma 12.6 (RT) Let G have compact center modulo H. Then, for every
W-invariant even residue weight t € WT(X),

AX:1)=LiX: 1) = AX: 7). (12.2)
In particular, the space A,(X : 1) is finite dimensional.

Remark 12.7 The fact that Lfl(X : 7) is finite dimensional is also an imme-
diate consequence of the classification of the discrete series in [40]. In the
present paper it would not have been advantageous to use this known fact.
Only the spectral properties of the discrete series as formulated in Theo-
rem 16.1 are needed. The mentioned finite dimensionality naturally follows
from the finite dimensionality of A'(X : 1), by the nature of our argument.

Proof: We give the proof under the assumption that (G, H) is of residue
type, see Remark 12.2. It follows from Definition 12.1 (b) that
T (C*(X : 1)) is dense in Lg(X : 7). By Lemma 9.1 it follows that
A'(X : 1) is dense in Lﬁ(X : 7). By finite dimensionality of the first of
these spaces, the first equality in (12.2) follows. In particular, it follows
that the space Lg(X : 7) consists of smooth D(X)-finite functions; by [3],
Thm. 7.3 with p = 2 it is therefore contained in 4,(X : 7). Conversely, if
f € A2(X : 1), then f is K-finite and D(X)-finite. Hence, by a well known
result of Harish-Chandra its (g, K)-span in C(X, V;) is a (g, K)-module of
finite length; see [41], p. 312, Thm. 12 and [42], p. 112, Thm. 4.2.1. The clo-
sure of this span in L2(X) ® V is therefore a finite direct sum of irreducible
representations. The mentioned closure contains f; hence, f € Lf,(X 1),

O

Assume that G has compact center modulo H and that ¢t €¢ WT(X)
is a W-invariant even residue weight. We recall that a choice of Hilbert
structure on the space A’(X : 1) uniquely determines an endomorphism
o = o' € End(A'(X : 7)) such that (10.3) holds.
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Lemma 12.8 (RT) Assume that G has compact center modulo H and let
t € WT(X) be a W-invariant even residue weight.

(a) Assume that the space A'(X : 1) is equipped with the restriction of
the inner product from L*(X) ® V,, see (12.2). Then the endomor-
phism o, determined by (10.3), equals |W|~" times the identity operator
of A'(X : 7).

(b) The kernel K'\ is independent of the residue weight t.

Proof: We give the proof under the assumption that (G, H) is of residue
type, see Remark 12.2. It follows from (12.2) that the real analytic T ® 1-
spherical function e on X attains its values in Hom(Lg(X 0, V) ~

V. ® Lﬁ(X : 7)*. Hence, e* : y > e(y)* is a real analytic 1 ® t*-spherical
function on X, with values in Hom(V, Lﬁ(X 1 7).

We define the continuous linear operator P : C°(X : 1) — Lﬁ(X )
by

Pf = /X e f(y) dy.

Then one readily verifies that (Pf | ¥) = (f | ¥) for every ¢ € Lﬁ(X 1 T).
It follows that P equals the restriction to C°(X : 1) of the orthogonal
projection L?(X : 1) — L3(X : 7). Hence, P = T4. Combining this with
(8.9) we obtain that, for all x € X and all f € C°(X: 1),

IWI/ K\(x:y) f(y)dy =Ty f(x) = ex)(Pf)
X
_ /X e(x) 0 ()" f(y) d.

Since e(x) oe(-)* and K\ (x : -) are smooth and t* ® 1-spherical functions
on X, with values in End(V;), it follows from the above identities that
[WIK (x : y) = e(x)oe(y)* for all x, y € X. This implies (10.3) with «
equal to |[W|~'1 L2(X:n)- Hence, (a) holds. Assertion (b) is now immediate. O

13. The normalized Eisenstein integral

In this section we shall define the normalized Eisenstein integral, initially
for the class of parabolic subgroups introduced in the following definition,
see Remark 12.2.

Definition 13.1 A parabolic subgroup P € & is said to be of residue type
(relative to H) if for every v € Nk(aq) the pair (Mp, Mp N vHv™') is of
residue type. A subset F' C A is said to be of residue type if the associated
standard o-parabolic subgroup Py is of residue type.
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Remark 13.2 In view of Remark 12.4 it suffices to require the above con-
dition for v in a choice of representatives W C N (ag) of Wp\W/Wgknp.

Remark 13.3 We write °G for Mg, the Langlands M-component of G
viewed as a parabolic subgroup. Thus, °G equals the intersection of the
kernels ker|x|, for x : G — C* a character. By the previous remark,
G (viewed as an element from &£, ) is of residue type relative to H if and
only if the pair (°G, °G N H) is of residue type. If G has compact center
modulo H, then the pair (°G,°G N H) is of residue type if and only if
(G, H) is.

Definition 13.4 Two parabolic subgroups P, Q € &, are said to be asso-
ciated if their o-split components apq and apq are conjugate under W. The
equivalence relation of associatedness is denoted by ~ .

Lemma 13.5 Assume that P € %, is of residue type. Then every Q € P,
with Q ~ P has the same property.

Proof: If Q ~ P, there exists a k € Ng(aq) such that apy = Ad(k)ap,.
From this it follows that My = kMpk™'. If v € Nk(ag), then My N
vHv~! equals k(Mp N wHw k™!, with w = k~'v € Nk (aq). The pair
(Mp, Mp N wHw™") is of residue type, and by Remark 12.4 we conclude
that (Mg, Mg N vHY™") is of residue type as well. m

Let P € £,. We equip the space Xp,, for v € P'W, with the invariant
measure dx p, specified at the end of Sect. 5. The space #4,(Xp, : Tp) is
equipped with the inner product from L?(Xp,,, V;), for v € 'W. Moreover,
the space #A> p = o, p ryy is defined to be the formal direct sum

Ar p = @ A2 (Xpy @ Tp), (13.1)
velw
equipped with the direct sum inner product. The space #; p is finite di-
mensional by Lemma 12.6. Application of this lemma requires P to be of
residue type, see Remark 12.2.

We agree to denote by prp, @ Az p — A2(Xp, : Tp) the natural pro-
jection operator, for v € W, and by ip, the associated natural embedding
operator.

In the following we shall use the characterization of the generalized
Eisenstein integral by its asymptotic behavior, see Theorem 9.3, to define
an Eisenstein integral for arbitrary parabolic subgroups.

Proposition 13.6 (RT)

(a) Let P € P,. Forevery {r € A, p there exists a unique family E°(P : )
€ Sgyp (X : ©) with the following property. For all v in a non-empty open
subset of apy., each v € PW, every X € apq and every m € Xp, 1,

qvpr(Pv v | EO(P . 1// : V), X? m) = l)[/U(n/l)
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(b) Let F C A. Then, for every W-invariant even residue weight t €
WT(X), the space .A)? equals Ay p := A p.; here we assume that in
the definition of both spaces the same set ¥ 'W has been used. Moreover,
for every Y € A, F,

E°(Pp:¢Y:v:ix)=Ep(v:ix)y,
for all x € X and generic v € aj}qc.

Proof: Here we prove (a) under the assumption that P is of residue type
and (b) under the assumption that F is of residue type, see Remark 12.2.
Uniqueness follows from Theorem 6.11. Thus, it suffices to establish
existence. We will first do this for P of residue type and equal to a standard
parabolic subgroup Pp, with F C A. Let t € WT(X) be any W-invariant
even residue weight. Let *# be the induced residue weight of X . Then it
follows from Lemma 12.6, applied to the pair (Mp, My N vHv™'), that
ATXpy 0 Tr) = Ay(Xpy 1 7). Moreover, if ¥ € 4,(Xr, : Tr), then
E°(Pr : ) := E%(- )y satisfies the desired property, by Theorem 9.3.
Now assume that P is general and of residue type, let “W C Ng(ag)
be a choice of representatives for Wp\W/Wgnp and let v € A, p. There
exists au € Nk (aq) such that u~'Pu = Pp, with F C A. Moreover, Pr is
of residue type, by Lemma 13.5. The set W = u=!(Y'W) is a choice of
representatives for Wp\W/Wgnp in Nk (aq). For v € Py, let pr. be the
linear isomorphism from C*(X, ,-1,, 4 : Tr) onto C*(Xp, 4 : Tp), defined
asin [14], Eqn. (3.24). We define the function ¢’ € s, by ¥/ | = p; ¥,
for v € P'W. Define the meromorphic family f : Upge = CF¥(X 1 7) by

folx) = E°(Pp VAR TR, x),
for x € X and generlc Vv E a} pqc- By Theorem 9.3 and Lemma 6.12, the

family f belongsto & yp(X 7). Moreover, it follows from [14], Lemma 3.6,
that, for v € W and v in a dense open subset of a Pqcs

Gopp(Pv | 1) = [Ad@™)* ® pru] Gu-tv—p, (Pru"'v | f))
= pr,ul//,;—lv = Y.
This establishes the result with E°(P : ) = f. O

From the uniqueness assertion in Proposition 13.6 it follows that the
meromorphic function E°(P : ) : a’;qc — C*®(X : 1) depends linearly
on .

Definition 13.7 (RT) Let P € 5. For ¢ € A, p, let E°(P : v) denote
the unique family in 8;yp (X : 7) of Proposition 13.6 (a).

The meromorphic C*°(X, Hom(+,, p, V;))-valued function E°(P : -)

= E°(X: P: -)onap,, defined by

E°(P:v:x)Yy =E°(P:y:v:Xx),
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for ¢ € A, p, x € X and generic v € a*QqC, is called the normalized Eisen-

stein integral associated with the parabolic subgroup P (and the choice ©W).
The meromorphic C*°(X, Hom(V;, 4, p))-valued function E*(P : -)
on ajp,. defined by

E*(P:v:x)=E°(P:—v:x)",

for ¢ € 4z p, x € X, and generic v € ap, is called the dual Eisenstein
integral associated with P.

Remark 13.8 The above definition requires the validity of Proposition 13.6,
which inside the chain of reasoning leading up to Theorem 21.2, requires
P to be of residue type, see Remark 12.2.

Remark 13.9 In the case of the group, the normalized Eisenstein integral
defined above is essentially equal to the one defined by Harish-Chandra [29],
§6, Thm. 6. This is seen as follows. Let ‘G be a real reductive group of
Harish-Chandra’s class, let G ='G x ‘G, let o0 : G — G be the involution
given by (‘x,'y) = (‘y,'x) and let H = G° be the diagonal subgroup.
Then (‘x,‘y) — ‘x(‘y)~! induces a G-diffeomorphism ® : G/H — ‘G.
Let'g = ‘€@ "p be a Cartan decomposition, ‘0 the associated involution and
put & = ‘0 x ‘0. Then 0 is a Cartan involution commuting with o. Let 'K and
K =‘K x ‘K be the associated maximal compact subgroups of ‘G and G,
respectively, and let (7, V;) be a finite dimensional unitary representation
of K. Let 71, 7, be the unitary representations of ‘K in V, defined by
71(k) = t('k, 1) and 1, (‘k) = (1, ‘k). Let ‘t denote the pair of commuting
representations (71, o). Then pull-back by @ induces a linear isomorphism
®* from the space C*°('G : ‘r) of smooth ‘zt-spherical functions on ‘G,
onto C*(G/H : 7).

Let o, be maximal abelian in ‘p, then a4 := {(X, —X) | X € ay} is
maximal abelian in p N q. Let ‘P C ‘G be a parabolic subgroup containing
Avy. Then P :="P x"P belongs to #,. Moreover, the map (X, Y) > X —Y
is surjective from ap = ap X @ p onto a p and induces a linear isomorphism
from ap; = ap N aq onto ap, mapping aJ}Cq onto a\JrP. The complexified
adjoint map ¢ is the linear isomorphism from afp. onto aj . given by
Wi (v, =').

We observe that Mp = Mip X Mip, sothat Xp = Mvp x Mip/HN Mp,
which is M p-diffeomorphic to M- p under the map ® p induced by restricting
®. It is readily seen that @7 restricts to a linear bijection from the finite
dimensional space L3(M:p : ‘tjy,,) onto L3(Xp : Tp) = Az p. Let ¢ €
L2(Xp : 7p) and consider the family f : age X G — V; defined by f, =

O¥E°('P : d)’;,_ll// : ¢*~1v/i), where the normalized Eisenstein integral
is Harish-Chandra’s. By holomorphy of Harish-Chandra’s unnormalized
Eisenstein integral combined with meromorphy and the product structure of
Harish-Chandra’s C-function C\ppp(1 : ‘v), it follows that the family f, €
C*°(X : 7) satisfies condition (a) of Definition 6.1. Via the subrepresentation
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theorem of [21], combined with induction by stages, Harish-Chandra’s
Eisenstein integral can be realized by matrix coefficients of the minimal
principal series of ‘G. Using this information it can be deduced that f
satisfies the remaining conditions (b), (c) of Definition 6.1. In fact, it is
now readily checked that f belongs to the space Cl,l,yp(X : 1), defined in
Definition 6.6. Moreover, from the information on the constant term of
Harish-Chandra’s Eisenstein integral, see [29], §5, Thm. 5, it follows that
Gu—pp (P, 1| f,, X, m) = ¥(m), in the notation of Proposition 13.6, for
generic v € iaj,. By meromorphy it now follows that the family f satisfies
the condition of Proposition 13.6 (a) (note that we may take W = {1}
here). Hence,

Q*E(\P: @y gt /i) = EX(P vy
Remark 13.10 At the end of the sequel to this paper, [15], we will show
that the normalized Eisenstein integral introduced above coincides (up to

a change from v to —v) with the one introduced by J. Carmona and P. De-
lorme in [19].

Remark 13.11 1f G has compact center modulo H, then Agq = {0} and
Az = A2(G/H : 7). In view of Lemma 12.6, it follows from Remark 9.4
that E°(G : 0 : x) equals the evaluation map ev, : A4,(X : 1) — V.,
¥ = Y(x). Accordingly, E*(G : 0 : x) = evi € Hom(V;, A,(X : 7)).

The following result describes the dependence of the normalized Eisen-
stein integral on a member P of a class in &,/ W, as well as on the choice
of Pw.

Lemma 13.12 (RT) Let P € P,, let s € W, and let Q := sPs~'. Let
PW and W be choices of representatives in Ng (ag), for Wp\W/Wgng
and Wo\W/Wgnu, respectively. Then there exists a unique linear map
Rp(s) : Ay p — A o such that

E°(Q :sv:x)oRp(s) = E°(P:v:x), (13.2)
for x € X and generic v € aj‘)qc. The map Rp(s) is bijective and unitary.

Proof: We give the proof under the assumption that P is of residue
type, see Remark 12.2. Left multiplication by s induces a bijective map
Wp\W/Wkay — Wo\W/Wknpy. Via the natural bijections *W —
Wp\W/Wgny and CW — Wo\W/Wgnu we transfer the induced map
to a bijection 5 : W — 2w,

Let y € A, p and define the meromorphic family f : ap . — C*(X : 1)
by

filx) = E°(P s~ '\ ), (13.3)

for x € X and generic A € a,.. Then f € Sgyp(X : 7), by Lemma 6.12.
Select v € P'W. We may select a representative u, in Nk (aq) of a Weyl
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group element from sWp such that u,v = §(v)w, for some wy € Ngnp(aq).
Note that X 4., = Xo 5. Hence, we may define the bijective linear map

Pruy - ‘AZ(XP,U : TP) - 'A’Z(XQJ(U) : TQ)

asin [14], Eqn. (3.24). This map is unitary in view of the choice of invariant
measures on Xp, and Xy 5w, specified at the end of Sect. 5.
It follows from [14], Lemmas 3.7 and 3.6, that

Gr—po (D S(V) | f3) = Gr—po (Q, usv | f3)
= [Ad(us")* ® Pr,us]%—ufpp(P, v fi)
= Pru, Yoo (13.4)

for generic A € a*QqC. Hence, by Definition 13.7,

fH(x) = E°(Q 1 A :x0)Y/, (13.5)

with Wa@) = pru W for v € PW. We define the bijective linear map
Rp(s) : A p —> Ay o by

(Rp(DV)s0) = Pru, Vo (13.6)

Then /' = Rp(s)y and (13.2) follows from (13.3) and (13.5) by substituting
sv for A. From the definition it follows that R p(s) is unitary.

To establish uniqueness, let Rp(s) : 42 p — +A2 o be a linear map.
Let ¥ € A, p, define f as above, and define the meromorphic family
g: a*QqC - C®X:1)bygy,=E°(Q:X: -)Rp(s)¥. Then

Gr—po(Q,5(V) | &) = (Rp($)V)sv)- (13.7)
Now assume that (13.2) holds. Then g = f; combining (13.4) and (13.7)
we obtain (13.6). O

Let P € £,. Then for all x, y € X, the meromorphic End(V;)-valued
function on aj . given by

vi> ES(P:v:x)E*(P:v:y) (13.8)
depends a priori on the choice of the set ©W.

Corollary 13.13 (RT) Let P € P,. Then for every x,y € X the function
(13.8) is independent of the particular choice of *'W.

Proof: Here we assume that P is of residue type, see Remark 12.2. The
result then follows from application of Lemma 13.12, with s = 1. O
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Proposition 13.14 (RT) Let P € P,. There exists a P-bounded, real
X, (P)-hyperplane configuration 3 = Hp in ap . and a map d = dp :
H — N such that v +— E°(P : v) belongs to the space

M(@pyer H., d, C(X) @ Hom(sAs p, V7).

Moreover, if R € R and if p is any polynomial in 11, p)(ap,) such that
Vi p(V)E°(P : v) is holomorphic on a neighborhood of a’;q(ﬁ, R), then

there exist a constant r > 0 and for every u € U(g) constants n € N and
C > 0, such that

IpOYE(P v 2w )| < CC1L+ [u])e RO (13,9)
forallv e a’;q(ﬁ, R) and x € X.

Proof: Here we prove the result for P of residue type, see Remark 12.2.

We first assume that P = Pr with F' C A of residue type. In this case,
E°(P : v) = E%(v), by Proposition 13.6. Hence, the result follows from
Proposition 11.6 by summation over W, see (9.14) and (9.2).

Next, let P € £, be a general parabolic subgroup of residue type.
There exists a s € W such that sPs™! = Pr, by Lemma 3.6 (c). Since
P is of residue type, Pr is of residue type as well, see Lemma 13.5. By
Lemma 13.12 and Proposition 13.6 there exists a unitary map Rp(s) :
Ao p — Ap, such that

E°(Pr:sv:x)oRp(s) = E°(P:v:Xx)

for all x and generic v € @) .. The result now follows by application of the
first part of the proof. m|

The following result limits the exponents of the normalized Eisenstein
integral along a minimal parabolic subgroup. To formulate it we need the
following notation. Let Q € & and let P € #"" be such that P C Q. We
put

Ao(P) = {a € A(P) | afay, = 0}
WF2 =t e W | t(Ap(P)) C Z(P)}.

Let s € W be the unique element such that P = sPys~'. Then s~'Qs
contains Py hence equals Pp for some subset ' C A; note that F is
uniquely determined by Q in view of Lemma 3.6. We define

A(P|Q) := sA(F),

where A (F) is the finite subset of —R, F' introduced in (8.7). We note that
A(P|Q) is a finite subset of =R, Ay (P).
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Proposition 13.15 (RT) Let Q € P, and let P € P be contained in Q.
Lety € As gandq € ng(@(a*Qq).Thenf T, x) > gWE(Q v i)Y

defines a family in Sgyp(X : 7). Moreover, for each v € Nk(aq) and every
v € reg f,

Exp(P,v | f,) € W'+ A(P|Q)) — pp — NA(P). (13.10)
In particular, f, € Awemp(X 1 1), for every v € iap, Nreg f.
Remark 13.16 For P minimal, the assertion about temperedness is due

to [5], Thm. 19.2, in view of [9], Eqn. (52). For general P the assertion
about temperedness is due to [22], Thm. 1, in view of Remark 13.10.

Proof: 'We give the proof under the assumption that Q is of residue type, see
Remark 12.2. Lets € Wand F C A be as in the text preceding the corollary.
Let the polynomial function p : aj,. — C be defined by p(v) = g(sv).
Then p € Hzr(F)(a’;q). It follows from Lemma 13.12 with Pg in place

of P that f(v,x) = g(s~'v,x), for x € X and generic v € a*QqC, where
g: (Ax) =~ pMEL( : x)RpF(s)_ll//. By Theorem 10.5 the family g
belongs to ggyp(X : 7). By Lemma 6.12 it follows that f € ggyp(X D7)

Moreover, let v € reg f; then s~!v € regg and by the last mentioned
theorem it follows that, for every u € Nk (ag),

Exp (Po, u | fu) = Exp (Po, u | gs-1,)
c W™+ A(F)) — p — NA.
On the other hand, by [14], Lemma 3.6, it follows that, for v € Nk (a),
Exp (P, v | f,) = sExp (Po, s | fu),
where § is any representative of s in Ng (aq). We conclude that
Exp (P, v | f,) C sWis™ (v 4+ sA(F)) — pp — NA(P).
Now sA(F) = A(P]|Q) by definition. Moreover, one readily verifies that

sWFs=! = WPI2 Hence, (13.10) follows. The final assertion follows from
the similar assertion for g, which in turn follows by application of Corol-
lary 10.6. o

In the theory of the constant term, we shall need the following result on
the coefficients of the asymptotic expansions of the Eisenstein integral.

Lemma 13.17 (RT) Let P € P, and let y € A, p. The family f : (v, x)
— E°(P : v : x)Y¥ belongs to 8;?;’()( . T), for a suitable finite subset
Y C *aj;q. Moreover, the X, (P)-configuration Hy, defined as in the text
before Definition 6.3, is real.

Let k = deg, f. Then for every Q € &, v € Nx(aq), eacho € W/~pp
andallé € —o - Y + NA,(Q),

4o:(Q. v | f) € Pr(agg) @ M(apye, Hy dy, C®(Xg,y 2 19)). (13.11)
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Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. In view of Lemma 3.6 (a), there exists € Wand F C A
such that P = sPps~'. In view of Lemma 13.12 with P and Pr in place
of Q and P, respectively, we may as well assume that P = Py for some
F C A. In this case we have E°(P : v) = E}(v) by Proposition 13.6.
Hence, the result follows from Lemma 9.8. O

Lemma 13.18 (RT) Let F C A andlett € WT(XZ) be a W-invariant even
residue weight. Then, for all x,y € X,

K}(v Xy = |Wp|_1E°(Pp VX))o EN(Pr:iv:y), (13.12)

as an identity of End(V,)-valued meromorphic functions in the variable
V€ Upgc-

In particular, the function K'. does not depend on the residue weight t,
nor on the choice of 'W.

Proof: We give the proof under the assumption that F is of residue type,
see Remark 12.2. From Proposition 13.6 (b) we recall that AL = A p.
Accordingly, we equip the space a‘\a;f with the inner product described in
the text preceding (13.1). As in the text preceding (10.4), this choice of
inner product determines an endomorphism o, € End(d‘k*t(XF’v T TR)),
for each v € ¥'W. The endomorphism «r, is the analogue for the space
X, of the endomorphism «, described in (10.3). Thus, g, = |Wg|~'1, by
Lemma 12.8. Letay € End(A?) be the direct sum of the ar,,, for v € Fyy.
Then from (10.4) we obtain that

KL(w:ix:y) = |We| " ES(: x)ES(—D 1 y)*,

for all x, y € X and generic v € a}.. Now use Definition 13.7 and Propo-

sition 13.6 to conclude the validity of (13.12). It is now obvious that K.
does not depend on t; it follows by application of Corollary 13.13 that it
does not depend on © ‘W either. O

Remark 13.19 In view of Lemma 13.18 we agree to omit 7 in the notation

Definition 13.20 (RT) Let P € £,. We define the meromorphic function
Kp: uj;qc — C*®(X x X, End(V;)) by

Kp(v:x:y)=|Wp| 'E(P:v:X)E*(P:v:Y),
forx, y € X and generic v € ajp..
In the chain of reasoning leading up to Theorem 21.2 this definition

requires P to be of residue type, since only then the Eisenstein integral is
well-defined, see Remark 12.2.
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Remark 13.21 1If P = Pp, for F C A, then Kp = K, in view of Lem-
ma 13.18.

Lemma 13.22 (RT) Let P € $P,. Then, for everys € W and all x, y € X,
Kp(v:x:y)=Kp-1(sv:x:y)
as a meromorphic identity in v € al’;qc.

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. Put Q = sPs~'. Since the inner product cB, speci-
fied in Sect. 5, is W-invariant, the normalized measures dup and du are
s-conjugate. Moreover, since Wy = sWps~!, we have [Wol = |Wp|. The
result now follows from combining Definition 13.20 and Lemma 13.12. O

Theorem 13.23 (RT) Let P, Q € &£, be associated parabolic subgroups.
Then for every s € W(agq | apq), and all x,y € X,

KoGsv:x:y)=Kp(v:x:y), (13.13)

as an identity of End(V;)-valued meromorphic functions of the variable
VE Upyc

Proof: 'We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. Since P and Q are associated, dimagq = dim apg;
hence, s is a linear bijection from apq onto apq. From Corollary 3.5 it
follows that there exists w € W such that w(apq) = agq and w|g,, = s.
Assume first that P = Pr and Q = Pp, with F, F/ C A. Then the
result follows from [12], Lemma 6.2, since K}, = Kp, and K, = Kp,,, for
any W-invariant even residue weight ¢, see Remarks 13.19 and 13.21.
Next assume that P and Q are arbitrary. Then the result follows by using
Lemma 3.6 (a) and Lemma 13.22. O

14. Eigenvalues for the Eisenstein integral

In this section we investigate the action of ID(X) on the normalized Eisen-
stein integral.

Let P € £,. We define the algebra homomorphism wp : D(X) —
D(X,p) asin [5], text following (20). Here X p := Xp, = M1p/MpN H.
Let b C q be a 0-stable Cartan subspace containing apq and let y, be the
associated Harish-Chandra isomorphism from D(X) onto I(b). Let Wp(b)
denote the centralizer of apq in W(b), and /p(b) the ring of W (b)-invariants

in S(b). Moreover, let y;( ' denote the associated Harish-Chandra isomorph-
ism D(X;p) — Ip(b). Then we recall from [5], Eqn. (21), that

Ve opwp = Yo (14.1)
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If v € Nk(aq), then following [14], text above Lemma 4.12, we define
the algebra homomorphism u}, : D(G/vHv™ ") — D(Xpy) as up for the
triple (G, vHv~!, P) instead of (G, H, P). Moreover, we define the algebra
homomorphism pp, : D(X) — D(X;p,) by

Wpy = ipoAd(v), (14.2)

where Ad(v) denotes the isomorphism D(X) — D(G/vHv™") induced by
the adjoint action by v. Since Apq is central in M, p, it follows from (2.3)
that

D(Xip.) = D(Xp,) ® S(apy). (14.3)

Accordingly, if D € D(X), we shall write pp (D : -) for wp, (D), viewed
as a D(Xp,,)-valued polynomial function on a’;qc. IfDeDX),ve aj‘,qc,

and v € W, then wpo(D :v) € D(Xp,) acts on the space A,(Xp, : Tp)
(see the text preceding Lemma 12.6) by an endomorphism that we denote
by K, (D v). The direct sum of these endomorphisms, for v € W, is an

endomorphlsm of the space 4, p, denoted K, (D :v).

Lemma 14.1 (RT) Let P € &,. Then
DE°(P :v) = E°(P :v) EP(D 1v), (D € D(X)).

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let Y € +A, p. Then the family f : aj‘,qc x X — V.,
defined by

fw,x) = E°(P :v:x)Y,

belongs to & yp(X 7), by Proposmon 13.6. Let D € D(X). The family

Df : (v,x) — Df,(x) belongs to & ylD(X 1) as well, by Definition 6.6
and [14], Lemma 9.8. Moreover, by [14], Lemma 6.2, there exists a dense
open subset €2 of az’;qc such that, for v € Q, the element v — pp is a leading
exponent of f, along (P, v). Hence, by [14], Lemma 4.12, it follows that,
forve Q, X € apgandm € Xp, 4,

qv—pp(P’ v | Df)(X’ v, m) = MP,U(D)(pU(exp Xm)’
where the function ¢, : X;p, + — V; is defined by
@y(ma) =a"qy_,,(P,v | f,,loga, v, m), (14.4)

fora € Apqg and m € Xp, 1. By Proposition 13.6, the expression on the
right-hand side of (14.4) equals a"v,(m), and we see that

Gv—pp (P, v | D)X, v, m) = ppy(D 2 v)r(m), (14.5)

for v in a dense open subset of a’;qc, m € Xp, 4+ and X € apg.
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On the other hand, v — " P(D : V)Y is a polynomial +, p-valued
function on aj} .. It readily follows that the family

g:(v,x)—~ E°(P:v: x)&P(D VY

belongs to 8;yp (X : 7). Moreover, by Proposition 13.6, it follows that
Gv—pp (P, v | (X, v, m) = ppy(D : )Y (m), (14.6)

for each v € YW, v in a dense open subset of a’;,qc, all X € apq and all
m € Xpy 4. It follows from (14.5) and (14.6) that the family Df — g €

8,2yp(X : 7) satisfies all hypotheses of Theorem 6.11. Therefore, D f = g.
[}

In the rest of this section we shall study the eigenvalues of the endomor-
phism “ P(D : v) of v, p. For a start, we collect some facts about the action
of D(X) on A>(X : 7).

Let Lfl(X) be the discrete part of L?(X), defined as in the beginning
of Sect. 12. It follows from [2], Thm. 1.5, that the space Lf,(X) admits
a decomposition as an orthogonal direct sum of closed G-invariant sub-
spaces on each of which D(X) acts by scalars (in the distribution sense).
Let b be a 6-stable Cartan subspace of q. We denote by L(X, b) the collec-
tion of infinitesimal characters A € b{ for which the associated character
y(- 1 A) = (- : A) of D(X) occurs as a simultaneous eigenvalue in the
decomposition mentioned.

The elements of the D(X)-module A, (X : 1) are ID(X)-finite and belong
to LEZ(X) ® V.. It follows that +A,(X : 7) splits as an algebraic direct sum of
D(X)-submodules on which the action of D(X) is by infinitesimal characters
from L(X, b). More precisely, for A € b} we put

Ary(X:T:A)={feAX: )| Df=y(D:ANf, VDeDX)].

This space is finite dimensional by [2], Lemma 3.9. It depends on A through
its class [A] in b7/ W(b); we therefore also denote it with [A] in place
of A. Let L(b, 1) = L(X, b, 7) denote the collection of A € b} for which
Ary(X 1 T : A) # 0. Then L(b, 7) is a W(b)-invariant subset of L(X, b)
and we have the following algebraic direct sum decomposition into joint
eigenspaces for D(X),

Ar(X 1 T) = @ A (X T A). 14.7)
AeL(b,7)/W(b)

The summands in this decomposition are finite dimensional and mutually
orthogonal with respect to the inner product from L?(X : 7). Moreover, the
decomposition is finite by Lemma 12.6. In the chain of reasoning leading
up to Theorem 21.2, finiteness of the decomposition requires (G, H) to be
of residue type, see Remark 12.2.
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Lemma 14.2 Let by, b, C q be two 6-stable Cartan subspaces. Each
element s from W(b, | b)), which set is non-empty by Lemma 3.8, maps
L(by, 1) bijectively onto L(b,, 7).

Proof: This follows by application of Lemma 3.8. O
Lemma 14.3 Let P € &, and v € Ng(ag). Then ap N Ad(v)q = apq.

Proof- apNAd(v)q = Ad(v) (a1 p,Nq) = AdW)(ay-1 pNag) = apNag =
apq. O

Let now b be a Cartan subspace of q containing a4 and let v € Nk (ag).
Then b” := Ad(v)b is a Cartan subspace of Ad(v)q, which contains a,. In
particular, b" contains apq, hence is contained in the latter’s centralizer m p.
We write *bp, := b” Nmp. Then

b’ = >ka,v > apg-

In view of Lemma 14.3 this is the analogue of the decomposition (2.6) for
the Cartan subspace b' related to symmetric pair (m;p, m;p N Ad(v)h).
The restriction of Ad(v) to b determines an element of Hom(b, b¥) that
we denote by v. The restriction v|,, is an element of W. The latter set
equals W(aq | aq), by Corollary 3.5; hence, by Lemma 3.7, applied with
b, aq, aq in place of 0, by, by, there exists an element s € W(b) such that
s = D on aq. It readily follows that 7os~! € Hom(b, b”) equals the identity
on apg, hence maps *b p isomorphically onto *bp,,. Note that this map maps
W(*bp)-orbits onto W(*bp,)-orbits. The induced map from *b%_./W(*bp)
to (*bpy)i/W(*bp,) is bijective and depends on v, but is independent of
the particular choice of s. Given A € *b},., we define

Ar(Xpy i Tp i A) i= Ar(Xpy 1 Tp i Dos ' A). (14.8)

Moreover, we define Lp,(b, 7) to be the set of A € *b%. for which the
above space is non-trivial. Then

Vos™ ' Lpy(b, 1) =L(Xpy *bpy, p). (14.9)
Thus, Lp, (b, 7) is a W(*bp)-invariant subset of *b%..

Corollary 14.4 (RT) Let P € &, and let b C q be a 6-stable Cartan
subspace containing ay. Then

A p = @ @ ipyr(Xpy i Tp i A), (14.10)

vePW A€Lpy(b,7)/W(*bp)

with a finite orthogonal direct sum of finite dimensional spaces. If D € D(X)
and v € aj;qc, then for every v € YW and A € Lp,(b, 1),

EP,U(D V) =w(D:A+v)I on ipyAr (Xpy:Tp i A).



522 E.P. van den Ban, H. Schlichtkrull

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. By (13.1) the space #,_ p is the orthogonal direct sum of
the spaces 4>(Xp, : Tp), as v € "W, Fix v € 'W. By the assumption
on P, the pair (Mp, Mp N vPv™!) is of residue type, hence A,(Xp, : Tp) is
finite dimensional and by (14.7) it is the orthogonal direct sum of the spaces
Ar(Xpy i Tp i A), with A" € L(Xpy, *bpy, Tp)/W(*bp,). It now follows
from (14.8) and (14.9) that 4, (Xp,, : Tp) is the orthogonal direct sum of the
spaces Ay (Xpy, @ Tp @ A), for A € Lp,(b, 7)/W(*bp); moreover, the sum
is finite and the summands are finite dimensional. This establishes (14.10),
with the asserted properties.

Let A € Lp,(b,7). Then by (14.9), A’ := vs 'A belongs to
L(Xpy, *bpy, Tp). Let now ¢ € A(Xp, @ 7p @ A). Then, writing D¥ =
Ad(v)D for D € D(X),

1y (D V)Y = ph(D" V)Y

= Y (1 (D” 1 v) s Ay
= y;i”"” (,u}f,(D”) A+ v)w.

. Xipy Xpo .
In the last equation we have used that ybv'P = y*b‘; ,® I in accordance

with (14.3). Combining (14.1) for the triple (G /vHv~"', b?, P) in place of
(G/H, b, P) with (14.2), we obtain that
vHy™! v /
1, Do)y = yo "D N o)y
= yo(D: Ad(v)" (A + )y

= (D : 5o Ad(v) (A" + V)Y

=y(D: A+ V)Y
O

We define Lp(b, ) C *b%,. to be the union of the sets Lp, (b, 1), for
v € P'W. Moreover, for A in this union, we put

Az p(A) 1= @ ipy2(Xpy i Tp 1 A).

vePw

Corollary 14.5 (RT) Let P € #,. Then

Ay p = @ A2 p(A).

AeLp(b,7)/W(*bp)
Moreover, if A € Lp(b, 7) and v € A, p(A), then, for every D € D(X),
DE°(P :v)Y = yp(D : A+ Vv)E°(P : v)Y,

as a meromorphic C*°(X : 1)-valued identity in v € aj‘)qc.
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Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. The result follows from Corollary 14.4 combined with
Lemma 14.1. O

We end this section with a description of the action of ID(X) on the
dualized Eisenstein integral. For D € D(X) we define the formal adjoint
D* € D(X) by

(Df1g)=(fID"g), (14.11)

for all f, g € C®(X); here (- | -) denotes the inner product from L?(X).
The canonical anti-automorphism X +— XY of U(g) induces an anti-
automorphism of U(g)" /U(g)" NU(g)h ~ D(X), which we also denote by
D+ DY.If D € D(X), let D be its complex conjugate, i.e. the differential
operator with complex conjugate coefficients. Then D* = DV, for every
D € D(X).

We recall from [3], Lemma 7.2, that D restricts to a continuous linear
endomorphism of C(X); by density of C2°(X) in C(X) it follows that
(14.11) also holds for all f, g € C(X).

Lemma 14.6 Let P € &,, v € Ng(aq) and D € D(X). Then
wpo(D%) = ppo (D). (14.12)

Proof: We note that up, = up; hence, for v = e, the result follows by
the same argument as in [5], proof of Lemma 19.3. For general v the result

follows by application of (14.2). m|
Lemma 14.7 (RT) Let P € $,. Then, for every D € D(X) and all
VE Upyes

EP(D ) = EP(D* T —D). (14.13)

Proof: 'We give the proof under the assumption that P is of residue type, see
Remark 12.2. Let v € ©'W. The decomposition X P = Xpy X Apq induces
an isomorphism D(Xp,) >~ D(Xp,) ® S(apq). Accordingly (u ® p)* =
u* @ p*, forall u € D(Xp,) and p € S(apy). Moreover, p*(v) = p(—v),
for v € aj;qc. Hence, (u ® p)*(v) = p(—v)u* = [u ® p(—v)]* and we
see that u*(v) = u(—v)* foru € D(X;p,) and v € a’;qc. Applying this to
(14.12) it follows that for D € D(X) and v € aj;qc we have up,(D :v)* =
wp(D* : —v). By the argument in the text preceding Lemma 14.6, applied
to Xp,, in place of X, we infer that

(upo(D:v)flg) = (flmp,(D*: =D)g),

forall f,g € C(Xp, : Tp). Here (- | -) denotes the L?-inner product. In
particular, the equation holds for f, g in the subspace #4,(X : tp), which
is finite dimensional, since P is of residue type. Hence, EPU(D DY)t =

K, U(D* : —¥). By orthogonality of the direct sum decomposifion in (13.1),
the result follows by summation over v € *'W. O
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Lemma 14.8 (RT) Let P € &,. Then for every D € D(X),
DE*(P :v) = EP(DV CV)E*(P 1 v),
as a meromorphic identity in v € aj‘,qc.

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. By linearity, we may assume that D is real. It then follows
from the definition of the dual Eisenstein integral, see Definition 13.7,
combined with Lemma 14.1, that

DE*(P :v) = w,(D: —D)*E*(P : v).

The lemma now follows by application of Lemma 14.7, in view of the fact
that D* = DV. ]

15. Uniform tempered estimates

In this section we present straightforward generalizations of results of [5],
Sect. 18, to a setting involving families { f,} of eigenfunctions on X, with
holomorphic dependence on a parameter v € ay, ., Where Q € 5. A simi-
lar generalization has been given in [22], Sect. 9. The generalized results
allow us to sharpen uniformly moderate estimates of type (13.9) to uniform
tempered estimates. In particular, we obtain estimates of the latter type for
the normalized Eisenstein integral.

We fix Q € &, a 6-stable Cartan subspace b of q containing a4 and an
element A € *b*QC, cf. (2.6). For ¢ > 0, we put

0y = {X € ahe | [ReX| < e}

The closure of this set is denoted by Et*Qq (e).

Definition 15.1 Lete > 0. We define §(Q : A :e) =X : Q0 : A :¢)
to be the space of smooth functions f : ap,,(e) x X — C satisfying the
following conditions.

(a) The function f is holomorphic in its first variable.
(b) For every v € a*Qq(s), the function f, : x — f(v, x) satisfies the
following system of differential equations

Df,=y(D:A+v)f, (D € D(X)).

Note that in this definition it is not required that f is K-finite, or spherical,
from the left. We also have the following analogue of the space M (A, ¢)
defined in [5], Sect. 18.
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Definition 15.2 Let ¢ > 0. A function f € §(Q : A : ¢) is called
uniformly moderate of exponential rate » > 0 if for every u € U(g) there
exist constants n € N and C > 0 such that

”Lufv(x)” < C(] + |v|)”e"1X(X)’

forall v € aj,,(e) and x € X. The space of all such functions is denoted by
E(Q :A:¢e:r).

Lemma 15.3 (RT) Let Q € P, and let € > 0. There exists a polynomial
function p € Hz,_(Q),R(a*Qq) such that the C*(X) @ Hom(A» ¢, V;)-valued
meromorphic function v — p(V)E°(Q : v) is regular on d*Qq (&) and such
that the following holds. There exists a constant r > O such that for every
A € Lo(b, 1), ¥ € Aryo(A) and n € V7, the family f : (v,x)
n(p(W)E°(Q : v : x)) belongs to & (Q : A :e:r).

Proof: We give the proof under the assumption that Q is of residue type,
see Remark 12.2. Let R > 0 be such that a*Qq(e) - a*Qq(Q_, R). Then by
Proposition 13.14 there exists a polynomial function p € Iy, (o) (ap,) such
that the C*°(X) ® Hom(+4» ¢, V;)-valued meromorphic function F : v —
p(W)E°(Q : v) is holomorphic on a neighborhood of a*Qq(Q_, R). Moreover,

there exists ' > 0 and for every u € U(g) constants n € N and C > 0 such
that

IL,Fy(x)| < C(1 4 |v])"e" TRevDIx),

forx e X, v e az,q(Q', R). Put r = r’ + &. Then it follows that F is
holomorphic on a neighborhood of @}, (¢) and satisfies the estimates

ILF, ()] < C(1 4 [v])e™ (15.1)

forx € Xandv € a*Qq(e).Letfbe defined asin the lemma. Then L, f,(x) =

n(L, F,(x)y). Hence, it follows from the above and from Corollary 14.5
that f € §(Q : A : ¢). Finally, it follows from the estimates (15.1) that
fe&"™(Q:A:e:r). O

We also have the following obvious generalization of the notion of
uniformly tempered families; see [5], Sect. 18. For v € aj, . and x € X we
put

[(v, )] == (L + v + Ix(x)).

Definition 154 Let ¢ > 0. A function f € &(Q : A : ¢) is called
uniformly tempered of scale s if for every u € U(g) there exist constants
n € Nand C > 0 such that

[L, fu(x)] < C|(v, x)|"@(x)es|RCV\lx(x),

forall v € a*Qq (¢) and all x € X. The space of all such functions is denoted
by T(Q:A:¢e:s).
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If fe&™(Q:A:e:r), then for every v € ap,. the function f,
belongs to the space 7, , ,(X), defined in [5], p. 392, see also p. 387. If g
is any function in the latter space, then, viewed as a function on G, it has an
asymptotic expansion along every parabolic subgroup P € &, of the form

gxexpiX) ~ Y pe(P| g x, X)),
£€Z—NA,(P)

ast — oo, forx € G and X € a;q. Here Z is a finite subset of ajp,.
and there exists a d € N such that the ps(P | g) are smooth functions
G — Py(apg), for all & Moreover, the functions p:(P | g) are uniquely
determined, see [5], Theorem 12.8. Accordingly, we may define the set of
exponents of g along the parabolic subgroup P by

Exp (P |g):={§ € Z-NA(P)| pe(P]|g #0}. (15.2)

We define the partial ordering <p on ajp,. by

A=pu & pn—»xreA(P), (A 1 € hye)-

The < p-maximal elements in the set (15.2) are called the leading exponents
of g along P. The set of these leading exponents is denoted by Exp (P | g).

Remark 15.5 The above notions of asymptotic coefficients and exponents
are related to the similar notions introduced in Sect. 6, as follows.

Let f € A(X : 1) and assume that every vector component 7o f, for
n € V7, belongs to €37, (X). For P € J, let Exp (f | P) denote the
union of the sets Exp (no f | P), forn € V; by sphericality of f this union
equals the union with index n ranging over any generating subset of the
K-module V. If u € Nk(aq), then it readily follows from the definitions
that Exp (P, u | f) C Exp (P | f). Moreover, by uniqueness of asymptotics
we have, for &€ € Exp (P, u | f), that

n(ge(P,u | f, X,m)) = p:(P | no f,mu, X), (me Mp, X €apg),
foralln € V.

Lemma 15.6 Letv € ay, . and assume that g € €, ,(X). Let P € pmin,
Then for every & € Exp (P | g) there exists as € W(b) such that & + pp =
S+ Al

Proof: We recall that a; C b. Let X7 (b) be a choice of positive roots
for £(b) that is compatible with X(P). Let g} be the associated sum of
the positive root spaces and let m7 be its intersection with m.. Let § :=

Ttr [ad(- )|g+] € bf and let § := Ttr [ad(- )|mt] € ib}. Then § = 8o + pp.
Let & be a leading exponent along P. Then by [5], Cor. 13.3 and
Lemma 13.1, the function ¢ € C*°(M;) defined by

@(ma) = a* p:(P | g, m,loga), (meM,, ac Ay,
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is right M, N H-invariant and satisfies the following system of differential
equations

wWp(D)p = y(D : A +v)o, (D € D(X)).

Here 1/, is defined as in [5], Sect. 2. Now M, /M, N H >~ Mo/Mo N H,
naturally, so that ¢ may be viewed as a function in C*°(Xy). By (14.3) with
P = Pyandv = ewehave D(Xo) =~ D(X)®S(aq). Since p is polynomial
in log a, the second component of the tensor product acts on ¢ with a single
generalized eigenvalue u +— u(£). On the other hand, we recall from [5],
Lemma 4.8, that the action of D(X) on C*°(Xy)k, allows a simultaneous
diagonalization with eigenvalues of the form D > yXo(D : Ao+ &), with
Ao € ib§. It follows that there exists a Ao € iby such that

Y OWp(D &) Ao+ 80) = ¥(D: A+ ), (D € D(X)).

The expression on the left-hand side of this expression can be rewritten as
yp(D: Ag+E& 4680+ pp) = y(D: Ay + & +6), from which we conclude
that Ao +& + & € W(b)(A + v). Since (Ag + 8)|a, = pp, it follows that
&+ pp =5+ A)lg,, for some s € W(b). O

We can now generalize [5], Theorem 18.3. For an appropriate formula-
tion we need the following definition.

Definition 15.7 We say that the exponents of a family f € E""(Q : A :
¢ : r) are tempered along a minimal o-parabolic subgroup P € &, if for

every v € a*Qq (e) the set of exponents Exp (P | f,) satisfies the following
condition. For every & € Exp (P | f,), there exists a s € W(b) such that

(a) Re(sA) <0Oon aj{(P),
() § € s(v+ A)la, — pp — NA(P).

We denote by &;™(Q : A : ¢ : r) the space of functions f € &"(Q : A :
€ : r), such that for every P € $™" the exponents of f along P are
tempered.

Remark 15.8 If Q is a minimal o-parabolic subgroup, then it follows by
application of [5], Thm. 13.7, that &"(Q : A : e :r) = E"(Q : A1 e : 7).

Theorem 15.9 Let Q € £, and let r > 0. Then there exists a s > 0 such
that for sufficiently small ¢ > 0,

EfM(Q:A:e:rn)CT(Q:A:ers).

Proof: The proof is a straightforward, but somewhat tedious, adaptation of
the proof of [5], Theorem 18.3, with trivial alterations because of the change
of the parameter set. Conditions (a) and (b) of Definition 15.7 are to be used
in place of [5], Theorem 13.7, see the proof of [5], Proposition 18.14, to keep
track of the exponents occurring in the asymptotic expansions considered.
If O is minimal, then the mentioned Theorem 13.7 implies conditions (a)
and (b) for any family f € &""(Q : A : ¢ : r); see Remark 15.8. O
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Remark 15.10 Another version of Theorem 15.9 is given by [22], Thm. 3.
However, in that paper the requirement on the exponents in Definition 15.7
is replaced by the requirement that the function f, is tempered for every
v € iag. By an additional argument it is then shown that this requirement
is equivalent to the one of Definition 15.7, see [22], Lemma 23. We shall
not need this result, since by Proposition 13.15 the needed information on
the exponents is known for the normalized Eisenstein integrals to which
Theorem 15.9 will be applied.

Definition 15.11 Let O € &,, A € *b*QC, e > 0and s > 0. Then by
T(0, 1, A, ¢, s5) we denote the space of smooth functions f : a*Qq(e) x X
— V; such that

(a) for every n € V7 the family no f : (v,x) = n(f(v,x)) belongs to
T(Q, A e,9);
(b) f, is T-spherical for every v € a*Qq(e).

Theorem 15.12 (RT) Let Q € £,. There exists a polynomial function p €
I, o) r(ay,) and constants s > 0 and & > 0 such that the meromorphic
C>*(X) @ Hom(A» ¢, V;)-valued function v — p(v)E°(Q : v) is holomor-
phic on a*Qq(e), and such that the following holds. For each A € Ly (b, 1)
and every W € Ay o(A) the family f : (v,x) = p(WE°(Q : v : XY
belongs to T(Q, 1, A, &, 5).

Remark 15.13 For Q minimal, this result is due [5], Thm. 19.2, in view
of [9], Eqn. (52). For general Q, a similar result for an unnormalized version
of the Eisenstein integral is due to [22], Thm. 4.

Proof: 'We give the proof under the assumption that Q is of residue type,
see Remark 12.2. Fix & > 0. There exist p € Iy, (o) r(ap,,) and r > 0 as
in Lemma 15.3. Fix A € Ly(b, 7) and € A, o(A). Define f : (v, x) —
pWE°(Q :v:x)y. Let n € VI and define F : (v, x) = n(f(v, x)). Then
by finite dimensionality of 4, o and V. it suffices to show that there exist
¢ >0ands > Osuchthat F € T(Q:A:¢ :s).

In view of Theorem 15.9 it suffices to show that F € &;™(Q : A 1€ : 7).
In view of Lemma 15.3 the function F belongs to &""(Q : A : ¢ : r). Let
P € £, Then it remains to be verified that the exponents of F along P
are tempered in the sense of Definition 15.7.

There exists a v € Nk(aq) such that Py := v~'Pv C Q. The meromor-
phic C*®°(X : t)-valued function v +— f, is regular on a*Qq(e). Moreover,
from Proposition 13.15 and [14], Lemma 3.6, it follows that, for v € reg f,

Exp(P,e| f,) = vExp (P, v | f,)
CoWPCw + A(P1|Q)) — pp — NA(P).

Thus, let vy € a*Qq(e) be fixed, and let & € Exp(P | F,,). Then we
may select s € vW?!¢ and & € —sA(P;|Q) + NA(P) such that £ =
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svg — pp — &o. Since f € Ep(X : 1), see Definition 13.7, it follows from
Definitions 6.6, 6.4 and 6.3 that f € C g”’;yp(XJr : 1), for a suitable finite
subset Y C *a*QqC. By Definition 6.1 and [14], Lemma 6.2, it follows that
sv—pp —& € Exp(P, e | f,), for vin an open dense subset of a*QqC.

Let & be a <p-minimal element in —sA(P;|Q) + NA(P) with the
property that & <p & and that sv — & — pp € Exp(P,e | f,) for v in
an open dense subset of ap, .. Then for v in an open dense subset €2 of
Upqcs the element sv — & — pp is a leading exponent of f, along (P, e). By
Lemma 15.6 it follows that

sv—§& — pp € WO+ A)la, — pp.

for v € Q. This implies in turn that there exists € W(b) such that sv — &,
1V ~+ A)lag forallv e a*QqC. Hence, sv = tvq, forallv e a*QqC and —§,
tAlq,- Now =& € sA(P1|Q) — NA(P) C —s(RyAp(P1)) — NA(P) C
—R;A(P), hence Re (tA)[q, = —&; < Oon aa“(P). We complete the proof
by observing that

§=sv—pp—E&
=sv—& — pp— (6o — &) € 1(v+ Ao, — pr — NA(P).

16. Infinitesimal characters of the discrete series

In this section we describe a restriction on the set L(X, b) of D(X)-characters
of the discrete series, see the text before (14.7). The main result is due to
T. Oshima and T. Matsuki, [40].

Let b C q be a 6-stable Cartan subalgebra. If A € b? then by I, we
denote the kernel of y,(- : A) in D(X). We denote by C(X : A) the space
of L?-Schwartz functions on X annihilated by 7. If @(X : A) is non-trivial,
then it contains a non-trivial K-finite function f. By a well known result
of Harish-Chandra, the closed G-span of f in L?(X) is a subrepresentation
of finite length; see [41], p. 312, Thm. 12 and [42], p. 112, Thm. 4.2.1.
Therefore, the mentioned closed G-span is contained in LEZ(X) and we
deduce that A € L(X, b). Conversely, if A € L(X, b), then there exists
anon-trivial K-finite function f € Lf,(X) that is annihilated by 7, . From [3],
Thm. 7.3, it follows that f belongs to C(X : A) and we see that the latter
space is non-trivial. We conclude that

LX,b)={Aebl|CX:A)#0}. (16.1)

Theorem 16.1 Assume that the space Lfl(X) is non-trivial. Then there
exists a compact Cartan subspace t C (. Moreover, each A € L(X,t)
belongs to it* and is regular with respect to X(t).
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Remark 16.2 This result, which plays a crucial role in the description of the
constant term of the normalized Eisenstein integral in Sect. 17, is essentially
due to T. Oshima and M. Matsuki, [40]. However, we have to be a bit careful
here, since in our situation G is assumed to be of Harish-Chandra’s class,
whereas in [40] it is assumed that G is semisimple.

Proof: Fix a Cartan subspace b C g that is fundamental, i.e., its compact
part by = b N £ is of maximal dimension. Then the assumption that Lfl(X)
is non-trivial is equivalent to the assumption that L(X, b) is non-empty. We
must show that under this assumption b is compact, and all elements of
L(X, b) belong to ib* and are regular.

Let X° = G,/G,. N H be the connected component of the origin in X.
If A € b} then restriction defines a linear mapr : C(X : A) — C(X°: A).
Conversely, extension by zero defines a linear embedding j : C(X° : A) —
C(X : A). Now roj = I, hence r is surjective. If the space C(X : A)
is non-trivial, then by G-invariance it follows that r is non-zero, hence
its image is non-trivial. On the other hand, if C(X° : A) is non-trivial,
then C(X : A) is non-trivial, by injectivity of j. Thus, from (16.1) we
see that L(X, b) = L(X°, b). Therefore, we may as well assume that G is
connected.

Let anq be the intersection in ag of the root spaces kera, a € X. This
space is central in g. Hence, anq C b and the group Apq = expaaq is
central in G.

The algebra U(aaq) naturally embeds into ID(X) and into /(b); accord-
ingly, y restricts to the identity on U(aag). Let A € L(X, b) and let f be
a non-trivial function in C(X : A). Then it follows that Ry f = A(X) f for
all X € apq. Let Ag := Alaaq. Then it follows that f(ax) = a™ f(x) for all
x € Xand a € Axq. Since f is anon-trivial Schwartz function, this implies
that apq = 0.

Let ¢ be the center of g. Then it follows that ¢; := ¢ N q is contained in
bNe Letg, :=[g, gl. Then b = ¢4 & by, with by = b N g;. Accordingly,
1(6) = U(cq) ® 1(by).

Let G, be the analytic subgroup of G with Lie algebra g; and let
Hy = G; N H. The embeddings ¢, C g and g; C g induce embeddings
U(cq) C D(X) and D(G/H;) C D(X), via which we identify. Accord-
ingly, D(X) = U(cq) ® D(G/H;); moreover, the map y : D(X) — I(b)
corresponds with the tensor product of Iy, and y,, the Harish-Chandra
isomorphism for (G, Hy, by).

If A € L(X,b), let Ac := A, and Ay := Alp,. Then U(cq) = S(cq)
acts by the character A, on the non-trivial space C(X : A). This char-
acter must therefore be an infinitesimal character of the compact group
exp(cq), hence belongs to i cj;. On the other hand, D(G;/H,) acts by the
character y;(- : A;) on C(X : A). Restriction to G/ H, therefore induces
amap C(X : A) — C(G,/H;, A1), which is non-zero by G-invariance
and non-triviality of the space C(X : A). Hence, A; € L(G/H}, by). If by
is contained in €, then so is b and if A; € ib] then A = A+ A, € ib™;
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finally, if A; is regular, then so is A. Therefore, we may as well assume that
g is semisimple from the start.

Let Z(G) denote the center of G and put Zy := Z(G) N H. Since Zy
is discrete and central, ‘G := G/Zy is a Lie group with algebra naturally
isomorphic with g. The involution o factors to an involution ‘o of ‘G.
Moreover, ‘\H := H/Zy, viewed as a subgroup of ‘G, is an open subgroup
of \G'?. The associated symmetric space ‘X := ‘G /'H is naturally diffeo-
morphic with X and it is readily seen that L(X, b) = L(‘X, b). Therefore,
it suffices to prove the assertions for ‘X and we see that we may as well
assume from the start that Zy = {e}.

From now on we assume that G is connected and semisimple, and that
Zy = {e}. The natural map = : G/H, — G/H is a finite covering, hence
induces a linear embedding =* : C(G/H) — C(G/H,) by pull-back. Via
the isomorphism (2.5) we may identify the algebras D(G/H) and D(G/ H,),
so that 7*(D f) = Dn* f, for f € C(G/H). Thus, if A € L(X, b), then
the image of €(G/H : A) in C(G/H,) is a non-trivial subspace annihilated
by the ideal I, from which we see that A € L(G/H,, b). It follows that
we may as well assume that H is connected. We will do so from now
on.

Let g? be the dual real form of g. defined as in Sect. 2. Via ad we
identify g. with the Lie algebra of the complex adjoint group G. of G;
accordingly, we denote by G, K¢ and H? the analytic subgroups of G
with Lie algebras g?, £/ and h?, respectively. Via Ad we may identify K N H
with a connected subgroup of G.. Accordingly, the map (k, X) > kexp X
is a diffeomorphism from (K N H) x i[¢ N q] onto H¢. Hence, for every
finite dimensional representation (77, V) of K there exists a unique finite
dimensional representation (7, V) of H? such that the infinitesimal repre-
sentations associated with 77 and ¢ have the same complex linear exten-
sion to &.. It follows that Flensted-Jensen’s dualization procedure, see [25],
Thm. 2.3, defines an injective linear map f +— f¢ (denoted f > f7
in [25]) from the space C*°(G/H)k of K-finite smooth functions on G/H
into the space C*(G?/K?)ya of H-finite smooth functions on G¢/K¢.
The map is determined by the property that, for every f € C*°(G/H)g and
allu e U(k),

Luf|Aq = Lufd|Aq-

We note that the left H?-types of f¢ are all of the form 7¢, with 7 a fi-
nite dimensional irreducible representation of K. We also note that for
f € C®(G/H)g, the condition f € L?>(G/H) can be entirely rephrased
in terms of the function f?; in fact it is equivalent to the condition that
L. f9 Aq € Lz(Aq, J da), for all u € U(E), with J the Jacobian associated
with the decomposition G = KAyH, see [10], (3.1).

Let D > D“ denote the natural algebra isomorphism from D(X)
onto D(X?), corresponding to (2.5). Then (Df)¢ = D?f¢, for every
f € C®(G/H)g. Moreover, we recall from the text after (2.5) that D¢ =
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Val ~1 v» (D), where we have written ag for the maximal abelian subspace

4p = b.N g of p?. Now assume that A € L(X, b). Then there exists a non-
trivial K-finite function f € C(X : A). It follows that f¢ € C®°(G?/K?) ya
satisfies the system of differential equations D f?¢ = Vel (D : A)f?, for
D e D(GY/KY).

It follows from the above discussion, that the theorem of [40], p. 359,
as well as its proof, can be entirely formulated in terms of the function
£, and therefore applies without change, see [40], p. 388, note (i) added
in proof. In particular, we may draw the following conclusions. In the
notation of the cited theorem, we may take ag as above, and we may

select a positive system E(ag)Jr for X (g9, ag) such that Re A is domin-

ant. The hypothesis of part (i) of the cited theorem is fulfilled, since the
non-trivial function f belongs to the space Ax(G/H, M;) N L*(G/H),
with A = A. It follows that b is compact, i.e., is contained in € N g.
In the cited theorem we may now take t = b and a; = ib. Thus,
qd =
lar.
We note that W(a | ad) = W(ad) so that the elements X; = Ad(x;)|
of the cited theorem belong to W(ad ). It follows from part (111) of the cited
theorem that, for some j, the element X;A = A/ belongs to a *. This implies

that A € ag* = ib*. o

= ap, and it follows from part (i) of the cited theorem that A is regu-

Corollary 16.3 Let b C q be a 0-stable Cartan subspace. If L(X, b) # ()
then there exists a Cartan subspace t C q with t C €. Moreover, let t be an
element of the set W(t | b), which is non-empty by Lemma 3.8. Then, for
every A € L(X, b), the element t A belongs to it" and is regular relative to
the root system ().

Proof: Assume that L(X, b) # #. Then, by definition, L? 1(X) # 0. By
Theorem 16.1 there exists acompact Cartan subspace t C g. Lett e W(b, t).

Then by Lemma 14.2 the element ¢ maps L(X, t) bijectively onto L(X, b).
The assertion now follows from Theorem 16.1. O

In the rest of this section we fix a Cartan subspace b C q containing a,.
If P € &, then the 6-stable Cartan subspace *bp of mp N g is defined as in
the text before (2.6).

Lemma 16.4 Let P € &,, v € N (ay) and assume that Lp, (b, 1) # 0.
Then there exist a Cartan subspace b C my,-1p, N q and an element t €
W(b | b) with the following properties.

(a) *h:=bn m,-1p, is compact, i.e., contained in ¥;

(b) t =Ad(v)"!on apgs

(c) the elements of tLp (b, v) belong to i *b* and are regular relative to
Z(my-1 pyes * b)
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Proof: From (14.9) it follows that L(Xp,, *bp,, Tp) # ¢. Hence, by
Corollary 16.3 there exists a Cartan subspace t of mp N Ad(v)(q) that
is contained in . Now b = Adw) 't @ apq) is a Cartan subspace of
my,-1p, N q that satisfies condition (a), with *h = Ad(v)~'t.

Fix 1, € W(b | b). Then £;'Ad(v)~'apy C %b. Since b is maximal
abelian in p?, it follows from Lemma 3.1 (d) that there exists a t, € W(b)
such that 1, = tf]Ad(v)*] on apq. It follows that 1 = 111, € W(ﬁ | b)
satisfies requirement (b).

Finally, let A € Lp,(b, 7). Then, in the notation of (14.9), the elem-
ent A’ := Ad(v)s~'A belongs to L(Xp,, *bp,, Tp). The element t' =
Ad(v)tsAd(v)~! belongs to W(B” | b”) and equals the identity on apq,
hence restricts to an element of W(t | *bp,). By Corollary 16.3 it follows
that #/ A’ belongs to it* and is regular relative to X (mp¢, t). We now observe
that /A’ = Ad(v)rA. Hence, tA belongs to i*b and is regular with respect
t0 T(My-1 pye, *b). O

Remark 16.5 Let P, v, ﬁ,t be as in Lemma 16.4. Then it follows from
Lemma 3.8 that, forall A € Lp,(b, 7), v € aj‘,qc and D € D(X),

Yo(D: A+v) =y (D:tA+1).

Corollary 16.6 Let P € &, andlet A € Lp(b, 7). Then (A, a) € R\ {0},
for each o € Z(mpg, *bp).

Proof: Select v € W such that A € Lp,(b, 7). Let 6,t be associated
as in Lemma 16.4. Then by (a) and (b) of the mentioned lemma, ¢ maps
b="bp @ apq onto b="bo a,-1pyq> Preserving the decompositions. The
assertion now follows from Lemma 16.4 (a) and (c). O

17. The constant term of the Eisenstein integral

In this section we describe the constant term of the normalized Eisenstein
integral, introduced in Definition 13.7. We start by recalling the notion of
the constant term introduced in [17].

If f € Awemp(X : 1), see Def. 10.1, then in particular f € A(Xy : 7)
and f has an expansion of the form (6.1). It follows from Lemma 10.2 (c)
combined with [14], Thm. 3.5, that, for each Q € £, and every v € Nk (ay),

E€Exp(Q,v|f) = Ref+pg <0 on ap,.

We define the function fyp , : Xig,v+ — Vz by

fow(ma) =do(ma) > aq:(Q.v| f.loga,m),

§€Exp (Q,v]f)
Reé+pp=0
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form € Xg 4, a € Apq. Here dg : Mo — R is defined by dp(m) =
/1 det Ad(m)ln,|. Note that dp = 1 on My and on Ap N H. Hence, dg
factors to a function on X ¢ ,; in fact, dp(ma) = a”?, form € My, and
a e AQq‘

We note that, for v € N (aq), the function R, f : x — f(xv) belongs
to the space Aemp(G/vHV ™! @ 7).

Proposition 17.1

(@) Ifu,v € Ng(ag), then (Ryf)o.u = fo.uv-
(b) The function fo , extends uniquely to smooth function on X, ,. This
extension is the unique function in wemp(Xi0,y : Tg) such that

tlim (do(mexptX) f(mexptXv) — fp ,(mexptX)) =0,

foreverym € Mg and X € aJQFq.

Proof: The first assertion follows from [14], Lemma 3.7. In view of (a) it
suffices to prove the second assertion for v = e. In this case the assertion
follows from [17], proof of Thm. 1. O

Thus, for v = e, the function fy , coincides with the constant term of
f along Q, introduced by [17], which in turn generalizes Harish-Chandra’s
notion of the constant term for the case of the group, see [30], Sect. 21,
Thm. 1. We shall therefore call fj , the constant term of f along (Q, v).
The following result, which generalizes a result of Harish-Chandra, see [30],
Sect. 21, Lemma 1, is essentially given in [17], Thm. 1 (b).

Lemma 17.2 (Transitivity of the constant term) Let P, Q € £, be such
that P C Q. Put*'P := My N P. Let v € Nk (ag) and u € N, (a,). Then

(fo.0)*pu = fruv-

Proof: For v = u = e the result is equivalent to [17], Thm. 1(b). Let
now v € Nk(aq) and u € Nk, (aq) be general. Then right translation by
u defines a linear isomorphism R, : A(Xjp, : Tg) = AXigu : Tg)-
Hence, applying Proposition 17.1 (b) we find that

Ri(fo.v) = fouv (17.1)
Applying Proposition 17.1 (a) we see that
fQ,uv = (Ruvf)Q,e and (fQ,v)*lP,u = (Rqu,v)*lP,e' (172)

Combining (17.1) with (17.2), and using the first line of the proof and
Proposition 17.1 (a), we finally obtain that

(fQ,v)*]P,u = ((Ruvf)Q,e)*]P,e = (Ruvf)P,e = fP,uv-
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The following transformation rule for the constant term will also be
useful to us. If u, v € Ng(aq), we define the map p;,, : C*(Xip,, : Tg) —
C®(Xyugu-1uv * Tugu-1) In accordance with [14], Eqn. (3.24), by

Prup(m) = t(u)e(u™" mu), (m € My, gu-1)-

One readily checks that p; , maps Aemp(X19,0 1 To) INO Aemp (X4 0u—1 up
TuQu_] )

Lemma 17.3 Let f € Awemp(X : 1) and let Q € &, and u,v € Nk (aq).
Then

quLFl,uv = pr,qu,v- (17.3)

Proof:  From the definition of dy onereadily verifies thatd,, o1 (umu=') =
do(m), for m € M;q. The result now follows by a straightforward appli-
cation of Proposition 17.1 (b). See [14], Lemma 3.6, for a similar proof.

O

Assume that Q C iap, is open, and f : @ x X — V; a smooth map
such that f, : x = f(v, x) belongs to Awemp(X : 7) for every v € Q. If
0 € F» and v € Ng(aq), we shall write fo , for the map 2 x X;p , — V;
defined by

fQ,v(Vv m) = (fv)Q,v(m)a (V € Qa m e XlQ,v)-

We now turn our attention to the normalized Eisenstein integral E°(P : -)
where P € £, is assumed to be of residue type. In the end it will follow
that any P € 5 is of this type, see Remark 12.2, so that this is really no
restriction on P. Let €2p be the set of points in iap, where the function
v = E°(P : v) is regular. Then for v € Qp and ¢ € A, p, the function
E°(P :v: -)¥ belongs to Awemp(X : 7), see Proposition 13.15. In accor-
dance with the above, we denote its constant term along (Q, v), for Q € £,
and v € Nk(aq), by Ej) (P :v: )y

Proposition 17.4 (RT) Let P, Q € & and u € Ng(ay).

(a) The function E¢ WP extends to a meromorphic C*(Xig 4,
Hom(,, p, V;))-valued function on a’;,qc, with singular set equal to
a locally finite union of real X, (P)-hyperplanes.

(b) There exists ae > 0 such that, for every y € A, pand p € HE,(P)(aj;q)
with the property that v +— p(V)E°(P : v : ) is regular on a}iq(e),
the function v — p(v)E? W(Prvi)yis regular on aj‘,q (&) as well.

(¢) IfE, (P -) #0, then W(apq | agq) is non-empiy.

(d) Let W(apq | agq) be non-empty. Then there exist unique meromorphic
functions E"Q’M’S(P D) a’;qc — Hom(Az p, C*(Xg.u @ T0)), for
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s € W(apq | agpq), such that, forallm € Xy , and a € Agpq,

Ey (P:vimay= Y  a"VEy, (P:v:m), (17.4)

seW(apglagq)

as an identity of meromorphic functions in the variable v € ay,, .. Here
s*V = vos, see Sect. 3. The singular locus of any of the meromorphic
Junctions Ey, |, (P -), fors € W(apq | agq), is the union of a locally
finite collectton of real X, (P)-hyperplanes.

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2.

(a): Let ¢y € A, p, and define f : (v, x) = E°(P : v : x)y. Then
f e é‘hyp(X 1), with Y C *aj‘,q a finite subset, see Lemma 13.17. In

particular, it follows that f € Cp; hyp(X+ : 7), see Sect. 6. The set J := H;
is a real X, (P)-configuration in a* pqcs again by Lemma 13.17.

Let £, be the collection of H € J with H N i aj‘,q # (). Then H, is
finite, since J¢ is real. For every H € #, we select a first degree polynomial
function Iy € Py (a}y,) with H = ;' (0), and put

d(H)
= 1_[ 14,
HeFty
withd = dy. Selectgy > Osuchthat H € ¢, Hﬂa’;q(go) #0 = H e H.
Then the family f° : (v,x) +— mo(v)f(v, x) belongs to (D(aj;q(so),
C>(X : 1)). Moreover, in view of Lemma 13.17, for every 0 € W/~ p
and & € —o - Y + NA,(Q), the function

4o (Q.u | f)i=70q0e(Q,u| f)

belongs to Pr(agq) ® O(a*}q(so), C®Xp.u : T0)); here k = deg, f. It
follows from [14], Lemma 12.7, that

f,?(mau) = Z a’’—re Z a_sqgﬁg(Q,u | f,loga)(v, m),

oeW/~gip Ee—o- Y+NA(Q)

for every m € Xp , 4+, and a € AJQ“q(RQ,u(m)_l), where the second series
converges neatly in a. For every v € Qp, the function f° belongs to
Aemp(X : 7), see Proposition 13.15. Since Y is real, it follows by uniqueness
of asymptotics, for allm € Xy , + and a € Agpq, that

(f)gumay=" > a”q04(Q u| floga)(w,m). (17.5)
oeW/~gip
0c—o-Y+NA,(Q)
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By density and continuity, this expression holds for all m € Xy, and
a € Agq. On the other hand, by the characterization of the constant term in
Proposition 17.1 (b), it follows that, for v € Qp,

(1)) g0 = T (S 0

Using Lemma 13.17 once again, we infer from (17.5) thatv > E7, (P : v)¥
= (fV)o.u extends to a meromorphic C* (X, : Tp)-valued function
on uz’;qc with singular set contained in U#;. This establishes (a).

We will first establish the remaining assertions under the assumption
that u = e.

(b): Let A € Lp(b,7), ¥y € A, p(A) and define f as above. For
p € Is,(p)(ap,) we put f,(v, x) = p(v) f(v, x).

According to Theorem 15.12, there exist g € Hz,.(a;q),R(aqu) and con-
stants &9 > 0 and sy > 0, all independent of A and ¥, such that f, is
holomorphic on aj;q(so) and belongs to T (P, T, A, &g, So). Let &, be any
constant with 0 < ¢; < g. If p € ng(p)(cf;q) is such that f, is holo-
morphic on aj‘,q (€1), then clearly f,, € T(P, 1, A, 9, 50). By a repeated
application of Cauchy’s integral formula to f,, (v, x), with polydiscs of size
O((1 + Ix(x))™"), it now follows that f, € T(P, T, A, &}, o), for every &/
with 0 < &} < &;. See [5], Lemma 6.1, for a more detailed indication of
how to use Cauchy’s formula.

Letv € PWhbesuchthat A € Lp,(b, 1), let 6, tbeasin Lemma 16.4 and

put 2 =v~! Pv. Then, in view of Remark 16.5, the family £, : *A XX =V,

defined by fA,,(M,x)A = f,,(t*],u,x) belongs to J (P T, tA, 80,s0)

Since tA € i*b*, by Lemma 16.4 (c), we may apply [17], Thm. 3,
which in turn is based on [5], Thm. 12.9. Let ¢] < &, < & be as above.
According to the mentioned theorem there exists a constant & > 0 such
that for every F € (P T,tA, 81,S0) and all m € X, the function
v = (F))¢.. is holomorphic on a’ q(81) From the proof of [17], Thm. 3,
it follows that this holds with &, = min(e], &), where & > 0 is the constant
of [17], Lemma 5. The latter constant only depends on A; the set Lp(b, 7) is
finite, hence we may chose & simultaneously for all A under consideration.
We now fix € > 0 such that ¢ < min(gg, £). Assume that the hypothesis of
part (b) of the theorem is fulfilled. If we apply the above discussion to the
functions f, and F = pr, with &1 = ¢, then & = ¢}, and it follows that
the function v — ((fp)v)g..(m) = p(VEG (P : v :m)y is holomorphic
on aj;q (¢}), for all m € Xy .. In view of part (a) of the theorem, it follows
that v > p(v)Ey (P : v) is holomorphic on aj;q(g’l) as a function with
values in C*°(X ¢ : Tp). This holds for every &} < &, whence the desired
assertion.

(c): From the hypothesis with v = e it follows that there exists
aA €Lp(b,7)anday € Ay p(A) such that Ef, (P : )¢ # 0. Let Q)
be the set of v € Qp such that A + v is a > (b)- regular element of b}. It
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follows from Lemma 16.4 that A is regular with respect to X(mp¢, *bp).
Therefore, Q', is open dense in €2 p, hence in i aj;q. We infer that we may
select v € ', such that (f,)¢, . # 0, with notation as introduced in part (a)
of this proof

Fix v € PW such that A € Lp,(b, 7). Let (b t) be as in Lemma 16.4
and put P = v~ ! Pv. Then tA belongs to i*b* and is regular relative to
X(mp, *b) Now fv € Aemp(X 1 7) and by Remark 16.5,

Df, =vyy(D:tA+t)f, (17.6)

for all D € D(X). Since tA € z*b* t € zan and tA + tv is regular with

respect to E(b) it follows from [17], Thm. 2, that the set W(aP | agq)
is non-empty. The map s > ¢! o5 is a bijection from the latter set onto
W(apq | agq), which set is therefore non-empty as well.

(d): Uniqueness of the functions Ey ., ;(P : -) is obvious, by linear
1ndependence of the functions a > a*" for generic v. We fix A and i as
in part (b) of the proof and define f as in part (a). We define the set ',
as in (c). Let Q7 be the open dense subset consisting of v € Q, with s*v
mutually dlfferent for s € W(apq | agg)- Let v, b t P be as in part (c) of
the proof, and fix v € Q. In view of (17.6), it follows from [17], Thm. 2,
that there exists a Collection of functions f,, 50 € C*Xig,. : Tg), for
S e W(a};q | apq). such that

(Foem) = D fasom),  (meXigL);

Se W(apq\aQq)
and

fwsoma) =a " f 5 0(m), (m € Xjg,e, a € Agg).

Combining these equations, substituting #s for § and writing f, 50 = fu.s0,
we see that, forallm € Xy, and a € Agg,

(Foemay=" > a™fusolm). (17.7)

seW(apglagg)

For every s € W(apq | apq) there exists an element § € W such that
§ = §|ag,» see Corollary 3.5. It follows that s*v = §~'v|q,, , forall v € Upge-

Using the definition of ~¢p we see that the class of §71in W/ ~o|p 18
uniquely determined by s. We denote this class by o;. Comparing (17.5) and
(17.7) we see by uniqueness of asymptotics that X — g5, o(Q,¢e | f, X)(v)
is constant as a C*(Xy . : Tp)-valued function on apq and that

fv,s,Q(m) = C]as,o(Q» e | fa 0)(1)’ m),

forallm € Xy .. We define E"Q’e’S(P vimy i=qs,0(0,¢e | f,0)(v, m).
Then (17.4) applied to ¢ follows for v € Q. Finally, the assertions on
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meromorphy follow from the fact that g,, o(Q, e | f,0) € M (aj‘,qc, Hy,dy,
C*(Xg,e: T9)), by Lemma 13.17.

It remains to establish (b)—(d) under the assumption that u € Nk (ag) is
arbitrary. Assertion (b) follows from the already established assertion with
u = e by application of Lemma 17.3 with u, e in place of u, v, respectively.

To prove (c), we assume that E° LP ) #0andput Q' = u='Qu.
Using Lemma 17.3 we infer that E°, P : ) # 0. Hence, from the
already established assertion (c) with Q’ e in place of Q, u it follows that
W(apq | agrq) # 9. Since s Ad(u)~' o5 Ad(u) induces a bijection from
W(apq | apq) onto W(apq | aprq), it follows that W(apq | agq) # 9.

Finally, assertion (d) follows from the already established assertion with
u~'Qu, e in place of Q, u by applying Lemma 17.3 once more in a similar
fashion as above. O

If P, Q are associated parabolic subgroups in 5, see Def. 13.4, then
W(apq | agq) is a non-empty finite set of isomorphisms from apq onto apg;
moreover, the natural left action of W(apgy) as well as the natural right action
of W(agg) on this set is free and transitive.

Proposition 17.5 (RT) Let P, Q € &, be associated and let v € Nk (ag).
Then, for each s € W(apq | apq) and every € ;. p, the meromorphic

C*(Xg.v : )-valued function v — E}, | (P :v: )Y on aj;qc, defined as

in (17.4), attains its values in the finite dimensional space A>(Xg , : Tg).

Proof: 'We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. Fix ¢ € A, p. Let v € Qp and define the function

f € eAtemp(XlQ,v . TQ) by
fan) = E5 (P:vim)y  (m € Xg,).

We recall from Sect. 2 that a4 is maximal abelian in Ad(v)q. Let Ry be
a proper parabolic subgroup of My, that contains *A 4 and is stable under
the involution ¢”0. In the notation of Sect. 2, Ry is of the form Py, for
some X € *agq, relative to (Mg, 6) in place of (G, 6). Since X is fixed
under o0, it follows that Ry is o 6-stable as well. The o’-split component
of the Lie algebra of Ry equals ag, N Ad(v)q = ag, N *agq = ag, N g,
hence equals the o-split component. We therefore denote it by ag,q; the
associated positive chamber is denoted by a}FQ q

Since A is central in My, and stable under both o and o, the group
Rip = Ry Ay is aparabolic subgroup of M that contains A, and is stable
under both involutions o6 and of. The associated o”-split component

equals Ay = *ApqApq, Which is also equal to the o-split component of
R1o. Accordingly, the positive chamber is given by A} Rigq = A;Q qAoqg-

We now claim that every & € Exp (R, e | f) satisfies

Re& + pg,, <0 on a}Fqu. (17.8)
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Indeed, for R minimal this follows from Lemma 10.2. For general R,
it follows by application of [14], Thm. 3.5.

On the other hand, it is readily seen that R = Ry N is an element of
P, and that Rjp = *'R := RN M. By application of Lemma 17.2,

fR]Q,L) == E?Q’U(P : U)'(/f

From Ry C My we infer that R C Q, hence apy C agq, from which
we see that dimagq > dimapg; hence, W(apq | arq) = ¥. From Proposi-
tion 17.4 (b) it now follows that the function on the right-hand side of the
above equality is zero. We conclude that f,, . = 0 for every Ry as above.
By definition of the constant term it follows that every & € Exp (Rig. e | f)
satisfies Re& + pg,, 7 0 in addition to (17.8). Put f; = Ej, , (P : V)V
Then

flamy="Y""a"" fi(m),

seW(apglagg)

for m € Xp, and a € Apy. It follows that every f; belongs to
Aemp(Xp,v 1 Tg). Moreover, every & € Exp (Rp, e | f;) satisfies Re§ +
Pry < 0 on a;Qq and Re§ + pg, # 0. In particular, if Rp is a maxi-
mal fo’-stable parabolic subgroup in My, it follows that every exponent
§ € Exp(Rp, e | f;) satisfies Re§ + pg, < 0 on a}FQq. This implies that
(fv)RQ,e = 0; hence, f; € 42(Xp, : Tg), by [9], Prop. 12.

Let s € W(apq | agq). We have shown that the function ¢ : v
E"Q’U’S(P : V)Y attains its values in A2(Xg,, @ Tp) for v € Qp. Since
Q is of residue type, 42(Xp , : Tp) is a finite dimensional subspace of
C>®(Xg,» : Tg) by Lemma 12.6. By meromorphy it now follows that ¢ is
A2(Xg,v 1 Tg)-valued. m|

If P, Q € &, are associated, then s > s~! defines a bijection from
W(agq | apg) onto W(apq | apq). In this case we write, for s € W(apq |
an)’

svi= (s H*v=vos !, (v € cf}qc).
Definition 17.6 (RT) Let P, Q € %, be be associated. For each s €

W(agq | apq) we define the meromorphic Hom(4» p, 42, o)-valued func-
tion Cyp(s : +) on ap,. by

[Coip(s V], = EL 1 (P )y, (vefw).

In the chain of reasoning leading up to Theorem 21.2, this definition requires
P to be of residue type, since it depends on the validity of Definition 13.7;
see Remark 12.2.
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Corollary 17.7 (RT) Let P, Q € &,. For each s € W(agq | apq), the
Hom(Az p, A2 o)-valued meromorphic function Cj p(s @ ) on apy. has
a singular locus equal to a locally finite union of real %, (P)-hyperplanes.

Let v € ia”;,q be a regular point for E°(P : -) and the C-functions
Copls = +), ass € W(agq | apq). Let ¥ € Ay p. Then the function
E°(P : v)y, which belongs to Awemp(X : 1) by Proposition 13.15, has the
following constant term along (Q, v), for v e W,

Ey (P:ivimayy= Y a"[Chpls:v)y] (m). (17.9)

seW(agglapq)
forallm € Xp , and a € Agp,.

Proof: 'We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. The result is an immediate consequence of Proposi-
tions 17.4 and 17.5 combined with Definition 17.6. O

Remark 17.8 Formula (17.9) above generalizes Harish-Chandra’s formula
for the constant term of the normalized Eisenstein integral in [29], Thm. 5-6,
see also [31], Thm. 14.1. Accordingly, the functions C"Q‘ pls i ), fors €
W(agq | apq), will be called normalized C-functions.

In the context of reductive symmetric spaces, for minimal P the above
result is due to [5], Eqn. (133), in view of [9], Eqn. (52). For general P the
result is due to [19], Eqn. (5.3). See also Remark 13.10.

Remark 17.9 Note that it follows from the characterization of the normal-
ized Eisenstein integral in Proposition 13.6 that

Cop(l:v) =1, (v e apye)-

18. The Maass—Selberg relations

In this section we derive the Maass—Selberg relations for the normalized
C-functions. As a first step we use the vanishing theorem to prove the
following functional equation for the Eisenstein integral.

Proposition 18.1 (RT) Let P, Q € P, be associated parabolic subgroups.
Then, for each s € W(agq | apq) and all x € X,

E°(P:v:x)=E°(Q:sv:x)Cypls:v),
as a meromorphic identity in v € ap ..

Proof: We give the proof under the assumption that P is of residue
type, see Remark 12.2. Fix ¢ € 4, p. By Corollary 17.7, the function
V> C"Q‘P(s : V)Y belongs to M(aj;qc, H, A, o), for some locally finite
collection #¢ of X,(P)-hyperplanes in aj .. It follows that the function
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A C‘é‘P(s : s7'A)¥ belongs to eM(a*QqC, sH, Ay o). Here s is a lo-
cally finite collection of %, (Q)-hyperplanes in aj, .. By Proposition 13.6,

the family (A, x) — E°(Q : A : x)Y¥o belongs to é‘gyp(X : 1), for every
Yo € s o. We conclude that the family

fiOux) > E°(Q A :x)Chp(s: sy (18.1)

belongs to é‘gyp (X : 7) as well. For A in the complement €2 of a locally finite
union of hyperplanes in i a*Qq, the function f; belongs to Awemp(X : 7), and
its constant term along (Q, v), for v € ¢'W, is given by

(Fowma) = Y a*[pr,Ch ot : M)Cp(s : s~ W)Y ] (m);

teW(agqglagg)

see Corollary 17.7. Taking Remark 17.9 into account, we see that

Dpo(Q.v | fL)(X,m) = [pr,CQp(s = s~ M) YI(m), for all A € L,
X € agqand m € Xy, 1. By application of [14], Thm. 7.7, Eqn. (7.14), it
follows that

d1.0(0, v | £ X) 0k m) = [pr,Cop(s = s~ 1Y) (m). (18.2)

for generic A € iap,, X € agq and m € Xg,, ;. By meromorphy this
actually holds as an identity of meromorphic functions in X.

On the other hand, it follows from Definition 13.7 combined with
Lemma 6.12 that the family

g: (A x) = E°(P:s A0y (18.3)

belongs to Sgyp(X : 7). Moreover, for A in the complement of a locally finite
union of hyperplanes in iaj,,, the function g, belongs to Awemp(X : 7), and
its constant term along (Q, v) is given by

(@owma) =Y a *pr,Cop(t s s~ M)y (m).

teW(agqlapq)

This implies that, for every X € agpq,

G10(Q. v | & X)(hy -) = pr,Copls 157" W)Y, (18.4)

as a meromorphic identity in A € a*QqC. From (18.2) and (18.4) it follows
that the family f — g € ggyp (X : 7) satisfies the hypothesis of the vanishing

theorem, Theorem 6.11. Hence, f = g. It follows that the meromorphic
C°° (X : 7)-valued function v — f;, — g5, on aj;qc is zero. This implies the
result, in view of (18.1) and (18.3). m|
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Corollary 18.2 (RT) Let P, Q € P, be associated parabolic subgroups.
Then, for each s € W(agqlapy) and all x € X,

E*(P:v:x)=Cphpls: =) E*(Q:sv:x),
as a meromorphic identity in v € ag.

Proof: 'We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. The result follows from Proposition 18.1 combined
with Definition 13.7. O

We shall now derive the Maass—Selberg relations for the normalized
C-functions from the invariance properties of the kernel Kp, formulated in
Theorem 13.23.

Theorem 18.3 (RT) Let P, Q € P, be associated. Then for each s €
Wlagq | apq),

C‘é‘P(s : v)C‘é‘P(s =) =1, (18.5)

as an identity of meromorphic End(+A;, ¢)-valued functions in the variable
VE Upycs

Remark 18.4 For the case of the group the above result was announced by
Harish-Chandra in [29], Thm. 6, with a proof appearing in [32], Lemma 17.1
(see also Remark 13.9). For the Riemannian case H = K, which is a special
case of that of the group, the relations were proved in [34], Thm. 6.6.

For general reductive symmetric spaces and minimal P the result is due
to [5], Thm. 16.3, combined with [6], in view of [9], text after Eqn. (55).
For general P the result is due to J. Carmona and P. Delorme, [19], Thm. 2
and Prop. 5 (vi). See also Remark 13.10.

Proof: 'We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. It follows from Definition 13.20 that

[Wol Ko(sv:x:y)=E°(Q:sv:x)E*(Q:sv:Y), (18.6)

forallx, y € X, as anidentity of meromorphic functions in v € a} .. Onthe
other hand, from the mentioned definition combined with Proposition 18.1
and Corollary 18.2 it follows that

[Wpl| Kp(v:x:y)=E°(P:v:x)E*(P:v:y)

=E°(Q :5v: x)Chp(s : V)Cp(s —D)*E*(Q :sv:y), (18.7)
for x, y € X, and generic v € a’;qc. Now |Wp| = |Wg| since P and Q are
associated. Hence, using Theorem 13.23 we infer that

E°(Q:sv:x)E*(Q:sv:y)

= E°(Q :sv:x)Chp(s : v)Cyp(s 1 =D) E*(Q 1511 y) (18.8)
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for all x,y € X, as identities of meromorphic functions in the variable
V€ tpy.. Letv € 2W, and take x = mav with m € Xy, 4 arbitrary and
a tending to infinity in AJQFq. Comparing the coefficients of a@*"~#¢ in the

asymptotic expansions along (Q, v) of the resulting expressions on both
sides of (18.8), using Definition 13.7, we obtain that

Pro,o E*(Q :sv:y)
=prg,oCop(s 1 VICHp(s 1 —V) E*(Q 1 5v:y),

for all y € X, as an identity of meromorphic functions in the variable
V € apy.. Taking adjoints and substituting —v for v we now obtain

E°(Q :sv:y)oigy=E°(Q:sv:y)Chp(s :v)Cyp(s 1 —1) oig .
(18.9)

Fix w € W, and put y = ma w, with m € Xg ,, 4 arbitrary and a € A},

tending to infinity. Comparing the coefficients of a**~#¢ in the expansions
along (Q, w) of the functions on both sides of (18.9), we obtain

Pro.woigw =Prg o Cop(s 1 V)IChHp(s 1 =1) oig.y, (18.10)

as a meromorphic identity in the variable v € a} .. This holds for arbitrary

v, w € 2'W; in view of the direct sum decomposition (13.1) with Q in place
of P, the equality (18.10) therefore remains valid if the maps pr,, , and ig ,
are replaced by the identity map of A, ¢. O

Remark 18.5 Conversely, if the Maass—Selberg relations (18.5) hold, then
the expression on the right-hand side of (18.7) equals the one on the right-
hand side of (18.6); hence (13.13), the invariance property of the kernel Kp,
follows. Thus, the Maass—Selberg relations are equivalent to the invariance
properties of the kernel.

Corollary 18.6 (RT) Let P, Q € &£, be associated parabolic subgroups
and let s € W(agq | apq). Then there exists a constant ¢ > O such that the
meromorphic Hom(Ay p, 4> o)-valued function C 0l p(s : ) is regular on

aj;q(s).

Proof: We give the proof under the assumption that P and Q are of residue
type, see Remark 12.2. The corollary is a straightforward consequence of
Corollary 17.7 and Theorem 18.3, combined with the lemma below. m|

Lemma 18.7 Let P € £,. Let V be a complete locally convex space, and
let ¢ be a V-valued meromorphic function on ap ., with singular locus
sing ¢ contained in a locally finite collection of real X,(P)-hyperplanes.
Assume that for every Ly € iap there exists an open neighborhood w of Ao
in idp, such that ¢ is bounded on w \ sing ¢. Then there exists a € > 0 such
that ¢ is holomorphic on ap(€).
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Proof:  Since the collection #¢ of singular hyperplanes of ¢ is areal X, (P)-
configuration, the number of H € # with H N aj;q(s’) N H # ( is finite,
for every ¢ > 0. Hence, there exists a p € I, (p)r(ap,) of minimal
degree such that ¢, : A — p(A)@(1) is holomorphic on a neighborhood of
itp,. Clearly ¢, is holomorphic on aj,(¢), for a suitable & > 0. Assume
that deg p > 1. Then there exists a « € X,(P) and a constant ¢ € R
such that / : A — («, -) — c is a divisor of p. By minimality of p it
follows that h := iajp, N 171(0) is non-empty. From the hypothesis we
infer that ¢, = 0 on h. By analytic continuation it follows that ¢, = 0 on
he N aj;q(s) =[7'0) N aj;q(e). By a straightforward argument involving
power series expansion in the coordinate function /, it now follows that
["'¢, is holomorphic on apy(€). This contradicts the minimality of p.
Hence, deg p = 0 and the result follows. O

Theorem 18.8 (RT) Let P € P,. Then there exists a constant ¢ > 0
such that v — E°(P :v) is a holomorphic C* (X, Hom(A; p, V;))-valued
function on aj‘,q (e).

Remark 18.9 For the group case the above result is due to Harish-
Chandra [32]. For general reductive symmetric spaces and for P mini-
mal, the result is due to [9], Thm. 2. For non-minimal P it is due to [19],
Thm. 3(1).

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let A € Lp(b, 7) and fix ¢ € A, p(A) and n € V. Let
&o > 0; then the family F : (A, x) — nE°(P : X : x){ belongs to the space
Iner (A, &0) defined in [7], Def. 3. From Corollary 17.7 and Corollary 18.6
it follows that F satisfies the hypotheses of [7], Thm. 2. Hence, there exists a
€1 > Osuch that F belongs to the space II'(A, &;). In particular, this implies
that A — F; is holomorphic on a’;,q (¢) for some ¢ > 0. The theorem now
follows by linearity and finite dimensionality of V; and +4; p. O

Proposition 18.10 (RT) Let P € $,. Then there exist constants € > 0
and s > 0 and for every u € U(g) constants n € Nand C > 0, such that the
function v — E°(P :v) is a holomorphic C* (X, Hom(+; p, V;))-valued
function on aj‘)q (&) satisfying the estimate

IE°(P :v:u; 0)|| < Cl(, 0)["Ox)e R0 (v e af, (o), x €X).

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. By finite dimensionality of V; and +; p, it follows from
Theorem 15.12 and Definition 15.4 that there existsa p € I1 2,(P>,R(a}3q) and
constants € > 0 and s > 0 such that v — p(v) E°(P : v) is a holomorphic
function on a’;q (g), with values in C*°(X) ® Hom(+,, p, V;). Moreover, it
satisfies the following estimates. For every u € U(g) there exist constants
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n € Nand C > 0O such that

[P E°(P vz us )| < Cl(v, 0)]"O(x)e’ R IxD,
(v e ap,(e), x €X). (18.11)

If we choose ¢ > O sufficiently small, then by Theorem 18.8, the func-
tion v > E°(P : v) is already holomorphic on a}(¢). By a straightfor-
ward application of Cauchy’s integral formula, involving polydiscs of size
O((1 + Ix(x))™"), it follows that for ¢ > 0 sufficiently small, the following
is true. For every u € U(g) there exist n € N and C > 0 such that the
estimate (18.11) holds with p = 1. O

Corollary 18.11 (RT) Let P € &,. Then there exist constants ¢ > 0 and
s > 0 and for every u € U(g) constants n € N and C > 0, such that the
Sunction v — E*(P : v) is a holomorphic C*°(X, Hom(V;, 4, p))-valued
function on ap(€) satisfying the estimate

IE*(P:v:u;x)|| < Cl(, 0)]"O)e VX0 (v e af, (e), x €X).

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. In view of Definition 13.7, the result follows from Propo-
sition 18.10. O

Corollary 18.12 (RT) Let P € $,. Then, for all U € S(cf;q) and u €
U(g), there exist constants m € N and C > 0 such that

IE*(P:v; U :u;x)| < Clv, x)|"O(x), (v eiap, x €X).

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. The result follows from the estimate of the previous
corollary, by a straightforward application of Cauchy’s integral formula
involving polydiscs of size O((1 + Ix(x))™"). ]

19. The spherical Fourier transform

We recall from [5], Cor. 17.6, that there exists a constant N € N such that
1+1x)Ve? e L'(X). (19.1)

Combining the estimate (12.1) with (19.1) and the estimate of Corol-
lary 18.12, we see that the integral in the following definition converges
absolutely.

Definition 19.1 (RT) Let P € &,. If f € C(X : 1), we define its Fourier
transform Fp f : ia}iq — Ay p by

Frflv) = /XE*(P 1V x) f(x) dx, (v € ia’;,q).
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The above definition depends on the validity of the estimate of Corol-
lary 18.12. Thus, within the chain of reasoning leading up to Theorem 21.2,
the use of this definition requires P to be of residue type, see Remark 12.2.

Remark 19.2 1f G has compact center modulo H, then agq = {0} and
Ar g = A2(G/H : 7). Moreover, using Remark 13.11 we infer that f —
F f(0) is the restriction to (X : 1) of the orthogonal projection L?(X : 1)
— L3(X: 1) = Arg.

Lemma 19.3 (RT) Let P € P,. Then for every U € S(aj;q) there exists
a constant m € N and a continuous seminorm s on C(X : t) such that

sup (I + D™ Fp f(; D)l = s(f),

;o
veiap,

forall f € C(X: v). In particular, the Fourier transform Fp maps C(X : 1)
continuous linearly into C*™ (i aj‘,q) ® Az p.

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. The result follows from the estimates (19.1) and (12.1)
combined with the estimate of Corollary 18.12. O

Lemma 19.4 (RT) Let P € £,. Then for every D € D(X) and all [ €
CX:1),

Fp(Df)(v) = EP(D V) Fp f(v), (v € ia’,‘;q). (19.2)

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. From [3], Lemma 7.2, we recall that every D € D(X) acts
by a continuous linear endomorphism on C(X : 7). Since Fp : C(X : 1)
— CX(i aj;q) ® A, p is continuous, it suffices to prove the identity (19.2)
for f in the dense subspace C2°(X : 1) of C(X : 7). For such f the identity
is an immediate consequence of Lemma 14.8. O

Let 2 be the image in ID(X) of the Casimir operator defined by the
bilinear form B on g, see Sect. 2.

Lemma 19.5 (RT) Let P € $#, and let ¢ > 0.

(@) p,(82:v) = —PI+ O(v])asv € apq(€), [v] — oo,

(b) There exists a constant R > 0 such that for every v € aj‘)q(e) with
[v| > R the endomorphism W, (2 ) is invertible and the operator
norm of its inverse satisfies the estimate

WP @07 <2 (19.3)
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Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let (-, -) denote the complex bilinear form on a},. that
extends the dual of the given bilinear form on apq. There exists a first order
polynomial function w L aj‘,qc — End(+;, p) such that

pp(§2:v) =, v)I+p (v), (v € cf}qc). (19.4)

Indeed, this follows by application of Corollary 14.4. It follows by a straight-
forward estimation that, for v a’;,q (e),

(v, vy =—?+0(v]) as [v] = oo. (19.5)

Using that || (v)|| = O(|v|) we obtain (a) from (19.4) and (19.5). From
(a) it follows that —|v|*2EP(Q :v) = I+ O(|v|™"). Hence, (b) follows. O

In the following result, 8(iap,) denotes the Euclidean Schwartz space
of iap,.
q

Proposition 19.6 (RT) Let P € &,. Then the Fourier transform Fp maps
C(X : 1) continuous linearly into 5(ia’;,q) ® A p.

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. Moreover, we use the argumentation of [5], p. 436, com-
pletion of the proof of Theorem 19.1, with Fp in place of . Let us
label the first two displayed formulas in the mentioned text in [S] by (E1)
and (E2), respectively. The estimate (19.3) generalizes the estimate of [5],
Lemma 19.4.

Let R > 0 be as in Lemma 19.5 (b) for some choice of ¢ > 0 and let
u € S(a’;)q) and M € N. In view of the last assertion of Lemma 19.3 it
suffices to prove the analogue of (E1), i.e., it suffices to prove the existence
of a continuous seminorm s on C(X : t) such that

1 Fp fo; w)ll < (14 ) Ms(f),

forevery f € C(X : )and all v € ia’;,q with [v| > R. As in [5] this is
done by induction on the order of u, by using Lemma 19.3 instead of (E2)
and by using Lemmas 19.4 and 19.5 instead of [5], Lemmas 19.3 and 19.4,
respectively. O

We end this section with a result on the Fourier transform of a compactly
supported smooth function. If § > 0 we write

Xsi={x e X|Ilx(x) < S}

Then X is a K-invariant compact subset of X. We write C5°(X : 1) for
the closed subspace of C*°(X : ) consisting of functions with support
contained in Xg.
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Proposition 19.7 (RT) Let P € £, and let ¢ > 0 be as in Corollary 18.11.
For every f € CX(X : 1), the Fourier transform Fp(f) extends to a holo-
morphic function on a’;,q (&) with values in A, p. Moreover, let S > 0. Then

for every m € N there exists a continuous seminorm p,, on C3*(X : 1) such
that, for every f € C&°(X : 1),

[1Fp fW)II < (1 + VD™ pu (f), (v € apy(®). (19.6)

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. The assertion about holomorphy is a straightforward
consequence of the holomorphy of the Fisenstein integral as formulated
in Corollary 18.11. Let n € N be the constant of the mentioned corollary
associated with u = 1. Let S > 0. Then it straightforwardly follows from
the estimate of Corollary 18.11 that there exists a continuous seminorm p
on C¢°(X : 1) such that, for every f € C(X : 1),

[1Fp fWI = (L+ D" po(f), (v € ahy(e)). (19.7)

Let R > 0 be associated with ¢ > 0 as in Lemma 19.5. Then it follows from
the above estimate that, for every k € N and for v € aj;q (¢) with |[v| > R,

WP Fp fW = [, (2 - ) Fp(Q H W) (19.8)
< (14 )" po2' Q" ). (19.9)

Taking k € N such that n — 2k < m we see that there exists a continuous
seminorm p,, on Cg(X : 7) such that for every f € C{°(X : 1) the estimate
(19.6) holds for all v € a’;q(s) with [v| > R. From (19.7) it follows that
there exists a constant C > 0 such that the estimate (19.6) holds with Cpy
in place of p,,, forall v € a’;q(e) with |v| < R. Take for p,, any continuous

seminorm with p,, > max(Cpy, p,,); then the desired assertion follows. O
We end this section with another useful result.

Lemma 19.8 (RT) Let P € %, and assume that apy # 0. Then Fp
vanishes on A,(X : 1).

Proof: We give the proof under the assumption that P is of residue type, see
Remark 12.2. Fix f € 4,(X : 7). Then there exists a non-trivial polynomial
q in one variable such that g(€2) f = 0. In view of Lemma 19.4 it follows
thatq(EP(Q V) Fpf(v)y =0forallv e iaj;q. From Lemma 19.5 it follows
that the polynomial function v > det q(p, (€2 :v)) is not identically zero.
Hence, #p f vanishes on an open dense subset of ia} . By smoothness of
Fp f it follows that Fp f = 0. O
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20. The wave packet transform

It follows from the estimate in Proposition 18.10 that the integral in the
following definition is absolutely convergent. We agree to write dv for the
Lebesgue measure dup(v) on iaj‘,q, normalized as in Sect. 5.

Definition 20.1 (RT) Let P € £,. Then for every ¢ € §(i a”;,qc) ® Az p,
we define the wave packet $pp : X — V, by

Ipp(x) := / E°(P:v:x)p()dv (x € X).

x
itpg

This definition depends on the validity of the estimate of Proposi-
tion 18.10, which in the chain of reasoning leading up to Theorem 21.2
requires P to be of residue type, see Remark 12.2.

Note that the wave packet g p¢ is a smooth 7-spherical function.

Remark 20.2 1f G has compact center modulo H, then Agq = {0} and
Ar.¢ = A2(G/H : 7). Inthis case the measure dv = d has total volume 1
(end of Sect. 5), and using Remark 13.11 we infer that Js¢ = ¢(0).
Accordingly, J¢ is naturally identified with the inclusion map 4,(X : 7)
— C®(X :1).

Theorem 20.3 (RT) Let P € $,. Then the wave packet map $p maps
8@ a”;,q) ® Ay p continuous linearly into the Schwartz space C(X : 7).

Proof: 'We give the proof under the assumption that P is of residue type,
see Remark 12.2. Let A € Lp(b, 7) and fix ¢ € A, p(A). We recall from
the proof of Theorem 18.8 that the family F defined by

Fv,x) = E°(P:v:x)y

has components with respect to a basis of V; that are functions of type II'(A)
in the sense of [7]. Hence, by [7], Thm. 1, the map @ = W, r, where

Wy, r(x) =/ a(V)F(v, x) dv,

is continuous linear from 4 (iaj;q) into C(X : 7). We note that W, p =
gp(a @ V). Hence, the result follows by using linearity, the finite dimen-
sionality of 4, p (see Corollary 14.4) and the decomposition (14.10) of the
latter space. m|

Let P € £, and D € D(X). In the following lemma we write &P(D)
for the endomorphism of £(ia},) ® A, p given by

1, (D))(v) = 1, (D 2 ) (g (v)),

for ¢ € 5(ia}iq) ® Ay pand v € iaj‘,q.
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Lemma 20.4 (RT) Let P € P, and D € D(X). Then
Dogp :gpoEP(D) on 5(ia’;)q)®a4)2,p. (20.1)

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. The operator D defines a continuous linear endomorphism
of C(X : 1), by [3], Lemma 7.2. In view of Theorem 20.3 it follows that
both sides of the equation are continuous linear maps from $(iap,) ® 42 p
to C(X : 7). Hence, by density it suffices to prove the equality when applied
to an element ¢ € C°(i a’;q) ® A, p. But then the result is an immediate
consequence of Lemma 14.1 by differentiation under the integral sign, in
view of Definition 20.1. O

We equip C(X : 1) with the restriction of the L?-inner product (- | -)
from L*(X : 7). Similarly, for P € £,, we equip 8(iap,) ® Ay p with the
restriction of the L2-type inner product (- | -) from Lz(ia’;,q) ® A, p. With
respect to these structures the Fourier transform ¥p and the wave packet
map & p are adjoint in the following sense.

Lemma 20.5 (RT) Let P € £,. Then the continuous linear operators
Fp:CX:1) —> 5(iaj;q) & Ay pand Jp : 5(ia’;,q) Q@ Arp —> C(X: 1)
are adjoint in the sense that, for all f € C(X: 1) and ¢ € $(iap,) ® A2 p,

(Feflo)=(f1dro) (20.2)

Proof: We give the proof under the assumption that P is of residue type,
see Remark 12.2. By continuity and density it suffices to prove (20.2) for all
feCrX:nandg € C‘C’O(ia’;,q) ® Ay p. For such f and ¢, the formula
follows by an application of Fubini’s theorem. O

21. Fourier inversion for Schwartz functions

In this section we show that the Fourier inversion formula (8.10), established
in [12], implies an inversion formula for Schwartz functions, formulated in
terms of the Fourier transforms and the wave packet maps introduced in the
previous sections.

The crucial first step is the following.

Proposition 21.1 (RT) Let F C A. Then for every W-invariant even
residue weight t € WT(X),

Tp =W :Welt(ap) §rFr on CI(X:1). (21.1)

Proof: 'We give the proof under the assumption that Py is of residue type,
see Remark 12.2. In case ' = A and G has compact center modulo H,
then arq = agq = {0} and the proof below has to be read according to the
conventions indicated in Remarks 8.8, 9.4, 13.11, 19.2 and 20.2.
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Let f € C°(X : 1) and x € X,.. It follows from (8.8) that

TS f0) = W] t(a,) fX Ko s x ) f) dy dyue(v),

l'a}k;q-‘ra[:

for all ef € aqu sufficiently close to zero. In view of (13.12) and Defin-
ition 19.1, this equality may be rewritten as

T f(x) = [W : Welt(ag,) f E°(Pp v :x)Fp f(v) dip(v).
ia;q-{-SF

(21.2)

Since the expressions on both sides of the equation extend smoothly to all
of X in the variable x, it follows that (21.2) holds for all x € X. From Theo-
rem 18.8 and Proposition 19.7 it follows that v — E°(Pr : v : x)Fr f(v)
is holomorphic on a’;q (¢), for some ¢ > 0. Moreover, from the mentioned
results it also follows that for every N > 0, there exists a constant Cy > 0
such that

IE°(Pr v : ) Fr f0)] < Cy(1 + )7, (v € apy(8).

This estimate allows us to take the limit of (21.2) for ez — 0; thus, using
Definition 20.1 and observing that dur(v) = dv on i a”gq, we obtain (21.1).
O

The proof of the following result involves an induction step using the
long chain of results marked (RT), see Remark 12.2.

Theorem 21.2 (a) Every P € P, is of residue type.
(b) Ift is any W-invariant even residue weight for X, then

f=>_IW:Welt(a},)rFr f. (21.3)

FCcA

forevery f € C(X: 7).
(¢c) The pair (G, H) is of residue type if and only if G has a compact center
modulo H.

Proof: We first show that (c) and (b) follow from (a). Thus, assume (a).
Then viewed as a parabolic subgroup, G is of residue type. By Remark 13.3
it follows that the pair (°G,°G N H) is of residue type. Moreover, if G
has compact center modulo H, then (G, H) is of residue type. If the center
of G is not compact modulo H, then (G, H) is not of residue type, by
Definition 12.1 (a). This establishes (c).

We now turn to (b). Let f be a W-invariant even residue weight for X.
Then for each FF C A, the parabolic subgroup P is of residue type so
that Proposition 21.1 applies. It now follows from (8.10) combined with
(21.1) that (21.3) holds for every f € C°(X : 7). Finally, the validity of (b)
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follows by density of C2°(X : 7) and continuity of each of the §r ¥, for
F C A (Proposition 19.6 and Theorem 20.3 apply with P = Pp, since Pr
is of residue type).

It remains to prove (a). We will do this by induction on dim Ay, the
o-split rank of G. First, assume that dim A; = 0. Then X is compact, hence
the pair (G, H) is of residue type, see Remark 12.3. It follows that G,
viewed as a parabolic subgroup, is of residue type, see Remark 13.3. Since
F» = {G}, this establishes (a) in case dim Ay = 0.

Thus, assume that dim A; > 1 and that (a) has been established for all
pairs (G', ') with G’ of o-split rank smaller than dim A,.

If the center of G is not compact modulo H, then °Ay :=°"GN Ay C Aq.
Hence, it follows by the inductive hypothesis that every o-parabolic sub-
group of °G containing °Ay is of residue type. Denote the set of these
parabolic subgroups by °#,. Then G = °G x C, where C =
exp(center (g) Np) and P — PC is a bijection from °%, onto &,. Moreover,
Mpc = Mp forevery P € £,(°G). In view of Definition 13.1 it follows that
every parabolic subgroup from ; is of residue type as well, whence (a).

Thus, we may assume that G has compact center modulo H; then axq
= 0. By the inductive hypothesis, the symmetric pairs (Mp, My NvHv ™),
for F C Aand v € Nk(aq), satisty condition (a). In particular, My, viewed
as a parabolic subgroup of My, is of residue type relative to vHv~!. Since
°Mp = Mfp, it follows by Remark 13.3 that the pairs (Mp, My N vHv ™),
are all of residue type. In view of Definition 13.1 it now follows that the
standard parabolic subgroups P, for FF C A, are all of residue type.

Let ¢t be a W-invariant even residue weight on X. Then 7, is a contin-
uous linear operator from CZ°(X : 7) into the finite dimensional subspace
Al (X 1 1) of C*°(X : 7); all functions in this subspace are D(X)-finite, see
the text after (9.1).

Proposition 21.1 applies for every subset ' C A. Hence, from (8.10)
and (21.1) it follows that

Ty=1- Y [W:Wrlt(af,) §rFr (21.4)

FCA

as an operator from C2°(X : 7) into C*(X : 7). Applying Proposition 19.6
and Theorem 20.3 we infer that 7 extends to a continuous linear map from
C(X : 1) into AL (X : 1) N C(X : 1); moreover, the latter intersection is
continuously contained in 4, (X : 7). By density of C2°(X : 1), the validity
of the identity (21.4) extends to the space C(X : 7).

By repeated application of Lemma 19.8, with P = Pp, FF C A, it
follows from (21.4) that T\ = I on #4,(X : 7). Finally, by application of
Lemma 20.5 to (21.4) it follows that T4 is symmetric with respect to the L?-
inner product on C (X : 7). We conclude that 7'} is the orthogonal projection
from C(X : t) onto A, (X : 7); in particular, it follows that the latter space
is finite dimensional. Moreover, since +4,(X : 7) is dense in Lfl(X D7) it
follows that A,(X : 1) = Lf,(X : 7) and that T} is the restriction of the
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orthogonal projection L*(X : ) — L3(X : 7). From this we conclude that
(G, H) is of residue type, see Definition 12.1 and Remark 12.5. Hence,
PA = G is of residue type. It follows that all standard parabolic subgroups
in F; are of residue type. Since every P € 4 is associated with a standard
one, see Lemma 3.6, assertion (a) follows by application of Lemma 13.5. O

We define the equivalence relation ~ on the collection of subsets of A
by F~F <= Pp~ Pp.

Lemma 21.3 Let t be a W-invariant even residue weight on % and let
F C A. Then

> t(ak,) = Wiyl

F'cA

F'~F
Proof: Let £, (Afq) denote the collection of all P € £, with o-split
component Apq equal to Arq. Moreover, let 4 denote the collection of all
subsets F' C A with F’ ~ F. For every P € $,(Ap,) there exists a unique
Fp C A such that sPs™! = Pg,, for some s € W, see Lemma 3.6. Clearly,
Fp ~ F.Moreover, themapp : P +— Fp issurjective from 5% (A fq) onto §.
If F" € 4, let Wg  denote the collection of s € W mapping azq onto azg.
Then the map s +> s~ ! Pprs from Wy - onto p~! (F”) factors to a bijection
from W(agyq | arq) onto p~ ' (F’). Starting from (2.1) with Q = Pr we now

obtain that
= Y t(ap,)
PER(AFq)

= 2 2 i (en)

F'cA  seW(apglarg)
F'~F

= Y [Wapq | arg)lt(af,)-
F'cA
F'~F

Forevery F' C A with F’ ~ F, the group W(a,) acts freely and transitively
from the right on W(arq | ary). Hence, |[W(apq | apq)l = |W(agq)| and
the result follows. O

Lemma 21.4 Let P, Q € &, be associated parabolic subgroups and let
s € W(apq | agq). Then

(a) Fpf(sv) = C‘,’)‘Q(s cV)Fof), forall f e C(X:1)andv e ia*Qq;
(b) gpFp = JoFp as endomorphisms of C(X : 7).

Proof: 1t follows from Corollary 18.2 combined with the Maass—Selberg
relations (18.5), that

E*(P:sv:x) = Cpp(s : VE*(Q:v:X),
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forall x € Xand allv € i a*Qq. Now (a) follows by Definition 19.1. The
linear bijection s from iaj,, onto iap, maps the chosen Lebesgue measures
onto each other, see Sect. 5. Hence, for f € C(X : 1),

IpFpflx) = / E°(P :sv:x)Fpf(sv) dv. (21.5)
iaj,
Applying (a) and Proposition 18.1 we obtain that
E°(P :sv:x)Fpflsv) = E°(P :5v:x)Cp (s 1 v)Fo f(V)
=E°(Q :v:x)Fof(v).

Substituting the obtained identity in the right-hand side of (21.5) we ob-
tain (b). O

Remark 21.5 Let P € &,. Then it follows from part (b) of the above lemma
that the continuous linear endomorphism Jp o £p of C(X : 1) depends on
P through its equivalence class in £, /~ .

If P € #,, we agree to write W, for the normalizer of apq in W. Then
W(Clpq) ~ W;/Wp

Theorem 21.6 Let f € C(X : 1). Then
f= 2 W:W;lgr¥pf.

[Plefs/~

Remark 21.7 1In view of Remark 13.10, this theorem corresponds to part
(iii) of Thm. 2 in Delorme’s paper [24]. Note that in the latter theorem con-
stants |W(apq)|*], for P € %, appear in place of the constants [W : W}].
This is due to a different normalization of measures, as will be explained in
the sequel [15] to this paper.

Proof: We observe that [W : Wp]lW(apq)F] = [W: Wj], for P € &.
Since every P € %, is associated with a standard parabolic subgroup, see
Lemma 3.6, the result now follows from Theorem 21.2, Lemma 21.3 and
Remark 21.5. ]

22. Properties of the Fourier transforms

The purpose of this section is to establish relations between the different
Fourier and wave packet transforms Fp and J¢, as P, Q € #,. We shall
also determine the image of Fp and the kernel of . The relation between
the several Fourier transforms is given by Lemma 21.4 (a).

Lemma 22.1 Let P, Q, R € &, be associated. Then, forall s € W(agqlapq)
and t € W(agqlagg),

Crip(ts 1 v) = Cyp(t 1 5v) 0 Cyp(s 1 v), (veia’,‘;q).
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Proof: The above identity is an immediate consequence of the functional
equation for the Eisenstein integral, see Proposition 18.1, and the definition
of the C-function, see Definition 17.6. O

In particular, from the above lemma with P = Q = R combined with
the Maass—Selberg relations, see Theorem 18.3, we see that we may define
a unitary representation yp of W(apq) in Lz(iaj;q) ® Ay p by

[yr©)el0) = Coppls 15 V™), (v eiap,),

for ¢ € L%(i a’;,q) ® oA p. The associated collection of W(apy)-invariants
in Lz(ia’;,q) ® Ay, p is denoted by (L2(iaj;q) ® Ay, p)V@ra) The orthogonal
projection from the first onto the latter space is denoted by

Piapy : L2(ithy) ® Asp — (L2(ithy) ® Az p)" ™.

The intersection of the latter space with 4 (iaj‘,q) ® A, p consists of the

functions ¢ € $(iap,) ® A, p satisfying

@(sv) = Ch p(s 1 V)@(V), (s € W(apy), v € iap,). (22.1)
and is denoted by ($(ia},) ® Ay p)WV@ra),

Corollary 22.2 Let P € £,. The image of C(X : 1) under the Fourier
transform Fp is contained in the space (8(i a’;q) ® A, p)Vara)

Proof: Let f € C(X : 7). Thenitfollows from Lemma 21.4(a) with P = Q
that ¢ := Fp f satisfies (22.1). O

We can now state the first main result of this section.

Theorem 22.3 Let P, Q € P,.

(a) If P and Q are not associated, then ¥p o Jp = 0.

(b) If P and Q are associated, then [W : Wil FooJpoFp = Fp on
C(X:1).

(¢) If P and Q are associated, then, for each s € W(agq | apg), every
NS J(iaj;q) ® Ay pandallv e ia’;q,

11 o
Foodre(sv) =[W:Wi] Chp(s : )Pwapy@(v).
In particular, Fpo Jp = [W : W51 Pyapy)-

The proof is analogous to the proof of Theorem 16.6 in [10], with
adaptations to deal with the present more general situation. In the course
of the proof we need two lemmas. The first of these is a straightforward
generalization of Lemma 16.11 in [10].
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Lemma 224 Let P € 55, let b C q be a 0-stable Cartan subspace
containing apq and let A € *b%.. Then for A in the complement of a finite
union of affine hyperplanes in a’;,qc, the map D — d[y(D : A + -)](}) is
surjective from D(X) onto apgc.

Proof: The proof is a straightforward modification of the proof of Lem-
ma 16.12 in [10]. In that proof one should everywhere put apq in place
of aq and *bp in place of bi. In particular, 74, should be replaced by the
projection 7q,, : by — aj. along the subspace *bj.. O

The next lemma is a consequence of Lemma 16.4, which in turn heavily
relies on the information about the infinitesimal characters of discrete series
stated in Theorem 16.1.

Lemma 22.5 Let P, Q € &, let b C q be a 0-stable Cartan subspace
containing aq and let Ay € Lp(b, 1) and Ay € Ly(b, 7). Let vy € icf;q be
such that Ay + v is regular with respect to 2(b), let v, € ia*Qq and assume

that A1 + vy and A, + v, are conjugate under W(b). Then P and Q are
associated, and vy and v, are conjugate under W(agq | apq).

Proof: Lets € W(b) besuchthats(A;+v;) = Ar+v,.Selectv; € P'Wand
vy € W such that Ay € Lp,, (b, 7) and Ay € Lg ,,(b, 7). Let (b, 1) and
(62, 1) be associated with P, v; and Q, v,, respectively, as in Lemma 16.4.
Then t; A + t1v; and , A, + t,v, are conjugate under tzstl’l € W(Bz | 61).
It follows by application of [17], Lemma 2, that tjapq = Ad(U])_lan
and nagy = Ad(vz)*]aQq are conjugate under fpst; ', This implies that
s(apq) = agq. It follows that slapq € W(apq | apq), see Lemma 3.7; hence,

P ~ Q. It also follows by [17], Lemma 2, that tzstl’l maps vy onto tvy;
hence, sv; = v,. O

The following lemma collects some properties of the composition
Fo o §p needed in the proof of Theorem 22.3.

Lemma 22.6 Let P, Q € &,. Then the composition T = Fpodp is
a continuous linear map from 4§ (ia}iq) QA ptod (ia*Qq) ® s o. Moreover,
it satisfies the following properties.

(a) ﬁQ(D)oT = TOEP(D)forall D e D(X).
(b) T maps into (8(iajp,) ® A, ) V(@0

Proof: The continuity of 7 follows from Theorem 20.3 combined with
Proposition 19.6. Property (a) follows from Lemma 20.4 combined with
Lemma 19.4. Finally, (b) follows from Corollary 22.2. m|

Proposition 22.7 Let P, Q € $,. There exists an open dense W(agpg)-
invariant subset Q2 C ia*Qq with the following property. Let T be any
continuous linear map from 5(ia’;,q) ® Ay p to )S(ia*Qq) ® As o satisfying
the properties of Lemma 22.6.
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(a) If P and Q are not associated, then T = 0.
(b) If P and Q are associated and so € W(apq | agq), then there exists
a unique smooth function B : Q@ — Hom(A, p, A2 o) such that

T @(v) = Pwiagy (Bs5@) v), (22.2)
forall g € CF(502) @ Ay pandv € Q.

Proof: For every v € i a*Qq, we define the distribution u, € D’(i a’;,q) ®
Hom(a“azﬁp, ‘AZ,Q) by

w(@) =T (@),  (peC(iap,) ® A p).
Then it follows from condition (a) that
MVOEP(D) = EQ(D T V)Uy, (D € D(X)).

Let now Ay € Lp(b,7) and ¥y € A, p(A1). Let Ay € Lo(b, 1) and
Yo € A o(Ay). We define the distribution v, € JD’(ia’;,q) by v,(f) =
(u,(f @ Yry) | Y), for f € Cfo(iaj;q). It follows that

[Ve(D: A1+ -) — (D : Ay +v)]v, =0. (22.3)

Each element A from the finite set Ly(b, 7) is regular with respect to
Y(moc, *bg), see Corollary 16.6. Let €2 be the set of v € ia*Qq such that
A + v is regular with respect to X(b), for every A € Ly(b, 7). Then Q is
the complement of a finite union of hyperplanes in iay, , hence open dense.

Let v € Qp and let A, A, be as above. Moreover, let v; € iaj;q and
assume that v ¢ W(apq | apg)vi. Then by Lemma 22.5, the elements
A1 + vy and A, + v are not conjugate under W(b). Hence, there exists a
D € D(X) such that the polynomial function in front of v, in (22.3) does
not vanish at v;. This implies that v, vanishes in a neighborhood of v;.
Let ¢ € C°(iap,) ® Az p. Then it follows from the above by linearity
that 7 (¢)(v) = u,(¢) = 0 for all v € Qo with v ¢ W(apq | apq)supp ¢.
By density and continuity, this implies that the function 7 (¢) vanishes on
ia*Qq \ W(agq | apg)supp ¢. Hence,

supp 7 ¢ C W(apq | apq)supp ¢.

If P and Q are not associated, then it follows that the latter set has empty
interior in iap, , hence T'¢ = 0 by continuity. This establishes (a).

From now on, we assume that P ~ Q. Then it follows from the above
that

suppu, C W(apq | agq)v, (22.4)

for every v € iaj,.
Let Q21 be the setof v € i a*Qq whose stabilizer in W(ag,) is trivial. Then
€2, contains the complement of a finite union of hyperplanes in iap,, hence is
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open dense in iap,,. Since W(agq) acts simply transitively on W(apq | agq)
from the right, we see that if v € 2, the points sv, for s € W(apq | agq),
are mutually different.

Let 2/ be the set of u € ia}iq such that for every Ay € Lp(b, 7) the
map D — d[ys(D : Ay + -)](w) is surjective from D(X) onto a’;,qc. Then
) is an open subset of i a4 containing the complement of a finite union of
hyperplanes, see Lemma 22.4. It follows that 2, = ﬂsew(apmeq)s*lQ’z is
a similar subset of ia*Qq. We define  := Q21 N Q5.

Let now v € Q. We claim that the distribution u, has order zero. To
prove the claim, fix Ay, Aj, ¥, ¥, as before, and define v = v,, as above.
Then by linearity, it suffices to show that v has order zero. Since supp (v) C
W(apq | apq)v, by (22.4), it follows by our assumption on £2; that we may
express v uniquely as a sum of distributions vy, for s € W(apq | agq), with
supp vy C {sv}. From (22.3) it follows that each v, satisfies the equations

¢pvs =0, (D € D(X)),

where ¢p : iaj;q — Cisgivenby ¢p = (D : A1+ ) — yu(D : A+ V).
It follows from our assumption on €2, that the collection of differentials
dpp(sv), for D € D(X), spans aj‘)qc. Now apply [10], Lemma 16.10, to
conclude that v, has order zero, for each s € W(apq | agq). This establishes
the claim that v, has order zero.
It also follows from the above that

u, = Z (Ssu 029 ES(V)’

seW(apglagq)

with E¢(v) a unique element of Hom(s; p, A2 ), for s € W(apq | apq)-
We conclude that, for every ¢ € Cfo(iaj;q) ® Ay pandall v e Q,

Tow)= > EWe(sv). (22.5)
seW(apglagg)
Fix 5o € W(apq | agq). Let vy € Q2. By the assumption on €2 there exists an

open neighborhood U of vy in €2 such that the sets sU are mutually disjoint,
fors € W(apq | agq). For ¢ € C°(soU) ® A p we have

T () () = Eg (0)e(sov).
We conclude that Ey; is smooth on U. It follows that E,, € C*(Q) ®

Hom(A; p, A2 o). From the above asserted uniqueness of the E; and the
transformation property of 7 ¢ stated in Lemma 22.6 (b), it follows that

E (1) = Co ot 1 E(v),  (t € W(agy)).
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If we combine this with (22.5) we obtain, for all ¢ € C°(so2) ® A2, p, and
all v € Q, that

To)= Y Cpolt:v) " Eym)g(sotv)

teW(agg)
= [W(agq)| Pwiagy (Espso®) (1)
This establishes the result with 8 = [W(agq)|Ey,. O

Proof of Theorem 22.3: If P # Q, then it follows from Lemma 22.6
combined with Proposition 22.7 that Fp o fp = 0.

To prove (b) we note that if f € C>*(X : 1), then it follows from
Theorem 21.6 that f = Z[R]E%/N[W : Wil $rFr f- Applying F; to both
sides of this equation, it follows by (a) that

Fof =[W: Wi] FodrFrf

for each R € £, with R ~ Q; in particular, we may take R = P. Thus, (b)
follows by continuity and density.

We shall first prove (c) under the assumption that P = Q and s = 1. Put
T = Fpogp. From Lemma 22.6 and Proposition 22.7 we deduce that

T (V) = Pwapy (BY) (v),

for all ¥ € CX(2) ® Az p and v € Q; here Q C iaj;q is an open
dense subset, and 8 € C*°(2) ® End(+4;, p). It follows from Lemma 20.5
that the operator 7 is symmetric with respect to the L-inner product on
S(iapy) ® Az p. Let g € S(iapy) ® Az p. Then for all v € C°(2) ® A, p,

(Tolv) = (0| TY) = (@ Pwapy (BY)) = (BPwiapy@ | ¥).

This implies that, for all ¢ € $(iap,) @ A2 p, T¢ = B*Pwap,¢ on 2. We
claim that in fact g* = [W : Wj{,]*1 I on Q.

To prove the claim we note that it follows from the established part (b)
with P = Q that Fp = [W : W] T Fp. We infer that, for f € C°(X : 1)
andv € Q,

Fpfw) =W : WplT Fpf(v)
= [W : Wp] BO) Pwiapy Fr f(V)
= [W: W] BOW)* Fp f(v).

In the last equality we have used Corollary 22.2. The claim now follows by
application of Lemma 22.8 below. We infer that for all ¢ € $(iapq) ® 4 p,
we have T¢ = [W : W;‘,]_l Py(apy® on €2, hence on ia’;q, by continuity
and density. This establishes part (c) of the theorem for P = Q and s = 1.
For a general pair of associated parabolic subgroups P, Q and a general
s € W(apq | apq) the assertion follows by application of Lemma 21.4 (a).

O
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Lemma 22.8 Let P € &, andletv € i aj‘,q have trivial stabilizerin W(apg).
Then f 1+ Fp f(v) maps C2°(X : 1) onto Aj p.

Proof: The proof is a reduction to the lemma below, in a way completely
analogous to the proof of [10], Lemma 16.13. O

Lemma 22.9 Let P € &, andletv € i aj‘,q have trivial stabilizerin W(apg).

Then for every € A, p\ {0}, the Eisenstein integral E°(P : v){ does not
vanish identically on X.

Proof: The proof is completely analogous to the proof of [10], Lem-
ma 16.14, involving the constant term of the Eisenstein integral along P.
O

Proposition 22.10 Let P € 7.

(@) The map Pywap, restricts to a continuous linear projection from
8(iah,) ® Az p onto ($(iap,) ® Ao p)WOrd)  This projection is orth-
ogonal with respect to the given L*-inner product.

(®) FpoPwapy) = Fp-

(c) The kernel of §p equals the kernel of Pyqp,).-

Proof: It follows from Theorem 22.3 (c) that Py(q pg = W Wil Fpodp.
It now follows from application of Lemma 22.6, that Pyyq,,) is a continuous
linear endomorphism of § (i aj;q )® A, p, withimage contained in (§(i a’;,q )R
Ao p)V@ra) The latter space is contained in (Lz(iaj;q) ® Ay p)V@ra) on
which space Py(apy) equals the identity. Hence, Pyw(ap,) is a projection and
(a) readily follows.

Starting from Theorem 22.3 (b) with P = (Q, we obtain by taking
adjoints and applying Lemma 20.5, that

FpolW:WplFpodp = Jp.

Assertion (b) now follows by application of Theorem 22.3 (c).
From (b) it follows that ker Pyq,, C ker p. The converse inclusion
follows by Theorem 22.3 (c). O

Proposition 22.11 Let P € £,. Then the image of Fp equals (8(i apy) ®
Ay P)W(qu).

Proof: That im (Fp) C (8(iap,) ® A, p)"@rd) was asserted in Corol-
lary 22.2. For the converse inclusion, let ¢ € (8(i aj‘,q) ® Ay p)V@ra) Then

¢ = Pwapg® = Fo([W : W] dpp) € im (Fp),

in view of Theorem 22.3 (¢). m|
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23. The spherical Plancherel theorem

In this final section we establish the Plancherel theorem for functions from
C(X:7tand L>(X : 7). If P € $,, then by Cp(X : T) we denote the image
of the operator gp in C(X : 7).

Theorem 23.1 Let P € P,.

(a) The space Cp(X : 1) is closed in C(X : 1) and depends on P € P,
through its class in Py [/~ .

(b) The spaces ker Fp and Cp(X : T) are each other’s orthocomplement in
C(X:1).

(¢c) The space C(X : t) admits the following finite direct sum decomposition

CX:1)= @ Cr(X: 7). (23.1)

[RleFs/~

The summands are mutually orthogonal with respect to the L*-inner
product on C(X : 7).

(d) Foreach P € P, the operator [W : Wi g p o Fp is the projection onto
Cp(X : v) along the remaining summands in the above direct sum.

Remark 23.2 For the case of the group this result, together with Propo-
sitions 22.10 and 22.11, is a consequence of Harish-Chandra’s Plancherel
theorem for K-finite Schwartz functions, see Remark 13.9 and [32], §27.
See also [1], Ch. III, §1, for a review of the Plancherel theorem for spherical
Schwartz functions.

For general symmetric spaces, the result, together with Propos-
itions 22.10 and 22.11, is equivalent to Thm. 2 in Delorme’s paper [24], in
view of Remark 13.10. See also Remark 21.7.

Proof: If Q € #,, QO # P, then, by Theorem 22.3 (a),
Fo=0 on Cp(X:1). (23.2)
In view of Theorem 21.6 this implies that
(W:WgpFp=1 on Cp(X: 7). (23.3)

We infer that Cp(X : 1) = im (FpFp). By Remark 21.5 it follows that
Cp(X : 1) depends on P through its class in &,/ ~ . This establishes
the second assertion of (a). From Theorem 21.6 we see that C(X : 1) is
the vector sum of the spaces Cr(X : 1), for [R] € &#,/~ . To establish
the orthogonality of the summands, let P, Q € £,, P * Q, let f €
Cp(X: 1) and ¢ € 5(ia*Qq) ® A2, 0. Then (f | o) = (Fofl¥) =0,
by Lemma 20.5 and (23.2). This establishes (c). Combining (c) with (23.2)
and (23.3), we obtain (d). From (c) it follows that Cp(X : 7) is closed,
whence (a).
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It remains to establish (b). From (23.2) it follows that ker ¥p contains
the part Gy of the sum (23.1) consisting of the summands with R 7 P. On
the other hand, ker #» N Cp(X : 7) = 0 by (23.3) and we conclude that
ker Fp = Cp. The latter space equals the orthocomplement of Cp(X : 1),
by the orthogonality of the sum (23.1). O

We denote by L%,(X : 1) the closure in L?(X : 1) of Cp(X : 7). This
space depends on P through its class in & /~ .

Corollary 23.3 The space L*(X : ) admits the following orthogonal dir-
ect sum decomposition into closed subspaces

r’'X:n= @ LpX:o.

[PleFs/~

Proof: Since C(X : 1) is dense in L?(X : 1), the result is an immediate
consequence of Theorem 23.1 (c). O

We recall that a continuous linear map between Hilbert spaces
T : #, — H, is called a partial isometry if 7 is an isometry from (ker 7)*
into Ff,. In particular, this means that im 7 is a closed subspace of #£,.

Theorem 23.4 Let P € P,.

(a) The operator Fp extends uniquely to a continuous linear map from
L*(X:1) to Lz(iaj‘,q) ® . p, denoted Fp.

(b) The operator $p extends uniquely to a continuous linear map from
Lz(ia’;,q) ® Ay pto L?*(X : 1), denoted § p. This extension is the adjoint
of the extended operator Fp.

(c) The extended operator [W : W31\2Fp is a partial isometry from
L?*(X : 1) onto the space (Lz(ia}iq) ® Az,p)W(a”q), with kernel equal to
the orthocomplement of L%(X : 7).

(d) The extended operator [W : W;;]l/ 2dp is a partial isometry from
Lz(ia}iq) ® Ay p onto L%;(X : T) with kernel equal to the orthocomple-
ment of (Lz(iaj‘;q) ® Ay p)Vrd),

(e) Let P, C P, be a choice of representatives for the classes in Py /~.
Then

I=>"[W:Wi]geFr on L*(X:0.
ReP,

Remark 23.5 1In view of Remark 13.10, this result corresponds to part (iv)
of Theorem 2 in [24]. See also Remark 23.2.

Proof: Fix P, as in (e). Let f € C(X : 7). Then it follows from Theo-
rem 23.1 (¢) and (d), combined with Lemma 20.5 that

AP = (F1fy =D [W: Wil (f 1 geFrf) =Y [W: Wil IF=fI’.

ReP, ReP,
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In particular, this equation holds for a choice of P, with P € P,. It follows
that Fp is continuous with respect to the L>-topologies. By density of
C(X : 1) in L*(X : 1), it follows that F» has a unique continuous linear
extension L*(X : 1) — Lz(iaj‘,q) ® A, p. Hence (a).

Since gp is the adjoint of Fp with respect to the L2-inner products on
the Schwartz spaces, it follows that the adjoint of the extension of Fp is
a continuous linear extension of Jp to a continuous linear operator from
Lz(ia}iq) ®whs p to L2(X : 7). This extension is unique by density of 4 (iaj‘,q)
in L?(i a’py)- This proves (b).

By continuity and density, the formula in (e) follows from Theorem 21.6.
From Theorem 23.1 (b) and (c) it follows that, for R € P, with R #* P,
Fp = 0 on Cr(X : 1), hence on L%{,(X :, T), by continuity and density.
Put Fp := [W : Wi]'2Fp and Jp := [W : W5]'/2gp. Using (e) we infer
that ker Fp = L% (X : )t and that 57 poFp is the orthogonal projection
from L?(X : 1) onto L%,(X : 7). Since ip = f}i‘, it follows that fp is
isometric from L%,(X : 7) onto im F, p» and that i p 1s isometric from im F, P
onto 5%()5 : 7). It follows from Theorem 22.3 and continuity and density

that Fpo §p = Py(ap, On Lz(iaj‘,q) ® s, p. Hence,

im (Fp) = Fp(L2(X 1 D) = im Pyyapy) = (L2(iahy) ® Az p)" "
and (c) follows. Finally, (d) follows from (c) by taking adjoints. |
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