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Introduction

In 1982, Harish-Chandra announced the Whittaker Plancherel theorem for real reduc-
tive groups in an invited lecture at the AMS summer conference in Toronto. Because
of his failing health, the lecture, with the title ‘On the theory of the Whittaker integral’,
was delivered on his behalf by V.S. Varadarajan. As a consequence of Harish-Chandra’s
untimely death in 1983, the details of the proof remained unpublished until they finally
appeared in the posthumous 5th volume of his collected papers [12, pp. 141-307]. That
volume also contains the text of the 1982 announcement, see [12, §1.2],

The proof of the Whittaker Plancherel theorem given in [12] seems to be incom-
plete, mainly since it does not develop a complete theory of Fourier transform for the
Whittaker Schwartz space. In particular the required uniformly tempered estimates for
the Whittaker integral are not addressed. In the present paper we give a proof of these
estimates.

Independently, N. Wallach developed a completely different approach to the Whit-
taker Plancherel theory in his book [21]. However, the treatment was flawed because
of an erroneous estimate, pointed out in [2, Remark 7.5]. Wallach has made several
attempts to circumvent the error, see [22], but the final status of his results seems
unclear at this point.

Clearly, the present paper has been inspired by both [12] and [21]. My desire
to investigate the details of all arguments has led to a somewhat different and rather
self-contained treatment of the theory needed for the derivation of a new functional
equation for Whitttaker vectors in the generalized principal series, which lies at the
basis of the mentioned uniform tempered estimates.

Now that the results of the present paper are available, it is natural to develop a
theory of the constant term for tempered families of Whittaker coefficients, as well as
a theory of wave packets of Whittaker integrals, in analogy with the Plancherel theory
for groups or symmetric spaces. This will be addressed in a follow up article.

We will now describe the contents of our paper in some detail. Throughout the
paper, we assume that G is a real reductive Lie group of the Harish-Chandra class, that
G = KAN) is an Iwasawa decomposition and that y is a unitary character of Ny. The
character y is assumed to satisfy the regularity condition that for each simple root « of
a in ng, the derivative y. := dy(e) has a non-zero restriction to the root space g,.

Let C(G/Ny: x) be the space of continuous functions f : G — C transforming



according to the rule

flm) = x ()~ f(x), (x € G,n € Np),

and let C.(G/Ny: x) be the subspace of such functions with compact support modulo
Ny. The latter space has a natural left G-invariant pre-Hilbert structure, for which the
completion is denoted by L?(G /Ny : x). The representation of G in this completion
induced by the left regular action is the unitarily induced representation

Ind§, (x). (0.1)

The Whittaker Plancherel formula concerns the unitary direct integral decomposition of
(0.1). It should be built from pairs (7, A1) with 7 an irreducible unitary representation in
a Hilbert space, and A a continuous linear functional on the associated space of smooth
vectors H,’, transforming according the rule

Adom(n) = y(n)A, (n € Ny).

The functionals of this type are called Whittaker functionals of &, and the space of these
is denoted by Wh, (H’). An element A in the latter space determines a G-equivariant
(Whittaker) matrix coefficient map wh, : HY — C*(G/Ny: x) given by

why(v)(x) = A(n(x)"v), (ve H,x €G).

In Sections 1 and 2, these Whittaker coefficients are discussed in more detail. They have
moderate growth behavior towards infinity. In Lemma 2.3 we formulate a technique
which shows the importance of the regularity condition on y. As a consequence each
Whittaker coefficient of the above type has faster than exponential decay towards infinity
in any closed cone disjoint from A*\ {0}, see Corollary 2.4. In Section 2 several related
estimates are proven that are needed in the later sections.

Section 3 concerns aspects of the Whittaker Schwartz space C(G/Ny : x) as
introduced by [12] and [21].

In Section 4 we discuss sharp estimates for a Whittaker coefficient wh, : H —
C*(G /Ny : x) in terms of a functional Ay € a* attached to m. More precisely, Ay
is defined in terms of the a-weights of V /ngV, with V the Harish-Chandra module of
K-finite vectors of m, see 4.1. In [21] these estimates were obtained on the positive
chamber A*. In view of the results of Section 2 the estimates turn out to be valid on the
entire group A. In [21] the estimates on the positive chamber are obtained by using the
method of estimate improvement along maximal parabolic subgroups. We use the same
method, cast in the form of Lemma 4.6. This prepares for the lengthy argumentation in
Section 15, where the uniformly tempered estimates are obtained. The proof of Lemma
4.6 is deferred to Section 5. We end Section 4 with Cor. 4.8 which is due to both [12]
(on the K-finite level) and [21]. It asserts that if G has compact center and 7 belongs to
the discrete series of G, then for every Whittaker vector A € Wh, (H}") the associated



Whittaker coefficient wh, is a continuous linear map from H}’ into the Schwartz space
C (G / N 0- )() .

In Section 6 we discuss the space of smooth vectors for parabolically (normally)
induced representations of the form Indg (&), with P = MpApNp a parabolic subgroup
of G and £ a continuous representation of P in a Hilbert space H;. For technical reasons
we need to deal with this in the generality of a representation of the form ¢ = o ® 7,
with o an irreducible unitary representation of Mp, extended to P by triviality on ApNp
and with (7, F) a continuous representation of P in a finite dimensional Hilbert space.
The main result is the characterization of Theorem 6.7, which asserts that the space of
smooth vectors of Indg (&) equals

C®(G/P: &) ={f € C*(G,Hy) | f(xman) = a=PPE(man)” f(x)}. (0.2)

The left regular representation of G in this space is denoted by 7 ¢

In the subsequent Section 7, the space of generalized vectors for IndIG, (&) is defined
as a conjugate continuous linear dual by

C™(G/P: &) :=C®(G/P: &). (0.3)

Here & is the continuous representation of P in He defined by é*(p) = ¢ (p~hH*.
This definition has the advantage that (0.2) can be viewed as a subspace of (0.3), via a
G-equivariant sesquilinear pairing defined by the usual integration over K/K N Mp.

In Section 8 we turn to the induced representations Indg (&), with P a standard
parabolic subgroup, and with ¢ = o ® (—v) ® 1, where o is an irreducible unitary
representation of Mp and v € aj, .. The Whittaker functionals for the space of smooth
vectors C*(G /P : o : —v) can then be identified with (conjugates of) elements of the
space of Whittaker vectors

C(G/P:0:v),:={jeC™(G/P:0:v)|Lyj=x(n)j, (neNp}. (04)

The No-equivariance of an element j of this space makes that on the open set NpP it
can be represented by a continuous function with values in H;* := H’. Subsequent
evaluation of this function in the identity element e defines a linear map

eve : C™(G/P: o :v), = (H;™)yp, (0.5)

where yp = x|mpnn,- At this point we invoke the fundamental result [12, Thm. 1],
on which Harish-Chandra’s entire treatment of the Whittaker theory is founded, see
Theorem 8.1. It allows us to conclude that the map (0.5) is injective, see Corollary
8.11.

Conversely, if o is a representation of the discrete series of Mp, and if Re v is
P-dominant, we define for each n € (H;*),, a continuous H,*-valued function on
NpP which represents an element j(P, o, v,n) of (0.4) with ev.j(P,o,v,n) =1, see
Propositions 8.12 and 8.14. The element j(P, o, v, ) depends holomorphically on v
in the region where Re v is P-dominant.



In Section 9 we discuss the close relation between j(P, o, v,n) and the Jacquet
integral introduced in [21], see (9.3). Moreover, we discuss the definition of Harish-
Chandra’s Whittaker integral Wh(P,, v) which is the analogue of the Eisenstein
integral for a group or a symmetric space. We show that the Whittaker integral is
expressible as a sum of Whittaker matrix coefficients involving Whittaker vectors
j(v) = j(P,o,v,n), see Corollary 9.10.

In strong analogy with the theory of symmetric spaces one needs to extend the
map v — j(v) meromorphically in order to reach imaginary v, which correspond to
the unitary principal series. In addition one needs to establish uniformly tempered
estimates in regions of the form |Rev| < &, with & > 0 a suitable constant. In the
theory of symmetric spaces, tools for this program where initially developed in [1] for
minimal o-parabolic subgroups and then extended to arbitrary o-parabolic subgroups
in [7]. It turns out that these tools from the theory of symmetric spaces are ideally
suited for the Whittaker setting. This unfolds in the final Sections 10 - 16.

In Section 10 we prepare by reviewing the characterization of irreducible finite
dimensional spherical representations of G with an Mp-fixed highest weight vector.
Then, in Section 11 we consider the action of the center 3 of the universal enveloping
algebra of g on a tensor product of the form

Indg (cevel)®n, (0.6)

with 7, an irreducible finite dimensional spherical representation of strictly P-dominant
highest weight u, with Mp acting trivially on the highest weight space. Let A denote
the infinitesimal character of o, and let pa4,4, denote the projection in the space of
(0.6) onto the generalized weight space for the infinitesimal character A + v + u. Then
the main result of the section is that there exists a non-zero polynomial function ¢ on
ap,. such that g(v) pa ,+v+u can be realized by the action of an element Z u (v) € 3 wich
depends polynomially on v, see Corollary 11.13.

In Section 12 the element Z u (v) € 3isused to define a suitable differential operator
D,(o,v) : C™(P: 0 :v) > C™(P: o : v+ pu) such that one has a Bernstein-Sato
type functional equation for the Whittaker vector,

j(P,o,v) = D,(o,v) oj(P,o,v+pu) oR,(0,v),

see (12.7). Here R, (o) is a rational function on a},, with values in End(H;7,). The
main problem is to show that R, (o, -) is generically invertible. This is done in the
rest of Section 12 and the next.

In Section 14 the functional equation is used to obtain the meromorphic contin-
uation of v — j(v) = j(P,o,v) with estimates in terms of continuous seminorms
on C~®(P,o,v), see Theorem 14.1. The functional equation implies the existence
of a non-zero polynomial pg such that v — pg(v)j(v) is holomorphic in the range
(Rev, @) > R for all @ € A. Any singularity of j in this range is contained in the
zero set M = pz_el (0). If it is contained in the regular part of M then by a local analysis
transversal to M it can be shown that the singularity produces a non-zero element of
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C~*(G/P,o,v), which must be zero at e hence zero. Therefore, singularities can
only occur at singular points of p~!(0). The appearence of singularities would thus
violate a form of Hartog’s principle formulated and proven in the appendix in Section
18. Therefore, j cannot have singularities. This gives a new proof of Wallach’s result
[21, Thm. 15.4.1] on the holomorphy of the Jacquet integral, but with strong estimates,
see Theorems 14.4 and 14.8. This in turn leads to uniformly moderate estimates for
the associated family of Whittaker coefficients in Theorem 14.9.

In Section 15 it is shown that the uniformly moderate estimates for the family of
Whittaker coefficients (wh,) produced by j, = j(P, o, v,n) can be improved to the
so-called uniformly tempered estimates, see Theorem 15.5. This is done by using the
differential equations satisfied by (wh, ) and the method of estimate improvement along
maximal parabolic subgroups, as in Section 4, but now with suitable uniformity in the
parameter v. See Lemma 15.9 for the crucial stepwise improvement.

In the final section, 16, the results obtained in the previous sections are applied
to the Whittaker integral Wh(P,y,v) € C®(t: G/Ny: x). Here ‘T .’ indicates that
left T-spherical functions are considered, v € aj,;(c and ¢ is an element of the finite
dimensional space A p of 3(mp)-finite functions in C(7p: Mp/Mp N Ny : xp). The
uniformly tempered estimates of Theorem 16.2 thus obtained allow us to define a
Fourier transform #p in terms of the Whittaker integral, and to show that ¥p defines
a continuous linear map from the Whittaker Schwartz space C(7 : G/Ny : x) to the
Euclidean Schwartz space S(ia}, Az p), see Theorem 16.6.

1 Whittaker vectors and matrix coefficients

We consider a real reductive group G of the Harish-Chandra class and fix an Iwasawa
decomposition G = KANy. We denote by ¥ = X(g, a) the root system of a in g and
by X* the positive system consisting of the roots @ € X with g, contained in the Lie
algebra ny of Ny. The associated collection of simple roots in * is denoted by A.

Thus, if M = Zk (a), then Py := M AN, is the standard minimal parabolic subgroup
associated with X*. Here and in the rest of the paper we adopt the convention to denote
Lie groups by Roman capitals and the associated Lie algebras by the corresponding
fraktur lower cases.

In this article y will always be a unitary character of Ny. Following [12, p. 142],
we say that y is regular if its derivative y. := dy(e) € iny is non-zero on each of the
simple root spaces g,, for @ € A. Unless otherwise specified, it will always be assumed
that y is regular. Note that the notion of regularity as defined here coincides with the
notion of genericity in [21, p. 371].

We consider the function space

C(G/No:x) = {f € C(G) | flxn) = x()™'f(x), (xeG,neNp}. (LD

The subspace of functions with compact support modulo N is denoted C.(G /Ny : x)
and the subspace of smooth functions by C*(G/Ny: x). Finally, the intersection of the
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latter two is denoted C.°(G/Ny: x).
We fix a choice of positive invariant Radon measure dx on G /Ny and define a
pre-Hilbert structure on C.(G/Ny: x) by the formula

(f,g):= fx)g(x) dx, (f,g € C(G/No:x)).
G/Ny

The associated completion is denoted by L2(G /Ny : x). The Whittaker Plancherel
formula concerns the unitary decomposition for the left regular representation of G in
the latter space. Here we note that L?(G /Ny : ) is the space for the unitarily induced
representation Indf,0 (x)- Our notation is slightly different Harish-Chandra’s, who uses

the notation L?(G/Ny: x) for the space of the induced representation Ind](\;,0 (x"), with

x'ine )((n)_l, see [12, p. 143]. Finally, note that Wallach [21, p. 365] works with
another realization of this representation space, namely L?(y : No\G) equipped with
the right regular representation.

In the following we will need a bit of background from representation theory that
we will now explain.

If V is a locally convex (Hausdorff) space then a representation 7 of a Lie group L
in V is called smooth if it is continuous and if V = V.

If V is Fréchet space, its strong dual V'’ is a complete locally convex space. Suppose
that 7 is a continuous representation of L in V, then the homomorphism 7¥ : L —
GL(V’) defined by

v (x)¢€=Eon(x)7, (xeL, £€V). (1.2)

need not be a continuous representation. However, if 7 is smooth, then 7 is a smooth
representation of L in V, called the contragredient of . For details we refer to [23],
Proposition 4.4.1.9 and the definition of V¥ preceding Proposition 4.1.2.1.

To prepare for the treatment of conjugate representations, we first briefly discuss
the notion of conjugate space. Let V and W be complex linear spaces. We denote by V
the real linear space V equipped with the conjugate complex multiplication CxV — V,
(z,v) > Zv. Amap T : V — W is said to be conjugate linear if it is real linear and
satisfies T'(Av) = AT (v) for v € V and A € C. The complex linear space of conjugate
linear maps V — W (equipped with the pointwise operations of scalar multiplication
and addition) equals the complex linear space Homc(V, W). Given T € Hom(V, W)
we denote by T the map V — W viewed as an element of Hom(V, W). We note that
the map

T+~ T, Hom(V,W) — Hom(V,W)

is not complex linear, but conjugate linear. Hence, T +— T is a complex linear
isomorphism Hom(V, W) — Hom(V, W). Since the map T + T is the identity on the
set Hom(V, W) we have the following identity of complex linear spaces

Hom(V, W) = Hom(V, W). (1.3)



In the sequel we will encounter the conjugate dual space V* = Hom(V, C) and the dual
conjugate space (V)* = Hom(V,_C). These spaces are not equal, but complex linearly
1somorphic under the map A +— <1 given by

A=cod, (1.4)

where ¢ : C — C denotes the conjugation map z — Z.

Indeed, ¢ € Hom(C,C) so in view of the equality (1.3) it follows that A €
Hom(V,C) (1 € Hom(V,C)). It is now readily verified that 1 + €1 is a conjugate
linear map Hom(V, C) — Hom(V, C) hence a complex linear isomorphism

Hom(V,C) — Hom(V,C).

Given a representation 7 of L in a locally convex space V, we denote by (7, V) the
conjugate of . Here the conjugate complex linear space V is equipped with the locally
convex topology of V. Furthermore, for x € L, 7(x) equals the complex linear map
n(x) : V — V. Itis clear that (7, V) is a representation of L in a locally convex space
again, which is continuous if and only if 7 is continuous.

We note that the spaces V’ and V' are topologically complex linear isomorphic
under the map A — A given by (1.4).

If 7 is a smooth Fréchet representation, then 7¥ is a smooth continuous represen-
tation, and therefore, so is the equivalent representation V.

We use the notation U () for the universal enveloping algebra of the complexification
L. of 1. The canonical anti-automorphism of U (1) is denoted by u +— u". It is readily
verified that for the associated infinitesimal representations 7 : U(I) — End(V) and
n¥ : U(I) = End(V’) we have

' (u)é=€Eom(u’), (welU),EcV).

Given a continuous Hilbert space representation (r, H) of L it is known that the
contragredient (¥, H’) is continuous, see [23, Cor. 4.1.2.3]. Therefore, so are 7¥ and
7¥. Both duals (H)’ and (H’)" come into play through the Hermitian inner product b
viewed as a bilinear map H x H — C. Let by : H — (H)’ be the linear map defined by
b1(v) = b(v, -). Let by : H — H’ be the linear map defined by b,(v) = b(-,v). Then
b, can be viewed as a linear map H — H’. As such b; and b, are topological linear
isomorphisms from H onto (H)’ and H’ respectively. Thus, here the isomorphism
H' — H’ is given by 8 = b, oby !. Using the conjugate symmetry of b, it readily
follows that S coincides with the isomorphism ¢( -) defined by (1.4). Since A +— A4
intertwines the representations 7V and 7V, it follows that b, and by, respectively,
intertwine these representations with the same continuous representation 7* of L in H,
given by

) =x(x")" (xel),

where the star indicates that the Hilbert adjoint is taken.



For such a continuous Hilbert representation we denote the associated Fréchet
representation in the space of smooth vectors by (7°°, H*). As we mentioned above,
the continuous linear dual (H*)" of H*, equipped with the strong dual topology, is
complete. The associated contragredient of 7% in (H*)’, denoted by (7%, (H*)’) is
a smooth representation of L. In this setting, with G in place of L, it is of interest to
consider the space of Whittaker functionals

Why (H®) := {1 € (H®) |Vn e No: don™(n) = yx(n)A}, (1.5)

see [21, 15.3.4, p. 378]. Equivalently, Wh, (H®) consists of the functionals A € (H*)’
such that
7=V (n)d = x(m)~'4, (n € No).

For a given Whittaker functional A € Wh, (H*), the matrix coefficient map wh, :
H® — C*(G/Ny: x), given by

why(v) (x) = A(m(x) 1),

is readily seen to be continuous and G-equivariant. Moreover, we have the following
easy lemma.

Lemma 1.1 The matrix coefficient map A — wh, is a bijection
Wh, (H®) — Homg(H®, C*(G/Ny:x)), (1.6)

where Homg indicates the space of intertwining continuous linear maps. The inverse
of (1.6) is given by T v ev, o T, whereev, : C*°(G/Ny: x) — C denotes evaluation at
the identity.

The following result, valid for any continuous character y of Ny, is stated and
proven in [21, Cor 15.4.4].

Lemma 1.2 If (n, H) is admissible and of finite length, then
dim Wh, (H®) < oo.

Given a continuous representation p of a Lie group in a complete locally convex
space V, we use the notation p for p viewed as a representation in the conjugate space
V. Clearly, p is continuous again and the identifications p® = p= and V™ = V> are
obvious.

In this paper it will be desirable to view the matrix coefficient map wh,, for
A € Wh,(H*) as a matrix coefficient with a suitable generalized vector. This is
possible in the following setting of duality.

Let (7}, H ) be two continuous Hilbert representations of a Lie group L, for j = 1, 2.
By a perfect sesquilinear pairing of n; and 7, we mean an equivariant continuous
sesquilinear pairing

Hy xH; —» C (1.7)
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such that the induced maps a; : H; — (H,) and a; : Hy — Fi are unitary isomor-
phisms. Note that these maps are intertwining. In particular, the restriction map

. ’ oo/
ri & &lue, H} — Hj

1s a continuous linear injection, intertwining n_lv with 7r‘f°v.
We put
HZT‘X’ = HT"’, (1.8)

and accordingly denote by 75 := 7{°" the natural continuous representation on (1.8).
We consider the canonically associated sesquilinear pairing

H xH,” = C, (v,j) (v, J). (1.9

o0

This pairing is equivariant for 7{° and 75 and induces the inverse of the continuous
linear isomorphism (1.12). Put ¢; := r{ o @>. Then the map

L Hy — H® (1.10)

is a continuous linear injection, intertwining 7y with 77°°. We will use it to identify the
first of these spaces as an invariant subspace of the second. This allows us to view the
elements of (1.8) as generalized vectors for ;. We now note that for (v, w) € H I X Ha,
we have

v, W) = [r(aw))] () = [aw)] @) = (v, w),
where the last mentioned pairing is (1.7). We thus see that the sesquilinear pairing
(1.9) is an extension of the pairing H}> X Hy — C given by restricting (1.7).
In the present context it is sometimes convenient to also use the sesquilinear pairing

H;* xH = C, (j,v) (j,v) =, j). (1.11)

Finally, we note that the above definitions imply that the pairing (1.9) induces a topo-
logical linear isomorphism
H;® — (HY). (1.12)

This isomorphism intertwines 7, with n7°Y. In the Whittaker setting, with L = G and
m1 and m, of finite length, this equivariance implies that (1.12) restricts to a bijective
conjugate linear map

HyY — Why(HY), j— Y., (1.13)

where
Hy? ={j € H” | n3%(n)j = x(n)j (n € No)}. (1.14)
For obvious reasons, we agree to call (1.14) the space of Whittaker vectors for 7.

Given j € (H,*), there is the associated Whittaker coefficient map wh; = whv;) :
HY — C*(G/Ny: x), given by

wh; () (x) =Y (1 (x) " 'o) = (m1(x) v, j), (ve H, x €G).
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Remark 1.3 If (7, H) is a continuous Hilbert representation of a Lie group L we
define the representation 7* of L in H by n*(x) = n(x~")* for x € L. It is readily
verified that the isometry i : H — H’ induced by the Hilbert inner product intertwines
7* with V. Thus, 7* is continuous since 7" is continuous. Let now H, and H,+ denote
H equipped with the representations 7 and 7%, respectively. Then the inner product of
H gives an equivariant perfect sesquilinear pairing

H; xHp — C. (1.15)

Conversely, any equivariant perfect pairing of the form (1.7) can be transfered to
a pairing as (1.15) by putting H = H;,m = m; and using the equivariant unitary
isomorphism i Yoay : Hy — Hj. The pairing (1.15) gives rise to an intertwining
injective linear map Hyp — H_J° = HZ’. The representation  is unitary if and only if
m = r*. In that case we obtain the equality H;* = HY’ which is compatible with an
existing convention in the literature.

Remark 1.4 The point of view explained above Remark 1.3 will be of particular impor-
tance in the setting of parabolically induced representations of the form IndIG) (¢), with
& a continuous Hilbert representation of a parabolic subgroup P of G. Let L>(G /P : £)
be the Hilbert space in which Indg (&) is realized by the left regular action. Then,
with the similar notation for £*, there exists a natural G-equivariant perfect sesquilinear
pairing
L*(G/P: &) x L*(G/P: &) — C.

Applying the formalism introduced above, one obtains a compatible equivariant sesquilin-
ear pairing

L2 G/P: & X L} (G|P: &)™ - C

which induces an equivariant continuous linear isomorphism

L*(G/P: &)™ — (LA(G/P: &)™

The associated space of Whittaker vectors, (L?(G /P : £*)™%) v» can thus be viewed as
a space of generalized sections of a Hilbert bundle.

2 Moderate estimates for Whittaker coefficients

We fix a non-degenerate Ad(G)-invariant symmetric bilinear form
B:gxg—R 2.1

which is negative definite on {, positive definite on p and which restricts to the Killing
form on the semisimple part [g, g]. Let 6 denote the Cartan involution on g associated
with K. We define the positive definite Ad(K)-invariant inner product (-, -) on g by

(X,Y):=-B(X,0Y), (X,Y €g). (2.2)
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The restriction of this inner product to a induces a dual inner product on a*, The latter’s
extension to a complex biliinear form on ag, is also denoted (-, -). The associated
norms on a and a* are denoted by | - |. Finally we extend the norm on a* to the norm | - |
on a;, associated with the Hermitian extension of the inner product on a*. Accordingly,

|v|2 = |Re v|2 + |Im v|2, (ve aé) (2.3)

If p C ais a linear subspace, we will use the inner product on a to identify the real
linear dual v* with a subspace of a*, unless otherwise specified.

We define °G to be the intersection of the kernels ker & where & ranges over the
characters G — R (. Let apy = Nyep ker a and put Ap = exp(ap). Then multiplication
induces an isomorphism of Lie groups

GZOGXAA.

It follows that G = °G if and only if G has compact center.

We define °|| - || : °G —]0, oo by °[|x|| = [|Ad(x)]|op (x € G), where the subscript
‘op’ indicates that the operator norm with respect to the inner product (1.2) has been
taken.

We put *Ap = G° N A. Then via the direct sum a = *ap @ ap we identify the
elements of the real duals "a} and a} with elements of a*. We select a basis B of a}
and define || - ||a : Ax — [1, 0] by

16|l = max bP, (b € Ap).
pexB

Finally we define || - || : G — [1, oo[ by
llxbll := max(®||x[, |D|a), (x € °G, b € Ayp).
Put X, :=X U B U (—B). Then it is easily verified that for k1, k, € K and a € A,

llkiaks|| = max a®. 2.4)

See also [3, Lemma 2.1], where the definition is given for G with compact center.
From the above definitions and (2.4) it readily follows that || - || is a norm on G in
the sense of [20, Lemma 2.A.2.1].

Lemma 2.1 If (n, H) is a (continuous) representation of G in a Hilbert space, then
there exist constants r(r) > 0 and C > 0 such that

I7(g)llop < Cligl™™, (g € G), (2.5)
where || - |lop indicates the operator norm.
Proof. See [20, Lemma 2.A.2.2]. |
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Lemma 2.2 Let (7, H) be of finite length, and A € Wh, (H®*). There exists a constant
r > 0 and a continuous seminorm n on H* such that the Whittaker coefficient wh,
satisfies

lwh; (v) (a)] < e"1'°8n(v), (2.6)

forallve H® and a € A.

Proof. Let r(m) and C be as in (2.5). Put m = max,es, |@|. Then it follows that for

a € A we have
”a”r(ﬂ) < emr(ﬂ)|loga|.

By continuity of A, there exist a finite subset S C U(g) such that |1(v)| <
Yues T (u)v|], for all v € V. By decomposing each element of S as a sum of
weight vectors for ad(a) it is readily seen that we may assume S to consist of weight
vectors from the start. Let &, denote the weight by which ad(a) acts on u. Then it
follows that, forallv € H® and a € A,

()] < ) llx™wn(a)]
ues
< Cllal™™ ) a5 ||x™(u)o|
ues
< Ce(mr(ﬂ)+s)|loga| Z ”71_00(”)0”’
ues
where s = max,cs |£,|. The result follows with r = mr(x) + s. a

The above proof does not use the assumption that y € Ny is regular. If y is
regular, then the above estimate gives rise to remarkable new exponential estimates.
The argumentation for this is suggested by the following lemma.

Lemma 2.3 Letu € U(ngy) have weight n € a* for the adjoint action of a. Then for all
feC®(G/Ny:x)anda € A,

Lyf(a) =a™"x.(u)f(a).
Proof. Note that
Luf(@) = [Ragiay 102 £1(@) = @Ry (@) = a7y () £ (a). 0

The regularity of the character implies that Whittaker coefficients have fast decay
outside the closed positive Weyl chamber cl(A*).

Corollary 2.4 Let (nr, H) be an admissible Hilbert representation of G of finite length
and let € Wh (H®). Let T be a closed cone in a which is disjoint from cl(a*) \ {0}.

Then for every s > (O there exists a continuous seminorm n of H® such that, for all
ve H®, k € K and a € exp(I),

|why(v)(ka)| < eI p(p). (2.7)
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Proof. Let r > 0 and n be as in (2.6). Let S be the unit sphere in a. Then by
compactness of S NI it suffices to show that for every Hy € S NI there exists a closed
neighborhood w > Hy in § such that (2.7) holds with suitable s’ and »n’ in place of s
and n, for allv € H, all k € K and all a € exp(Ryow).

Let Hy € SN T be given. Then Hy ¢ cl(a*) and it follows that there exists a simple
root @ € A such that @(Hp) < 0. We may fix p € N such that for H = H, we have

r|H| + pa(H) < —s|H|. (2.8)

We may now fix a closed neighborhood w in S such that this estimate holds for H € w.
By positive homogeneity (2.8) holds for H € R,w. Let now X € g, be such that
x«(X) = 1. Put u = X* € U(g). Then by application of Lemma 2.3 it follows that, for
allv € H*, k € K and a € exp(Rs gw),

Iwha(v)(ka)| = a**|L,(wha(x(k)™'0))(a)]
e 2 [why (7 ()7 (k) "'v) (a)|
< eka(loga)+r|loga|n(ﬂ.(u)n_(k)—lv) < e—s|loga|n/(v),

where 1’ (v) = sup, g n(m(u)m (k) o). ]

Lemma 2.5 Let ¢ : a — R be either linear, or of the form & =r| - |, withr > 0. Let
& € a and assume that & > O on a*. Then there exists a finite subset ©® C U(n) such
that for all f € C*(G/Ny: x) and all a € A we have the estimate

a”¥|f(a)] < e”?loga) max | L, f (a)]. (2.9)

Before we start with the proof, we need to introduce suitable notation. As usual, for
@ c A we define ag to be the intersection of the spaces ker @, for @ € ®. In particular,
aa equals the centralizer of g in a. We agree to write *ag for the orthocomplement of
ap in a. Then a = *ap @ ap.

The collection of restrictions a|-q,, for @ € A, is a basis of *aZ. The associated dual
basis of *ap is denoted by {h, | @ € A}. We define ‘ag := spang{h, | @ € ®}. Then
we have the following direct sum decomposition

a="ap D ap. (2.10)

This decomposition will be important in the proof of Lemma 2.5.
We denote by ‘ag, the interior in ‘ag of the closed cone spanned by the elements
—hgy for @ € ®. Then

‘ag ={H € ‘0o | (Va € @) : a(H) < 0}.
In addition, we define a(®) := ‘ag +cl(ag).

Lemma 2.6 The set a is the disjoint union of the sets a(®), for ® C A.
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Proof. We write R2 for the real linear space of functions A — R. For ® c A we define
R2(®) to be the subset of R* consisting of x € R? with x, < 0 for @ € ® and xg =20
for B € A\ @. It is clear that R? is the disjoint union of the sets R*(®). Consider the
linear map p : a — R defined by p(H), = a(H) for @ € A. Then p is a surjective
linear map, hence a is the disjoint union of the sets p~! (R*(®)), for ® c A.

We will finish the proof by showing that p~!(R*(®)) = a(®). For this, suppose
H € a and consider the decomposition H = ‘H + Hg, according to (2.10). Then
H e p~'(RA(®)) is equivalent to the assertion that a(H) < 0 and S(H) > 0 for all
a € ®and B € A\ ®. This in turn is equivalent to the assertion that «(*H) < 0 and
B(Hg) > O forall @ € ® and § € A\ @, hence to ‘H € ‘ag and He € cl(af). By
definition, the latter is equivalent to H € a(®). O

Proof of Lemma 2.5. We may fix k € N sufficiently large, such that for every @ € A
we have ka + 9 < & on —h,. For ® C A we put

o) = Z .
aed

Then it is readily verified that kog + 1 < £ on ‘ag,. Since o vanishes on ag,, whereas
ag, C cl(a®), it follows from the hypothesis that the same estimate is valid on a,. Using
the subadditivity of ¥} and the linearity of o and & we now find that

koo+9 <&  on a(d). 2.11)

The idea is now to derive suitable estimates on the set A(®) := exp(a(®)) for ® C A
fixed, by using Lemma 2.3. Put u = ug = [],cqp X¥, where an arbitrary fixed ordering
in the product may be taken, and where X,, € g, are such that y.(X,) = 1.

Let f € C*(G/Ny: x) and a € A(D), then it follows that

|f (@) = a*"® | x.(u)| " |Luf(a)| = a*7®|L, f(a)].

Therefore,
a”¥|f(a)] = a ¥ |L, f(a)| < e 1B |L, f(a)l.

As the sets a(®) cover a, we find the desired estimate with ® = {uge | ® C A}. O

Corollary 2.7 Assume that G has compact center and let (n, H) be an admissible
Hilbert G-representation of finite length. Let A € Wh, (H®). Then there exists a
¢ € a* and a continuous seminorm n on H* such that for allv € H* and a € A we
have

lwhy (v) (@)] < a*n(v).

Proof. 1t follows from (2.6) that there exists a continuous seminorm ng on H such
that forallv € H® and a € A,

[wha(v)(@)] < e'1°¢Ing (v).
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Since G has compact center, ap = 0, so that cl(a™) is a proper closed cone in a. Hence,
there exists a linear functional £ € a* such that £ > 0 on cl(a*) \ {0}. Let S be the unit
sphere in a*, then by compactness of S N cl(a*) we may multiply £ by a positive scalar
to arrange that £ > r on § N cl(a*). This implies that r| - | < & on cl(a™). Let now
® c U(np) be a finite subset as in Lemma 2.5. Then L,w(v) = w(xw(u)v), so that

a~¢|lwhy(v)(a)| < max eMogal|wh ) (r(u)v)(a)| < max no(m(u)v).

The required estimate now follows with the continuous seminorm defined by n(v) :=
max,ee no(m(u)v). a

At a later stage we will also need the following result. We retain the assumption
that G has compact center.

Lemma 2.8 Let u € a* be such that u(hy) > 0 for all @« € A. Then there exists a
constant s > 0 and a finite subset ® C U(ng) such that for all f € C*(G/Ny: x) and
all a € A we have the estimate

a™!|f(a)| < e~*lloedl max | L, f (a)). (2.12)

Proof. Since cl(a*) is the cone spanned by the elements #,, for @ € A, it follows that
there exists s > 0 such that 4 > s on cl(a*) N S, where S is the unit sphere in a. This
implies that u(H) > s|H| for all H € a*. The result now follows by application of
Lemma 2.5. O

3 The Whittaker Schwartz space

We denote the map G — a associated with the Iwasawa decomposition G = KAN, by
H. Thus, for k € K,a € A and ng € Ny,

H(kangy) =loga. (3.1

Let p € a* be defined by p(H) := %tr [ad(H)|n,].

Following Harish-Chandra [12, §1.3] and Wallach [21, §15.3.1] we define the
Whittaker Schwartz space C(G /Ny : x) to be the space of functions f € C*(G/Ny: x)
such that for all u € U(g) and N > 0

nun (f) = sup(1+ [H@))N P - |L, f(x)] < oo.

xeG

The indicated seminorms 7, y induce a Fréchet topology on C(G/Ny: x). It is readily
verified that C°(G/Np : x) € C(G/Ny : x) € C*(G/Ny : x), with continuous
inclusion maps.

Lemma 3.1 The space CZ(G/Ny: x) is dense in C(G/Ny: x).
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Proof. Fort > 0 we define
B, ={xeG||Hx)| <t}

Then B; is right Ny-invariant, with compact image in G/N,. Adapting the argument
given in [19, p. 343, Lemma 1] in an obvious fashion, we infer that there exist left
K-invariant functions ¢, € C°(G/Ny), fort > O such that 0 < ¢, < 1, ¥, = 1 on B,
supp Y, C By4q for all £ > 0 and such that, in addition, for every u € U(g) there exists
a constant C,, > 0 such that

|L,(¢)(x)| < C, for all t>0, xeG.

Adapting the argument of [19, p. 343, Thm. 2], again in an obvious way, we deduce
that for every u € U(g), N > 0 there exists a finite subset V C U(g) such that for all
t>1,

nun(f =wif) < ) (10 muna (f).

veV
From this it follows that ¥, f — fin C(G/Ny: x) ast — oo. a

Lemma 3.2 The space C(G/Ny: x) is invariant under left translation by elements of
G. The associated left regular representation L of G on it is continuous.

Proof. We start with the observation that for x € G/Ny and g € G one has
H(gx) = H(gk(x)) + H(x),
where k(x) is determined by x € k(x)ANy. It follows from this that for every compact
subset S C G and every N € N there exists a constant Cs x > 0 such that
P& (1+ |H(gx))V < Cowe?™™ (1+|H(x)))".
This implies that, for g € S and f € C(G/Ny: x),

niN(Lgf) < Csnnin+1(f).

Noting that L,(Lg f) = Lag(e-1),f and observing that Ad(S~"u is a bounded subset
of a finite dimensional subspace of U(g), we deduce the existence of a finite subset
V c U(g) such that for all g € S and f € C(G/Ny: xy) we have

nun(Lef) < D mn(f).
veV

This implies that C(G /Ny : x) is invariant for the left regular representation and that
the set of linear maps Lg, for g € S, is equicontinuous in End(C(G/Ny : x)). If
fo € CZ(G/Ny: x) then for g — e, the function L, fo tends to fy in C°(G /Ny : x)
hence in C(G /Ny : x). Using the density of C°(G/Ny: x) in C(G/Ny: ) it follows
by a standard argument that for all f € C(G/Ny: y) we have

limL,f=f in C(G/No:y).

g—e

Invoking the equicontinuity mentioned above, it now follows by a standard argument
that the map (g, f) + L, f is continuous G X C(G/Ny: x) — C(G/Ny: x). O
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Lemma 3.3 [f{ > dim A then
/ (1+ [H(x)])Ce2PHD gy < oo
G/Ny

Proof. By substitution of variables a measurable function ¢ : G/Ny — C is absolutely
integrable if and only if the function (k, a) — ¢(ka)a®” is absolutely integrable over
K x A. If so, the integrals fG/NO ¢(x) dx and /KxA o(ka)a* dkda are equal, provided
the invariant measures are suitably normalized. From this, the proof is immediate. O

Corollary 3.4 C(G/Ny : x) € L>*(G/Ny : x), with continuous linear inclusion map.

We end this section with a result that will be applied in the next section. It is
assumed that G has compact center. Then A is a linear basis of a*; the associated dual
basis of a is denoted by {h, | @ € A}.

Lemma 3.5 Suppose that G has compact center and let ¢ € a* be such that £(hg) <
—p(hy) for all @ € A. Let (n, H) be an admissible continuous representation of finite
length of G in a Hilbert space and let A € Wh (H*). Assume there exist a continuous
seminorm n on H® and a constant d € N such that, for allv € H® and a € A,

lwh, (v)(a)] < aé(1+|logal)? n(v).
Then the Whittaker coefficient map wh, is continuous H* — C(G/Ny: x).

Proof. We put u = —p — &. Then it follows that u(h,) > 0 for all @ € A. By
Lemma 2.8 there exists a finite set ® C U(ng) and a constant s > 0 such that for all
fe€C®(G/Nyp:x) and all a € A we have the estimate

a™|f(a)] < e™1"% max |L, f(a)|.
ue®

This implies that

a|f(a)l = a*a*|f(a)l
< maxa e 2d|L, f(a)]
ue®
<

eslogal( 4 1oga|)"mag<a'f(1 +|logal) ™| L.f(a)|.
ue

Using the above estimate for f = wh,(v), with v € H*, we find that

a”|why(v)(a)| < a=*1°2l (1 +| logal)dng( n(m(u)v). (3.2)

For N € N we define the positive number

Cy =supe (1 + t)N+d. (3.3)

>0
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It follows from (3.2) and (3.3) that, forallv € H* and a € A,
a®(1+ |logal)¥|wh,(v)(a)] < Cyny(v),

where n; is the continuous seminorm on H® given by n; (v) = max,ce (7 (u)v). Finally,
the last displayed estimate implies that, for u € U(g) and for allv € H* and x € G,

PP (1 + |[Hx) DV Lu(Wha(0) ()] = ePHO(1 + [H(x) )N (Wha(m(1)0)) (x)]
< n(v),

with n, the continuous seminorm on H* given by n,(v) = Ca sup; g 11 (7 (k) (u)v)).
O

4 Sharp estimates for Whittaker coeflicients

In this section we assume that G has compact center. We shall derive certain growth
properties of Whittaker coefficients, building on results and ideas of Wallach [21] and
Harish-Chandra [12].

We assume that (H, xr) is an admissible continuous representation of finite length
of G in a Hilbert space. Let V = Hg be the associated Harish-Chandra module, and let
V™~ denote the associated dual Harish-Chandra module. Then it is well known that the
natural map (H*)" — V* induces an isomorphism (H*)} = V~.

We agree to write E (P, V) for the set of generalized weights of the finite dimen-
sional a-module V /nyV.

Let A be the collection of simple roots in X(1g, a) and let {h, | @ € A} be the
associated dual basis of a. We define Ay € a* by

Ay(hq) = max{-Re p(h) | € E(Po,V)}. (4.1)
Remark 4.1 At a later stage it will be of crucial importance to us that for 7 irreducible
unitary, the following two conditions are equivalent

(a) mis equivalent to a direct sum of representations from the discrete series of G;
(b) Ay(hy) < —p(hg) for all @ € A.

For a proof of this well known result, we refer to [20] as follows. The element Ay
corresponds to Ay~ as defined in [20, §4.3.5]. In the terminology of [20, §5.1.1]
assertion (b) means that V™ is rapidly decreasing. According to [20, Prop. 5.1.3 &
Thm. 5.5.4] this is equivalent to the assertion that (7, H’) is a direct sum of square
integrable representations, which in turn is equivalent to assertion (a).

The following result is due to Wallach [21, 15.2.2]. The regularity of y is not
required.
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Proposition 4.2 Put A := Ay and let 1 € Wh, (H®). Then there exists a constant
d > 0 and for every v € Hg a constant C, > 0 such that

IA(r(a"YHo)| < Co(1 +|logal)d a™.
forall a € cl(AY).

Wallach’s proof of this result follows the lines of the proof of an earlier result,
stated in [20, Thm. 4.3.5]. That result, applied to the contragredient representation ¥,
asserts that for a given v € ((H')*)} = H there exists a constant ¢ > 0, a continuous
seminorm o, on (H”)® such that for all 2 € (H”)® one has

lo(z" (a)d)| < (1+|logal)?a oy (R).

As v(n¥(a)d) = A(n(a~")v), the result [20, Thm. 4.3.5] implies that Proposition 4.2
is valid for A a smooth vector in H'.

The proof of [20, Thm. 4.3.5] makes use of initial estimates and of estimate im-
provement through asymptotic behavior along maximal standard parabolic subgroups
Po, with @ = A\ {a}. It exploits a system of differential equations coming from the ob-
servation that V /ngV is an admissible (m ¢, Ko)-module (m;p = Mg+ ae), So that agp
acts finitely on it. From the proof one sees that only estimates of [7¥(U)A] (7 (a)w) for
U e U(ng),w € Hganda € A* are needed to make the approach work. This is the con-
dition of (P, A)-tameness of [21, §15.2.1]. If A € Wh, (H*) then " (U)A = x.(U")A
so that the needed tameness is trivially guaranteed. Therefore, essentially the same
approach gives the validity of Proposition 4.2. For further details, see the proof of [21,
Thm. 15.2.2], assertion (1).

For regular y the following refinement of Proposition 4.2 will be of crucial impor-
tance to us, since it gives an estimate for the Whittaker coefficient wh,(v) for every
smooth v € H® on all Weyl chambers of A. The key idea is to now focus on the
agp-actions on the modules U(g)A/ ﬁfDU (g)4, for k£ > 1, making use of the information
provided by Proposition 4.2 to exclude the contribution of ap-weights that are not
dominated by A|q,.

Theorem 4.3 Suppose that G has compact center and let A := Ay. Assume that y is
a regular unitary character of Ny and that A € Wh,(H*). Then there exists a constant
d > 0 and a continuous seminorm n on H* such that for every v € H,

[A((a""Yo)| < (1+ [logal)? a® n(v),
foralla € A.

Remark 4.4 [21, Thm. 15.2.5] gives this estimate for a € cl(A*).
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The rest of this section is devoted to the proof of Theorem 4.3. We start with the
fact that there exists a £ € a*, a constant d > 0 and a continuous seminorm n on H®
such that

Iwhy(v)(a)] < af(1+|loga))?n(®)  (ve H™, a € A). (4.2)

Indeed, according to Corollary 2.7 this estimate holds with d = O for a suitable choice
of &.

In the following we shall say that ¢ € a* dominates the Whittaker coefficient wh,
if there exist a d € N and a continuous seminorm n on H such that the estimate (4.2)
is valid for all v € H* and a € A. The following result concerning domination will be
useful.

Lemma 4.5 Let 9,& € a* be such that ¢ < & on a*. If & dominates the Whittaker
coefficient why, then so does &.

Proof. Let O be a finite subset of U (1) with the properties guaranteed by Lemma 2.5.
Assume ¢ is dominating. Then there exist a constant d > 0 and a continuous seminorm
n on H* such that for all v € H* and all a € A we have

a P |wh,(v)(a)| < (1 + |logal)?n(v).

By applying Lemma 2.5 with f = wh,(v), and using that L, (wh,(v)) = why(7.(u)v)
we infer that, forallv € H*® and a € A,

IA

a™¢|why(v)(a)] max a™"|wha(m.(u)v) (a)]

IA

(1 +]|loga|) max n(m, (u)v).
uc®

Since n” : v — max,ece n(7.(u)v) is a continuous seminorm on H® it follows that &
dominates wh,. a

The idea is now to show that a dominating & can be improved by using asymp-
totic expansions along maximal standard parabolic subgroups derived from suitable
differential equations. This method, inspired by [20, §4.4] and [21, §15.2], leads to
the following lemma, which is the main step in our proof of Theorem 4.3. We write
A= Ap,.

Lemma 4.6 (estimate improvement) Assume that the Whittaker coefficient why is
dominated by ¢ € a*. Let @ € A. Then wh, is also dominated by &', where &' € a* is
defined by

(a) & =& onkera;
(b) &'(he) = min(£(ha), Alhe)).
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The proof of this lemma will be given in the next section. Here we note that using the
lemma successively for all simple roots @ € A we obtain the following corollary.

Corollary 4.7 (estimate improvement) Assume that the Whittaker coefficient wh, is
dominated by & € a*. Then wh, is also dominated by &, where & € a* is defined by
&E"(hy) = min(é(hy), A(hy)) for every a € A. In particular, £ (hy) < A(hy) for all
a € A.

The above results allow us to establish the main result of this section.

Proof of Theorem4.3. According to Corollary 2.7 there exists a¢ € a* which dominates
wh,. By Corollary 4.7 the coefficient wh, is also dominated by ¢”. From the definition
of &” one sees that ¢” < A on a*. By application of Lemma 4.5 it now follows that A
dominates wh,. This establishes the assertion of Theorem 4.3. O

Corollary 4.8 Suppose that (n, H) belongs to the discrete series of G and let 1 €
Wh, (H®). Then the associated Whittaker coefficient wh, defines a continuous linear
map H* — C(G/Ny: x).

Proof. From Remark 4.1 it follows that A(h,) < —p(hy) for @ € A. The result now
follows by combining Theorem 4.3 with Lemma 3.5. a

5 Proof of Lemma 4.6: improvement of estimates

As in the previous section, we assume that G has compact center. Furthermore, (7, H)
is an admissible continuous representation of finite length of G in a Hilbert space,
and V = Hg is the associated Harish-Chandra module. We define A = Ay as in (4.1)
and assume that A € Wh(H®). Let wh, : H® — C*(G/Ny: x) be the associated
Whittaker coefficient. The purpose of this section is to prove Lemma 4.6.

Our starting assumption is that wh, is dominated by £ € a*. This means that there
exists a constant d € N and a continuous seminorm n on H* such that for all v € H®
and all @ € A we have

Im,(v)(a)] < (1+ |logal)?a*n(v). 5.1)

We will improve upon this estimate by using a system of differential equations
satisfied by wh,. Our first goal is to set up this system.

Given a finite dimensional real linear space » we denote by S(v) the symmetric
algebra of its complexification v. and by P(v) the algebra of polynomial functions
v — C.

Given a real Lie algebra [ we denote by U(I) the universal enveloping algebra of
its complexification I, and by 3(I) the center of U(I). Furthermore, U(I) is equipped
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with the standard filtration by order, (U (1),),>0. The center 3 (1) is equipped with the
induced filtration.

For a parabolic subgroup P of G we denote its Langlands decomposition by P =
MpApNp and we write M p := MpAp. We agree to use the abbreviated notation
3 =23(8), 31p = 3(myp) and 3p := J(mp).

Given a subset @ C A we denote by Py the associated standard parabolic subgroup
of G. Its Langlands components are denoted by Mg, Ap, No. Furthermore, Mo =
MoAg, 310 = 3(Mie) and 3o := 3(Me).

We consider the U(g)-submodule

Y :=U(g)1

of (H*)'. Since H is admissible and of finite length, 34 is a finite dimensional subspace
of V.

We fix ® c A. By the PBW theorem, U(g) = U(mj¢) @ (eU(g) + U(g)ng). The
associated projection U(g) — U(me), restricted to 3, defines an algebra homomor-
phism

P:3— 3o (5.2)
It is well known that p is injective and preserves the filtrations induced by the standard
filtration (U(g),)nen by order on U(g).

We fix a maximal torus t € m; then b := t ® a is a Cartan subalgebra of g. Let
W(H) denote the Weyl group of the root system R(g, ) of h. in g-. Furthermore, let
Wao (B) denote the Weyl group of R(m;e, ). Then We (h) equals the centralizer of ag
in W(b).

We denote by S(5)Y® and S(§)"*® the associated subalgebras of Weyl group
invariants in S(B). Then it is well known that S(§)"*® is a free S(H)"-module of
rank £ = [W(h) : We(h)] with free homogeneous generators, g1 = 1,42, ..., q¢., see
[23, Thm 2.1.3.6].

Lety: 3 — SHYD® and yo : 310 — S(h)"*® denote the associated Harish-
Chandra isomorphisms. These are known to be isomorphisms of filtered algebras.
Furthermore,

p= T—pcp 07(;)1 oY,
where T_,, is the automorphism 7 of 319 =~ 36®S5(ae) determinedby 7 = I on 3¢ and
by T(X) = X — po(X), for X € ag. Here pg € a* is given by pe(X) = 5tr (ad(X) |n,,)-
Forl <i < ¢, put
ui =T pe¥e (4i) € 310

Then we see that 3¢ is a free p(3)-module with basis u; = 1, us, . . ., uy. Furthermore,
since the g; are homogeneous and since y, Yo and T_,, are isomorphisms of filtered
algebras, the following is valid.

Foreveryu € 310 NU(Q)n, (n € N), let Zy,...,Z; € 3 be the unique elements such
that u = Zle uip(Z;). Then forall 1 <i < ¢,

ord(u;) + ord(Z;) < n (5.3)
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Let Eg be the complex linear span of the elements {u; | 1 < i < €} in 31¢. Then
the map (u, Z) — up(Z) induces a linear isomorphism Ep ® 3 =~ 310.

Lemma 5.1 With E¢ C 310 as above, we have
U(g) = U(tip)U(Me) Ee3U (1e). (5.4)

Proof. By induction on n € N we will show that U(g), is contained in the space on the
right-hand side of (5.4). For n = 0 the inclusion is obvious. Thus, letn > 1 and assume
the inclusion has been established for strictly smaller values of n. We observe that by
the PBW theorem, every element of U(g),, may be written as a sum of an element of
U(g),-1 and a finite sum of products wouy with w € U(iip), v € U(mo), u € U(agp)
and y € U(ng) such that

ord(w) + ord(v) + ord(u) + ord(y) < n. (5.5)

In view of the induction hypothesis, it suffices to show that each such product wouy
with (5.5) belongs to the space on the right of (5.4).

Since U(agp) C 310, the element u may be expressed as a sum of elements u; p(Z;)
with ord(u;)+ord(Z;) < ord(u).Now p(Z;)—Z; € U(§)n,—1Ma, Wheren; := deg Z; < n.
It follows that forevery 1 <i < ¢,

wou;(p(Z;) = Z;)y € U(g)n-1Ma.

Summing over i and applying the induction hypothesis, we find

wouy € wo ) uiZ;y +U(@n-1mo € U(fio)U (M) Eo3U (o).

1

For k > 1, the quotient My, := y/ﬁgy is a left U(m¢)-module.

Lemma 5.2 The subspace Ee3A of Y has a finite dimensional ag-invariant image in
M, which generates the U(mg)-module M.

Proof. Since E¢ and 34 are finite dimensional, the mentioned image F; of E¢3A4 in
M is finite dimensional. From

U(ao)Esd C 310 C Eop(3) C Eo3 +TiaU(g)

it follows that F is finite dimensional and ag-invariant. O
In particular, it follows that the set S¢ of generalized ag-weights of M is finite
and that M is the direct sum of the associated generalized ag-weight spaces.

Lemma 5.3 For k > 1 the set wt(My) of generalized ag-weights of My is finite.
Each of its elements is of the form o — (a; + -+ + ), with o € S¢, 0 < [ < k and
@ € X(Mg, ap) forall 1 < j < 1.

24



Proof. For k = 1 the result has been established above. For k > 2 we notice that the
natural map gy : My — M is a surjective morphism of ap-modules. Furthermore,
its kernel is isomorphic as an agp-module to the quotient

Oy = il ' U(g)A/ite U(g)A.

Define Q| := M, then wt(Q) = S¢ and Q1 is the associated direct sum of generalized

ag-weight spaces. The natural map np ® Q-1 — QO is surjective, for k > 1. Thus, if

the agp-module Qy_; is the direct sum of its generalized weight spaces, then so is Qk,

and wt(Qy) C wt(ip) + wt(Qk-1). It follows by induction on k that each Qy is the

direct sum of its generalized weight spaces, and that for £ > 1 each weight of Qy is of

the form o — (a1 +-- -+ a¢), where o € So, £ < k and a; € Z(ne, ap), for 1 < j < €.
For k > 2 we now have the short exact sequence of ap-modules

0— Qr > My = M1 — 0.

Here Qy is the direct sum of finitely many generalized ag-weight spaces. If M;_;
is the direct sum of finitely many weight spaces, then it follows that the module My
is the direct sum of finitely many weight spaces as well, while wt(My) € wt(Qy) U
wt(My—1). The asserted result now follows by induction on k. ]

After this preparation, we proceed with setting up the system of differential equa-
tions. Fix k > 1. At a later stage we shall impose a condition on the magnitude of k.
The space U(agp)A maps to a finite dimensonal subspace F' of My = Y/ ﬁfby . We fix
elements u; = 1,uy,...,u, of U(ag) such that the images [u;4] in M, form a basis
of F.

For H € agp we denote by B(H) the transposed of the matrix of the action of H
on F relative to this basis. Then there exist linear maps y; : ap — ﬁgU (o + my),
(my := m+a) such that for every H € agp we have the following identities in Y = U(g)4,

P
Hu,A = Z B(H)jud+y;(H)A,  (1<j<p).
i=1
We now define the functions F : H° XA — CP and R : VX A X ap — C? by
Fi(¢,a) =ujA(n(a)~'v), R;(v,a,H) =y;(H)A(x(a)"'v), (1 <j<p).

We use the decomposition (2.10) and put ‘Ag := exp(‘ae), so that A ~ *ApAe. Then,
d
EF(U, ‘aexp(tH)) = B(H)F (v,‘'aexptH) + R(v, ‘aexptH, H),

for all ‘a € ‘A, H € agp and t € R. This equation in turn leads to

d
Ee_tB(H)F(v, ‘aexp(tH)) = e "BHR(v, aexptH, H).
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Finally, by integrating with respect to ¢ we obtain the equivalent equation
t
F(v, aexp(tH)) = B H F(v,a) + B / e TBH Ry, \aexp(tH), H)dt. (5.6)
0

The domination estimate (5.1) leads to estimates of F and R.

Lemma 5.4 There exists a constant d € N and a continuous seminorm n on H* such
that for allv € H* and all a € A,

|F(v,a)|| < af(1+|logal)? n(v). (5.7)

Proof. Using that F;(v,a) = uj/l(ﬂ(a)‘lv) = wh, (n(ujv.)v) (a) in combination with
the estimate (5.1) we find that the estimate (5.7) is valid with a seminorm of the form
n(v) = C max; no(n(u}’)v), where ng denotes the seminorm of (5.1). O

In the following we will use the abbreviated notation
|Ca, H)| := (1+[loga)(1+|H|),  (‘a €'Ae,H € ao).

Lemma 5.5 Let & € a* be as in (5.1). Then there exist N € N and a continuous
seminorm n on H® such that for allv € H*,a € ‘Ag and H € a&’,, t >0,

IR(v, aexptH, H)|| < |(Ca,tH)|N (1 + |H|)(a)i e *B)H) n(p). (5.8)
Here B¢ : ag — [0, oo is defined by Bo(H) = mingea\o a(H).

Proof. Lety € ﬁgU (1p+my). Then we may express y as a finite sum of weight vectors
U for the adjoint action of a. The weight associated with such a term U is of the form
—{ == Xoea Ha @ With g, € N and with X ,ca\0 Ho > k. It follows that

UA(n(CaexptH) ™ 'v) = CaexptH) *A(n(aexptH) ' U v).
Now there exists a finite sequence a1, ..., a, of simple roots from ® such that u =
@i +---+a, on ‘agp. Let Xo; € Qo; be such that )(*(Xaj) = 1 for each j and put
X = Xq, -+ - Xa,, then x.(X) = 1. Hence, X4 = A and it follows that
UA(n(CaexptH)'v) = UXA(n(aexptH) 'v)
(exptH) M A(n(aexptH) ' XU ).

Now

—u(H) < —kBo(H), (H € ag),
and we see, by using the initial estimate (5.1) that there exists a continuous seminorm
no on H* such that for all v € H*, ‘a € ‘A, H € a};,t > 0

e kBo M) |\wh) (n(\a exp tH) X U v)|
e—kﬁd)(tH) (\a exp tH)‘fl(\a, tH) |dn0(v)’

|UA(n(CaexptH) v)| <
<

It follows that a similar estimate holds for each y € ﬁgU (g + my). Using the linear
dependence of y;(H) on H for 1 < i < p and using the above estimates with y;(H)
in place of y, we infer the existence of a continuous seminorm n on H* such that the
asserted estimation (5.8) is valid. O
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We now assume that @ € A and ® = A\ {a}, so that Py is a maximal standard
parabolic subgroup. Clearly, ap = Rh,, where h, is defined as in the beginning of
Section 4.

We may and will assume A(hy) < &(hy) since otherwise & = ¢ and there would
be nothing to prove. Accordingly,

é:/(ha') = A(ha')’ §/|‘a<1> = ‘f|‘aq>- (59)
We now observe that B¢ (h,) = 1 and impose the mentioned condition on k € N that
(€ = kBo)(he) = E(he) — k < A(hg). (5.10)

The spectrum of B(h,) is contained in the set
X={loc—(a1+...+ap)](hy) |0< <k, Vj: aj € (Mo, aop) }-

For x € X we denote by P, : C” — CP? the projection onto the associated generalized
weight space of B(h,), along the generalized weight spaces for the eigenvalues different
from x. If x is not an eigenvalue for B(h,), then P, = 0. Then it is clear from (5.7),
possibly after adaptation of d and n that,

|P.F(v,a)|| <a®(1+]|logal)? n(v), (5.11)

forall v € H* and a € A. Likewise, for the components P,R we have estimates of the
form (5.8), with adapted N’ and n’ if necessary.
In the following we agree to write

a="‘aa;, ‘a€‘Ap and a; =exp(th,), te€R.

Remark 5.6 Clearly, to finish the proof of Lemma 4.6 it suffices to prove the estimate
(5.11) with £ replaced by &’. Now &’ (hy) < &(hy) implies that for ‘a € *Ag and r < 0
we have

a* = (a)f(a)* < (Ca)(a)® =d,

so that the required estimate (5.11) with & in place of ¢ is automatically fulfilled for a
outside ‘Aq;Ag). It therefore suffices to prove the estimate for a = ‘aa;, t > 0.

It is well known that there exist unique polynomial maps Q, : R — End(C?), for
x € X, such that Q,(¢#) commutes with B(h,) for all # € R, hence with all the weight
space projections for B(h,), and satisfies P,Q,(t) = Q.(t) = Q,(¢) Py and

eBhap — o0 (1), (t € R). (5.12)

Furthermore, the polynomial degrees of O, are at most p, so that there exists a suitable
constant Cyp > 0 such that, for all x € X,

1Qx(D)llop < Co(1 +[2])7, (r €R). (5.13)
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We recall that B¢ (h,) = 1 and that Lemma 5.5 with H = h, implies the existence
of a continuous seminorm n on H* such that for all v € H®, ‘a € ‘Ag and ¢t > 0 we
have

IR (v, aas, ha) |l < |Ca, the) [N (@) et ~Hn o). (5.14)
Writing

R(v, aexpthy, hy) = €Ik Ro (v a exp(thy))
we find that the estimate (5.14) becomes

IP<Ro(v, aexp(tha))ll < |(a, tha)|V (@) n(v). (5.15)
Finally, writing F, = P, F, formula (5.6) leads to
Fy(v,‘aexp(thy)) (5.16)

t
= "0 ()F(v,‘a) + €™ Q,(t) / Qx(T)eT(_”[f(h“)_k])Ro(v, ‘aexpthy) dt.
0

We will need to distinguish two cases depending on the position of the real number
x, namely:

(@) —x+[£(ha) — k] <0,
(b) —x+[&(ha) —k] 2 0.

In case (a) we will need to distinguish the subcases (a.1): x < A(h,) and (a.2):
x > A(hy). In case (b) we automatically have x < A(h,), in view of (5.10).

Case (a) In this case the integrand of (5.16) is integrable over [0, co[ and we find that
the expression on the right-hand side of (5.16) becomes

" Q0 (F (v,"a) + €™ Qx (o (v,a) — €™ Qx (1) I (v, @"). (5.17)

where, for ¢ € [0, o],
L(v, a) = / 0. (7)e" e =kD R0y “qexpThy) d.
t
From (5.11) and (5.13) we infer that
1Qx(1)F (v, a)|| < Co(1 + [1))” (1 +|log al)* (a)*.
We select € > 0 such that
—x+[E(hy) —k]+e <0 and [E(hy) — k] +& < A(hy).
Then

12: (v, a)l

IA

o (e E(ha) K 4)1 / 1Qx(7)lle™*™ [Ro(v,‘a expThq)|dT
t

CpexHEG) =K+ (1 4 10 a])N (*a)*n(v)
Cre AR (T 4 [ Tog a)N (a)én(v)

IA A
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with -
Ci = /0 10 (D)l (1+ [t ¥dr < oo,
For t = O this leads to
1o(v, )| < C1(1+]loga)™ (‘a)*n(v).
For general ¢t > 0 this leads to
N1 (v, a)|| < Cre™ ) (1 +]1og a))V (*a)*n(v) (5.18)

We will now consider the two subcases (a.1) and (a.2).

Subcase (a.1) In this subcase, x < A(h,). Then from the above estimates it follows
that the norm of each term of (5.17) can be estimated by C, := max(Cy, C;) times

M (1+12)P (1 + log a)™ (‘a)*n(v)
There exists a constant C3 > 0 such that the above expression can be estimated by
C3e™1) Ca)¥ (1 + | log(*a) + tha|)"*n(v) = C3('aar)® (1 +|log(‘aar))"* n(v).

for all ‘a € ‘Ag and ¢ > 0. It follows that F, satisfies the required estimate for all

v e H” and a = ‘aa; with t > 0. In view of Remark 5.6 this establishes the required
estimate in the present subcase.

Subcase (a.2) In this case we have x > A(h,). If follows from (5.16) that for ‘a € ‘Ae
and t > 0 we have

Fi(v,'aay) — €™ Q(0)1,(v,a') = " Qx (1) [F (v, a) + Ip(v, a)] (5.19)

In view of Proposition 4.2 there exists a constant d’ € N and for every v € Hg a constant
C, > 0 such that for ‘aa; € cl(A*) we have

IFx (v, aan)|| < Co(1+]log a)? Ca) (1 + [¢) " e M) (5.20)

Write ‘a, for the set of elements H € ‘ag such that 3(H) > O forall 8 € ®. Then this set
has non-empty interior in ‘ae. Let ‘A := exp(‘ag). Then it follows that *‘Afa, c A™
forallr > 0.

Combining (5.20) with the estimates (5.18) and (5.13) we infer that the norm of
the sum on the left-hand side of (5.19) allows for every v € Hk and ‘a € cl(*Ay)
an estimation by a constant times (1 + |¢[)N e o) for all r > 0. On the other hand,
the expression on the right-hand side is of exponential polynomial type with exponent
x > A(h,). By uniqueness of asymptotics this implies that for v € Hg, ‘a € ‘A} and
t > 0 the expression on the right-hand side in (5.19) is zero. Hence,

F (v, aa;) = €™ Q. (t)I,(v, a) (5.21)
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forv € Hg, 'a € ‘A and t > 0.
From the definitions of F, and I, it easily follows that for v € H*®, ‘a € ‘A and
t >0,

Fe(v,'aa;) = Fe(z(*a)'v,a,) and I, (v,a’) = L(x(*a) v, e). (5.22)

Furthermore, from the estimates (5.11) and (5.18) it follows that for each ¢ > O the
maps v — Fy(v,a;) and v — I,(v, e) are continuous linear V*® — CP. If v is K-
finite in A then v is an analytic vector for H*®, so that the map ‘a — n(‘a)~'v is
analytic ‘Ap — H™. We may now conclude that the maps ‘a — Fy(7(‘a)'v, a;)
and ‘a — I,(n(*a)"'v, e) are analytic ‘A — CP. In view of (5.22) it now follows by
analytic continuation in the variable ‘a that the validity of the identity (5.21) extends to
allv € Hg, ‘a € *Ag and t > 0. Using that both members of (5.21) depend continuous
linearly on v € H*, whereas H is dense in the latter space, we conclude that (5.21) is
actually valid for all v € H*, ‘a € ‘Agp and ¢t > 0.

Using (5.13) and (5.18) to estimate the expression on the right-hand side of (5.21),
we obtain, forv € H®,‘a € ‘Agp and ¢ > 0,

CoCi (1 + [t])P ™) (1 + | 1og ‘a])™ (a)n(v)
C3(1 + [log(“aa,))*M*P) (aa) n(v),

|1 Fx (v, aay) |l

IAIA

with C3 > 0 uniform with respect to v € H®, ‘a € ‘Agp and r > 0. This gives the
required estimate for F, on H* x ‘AgpAg. In view of Remark 5.6 this completes the
discussion in the present subcase.

Case (b) In this case, —x + [£(hy) — k] > 0, and x < A(h,). The identity (5.16) can
be rewritten as
F(v,‘aa;) = e Q,(t)[F(v,'a) + J(t,v, a)]. (5.23)

with .
J(t,v,'a) = / O (1)e" e =k R0, “\gexpThy) dr.
0

By a straightforward estimation of the integral defining J, we find, forv € H®,‘a € ‘Ag
and ¢ > 0, using (5.13) and (5.15) that

1/ (2,0, a) |

IA

t
Coe 108D (1 1Ry (0. aexp oh
0

CoCN ! HER=KD (1 4 1 YN*P*1(1 + | log ‘a)Y Ca)én(v),

IA

with C = sup(1 + |t||he|) (1 + |¢])~!. This implies that

le™ Q. ()J (1,0, a)|

IA

C2CN ! EhD=KD (1 4 1£))2N*P*1 (1 4 | Tog ‘a])N (‘a)*n(v)
C2CN ™M) (1 4 [¢)2M ¥ (1 + [log al)V (Ca)én(v)

Ca(‘aa,)¥ (1 +|log aa,|) N *2n(v),

IA

IA
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see also (5.10), with C, > 0 uniform with respecttov € H*, ‘a € *Ag and 1 > 0.
On the other hand, since x < A(hy) = &' (hy), see (5.9),

le™ Q. () F (v, a)| Coe™") (1 +11))” (a)* (1 + | log ‘al)'n(v)

<
< C3(aa)® (1 +|log aa)*P*Dn(v),

with C3 > 0 uniform with respect to v € H®, ‘a € ‘Ag and ¢ > 0. Combining the two
latter estimates we find that there exist a constant N’ > 0 and a continuous seminorm
n’ on H* such that

IPLF (v, aan)|l < (aar)® (1 +]log(‘aa) ) 1’ (v)

forallv € H®, ‘a € ‘Ag and ¢ > 0. In view of Remark 5.6 this gives the required
estimates for F in case (b) and completes the proof of Lemma 4.6. O

6 Parabolically induced representations

In this section we will describe the space of smooth vectors for parabolically induced
representations of the form

Ind$ (¢), (6.1)

where P = MpApNp is a parabolic subgroup of G with the indicated Langlands
decomposition, and £ a continuous representation of P in a Hilbert space H.

Remark 6.1 In particular we will be interested in the situation that é = c ® v ® 1,
with o a unitary representation in H, and v € a),_. The representation & is now given
by &(man)v = a”o(m)v for all v € H, and (m,a,n) € Mp X Ap X Np. For technical
reasons we wish to have the possibility to tensor representations of this particular form
with finite dimensional representations of P, whence the greater generality.

We put Kp := K N Mp = K N P. By averaging over Kp we may replace the inner
product on Hy with a Kp-invariant inner product for which the associated norm is
equivalent to the original norm. Accordingly, we may and will assume that &|k,, is
unitary.

Let 5p : P — [0, oo[ be the character of P defined by

55(p) = | det[Ad(p)|Lier) 1'%, (p € P).

Then
op(man) = a?, ((m,a,n) € Mp x Ap X Np),

where pp € a* is defined by pp(X) = %tr (ad(X)|np), for X € a.
We denote by C(G/P : &) the Fréchet space of continuous functions f : G — Hg
transforming according to the rule

f(gp) =6p(p)'é(p)™" f (), (xeG,peP).
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This space is equipped with the left regular representation L of G. Let *H; denote the
Hilbert space H¢ equipped with the representation *¢ of P given by ‘¢ (p) = dp(p)é(p).
The group P naturally acts on C(G, *H¢) by the formula

[pel(g) ="¢(p)le(gp)]. (g€G,peP). (6.2)

Accordingly,
C(G/P: &) =C(G, \He)".

Remark 6.2 In the particular case é = 0 ® v ® 1, we write
C(G/P:¢)=C(G/P: 0 :v).

We write C(K/Kp : &) for the Fréchet space of continuous functions ¢ : K — H such
that
p(km) = £(m)"'p(k), (k€ K,m € Kp). (6.3)

Using the decomposition G ~ K Xk, Mp X Ap X Np, given by the multiplication
map, we readily see that restriction to K induces a K-equivariant topological linear
isomorphism

r:C(G/P:¢) — C(K/Kp:€), fr flk. (6.4)
Via this isomorphism we may transfer the representation L of G on C(G/P : &) to a
continuous representation of G in C(K/Kp : &), denoted 7p ¢.

Remark 6.3 Incase & = o ® v ® 1 we will use the notation 7p -, = 7p¢.

Let dk be the choice of a K-invariant Radon measure on K/Kp normalized by
fK IKp dk = 1. Then it follows from the isomorphism (6.4) that the sesquilinear pairing

C(G/P:¢)xC(GJP:¢) —C (6.5)
given by
(Fogyi= [ (). (b di (6.6)
K/Kp
is a K-equivariant pre-Hilbert structure. We denote the associated norm by || - ||».

The associated Hilbert completion is denoted by L?(G/P : &). The restriction map
(6.4) induces an isometric isomorphism from this completion onto L?(K/Kp : £), the
completion of C(K/Kp : &) with respect to the pre-Hilbert structure given by (6.6).
We note that a different but equivalent choice of K-invariant inner product on Hg gives
rise to the same completed spaces (as topological linear spaces), with equivalence of
the Hilbert inner products.

Out next objective is to show that the representation (L, C(G/P : £)) has a unique
extension to a continuous representation of G in the Hilbert space L>(G/P : £). To
prepare for the proof we start by recalling a well known result involving the represen-
tation in C given by the character §p of P. The associated space C(G/P : dp) consists
of the continuous functions ¢ : G — C such that

¢(xman) = a”*? p(x), (x € G,(m,a,n) € Mp X Ap X Np).
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Lemma 6.4 Forall g € C(G/P:6p)andg € G,

/ o(gk) dii = / o (k) di.
K/Kp K/Kp

There exists a choice of Haar measure dii on Np such that for all ¢ € C(G/P : 6p),

/K/Kptp(k) dk = /NP o(71) dn.

The following corollary will be useful for the ongoing discussion. We define
kp: G > Kup:G — exp(mpnNp), hp : G —» Ap and np : G — Np to be the
unique maps determined by

x = kp(x)pp(x)hp(x)np(x), (x € G).
These maps are all analytic maps between the indicated analytic manifolds.

Corollary 6.5 Let w be a bounded subset of G. Then there exists a constant C,, > 0
such that for all y € C(K/Kp) and g € w,

/ 0 (kp(gh))] dk < Cy / W (k)] di.
K/Kp K/Kp

Proof. Consider the function ¢ : G — H defined by ¢(kp) = 6 p(p)~ 2y (k). Then
¢ € C(G/P : 6p). Put C, := sup,.,x 0p(x)~2. Then it follows by application of
Lemma 6.4 that, for g € w,

/ 0 (kp(gh))| i / 5p (k) 2lp(gk))] di
K/Kp K/Kp

C, / le(gk) di = C., / o (k)] di
K/Kp K/Kp

C. / W (k)| dk.
K/Kp O

The following result as well as its proof are contained in [5, IIL.7].

IA

Proposition 6.6 The left regular representation L of G in C(G /P : &) has a unique
extension to a continuous representation of G in the Hilbert space L>(G P : £).

Proof. By the principle of uniform boundedness, the operator norm [*4(p)|lop of
*(p) = 0p(p)é(p) € End(He) is locally bounded as a function of p € P. For the
purpose of this proof, we define the analytic map pp : G — P by pp = uphpnp. Then
II'é(pp(g)llop is locally bounded as a function of g € G. For a bounded subset S C G
let ‘Cs > 0 be the supremum of the values ||'é(pp(x~1k)™1)|lop forx € Sand k € K.
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Let f € C(G/P : &) and x € S. Since ¢k, is unitary, it follows that the function
vk ||f(k)||§ belongs to C(K/Kp). Hence, by application of Corollary 6.5 with

w=S"

[ ILrol? di
K/Kp

[ et 0 e OIE d
K/Kp

IA

2 / W (kp(x~K)| dik
K/Kp

IA

e, [ wwlak="cic, [ IrwI d.
K/Kp K/Kp

Let || - ||» denote the norm associated with the Hilbert structure on L>(G /P : £). Tt
follows from the estimate above that the map L, is continuous with respect to the norm
|| - |l on C(G/P : &) with operator norm that is locally bounded relative to x € G.
This implies that L, has a unique continuous linear extension to a bounded map of the
Hilbert completion L?(G/P : &), with locally bounded operator norm. It remains to be
shown that the associated action map G x L>(G /P : ¢) — L*(G/P : £) is continuous.

Let f € C(G/P : ¢). Thenitis readily checked that sup; o || Ly f (k) = f(k)|l¢ = O
for G > x — e. This implies that L, f — fin L>(G/P : &).If f € L>(G/P : &) and
fo e C(G/P: &) then

ILxf = fll2 ILx(f = fo)ll2 + I Lx fo = follz + I.fo = fll2

(ILxllop + D I1f = foll2 + [ Lxfo = Soll2.

Using density of C(G/P : ¢) in L>(G/P : ¢) we infer from the results obtained in the
first part of this proof that || L, f — f|[ = Oforx — ein G.
Finally, let fy € L>(G/P : £). Then

IN A

ILxf — Ly foll2 + | Lx fo = foll2
I Lxllopll f = foll2 + ILx fo = foll2-

ILxf = foll2

<
<

By what we have established above it follows that both terms in the latter sum tend to
zero as (x, f) — (e, fo) in Gx L?>(G/P : &). Thus the action map G X L>(G /P : £) —
L?>(G/P : £) is continuous at every point of {e} X L2(G /P : £).

Since the operator norm of L, is locally bounded relative to x € G, the continuity
of the action map at any point of G x L?>(G /P : £) follows. a

The representation (6.1) is defined to be the unique extended representation of
Proposition 6.6. Under the (unitary) restriction map ¢ — ¢|g, this representation is
transfered to a continuous representation of G in L>(K/Kp : ¢) which extends np¢ and
is denoted by the same symbol. The latter representation is called the compact picture
of (6.1).
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We are now prepared to determine the space of smooth vectors of the representation
(6.1) . We define C*(G/P : §) := C¥(G, 'Hg) N C(G/P, &). Equivalently, this can be
expressed in terms of the action of P on C*(G, ‘*H¢) given by formula (6.2):

C®(G/P:¢)=C¥(G, He)" (6.7)

This is a closed subspace of the Fréchet space C* (G, ‘*H¢), hence a Fréchet space of
its own right. The left regular representation of G in the first space in (6.7) is smooth,
hence restricts to a smooth representation of G in the second space.

Theorem 6.7 The space of smooth vectors in (L, L>(G/P : &)), equipped with its
usual Fréchet topology is given by

L*2(G/P : &)® =C®(G/P : &). (6.8)
Proof. By Fubini’s theorem and compactness of G /P it follows that

L*(G/P:¢) =L} (G, \He)", (6.9)
with equality of the usual locally convex topologies; here superscript P indicates the
space of invariants for the obvious action of P on leoc (G, H¢), described by the formula
given in (6.2). This P-action is by continuous linear maps which commute with the
left regular action of G. Hence, the space on the right of (6.9) is a closed G-invariant
subspace of L%OC(G, H¢). From this it readily follows that

L*(G/P: &) = Ly (G, He)" n LY (G, Hp)™. (6.10)
By the Sobolev embedding theorem we have that
L} (G, \Hg)™ = C(G, Hp), (6.11)

with equality of the usual locally convex topologies. Combining (6.10) and (6.11) we
find that L>2(G /P : £)® = C*(G, ‘Hg)P. In view of (6.7) this completes the proof. O

Corollary 6.8 The left regular representation L of G in C*(G /P : &) is smooth.

Remark 6.9 For £ = o ® v ® 1 with o a unitary representation of Mp and v € aj,_
the characterisation (6.8) was used in [4], with a reference to [5, II1.7.9]. However, the
characterization of L2(G/P : &)™ in [5] was different. It is presented in the lemma
below.

Lemma 6.10 The following equality of locally convex spaces is valid:

C™(G,"Hs)" = C™(G,"HY)". (6.12)
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Proof. We consider the Fréchet space C* (P, H¢) equipped with the P-action given
by py = ‘é(p)L,py. The action is by continuous linear maps so that the subspace of
P-invariants is closed, hence Fréchet.

The proof is motivated by the observation that

‘HY = C*(P, H;)" (6.13)

as topological linear spaces. The isomorphism from left to rightis givenby @ : v — ¥,
where ¢, : P — “Hg is given by ¢, (p) = ‘é(p)v. The inverse ¢ is given by evaluation
at the identity. The isomorphism intertwines the P-action given by ‘¢ on the first space
with the P-action obtained from restriction of the right regular P-action on C* (P, ‘H¢).

The idea of the proof is to establish the following sequence of topological linear
isomorpisms:

C®(G,"Hg)® =~ C¥(G x P,"Hg)™F (6.14)
~ C®(G,C™(P,\Hy)")" (6.15)
~ C%(G,'Hy)" (6.16)

The isomorphism (6.14) is obtained by restriction of the map
S:C¥(G,'Hs) —» C*(G X P, Hy)

given by S(¢)(g,q) = ¢(gq), for ¢ € dom(S) and (g,q) € G x P. The image
of S consists of the space of invariants for the P action on its codomain given by
[p1-¥1(g.9) =¥ (gp1.p;'q). fory € C¥(G x P,"H;), g € G and py,q € P. As the
action takes place by continuous linear maps, the image of S is closed hence Fréchet
and it is readily verified that S is a topological isomorphism onto its image.

There is a second action of P on the codomain of S, given by p; - ¥(g,q) =
‘e(p2)yw (g, qp2), for g € G and ¢, p» € P. This second action commutes with the
first one, hence leaves im(S) invariant. The map S intertwines the usual P-action
on its domain with the second P-action on its codomain. The associated spaces of
invariants are closed, hence Fréchet, and it follows that S induces a topological linear
isomorphism between these spaces. This is the isomorphism (6.14).

To understand the map (6.15) we consider the map

T:C®(GxP,'Hs) — C®(G,C(P,‘Hy)),

given by [Ty ](g)(p) = ¢(g, p), It is well known that this map is a topological linear
isomorphism of Fréchet spaces. It is readily verified that 7" intertwines the given action
of P X P on its domain with the action on its codomain given by

(P1,p2) - 9(8)(q) ="E(p2)(gp1)(p'ap2),

for ¢ € C*(G,C*(P,'H¢)), g € G and q,p1,p> € P. The associated space of
invariants for {e} X P equals C*(G,C>(P, ‘Hg)P ). Taking the remaining action of
P x {e} into account we infer that 7 induces a topological linear isomorphism (6.15).
Finally, the isomorphism (6.13) induces the topological linear isomorphism (6.16). O
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Remark 6.11 From the proof it is clear that Lemma 6.10 is valid for any triple
(G, P,*¢), with G a Lie group, P a closed subgroup and (*¢,*H) a continuous Hilbert
representation of P.

Remark 6.12 If ¢ = 0 ® v® 1 as in Remark 6.1, then the space of smooth vectors for
o in H, equals the space of smooth vectors for £ in Hz = H,-. Hence, in this setting
the equality (6.12) becomes

C®(G/P: 0 :v)=C*(G,H> )

g,

where H;, denotes H; equipped with the representation of P = MpApNp given by
(man,v) — a”*PPo(m)v.

In the sequel we will need the description of the space of smooth vectors for
parabolically induced representations in the compact picture. To accomodate this we
agree to write R(P) for the set of (equivalence classes of) continuous Hilbert space
representations (&, Hg) of P such that the space of smooth vectors for P in H¢ equals
the space of smooth vectors for its compact subgroup Kp.

Lemma 6.13

(@) Any § = 0 ® v ® 1 with o a unitary representation of Mp and v € a),_ belongs
to R(P).

(b) If ¢ € R(P) and if (n, F) is a finite dimensional continuous representation of P,
then ¢ @ m € R(P).

Proof. Assertion (a) follows from [21, p. 3]. For (b) we first note that if L is any Lie
group, ¢ a continuous representation of L in a Hilbert (or more generally quasi-complete
locally convex) space E and (7, F) a finite dimensional continuous representation of
L, then

(E®F)*=E”Q®F. (6.17)

To prove this, we first note that 7 : L — End(F) is smooth. By finite dimensionality
of F it now follows that (1 ® ) : L — End(E) ® End(F) ~ End(E ® F) is smooth.
LetT € E ® F be a smooth vector. Then it follows that

x- (@ e DT =(1er(x)(éx) erx)T

1s smooth from L to E ® F'. By finite dimensionality of F' this implies that7 € E* ® F'.
This shows that the space on the left in (6.17) is contained in the space on the right.
For the converse inclusion, let ¢ € E* and f € F, then x — &(x)e, L — F and
x — n(x)f, L — F are smooth. By finite dimensionality of F it now follows that
e ® f is smooth. The claim follows.
Returning to (b), and letting co(P) indicate the smooth vectors for P and co(Kp)
those for Kp, we see that

(He ® F)*) = g2

TP eF=H " o F = (H; @ F)™).
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We denote by C*(K/Kp : €) the Fréchet space of smooth functions ¢ : K — Hg
transforming according to the rule (6.3). Then clearly the isomorphism (6.4), induced

by restriction to K, restricts to an injective continuous linear map from C*(G/P : &)
into C*(K/Kp : &).

Lemma 6.14 [f ¢ € R(P), then the restriction map f +— f|k defines a K-equivariant
topological linear isomorphism

riC(G/P:¢) S C®(K/Kp: &). (6.18)
See also [21, §10.1.1], or [5, Cor. II1.7.9]).

Before proceeding with the proof we notice that there exists a unique representation ;) p
of G in C®(K/Kp : £) which makes the map (6.18) G-equivariant. This representation
is called the compact picture of the induced representation on the level of smoooth
vectors.

Proof. Suppose & € R(P). In view of the closed graph theorem for Fréchet spaces,
it suffices to prove the surjectivity of the map above. Let V denote the space of
v € H¢ which are smooth for the restricted unitary representation &|k,,, equipped with
its natural topology, and let H§° denote the space of smooth vectors for &. Then H;" is
contained in V with continuous inclusion map.

By assumption on £ all elements of V are smooth for P, so that V = H;" as sets. By
application of the closed graph theorem for Fréchet spaces, it now follows that V = H;"
as Fréchet spaces. By application of Lemma 6.10 and Remark 6.11 we have

C™(K/Kp: &) = C*(K,H)".
Hence, if ¢ € C*(K/Kp : &), we infer that the function F : K X P — H; given by
F(k,p) ="¢(p~"[e(k)]
is smooth. It factors through a smooth function
f:G=KXg, P— H,.
Hence, f : G — H¢ is smooth and belongs to C*(G/P : £). Moreover, flg =¢. O

Finally, we will need a few results related the nilpotent picture of Indg (¢). Given
a compact subset S C Np, we denote by Cg"(]\_/ P, H;") the subspace of functions in

C*(Np, H;") with support contained in S. Let

CS(G/P: &) ={f € C™(G/P: &) |supp(f) C SP}.
This space is a closed subspace of C*(G/P : &) = C°°(G,‘H§°)P. It follows that
restriction from G to Np induces a continuous linear map

"r:CS(G/P: &) — C;"(]\_TP,H?) (6.19)

Since the multiplication map Np X P — G is a diffeomorphism onto the dense open
subset NpP of G, it is readily seen that the map (6.19) is injective.
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Proposition 6.15 The map (6.19) is a topological linear isomorphism of Fréchet
spaces.

Proof. By the closed graph theorem for Fréchet spaces, it is sufficient to show that "r
is surjective. Letyy € C&(Np, H;"). The map ¢ : H‘g’ — C% (P, H¢) defined by

be()(p) ='¢(p)"'o,  (ve HP,peP),
is a continuous embedding onto the closed subspace C* (P, ‘Hg)P . It follows that
oy : Np — C*(P, Hy)
is a smooth map. This implies that the function Np X P — Hg,

(1, p) > ve (W (@) (p) ="E(p)~ (i)

is smooth. This function has support contained in S X P. It follows from this that the
function ¢ : G — H¢ defined by ¢ =0 on G \ SP and by

e(iip) ="E(p)'e(n),  ((A,p) € SXP),

belongs to C¢, (G, He). It is now readily seen that ¢ € C¢°(G : £) and that "r(¢) = ¢.
(]

The inverse of the above map "r will be denoted by igs : C§°(]\7P,H(‘;°) —
CS(G/P : o :v).Itis a continuous linear isomorphism of Fréchet spaces. We define
C>(Np, H;") as the locally convex direct limit of the Fréchet spaces C§°(1\7 p,Hg").

Then it follows that the maps iz, for all § C Np compact, are the restrictions of a
single continuous linear map

ig : CX(Np,HY) —» C®(G/P: §). (6.20)

For every compact set S C Np the natural bilinear map C5*(Np) x HY — C&(Np, H),
(¥, v) — Y ®uvis jointly continuous. However, we warn the reader that this need not be
true for the similar bilinear map C°(Np) X HY - CF (Np, HY), see [18, Cor. 4.18].

7 Generalized vectors for induced representations

We retain the notation of the previous section. In particular, P = MpApNp is a parabolic
subgroup of G containing A and (&, H) is a continuous Hilbert space representation
of P. Without loss of generality we may assume that £|g, is unitary, see the text
subsequent to (6.6).

We will now introduce a G-equivariant pairing between induced representations
which is well known for the particularcase é{ = o ® v ® 1.
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We denote by £ the conjugate to & in Hg, which is the representation of P in H;
defined by

(€ (po, wy=(, E(p Hw)  (peP, v,we H).

Thus, £*(p) equals the Hilbert adjoint of £(p~'). Clearly, ¢ is unitary if and only if
&* = ¢. InRemark 1.3 we mentioned that £* is a continuous representation of G in H.
If feC(G/P:¢)and g € C(G/P : &), we define the function (f, g)¢ : G — C
by
(f,8)ex) =(f(x), g(x))e,  (x€GC),
where the expression (-, - )¢ on the right denotes the inner product of He. Since the

restriction of ¢ to Kp is unitary, £*|x, = &|k,, and we see that restriction of the function
(f, &)¢ to K belongs to C(K/Kp). This allows us to define the sesquilinear pairing

(+, ):C(GIP: &) xC(G/P: &) - C, (7.1)

by the formula
Fogy= [ . g di 72)
K/Kp

Lemma 7.1 The sesquilinear pairing (7.1) is G-equivariant.

Proof. Let f,g € C(G/P : &) X C(G/P : &) and define ¢ : G — C by ¢(y) =
(f(y), &(y))e. Then one readily verifies that ¢ € C(G/P : 6p). Using Lemma 6.4 we
infer, for x € G, that

(L L) = [

o) di = / (k) dii = (f . g). 5
K/Kp K/Kp

The pairing (7.1) obviously extends to a continuous sesquilinear pairing
L*(G/P: &) x L*(G/P : &) - C, (7.3)

given by the same formula. By density and continuity, the extended pairing is G-
equivariant. In particular, we see again that if & is unitary then &* = & and the
representation (L, L>(G/P : €)) is unitary. In general, without the requirement that &
be unitary, the following result is valid.

Lemma 7.2 The Hermitian pairing (7.3) is a perfect pairing of Hilbert spaces, real-
izing each of them G-equivariantly as the conjugate dual of the other one.

Proof. Since &|k, is unitary, £* and & are equal on Kp. Accordingly, restriction to
K induces isometric isomorphisms L>(G/P : &) = L*(K/Kp : &|g,) and L>(G/P :
&%) = L*(K/Kp : &|g,). Via these isomorphisms, the pairing ((7.3) becomes the
Hermitian pairing of L>(K/Kp : &|g,) with itself, given by (6.5). As that pairing is
perfect, so is (7.3). The final assertion follows from the G-equivariance of (7.3). O
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At various points in this article we will need the following description of the
equivariant pairing in terms of the nilpotent group Np.

Lemma7.3 IffeC(G/P:&)and g € C(G/P : &) then
, 8) = ), g(n))e dn.
G0 = [ ). se dn

Proof. Since ¢ = (f, g)¢ belongs to C(G/P : 6p), see also the proof of Lemma 7.1,
we have, by application of Lemma 6.4, that

(o) = /K k) di = /N () dn

whence the required identity. O

Being perfect, the Hermitian pairing (7.3) induces a G-equivariant topological
linear isomorphism
L*(GJP: &) — L2(G/P: &)". (7.4)
Since C®(G/P : &) is a dense subspace of L?>(G/P : &*), the transpose of the
associated inclusion map induces an injective continuous linear map

L2(G/P: &%)’ — C=®(G/P: &)’ . (7.5)

Here the second space is equipped with the strong dual (locally convex) topology. The
map is given by restriction to C*(G /P : £¥).

Definition 7.4 Let (¢, H) be a continuous representation of P in a Hilbert space. Then
by C™(G /P : ¢) we denote the conjugate continuous linear dual C* (G /P : £*)’, given
as the second space in (7.5), equipped with the strong dual topology.

Remark 7.5 Being the strong dual of a Fréchet space, C™*(G/P : &) is a com-
plete locally convex Hausdorff space. Since the induced representation 7z = L of
G in C*(G/P : &) is smooth, it follows that the natural representation ng‘” of G in
C~(G/P : &) is continuous and even smooth. See the text around (1.2).

Furthermore, the associated derived representation of U(g), also denoted n;‘x’, is
given by

ﬂ;m(u) TR gpoﬂ?’(ﬁv)

for u € U(g). Here u +— ¥ is the conjugate linear automorphism of U(g) that for
(real) X € gis given by XV = —X.

The composition of the two maps (7.4) and (7.5) leads to the G-equivariant contin-
uous linear embedding

L2 (G/P:&) — C™(G/P:&). (7.6)

given by f — (f, -). The elements of the latter space will be called generalized
vectors for the induced representation Indg (¢). In the sequel, we will use the map (7.6)
to identify L>(G /P : £) with a subspace of C™°(G /P : &).
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Remark 7.6 In particular, if ¢ = 0 ® v ® 1, with (o, H,) a unitary representation of
Mp and v € a},_ we obtain that §* = o ® —v ® 1 so that C™*(G/P : o : v) is defined
as the conjugate continuous linear dual of C*(G /P : o : —V).

If (¢, H;) are continuous representations of P in Hilbert spaces, for j = 1,2, then
any continuous linear intertwining operator ¢ : H; — H> induces the G-equivariant
continuous linear map

ndS(p) : LX(G/P : &1) = L*(G[P : &), fr @of.

This map restricts to a G-equivariant continuous linear map Cwlndg (¢) from the space
C®(G/P: &) to the space C*(G/P : &).

Lemma 7.7 The map Indg () has a unique continuous linear extension to a map
C™Ind$ (¢) : C"(G/P: &) —> C(G/P: &).
The extension is G-equivariant.

Proof. The conjugate map ¢* : H, — Hj is continuous linear and intertwines &5 with
&]. We consider the transpose 7" of the map T := C“Indg(go*). This map, given by
the formula ¢ +— ¥oT, is G-equivariant and continuous linear C~(G/P : &) —
C™™(G/P : &) (use that f}‘f* = &;). We will proceed by establishing the claim that this
map restricts to Indg(go). Indeed, let f € L>(G/P : &1). Then for g € C®°(G/P : &)
we have

(T'(f).8) = (f.Tg)= /K PRUCKRIICIRT

/ (0o f(K) . g(k))2 di = (IndS () (f) . ).
K/Kp

Hence T f = Indg(go)( f) for f € L>(G/P : &), establishing the claim. This settles
the existence of the continuous linear extension of Indg (¢). The uniqueness and G-
equivariance follow from the density of C*(G/P : &) in C™(G/P : &)). O

We agree to identify the open right P-invariant subsets of G with the open subsets
of G /P via the canonical projection G — G/P. Likewise, the closed right P-invariant
subsets of G are identified with the closed subsets of G/P. Accordingly, if S ¢ G/P
is closed, we denote by C°(G/P : &) the closed subspace of f € C*(G/P : &)
such that supp f C S. For a given open subset Q c G /P, we write CPT(Q) for the
collection right P-invariant subsets of € which are closed, hence compact, as subsets
of G /P, and put

Co(Q: &) = Usecrr(o) C5 (G/P : €Y).
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Accordingly, we equip C.° (€2 : ¢*) with the direct limit locally convex topology. Thus,
a seminorm o on C°(Q : £7) is continuous if and only if for every S € CPT(Q) the
restriction of o to C¢*(G /P : €*) is continuous. For Q c G/P open we define

C®(Q: &) = C2(Q: &), (7.7)

equipped with the strong dual topology. We will view C(Q : £) as a linear subspace of
C ™ (Q: ¢) viathe map g — (-, g) given by the sesquilinear pairing

Co(Q:§)xC(Q:¢§) —»C, (f,g)'—><f,g>=/ (f(k), g(k))e dk.

K/Kp

Accordingly, the natural sesquilinear pairing associated with (7.7) will be denoted by
(+, ) CXQ:&EHXC™Q:¢) -C

We denote by C™ (€2) the space of smooth right P-invariant functions Q — C. For each
¢ in this space the multiplication map g — ¢g, C(Q : &) — C(Q : ¢) has a unique
continuous linear extension to a map C~*(Q : &) — C™(Q : £). This map, denoted
u — @u, is given by

(8, pu)=(pg,u), (WeC™(Q:¢), g C(G/P:¢&)).

If Q; c Q) are open subsets of G/P, the transpose of the inclusion map C°(€; :
&) — CX (L, : &) gives us the continuous linear restriction map

ng tuulg, CT0(Q:€) — C77(Q 1 6).

Together with these restriction maps, the assignment Q +— C~*(Q : ¢) defines a
presheaf of C*(G/P)-modules on G/P. By using smooth partitions of 1 over G/P,
is readily seen that this presheaf is in fact a sheaf, as it has the following required
restriction and glueing properties, for any open covering {Q; | i € I} of G/P.

Restriction poperty. If u € C™(G/P : ¢) and u|g, =0 foralli € I, thenu = 0.

Glueing property. 1If u; € C™(; : &) fori € I and u;|o,ng; = ujlo,ng; for all
i,j €1, then there existsau € C~(G/P : ¢) such that u|g, = u; foralli € 1.

We will finish this section by introducing a certain direct limit topology on the spaces
C™(G/P : ¢), assuming that both ¢ and £* belong to R(P). By Lemma 6.14 restriction
to K induces a topological linear isomorphism r : C*°(G/P : £*) — C*(K/Kp : £).
Denote the conjugate continuous linear dual of the latter space by C™*(K/Kp : £).
Since &|k is unitary, it follows that £* and £ are equal on K, so that the latter two spaces
do not change if ¢ is replaced by £*. By transposition we obtain a topological linear
isomorphism

r*:C™(K/Kp:€&) — C™™(G/P:&). (7.8)
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The map r* is equivariant for a uniquel representation of G in the space C~* (K /Kp : &)
which we denote by 7r1§°§. This representation is called the compact picture of the

induced representation Indg (&) on the level of generalized vectors.

In the sequel it will be important to use a specific set of continuous norms on
C®(K/Kp : &), hence on C*(G/P : ). These are introduced as follows. We fix a
basis X1, ..., X, of T and use the notation X* := X|" --- X} € U(f), for y € N" a
multi-index. For s € N the space C*(K, H¢) of C*-functions K — H is a Banach
space for the norm

£ Ul = ) sup IRy f (k) . (7.9)
ul<s k<K

The space C*(K/Kp : &) := C*(K,Hg) N C(K/Kp: £) is a closed subspace. Hence,

equipped with the norm || - || it is a Banach space of its own right. Clearly, the Fréchet

topology on C*(K/Kp : &) is induced by the restrictions of the norms || - ||, for
s € N.

For each s € N, the conjugate continuous linear dual of C*(K/Kp : &*) will be

denoted by C™*(K/Kp : ¢). Equipped with the dual norm || - ||y , it is a Banach space

of its own right. The transpose of the inclusion C*(K/Kp : £*) — C(K/Kp : &) is
an injective continuous linear map

C™(K/Kp:&) — C(K/Kp: &) (7.10)

via which we shall identify elements. As the norms || - ||, (s € N), induce the
topology of C*(K/Kp : £*), it follows that C™* (K /Kp : &) is the union of the spaces
C(K/Kp : &), for s € N. The latter spaces increase with s, and constitute the so-
called filtration by order. The associated inclusion maps C™* — C~*7/, for 5,7 € N,
are continuous, so that the spaces form a directed family of locally convex spaces. We
now observe that, as a linear space, C~ (K /Kp : £) is the direct limit of the directed
family consisting of the spaces C™*(K/Kp : &), for s € N. We may therefore equip
C™®(K/Kp : &) with the associated direct limit locally convex topology. Since the
natural maps C™*(K/Kp : £) — C (K /Kp : &) are continuous for the strong dual
topologies, it follows that the direct limit locally convex topology on C~*(K/Kp : &)
is finer than (or equal to) the strong dual topology.

8 Whittaker vectors for induced representations

In this section we will initiate our study of Whittaker vectors for induced representations
of the form Indg(O' ® v ® 1), with P a standard parabolic subgroup of G, i.e., P D
Py = MANy. Here (o, H,) is an irreducible unitary representation of Mp and v € aj,_..
At a later stage, o will be assumed to belong to the discrete series M pds of Mp,
i.e. the set of equivalence classes of irreducible square integrable representations of
Mp. Implicitly it is then assumed that P is cuspidal. From Remark 7.6 we recall that
(cevel) = (-v)®1.
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We note that ap € a, Mp D M and Np C Ny. Accordingly, the set NoP is open
(and dense) in G. The space of Whittaker functionals for the induced representation
Indg (o ® =V ® 1) is denoted

Wh, (L*(G/P : o : —7)), (8.1)

cf. (1.5). In view of and (1.5) and Theorem 6.7 the space (8.1) consists of the continuous
linear functionals n € C®(G/P : o : —¥)’ such that

nolL, = x(n)n, (n € Np).

In view of (1.14) and Definition 7.4 with the subsequent remark, the space of Whittaker
vectors of Indg(a ® —v ® 1) equals the space

C*(G/P:0:v),, (8.2)
consisting of j € C™(G/P : o : v) transforming according to the rule

Ln] :X(n).]a (n € NO)a

in the sense of generalized functions, see also (1.14).

The following result of Harish-Chandra [12, Thm. 1, p. 143], see also [16] for a
proof, will be crucial for the determination of the space (8.2). In fact, it is crucial for
the entire Whittaker theory. If Q is a parabolic subgroup of G we write

M 10 = MQAQ
for its #-stable Levi component.

Theorem 8.1 (Harish-Chandra [12]) Let Q be a standard parabolic subgroup. Then
NoMigNg is open in G. Let x be regular and suppose that u is a distribution on G
such that

Rapu =u and L,u = y(no)u, (1 € No,no € No).

Ifu=0on N0M1QNQ, thenu=0o0nG.
Remark 8.2 In the above, the space D’(G) of distributions on G is defined to be the

continuous linear dual of the complete locally convex space D(G) := C°(G). The left
and right regular actions are defined by

LguzuoLgl, RguzuoRg_l, (u e D'(G),g € G).

The following corollary is of immediate importance for our discussion. We retain
the assumption that o is an irreducible unitary representation of Mp. We will say that
anelementy € C(G/P : o : v) vanishes on an open subset O of G/Pif (f, ¢) =0
forall f € C*(G/P: o : —v) with suppf c O.
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Corollary 8.3 Let y be regular, v € a,_and j € C(G/P : o : v),. If j vanishes
on the orbit NpP in G /P then j = 0.

Proof. Fixv € H; \ {0}. For ¢ € C°(G) we define the function Ty : G — H, by

Te(x) = /MP ./Ap /NP a”" PP o(xman)[o(m)v] dmdadi.

Then it is readily verified that 7 defines a continuous linear operator C:°(G) —
C®(G/P : o : —v) which intertwines the left regular actions of G on these spaces. It
follows that

u: =Ty, j)
defines a distribution on G. It is clear that u is right Np-invariant. By equivariance of
T we see that, for ¢ € C°(G) and n € Ny,

Lau(p) =u(Ly'¢) =(L,~Te, j)=(Te, L,j) = x(n) " u(p)

Now assume that j = 0 on NpP. If suppyp C NpP then supp(T¢) C NpP, from
which it follows that # = 0 on NpP. Since y~! is a regular character, it now follows
from Theorem 8.1 that u = 0. This implies that j gives zero when applied to the
space T(C°(G)). We will finish the proof by showing that the latter space is dense in
C®(G/P : o : —v). In view of the natural decomposition G ~ K X, Mp X Ap X Np
it suffices to show that the operator

S:CZ(K Xk, Mp) > C*(K/Kp : o)

defined by
Sy(k)= [ ¢ (k,m)[o(m)v] dm
Mp

has dense image. Let f € C*(K/Kp : o) be K-finite from the left. Then it suffices
to show that f € im(S). There exists a bi K-invariant finite dimensional subspace
F c C*(K) such that f belongs to F ® (H )k, and is fixed under Ry, ® o (kp) for all
kp € Kp. Thus, f is a finite sum of terms f; ® v;, with f; € F and v; € (Hy)k,. By
irreducibility of o, there exist left Kp-finite ; € C2°(Mp) such that o-(¢;)v = v;. Put

pkm) =" [ fi(kkp)y;(kp'm) dkp,

j JKe

where dkp denotes normalized Haar measure on Kp. Then it is readily verified that ¢
defines an element of C;°(K Xk, Mp) which has image f. a

In the following it is not required that y is regular. We denote by C(G, ‘H;*) P the
space of continuous functions f : G — H;* such that

f(xman) = a™"**Pa™(m™") f(x),
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for x € G and (m, a, i) € Mp X Ap x Np. Furthermore, we define
C(G,"H )i, (8.3)

to be the subspace consisting of f € C(G, H;) P Such that the support of f is
contained in NpP and
dim span f(Np) < co.

Lemma 84 If f € C(G,'H,; P then for every ¢ € C*°(G/P : o : —V) the function
x = {@(x), f(x))o belongsto C(G/P : 6p).

Proof. This is straightforward. O

It follows that for f as in the lemma, we may define the linear functional

£, C¥(G/P:o:-7) > C, ¢ (p(k), f(k))o dk.
K/Kp

Lemma 8.5 Iff € C(G, ‘H;f;’)g , then Vf, is continuous hence is the image of a unique
fe € C°°(G/P : o :v). Furthermore, the associated map f v f. is a linear injection

C(G,'H;S)E — C™(G/P:0:v).

Proof. For brevity, we write ¢ for the continuous representation o ® —v ® 1 of P in
H, . There exists a compact subset S € Np such that suppf c SP. From Lemmas 8.4
and 6.4 it follows that, for every ¢ € C*(G/P : &),

() = WW%ﬂM%M=£@MLHM%m- 8.4)

Np

In view of the hypothesis, the span E of f(Np) is a finite dimensional subspace of
H_*. The natural pairing E X H; — C s continuous. It follows that there exist a norm
|| - |lg on E and a continuous seminorm g on H® such that (v, u)| < ||u||gg(v) for
all u € E and v € HY. Using (8.4) we now infer that, for ¢ € C*(G/P : &),

I"fu(@)] < ngp q(e(n))

where C :=sup, ¢ || f(n)||g. Let « : G — K be the Iwasawa map associated with the
decomposition G = KANy, and let p5 : G — P be defined by p(x) = k(x)~'x. Then
it follows that p5(S) is a compact subset of P. By uniform boundedness, there exists a
continuous seminorm » on the Fréchet space H; such that

q(&(pp(m) ') <r(v), (neS,veHY).

It now follows that, for ¢ € C*(G/P : ¢)andn € S,

q(e(n)) < r(e(k(n))) < 2u113r(90(k))- (8.5)
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Via the natural isomorphisms C®(K, HX)Kr ~ C®(K/Kp : &) =~ C®(G/P : &)
we see that the expression on the right of (8.5) defines a continuous seminorm on
C®(G/P : &). The asserted continuity of “f, follows.

The element f, is now defined by 'f,. = (-, fi). Since f +— "f; is conjugate linear,
linearity of f +— f is obvious. For injectivity, assume f, = 0. Let ¢ € C°(Np) and
v € HY be arbitrary. Then there exists a unique ¢ € C*(G/P : &) with support in
NpP such that g|y, = ¢ ® v. From (@, f.) = 0 it follows by using (8.4) that

/ o) 0. F(n))y din =0,
Np

Hence, for every v € H; the continuous function n — (v, f(n)), vanishes on Np and
we conclude that f = 0. a

Theorem 8.6 Let v € ap,_and j € C™(G/P : o : v),. There exists a unique
element n € H;* such that the restriction of j to NpP equals the continuous function
Jn - NpP — H;* given by

Ju(npmpapiip) = a,” " x(np) o (mp) 1. (8.6)

Moreover,

1€ () ylngonsy- (8.7)
Remark 8.7 By the assertion that the restriction of j to NpP equals the continuous
function j, : NpP — H_* itis meant that for every y € C*(G/P) withsuppy C NpP
we have (Y j,)« = ¥J.
Proof. Let iy_y : CX(Np,HY) — C®(G/P : o : —v) be the continuous linear
map defined as in (6.20) with P in place of P and with & = o ® (—v). Thus, if
f € CZ(Np,HY) then iy _3(f) € C*(G : o : —¥) is uniquely determined by
suppis —7(f) € NpP and by

lo— ()N = [

Givenv € Hy and ¢ € C°(Np) we define

0] (@) =i —5(@®V), j).

Then ,j defines a continuous linear functional on C.°(Np), i.e., a distribution on Np,
which depends linearly onv € H,.

Lemma 8.8 The map (¢,v) — ,j () is continuous bilinear C°(Np) X HyY — C.

Proof. Let us denote the above bilinear map by b. For every compact set S C Np the

bilinear map (¢, v) — ¢ ® v evidently has a continuous restriction to C¢*(Np) X Hy.

This implies that the restricted bilinear map b : C&(Np) X HY — C is continuous.
Since L,,j = x(n)j, (n € Np), it follows that

b(Lag,v) = x(m)b(¢,v),  ((¢,v) € CZ(Np) X H;, n € Np).

Taking into account that the manifold Np is diffeomorphic to R" for a certain 7, it now
follows by application of Lemma 8.9 that b is continuous. ]
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Lemma 8.9 Let V be a (Hausdorff) locally convex space, and b : C°(R") xV — C
a bilinear map. Suppose that there exists a compact neighborhood K of 0 in R" such
that the restriction of b to C;?(R”) X V is continuous. Suppose in addition that for
every x € R" exists a diffeomorphism {, from an open neighborhood w’, of 0 to an open
neighborhood wy of x and a constant C, > 0 such that

1b(p,0)| < Cilb (L, v) (8.8)
forall ¢ € C°(wy) and v € V. Then b is (jointly) continuous.

Proof. By hypothesis, there exist continuous seminorms p on CZ2(R") and g on V such
that

1b(p,v)| < p(e)q(v), (p € Ce(R"), veV). (8.9)

For § ¢ R” compact and k > 0 we define the seminorm pg; on C*(R") by
ps.k(g) := max sup [0%¢p|.
lal<k g

There exist constants k € N and ¢ > 0 such that p < cpg x on C;? (R™). From now on
we will keep k fixed and write pg for pg k.

Let x € R” be arbitrary and fix ¢, : w;, — w, with the property mentioned in the
hypothesis. We select a compact neighborhood S, of x such that S, C ¢ (wx N K).
Then there exists a constant D, > 0 such that for all ¢ € C;‘; (R™)

px(lip) < Dyps. ().

Combining this with (8.8) and (8.9) we find that, for all ¢ € C° (R") and v € V,

1b(p,v)| < ¢ Cx pxc(€;p)q(v) < ¢ CiDy ps, (9)q(v).

The sets int(S,) cover R”. By paracompactness of the latter space, there exists a C*
partition of unity {y; | i € I} ¢ C°(R") subordinate to the mentioned cover. Thus,
for each i € I, there exists x; € R" such that o; := suppy; C int(Sy,). Moreover,
2ier Yi = 1, with locally finite sum. Write S; := S,,. Then for each i € [ it follows by
application of the Leibniz formula to 0% (¢;¢) that there exists a constant d; > 0 such
that for all ¢ € C*(R"),

ps; (i) < dipo,(@).

Noting that {o;|i € I} is a locally finite collection of compact sets, we define the
seminorm p on C.°(R") by

p = Z cCy,Dy,d;pg,.

iel
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By a simple argument it follows that p is continuous on C¢’(R") for every compact
subset S ¢ R". Hence p is continuous on C.°(R"). Furthermore, for every ¢ € C:°(R")

and v € V we have
Z b(yip,v)
iel
2, ¢CuDyps, Wig)q (v)
iel

3 ¢CDrdipo, (9)4(®) = H(@)g(0).

iel

b(p,v)

IA

IA

This establishes the continuity of b. g

Completion of the proof of Theorem 8.6. From Lemma 8.9 it follows that the
map v — ,j is continuous linear Hg" — D'(Np) = CX(Np)'. Let LY denote the
contragredient of the left regular representation L of Np in C°(Np). Since the map
i —y 1s equivariant for the left regular actions of Np, it follows that

L) (uj) =x(m)"uj, (n€Np).
We fix ¢ € C2°(Np) such that
y(nmx ()™ dn=1.
Np

Then it follows that
= /N YL () dn = L (0) (o).
P

In view of Lemma 8.10 below, it now follows that for every v € H; there exists a
unique function J, € C*(Np) such that

J(g) = /N L(me(n) dn, (9 € C™(Np)).

Moreover, by the same lemma, the map v — J, is continuous linear HY — C*(Np).
By uniqueness, J,(n'n) = y(n')J,(n), for all n,n” € Np, hence J,(n) = y(n)J,(e).
Define 4 : HY — Cby

A() = Jy(e), (ve HY).

Since 6, : C*(Np) — C is continuous, it follows that 1 € (H)". We now apply
the isomorphism (1.12) in the setting 7; = m> = o and with (1.7) given by the inner
product on H, which makes o unitary. It follows that there exists a unique n € H_*
such that

Av) =, m),  (veH;).
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Define j, : NpP — H;® as in (8.6). Then it easily follows that j, is continuous.
Furthermore, j,(Np) C Cn. Let y € C*(G/P) have support contained in NpP. Then

it follows that y j, € C(G, Hgfiv)g, see (8.3). In view of Remark 8.7 it suffices to show
that (Y j,)« =¢j. Let ¢ € C°(Np) and v € H . Then

(i -7 ®V), Wips) = (ig-s(p®V), Yjy) = /N y(n){p(n), j,(n)) dn
; y(n)p(n)x(n)(v, n) dn = i w(n)p(n)x(n)d,(e) dn
; Y (n)p(n)Jy(n) dn=,j({e)

= (o7 ®0), j) = (iv-3(¢®V), ¥J).

Therefore, the continuous linear functional 4 : C*°(G/P : o : —v) — C defined by
h = (-, ¢j— (YJjy)) vanishes on i, _;(C°(Np) ® H); here the algebraic tensor
product has been taken.

Let S; € Np be compact. We select S, € Np compact such that S; C int (S3);
then Cg?(NP,H?) is contained in the closure of C;‘;(Np) ® H§° in C;Z (Np,Hg").
Since i, —j restricts to a topological isomorphism from Cg‘j’_(N P, Hg") onto the space
Cg‘;(G/P : o : —V), it follows that / vanishes on C;‘I’(G/l5 : 0 1 —V). As this is valid
with 7 an arbitrary compact subset of Np, we may assume that S; contains an open
neighborhood w of supp ¢ in Np. Then Q; := wP and &, := G \ supp ¢ P form an open
cover of G /P such that ¢/j — (¢ j,). restricts to 0 on Q;, (j = 1,2). By the restriction
property mentioned in the text following (7.7) it follows that yj = (¢ j;)«.

This establishes the existence of 77 such that (8.6) is valid. If " is a similar element,
letyy € C*(G/P) have supportin NpP and satisfy y([e]) # 0. Then [y (j,—j,)]« = 0.
By injectivity of the map f + f. it follows that y (j, — j,») = 0. Evaluating this identity
at e we obtain ¥ ([e])(n —n’) = 0 and conclude n = n". Uniqueness of nj follows.

It remains to show (8.7). For this we note that, for no € Ny N Mp, conjugation by
ng leaves Np invariant and

Loy (¢ ® ) =iy (LnyRnyp ® 0 (no)v).
From the definition of ,j it now follows that
X(10) 0J(®) = o (ng)v (LngRngp)-
This implies, in turn,
X (10)J5 (1) = T (ng)o(n00NG "), (n € Np).
Evaluation at n = e gives
X (no)(v, Mo = (o (no)v, Mo,
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forallv € H and np € No N Mp. Finally, this gives

o™ (no)"'n = x(no)™'n,  (no € No N Mp),
and (8.7) follows. This finishes the proof of Theorem 8.6. O

In the next lemma, we assume that H is a Lie group, equipped with a left Haar
measure dx. We equip C.°(H) with the left regular representation L of H, and its
dual D’(H) with the contragredient representation LY. Accordingly, we define, for
Y € CX(H), the continuous linear map LY () : D’'(H) — D'(H) by

L@ = [ wiueL7 ds

For v € C*(H) we define i(v) € D’'(H) by

i0)(f) = /H Fo@de,  (f € C(H)).

Then i : C*(H) — D’(H) is an equivariant injective continuous linear map with
dense image. In particular, i o L() = LY () oi.

Lemma 8.10 Ify € CX(H), then LY (y) is a smoothing operator in the sense that
there exists a unique continuous linear map Ty, : D'(H) — C*(H) such that

LY(y) =ioTy. (8.10)
Proof. Uniqueness is obvious, since i is injective. For y € H we define Ry(:,lv/) e CX(H)
by

Ry- () (x) == (xy™") =y (x7h), (x € H).

Let A : H —]0, oo[ be defined by A(x) = | det Ad(x)|. Then the map y +— AR, -1 (1)) is
smooth H — C°(H). Thus, if u € D'(H) then Ty (u) : y — u(AR, - (1)) is a smooth
function on H. Moreover, the map u +— Ty (u) is continuous linear D’(H) — C*(H).
We will show that it satisfies (8.10). Since the expressions on both sides of (8.10)
are continuous linear endomorphisms of D’(H), it suffices to establish the equality

on the dense subspace of elements of the form u = i(v), with v € C*(H). Since
LY ()i =ioL(y) and since i is injective, it suffices to show that

L(lﬂ)(v) = TJ/ oi(l)).
This identity of functions in C* (H) is established as follows. If y € H, then

/ W (u(xy) dx = / v (o
H H

/ W (xYo(x) AGx)dx = / AR+ () (x)0(x) d
H H
i) (AR, () = Ty (i(0)) (7).

L(y)(0)(y)

52



We return to the setting of Theorem 8.6. Given j € C™°(G/P : o : v), we denote
by by ev.(j) the associated element n € H;* such that j = j, on NpP. Then by
uniqueness of 7 combined with (8.7), we find that ev, defines a linear map

eve :C°(G/P:0:v), — (HZ™) yngontp (8.11)
Corollary 8.11 If y is regular, then the map (8.11) is injective.

Proof. Let j € C™(G/P : o : v), and suppose that ev,(j) = 0. Then it follows from
Theorem 8.6 that j = 0 on NpP. By Corollary 8.3 this implies that j = 0. a

We retain the assumption that y is regular. Then x/|n,nm, is regular with respect
to the roots of *ap in g N m. Indeed, for each such root @, the associated root space
satisfies g, C mp N ny. We agree to use the abbreviated notation

H;f;P = (H;°°)X|NOQMP. (8.12)
For R € R we put
ap.(P,R) :={veap. | Ya € Z(np,a) : (Rev, a) > R}. (8.13)

Givenn € H;%), and v € a}, (P,0), we define the function j, = j(P,o,v,n) : G —
H;* by j, =00n G \ NpP and by

(P, o, v,n)(nmai) = a”"P? y(n) Lo (m)™'n, (8.14)
forn € Np, m € Mp,a € Ap and i1 € Np, see also (8.6).

Proposition 8.12 Suppose that o € M pds and letn € H;S

a.XpP"

(@) Ifv € ap (P,0) then the function j, = j(P,o,v,n) : G — H;™ satisfies
Jv(noxman) = x(no)™ a™*** ™ (m)™" j, (x), (8.15)
forallx € G, ng € No, m € Mp, a € Ap, and ii € Np.

(b) The function j, is continuous H,*-valued on K = K N NpP. There exists a
continuous seminorm s, on HY, and for every R > 0 a Lebesgue integrable
function Lg : K — [0, oo[ such that

(v, j(P,o,v,m)(K))o| < Lr(k)sq(0),

forallv e a}“,c(P, R), ke Kandve HY.
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Proof. Since NpP is left Ny-invariant, so is the complement G \ NpP, where j, equals
zero. Hence j, satisfies (8.15) forx € G \ NpP and all values of ng, m, a, ii.

For x € NpP, the rule (8.14) implies (8.15) for m € Mp,a € Ap,ii € Np and all
no € Np. To obtain the rule for all ny € Ny we use that Nog = (Ng N Mp)Np, and note
that for ng € No N Mp and nmaii € NpMpApNp we have, taking into account that
nonn e Np,

Jv(nonng' (nom)an)

= =a " y(nonny") o (nom) 'y
TPy (n) " o™ (m) ™ [y (o) ']
= x(no)™' jy(nman).

Jv(nonman)

= a

Rule (8.15) now follows, and we turn to proving (b).

Let P(’) be the minimal parabolic subgroup containing A with N P = (NoN Mp)Np.
We consider the maps«’ : G - K, W' : G - Aandn’ : G — NP(') associated with the
Iwasawa decomposition

G = KANp,, (8.16)

andput H :=log o b’ : G — a.

The natural map Np — G/P is an embedding onto a dense open subset. Via
the natural diffeomorphism K/Kp ~ G /P we have a corresponding open embedding
Np — K/Kp. Since P, C P, this open embedding is given by n +— «’(n)Kp. The
associated open embedding Np X Kp — K, given by (n, kp) — «’(n)kp, has image K.
By transformation of variables it is well known that a function f : K — C is absolutely
integrable if and only if

/ |f (k' (n)kp)|e®PH' ™ dkpdn < oo (8.17)
NpXxKp

Furthermore, if (8.17) holds then || || 1) equals the given integral (up to a positive
scalar factor, depending on the normalization of measures).
In the following we put *A := Mp N A and "Ny := Mp N Ny, so that

Mp = Kp"A™Ny (8.18)

is the Iwasawa decomposition of Mp associated with its minimal parabolic subgroup
P6 NMp = PyN Mp. Therefore, this Iwasawa decomposition for Mp is compatible with
the decomposition (8.16). Let "p € a* and p” € a* be defined by

‘o(H) = jtr[ad(H)|-ny],  p'(H) = 3tr [ad(H) |y, ],

for H € a. Then

P ="p-pp (8.19)

and this decomposition is compatible with a = *ap @ ap in the sense that *p = 0 on ap
and pp = 0 on *ap.
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We chose N € N sufficiently large (the precise condition will appear later). By
Corollary 4.8 applied to Mp in place of G, and with A = (-, ) € Wh,,(H’), there
exists a continuous seminorm g on H;; such that

Ko (m)™ o, my] < (1+ [*H(m)[) N e PCHM) g (p) (8.20)

for all v € HY and m € Mp. Here *H denotes the Iwasawa projection Mp — *a
associated with the decomposition (8.18).

In accordance with the decomposition a = *a @ ap, we decompose the Iwasawa
projection H’(x) of an element x € G as

H'(x) ="H'(x) + Hl’ﬁ(x). (8.21)

Furthermore, we agree to write 4’ = exp o *H’ and h;; =exp o H;a. By compatibility
of the decompositions (8.16) and (8.18) we note that *H’|y, = *H.

We now observe that for n € Np we have «’'(n) = nn’(n)~'h’(n)~!. For v € HY
and v € ap.(P,0) the function x — (v, j,(x))s is left No-equivariant and right
Np-invariant. Hence, forn € Np and kp € Kp,

W, (K (Wkp)oe = x(m) o (kp)o, j (B (1)))e
= x(m)7 PP (G (W (n) o (kp)v, nYe (8.22)

Fom (8.21) we see that (v — pp)H;s(n) = (v = pp)H'(n) for all v € aj},_. Furthermore,
*o*H'(n) = *pH’(n). Applying the estimate (8.20) to (8.22) we now find that for all
veap (P,0)andv € HY,alln € Np and kp € Kp,

(0, Jy (K (n)kp))e| €20PH' ™)
e R r W (1 |"H (n) )™ e™ P10 (kp)v)
eRNE W 4 1*H (n)) Ne P W5, (v). (8.23)

IAN A

For the last inequality we have applied (8.19). Furthermore, s, is a continuous semi-
norm on HY such that g(o(kp)v) < s,(v) for all v € HY and kp € Kp; it exists by
compactness of Kp.

Since P contains P it follows by Lemma 8.13 below, with P( and P in place of P
and Q respectively, that H'(Np) equals the closed convex cone I" spanned by the root
vectors H, for @ € X(fip, a) (here H, € an (kera)*t and a(H,) = 2). If @ € Z(iip, a),
then pp(H,) < 0 and for all v € ay,_(P, R) we have

pp(Ha)'Rev(H,) = (pp, —a) ' (Rev, —a) > (pp, —a) 'R 2 ¢R,
where & > 0 is the minimal value of (pp, 8)~!, for B € Z(np, a). It follows that

Rev(H) < eRpp(H)
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for all H € I'. This implies the existence of a constant Cgy > 0 such that for all
v € ap (P, R) and all H € " we have

RV < Crv(1 - pp(H) ™.
Since —pp > 0 on "\ {0} there exists a constant y > 0 such that
Y|H| < —pp(H), (HEeT).

If H € a,we write H = *H+Hp according to the (orthogonal) decomposition a = *a+ap.
Then |Hp| < |H|. It follows that for all v € a},_(P, R) and all H € I" we have

eRev(H) < CR,N(l +y|HP|)_N < CR,N(I + |HP|)_N;

here Crn = Cro sup,> (1 + )71 (1 + y#)|7V. Finally, we infer that for H € T" and
v € a, (P, R) we have the estimate

LRI (L "H) N < Crn(1+ [Hp)™N (1 + "HD)™ < Cpu(1+[H)N.

Observing that in (8.23) the element H’(n) belongs to I', we infer that for all v €
ap.(P,R) and all v € H we have

(W, jo (K (n)kp))o| PP < Crye ™™ (14 log H'()]) Vso (), (8.24)

If N is sufficiently large, then the integral of the latter function over Np is absolutely
integrable, see Lemma 8.13 (b). For such a choice of N the function L : K — [0, oo[
defined by

Li(K'(n)kp) = Cpye " (1+|log H' (n)|) N e 2P (8.25)

satsfies the required conditions. O
Given a root @ € X we denote by H, the element of a determined by H, L ker«
and a(H,) = 2.
Lemma 8.13 Let Q be a standard parabolic subgroup. Then
(a) H(Ng) equals the cone T'(X(ng, a)) spanned by the elements H, for a €
X(ng, a).

(b) There exists a constant m € N such that

/ e PHD (1 + |H@)|)™ dit < oo.
No

Proof. We consider the minimal parabolic subgroup R of G determined by N =
(Mg N No)Ng. Then it is well-known, see e.g. [6, Lemma 4.9], that H(Ng N Np)
equals the cone spanned by the elements H, for @ € Z(iig N 119). Now Ng N Ny = Ng
and nig N 1y = np and (a) follows.

The validity of (b) is due to Harish-Chandra, see e.g. [10, §31]. O
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It follows from Proposition 8.12 that for every ¢ € C*(K/Kp : o) and v €
ay.(P,0) the function

ki (p(k), j(P,o,v,n)(k))o

is continuous on K = K N NpP and dominated by a Lebesgue integrable function,
hence integrable over K. Accordingly, we define the linear functional vj*(15, o,v,n)
C*®(K/Kp:0) — Cby

P (@)= [ () (P () dk (8.26)
It follows from the estimate (8.24) that

(P, o, v,m) (@) < I(Lg) sup sq(@(k)), (v € ap.(P, R)), (8.27)

where I(Lg) := /K Lz (k) dk. In particular, we see that 'j,.(P,o,v,n) € C*(K/Kp :
o) henceequals { - , j.(P,o,v,n)) foraunique element j,.(P,o,v,n) € C~(K/Kp :
o), for v € aj,_(P,0). From the text subsequent to (7.9) we recall that C™ (K /Kp : o)
is the union of the Banach spaces C™*(K/Kp : o), for s € N.

Proposition 8.14 [f R > 0 there exists a constant r > 0 such that the following

assertions hold for alln € H,", .

(a) There exists a bounded subset of C™" (K /Kp : o) to which j.(P,o,v,n) belongs
for everyv € a,, (P, R).

(b) The map v — j.(P,o,v,n) is holomorphic as a function on ap. (P, R) with
values in the Banach space C™" (K /Kp : o).

Proof. Letn and R be fixed. Let s, and L be as in Proposition 8.12. Then is it readily
verified that ¢ — sup,cx S (¢(k)) is a continuous seminorm on C*(K/Kp : o). As
the topology on the latter space is generated by the seminorms || - ||, for r € N, see
the text accompanying (7.9), there exists a constant C > 0 such that

sup so-(¢(k)) < Cllell- (8.28)
keK

for all ¢ € C*(K/Kp : o). Thus, from the estimate (8.27) it follows that there exists
a constant » € N such that j,(P,o,v,n) € C"(K/Kp : o) forall v € a,.(P,R). By
linearity in 77 and finite dimensionality of H;), the constant r may be taken the same
for all n, and (a) follows, with the mentioned boundedness.

For (b) we will first show that the map v — j.(P,o,v,n) is continuous from
ap.(P,R) to C™"(K/Kp : o). Let vo € a)_(P, R) be fixed. Then it suffices to show
that

”.]*(P’O-’ V’U) _j*(P’ o, VOJ])”—r -0 (v = v). (8.29)
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In the notation of the proof of Proposition 8.12 we define, for u € aj,_ the function
gy : K — Cby g, = 0 outside K and by

eu(K (n)kp) = '™, (n € Np,kp € Kp).

If u € a;_(P,0) then Reu < 0 on the cone I' = H'(Np) so that |g,(k)| < 1 for all
k € K. From (8.22) combined with the definitions in the proof of Proposition 8.12 it is
now readily checked that, for 0 < ¢ < 1,
]*(P’ 0-’ V’ 77) - .]*(p7 O-’ V(), 77) = [SV—CV() - ‘SV()—CV()] .]*(P_’ 0-, CVO’ T])

Fix c sufficiently close to 1, so that cvg € a}, (P, R). Then combining (8.24) and (8.25)
it follows that, for v € H,,

|<[‘9v—cv0 - Svo—cvo] Jx (p, g, cvo, 77) 5 U)l < |8v—cv0 - svo—cvo| Lg- SO’(U)'
Substituting v = ¢(k), integrating over K and using the estimate (8.28) we find, for all
¢ € C*(K/Kp:o)andallv € a;,_(P, R) that

|<]*(IS’ g,v, 77) - ]*(P’ g,vo, 77) 5 ‘;0>| < Cl(lgv—cvo - ‘9V0—cvo| : LR) ||90||ra
where / denotes the integral over K. It follows by application of the dominated conver-
gence theorem that

I(lsv—cvo - 8V0—CV0| : LR) — 0, (V - VO)-

The continuity (8.29) now follows.
Now that the continuity has been established, it follows by a simple application of
the Cauchy integral formula that it suffices to prove the holomorphy of

v (jo(P,o,v,n), @), ap.(P,R) —>C (8.30)
for a fixed ¢ € C*(K/Kp : o). According to (8.26) we have that

Gu(Pooravan) ., @) = /K G(Boovan) (k) . o())e dk. 8.31)

By Proposition 8.12 (b) the integrand is Lebesgue integrable in k for every v €
a’]"JC(P, 0), holomorphic in v € a’]")C(P, R) for every k € K and uniformly dominated
by the Lebesgue integrable function [sup; g so(¢(k))] - Lg for v € a}, (P, R). This
implies that the integral in (8.31) defines a holomorphic function of v € a},_ (P, R). O

From now on we will omit the = in the notation of the functional defined by
(8.26), thus identifying the function j(P,o,v,n) : K — H_ > with an element of
C™(K/Kp : o) for every v € a,_(P,0). For such v we will also write j(P,o,v) for
the element of

(H;> )" C™(K/Kp :0) ~Hom(H,, ,C *(K/Kp: o)) (8.32)

a.xp a.xXp’

defined by n — j(P,o,v,7n).
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Proposition 8.15 Ler v € a;,_(P,0). Then the following assertions are valid.

(@) Ifn € HS),, then j(P,o,v,n) € C™(G/P: 0 :v),.

(b) The map

.](137 g, V) : H(;,O;p

- C*(G/P:0:v), (8.33)
is bijective with inverse ev,.
Proof. Letn € H;?) . Then for (a) it suffices to show that
w5, () j(P,o,v,n) = x(no) j(P,o,v,m),  (no € No).
Let ¢ € C*(K/Kp : o) and let ¢_; denote the unique function in C*(G/P : o : —V)

which restricts to ¢ on K. For ng € Ny we may write ng = nyny withn; € Mp N Ny and
ny € Np. Accordingly, in view of Lemma 6.4,

(0, wpn (o) J(Pyo,v,m)) = (Tp_5(n0)~ ¢, j(P,o,v,m))

v <‘P—V(n0n) P ](P’ g,v, 77)(”)>a dn

/ (1) (poy(mman) , Yo dn

Np

/N (50 (p_s(mn) . Yo dn.

Using that n; normalizes Np with Jacobian 1, whereas y (n,'n) = x(n;'n}’

infer that

nni), we

(oo 753,00 JParva) = [ ') Geos ) o dn

X(nO)_1<‘p > ](13’ o,v, '7)>

This establishes (a). For (b) we note that from (8.14) and the definition of ev, in (4.5)
it follows that ev, o j (P, o, v,n) = n. This implies that the map (8.33) is injective, with
ev, as left inverse. Therefore, ev, is surjective onto H, ;:’;P. In view of Cor. 8.11 it now
follows that ev, is bijective with two-sided inverse j(P, o, v). a

9 The Whittaker integral

We will now reformulate the results of the previous section in terms of what Wallach
[21, §15.4.1] calls the Jacquet integral. Given f € C*(K/Kp : o) we write fp, for
the unique function in C*(G/P : o : v) whose restriction to K equals f. Thus,

fpy(kman) = a™*** o (m)~"  (k), ©.1)
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for k € K, (m,a,n) € Mp X Ap X Np. We recall the definition of the continuous

linear isomorphism n +— “ from H;°, onto Wh,,(H;) as given in (1.13) with

(Mp, No N P, xp) in place of (G, Ny, x), and with 7y = 1, = 0.

Lemma 9.1 Let y be regular, o € Mpas and v € ayp.(P,0). Then for all f €
C*®(K/Kp : o) we have

Spgr J(P.orvi)) = /N ) 1 fp () dn,

with absolutely convergent integral.

Proof. By the substitution of variables used in (8.17) it follows that, with absolutely
convergent integrals,

o s J(Prcvin)) /K U P A, dk

(f( (), j(B,o,v,m) (K (n))y ™) dn

Np
= N <f15,—17(n) s .](P’ g,v, 77) (l’l)>0- dn
=/ (fp—5(n), x(m)~'n)s dn

/ X(0)1(fs(n)) dn.
Np

O

If Re v is P-dominant, and A € Wh,, (H), this motivates the definition of the

Jacquet integral
I D) = [ A, ) dn 92)
P

for f € C*(K/Kp : o).

From Lemma 9.1 we see that this integral is absolutely convergent for P-dominant
v € ). and defines a Whittaker functional for C*(G/ P : o :v). In fact, the assertion
of that lemma may be reformulated as

i(P,o,v,n) =J(P,o,-V,'n). 9.3)

Here the expression on the left is viewed as an element of C* (K /Kp : 0°)" according to
the compact picture, see (6.18). It follows from Wallach’s work [21, Thm 15.4.1] that the
Jacquet integral has a weakly holomorphic extension to a map ay,. — C*(K/Kp : o).
Furthermore, for every v € aj,_ the extension gives a linear isomorphism

Wh,, (H7) = Why (C*(G/P,0,v)), £ J(P,0,A,§)
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At a later stage we will strengthen this result by deriving a functional equation for
J(P,o,v) and applying it to show that for every n € H; %, the function j(P, o, ,n)
extends to a holomorphic function ay,. — C~(K/Kp, o), where the image space is
equipped with the direct limit topology. By analytic continuation of the Ny-equivariance
of j(P,o,-,n) combined with Corollary 8.11, it then follows that for every v € aj,_ the
map

Jj(Po,v, -) t HY,

— C°(G/P, o, V)y
is a linear isomorphism.

Given a representation n of the discrete series of G, we note that by Lemma
1.2 and Corollary 4.8 the linear map u, : HyY ® f“’; — C*(G/Ny : x) given by
w1z (v®n)(x) = (n(x)'v, n) forx € G, is actually continuous linearinto C(G /Ny : x).
Its image is denoted by C(G /Ny : x).. We denote the closure of this subspace of
L>(G/Ny : xp) by L2(G/Ny : xp)x. Clearly the latter space is invariant under the left

regular representation L of G. The following result is contained in [21, Thm. 15.3.4].

Lemma 9.2 The map u, has a unique extension to a topological linear isomorphism
Hy® HyY — L*(G/No: x)x. (9.4)

This extension intertwines © ® I with L.

Corollary 9.3 If 7,7 € Gys and 7ty + 75 then L*(G/No : x)x, L L*(G/No : x)r,

Proof. Let 1 denote the inclusion of the first of the spaces into L?(G /Ny : x) and let
p2 denote the orthogonal projection onto the second of these spaces. Then p;oij is
a G-equivariant operator L2(G /Ny : x)x, — L*(G/No : x)x,. From Lemma 9.2 and
the inequivalence of 7y and x5 it readily follows that p; oi; = 0. O

Lemma 9.4 Let (, H) be an irreducible unitary representation of a Lie group L,
and let V be a finite dimensional linear space. Suppose that H ® V is equipped with a

Hermitian inner product { - , - )ggy for which 1 ® 1y is a unitary representation of L.
Then there exists a unique inner product - , - )y on'V such that
(X1 ® 01, X2 @ V2V = (X1, X2)m V1, V2)v, (x1,x2 € H, v1,00 € V). (9.5)

Proof. We equip H’ with the contragredient conjugate representation 7" of L, and V
and V’ with the trivial representation of L.

By finite dimensionality of V, it readily follows that the natural map (A, B) — A®B
induces a linear isomorphism

Hom; (H,H') ® Hom(V,V’) ~ Hom; (H®V,H ® V).
By Schur’s lemma, the space on the left equals

Ci ® Hom(V,V’) ~ Hom(V, V"),
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where i : H — H’,x — (x, -)g. We consider the L-equivariant linear map & :
H®V — H ® V' determined by h(x ® v)(y ® w) = (x ® v, y ® w). By the above
isomorphism there exists a unique linear map j : V — V’ such that i ® j is mapped
onto A. It is now readily checked that for all v, w € V we have j(v)(w) = j(w)(v) and
j()(v) >0.Thus, (-, - )y : VxV — C, (v,w) = j(v)(w) defines a Hermitian inner
product which satisfies the requirement. Conversely, if such an inner product is given
then j : v — (v, -) is such that i ® j is mapped onto %, and uniqueness of (-, -)y
follows. a

We retain the notation of Lemma 9.2.

Corollary 9.5 There exists a unique Hermitian inner product on Hyy such that the
isomorphism (9.4) becomes an isometry.

Proof. Use Lemma 1.2 and apply Lemma 9.4 with L = G,V = H;3 =~ Wh, (H}’) and
with H, ® V equipped with the pull-back of the L?-inner product under . a

From now on, we assume that the finite dimensional spaces of Whittaker vectors
H.% . foro € M p.ds, are equipped with the Hermitian inner products satisfying the
assertion of Corollary 9.5.

We are now prepared to introduce Harish-Chandra’s Whittaker integral, which is
an appropriate analogue of the Eisenstein integral for groups and symmetric spaces.
Let 7 be a unitary representation of K in a finite dimensional complex Hilbert space
Vr.

We write C*(7 : G/Ny : yx) for the space of smooth functions f : G — V; such
that f(kxn) = y(n)"'t(k)f(x), forallx € G,k € K,n € Ny. Via the inverse of the

natural isomorphism C*(G) ® V; — C*(G, V;) we have
C®(t:G[Ny: x) = (C®(G/No: x) ® Vo).

Accordingly, we define the associated space of 7-spherical Whittaker Schwartz func-
tions by

C(t:G/Ny:x):=C(t:G/Ny: x) N[C(G/Ny: x) ®V¢]
Furthermore, we put
Ar(t:G/Ny: x)r :=C(t :G/Ny: x) N[C(G/Ny : x)r ® V].

and
At :G/No: x) =&__5 A(t:G/No: x)r. (9.6)

ITEGdS

Note that this direct sum has only finitely many non-zero terms, since (V; ® H)X #0
for only finitely many m € G45. Moreover, each of the components is finite dimensional
since 7 is admissible and H;"; is finite dimensional. It follows that the space (9.6) is
finite dimensional. In particular, for each x the corresponding summand is a closed
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subspace of L>(G/Ny : x)x ® V;. In view of Corollary 9.3 it follows that (9.6) is
a finite orthogonal direct sum of finite dimensional subspaces of the Hilbert space
L*(G/Ny : x)) ® V:. Accordingly, we equip the space A>(t : G/Ny : x) with the
restricted Hilbert structure.

Remark 9.6 It is a result of both Harish-Chandra [12] and Wallach [21] that the space
(9.6) equals the space of 3-finite functionsin C(7 : G/Ny : x). Equivalently, this means
that the irreducible unitary representations which appear discretely in L*(G/Ny : x)
belong to G45. However, we shall not need this in the present paper.

Let P = MpApNp be a standard parabolic subgroup of G. We recall that yp :=
X|mpnn, is regular relative to (Mp, Mp N Ny), put 7p = 7|k, and define the finite
dimensional space

Arp = Ar(tp : Mp/Mp N Ny : xp) 9.7

as above. Then
Aop = &, ¢z,  A2(Tp : Mp/Mp O No 2 xP)o- 9.8)

To keep notation manageable we will denote the summands by A p . Since T will be
kept fixed, this will not cause any ambiguity.

Remark 9.7 Note that for P = Py minimal we have Mp N Ny = {e} so that
ﬂ2,P0 = COO(TM . M) =~ VT.
At the other extreme, for P = G we have Mp = °G, so that Mp N Ny = Ny and

Arg = @UegadSC(T:OG/No:)()O-.

We return to the setting of a parabolic subgroup P containing A. For o € M p.ds We

define C*(7p:K/Kp:0) to be the space of smooth functions ¢ : K — H ® V; such
that

o(kikm) = [t(k)) ® o(m) ' lp(k), (k€ K, ki,m € Kp). 9.9)

We equip this space with the pre-Hilbert structure induced by the L?-inner product on

L?*(K, H, ® V;), with respect to the Haar measure dk on K normalized by fK dk =1.

For a finite subset ¢ C I?; we denote by H, s the sum of the Kp-isotypical
components of H, for the Kp-types in ©. We note that (9.9) implies that ¢(e) €
(HY ® Vo)Xr c Hy 9 ® Vi, with

¢ = {6 | Homg, (6", 7) # 0}.

By sphericality this implies that C*(7p : K/Kp : o) equals the space of smooth
¢ : K — Hy 9 ® V:such that (9.9). In particular it is finite dimensional, hence Hilbert
for the given pre-Hilbert structure.
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We define, for o € M}{ds andT = f®n € C*(7: K/Kp : o) ® H;?,,, the function
Yt : Mp — Vi by

yr(m)=yo(n®l)o(oc(m™ ®)(f(e)). (9.10)

Here f is viewed as a function with values in HS ® V., 'n € Wh,(H[’) is defined by
v — (v, n) and y denotes the canonical linear map C ® V, — V. It is readily verified
that Y7 € Ax(tp : Mp/Mp N Ny ZXP)O-.

Lemma 9.8 The linear map T — Y is an isometric linear isomorphism
C¥(t:K/Kp:0o)®H;5, — Ax(tp: Mp/Mp N Ny : xp)o. (9.11)

This is analogous to a result of Harish-Chandra in the case of the group, see [11,
Lemmas 7.1, 9.1]. It is also analogous to [1, Lemma 4.1] in the setting of symmetric
spaces.

Proof. We equip L*(K,V;) with the natural L’-inner product corresponding to the
fixed normalized Haar measure dk. By restriction this induces an inner product on
C*®(71 : K). Clearly, the map C*(t : K) — V;, f — f(e), is a linear isomorphism
which is K-equivariant for R and 7. Furthermore, for f,g € C*(7 : K) we have, by
sphericality,

(. g) = /K (o). g(e)) dk = (f(e). g(e)).

Thus f +— f(e) defines an isometric linear isomorphism C® (7 : K) > V:.
It now follows that

C¥(t:K/Kp:0)® HyS, [C*(7 : K) ® H- " ® HySy,
[V: ® Hy 1" ® HyYy
[V ® C(Mp/Mp N No)o 1"

Az p(tp : Mp/Mp N No),r.

1

1

In the above array the identity signs indicate isometric isomorphisms via which
spaces are naturally identified. The composition of the first two isomorphisms is given
by f ®n +— f(e) ®n. By what we said in the above, this is an isometric isomorphism.
The application of the third isomorphism maps f(e¢) ®n to the function Mp — V; given
by m — "n(o(m)~f(e)) = (o (m)~' f(e), n), which gives an isometric isomorphism
in view of Corollary 9.5. From these descriptions it follows that the composition of the
isomorphisms in the array is isometric and gives T +— . a

We now assume that P is a standard parabolic subgroup of G. For ¢y € A, p, see
(9.7), we define the associated Whittaker integral by

Wh(P,y,v)(x) = / x(n) yp_,(xn) dn, (9.12)

Np
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where v € aj,_ and where Y5 _, € C¥(G/P, o, —v) ® V; is defined by

p,, (kman) = a”*** T (k)y(m),
for k € K,(m,a,ii) € Mp x Ap x Np. This is precisely the definition given by
Harish-Chandra, [12, §1.7, p.147]. By rewriting this integral in terms of the Jacquet
integral, we will see that it converges absolutely for v € aj,_ with (Re v, @) > 0 for all
VS Z(P , ap).

The Whittaker integral can be related to matrix coefficients, hence to the Jacquet
integral, as follows. For o a discrete series representation of Mp and 7 = f®n €
C®(t:K/Kp:0)®H;%,, letyr : Mp — V; be defined as in (9.10).

We note that y o (J(P, 0, v, 1) ® Iy, ) defines a continuous linear map from C* (7 :
K/Kp : o) to V; which we shall denote by

J(P,o,v,); :CZ(t: K/Kp :0) > V.

Accordingly, we have the following relation of the Whittaker integral with the Jacquet
integral.

Lemma 9.9 Let P = MpApNp be standard and o € Mp’ds. Let f € C*(t : K/Kp :
o)andn € H;S, . If v € a}, (P, 0), then

a.xp
Wh(P,§ ey, v)(x) = J(P, o, —v, D) (np o _, (x) 7' £),

with absolutely convergent integral for the Whittaker integral on the left. Here we have
abused notation, by writing np , _,(x) for np . _,(x) ® Iy,.

Proof. We puty := ysg;, and define 5 _, : G — V; by
U5y (kman) := a”**P (k) (m).
Furthermore, we define f5 _, : G — H, ® V; by
fp—y(kman) := a"**" [o(m)~" @ I] f (k).
Then
a"**rr(k)y[noo(m) @ 1]f(e)

= ylneNa* " [ocm) ™ ®(k)]f(e)
= y[n®la™** [o(m)~" @I f(k)
= y[ne®Ilfs_,(kman).

¥p_,(kman)

This in turn implies that

Lewp_,=y['n@([np,_,(xH®If)p_,. (9.13)

The function on the right-hand side is integrable over Np with integral

J(P,o, v, me([np 5 -, () ®I11)

(abusing notation). It follows that the function on the left-hand side of (9.13) is also
integrable over Np, with integral being equal to Wh(P, ¢ rgs, v)(x), see (9.12). ]
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Corollary 9.10 Let the setting be as in Lemma 9.9. Then

Wh(P, ¢ ey . v)(x) = (tp o, ()" [, j(P,o, 7.7)).

Here we have abused notation in the expression on the left, by suppressing trivial actions
on the tensor component V. and the role of the canonical isomorphismy : CQV, — V..

Proof. This follows from Lemma 9.9 combined with (9.3). O

Corollary 9.11 Let P = MpApNp be standard. If y € Ay(tp : Mp/Mp N\ No : xp),
then for every v € ay, (P, 0) we have

Wh(P,y,v) € C*(t: G/Ny: x).

Furthermore, v = Wh(P,,v) is a holomorphic function on a},_(P,0) with values in
C>(t:G/Ny:x).

Proof. By decomposition (9.8) and linearity, we may assume that s belongs to the
space Ax(tp : Mp/Mp N Ny : x,)s With o a representation of the discrete series
of Mp. In view of the isomorphism we may further assume that ¢ = i rg,, with f
and 7 as in Lemma 9.9. The result now follows by application of Corollary 9.10 and
Proposition 8.14 (recall that in the compact picture, j,. is j viewed as an element of
C™™(K/Kp : 0)). a

For Z € 3 we note that the endomorphism Rz of C*(G) leaves the subspace
C*(G/Ny: x) invariant and induces a differential operator on that space, viewed as the
space of smooth section of the associated bundle G Xy, C, . This differential operator
is denoted Rz as well. The associated endomorphism / ® Rz of V: ® C*(G/Ny: x)
restricts to an endomorphism of C*(7 : G/Np: x). In a similar fashion we may equip
the latter space with a left action / ® Lz. Since I ® Lzv = [ ® Rz, we see that the latter
operator preserves A (7 : G/Ny: x).

Let P € P(A). We agree to equip Ay p with the structure of 3(mp)-module
induced by the right regular representation of mp on C*(Mp), as in the preceding text
with G replaced by Mp.

Let

up 23 — J(mip)

be the canonical embedding. The decomposition 1m;p = mp @ ap induces the canonical
isomorphisms

3(myp) = S(ap) ® J(mp) = P(ap) ® J(mp).

Thus, if Z € 3 then up(Z) may be viewed as a polynomial function on aj,_ with values
in 3(mp). Accordingly, for v € a,_ we put up(Z,v) := up(Z)(v). We agree to denote
by /iP(Z , v) the endomorphism by which up(Z, v) acts on A, p. Then /ip( -, v) may be
viewed as an algebra homomorphism 3 — End(Aj; p), with polynomial dependence
on v.
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Lemma 9.12 Let P € P(A) be standard, Z € 3, y € Ay p. Then for every v €
ap.(P,0) we have
RzWh(P, ¢, v) = Wh(P, u (Z, V), v). 9.14)

Proof. By linearity it suffices to fix a representation o~ of the discrete series of Mp and
to establish the identity for ¢ = ¢ rey, with f € C¥(7p : K/Kp : o) andn € H.?),.
From Corollary 9.10 it follows that

RZWh(P’ iﬁ, V) ()C)

<7T13,0-’_V(x)_l\f ’ ](P_’ g, ‘7’ 77))
= Wh(P,vren, v)(X), (9.15)

with
fk) =1p o (Z)f(K) = fpo (ks Z) = o (up(Z,v)") f ().
From the definition of ¢, see (9.10) it follows that
W‘f@é—‘ = R},tp(z,v)w = R/JP(Z,V)w = /’_IP(Z? V)w

Substituting this in (9.15), we obtain (9.14). O

As mentioned in the introduction, the main purpose of the present paper is to show
that the Whittaker integrals extend holomorphically in the variable v € aj,_ and, for
imaginary v, satisfy estimates of a uniformly tempered type.

A first step into this direction is the following estimate, for Re v P-dominant. The
proof given below corresponds to the proof in [12, Lemma 9.22.1].

Lemma 9.13 For every y € Ay p there exists a constant m > 0 and for every R > 0
a constant C > 0 such that for all a € A and all v € af.(P, R),

IWh(P, y,v)(@)|l- < C(1+|loga])"a®*".
Proof. Since Y € A, p there exists for every m > 0 a constant C,, > 0 such that
I Ca)ll < Cu(1+|log al)™ (‘a)~*", (9.16)
for'a € *Ap .= Mp N A.
In the following we write y_, = 5 _,. Furthermore, we write a = "aap according

to the decomposition A = "ApAp. Then from (9.12) with x = a, we find, by substituting
ana~" for n that

Wh(P,y,v)(a) =a), *" /N y(a'na))_,(n"a)dn.

Let P(’) be the minimal parabolic subgroup M A(MpNNy)Np asin (8.16) and let k’, h’, n’
be the projection maps for the associated Iwasawa decomposition. Decomposing
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n = «(n)h'(n)n’(n) and h'(n) = *h’'(n)h),(n) according to A = *ApAp, as well as
n'(n) = *n’(n)it},(n) according to Nps = (Mp N No)Np, we find
Y-y(na) (k' (n)) Yy (K (n)n’ (n)"a)
(k' (n) Y-y (h' (n) '’ (n) hp(n)"a)
= Wp(n)"*" xCa™"n’ (n)'a)™ (&' (n)) ¥ (' (n) a).

In view of the unitarity of 7 and y this leads to the estimate

IWh(P, ¢, v)(a)|l < al;ev_pP/N Iy CH’ (n)'@)|| hp ()" dn. (9.17)

From (9.16) it follows, taking account that a}, = a” and a;ﬁp (*a) P = a”, that

ap”" Tl CH () )| Hp ()"

< Cpd®"P(1+|log"al)™ (1 + |log *# (n)|) ™™ h (n) " p(n)Re".

Applying Lemma 8.13 (a) with P in place of Py and P in place of Q, we see that the
image log o h,(Np) is contained in the cone in ap spanned by the elements —prpH,,
for @ € Z(np, a); here prp denote the orthogonal projection a — ap. This implies that
there exists a constant Cy, g > 0 such that, for all v € a},.(P, R),

Hp(MR < Cu(1+|log Hp(m))™,  (n € Np).
Therefore,

ap”" Tl CH () @) || Hp ()P

< CpCrmra®” (1 +|log’al)™(1 +|log W (n)) " (n) ™. (9.18)
In view of Lemma 8.13 (b) we may fix m > O such that
I, = / (1+|log h'(n)l)_mh’(n)_p' dn < oo, (9.19)
Np
Combining (9.17) with (9.18) and (9.19) we find that, for v € a,, (P, R) and a € A,

IWh(P,y, V) (@)l < CoCn gl ay” ™" (1 + |log al)™.

10 Finite dimensional spherical representations
We assume that [ is a 6-stable Cartan subalgebra of g containing a. Then h =t @ a

with t a maximal torus in m. Accordingly, we may naturally identify a7, with the space
of A € b’ such that A]; = 0.
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The recall the definition of B from (2.1), and denote its restriction to b as well as
the complex bilinear extension to fc by (-, - ). The latter restricts to a positive definite
inner product on b, := it @ a. Its complexified dual, denoted by (-, -) as well, is
positive definite on ) := it* + a*. The restriction of ( -, -) to a* coincides with the dual
of the restriction of the inner product (- , -) defined by (2.2).

We denote by R()) c b’ the root system of b in g- and select a positive system
R*(b) which is compatible with X*. The latter means that if @ € R(}) and a|, € Z*
then @ € R* (D).

Let A(h) denote the collection of weights of the pair (gc, hc), i.e., the collection of
A € b suchthat 2(A, @) /(e, @) € Zfor all @ € R(h). Let A*(h) C b be the associated
collection of dominant weights, i.e., the weights 1 € A(}) such that (4, @) > O for all
a € R*().

By the Cartan—Helgason classification [14, Ch. 5, Thm. 4.1], a finite dimensional
irreducible representation 7 of G 1is spherical, 1.e., has a K-fixed vector, if and only if
M acts trivially on its highest weight space. Furthermore, the latter condition implies
that the highest weight of 7 is an element of the set

(1, @)
(@.a)

Conversely, A*(a) c A*(h) and if u € A*(a), then up to equivalence there is a unique
spherical representation of G of highest weight u.

In [14] these results are proven for G connected semisimple with finite center.
The extension of this result to groups of the Harish-Chandra class is straightforward.
Given an element 4 € A(a) we denote by m, the associated irreducible spherical
representation of G.

The following result is well-known.

AT(a) ={peal |VaeX": N3}.

Lemma 10.1 2(A*(h) Naf) € A™(a).

Proof. Let @ € Z and let @ € R(}) be such that @ = @|,. Then (&, @) = m(a, @), for
a certain m € {1,2,4}; if m = 4 then 2a € X, see [13, Ch. VII, Lemma 8.4]. Let
A€ A*(h) Nag. Then (4, @) = (4, @), so that

Qla) _, (L&)

(@) = @.3) € mN C N,

O

In the rest of this section we assume that P is a standard parabolic subgroup of G.
We write *hp = h N mp. Then *hp is a real O-stable Cartan subspace of mp, which
decomposes as “hp = t & (a N mp) Note that ) = *hp @ ap, so that we may identify
*hp. and aj, . with subspaces of h7. We denote by R(*hp) the root system of “hp in
mpc. Then R(*Hp) consists of the roots in R()) which vanish on ap. Furthermore,
R*(*hp) = R(*hp) N R*(h) is a positive system. The associated weight lattice is
denoted by A(*hp) and the subset of dominant ones by A*(*hp).
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Via the decomposition a = (aNmp) & ap we view aj,_ as the linear subspace of a,
consisting of all u € ag, that vanish on (a N mp). Accordingly, we define

A*(ap) := A™(a) N ap...

Lemma 10.2 Let u € A*(a) and let nt,, be the irreducible spherical representation of
G of highest weight u. Then the following assertions are equivalent.

(a) Mp acts trivially on the highest weight space of r,;
(b) 1 € A¥(ap).

Proof. Let F be a finite dimensional complex linear space on which 7, is realized. Let
e, € F,, \ {0} be a non-zero highest weight vector.

Assume (a). Then A N Mp acts trivially e,,, hence u = 0 on a N mp, which implies
(b).

For the converse, assume (b). Then Mp = (Mp).M, so that it suffices to show that
mpc annihilates e,,. Let b be the Borel subalgebra of mp. determined by the positive
system R*(*hp). Then b is contained in m + (a N mp) + 1y hence annihilates e,. This
implies that U(mp)e, is a finite dimensional cyclic highest weight mp.-module of
highest weight 0. Therefore, U(mp)e, = Ce, from which we obtain mpe,, = 0. O

We define
A" (ap) := {u € A¥(ap) | Va € Z(np,ap) : (p, @) > 0}. (10.1)
The following lemma guarantees in particular that the set (10.1) is non-empty.

Lemma 10.3 The element 4pp belongs to A**(ap).

Proof. Let 0: denote the complex linear extension of the Cartan involution to g.. It
restricts to a linear automorphism of f): whose inverse transpose b — b is denoted by
6 as well. The latter map preserves both R(}) and R(*hp). Since R*(}) is compatible
with =* it follows that —6¢ preserves the set X+ := {@ € R*(h) | /o # O}.

We define 6p = 0 — 0w, Where 6 and 6y, are half the sums of the positive roots
from R*(h) and R*(*hp), respectively. Then &p equals half the sum of the positive
roots from R*(f) \ R*(*hp). The latter set equals >*\ R(*hp) hence is invariant under
the map —6.. It follows that —6.6p = dp, so that 6p € aE. Since clearly dp|, = pp, We
find that

op = pp.

In particular this implies that 2pp € A(D). Let B be a simple root from R* (). If it
vanishes on ap, then clearly, (pp, 8) = 0. If 8 does not vanish on ap then the simple
roots y from R*(*}p) are simple for R*(})) and not equal to B, hence satisfy (y, 8) < 0.
For such a root 8 we thus have (8, 0m,) < 0 so that

(ﬁ’ 61”) 2 (ﬁ’ 6) = (ﬂ’ﬂ) > 0.
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We thus conclude that 2pp € A*(h) Nag. By application of Lemma 10.1 it now follows
that 4pp € A™(a) Naj. = A*(ap).

We finish the proof by establishing the inequalities of (10.1). Let @ € X(np, a).
Then « is the restriction to a of a root & € R*(f)) which does not vanish on ap. Now &
can be written as a sum of simple roots 8 € R* (). For all these we have (6p, 8) > 0,
see above. For those not vanishing on ap we have (6p, 8) > 0. Therefore,

(op, @) = (0p, @) >0

11 Projection along infinitesimal characters

Let V be an admissible (g, K)-module and suppose that 3, the center of U(g), acts
on V in a finite way. By this we mean that V decomposes into a finite direct sum of
generalized weight spaces for 3. If £ belongs to the set f’; of characters of 3, we denote
the associated generalized weight space by V[£]. Obviously, V[£] is an admissible
(g, K)-submodule of V. Let X be the set of & € § such that V[£] # 0; then X is finite
and V is the direct sum of the weight spaces V[£] for & € X. For each & € § the
associated J-equivariant projection map V — V with image V[£] is denoted pg = pe¢.
It is readily checked that p¢ is (g, K)-equivariant. If b is a Cartan subalgebra of g and
A € b7, then we agree to write V[A] := V[&,;] and p, := pgshere £y 1 Z — y(Z, ) is
the character of 3 defined via the canonical isomorphism y : 3 — P(a").

Similar definitions can be given if V is a complete locally convex space on which
G has a smooth admissible representation 7 such that 3 acts finitely. This leads again
to a finite decomposition into a sum of generalized weight spaces

V= @ger[g]

with 3-equivariant projection maps pé’ : V — Vwithimage V[£]. For acharacter ¢ € 3
the associated generalized weight space is the intersection of the spaces ker(Z—-£(Z))?,
for Z € 3, and p > 1. As these spaces are all G-invariant and closed, it follows that
V[€] is G-invariant and closed. This in turn implies that p¢ : V — V is a G-equivariant

continuous projection, for every & € 3. In view of admissibility we note that

VIl N Vi = V<], VIl = clvk [£]).

Furthermore, p¢|v, is the projection pg’( associated with Vg and pe.

We now assume (p, E) to be a smooth representation of G in a complete locally
convex space which is admissible and of finite length. The following result follows
immediately from [17, Thm. 5.1]. We assume that (7, F)) is a finite dimensional
irreducible representation of G of highest weight 1 € b?.
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Lemma 11.1 Let (p, E) be as above and have infinitesimal character A € V.. Let
{1 = o pas .o i} C BE be the set of distinct weights of the finite dimensional
representation (r, F). Then for every Z € 3,

m

n (Z-y(Z,A+puy)) actsbyzeroon EQF.
k=1

Proof. The reference [17, Thm. 5.1] gives this result for Ex X F, where Eg is the
U(g)-module of K-finite vectors in E. The required result now follows by density of
Ek in E and continuity of the action of 3 on E. a

Let Q a parabolic subgroup of G containing A and let w be a continuous represen-
tation of Q in a Hilbert space H,,. If (x, F) is a finite dimensional representation of G,
we have a natural G-equivariant topological linear isomorphism

0:C°(G/Q :w)®F — C™(G/Q:w®nlp) (11.1)
given by the formula

o(f ®v)(x) = f(x) ® 1(x) "', (x €G),

for f € C*(G/Q : w) and v € F. The inverse to this isomorphism is given by
e H(x) = 1 @) f(x), for f € C°(G/Q : w® m|lp) and x € G. Clearly, all
these assertions also hold with the bigger spaces of continuous functions that arise from
replacing C* by C everywhere.

Lemma 11.2 The isomorphism (11.1) has a unique extension to a continuous linear
map
e C"(G/Q:w)®F - C*(G/Q:w®nlp). (11.2)

This extension is a G-equivariant topological linear isomorphism.
Proof. Uniqueness is obvious, by density and continuity. For existence, let *¢ denote
the isomorphism (11.1) for the conjugate representations (w*, H,) and (7%, F) in place

of (w, Hy,) and (7, F') (we assume F to be equipped with a Kp-invariant inner product).
Then by taking the transpose of the isomorphism

o) C¥(G/Q W @ nt|g) — CP(G/Q : w*) @ F

one obtains an extension of (11.1) to a G-equivariant topological linear isomorphism.
]

At a later stage we will use the notation ¢, for the map ¢ of (11.1) in the case that

w =0 ®v ® 1, with o a unitary representation of My and v € a*Q o
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Let b be a 0-stable Cartan subalgebra of g containing a and retain the notation of
the beginning of Section 10. In particular, t = m N} and

by ={€ebi|éGt+a) cR} =it" ®a”.

We denote by Wy (h) the centralizer of ap in W(b).
Recall the definition of the complex bilinear form (-, - ) on a7, in the text following
(2.2). We denote by X(np, ap) the set of ap-weights in ng.

*

Definition 11.3 By an affine X(np, ap)-hyperplane in Goe

the form

we mean a hyperplane of

Dac={rve a*QdC | (v, a) =c}, (a € Z(ng, ap),c € C). (11.3)

0
Lemma 11.4 Let P be a parabolic subgroup of G containing A and let X C b be
finite. Then there exists a finite collection H = H (X) of affine Z(np, ap)-hyperplanes
such that for each &1,é2 € X, w € W(h), and all v € a},_ \ UH,

wé +v)y=&+v=we Wp(h).
If X C by, then H may be chosen to consist of real Z(np, ap)-hyperplanes.

The hyperplane is said to be real if §, . N a7, # 0, which is equivalent to ¢ € R.

Proof. 1t is easily verified that it suffices to prove the lemma for the case that g is
semisimple. Assume this to be the case.

Letv € ay,_,w € Wy := W(h) \ Wp(h), and £1, & € X, and assume that w(&y +v) =
& +v. Put X, := w(X) — X. Then (I - w)(v) € X, hence v € (I —w)~'(X,) N aj}.
It is sufficient to show that the latter set is contained in a finite collection 7, of
Y (np, ap)-hyperplanes. Then H = Uews, H,, fulfils the requirements.

By our assumption on w, the linear space ker(/ — w) N aj, is properly contained in
ap, and therefore has a non-zero linear complement 7" in a),. We find that

v e (TN (I -w) (X)) + (ker(I — w) N aj.). (11.4)

We claim that the first of these sets is finite. For this we note that the map (I — w) €
End(b?) preserves by. Since T C a}, C b and ker(/ —w) NT = 0, it follows that
ker(I — w) N Tc = 0 as well. This implies that the first set in (11.4) has cardinality at
most #X,, and establishes the claim.

If & € ker(I —w) N ay,, then w can be written as a product of reflections in b-
roots vanishing on £. At least one of these roots, say @, does not vanish on ap, so
that @ = 5|a; € X(np,ap). We see that & € ker a. It follows that the set in (11.4) is
contained in UH,,, where H,, is the collection of all hyperplanes of the form 7 + $,.0,
withn € (T- N (I —w)~(X,)) and @ € Z(np, ap).

For the proof of the last assertion assume that X C b. Then X, C hy. Let

nel-N(- w)_l(Xw).

Then it suffices to show that n € T. Write n = i1 +iny. Then (I — w)(n,) € by
and by considering real and imaginary parts we conclude that (I — w)(1n;) = 0. Now
T nker(I —w) = 0 and we infer 17, = 0. O
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We now fix a standard parabolic subgroup P and a unitary representation (o, H, )
of Mp, which is admissible and of finite length, and such that H_ is quasi-simple with
infinitesimal character determined by A € (h N mp):.

Furthermore, we fix u € A**(ap), see (10.1), and denote the associated irreducible
finite dimensional representation of highest weight u by (x, F). Let {u, ..., un} be
the set of f-weights of 7, ordered in such a way that u; = u.

Our goal is to describe the projection pa4y+, on the space C"*(G/Q : 0 :v)Q F
of generalized vectors of the representation Indg(a ®v®1)®n,for Q C G aparabolic
subgroup with splitcomponent Ag = Ap. The (finite) set of all such parabolic subgroups
is denoted by P (Ap).

Lemma 11.5 For every j > 1 the elements A+ uj and A + p are not conjugate under
Wp (D), the centralizer of ap in W(}).

Proof. Let e, be a (non-zero) highest-weight vector of F. Then Mp acts trivially on
ey, see Lemma 10.2, so that U(iip)e, = U(g)e, is a subspace of F' which is invariant
under the action of G, and under the action of MpA p, hence under the action of G. By
irreducibility it follows that U(tip)e, = F. We thus see that each u;, for j > 1, is of
the form p; = u — &;, where &£; € Z(np,b) \ {0}. The latter implies that £; does not
vanish identically on ap.

If we Wp(h)and j > 1, then w(A+pu) — (A+u;j) = w(A) = A+&;. Now w(A) - A
vanishes identically on ap, and &; does not, so that w(A + ) — (A + ;) # 0. O

Corollary 11.6 There exists a finite collection H of affine Z(np, ap)-hyperplanes
such that for all v € a}, . \ UH and all j > 1 the element A + v + i does not belong to
WOH)(A+v+p).

If A € by, the assertion is valid with the additional requirement that H consists of
real X(np, ap)-hyperplanes.

Proof. Put X = {A+pu; | j 2 1}. Then X C A+bh; C bZ. Let H be the finite collection
of affine Z(np, ap)-hyperplanes satisfying the conclusions of Lemma 11.4.

Ifvea, \UHand A+v+u; € W(H)(A+v+pu) for j > 1, then it would follow
that A+ u; € Wp(h) (A + u), violating the assertion of Lemma 11.5. O

Lety:3 — P(I)(’;)W(b) be Harish-Chandra’s canonical isomorphism. Following
the notation of [1] we define, for Z € 3, the polynomial map I1(Z) = I1,(Z) : a},. — 3
by

(Z,v) ::H[Z—y(Z,A+v+uj)] (11.5)
j>1

Lemma 11.7 Let H be a finite collection of affine X(np, ap)-hyperplanes as in Corol-
lary 11.6. Let Q € P(Ap). If v € a},. \ UH, then

[Indg(c®@ve 1)@ a](II(Z,v)) =0 on ker(pasvy)- (11.6)
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Proof. Fix v € ap,. \ UH and put p = Indg(a' Qv®1l)®n. Write [1(Z2) :=T11(Z, v),
for Z € 3. For each Z € 3 the operator p(Z) commutes with p,+, hence leaves the
kernel of the latter invariant. Let § € K. Since the operator p(Z) is G-equivariant,
it restricts to an endomorphism p(Z)s of the finite dimensional isotypical component
Ks = ker(pa+v+u)s. For each character & of 3 let K5 ¢ denote the associated union of
the spaces ker(p(Z)s — £(Z))¥, for k > 1. Let ¥ be the set of characters y for which
Ks.¢ is non-zero. Then K is the finite direct sum of the generalized weight spaces
Kse, for & € X.

Fix & € X. For each Z € 3, the endomorphism p(Z) restricts to an endomorphism
p(Z)s.¢ of Ks ¢. It suffices to show that p(I1(Z))s ¢ = 0 for all Z € J. Let & be a finite
dimensional linear subspace of 3 which generates the algebra 3. Since 3 is the union
of such subspaces, it suffices to show that p(II(Z))s¢ =0 forall Z € &E.

For Z € 3 wedefine [(Z) = Z —y(Z, A+ v+ u). Then it follows from Lemma 11.1
with A + v in place of A that

p((2))sep(II(Z))s,e = 0. (11.7)

For Z € 3 the endomorphism p(Z)s¢ has the single eigenvalue £(Z), so that the
endomorphism p(I(Z))se = p(Z)se — v(Z,A + v + u) has the single eigenvalue
E(Z2)-y(Z,A+v+p).

By definition of p A4+, €ach character from X is different from Z +— y(Z, A+v+pu).
Since & generates the algebra 3 there must be an element Z € & such that y(Z, A+ v+
u) # £(Z). It follows that the subspace &y of Z € & such that y(Z, A+ v+ u) = £(2Z)
is a proper hyperplane in &. For Z € & \ & the endomorphism p(/(Z))s ¢ has a
single non-zero eigenvalue, hence is invertible. Taking (11.7) into account we infer
that p(I1(Z))s¢ =0 forall Z € & \ &. By density this extends to all Z € &. O

From now on we assume that o is a representation from the discrete series of Mp.
In particular, its infinitesimal character A belongs to by and is regular.

Lemma 11.8 Let Q € P(ap) and u € A**(ap). Then there exists a locally finite
collection H = H(Q, o, u) of affine Z(np, ap)-hyperplanes in ay, such that, for every
v E ap. \ UH,

ParvulC(G/Q 10 vk ®F] =C(G/Q 10 v+p)k
as (g, K)-modules.

Proof. We first assume that Q = P and denote by ¢, the isomorphism (11.1) for
w=¢&,:=0®v Q1. Then ¢, restricts to an equivariant isomorphism

C(G/P:0:v)k®F — C(G/P: & @ rt|p)k

and therefore payyiuo@y = @y o pasysy. Since u is P-dominant, the highest weight
space F, is a P-submodule of F. Let Hy be the finite collection of affine X(np, ap)-
hyperplanes of Cor. 11.6. We claim that for v € aj,_ \ UHy we have

pA+v+y(C(G/P ‘Hyy ® F)g) =C(G/P: Hsy ® F,u)K-
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As the latter space is isomorphic to C(G/P : o : v + u)g, the result for Q = P will
follow from the claim. To prove the claim, we use exactness of the induction functor
w Indg (w) from the category of admissible (m;p@®np, Kp)-modules to the category
of (g, K)-modules. Let F; C F;, be a sequence of P-submodules of F containing F,,
such that F,/ F is irreducible. Then by the mentioned exactness it suffices to show that
PA+v+u = 0 on Indg(HO',v ® (FZ/FI))

It follows from the irreducibility that Np acts trivially on F,/F; and that the Mp-
action is irreducible, with a set of h-weights of the form {u; | j € J} with J C
{2,...,m}. Note that x|, is independent of j € J. It follows from Lemma 11.1 that
the infinitesimal characters of 3(mp) in H, ® (F>/F1) are all of the form A+, with
J € J. We conclude that the infinitesimal characters appearing in Indg (Hyy®(F2/F1))
are all of the form y(-, A+ u; +v), with j > 1. By our choice of Hj these characters
are different from y(-, A+ pu +v) for v € aj_. \ UHp. Hence pa4y+y vanishes on
Indg (Hs,y ® (F2/F1)). This establishes the result for Q = P.

Letnow Q € P(Ap) be arbitrary. Then by the rank one product formula there exists
a locally finite collection Hy of affine X(np, ap)-hyperplanes such that the standard
intertwining operator A(Q, P, o, v) is regular and invertible for v € a},_ \ UHp.

Then

Indg(0'®v®1)®7T:Indg(0'®v®l)®7r

and
Indj (@ (v+p)®1) ~Indf(c @ (v+p) 1)

for v ¢ UHp U (= + UHp). The required result now follows with the hyperplane
collection

H(Q,0,u) =Hp U (—u+Hp) U Hp;
here we have written —u+Hp = {-pu+H | H € Hp}. a

Remark 11.9 In this paper we shall not need the deep result that the collection Hp
in the preceding proof may be chosen to consist of real affine (np, ap)-hyperplanes.
Indeed, the singular sets of the standard intertwining operators v — A(Q, P, o, v) are
locally finite unions of real affine X(np, ap)-hyperplanes. For this it is only required
that o is irreducible unitary with real infinitesimal character, see [15, Thm. 6.6]. The
mentioned deep result requires in addition that the zero setof v +— 1(Q, P, o, v) be con-
tained in a locally finite union or real affine X(np, ap)-hyperplanes. If o belongs to the
discrete series of Mp, then Harish-Chandra’s explicit determination of the Plancherel
measure, see [11, Lemma 35.3], guarantees this.

For Z € 3 we define the polynomial function b(Z) : aj,, — C by

b(Z,v) = ]_[ (Y(ZA+v+p) —y(Z A+ v +p))].
j>1
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Corollary 11.10 Let H be a finite set of affine Z(np, ap)-hyperplanes in aj,_ as in
Corollary 11.6. If v € a},_ is such that the function b( -, v) vanishes identically on 3,
then v € UH.

Proof. Assume that v satisfies the hypothesis, then it follows that 5(Z, v) vanishes for
all Z € 3. Since J is finitely generated, we may fix a finite dimensional linear subspace
30 of 3 which generates 3. Since Z — b(Z,v),3¢9 — C is a polynomial function
on Jo which vanishes identically on 3 it follows that there exists j > 1 such that the
factor

Z—y(Z,AN+v+u)—y(Z,A+v+uj)

vanishes identically on 3¢. Since y is an algebra homomorphism, whereas 3¢ generates
3, it follows that the above factor vanishes identically on 3. In turn, this implies that
A+v+pand A+ v+ u; are W(bh) conjugate. By application of Corollary 11.6 it now
follows that v € UH. g

Lemma 11.11 There exists a locally finite collection H = H, , of affine Z(np, ap)-
hyperplanes in a, such that for all v € a, |\ UH and Z € 3,

b(Z,v) parvey = [IndG(c @ v @ 1) @ 7] (11(Z, v))
onC>(G/Q:0:v)®F.

Proof. The two mentioned maps are continuous linear, hence by density and continuity
it suffices to prove the identity on the level of K-finite vectors. Let H) be a finite
collection of affine X(np, ap)-hyperplanes as in Lemma 11.7. Let H, be a locally
finite collection of such hyperplanes as in Lemma 11.8. We will prove the result with
H =H UH,. Let v € a}, .\ UH. Then by Lemma 11.7 the required identity is valid on
ker pa+y+u. By Lemma 11.8 the image of pa4y+y is isomorphic to C(G/Q : o : v+u)k
on which Z € 3 acts by the scalar y(Z, A + v + u). Therefore, the identity is also valid
on the image of payy+y. Since payy4y 18 a projection (on the level of K-finite vectors),
the result follows. O

The induced representation Indg (00 ®v®1) has infinitesimal character A+ v, hence
it follows from Lemma 11.1 that

(Z-y(A+v+u)Il(Z,v) =0 on C*(G/Q:0:v)®F.
If O € P(Ap) we define the algebra homomorphism
Igy:3 = End(C(K/Kp: o)k ®F), Z+ [Indj(r®vel)er](Z).

Note that I ,(Z) depends polynomially on v, for fixed Z € 3.
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Lemma 11.12 There exists a polynomial map Zu : ap, — 3 and a polynomial
function q € P(ay) which is a finite product of factors of the form {a, -) — ¢, with
a € X(np, ap) and ¢ € C, such that for every Q € P(Ap),

b(Z,v)Z,(v) —q"II(Z,v) € ker(Ig,,)
forall Z € 3 andv € ay,_.

Proof. We first assume that Q = P and follow the ideas of [1, proof of Prop. 8.3]. It
follows from Lemma 11.11 that for all Z;,Z; € 3

b(Zr,v)II(Zy,v) — b(Z1,v)I1(Z,,v) € ker(Ip,)

for v in an open dense subset of a),_. By continuity the above identity actually holds
forall v € aj,_.

Let 7 be the ideal in the ring S(ap) ~ P(a}) generated by the polynomials 5(Z),
for Z € 3. Let Vr be the associated common zero set in a}, .. Let H be a finite collection
of affine Z(np, ap)-hyperplanes in aj},_ as in Corollary 11.10. Then it follows from the
mentioned corollary that

Vi C UH.

We select § € P(a}) a product of linear factors of the form (@, -) — ¢, with
a € X(np, ap) and ¢ € C, such that § vanishes on UH. Then it follows that § vanishes
on V7. By Hilbert’s Nulstellen Satz, there exists a positive integer N such that g := gV
belongs to 7. By the Noetherian property, the ideal 7 is already generated by finitely
many of its elements, say b(Z1), ..., b(Z;). It follows that there exist a; € S(ap) such

3
that, for all v € Qpes 1

q(v) = Z aj(v)b(Z;,v).
j=1

We define l

Z,(v) =Y a;(MT(Z;,).

j=1
Then for all Z € 3 and v € af, we have that, modulo ker(/p,,),

l

Z a;(v)b(Z;,v)TI(Z,v)

J=1

g 1I(Z,v)

/
Z aj(v)b(Z,v)II(Z;,v)
J=1
b(Z,v) Z#(V)-

This establishes the result for Q = P. The general result follows from an easy application
of the standard intertwining operator A(v) = A(Q, P,o,v), by noting that Ip, =
A(v) o Ip, for generic v, combined with a density argument. a
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Corollary 11.13 Let Q € P(ap). Then there exists a locally finite collection H of
affine Z(np, ap)-hyperplanes in aj,_ such that, for all v € aj,_ \ UH,

q(V)parvp = [Indg (0 @ v ® 1) @ 7] (Z, ()
onC"*(K/Kg:0)®F.

Proof. By asimple density argument we see that it suffices to establish the identity on the
K-finite level. In that case, let H,, , be the collection of affine X(np, ap)-hyperplanes
of Lemma 11.11. Then it follows from combining that lemma with Lemma 11.12 that

q(Nb(Z,V)pAsvan = b(Z, V), (Z,(V))

onC(K/Kg : 0)®F,forallZ € Jandallv € a,,_ \UH,,. Let H; be a finite collection
of affine X(np, ap)-hyperplanes as in Corollary 11.10. Then for v € aj_\ UH>
there exists Z € 3 such that b(Z,v) # 0. The required result now follows with
H=Hys, UH,. O

Remark 11.14 It follows from Corollary 11.13 that if ZL D ap. — Jis a second
polynomial map as in Lemma 11.12, then for all Q € #(ap) and all v € aj},_, we have
Z,(v) - Z,(v) € ker(Ip,,).

12 The functional equation

We retain the assumption of the previous section that P is a standard parabolic subgroup
of G, that o is a representation of the discrete series of Mp, that u € A**(ap), and that
(m, F) is the irreducible finite dimensional spherical representation of highest weight

.
Let ex € F be a nonzero K-fixed vector, and e € F™* a non-zero lowest weight
vector. We define the matrix coefficient map i, : F — C*(G) by

i, (v)(x) = (v, m(x)e "), (x € G). (12.1)

Then i, intertwines 7 with the left regular representation and is readily seen to define
a G-equivariant embedding

iy: F—>C*(G/P:1:u+pp). (12.2)
In particular, we note that i, (ex)(kan) = a #(ex , e "), for (k,a,n) € K X A X Ny,
and see that i,(ex) is a nowhere vanishing function on G. By renormalizing ex we

may arrange that (ex , e™*) =i,(ex)(1) = 1. Accordingly, we define the map

My :C(GIP:o:v+u) > C(G/P:c:v)®F (12.3)
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by f + i,(ex)"'f ® ek. In the compact picture of the induced representations, M,
corresponds to the map

C"(K/Kp:0) > C (K/Kp:0)®F, fr fQeg.

We fix a non-zero highest weight vector e, € F'. In order to emphasize the feature that
it is No-fixed, we agree to also write ey, = e,. Likewise, we denote by Mo a fixed
choice of non-zero highest weight vector in the complex linear dual space F™.

We now define the map

N i=mo(I®eM): C™(G/P:0:V)®F - C*(G/P:0:v), (12.4)

where m denotes the natural linear isomorphism from C~*(G/P : o : v) ® C onto

C~(G/P : o : v), induced by multiplication. In the compact picture, this becomes a

map eN0 : C™(K/Kp : 0) ® F — C~(K/Kp : o), constant in the variable v € Qpe..
For v € aj,_ we define the endomorphism ZP’#(V) of C"*(G/P:0 :v)®F by

Zp,(v) = [Ind?(c@vel) ® 7](Z,(v)), (12.5)

with Z u ap. — J apolynomial map as in Lemma 11.12. Note that the endomorphism
(12.5) 1s independent of the particular choice of Z " in view of Remark 11.14.
Finally, we define the operator

Dy(o,v):C*(G/P:o:v+pu) > C (G/P:0:v)

by
Dy(o,v) =&Y Z5 (v) o My, (12.6)

Proposition 12.1 The operator D, (o, v), viewed as an endomorphism of the space
C™(K/Kp : o) is continuous and depends polynomially on v € a},_. There exists a
constant d € N such that the following is valid.

There exists anr € N and for every s € N a constant C > 0 such that for all v € a},_
the endomorphism D, (o, v) maps the Banach space C™*(K/Kp : o) continuously to
the Banach space C~*7"(K /Kp : o) with operator norm satisfying the estimate

||D,u(0', V)”op <C(l+ |V|)d-
For the proof we need the following lemma.

Lemma 12.2 Let u € U(Q) be an element of degree at most d. Then for every v € aj,_

the endomorphism ﬂ;’;’(r V(u) of C®(K/Kp : o) is continuous and support preserving.

Furthermore, the following assertions are valid.

(a) Thefunctionv ﬂ;’;’(r y(u) is polynomial End(C* (K /Kp : 0))-valued of degree

at most d.
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(b) There exists a constant t € N and for every s € N a constant C > 0 such that for
all f € C*(K/Kp : o),

175, @ flls < CA+ DA fllswr:

Proof. See [4, Lemma 2.1]. O

Corollary 12.3 Let u € U(g) be an element of degree at most d. Then for every
v € ap_ the endomorphism 7[1_5?;',1/(”) of C(K/Kp : o) is continuous and support
preserving. Furthermore,
(a) The map v ”;5?;,1,(”) is polynomial End(C~* (K /Kp : 0))-valued of degree
at most d.

(b) There exists a constant t € N and for every s € N a constant C > 0 such that
for all v € ay,_ the endomorphism nt O:;V(u) maps C~*(K/Kp : o) continuous

P
linearly into C™*"'(K/Kp : o) with operator norm

75 ()llop < C(1+ VD).
Proof. This follows from Lemma 12.2 by taking adjoints. a

Proof of Proposition 12.1. We start by observing that Z 0 ap. — J is polynomial in
the variable v. For Z € 3 we define

D(Z)(v) =" o [ @, 1(Z) o My

Then it clearly suffices to prove the assertions of the proposition for D(Z) in place of
D,(v). O

In terms of the above maps we can now present the functional equation for the
Whittaker vectors. We will stay close to the notation of [1, Thm. 9.3] in order to
emphasize the strong analogy. Recall the definition of D, (o, v) in (12.6).

Theorem 12.4 (Functional equation) Let u € A**(ap). Then there exists a rational
End(H;?),)-valued function v — R, (o, v) on ay such that

J(P,o,v) =Dy(,v)oj(P,o,v+p)oRy(o,v). (12.7)

Remark 12.5 In the next section we will show that v — p(v)R, (o, v) is polynomial
for a suitable polynomial function p : aj, . — C which can be written as a product of
linear factors of the form v — (v, @) + ¢, @ € Z(np, ap) and ¢ € C.

We will prove Theorem 12.4 in a sequence of lemmas occupying the rest of this
section and the next. A key ingredient in our proof is the map

O,(v):C*(G/P:0:v)®F > C ™ (G/P:0:v+u), fevHi,v)f,

with i, as in (12.2), which is readily verified to be G-equivariant.
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Definition 12.6 We will say that an assertion depending on a parameter v € aj,_
holds for X(np, ap)-generic v, if there exists a locally finite collection H of Z(np, ap)-
hyperplanes in a}, . such that the assertion is valid for all v € a},_ \ UH.

Lemma 12.7 For X(np, ap)-generic v € aj,,
(I)#(V) o PAtviu = CD'U(V). (12.8)
Proof. By equivariance of ®,,, we have

(I),u(V) °© PA+v+u = PA+v+u © CI)#(V).

The map on the right of this equation equals ®,(v), since Indg(O' ® (v+pu)®1) has
infinitesimal character A + v + u. O

The following identity, for v € ag,, is a straightforward consequence of the defini-
tions,
O, (v)o M, =1 on C°(G/P:o:v). (12.9)

The map M, is not equivariant. However, for the map
W) = q() Zp ,(v) o M, (12.10)
we have the following result.

Lemma 12.8 The map v — q(v)¥,(v) is polynomial as a map with values in the
space of equivariant continuous linear operators from (C"*(K/Kp : o),np ) to
(C"®(K/Kp:0)® F,np,, ®nr). Furthermore, for all v € ay,_\ q71(0),

Oy(v)o¥yu(v) = 1, (12.11)
Y (v)o®y(v) = q(v)'lgp,ﬂ(v). (12.12)

Proof. We first observe that from the definitions it follows that v — g(1)¥,(v) is
polynomial as a map into the space of continuous linear operators C~*(K/Kp : 07) —
C™™(K/Kp : 0)®F. The equivariance of the operators in the image of that polynomial
map will be addressed in a moment.

In view of Corollary 11.13 we have

a7 Zp,(v) = prsviy o0 C*(G/P:0:v)®F, (12.13)
for X(np, ap)-generic v € ag.. From (12.10) it now follows that
(D,u(v) o \P,u(v) = (D#(V) O PIA4y4p © M#'

Taking (12.8) into account we infer the validity of (12.11), for X(np, ap)-generic
v € ). By analytic continuation the identity (12.11) follows for all v € a},_ \ q-1(0).
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It follows from (12.9) that @, (v) is surjective for all v. Furthermore, for X(np, ap)-
generic v, the image im(pa+y+y) € C"(G/P : o : v) ® F is a closed G-invariant
subspace, which satisfies

im(pa+va)k = C(G/P: o :v+pxk (12.14)

as (g, K)-modules, in view of Lemma 11.8. From (12.8) we see, still for Z(np, ap)-
generic v, that ®,(v) is a G-equivariant surjective continuous linear map from the
space im(pa+o+y) onto C~°(G/P : o : v + u), which by (12.14) is injective, hence
bijective.

It follows from (12.13) and (12.10) that ¥, (v) maps into im(pa+y+,), for generic
v, so the equivariance of ¥, (v) follows from (12.11) and the equivariance of ®,(v),
for generic v € aj,_. By analytic continuation the equivariance of ¢(v)¥,(v) follows
forall v € aj,_.

We finally turn to proving the identity (12.12). By analytic continuation, it suffices
to establish that identity for X(1p, ap)-generic v € aj,.. Since the maps on both sides of
(12.12) map into the space im(pa4y+y), on which ®,(v) restricts to an injective map,
for generic v, it suffices to check that

CI)#(V) ° TM(V) ° CI)M(V) = CI)#(V) ° Q(V)_l ZP,M(V)-

The expression on the left simplifies to @, (v), in view of (12.11). The expression on
the right equals @, (V) o pa4y+, by (12.13), and @, (v) by (12.8). a

Recall from (12.1) that e™* € F* is a non-zero lowest weight vector (of a-weight
—u) and put
my =iy (eny) (1) = (en,, 7).

From m, = 0 it would follow that i, (ey,) vanishes on NoP hence on G, contradicting
the injectivity of i,,. Therefore, m,, is a nonzero complex number.

Lemma 12.9 Foreveryn € H," " andallv € aswith(Rev, a) > 0, (@ € Z(np, a)),
Q,(M[j(P,,v,n) ®eny] = j(P, o, v+ p)(m,m). (12.15)

Proof. It is readily verified that the expression on the left belongs to C™°(G/P : o :
v+ u)X hence is of the form j (P, o, v+ u) (1) for some ” € H,~X. On the other hand,
on NpP the expression on the left hand side is the continuous H;*-valued function
whose value at the unit element e = 1 is

eVej(P’ o, Vv, 1) i/x(eNo)(l) =my,n.

It follows that " = m,n. O
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Completion of the proof of Theorem 12.4. Applying the operator g(v)e™0 o ¥, (v)
to (12.15) and taking into account Lemma 12.8 we obtain

Mo Zs, M (P,o,vIn®en,] = qg()eN oW, (1) j (P, o, v + p) (mym).
From (12.6) and (12.10) we see that g(v)e™ o ¥, (v) = D, (o, v). Hence,
Mo Zp NP, o, v)n @ eny] = Dy(o,v)j (P, o, v + p) (mym),

forallp € H;%), and all v € a},, with Re v P-dominant. The functional equation now
follows with R, (o, v) = M, (o, v)~'m,, by application of Proposition 12.10 below. O

Proposition 12.10 There exists a unique polynomial function M, = M, (o, -) :
— End(H;?) ) such that for all v € a},_(P,0) we have

k
aPc o.xp

Mo Zp (NP, o, v)n @ eng] = j (P, o, v)(Mu(v)n).
The polynomial function det o M, : a}, . — C is not identically zero.

To prepare for the proof, we introduce the space ng’NP (G/P : o : v) of functions
f € C®°(G/P : o : v) whose support suppf has compact intersection with Np.
Restriction to Np induces a linear isomorphism r, from CSNP(G /P : o : v) onto
CZ(Np,Hy). Wenote that CZ°, (G/P : o @ v) is invariant under the left regular action
by U(g) and denote by "75 . , the unique representation of U(g) in C.°(Np, H;) such
that r, intertwines the left regular representation of U(g) with "7 . .

Our first step in the proof of Proposition 12.10 is the following observation.

Lemma 12.11 Let ¢ € CZ(Np, HY). Then for each element u € U(g) the function

ap. — CZ(Np,HY), v = "np () is polynomial, i.e., it belongs to the space

Pi(ap.) ® CZ(Np, HY) for some k € N.

Proof. 1t suffices to prove this assertion for u = X € g, with kK = 1. Let Q be a
bounded open neighborhood of supp ¢ in Np. Let X € Lie(P). Then there exists an
openinterval I 3 0in R such that forevery ¢ € I and n € Q we have exp(—tX)n € NpP.
Consequently, there exist smooth functions U : I x Q — Npand V : I x Q — P such
that

exp(—tX)n =nU(t,n)V(t,n), (neQ, tel).

We note that U(0,n) = e = V(0,n) foralln € Np. Let ¢, € C*(G/P, o, v) be defined
by suppe, € QP and

¢y (nman) = a”"*P?o(m)  e(n), ((n,m,a,ii) € Np x Mp X Ap X Np).
Then ¢, |n, = ¢, sothat "7, ,(X)@(n) = Lxp,(n). Forn € Np and ¢ € I we have
oy(exp(=tX)n) = ¢,(nU(t,n)V(t,n))
= [0® (—v+pp) @ 1](V(1,n)) o(nU(1,n)).
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Differentiating this expression in ¢ at = 0 we find, for n € Q,

"Tpoy(X)e(n) = Lx(¢y)(n)
= —[o® (-v+pp) ® 1](8,V(0,n))¢p(n) + Ry,u.ne(n).
We thus see that v = "7 . (X)¢ belongs to Pi(ay,.) ® CZ(L2, HY). a

The next step in the proof of Proposition 12.10 is formulated in the following
lemma.

Lemma 12.12 For Z € 3 and v € a},_(P,0) there exists a unique endomorphism
m(Z,v) € End(H;?),) such that, for alln € H;?)

eV [np o, @M (Z) (P, o, v,n) ®eny] = j(P,o,v.m(Z,v)(m).  (12.16)

The map v v m(Z,v) is polynomial on &}, with values in End(H;?) ).

Proof. For v as stated, the expression on the left-hand side belongs to the space
C~(G/P: o :v),, hence by Proposition 8.15 (b) can be written as the expression on
the right-hand side, with a uniquely determined m(Z, v)(n) € H;?),. By uniqueness,
m(Z,v)(n) depends linearly on n, hence, m(Z, v) € End(H?),).

It remains to be shown that m(Z, -) is polynomial. Letn € H oyp andletv € HY be
an arbitrary element. Then it suffices to show that v — (m(Z,v)n, v), is polynomial
in the indicated range. See (1.11) for the definition of the pairing used. For this we
recall that for v in that range, j (P, o, v)(n) restricted to Np is the continuous function
Np — H;%, given by n — x (n)~'n. Fix a function ¢ € C(Ny) such that

/ X (n) dn = 1.
Np

We define f € C(Np, HY) by f(n) = y(n)v for n € Np. Furthermore, we denote by
f-7 the extension of f to an element of C*(G/P : o : —v) with support contained in
NpP. Then, forn’ € H;®

a.xp’

GP.o) ) for) = / ) w )y dn = (. oo

Np
Substituting ” = m(Z, v)n and combining the result with (12.16) we now find that
W, m(Z)e = ("5 5, ® MDD j(P, o, vim) ® en, ], f-5)-

By the Leibniz rule for tensors, the expression on the right-hand side is a sum of terms
of the form

<8N07Tl5,a',v(U)j(P’ g, V) (77) ® ﬂﬂ(v)eNo > f—17>,
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with (U, V) ranging over a subset of U(g) X U(g) independent of v. The above term
may be rewritten as

6NO(7T#(V)€NO) ' <7T13,o',v(U)j(P? g, V)(U) > f—17>'

Thus, it suffices to show that the latter expression is polynomial in v. We now observe
that

(7p oy (U)j (P, v)(m), fop) (G(P,o,v)(), mp g 5(U") f=5)

GBr) (). (g (U F)-s)
/N X "5 5 (U F(m))r din.

By virtue of Lemma 12.11 the latter integral depends polynomially on v. a

Proof of Proposition 12.10. We note that the map a,. — 3, v = Zﬂ(v) is
polynomial. Moreover,

Zp, (V) = 755, ® 1) (Z,().
By application of Lemma 12.12 the first assertion now follows with
Ml-l(v) = m( ZH(V)’ V)-

For completing the proof of Proposition 12.10 it thus remains to establish the lemma
below. O

Lemma 12.13  The polynomial function aj, . — C, v +— det M, (v) is not identically
zero.

Proof. It suffices to show that v +— det M, (v) is non-zero for a suitable v. For this
it suffices to show that there exists a v € ay_(P,0) such that M, (v) is an injective
endomorphism of H,* . Taking the characterization of M, in Proposition 12.10 into
account and using that

Z5,(v) = q(V)PAsvsy ON C*G/P:0c:v)®F (12.17)

we infer that it suffices to show that for generic v € a’]’gc themap j — eNo Parvu(J®en,)
is an injective endomorphism from C™(G/P : o : v), to itself. The latter statement
follows from Lemma 12.14 below, which will be proven in the next section. a

Lemma 12.14 Let Q € {P, P}. Then for X(np, ap)-generic v € ap. the map
J o &N prsvau(j ® en,) (12.18)

is an injective linear endomorphism of C"*(G/Q : 0 : v),.
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13 Proof of Lemma 12.14

We retain the notation of the previous section. The following lemma serves as a first
step in the proof of Lemma 12.14.

Lemma 13.1 Let Q € {P, P}. For X(np, ap)-generic v € ., the map
J = Pavuli®eny] : C(G/Q:0:v), > CT(G/Q:0:V)QF
is injective with values in (C™(G/Q : o :v) ® F),.

Proof. That the given map attains values in (C™*(G/Q : o : v) ® F), is a straightfor-
ward consequence of the G-equivariance of p .,4,. We therefore focus on the asserted
injectivity.

There exists a locally finite union H of affine Z(np, ap)-hyperplanes such that for
v € aj. \ UH the standard intertwining operator

AV) = A(Q,0,0,v): C(G/Q:0:v) - C(G/Q :0 :V)

is bijective and maps the subspace C"*(G/Q : o : v), bijectively onto C™°(G/Q :
o :v),. Furthermore, by the intertwining property of A(v) we have, for such v, that

(A(V) ® 1) o pasviul] ® eny] = PA+v+u[A(V)] ® eng].

We thus see that it suffices to establish the assertion for Q = P. Then by Lemma 12.7
we have

D, (V)P Aarv+n(J ® eny) = Pu(v)(j ® eny) = iv(eny) /s
for X(np, ap)-generic v € aj,_and j € C™(G/P : o :v),. Since the function i, (ex,)
is non-zero on NP, it follows that the expression on the right of the above equality is

zero if and only if j|y,5 = 0. By Corollary 8.3 this in turn is equivalent to j = 0. The
asserted injectivity follows. a

To prepare for the proof of Lemma 12.14, we need to introduce certain particular
subspaces of generalized vectors of induced representations. Let Q be any parabolic
subgroup of G containing A. We consider a continuous Hilbert representation (&, Hy)

of 0.

We denote by Wy (a) the centralizer of ap in W (a). From the Bruhat decompositions
for G and My it follows that the map v — NovQ, Nk(a) — No\G/Q induces a
bijection from W(a)/Wy(a) onto the double coset space No\G/Q. Precisely one of
these cosets is open in G; it will be denoted by Op. In fact, for v € W(a) we have

NovQ = OQ — UQ_U_1 D Py.

Definition 13.2
C™(G/Q: &N, cCT(G/Q :§) (13.1)
is defined to be the subspace of elements u € C~*(G/Q : ¢) such that
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(a) u is Ny-finite from the left;

(b) ulo, is a continuous function Op — Hg"o

Assertion (b) means that there exists a continuous function i : Op — Hé_?‘x’ such that
i(nvg) = ¢ (q) 'i(nv) (¢ € Q,n € Ny) and such that for all y € C*®(G/Q : &)
with suppy C Op, the following identity is valid:

Wy = (i W) = /K et dk (132)
Q

Note that the integrand is a continuous complex valued function with support contained
in K N Og. Note also that ii is uniquely determined.
If v € Op, the evaluation map

gv:uHﬁ(v), C™(G/Q : é)n, _)7_{5—00

is well defined and linear.

In the special setting ¢ = o ® v with o a unitary representation of My and v € a*QC,
the space on the left in (13.1) is also denoted by C*(G/Q : o : v)y,.

The following observation will allow us to connect to the case that Q is standard.
Let v € Nk(a) be such that vQv™! is standard. Then Oy = NovQ. We write v¢ for the
representation of vQuv~! in H¢ given by vé(q) = & (v"'qv). Then the right regular action
by v induces a G-equivariant topological linear isomorphism

R, : C™®(G/Q : &) — C~®(G/vQv~" : vé). (13.3)

If f belongs to the subspace C*(G/Q : &) then R, f is given by x — f(xv) and belongs
to C®(G/vQu™" : vé).

Lemma 13.3 The isomorphism (13.3) restricts to a linear isomorphism
R,:C™™(G/Q: &)y — C(G[vQu™" 1 vé)y,.
Furthermore, ev,o R, = ev,.

Proof. This is a straightforward consequence of the definitions. a

Lemma 13.4 Let Q € P(A), o a unitary representation of Mg and v € a*QC. Then
(@ C*(G/Q:0:v), CC(G/Q:0 :V)n,-

(b) If Q is standard, then the evaluation map ev, defined on the space on the left is
the restriction of ev, defined on the space on the right.
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(c) Let v € Nk(a) be such that Og = NovQ. Then the evaluation map ev, restricts
to a linear map

ev, :C(G/Q:0:v), = (H

—00
vo )XlNoﬁvMQu’l ’

(13.4)
If x is regular, the map (13.4) is injective.

Proof. We will first prove (a) - (¢) under the assumption that Q = P with P standard.
Then assertions (a) and (b) follow by application of Theorem 8.6, Equation (13.1) with
& = 0 ®v and the definitions of ev, and ev,. Assertion (c) follows from Corollary 8.11.

Now assume that Q is general and fix v € Ng(a) as in (c). Then vQuv~! = P,
with P standard. We consider the isomorphism R, of (13.3) for £ := o ® v. Note
that vé = vo ® vv. By Lemma 13.3, R, maps C"*(G/Q : o : v)y, onto the space
C~(G/vQu~! : vo : vv)y, and the evaluation maps in v and e respectively are related
by ev, o R, = ev,.

By G-equivariance it also follows that R, restricts to a linear isomorphism

R,:C™(G/Q:0:v), = C™(G/vQv! :vo : V).

As the space on the right is contained in C=*(G /vQu~! : vo : vv)y, by the first part of
the proof, it follows that the space on the left is contained in C™*(G/Q : o : v)n, and
we have the following commutative diagram with evaluation maps:

C™(G/Q:0:v), &, C(G/vQuv™" :vo : vY)y
evy l, J, EVe
(H, !

(o) —00
— H
vo )X|NOQUMQU—1 ( vo )X|NOQUMQU—1

If y is regular, then ev, is injective, and the injectivity of ev, follows. a

We return to the setting that Q0 € P(A) and that (¢, He) is a continuous Hilbert
representation of Q. The representation £ of Q in Hy is defined as in Remark 1.3.

Proposition 13.5 The subspace C™(G/Q : &)y, of C"(G/Q : €) is invariant under
the left action by g.

Proof. We fix v € Ng(a) such that vQu~!' = P, with P-standard. By Lemma 13.3 and
since R, of (13.3) is g-equivariant, it suffices to establish the assertion of the proposition
with vQu™! in place of Q. In other words, without loss of generality we may and will
assume from the start that Q = P, with P standard.
We recall that the left action by an element X € gonu € ¥ 1= C"(G/P : &) is
defined by
(Lxu, ¢) = (u, Lxvy),

forall y € C*(G/Q : &F).
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It is sufficient to show that for u € ¥y := ¥y, and X € g the element Lyu € ¥
restricts to a continuous Hg""—valued function on NoP. Indeed the Ny-finiteness is
obvious, since L,Lx = Ladn)xLy for all n € Ny. For the first statement we need a
suitable interpretation of Ly on the space ¥y, .

Letu € Fo. The span E of the left Ny-translates of u is a finite dimensional subspace
of Fo. The restriction of L|y, to E is a finite dimensional representation of Ny, which
we denote by w. As w is the restriction of the continuous representation L™|y, to E, it
is continuous. By finite dimensionality it follows that (w, E) is smooth. We claim that
for X € 1y, we have Ly = w(X) on E. To see this, note that for y € C®(G/P : £*),

(Lyu,y) = (u,-Lxy)= 4

dt <I/t, Le_xlplef//>

=0
d d
= p Y (Lexprxtt, ¥) = 7 Y (wexptX)u, )
= (w(X)u, ).

It follows from this that Lxu € F, hence Lxu is continuous on NoP, for all u € 7y and
X € nyg.

We now fix a general element X € g and will establish the continuity asssertion for
Lxu. Since NoP = NpP, the assertion of continuity of # € F on NoP means that there
exists a unique continuous function ii : NpP — Hé_?°° such that i (xp) = ‘¢(p)~lii(x)
(x € NpP, p € P) and such that (13.2) is valid. By the usual transformation of variables
corresponding to the open embedding Np — G /P =~ K /Kp that equation is equivalent
to

(u, )y =i, YInp = | (i, Y)e(n) dn.
Np
Since g = np ® Lie(P) it follows that for every n € Np we may write
Ad(n)'X = Ad(n)"'Y (n) + Z(n)

withY : Np — np and Z : Np — Lie(P) smooth functions. Let Y7, ..., Y be a basis
for np. Then we see that Y (n) = ¥; y'(n)Y; with y' : Np — R smooth functions.
Let now ¢ € C*(G/P : £*) have support contained in NpP. Then

(Lxu, ) =—Cu, Lxy) = —(ii, Lxy).
Furthermore, for n € Np,

[Lyny¥](n) + [Ladmyzm¥](n)
Z Y (n) Ly (n) = [Rz (] (n)

Lxy(n)

Z Ly, [y'¢1(n) - Z Ly, () () (n) +*E(Z (n)) (n).
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By what we established above, Ly,u = w(Y;)u is given by a continuous function #; on
NoP. Let ' denote the unique element of C*(NpP) given by $'(np) = y'(n). Then
'y € C®(G/P : &) (extension by zero outside NpP), and we see that, for each
1<i<k,

(it , Ly, [y Dnp = Ly, $') = (i 5N, = 'l » ¥,

This leads to
~(Lxu, y) = () Vi = Ly, (y)i = 6o Z)i, Y)w,.

As |y, ranges over all functions of C;°(Np, Hg"), it follows that on NoP = NpP, the
generalized function —Lyu is represented by

Z[yiﬁi - Ly, (y)i) - [\é- Z]a.

i
The latter function is obviously continuous NoP — HS;"". a
We now assume that Q € P (A), that o is a unitary representation of My, and that
V€ a*QC, and define the representation &, of Q = MpAgNg in H, by
& =0®vel.
Furthermore, we assume that (7, F') is a continuous finite dimensional representation

of G. From (11.2) we recall the existence of a unique G-equivariant topological linear
isomorphism

;X C(G/Q:&)®F — C™(G/Q: & &nlp) (13.5)

determined by
e, wee)=(1en(-) " )(uee)

on the subspaces with C* in place of C~*. The inverse is given by w — (I @ n(-))w
on the mentioned subspaces.

Corollary 13.6 For X(ng, ag)-generic v € a”éc, the endomorphism p s,y of the
space C~7(G/Q : €, ® m|g) preserves the subspace C™*(G/Q : &, ® m|p)n,-

Proof. This follows by combining Proposition 13.5 applied to ¢ = £, and the charac-
terization of pa4y+, in Corollary 11.13. O

Lemma 13.7 Let Q € P(A) and let v € Ng(a) be such that vQu~" is standard. The
map ¢, of (13.5) restricts to a (g, No)-equivariant linear isomorphism

¢ 1 C(G/Q:a VN8 F — C(G/Q: & @nlo), (13.6)

which satisfies
ev,op =ev, @) (13.7)

91



Proof. We note that (&,)" = o0 ® —v = £_3. We assume that F is equipped with
a Hermitian inner product, and F, denote the finite dimensional Hilbert space F,
equipped with the conjugate representation 7*. Let *¢, be the equivariant isomorphism
from C*(G/Q : é-3) ® F. onto C*(G/Q : é_3 ® *|p) as defined in (11.1).

Let f € C°(G/Q : o : v)N, ® F. Then the restriction of f to Op = NovQ is
continuous Ogp — H;* ® F. It follows from the definition of ¢, as in (11.2) that

(0,°(f)s &) =< Co) ),

forall g € C*(G/Q : é-3) ® F.. In particular this is true for all such g with support
contained in NovQ. In that case the above equality tells us that

@i=(f). 8) /K U Ce) @) oy di
]

/ ). (1@ (0)g(K))o di
K/Ko

/ (1 ® (k)Y F (k). (K)o di.
K/Ko

It follows from this that, forx € K N Op,

;2 () = (1en(x) " (evy ® D(f). (13.8)

By Q-equivariance this equality is true for all x € Op. From this it is immediately clear
that ¢, *( f) belongs to the space on the right in (13.6). Moreover, by substituting x = v
in (13.8) we obtain (13.7) when applied to f.

By using a similar argument involving the maps [¢;°°]~! and *¢, one sees that the
map ¢ is a linear isomorphism as asserted.

Finally, the (g, No)-equivariance of ¢ follows from the similar equivariance of ¢,
combined with Proposition 13.5. N O

Corollary 13.8 For X(ng, ag)-generic v € a,_, the endomorphism payu+y of the
space C™(G/Q : o : v) ® F preserves the subspace C"(G/Q : 0 : V)N, ® F.

Proof. Since the map ¢,* of (13.5) is a G-equivariant isomorphism from the space
C™(G/Q :0:v)®Fonto C"*(G/Q : (0 ®Vv) ®ml|g), we have ¢, o payysy =
©,% o PA+u+v- The result now follows by combining Corollary 13.6 with Lemma 13.7.
O

Finally, we are prepared to complete the proof announced in the title of this section.

Proof of Lemma 12.14. By application of standard intertwining operators as in the
proof of Lemma 13.1, we may reduce to the case that Q = P (recall that P is standard).
In this case, we argue as follows. For v € a},_ we denote by ‘H,, the space H, on
which P = MpApNp acts by man +— a"+pP0'(m) The space Cey, is a P-invariant
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subspace of F, on which P acts by man — a*. We write |p c, No for the restriction of
7| p to this subspace. The inclusion map Cey, — F is P-equivariant, hence induces a
G-equivariant continuous linear map

by : CT(G/P & @ mlpcey,) = C(G/P: & @ 7p),

see Lemma 7.7 for details.

In the sequel we shall briefly write p, for pa;,y. Since H,-, ® Cey, is naturally
isomorphic to H 4, as a P-module, it follows that for (X(np, ap)-)generic v € ap
the projection

py € End(C™(G/P : &, ® m|p)) (13.9)

equals the identity on the image of ¢,. On the other hand, it follows from Lemma
11.8 combined with the isomorphism Indg (&)@~ Indg (¢, ® m|p) that for generic
y € a};c,

im(pv)K = C(G/P o lut V)K = im(LV)Ky

as (g, K)-modules. Since (13.9) is a continuous projection its image im(p,) is a closed
subspace of C™(G/P : &, ® nr|p). We now infer that for generic v € a}, . we have

im(p,) = cl(im(t,)k),

where cl indicates that the closure in C~*(G/P : &, ® «|p) is taken. To characterize
this closure in a useful way, we fix a Hermitian inner product on F and define the
continuous representation 7* of G on it by 7*(p) = n(p~')*. The restriction of 7*|p to
the 77*(P)-invariant subspace E = (Cey,)* of F is denoted by r%.. Clearly, Cey, = E*.
We view C*(G/P : é_; ® ny) as an invariant subspace of C*(G/P : é_; ® ). Via
the sesquilinear pairing

C(G/P:& @)X C(G/P: é; @) — C (13.10)

we accordingly define Ann, to be the annihilator of C*(G/P : é_; ® nr}) in the first
of the spaces in (13.10). This annihilator is closed and on the K-finite level it is
readily seen that (Ann, )x = im(¢,)g. It follows that the annihilator equals the closure
of im(¢,)g. Hence,

im(p,) = Ann,,.

We now select v € Ng(a) such that Op = NovP is open in G. Note that Op = vNpP.

Lemma 13.9 Letv € ap , writeé, =0 ®v® landletu € C"*(G/P : &, ® |p)n,-
Ifu € Ann, then ulp, € C(Op, H;® ® Cey,)".

Proof. Let u fulfill the hypothesis. Then it follows from Definition 13.2 that the
restriction of u to Op is continuous with values in H * ® F. This means that there
exists a continuous function & € NovP — H;® ® F such that i(nvp) = ['\¢™*(p) ®
a(p)] Yi(nv) (p € P,n € Np), and such that for all y € C°(G/P : éy @ 1)
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with support contained in Op we have (13.2), which by the substitution of variables
k = vkp(nn) Kp may be rewritten as

(o0} = [ (@) Y00 ror
Letnow h € HY, f € E = (Cey,)* and ¢ € C>(Np), and define ¢y € C*(G/P :
¢_; ® 1) by the requirements
W (o) = ¢(ii)(h ® f), =0 on G\ vNpP.

Then it follows from u € Ann, that
[ o, he ) dn=o
Np

As this is valid for all ¢ as above, the continuous function 77 + (ii(vii) , h ® f) is zero.
This implies that for each i € Np the element i(vi1) € H,® ® F satisfies

i), h® f))=0,  (heHS,f€E).

This in turn implies that u(vii) € H,® ® E* = H;® ® Cey,. Since vNpP = NovP this
finishes the proof. O

We proceed with the completion of the proof of Lemma 12.14. From Lemma 13.1
it follows that for generic v € aj,_ the map

JP e, epy(j®en,) (13.11)

is injective from C™*(G/P : o : v), to C"*(G/P : (0 ® v) ® n|p),. Furthermore,
since ¢, is an intertwining isomorphism, it follows that

@, o py =pyop,”.
We thus see that the map (13.11) maps C™*(G /P : o : v), injectively to
im(p,)NC"*(G/P: (c®v)®n|p), CAmn, NC *(G/P: (0 ®V)®7|p)N,-
Applying Lemmas 13.4 and 13.9 we now see that the map
T evy[e,” o parvin(J ® en,)]
is injective from C™*(G/P : o : v), to H;* ® Cey,. Put
e’ :=eMon(v) € F*, (13.12)

then e’(en,) # 0, since otherwise the matrix coefficient x > e"(m(x)ey,) would be
zero on NovP hence on G, contradicting the irreducibility of x. It thus follows that

J @) [evi[e,” o py(j ®eny)l] (13.13)
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is injective C"*(G/P : o : v), — H;* ® C. On the other hand, j — j ® ey, maps
C™>(G/P : 0 :v), into C(G/P : o : v)n, ® F. By Lemmas 13.4, 13.7 and
Corollary 13.8 it now follows that (13.13) equals

j (I®e") ogvofvogv(j ® en,) (13.14)

which is therefore an injective map C™(G/P : o : v),, — H°. By Lemma 13.7 the
above map (13.14) equals

jom (e o(ev,®n(®)ep (j®en,)
= (ev,®@D-(I®e")op (j®en).

The injectivity of the latter map implies the injectivity of
jre)op (j@ey) = (@) op,(j®en,).

asamap from C™(G/P : o : v), 0 C™(G/P : o : v)®C. Since €™ = mo (I®e™0),
with m injective, see (12.4), the required injectivity of the map (12.18) follows. a

14 Holomorphy and uniformly moderate estimates

In this section, we assume that P is a standard parabolic subgroup and (o, H,) a
discrete series representation of Mp. We will first prove the following result which is
inspired by Wallach [21, Thm. 15.4]. Let 6 > 0.

Theorem 14.1 For every R < § the function v — j(P, o, v), originally defined for
v € ay (P, 0) allows a meromorphic extension to aj,_ (P, R) as a function with values
in the space (H;", )" ® C™(K/Kp : o).

Furthermore, there exists a non-trivial polynomial function pgr € P(a}) and con-
stants s,N € N and C > 0 such that for all 1 € H;%) the extended function

v = pr(W)j(P,o,v,n) is holomorphic C™*(K/Kp : o)-valued on ap.(P,R) and
satisfies the estimate

PR (P, v,pll-s < C(L+ DV nll, (v € ap (P, R)).

Proof. First of all, by Proposition 8.14 the above result is true for R = ¢, withs = N =0
Let u € A*"(ap). Then (u, @) > O for all @ € X(np,ap). Let m > 0 be fixed and
strictly smaller than the minimum of the numbers (u, @), for @ € Z(np, ap). Then

ap.(P,R—m)+pu C ap.(P,R).

We will show that if the assertions of the theorem are valid for R < ¢, they are also
valid with R replaced by R — m. The result then follows by induction.
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Assume the result to be proven for a given R, with constants s, Ng and Cg in place
of s, N,C. Let D,(c,v) and R,(o,v) be as in Theorem 12.4. By holomorphic con-
tinuation, this functional equation is still valid on aj,_(P, R) for the extended function
Jj(P,o, -).Letq : aj,_ — C be a non-trivial polynomial function such that gR, (o, -)
is polynomial of degree d’, with values in End(H;?>),).

For v € a,_(R — r) we define

je(P:io:v)(n) = D,(o,v)j(P,o,v+u)R,(o,v)n.

Let r,d, C € N be the constants of Proposition 12.1. Then it follows by application of
the mentioned proposition that v — g(v)pr(v + u)j.(P : o : v)(n) is holomorphic
on ay_ (P, R —m) with values in C™*""(K/Kp : o). Furthermore,

lgMpr(Y + ) je(P 2 o2 v) () ll-s—r
CA+ ) Npr(p+v)j(P,o, v+, q() Ry (o, VIl
CCr(L+ V) (1 + v+ u)"®llg() Ry (v lloplIm

Crom (1+ )TN,

IAN A

IA

with Cg_,, > 0 a constant which is uniform for v € a},_(P, R — m). By the functional
equation of Theorem 12.4 it follows that

gMpr(V + W je(P,o,v)(1) = q(v)pr(v + 1) j (P, o, v) (1)

forall v € ap, (P, R). This shows that the (H;$,)" ® C™%(K/Kp : o)-valued function
v = j.(P,o,v) is the meromorphic extension of the original H; 3 p-valued function
j(P,o, -) defined on ap.(P,0). The proof is complete. a

It follows from the above result that as a (H;%,)" ® C"(K/Kp : o)-valued
function, the function v — j (P,o,v) has a meromorphic extension to all of a}'}c. This

meromorphic extension will be denoted by the same symbol.

Lemma 14.2 Forn € H;",, and a regular point v € ap the element j(P,o,v,n) €

C™(K/Kp : o) satisfies the transformation rule
mpn, (Mj(Po,v.n) = x(n)j(P,o,v.m),  (n€Ny).

Proof. This follows by analytic continuation. a

Lemma 14.3 Let ¢ € C*(K/Kp : o) have compact support contained in the set
KNNyP. Then for everyn € H . the meromorphic function v — (G(P,o,v)(), ¢)
is holomorphic.
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Proof. Tt follows from the definition of j (P, o, v, n) forv € a*PC(P, 0) that the restriction
J(P,o,v,n)|gan,p 18 given by the continuous function K N NoP — H;* described
by the formula

Jn(¥) sk a(k)™ PPy (np(k))o(up(k)) ™' (14.1)

By this we mean that for a function ¢ € C*(K/Kp: o) with compact support contained
in K N NoP we have

G(Poo) ). o) = /K G (k) o(k)edk

/Kp

From
Jn)=a()" Vi), (Aeap),

we see that j, extends to a holomorphic function from aj_ to C(K N NoP,H;™).
Accordingly, it follows that for ¢ € C™*(K/Kp : o) with compact supportin K N NpP
the C-valued function

v (j(P,o.v)(m), ¢)

. . .
is holomorphic on aj, . O

Theorem 14.4 The map v — j(P,o,v) is holomorphic as a function on ap. with
values in the complete locally convex space (H;%),)" ® C"(K/Kp : o). Here

C™(K/Kp : o) is understood to be equipped with the direct limit topology, see the
text below (7.10).

Proof. Let R < 0 and let p = pg be as in Theorem 14.1. Let Q := a,_(P, R) and
let X be the zero set of p in Q. Fix n € H,%,. It follows from the theorem that
j v+ j(P,o,v) is holomorphic as a function from Q \ X to the complete locally
convex space V := C~™(K/Kp : o).

By Theorem 18.1 (Appendix) it suffices to show that j admits an extension to a
holomorphic function Q \ X; — V, with X; = X \ X,, where X, is the set of points
vo € X at which X is a complex differentiable submanifold of co-dimension 1. It is
readily verified that X, is open in X; therefore, Xj is closed in X hence in Q.

Let vy € X,. Then it suffices to show that there exists an open neighborhood €2 of
vo in Q such that j|o,\ x admits an extension to a holomorphic function Qy — V. See
also Lemma 18.3 (Appendix).

By definition of X, there exists an open neighborhood w of vy in € such that
Xo := X Nw is a connected complex differentiable submanifold of codimension 1. Let
& € ap_ be such that

TVOX() ® C¢ = aj;c.

Then it follows that the map ¢ : (v, z) — v+z£ is a local holomorphic diffeomorphism
at (vp,0). Replacing w by a smaller neighborhood if necessary, and taking r > 0
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sufficiently small, we arrive at the situation that ¢ : XoXD(0,r) — aj,_isaholomorphic
diffeomorphism onto an open neighborhood € of v in a},_ and that ¢(Xo X {0}) =
X NQy.

Put D = D(0,r). Then j* = jo¢|x,xp\{0} is @ holomorphic function Xo X D \
{0} — V and it suffices to show that this function extends to a holomorphic function
XoxXD — V.

Since j* : (v,z) — j(v + z€&) is holomorphic on Xy X (D \ {0}) it has a Laurent
series expansion in z of the form

Jr+26) = Y e,

kezZ

with ¢, : Xo — V holomorphic, for all k € Z. Thus, it suffices to show that ¢, = 0 for
k <0.

The zero set of po¢ equals ¢~'(X) = Xy x {0}. Hence, there exists a constant
d > 1 such that p(v + z&) = z%q(v, z), with ¢ : Xo X D — C a holomorphic function
that is not identically zero on X X {0}. Let X be the open dense subset of v € X, such
that ¢(v,0) # 0. Fix v € X, an open neighborhood X; of v whose closure is contained
in D, and a disk D" C D centered at 0 such that g(v,z) # O forall v € X; and z € D".
Then for every v € X; the function z — z%j (v + z€) extends to a holomorphic function
D’ — V. It follows that c;(v) = 0 for k < —d and v € X. By analytic continuation it
now follows that ¢; = 0 on X for k < —d.

Let m € Z be the maximal number such that c_,, # 0. Arguing by contradiction we
will show that m < 0, thereby completing the proof. Thus, suppose m > 0. Then there
exists v € Xy such that c_,,(v1) € V' \ {0}. We claim that for n € Ny we have

ﬂ';]oo(n)c—m(vl) = x(n)c_m(v1). (14.2)

Indeed, fix n € Ny and € C*(K/Kp : o). Then it suffices to prove the identity
evaluated at y. Writing 7, = 75, ,,, we start with the known identity expressing that
j(v) is a Whittaker vector in the induced representation:

GO), 7507 ) = x(GO), ),

for v € Q\ X. Substituting v = v + z¢& for z € D \ {0}, we obtain the identity

(" ji+26), 7%, (") = x (0" (v +26) ) (14.3)

v

of holomorphic functions on D (0, r) \ {0}. We observe that we may write
Z"j(vi+28) = com(v1) + 2R(2),

as an identity of holomorphic V-valued functionsin z € D(0,r), withR : D(0,r) - V
holomorphic. We may also write

w2y = a3 (n7 Dy +2¥(2), (z € D(0,r)),

vi—z&
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with ¥ a holomorphic function D (0, R) — C*(K/Kp : o). Substituting these expres-
sions in (14.3) we obtain

(comO), 72 (n™ ) = x(n){com (1), ¥) +2F (2), (14.4)

where F : D(0,r) — Cis given by
F(2) = (R(2), x(my = 70y, (n™ ) = 29 (2)) = (c-m (1) , W(2)).

If z is restricted to a compact neighborhood of 0 in D (0, r), then ¥(z) stays in a bounded
subset of C*°(K/Kp : o) and R(z) stays in a bounded subset of C™(K/Kp : o). This
implies that F'(z) remains bounded, so that lim,_,o zF(z) = 0. By taking the limit of
(14.4) we find that (14.2) is valid after pairing both sides with ¢ € C*(K/Kp : o).
Since n and ¢ were arbitrary, (14.2) follows. Thus, in the induced picture we have

com(v1) €CT(P 0 1 vy),.

Furthermore, by application of Lemma 14.3, the generalized function c_,, (v;) vanishes
on the open orbit NoP. In view of Corollary 8.3 applied to c_,,(v;) in place of j it
finally follows that ¢_,,(v;) = 0, contradicting the condition involved in the choice of
V1. O

Corollary 14.5 For every v € a),_ the map

jP,o,v): HS —C*(G/P:0o:v),

o.Xp

is a linear isomorphism with inverse equal to the map ev, defined in (8.11).

Proof. It follows from the definition of j(P,o,v)(n) for v € aj, (P,0) that the
restriction of j(P,o,v)(n) to K N NpP is equal to the continuous function j,(v) :
KNNpP — H;* defined in (14.1). In the proof of Lemma 14.3 it is shown that j,(v)
extends to a holomorphic function of v € aj,_ with values in C(K N N pP,H;®). By
analytic continuation it follows that j (P, o, v, 1) | g, 18 given by the function j,(v).
It now follows that ev,j(P, o, v,n) = n. Hence, ev, is a left inverse to j(P, o, v) and
we see that ev, is surjective C"*(G/P : o : v), — H;?, . If we combine this with
the injectivity of ev,, asserted in Corollary 8.11, the required result follows. a

Lemma 14.6 Let My, = My (o, -) : ap, — End(H;?),) be the polynomial function
ap. — End(H;?,) introduced in Proposition 12.10. Then the function detM,, is a
non-zero constant times a finite product of first order polynomial functions on aj,_ of
the form v v+ (v, a) + ¢ with @ € Z(np, ap) and c € C.

Proof. We observe that det M), is a polynomial function a,, — C. By Proposition
17.1 it suffices to show that det M, is non-zero on the complement of a locally finite
collection H of affine X(np, ap)-hyperplanes. Increasing 4 we may assume that UH
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contains the zero set of the polynomial function g : aj,  — C introduced in Lemma
11.12. From Lemma 12.14 we know that there exists such a collection of hyperplanes
such for v € aj,_ \ UH the map

Uyt j e N0 parau(J ® eny) (14.5)

is a bijective endomorphism of C™*(G/P : o : v),. By Corollary 14.5 this implies
the existence of a unique linear automorphism b, of H;), such that

'»”y(f(p,a"V)) :j(p,O',V)obv.

Since g(v) # 0 it follows from (12.17) that p 44y = q(v)_lZp#(V) onC™>(G/P:o:
v) ® F. If we combine this with (14.5) and Proposition 12.10 we find that

W/l(.](p’ ag, V)) = ](P’ g, V) ° [CI(V)_IM#(V)],

for (1p, ap)-generic v. By uniqueness, this implies ¢(v)~'M, (v) = b, for Z(1p, ap)-
generic v. We conclude that det M, (v) # 0 for v outside UH. O

Corollary 14.7 There exists a polynomial function p : ap. — C which is a finite
product of linear factors of the form («, -) — ¢, with @ € Z(np,ap) and ¢ € C such
that pRy (o, -) is a polynomial End(H? ,)-valued map.

Proof. Let p = det M, then by Lemma 14.6 the function p has the required form.
By application of Cramer’s rule the result now follows from the formula R, (o, v) =
M, (v)_lm,l, given at the end of the proof of Theorem 12.4 just before Proposition
12.10. a

Theorem 14.8 For every R < 0 there exist constants C > 0,N € N and r € N such
that for alln € H;?), and v € a, (P, R) we have j(P,o,v)ne C"(K/Kp: o) and

17 (P, o, v)mll-r < C(L+ DY Inll.

Proof. We agree to write j(v,n) = j(P, o, v)n. Following the induction in the proof
of Theorem 14.1 one sees that its assertion is valid with p = pr a polynomial function
ap. — C which is a finite product of linear factors of the form [y : v > (v, a) — ¢
with @ € Z(np, ap) and ¢ € C. From the mentioned theorem we know that there exist
constants C’ > 0 and s, N € N such that for all € H;j’;P and all v € aj,‘,c(P, R) we
have that v — p(v)j(v,n) is holomorphic on a},_(P,0) with values in C™*(k/Kp : o)
and satisfies the estimate

P () (vsmll=s < €' (1 + v)inll. (14.6)

Let/ : ap. — C,v > (v, @) — c be a linear polynomial dividing p. Then it suffices
to prove the assertion and estimate of the above type with ‘p = p/I in place of p and
2N*1C” in place of C”.
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Put ¢ = a/|a| and let H = [7'(0). Then ¢ : HXC — a}_, (v0,2) — vo + 2€
is an affine isomorphism such that /o ¢(vy,z) = z. Then clearly, (vo,z) — ‘p(vo +
7€) j(vo + z€, 1) is holomorphic on H X C\ {0}. Furthermore, for v in the complement
of ¢(H x D(0, %)) we have the estimate (14.6) with *p in place of p and 2C’ in place
of C’.

Let now (vg,z) € Hx D(0, %). Then by the Cauchy integral formula we have
1 / 'p(vo +w&)j(vo +wé, n)
2700 Jyw|=1 (w-2z)

1 p(vo +wé)j(vo +we,n)
o

2 w(w — 7)

dw

‘p(vo+2€)j(vo+2€,1)

dw.

The formula holds a priori as an integral formula of C™*°(K/Kp : o)-valued functions.
However, as the integrand has values in C™* (K /Kp : o), itreadily follows that‘pj( -, n)
is C™*(K/Kp : o)-valued. Furthermore, by a straightforward estimation we obtain:

C'(1+ |vo + wé|)N

I'p(vo+28)j(vo+z€,n)l-s < |S1|1P1 o =Tl < 2C" (2 + o)™
< 21+ vy + 2E V.

O

The above estimates give rise to the following uniformly moderate estimates for
matrix coefficients of Whittaker vectors with smooth vectors.

Theorem 14.9 Let R € R. Then there exist constants N € N, r, s > 0 and a continuous
seminorm n on C*®(K/Kp : o) such that for all f € C*(K/Kp : o), alln € H ¥,
v e ap.(P,R)andx € G,
(f s 75y (0 (P, vom)] < (14 [v]) Ve IRVIHDIrIHO, ()
We prepare for the proof with a few lemmas.

Lemma 14.10 There exists a constant s > 0 such that for all g € C*(K/Kp : o),
v Eay, anda € A,

1750 (™ Dgllo < e IRevIHloPDIogal )1y

Proof. The constant s is built in to make the assertion independent of the choice of
norms on a and a*. Here we will need that [v(H)| < s|v||H| for v € a}, and H € a.
Define g, : G — H, by

gv(kmapii) = a,"™*" o (m™")g (k)
for (k,m,ap,i1) € K x Mp x Ap x Np. Then for k € K we have [ﬂp’mv(a‘l)g](k) =
gv(ak) from which it follows that

175, (@™ DEl ()l

IA

e(—Re v+pp)(Hp(ak)) ||g(/<,3(ak)) Il

< eSIRev—pPIIHP(ak)I||g||0.

Since |[Hp(ak)| < |loga| the required estimate follows. O
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Lemma 14.11 Letu € U(g). Then there exist constants N € N, r > 0 and t € N such
that for all f € C*(K/Kp:0),v € ap_and a € A,

175, ()75, (@) fllo < (14 [y])V e ReVIHozaleriiozely g,

Proof. In view of the PBW theorem we may assume that a acts via the adjoint action
by a weight £ on u. Accordingly we have, fora € A,

IA

-1
af|np gy (@ Nmp o, () fllo
< (/,.Y(IReVI+|pP|)|IOgaI‘ef(IOga)||7T]3 ) fllo
= Lo,V

-1
||7T13,0',V(u)7T15,0',v(a )f”O

by application of the previous lemma. The proof is finished by application of Lemma
12.2. a

Completion of the proof of Theorem 14.9. Itis clear that it suffices to prove the estimate
for x = a € A. By Theorem 14.8 there exists a constant N > 0 and a finite collection
F c U(g) such that for all f € C*(K/Kp: 0),allv € ap (P,R)andall a € A,

(S s (@ (Boors v < (1 DVl mas 7p ., ()75 (™) f .

The proof is now readily completed by application of Lemma 14.11. a

15 Uniformly tempered estimates

The purpose of this section is to obtain uniformly tempered estimates for holomorphic
families of Whittaker functions satisfying requirements of moderate growth.

Let P be a standard parabolic subgroup of G and (o, H,) a representation of the
discrete series of Mp. For & > 0 we put

ap(e) ={veap. | |Re(v)| <&}

Definition 15.1 By a holomorphic family of Whittaker maps associated with (P, o)
and g9 > 0 we mean a family of maps

wh, : C*(K/Kp : o) — C*(G/Ny: x), (v € ap.(£0)), (15.1)
given by the matrix coefficient formula
why () (x) = (npp ()7 . i) (15.2)

with j; € C"(P : 0 : V),, (v € a}.(£0)), such that v = j, is holomorphic as a
C™™(K/Kp : o)-valued function.

Remark 15.2 Let (th)Vea; < (#0) be a holomorphic family of Whittaker maps as above.
We note that the following assertions are valid.
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(a) The map (v, f) + why(f), ap.(g0) X C*(K/Kp : o) = C*(G/No: x) is
continuous and holomorphic in the variable v.

(b) For each v € ay,_(go) the map (15.1) intertwines the generalized principal series
7p -, With the left regular representation L.

Remark 15.3 It follows from Theorem 14.4 that for any &9 > O and all £ € H;”), the
family (Why)vea*PC(go) of maps HyY — C*(G/Ny: y) defined by
WhV(f) (X) = <7T13,(r,—v(-x)_1f 4 .](p’ o, 177 f))

is a holomorphic family of Whittaker maps associated with (P, o). Furthermore, by
Theorem 14.9 it satisfies the condition of uniform moderate growth mentioned below.

To keep notation manageable, we will write
Ip, :=C%(K/Kp: o). (15.3)
Furthermore, we will use the notation
|(v,a)| == (1+|v[)(1 +[logal),
fora e Aandv € aj,_.

Definition 15.4 A Whittaker family (wh, ) as in Definition 15.1 is said to have uniform
moderate growth if there exist constants r, s, N > 0 and a continuous seminorm n on
I such that

lwh, (£)(a)] < |(v,a)|NeReviltogal rilogalyy gy (15.4)

forall f eIy ,vea,.(g)anda € A.

If we combine the estimate (15.4) with Lemma 2.5, then we see that for any linear
functional ¢ € a* with £ > r| - | on a* we may adapt the continuous seminorm 7 so
that for all f € I}y _ we have

lwh, (f)(a)| < |(v,a)NeRevillosal sy () (15.5)

forall a € A and v € aj},_(&0). We fix such a choice of £ and observe that in particular
&> -pona'.

The above estimate can be improved to a much sharper estimate of uniform tempered
growth for ¢ > 0 taken sufficiently small. More precisely, we have the following result.

Theorem 15.5 Let G = °G, and let (Why)yea}c(go) be a holomorphic family of Whit-
taker maps as in Definition 15.1. Assume the family satisfies the condition of uniform
moderate growth formulated in (15.4). Then for € > 0 sufficiently small there exist
constants s > 0, N > 0 and a continuous seminormn on Ip _such that forall f € Ip ,
allv € ap (&) and all a € A,

\wh, (f)(a)] < |(v,a)NesRevIllogalg=ry £y, (15.6)
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Before turning to its proof, we first formulate a useful consequence of the above
result.

Corollary 15.6 Let hypotheses be as in Theorem 15.5 and let € > 0 be such that the
conclusions of the theorem are valid.

Let u € U(g). Then there exist s > 0, N > 0 and a continuous seminorm n on I;’fjg
such that for all f € Iy, all v € ap (&) and all x € G,

|Lu[why (NI < (1+ VDN (1 + [H ) N e AW H D (1) (15.7)

Proof. In view of Remark 15.2 (b) and since 7% o (u) acts continuously on I’ _, with

polynomial dependence on v, the estimate (15. 6) glves rise to an estimate
|Lulwhy (N (@)] < (v, @)V et oecla™en(p), (15.8)

forall f €Iy ,allv € ap (&) andalla € A, provided N and n are suitably enlarged.
For a given finite subset S ¢ U(g) we may enlarge N and n further to arrange that
the estimate (15.8) is valid for all # € S and all f, v, a as before.
For k € K,a € A and n € Ny we have

|Lu(wWhy(f))(kan)| = |Lg-1L,(Why(f))(@)] = [Laggg-1),Why (Lg-1 f) (a)].

We may write Ad(k™"u = 3, ¢;(k)u; with S = {u;} a finite subset of U(g) and such
that ¢; : K — C are functions with sup-norm bounded by C > 0.

We may enlarge N and n so that the estimate (15.8) is valid with u replaced by any
element of S and for all f, v, a. There exist a continuous seminorm n” on I}’ _ such that
no Ly < n' forall k € K. From the last estimate mentioned above we now readlly infer
that for all f € I’ , all v € ap (&) and all (k,a,n) € K X A X Ny,

|L,(Wh, (f))(kan)| < |(v,a)|NesReIlcealgmploga o) g17(£).

Enlarging N and n once more, we obtain the required estimate (15.7). ]

In the proof of Theorem 15.5 the following terminology will be useful.

Definition 15.7 We will say that a functional £ € a* dominates the given Whittaker
family (wh, ) if there exist € > 0,5 > 0, N > 0 and n as above such that the estimate
(15.5) is valid for all f € I , v € ap.(g) and a € A.

Proof of Theorem 15.5.  Clearly it is sufficient to prove that —p dominates the
Whittaker family (wh, ). We will achieve this by improving £ in a finite number of steps,
each step corresponding to a simple root @ € A, by using the asymptotic behavior of
wh, (/) along standard maximal parabolic subgroups.

Since °G = G, the collection A of simple roots in £* is a basis of a*. Let (g )qea
be the dual basis in a. We will now establish an improvement step for each @ € A.
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Put ® = A\ {a}. Then Pg is a maximal parabolic subgroup with split component
Agp = exp(Rhy).
We define the partial ordering < on a* by

A<pu < A(H) <u(H) forall H € a". (15.9)

The condition on the right is equivalent to A(h,) < u(h,) for all @ € A.
Given ¢ € a* we write i,(&) for the element in & + Ra satisfying i, (&) (he) =
—p(hy). Equivalently, i, (&) € a* is determined by

§(hg)  for B e A\ {a};

ia(f)(hﬁ)={ —p(hy) for B=a.

Lemma 15.8 If & > —p, then for every simple root a € A it holds that i, () > —p.

Proof. This is straightforward. u

Lemma 15.9 (Improvement step) Suppose that & € o dominates the Whittaker
family (why) and satisfies & > —p. Let a € A.

(@) If E(hy) — 1 = —p(hy) then for every ¢ € [0, 1), the functional &' = & — ca
dominates (wh,) and satisfies &' > —p.

(b) Ifé(hy) — 1 < —p(hy), then i, (€) dominates (wWh,) and satisfies i, (£) = —p.

The rest of this section will be dedicated to establishing this lemma. Before turning to
the proof of the lemma we will show how Theorem 15.5 can be deduced from it.

Completion of the proof of Theorem 15.5. Let @ € A and assume that & € a*
dominates (wh, ) and satisfies & > —p. Then £(h,) > —p(hy). Let k be the smallest
natural number such that £(h,) — k < —p(hg). Then there exists a ¢ € [0, 1) such that
&(hy) — ke = —p(hy). By applying (a) of the above lemma k-times successively, we
find that ¢” := ¢ — kca dominates (wh,), while &” > —p. Since " (hy) — 1 < —p(hy),
we may apply (b) of the above lemma to conclude that i, (¢”) dominates (wh,) and
satisfies i, (£”) > —p Since i, (£”) = i, (&), we conclude that i, (¢) dominates (wh,,)
and satisfies i, (£€) = —p.

Let now a1, ..., a, be a numbering of the simple roots from A. Then by the above
reasoning it follows that & := iy, o - -+ 0iy, () dominates (wh,) while & > —p.
Since (hy)qea is the basis of a dual to A, it is readily verified that & = —p. O

Start of proof of Lemma 15.9. We assume that (whv)veajoc(g) is a Whittaker family
associated with (P, o) which is dominated by £ € a*. Moreover we assume that & > —p.
We fix a simple root @ € A and put ® := A\ {@}. Our goal is to establish the two
assertions (a) and (b) of Lemma 15.9. For this we will need a proper exploitation of
the differential equations satisfied by the given Whittaker family.
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For X € g. we denote by X the complex conjugate of X relative to the real form g.
Let U(g) denote the universal enveloping algebra of g-. The map X — X has a unique
extension to a conjugate linear algebra isomorphism U(g) — U(g), which is denoted
by u — . In particular, this means that uv = v for u,v € U(g).

For X € g we have

Rx[wh,()](x) = {(n(x" ) f, 7p.5.5(X)jo)s (15.10)

for f € Iy, v € ap. (&) and x € G. By complex linearity (15.10) is valid for all
X € gc, which leads to the similar formula with X replaced by a general element of
U(g). Let t be a maximal torus in my; then

h=tda

is a Cartan subalgebra of g. We put b; :=it* @ a*. Then ; is the real span of the roots
of Be in gc. Let y : 3 — P(§)W® be the Harish-Chandra isomorphism for (G, b)
and let yu,, : 3(Mip) — S(H)"P® be the similar isomorphism for (Mip, ). Let
Ay € B2 Nm, be an infinitesimal character for the representation o~ of the discrete
series of Mp, by which we mean that yp( -, Ay ) is the character of 3(Mp) by which
it acts on H;Y. We note that A, belongs to the real span of the roots of (m;p, b), hence
to it* ® *aj. Applying formula (15.10) with Z € 3 in place of X, we find that

Rz[wh,(f)] = V(Z’ Ay +7V)why(f) =y(Z,-As +v) Why(f), (I5.11)

for all Z € 3. Following an idea similar to the one in Section 4, but with dependence
on parameters, we will exploit this system to establish the improvement step of Lemma
15.9.

The standard parabolic subgroup Pg has split component Ag := exp agp = exp Rh,.
We agree to write ‘ag for the real linear span of the elements hg with § € ® and,
accordingly, ‘Ag = exp(‘agp). We note that a = ‘ap ® ap and A = ‘ApAe, see also
(2.10).

We denote by 310 = 3m,, the center of U(m). In view of the PBW theorem
we have U(g) = U(m) ® (NpU(g) + U(g)ne). The associated projection U(g) —
U(m;g), restricted to 3, defines an algebra homomorphism

p:3— Jio.

It is well known that p is injective and that 3¢ is a free p(J3)-module of finite rank.
Letuy,...,u,be afree basis of this module, and let E¢ the complex linear span of this
basis. Then it follows that

1o =Eap(3).

Moreover, the map (u, Z) — up(Z) induces a linear isomorphism Ep ® 3 =~ 3i0.
In the formulation of the following lemma, ) is a #-stable Cartan subalgebra of g
containing a. Thus, j =t @ a with t a maximal torus in m.
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Lemma 15.10 [f I is a cofinite ideal of 3, then Iy := Egpp(I) is a cofinite ideal in
31@- Furthermore, if Ao € Y. is an infinitesimal character for 310 appearing in the
quotient module 31a /1o, then there exists an infinitesimal character A € Y for the
3-module 3 /1 such that

Ap € W(f))/l — Pod- (15.12)

Proof. Letu € Ep and W € 319 then Wu = 3 u;p(Z;) with Z; € 3. It follows that
Wup(I) C 2ju;jp(Z;)p(I) = X;u;jp(Z;I) C Egp(I). This shows that E¢p(I) is an
ideal. In view of the linear isomorphism Ep ® 3 — 319 we have 310/Eop(I) =
Eop(Z)/p(I) as complex vector spaces. Since p(Z)/p(I) is finite dimensional, the
cofiniteness of I follows.

Let ¢ € 310 be a character appearing in 31¢/le. Then there exists a k € N and
an element v € 310 \ Io such that (W — &(W))*v € Ip for all W € 3. In particular
the latter is valid for W = p(Z), Z € 3. Decompose v = >, u;p(Z;) with Z; € 3. Then
it follows that [p(Z) — £(p(Z2))1*p(Z;) € p(I) forall Z € 3 and all 1 <i < £. By
injectivity of p this implies that

[Z-&(p(2)]*Zi e 1, (15.13)

for all Z € J and all i. On the other hand, v ¢ I implies that Z; ¢ I for at least one i.

Combining this with (15.13) we infer that the character £ o p € J appears in 3 /1.
Lety : 3 — P(bg)W(b) and yio : J1g — P(bg)qu’(b) denote the canonical
isomorphisms. Then it is well known that

Yioop =Tpy o,

where T, € Aut(P(h7)) is the translation p — p(- + pa).

Let Ag be as stated. Then & = y1¢( -, Ap) is a character of 3¢ which appears in
31o/lo. It follows that £ o p is a character of 3 appearing in 3// hence of the form
y(-,4), with 4 € h%. We now conclude that for all Z € 3 we have

Y(Z, 20 + pa) = v(Z, A).

This in turn implies that ¢ + po € W(h)A. a

If I < 3 is cofinite, we denote by spec(J/I) the (finite) collection of infinitesimal
characters appearing in J3/I. Since U(ag) is a submodule of 3¢, the 3;p-module
31o/Eop(I) is a U(agp)-module as well.

Corollary 15.11 Let I < 3 be cofinite. Then the set of ap-weights in 310/Eop (1) is
contained in

U/lespec(3/1)W(b)/l|aq> — Po-

Proof. Apply Lemma 15.10. O
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We now specialize to the ideal I, = kery( -, —As +v) for v € aj,_. Then
spec(3/1y) = WD) (-Ag +v).
Corollary 15.12 The inclusion map induces a linear isomorphism
Eo — 310/310p(1). (15.14)
The set wt(v) of (generalized) ag-weights in the displayed quotient equals
wt(v) = W(D)(-Ag +V)lap — o>

We write Eg, for the space Eq equipped with the ag action for which the map
(15.14) becomes an isomorphism of ap modules. We agree to write Bj(v) for the
linear map by which A, acts on Eg . There exist unique ZJ’.C € 3 such that

4
hotj = > wp(Zf), (1<) <0, (15.15)
k=1

Since Z]’.‘ - y(Z}‘, —Ag +v) € I, it follows that, for all v € a,_,
Bi(v)u; € ZV(ZIf, Ao +V)ur + J1op(1,).
k

Therefore, the matrix of B (v) relative to the basis uy, ..., us of Eg is given by
Bi(n)5 =v(Z},-As + 7). (15.16)

In particular, it follows that v +— B;(v) is polynomial aj,. — End(Ee).
Let I,, denote the left ideal in U(g) generated by the elements Y — y..(Y) for Y € ny.
Let I, denote the left ideal in U(g) generated by the ideal /,.

Lemma 15.13 There exist elements v; € noU(Ng + my) such that
houj = Bi(Muj—v; € Ly + Iy, (1<) <0).

Proof. LetZ;.‘ € Jbeasin(15.15). Nowp(ZJ’?)—Zj’.‘ € nopU(g),andsinceu; € U(m o)
it follows that also

urp(Z§) —ur Z§ € fioU(g) = fioU (fig + m)U(no).
We note that any W € U(np) equals y.(W) modulo /,, hence
ukp(ZJ]?) - ukZJ]-‘ € vf + 1y,
with uf € fipU (fig + my). It follows that for all v € a},_,
ukp(Z]’.‘) — uky(Z]?, Ao +Vv) — v;? €l +1,,.

Summing the above over k, putting v; = >}, vj? and using (15.16) we obtain the desired
assertion. O
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We proceed with the proof of the improvement step of Lemma 15.9. For f € Ip |
and v € a},_(¢) we define the function F(f,v) : A — C’ by

F(f,v,a); = (- (a)™ [, 77 (u))j7),

where we briefly wrote x, for 75, . We define the function R(f,v) : A — End(CY)
by
R(f.v.a); = (n_y(a)"" [, m5(v)) ).

——T
Furthermore, let B(v) € End(CY) be the endomorphism with matrix equal to B (¥) .
For the following result we recall the decomposition A = ‘ApAg. It allows us to
decompose any element a € A in a unique way as

a ="‘aa;,
with ‘a € ‘Ag and with a; = expth,, (t € R).

Lemma 15.14 The function F introduced above satisfies the equation

%F(f, v, aa;) = BOW)F(f,v, aa;) + R(f,v, aa;),

Jorevery f € Ip andall v € ap.(€0), 'a € Ap andt € R.

Here B is a polynomial function a, . — End(CY). For every v € ap,. the spectrum
of B(v) satsfies

spec(B(v)) C {w(=Ag +v)(ha) = p(he) | w € W(D)}, (v € ap).

Proof. Noting that I, ; and I, vanish on j;, we obtain that the functions F; introduced
above satisfy the equations

(n_y (@)™, my(hou;) j5)

= (ny ()7 f, 7y (B1(F)uj +vj) js),

d .
EFj(f’ v, ad;)

forall f €17 , v € ap.(&0), ‘a € ‘A and t € R. This gives the required equation,

with B(v) as asserted. The spectrum of B(v) equals that of B;(¥) hence consists of
the elements

w(=Ag +V)(hq) — po(ha), (15.17)

forw € W(D). Since A, € hy = it" & a* whereas W (D) leaves hr invariant, it follows
that for each w € W(h) the value w(-Ay)(hy) = —Ags(w™'hy,) is real. Likewise,
it follows that wv(h,) = wv(hg). Finally, since p(hy) = po(hy), it follows that the
element (15.17) equals w(—Ay + v)(hy) — p(hy). a
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By integration the equation of Lemma 15.14 leads to the equality
t
F(f,v,‘aa,) = BV F(a) + BV / e TBIR(F, v, a) d, (15.18)
0

for felp, ,ve ay.(£0), 'a € Ap and 1 € R. We will first derive estimates for F and
R, following from the information that £ € a* dominates wh = (wh, ). This means that
there exist € > 0, s > 0, N > 0 and a continuous seminorm 7 on I;,‘ja such that (15.5)
isvalidforall f eIy ,ve ap.(g) and a € A.

Lemma 15.15 There exist € > 0,5 > 0, N > 0 and a continuous seminorm n on I;‘f -
such that
IF(f.v.a)ll < |(v.a)|NelReMIoedlgén 1) (15.19)

forall f eI’ vea*(e)anda € A.
Proof. We take € > 0 sufficiently small such that the estimate (15.5) is valid. Since

F(fov.a); = (noy(@) ay (@) f . jr) = why (- (@) f) (@)

the estimate (15.19) follows from (15.5) with the same s and possibly enlarged constant
N > 0 and enlarged seminorm n. O

Remark 15.16 (structure of proof). Throughout the proof of Lemma 15.9 we will
prove assertions of the form

d(e,s,N,n) : A(e,s,N,n) (15.20)

where A(eg,s,N,n) is an assertion (usually containing an estimate) depending on
positive constants &, s, N and a continuous seminorm n on [’ - Moreover, the assertion
has the property that for any (&’,s’, N’,n’) withe’ < e,5' > s,N' > Nandn’ > n,

A(e,s,N,n) = A(g,s',N",n’). (15.21)
A typical assertion of this type is the assertion
V(f €I3,.v € apacA): [F(f.v.a)| <|(v.a)|NeRellogdlgly (f)

of Lemma 15.15. The proofs of assertions of this type will make use of finitely many
valid similar assertions (&, s, N, n) : A;(e,s, N,n),fori € I, with I afinite index set. If
all A; have the property (15.21) then it follows that also (&, s, N, n) : AiejAi(g, s, N, n)
is valid. Indeed, if A;(&;, s;, N;, n;) is true for every i € I, then A;(g, s, N,n), fori € I,
are simultaneously valid as soon as € < min;g;, s > max;s;, N > max; N; and
n > max; n;. In the proof we shall indicate this informally by saying that A;(e, s, N, n)
are valid for sufficiently small & and sufficiently large s, N and n. A logical reasoning
will then give the validity of A(g’,s’, N’,n’) for suitably chosen &’,s’, N’,n’, which
finally allows the conclusion that (15.20) is valid.
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Lemma 15.17 There exist € > 0,s > 0, N > 0 and a continuous seminorm n on I -
such that
IR(f,v,a)|| < |(v,a)|NesIRevIllogal yé=a (1) (15.22)

Jorall f €lp v e ay.(g) and a € A.
Proof. We recall that R(f,v) is the C’-valued function defined by

R(f’ v, a)j = <7T—V(a)_1f’ 7T17(Uj)j\7>'

We will now derive the estimate for R with the required properties of uniformity. For
this we note that 7;(v;) j5 may be written as a finite sum of terms of the form 7;(U) j;,
with U € U(iip)U(fip + my) of a-weight —u € — 3 5o NS such that u(hy) > 1. Each
corresponding term r(f, v, a) in R(f, v, a); may be rewritten as

(o (Un-y(Caa)™" [, js)
Caa) ™ (m_yCaa) ™ 7 (U, jy)-

r(f,v,a)

We note that the restriction of u to ‘agp equals the restriction of pe = e 1B tO
this space. For each f € ® we may select a simple root vector Xg € gg such that
x«(Xp) = 1. The product X := [[4co Xgﬁ belongs to U(ny), satisfies y.(X) = 1 and
has a-weight ug. Therefore,

Ad(aa;)X = Ca)*X

and it follows that

(\aat)_#<7T—V(X*)7T—v(\aal)_lﬂ—v(U*)f’ J#)
(a) ™ (n_y(Caa) ' n_, (X*U")f, j7)
= (a)why (n-,(X*U") f)(aa,).

r(f,v,a)

We now select &, 5, N > 0 and n a continuous seminorm on [/’ _ which make (15.5)
valid for f, v, a in the indicated sets. Then it follows that there ex1sts aconstant C, > 0,
only depending on u, such that

r(f,v.a) Culan)* (‘aa))?|(v, a)|N e’ ReVIloetaadly (_, (X*U*) f)

(\aaz)g_a| (V, Cl) |N€S|Rey|| log(*aay)| ’(f)

IA

IA

with n” a seminorm on I _, independent of f. Combining the above estimates and
enlarging n, N if necessary, we find that

IR(f,v,a)|l < |(v,a)|NesRerllogal géay,( £y,

forall f € Iy ,v € a,.(¢)anda € A. O
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Our next goal is to show how this stronger estimate on the remainder term leads to
an improved estimate of F', hence of wh, ( f) = F;(f, v). For this we need to decompose
the formula (15.18) into parts corresponding to the spectrum of B(v). In the course of
the argument we will impose finitely many conditions on the constant & > 0, ensuring
it is sufficiently small.

Let us first analyze the spectrum of B(v), in particular its dependence on v. For
w € W(h) we write x,, = —w(Ay)(hye) — p(he) Which is a real number as shown in the
proof of Lemma 15.14. For every v € aj,_ the spectrum of B(v) consists of complex
numbers of the form

Xw +w(v)(hq),

for w € W(b). Put
X ={xy [we WD)}

Lety > 0 be a positive real number such that all distinct elements x| and x, of X satisfy
|x1 — x2| > 2. Fix &1 > 0 such that

1 1
g1 < =vylhe|™.
1 27| a'|
In the course of this section we will always assume that 0 < &€ < g7.

We note that W(b) preserves the subspace hr = it + a of h.. Let p, denote the
projection hr — a along it. Then for all v € a},_(¢) and w € W()) we have

IRe [v(w™ (ha))]|
IRe [v(pa(w™ (ha))]]
IRe v||pa(w™ (he))| < [Rev]|hql.

Re (wv(ha))|

IA

Likewise, for all v € a}k,c we have
[Tm (wv(he))| < [Tmv||hg|.

Given x € X and w € W(}) such that x,, = x we thus see that for all v € a},_(g) we
have

IRe (x, + wv(hy)) — x| < |Rev||hy| < v/2, (15.23)

and
[Im (x, + wv(he))| < [Im (v)||hg]. (15.24)

Fort e Randv e (11*)C we define
Ci = 2+ 1D A+ )

and the rectangle R(¢,v) C C to be the set of points z € C such that

[Rez| < [Rev||ho)|+Cry,  Imz| < [Imy||he|+ Cyy.
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Then it is readily seen that, for # € R and v € a},_(¢), R(¢,v) C [~y,y] + iR, from
which it readily follows that the translated rectangles x + R(¢, v) are mutually disjoint.
For v € a},_(¢) we define S(v) to be the rectangle of points with

[Rez| < [Rev||ho)|, [Imz| < [Imv||hel.

Then it is clear that S(v) is contained in the interior of R(z,v) so that the translated
rectangles x + S(v), (x € X), are mutually disjoint as well. Furthermore, it follows
from the estimates (15.23) and (15.24) that

spec B(v) = U spec B(v) N [x + S(v)]. (15.25)

xeX

For x € X and v € aj_(&) we denote by Py(v) the spectral projection of B(v)
onto the sum of the generalized eigenspaces corresponding to the eigenvalues from
spec B(v) N [x + S(v)]. Then P, is a holomorphic function on a},_(&) with values in

End(C’). We note that
I= Z P.(v).

xeX

Lemma 15.18 There exists a C > 0 such that for every x € X, all t € R and
v € ap.(&1),

e BP. ()| < C(1 + [e])P (1 + [v])P e HhallReviidl (15.26)
Proof. Since for all t € R, v € a},_(&1) we have that
spec B(v) N (x + R(t,v)) C x+ S(v) Cint(x + R(¢,v)), (15.27)

it follows that

1

Px(v)etB(V) = —/ e’“(z1 - B(v))! dz.
2mi x+0R(t,v)

We will complete the proof by estimation of the integral. First of all, the length of the
boundary of x + R(t, v) is estimated by

length(AR(t, v)) < 2&|hg| +2|v||ha| +4C,, < 3ye (1 + |v]). (15.28)
For z € x + OR;,, we have
—txelz| < e|t||RCZ—X| < eltHReVHhal'*'lt'Ct,v’

le

so that
le'?| < e ellRevlltal /2, (15.29)
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If x,x” € X then the distance from x + OR (¢, v) tox” +S(v) is at least C; ,,. From (15.25)
and (15.27) we now see that for z € x + dR;, the distance of z to the spectrum of B(v)
is at least C;,, so that

|det(zl = BO)IT < Gy < @) (L+ 1) (1 + )"
In view of Cramer’s rule, there exists a constant C; > 0 such that, for all A € GL(¢, C),
1A7H] < Cel et A]7H(1+ AN
Applying this with A = (z/ — B(v)) we see that for z € x + dR(¢,v),
Iz = B < Ce2/y) (1 + 1) (1 + v (lzl + 1BOHID .

As v — B(v) is polynomial in v, there exist constants N € N and C’ > 0 such that for
allt e R,v e ap and z € x+IR(1,v),

|zl = BOY) 7' < C(L+ )i+ vV, (15.30)

Combining the estimates (15.28), (15.29) and (15.30) we infer the existence of a
constant C > 0 such that for all # € R and v € aj},_(&1) the estimate (15.26) is valid
with p = max(¢, N + 1). |

We now decompose F(f,v,a) and R(f, v, a) into components
Fx(f, V7 Cl) = PX(V)F(f’ V’ (l), Rx(f’ V’ Cl) = PX(V)R(f’ V’ a)'

Then using (15.26) with ¢ = 0 we obtain, after decreasing £ > 0 and increasing N and
n suitably,
IE (v, @)l < [(v, @)V el lee el afn )

and
IR.(f, v, @)l < |(v,a)|VesRevllioealgéay p)

forall felp ,ve ap.(€),a € A.
We will now obtain sharper estimates for Fy, for each x € X. Our main tool will be
the following identity which follows from (15.18) by application of P, (v);

t
Fx(f,v,‘aa,):e’B(V)Fx(f,v,‘a)+etB(V)/ e TBIR(f, v,a) dr.  (15.31)
0

In the course of this proof we will need to distinguish two cases, depending on which
of the following sets x belongs to:

Xy =XN1&(hy) —1,00[, and X_:=X\ X;. (15.32)

There exists a constant ¢ € [0, 1] such that (£(hy) — [co, 1[) N X = 0. Furthermore,
we fix an arbitrary ¢ € [cg, 1[. Then for all x € X the following assertion is valid:

x>E&(hy)—1 & x>&(hy) —c. (15.33)
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We put ¢ := ¢ — ca; then by (15.33) we have, for x € X,
x€ Xy & #(x—E&(hy)) > 0.
We fix &5 > 0 such that
&' (he) + [-&2|hal, £2|hal] N X = 0.

In the course of this section we will always assume that 0 < & < &;. Then for every
x € Xandallv € a},_(¢) the real part of the spectrum spec[B(V)|im (p,(v))] is contained
in [ x — €|lhyl|,x + €|hyl|], which is contained in the interval |£'(h,), oo if x € X, and
in the interval | — o0, &' (he)[ if x € X_.

Lemma 15.19 Assume that ¢ € o* dominates (wh,)) and let &« > 0 be simple. Then
there exist e > 0, N > 0, s > 0 and a continuous seminorm n on I\ such that for every
fely, veay.(e),'a€ Ao, andt > 0 the following estimates are valid.

(a) If x € X_, then
t
[ /0 e"DBOIR (£.v, aar) dt || < |(v. aar)|N (aa,)f eRevIlozCaanly (£

(b) If x € X4, then

[ / eOBOIR (f.y Naar) dr || < (v, aap) N Caay)E e RevlloeCaal, p).
t

with absolutely converging integral.

Proof. After decreasing £ > 0 and increasing s, N and n if necessary, we obtain, for
all fely ,ve a};c(s) ‘ae‘Ap and i, T € R,

le DB (f. v, aar)l| < Cy(v.'a) Dy(v.t. ) n(f).  (15.34)

where
CN(V, \a) — |(V, \a)lN(\a).feSIRe v||log‘a|

and

DN(V, t, T) — |(I, T)|Ne(t—T)xe(s+1)|Rev||ha||T|(aT)f—a
(2, T)|Netxe(S+I)IRe Vllhalltl  [=x+€" (ha)l7 ,(c=D)T

Here we have used the notation |(z, 7)|N = (1 + |7|)¥ (1 + |¢|)" for 7,1 € R.
In order to prove (a), assume that x < &’(h,). Then we may fix 5 > 0 so that

gs(s+ D)he| —x+E&(hy) > 0.
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By decreasing & further if necessary, we may asssume that 0 < & < g;. Then for ¢t > 0
and v € a.(g) we have that the function

1 o p(HDIReVllhal It , [-x+€ (ha)lz

is increasing on [0, ], hence dominated by its value at ¢, so that

t t
/ Dy(v,7,t)dr < elttDReVIhaltE ha)lt / (1+(t, 7))Ne VT ar
0 0
< C/e(s+1)|Rev||loga,|(at)§’(1 + | IOg atl)N’
where -
C’:/ (1+7)Nele D7 gr. (15.35)
0

We observe that (‘a)¢ = (‘a)¢’". Accordingly, it now follows that
t
Cn(v,'a) / Dy(v,7,0)dt < C'|(v, aay)|?N 2D RevillogCaanl g g )¢
0

In view of (15.34) we finally obtain the desired estimate of (a), with s, N and n chosen
large enough.
We now turn to (b), and assume x > &’(h,). Then there exists &} > 0 such that

s+ 1)|hy| —x+&(hy) <O.

Decreasing ¢ further if necessary, we may assume that 0 < & < &. Then for ¢ > 0 and
v € a;(¢) the function
T > e*etDIReV|halIT| ,[—x+& (ha)lT

is decreasing on [f, co) hence dominated by its value at ¢, so that

/ T Dy(ardr < elGTDRe Il (o)l / (1 [ DN
t t

C,(l + | logatl)Ne(s+1)|Rev||loga,|(al).f”

IA

with C’ given by (15.35). As in the first part of the proof, we now infer that
Cn(v,'a) / Dy(v,7,0)dt < C'|(v, aa,)|*N 2t DIRevIlogCaanl g g y¢',
t

Using (15.34) and further enlarging s, N and n if necessary, we obtain the desired
estimate of (b). O
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Proposition 15.20 Let the Whittaker family (wh,) be dominated by ¢ € a*. Assume
that ¢ > —p. Let x € X.

(@) Ifx < &(hy) — 1, then F, is dominated by &’ = ¢ — ca for all c € [0, 1).
(b) Ifx > é(hy)—1 = —p(hy), then Fy is dominated by ¢’ = ¢ —ca forall c € [0, 1).
() If x > &(hy) — 1 and é(hy) — 1 < —p(hy), then Fy is dominated by i, (§).

Before we continue with the proof of Proposition 15.20, we will first argue that
the proposition is sufficient for the proof of the improvement step asserted in Lemma
15.9. We first observe that F is dominated by a functional 8 € a* if and only if every
component F\, for x € X is dominated by 6, where the obvious extension of the notion
of domination is assumed.

Proof of Lemma 15.9. We begin by observing that the hypothesis on ¢ in Lemma 15.9
(a) guarantees that ¢’ > —p. In (b) of the lemma, i, (¢) > —p by virtue of Lemma 15.8.
Thus it is sufficient to establish the asserted dominations.

To establish Lemma 15.9 (a), assume that £(h,) — 1 > —p(hy). Let x € X and
assume that x > &(h,) — 1. Then by (b) of the above proposition, it follows Fy is
dominated by ¢’ := & — ca for each ¢ € [0, 1). By (a) of the above proposition, the
same is true for all remaining x € X. This establishes Lemma 15.9 (a).

To prove (b) of Lemma 15.9, assume that £(h,) — 1 < —p(hy). Since £(hy) >
—p(hy), it follows that i, (£) = € — da for a unique d € [0, 1).

If x € X satisfies x < £(hy) — 1, then according to (a) of the above proposition, F,
is dominated by &’ = & — da =i, (£).

On the other hand, if x > £(h,) — 1, then it follows from (c) of the above proposition
that F, is dominated by i,(&).

We conclude that every F, is dominated by i, (&), hence so is F. This establishes
Lemma 15.9 (b). O

Proof of Proposition 15.20. Before we proceed with the proof, we note that in
the cases (a) and (b) it suffices to show that F, is dominated by & = & — ca for all
¢ € [co, 1[. Indeed assume this to be the case and let ¢’ € [0, cg] and put &” = & — ¢,
Then ¢” < ¢ on \ap + Ry h, whereas &7 < € on Yag + R_Ah,. It therefore follows from
the domination of Fy by both & and ¢’ that F), is dominated by &”.

For the actual proof, let x € X. To establish (a) assume x < &(hy) — 1. Let
¢ € [co, 1[. Then obviously x < &'(h,), where & = & — ca. We now have an estimate
of the type of Lemma 15.19 (a). On the other hand, we also have the identity (15.31).
From the domination assumption on F and the estimate of Lemma 15.19 (a) it follows
that there exists € > 0 such that for N, s and the continuous seminorm » all chosen
large enough, we have, for all f € I}’;ja, y € a}c(s), ‘a € ‘Ag, and r > 0,

etB(v)Fx(f’ v, \a) < (1 + |t|)Net(x+|Re V|)|(V, \a)|Nas|Re v||log‘a|(\a)§n(f)'
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Using that (1 +[¢))Y = (1 +|loga,)" < (1+ |loga|)V, that (\a)é = (*a)?’, and that
ot xFRev) o1& (ha) ptIReVllhal — eIRGVIIIOgatI(at)f’
we obtain the estimate
€IB(V)Fx(f, v, \61) < |(V, a)|2Na(s+l)|Re V||10ga|a§'n(f)’

where a = ‘aa;, t > 0. Combining this with the identity (15.31) and Lemma 15.19
(a) we see that we may enlarge N, s and the continuous seminorm » such that for all
fely, .veay.(e)all'a € A and all £ > 0 we have the estimate

Fo(f,v, aa;) < |(v,a)|NesRevlllogal &y (4, (15.36)

After decreasing &, and increasing s, N, n, the same estimate becomes valid for all
fely, ,veayl(e),'ac Apand 1 < 0, provided & is replaced by ¢. Since ¢’ < &

P,o>
on ‘ag + (—o0,0]h,, we see that the estimate (15.36) is in fact valid for all 7 € R. It

follows that &’ dominates F,. This establishes (a).

We turn to (b) and (c) and assume that x > £(h,) — 1. Fix ¢ € [c¢p, 1[. Then by
(15.33) we have x > &’(h,), where ¢’ = ¢ — ca. From Lemma 15.19 (b) with = 0 we
now obtain that the integral

L(f,v,'a) = /(:0 e_TB(V)Rx(f, v, aa;) dt
converges for v € a}, (&) and satisfies the estimate
IZ:(fo v, )l < | @) Neslferiioeel Ca)n( ), (15.37)
provided that € > 0 is taken sufficiently small, and s, N, n suffiently large. Put
F2(f, v, a) = F(f,v,'a) + L(f, v, a). (15.38)
From (15.18) we see that
F.(f,v,‘aa;) = etB(V)Fx‘X’(f, v,'a) + RY(f, v, aa,), (15.39)

where the last term is given by the convergent integral

RY(f.v. aa,) = - / eTIBOIR(f, v, aa,) dr. (15.40)

t

From Lemma 15.19 (b) it follows that £ > 0 can be decreased, and s, N and n increased
such that

RS (£, v, aa)|l < |(v, aa)|N (Caa,)? esRevIloeCaadly (), (15.41)
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forall felp ,ve ap.(g),'a € Ap and ¢ > 0.

From the domination assumption on F we obtain the estimate (15.37) for F.(f, v, a)
in place of I,.(f, v, a), provided we shrink ¢ and enlarge N, s, n if necessary. Here we
need that (‘a)¢ = (‘a)¢ for ‘a € ‘Ag. This observation leads to the estimate

IFS(f,v, )|l < (v, a)[Na*IRevlog al 0 q)&p (1),

forall f € Iy _,v € a,.(&), and ‘a € *Ap. Combining this estimate with (15.26) we
see that we may increase N, n further to arrange that

”e[B(y)F;O(f, v, \a)” < |(V, \a)lN(\a)geﬂReVHlog‘a|ext+|ReV||lOgut|n(f) (1542)

forall f € I‘Xj(r, v € aj;c(g), ‘a € ‘Ag,and t > 0.
We will first consider the case that F° = 0. Then it follows from (15.39) and (15.41)
that
IF(f, v, aa)|| < (v, aan)|¥ Caay)® e Revlioeraadly (f).

for felp, . ve ap.(€),'a € *Ag, t > 0. Here we used that &’ = & on ‘ag. In view of
the assumed domination of (wh,) by &, we have the similar estimate for ¢t < 0, with &
in place of &’. Since &’ > £ on ‘ae + ag, it follows that F, is dominated by &’. In case
(b) we still have that &’ > —p. If the hypothesis of (c) is fulfilled this need not be the
case. However, we may chose ¢ € [co, 1[ such that & < i,(¢) < £ on ‘AgAy, and by
an argument similar to the previous argument, if follows that F; is dominated by i, (¢).
This establishes both (b) and (c¢) under the assumption F° = 0.

To finish the proof, we assume that F° # 0. Then it follows from the proposition
below that x < —p(hy) so that: £(hy) — 1 < x < —p(hy). In particular, we are in (a
subcase of) case (c). From (15.33) it follows that

E'(he) <x £ =p(ha) = i(€)(he).

It now follows from (15.39), (15.41) and (15.42) that, for a suitably enlarged seminorm
n,
I (f.v aall < (v, aa)|" (aap)ie®estRerilios el

for f € I;’,‘i(r, v € ap (&), 'a € ‘A, t > 0. Here we used that i, (§) = & on ‘ag. In view
of the assumed domination of (wh,) by &, we have the similar estimate for r < 0, with
£ in place of i, (&). Since iy (€) = € on ‘ag + ag, it follows that Fy is dominated by
io(£). This completes the proof of Proposition 15.20. O

Proposition 15.21 Let ¢ € a* satisfy & > —p and dominate the Whittaker family
(why). If x € X is such that x > max(&(hy) — 1, —p(hy)), then, for € > O sufficiently
small,

F2(f,v,a) =0

forall f € I;‘ja, y € al*gc(s), anda € A.
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To prove the proposition, we need some preparation.

Lemma 15.22 For every left K-finite f € C*(K/Kp : o) and every v € a;_(P,0)
there exist constants m,C > 0 such that

[why (f)(a)] < C(1+|loga])"a""". (15.43)

Proof. By K-finiteness, there exists a unitary representation (7, V;) of K, a function
g € C¥(tp : K/Kp : o) and a linear functional u € V; such that f = (I ® u)og.
Define the function wh, (g) : G — V; by

WhV(X) = <g ’ 7715,0-,17()5)]17>-

Then clearly, wh, (f) = ¢t o wh,(g). We now note that there exists ayy € A p such that
wh, (g) = Wh(P, ¢, v). From Lemma 9.13 it follows that there exist m, C’ > 0 such
that

Iwh, (g)(a)ll < C'(1 + |log a|)"a®* .

This implies (15.43). O

Corollary 15.23 For every left K-finite f € C*(K/Kp : o) and every v € ay,_(P,0)
there exist constants m,C > 0 such that

NF(f,v,a)|l < C(1+]|logal|)"a®e¥". (15.44)

Proof. The j-th component of F is given by F;(f,v,a) = why(np, _, (u;)f), with
u; € U(g). The function nrp . _, (u;) f is K-finite in C*(K/Kp, o), hence F; satisfies
an estimate of the form (15.44). The proof is completed by the observation that
|log“a| < |logal, for all a € A, by orthogonality of the sum a = “agp + ap. a

Proof of Proposition 15.21. Put Q := a},_(P,0). From (15.39) it follows that
etB(V)F;"(f, v,'a) = Fx(f,v, aa;) — R (f, v, aa;)

We first assume that f € I} is K-finite. Let &’ < &. Then for v € a},_(&’) N € and
‘a € ‘Ag it follows from Corollary 15.23 that there exist constants m > 0 and C > 0
such that for all # > 0,

IEe(f,viaa,)|| < C(1 + |1])"e! & Thal=p(ha)), (15.45)

From (15.40) and Lemma 15.19 (b) it follows, possible after adapting m and C, that
also
IR (f.v. aa)|| < C(1+ ¢! et ha)), (15.46)

again for ¢z > 0. From the hypothesis on x combined with (15.33) we see that there exists
0 > 0 such that x — & > max(—p(hy), & (hy)). Keeping this in mind when combining
the estimates (15.45) and (15.46) we obtain

B ES (£, v, )| < 2C(1 + [o]y"e! e habveo) (15.47)

120



as ¢ > 0. On the other hand, the expression inside the norm on the left-hand side is
exponential polynomial in # with exponents whose real part is at least x — &’|h,|. For
g’ > 0 sufficiently small we have x — &’|h,| > &'|hy| + x — 0 so that by uniqueness of
asymptotics for t — oo we find that

elB(v)F;o(f, v, \Cl) -0

provided v € aj},_(&")NQ. Since the expression on the left is holomorphicin v € aj},_(g),
it follows by analytic continuation that the assertion of the lemma holds for K-finite f.

For every v € aj (&) and ‘a € ‘Ag it follows from the definitions given that
f F2(f,v,'a)isalinear map C*(K/Kp : o) — C’. This linear map is continuous
in view of (15.38) and the estimates (15.36) and (15.37) . As it vanishes on the dense
subspace of K-finite functions, it follows that the given map is zero on the entire space
C*(K/Kp : o). This finishes the proof. O

16 Uniform temperedness of the Whittaker integral

Let P be a standard parabolic subgroup. We recall from (9.6) and (9.7) the definition
of the space Ax(tp : Mp/Mp N Ny : xp). For ¢ in this space and for v € a},_(P,0) the
Whittaker integral Wh(P, ¢, v), defined by (9.12), is a function in C* (7 : G/Ny : x).

Proposition 16.1 Let s be as above. Then v — Wh(P,y, v) extends to a holomorphic
function ay,. — C*(7: G/Ny : x).

Proof. As in the proof of Corollary 9.11 it suffices to prove this for ¢ = ¢ yg¢ with
fe€C¥r:K/Kp:o)and & € Wh,(HY). In that case the result follows from
Corollary 9.10 combined with Theorem 14.4. a

Theorem 16.2 (uniformly tempered estimate) Ler P be a standard parabolic sub-
group. Then there exists an € > 0, and for eachu € U(g) constants s > 0and C,N > 0
such that

IL [Wh(P,y, V)]0 < Cllwll(1+ [vDN (1 + |H(x)|)N e PHsIReN,
forallv € ay, (g),all x € G and all y € Ay(tp : Mp/Mp N Ny : xp).

Proof. We first assume that G = °G. By finite dimensionality of A, p, it suffices to
prove the result for a fixed ¢ of unit length. By linearity of the Whittaker integral in ¢,
and using the decomposition (9.8) and the isomorphism (9.11) we may as well assume
in addition that Y = ¢ rg¢, with ¢ € Wh,(H;) and

feC®(t:K/Kp: xp)C VT®I;)<30—~
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By analytic continuation we then have that

Wh(P,y,v)(x) = (f, 7, 3(x)j(P,0, 7, &))
for all v € aj,. and x € G. In view of Remark 15.3 the map wh, : C*(K/Kp : o) —
C*(G/Ny: x) defined by
wh, Cf)(x) = (f, 755 5 () (P, 7,€))

defines a holomorphic family of Whittaker functions of moderate growth. By Cor.
15.6, there exists an & > 0, and for each u € U(g) constants N, s > 0 and a continuous
seminorm ‘n on C*(K/Kp : o) such that

L [why, ()] < (1+ VDN (1 + [H(x) )V e RMIHDIg=pHON, ()
forall 'f € Iy, x € G and v € ap_(¢). Applying this with *f = ({ ® ) f for { € V;
we find
£ o Ly [Wh(P,y, »](x)| < (1+ [y (1 + [H(x) PN e RMHWIpHO (1 @ £) f).

Now there exists a constant C > 0 such that ['n(I ® {)f)| < C|{| for all £ € V. We
conclude that

1L [Wh(P, ¢, ] ()] < C(1+ )V (1 + [H(x) )V RV mpH ),

for all x € G and v € a},_(¢) as required. This finishes the proof for the case G = °G

In general, the group decomposes as G = °G X Ap, where Ay = exp ap, with
ap = Ngeakera central in g. From the definitions it then readily follows that the
spaces Ay p for G and °G coincide and that

Wh(G, P,y,v)(xa,) = al Wh(°G,°G N Py, v)(x),
fory € Az p, x € °G, a, € Ap and v € aj, with ‘v the restriction of v to °g N a. All

assertions now readily generalize from °G to G. a

Corollary 16.3 Let P € Py. Then forallu € U(g) and v € S(a},) there exist constants
C > 0and N > 0 such that

| L. [Wh(P,y, v;v)](x)|| < Cllwl|l(1+ v (1 + |H (x)])Ne PH®
Jorally € Arp,v €iaj, andx € G.

Remark 16.4 In the displayed equation, we have used Harish-Chandra’s convention
to denote the action of a differential operator by putting it next to the variable relative to
which it is applied, separated from the variable by a semi-colon. In the present context,
if v € S(a}), then v is viewed as a constant coefficient complex differential operator
on aj_, and if ¢ : aj . — V is a holomorphic function with values in a locally convex
space then ¢(v;v) stands for vy at the point v € aj,_..

Proof. This follows from the estimates of Theorem 16.2 by using the Cauchy integral
formula in the variable v, with polydiscs of polyradius (dim ap)~!(1 + |H(x)|)~!. O
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We may now define a Fourier transform ¥p : C(G/Ny: x) — Co(ia*P, A p) by the
formula

TN 00 = WPy = [ FQWRP W) di
No
for f € C(G/No: x), v € iap and ¢ € A p. Indeed, let £ = dim A + 1 then by
Lemma 3.3 the function x — (1 + |H(x)|)"‘e 2°H#™) s absolutely integrable over
G /Ny. By application of Theorem 16.2, we infer the existence of a constant N > 0 and
a continuous seminorm n on C(7 : G/Ny: x) such that for all f € C(7 : G/Ny: x) we
have

|f(Wh(P, ¢, v) ()] < (1+ DN (T +[H@ D e n(f),  (xeG). (16.1)

It follows from this that the Fourier transform is defined by an absolutely converging
integral, and defines a continuous linear operator C(G/Ny: y) — C°(i ap, Az p). By
application of Cor. 16.3 it follows that differentiation under the integral is allowed, and
that ¥p is continuous linear C(G/Ny: x) — C%(ia}, Az p).

Lemma 16.5 Let P € Py. Thenforall f € C(t: G/Ny: x) and every Z € 3 we have
Fo(Rzf) (V) = (ZWFof (V). (v € ia}).

Proof. Lety € Ay p. Since u(Z, -) is polynomial with values in End(Aj3 p) it follows
from () by analytic continuation that

RzWh(P,y,v) = Wh(P, ,L_tP(Z, VY, V)
for all v € aj,_. Hence, by differentiation under the integral sign,

(FP(Rz)(v), ¢y = (Lzvf, Wh(P,,v))2

= (f, RzvWh(P,y,v))
(f s Wh(P, 1 ,(Z", vy, V)2
= (Fpf, p (27 V)¥).

As this holds for arbitrary ¢ € A, p we conclude that

Fp(Rzf)(v) = p (27, v)" Fpf(v), (v eiap).

where the star indicates that the adjoint is taken with respect to the L>-Hilbert structure
on A p. By a straightforward calculation it follows that

H (27 ) = p (2Y, )Y = p (Z,-V) = p,(Z,v)
for all v € iaj,. O
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Let S(ia},) denote the usual space of Schwartz functions on the real vector space
iap. Then the following result is valid.

Theorem 16.6 Fp maps C(7:G/Ny: x) continuous linearly to S(ia}) ® Az p.

The proof follows the usual strategy of applying partial integration, involving
minus the Casimir operator associated with the invariant bilinear form B, see (2.1).
The following lemma prepares for this.

Lemma 16.7 Let L € 3 be minus the Casimir operator. Then

nm(1+|wyﬂupu4v):1
inu;, —

[v|—>00

in End(Aj p).

Proof. By finite dimensionality of A, p it suffices to prove the identity for the restriction
of the endomorphisms to the subspace Ay p, = As(7p : K/Kp : xp), with o a
representation of the discrete series of Mp. Let A, € b be the infinitesimal character
of o and let ¢ be half of the sum of a choice of positive roots for the root system of T
in gc.

The restriction of EP(L’ 1) to Ay p . equals the restriction of Ry (L) = Ly (L)
which is given by multiplication by the scalar

’YMP(EP(L’V)V’AO') = ’}/MP(/-_IP(L’V)’_AO')
= Y(Lv-As) = +Co

with C, = —B*(As, Ay) + B*(0,0) € R, where B* is the dual of B. Accordingly, the
restriction of the limit equals

l*m(1+wnﬂuﬂ2+cH1:L
V|— 00
O

Proof of Theorem 16.6. In the above we already showed that ¥p maps C(7 : G/Ny:
X) continuously to C*(iay,) ® A p. By Lemma 16.7 there exists a constant R > 0
such that for all v € ia}, with |v| = R the endomorphism EP(L’ v) of Ay p is invertible,
whereas the operator norm of its inverse satisfies

e, (Lv) ™M < 201+ )72

We will finish the proof by showing that for every u € U(a},) and all k € N there exists
a continuous seminorm n on C(7 : G/Ny: x) such that for all f € C(7: G/Nyp: x) we
have

IFpf(vswll < (L+ ) n(f), (vl 2 R).
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For this we proceed by induction on the order of u. Clearly, the result is true for u of
order —1 since then u# = 0. Thus, assume that # has order m > 0 and assume the result
has been established for u of order strictly smaller than m.

It follows from (16.1) that for all f € C(7 : G/Ny:x) and v € ia}, we have

152 ()]l < (1+ D) n(f). (16.2)

Here N € N and n is a continuous seminorm on C(7 : G/Ny: x).

Fix £ € N such that N —2¢ < —k. Then it follows by application of Lemma 16.5 and
the Leibniz rule that there exist a finite collection of polynomial functions g; € P(a})
and a finite collection of elements u; € S(ajy) of order strictly smaller than the order
of u such that

p (L) Fof (viu) = Fp(L ) (viu) + )~ q; (0D Fpf(viu)),
j=1

forall f € C(7: G/Ny: x) and all v € ia},. By application of the initial estimate (16.2)
and the inductive hypothesis there exists a continuous seminormn’ on C(7 : G/Ny: x)
such that for all f and all |v| > R, we have

I, (L) Fpf (i)l < (1+ v)Mn'(f).

This implies that

IFpf i)l < N, (Lon) ™ e, (L) Fp f (viu)|
< 201+ )V ()
< (1+pD™ '@ ).
completing the induction. a

17 Appendix: factorization of polynomial functions

In this section we will prove the following result, which is needed in Section 12.

Proposition 17.1 Let f : C" — C be a polynomial function of degree d > 1 and
assume that H is a locally finite collection of affine hyperplanes in C" such that
F7H0) c UH. Then f can be expressed as a finite product f = £y - - - Lqwith €; : C" —
C a linear polynomial function whose zero set f}Tl (0) belongs to H, for1 < j <d.

The following lemma is a first step in the proof.

Lemma 17.2 Let f,{ : C" — C be non-zero polynomial functions, with deg € = 1. If
f vanishes on the hyperplane €~1(0) then f /¢ is polynomial.
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Proof. By application of a suitable affine coordinate transformation we may reduce
to the case £(z) = z,,. In view of the hypothesis, f(z’,0) = 0 for all zZ € C*!. This
implies that all partial derivatives 3¢ f(0), with @ € N” and «,, = 0 are zero. Hence,

f(z) = Z coZ”

aeF

with F ¢ N*~! x N,.. The result now follows. O

In the following we denote by O = Ocn the sheaf of holomorphic functions on C".
For a point a € C" we denote by O, the stalk at a, i.e., the ring of germs at a of locallly
defined holomorphic functions. If no confusion is possible, we will switch between
elements of O, and local representatives for them without explicitly mentioning this.

Lemma 17.3 Let f € Oy and let E be a finite collection of non-zero linear functionals
& : C" — C. Suppose that f(0) = 0 and that f~1(0) C Ugezkeré (in the sense of
germs). Then there exists a functional ¢ € E such that f = 0 on ker & (in the sense of
germs).

Proof. By a suitable linear change of coordinates we may reduce to the case that f
and each £ € ® does not vanish identically on the coordinate axis Ce,. Then by the
Weierstrass preparation theorem, there exists an invertible element ¢ € Op such that
F = g~ f is a Weierstrass polynomial given by

F(Z,2) =2 + ) er(2)z, (17.1)
k<N

for z = (7', z,) € C"~! x C sufficiently close to (0,0), with ¢, € O, = Oo(C™ 1Y such
that cx(0) = 0 for 0 < k < N. Furthermore, for every ¢ € @ there exists a linear
functional n¢ : C*~! — C such that ker ¢ C C"~! x C equals the graph of Ne-

Let D c C" be a polydisk centered at O such that f, g and F' admit representatives
in O(D). We decompose D = D’ x D,, according to the decomposition C" = C"~! x C.
Then f~1(0) N D = F~'(0) N D. Let Q be the open dense subset of C"~! consisting of
7’ € C" ! such that Ne (2') # ng, (2') for all distinct &1, &> € E.

By continuous dependence of the roots of (17.1) on the coefficients ¢ (z") we may
shrink D’ sufficiently so that for all 7 € D’ there exists an element z, € D, such
that F (7', z,) = 0. Accordingly, we may select @’ € QN D’ and a, € D, such that
F(d,a,) =0. Then f(da, a,) = 0 so there exists a &y € E such that &y(a’, a;,) = 0, or,
equivalently,

a, = 7760((1'/)-
Since o’ € Q, there exists £ > 0 such that for 7/ = o’ we have
ne(2)) —anl > & (V€ € BN {&0}). (17.2)

By continuity there exists an open neighborhood U of @’ in D’ N Q such that the
estimates (17.2) are still valid for all 7’ € U.
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By the continuity of roots mentioned above, we may shrink U so that in addition
for every 7z’ € U there exists a z,, € D(ay, €) such that f(Z’, z,,) = 0. The latter implies
that z, = n(z') fora & € E. Now |(z") — a,| < & implies that & = &) and we see that

F(Z/’ 7750(2/)) =0 (17.3)

for all z € U. By analytic continuation, (17.3) is valid for all z € D’. Therefore, f =0
on {z € D | 2, = ngy (2)} = kero. O

Corollary 174 Let f : C" — C be a polynomial function of positive degree and
assume that H is a locally finite collection of affine hyperplanes in C" such that
F~1(0) ¢ UH. Then there exists a hyperplane H € H such that f vanishes on H.

Proof. Since f has positive degree, f~1(0) # 0. By application of a suitable translation,
we may reduce to the case that f(0) = 0. Let Hj be the finite collection of H € H with
H > 0. For each H € Hy we fix £y € (C")* such that H = keréy. Put 2 = {éy | H €
Ho}.

By application of Lemma 17.3 it follows that there exists a &y € E and a polydisk
D c C" centered at 0 such that f = 0 on ker(&p) N D. By analytic continuation of
flkerg, this implies that f vanishes on ker &. O

Proof of Proposition 17.1. In view of Corollary 17.4 and Lemma 17.2 the proof
follows by a straightforward induction on d. O

18 Appendix: a Hartog type continuation result

In this paper we will need the following continuation result for holomorphic functions
on a domain in C" with values in a quasi-complete locally convex space.

Let Q c C" be a connected open subset, p : Q& — C a non-zero holomorphic
function, and X ¢ Q its zero locus p~!(0). We denote by X, the set of points z € X
such that X is a smooth complex hypersurface at z. By this we mean that there should
exist an open neighborhood U of z in Q such that X N U is a complex submanifold of
dimension n — 1. The complement of X, in X is denoted by X;. Clearly, X; is closed in
X hence in Q. Since Q is connected, the set X, hence also Xy, has empty interior.

Theorem 18.1 Let V be a quasi-complete locally convex (Hausdorff) space. Then
every holomorphic function f : Q\ Xy — V admits a unique extension to a holomorphic
function Q — V.

Remark 18.2 ForV = C the result is well known and can be obtained as a consequence
of [8, Thm. 6.12], which asserts that the above result is valid for V = C and with X;
replaced by any analytic subset Y of € which is everywhere locally of codimension
at least two. That result actually extends to V-valued holomorphic functions, but we
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have not found a decent reference to the literature for this. We have therefore chosen
to present a self-contained proof of Theorem 18.1, following a strategy suggested in
Exercise 4.26 in the set of lecture notes Several Complex Variables, by Jaap Korevaar
and Jan Wiegerinck, version August 23, 2017. This turned out to be possible since
Cauchy’s integral formula is valid in the setting of V-valued holomorphic functions.

To prepare for the proof of Theorem 18.1 we make the following general observation.
We assume that V' is a quasi-complete locally convex space.

Lemma 18.3 Ler Q C C" be an open subset and let Y be a closed subset of Q which
has empty interior. Let f : Q\'Y — V be holomorphic. Then the following assertions
are equivalent.

(a) f extends to a holomorphic function Q — V;

(b) for every y €Y there exists an open neighborhood w > 'y in Q such that f|,\y
has a holomorphic extension to w.

Proof. That (a) implies (b) is obvious. Assume (b). Then one may cover Q with open
subsets w; for j in an index set /, such that for each j € I the function f],,\y has a
holomorphic extension f; : w; — V. Clearly, if i, j € I and w; N w; # 0, then f; = f;
on (w; Nwj) \ Y. By density this implies that f; = f; on w; N w;. From this (a) readily
follows. O

Proof of Theorem 18.1. By Lemma 18.3 applied with Y = X it suffices to show that
for every z € X, there exists an open neighborhood w > z in € such that f],,\ x, extends
to a holomorphic function w — V.

Let z° € X;. Then we may apply an affine coordinate transformation to arrange
that z% = 0 and that locally at O the function p is z,-regular, see [8, p. 109]. By
the Weierstrass preparation theorem, see [8, Thm. II1.2.7], locally at O the function p
factors as a product of holomorphic functions pg - W, with the germ at O of pg being
a unit in the ring Oy = Op(C") of germs of holomorphic functions defined locally
at 0 in C" and with W € O([z,] a Weierstrass polynomial of order d over the ring
O = Oo(C" 1. Then for D a sufficiently small polydisk in C" centered at 0 the germ
W has a representative which is holomorphic on D and such that D N X is contained in
W~1(0). Note that 0 € D N X.

The ring Oy is a unique factorization domain, see [8, Thm. I11.3.3]. Let W =

[ /i be a decomposition into irreducibles of Oy with the f; mutually prime.
Since W is z,-regular, each f; is z,-regular as well. By the Weierstrass preparation
theorem we may write f; = £;W; with £; a unitin Op and W; a Weierstrass polynomial
in O)[z,]. Then W = eW"' --- W, with & = &}"' --- £ a unit in Op. Clearly the
product Wlm L... W, is a Weierstrass polynomial. By the uniqueness statement of the
Weierstrass preparation theorem, it now follows that W = W|*' --- W,"". The W; are
mutually distinct and irreducible in Op hence in Op[z,], see [9, Lemma IL5].
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Let ‘W = Wj - - - W,; then after sufficiently shrinking D, keeping it centered at 0, we
obtain that ‘W has a holomorphic representative on D and that D N X equals the zero
locus of ‘W in D. We agree to write D = D’ X D,, in accordance with the decomposition
cr=CcrlxcC.

If z € D satisfies ‘W(z) = 0 and 9,'W(z) # 0, then it follows by application
of the submersion theorem that ‘W~!(0) is a complex differentiable submanifold of
codimension 1 locally at z. This implies that z ¢ X;. It follows that X; N D is contained
in the zero locus of both ‘W and 9,,'W.

Let now z € X; N D. Then it follows that the polynomial functions ‘W (z’, -) and
0,W(7Z, -) have z,, € D, as acommon zero. Hence, z,, is a root of higher multiplicity
of ‘W(Z’, -) and it follows that the discriminant A(z") of ‘W (Z’, -) is zero. Since A(Z’)
is a polynomial expression in the coefficients of ‘W (z’, -), it follows that A € O(D’).
We view A as a polynomial function on C with coefficients in O(D’) and conclude that

DNnX,cDn'W(0)nA~0). (18.1)

We will now establish the claim that A does not vanish identically on D. Let Q
be the quotient field of O(’) := Op(C™ ). Then it follows from [8, Cor. 3.2 (2)] with
I = O(’) that Wy, ..., W, are irreducible in the polynomial ring Q[z,]. Furthermore,
since Q \ {0} is the set of units in Q[z,], no distinct W; and W, are related by a unit
factor in Q[z,]. Since Q|z,] is a unique factorization domain, it follows that the factors
W; are prime. Furthermore, the elements ‘W and d,'W have a greatest common divisor
¥ € Qlz,], which, up to a unit factor, may be written as the product of those factors W;
that divide 9,'W. By application of Leibniz’s rule for differentiation one sees that such
a factor W; must divide Wy ---W;_ - ,W; - Wy - - - W,,, hence W; must divide 9,W;
which is impossible since the latter has lower degree than the former. We conclude that
v is a unit hence belongs to Q \ {0}.

By the Euclidean division algorithm there exist A;,4; € Q[z,] such that 1 =
W+ 2,0,'W. Leta € O(’) be a non-zero element such that °4; := ad; belong to
Oylzn], for j = 1,2. Then

a="°14'W+20,'W. (18.2)

Shrinking the polydisk D sufficiently we may arrange that this equation is valid for all
z € D. Shrinking the polydisk D’ sufficiently, we may also arrange that for every 7’ € D’
the polynomial functions ‘W(z’, -) and 8,'W(z’, -) have all their roots contained in
D,,. Suppose now that z” € D and A(z") = 0. Then the polynomial functions ‘W (z’, -)
and ‘0,'W (7, -) have a common root £, which must be contained in D,,. Evaluating
(18.2)in (7, ¢) we find that a(z’) = 0. We infer that D’ N A~ (0) ¢ D’ N A~1(0). Since
a is non-zero, we infer that A is not vanishing on all of D’; the validity of the claim
follows.

Since the germ of A at 0 is non-zero we may apply a linear transformation in the first
n — 1 coordinates of C" to arrange that A = W’ in O := Oo(C"~1), with § a unit in 0|
and with W” € O([z,-1] a Weierstrass polynomial of degree d’; here O] = Op(C"2).
Shrinking D’ to a polydisk centered at O with respect to the new coordinates, we may
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arrange to be in the situation that (18.1) is still true, and such that W’ can be represented
by a holomorphic function on D’ whereas ¢ can be represented by a nowhere vanishing
function on D’. Accordingly, D N A~1(0) = D n (W")~1(0).

We fix a sufficiently small » > 0 such that D (0, r) c D,. Furthermore, we shrink
the polydisk D’, keeping it centered at 0, such that ‘W is nowhere zero on an open
neighborhood D’ X A of D’ X dD (0, r) in D. It follows that (D’ x A) N X = 0, so that
f is well-defined and holomorphic on D’ X A. We write D’ = D” X D,,_; according to
the decomposition C"~! = C"~2 x C and fix #* > 0 such that D (0, ") € D,_;. Then
it follows by application of Cauchy’s integral formula to the (n — 1)-th coordinate that
for (z”, zp-1,20) € D" X D(0,1") X A,

f(zn’ Zn-1,2n) = ZL_/ M dlp-1. (18.3)

7l Jopo,)  Cn-1— Zn-1
There exists a sufficiently small polydisk D;; C D”, centered at 0, such that W’ does not
vanish on an open neighborhood D x B of D x dD(0,r’). Since W’ is constant as a
function of the n-th variable, it follows that X; has empty intersection with DX Bx D,
so that f is holomorphic on the latter set as well. In particular, it follows that the
integrand of (18.3) is a holomorphic function of z, € D, as long as z” € Dy and
{n-1 € 0D(0,r"). Applying Cauchy’s integral formula to this holomorphic function of
Z,, We obtain

2 ”
f(Z”, Zn—l,Zn) — ( 1 ) ‘/a f(Z ’{n—l’ {n) d{ndén_l,

2mi D0.x0D(0.5) (Ln-1 = 2n-1)({n = 2n)

for z € D x D(0,7") X A. On the other hand, since f is holomorphic on Dy x BxA,
the integral on the right defines a V-valued holomorphic function F(z) of z € ‘D :=
Dy x D(0,r") x D(0,r). It follows from the last displayed equality that F = f on
the non-empty open subset O := D;f X D(0,r') x (A N D(0;r)) of *D. By analytic
continuation it follows that F' = f on the connected open set D\ X;. Thus, ‘D is an open
neigborhood of z° such that f|. p\x, extends to the holomorphic function F : *\D — V.
O
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