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INTRODUCTION

In this paper we develop a theory of Eisenstein integrals related to the
principal series for a reductive symmetric space G/H. Here G is a real
reductive group of Harish—Chandra’s class, ¢ an involution of G and H an
open subgroup of the group G° of fixed points for . The group G itself is
a symmetric space for the left x right action of GxG: we refer to this
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setting as the group case. Up to a normalization, our Eisenstein integrals
generalize those of Harish-Chandra [18] associated with a minimal
parabolic subgroup in the group case.

In [4] we studied the principal series for G/H and their H-fixed
generalized vectors, motivated by the expectation that they constitute the
building blocks for an explicit Plancherel decomposition of L2 (G/H), the
most continuous part of L%(G/H). Let K be a o-stable maximal compact
subgroup of G. Then on the level of left K-finite functions the decomposi-
tion should be described in terms of matrix coefficients of K-finite and
H-fixed vectors, ie., in terms of Eisenstein integrals. In the present paper
we concentrate on the Eisenstein integrals, and their asymptotic behaviour
towards infinity. The main results are: (1) a unitarity result for c-functions,
(2) uniform tempered estimates for the Eisenstein integral, and (related to
this) (3) a functional equation for H-fixed generalized vectors. These results
will be applied in a forthcoming joint paper with H. Schlichtkrull [8]
where the decomposition of L2, (G/H) will be given.

We shall now describe the results of this paper in more detail (for
unspecified notations see Section 1). The principal series for G/H is a series
of parabolically induced representations 7, ,=Ind$(®A®1), with P a
minimal ¢ - §-stable parabolic subgroup (here 6 is the Cartan involution
associated with K). Moreover, if P= MAN is the Langlands decomposition
of P, then € M,,, an appropriate set of finite dimensional irreducible
unitary representations of M, and A€ a},, where a is the —1 eigenspace for
o in the Lie algebra a of 4. The main object of study in [4] was the space
of H-fixed elements in the space C~*(P:¢: 1) of generalized vectors of
Ind$(¢ ® A® 1). We established the existence of a fixed finite dimensional
Hilbert space V(&) and a linear map j(P:&:A): V(E) > C~=(P:E: )",
depending meromorphically on A€ aj;., and bijective for generic 4.

Eisenstein integrals, defined in Section 3 of the present paper, are essen-
tially linear combinations of matrix coefficients of K-finite vectors with the
H-fixed vectors j(P:&:A:n), ne V(&) (cf. Section4). They depend
meromorphically on the parameter A€ ag, and behave finitely and semi-
simply under the action of the algebra D(G/H) of invariant differential
operators. Hence by [10, 2] they may be represented by converging series
expansions describing their asymptotic behaviour towards infinity. In order
to control the dependence of these expansions on A we adopt a technique
which was used in [5], see Sections 11-14.

Let us discuss what the expansions look like for the simplest case of left
K-invariant Eisenstein integrals. These Eisenstein integrals occur as matrix
coefficients for the induced representations with £=1 and generalize the
elementary spherical functions of a Riemannian symmetric space (cf. [14])
as well as the spherical functions introduced by Oshima and Sekiguchi
[27] for the symmetric spaces of K, -type. They are parametrized as follows.
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Consider the Weyl group W= Ny (a,)/Z(a,) and its subgroup W, 4, the
canonical image of Ny ,(a,). Let #” be a fixed set of representatives for
W/Wy~p in Ng(ag). Then wi— PwH is a bijective map from %~ onto the
set of open H-orbits in P\G. In our example we may identify V(1) with C*
provided with the standard inner product. If ne C*, then j(P:1:4i:n)e
C~=(P:1:2)" is completely determined by j(P:1:A:n)(w)=n,,we ¥
Notice that in the Riemannian case (ie., H=K) we have C* =C and
J(P:1:4:1)equals the function 1, defined by 1;(nak)=a"** (we induce
from the left).

The K-fixed Eisenstein integrals may be parametrized by C* as well (for
general K-types the situation is more complicated). They are defined as
matrix coefficients:

EP:n:Mx)=_,,m () (P:1:4:1)) (Leak, xeG).

Notice that in the Riemannian case E(P:1:2) equals the elementary
spherical function ¢ _ ;.

The asymptotic expansions may now be described as follows. Consider
the Cartan decomposition G= KA, H. Let Q be a second minimal ¢ - 6-
stable parabolic subgroup containing 4,. Then Q determines a positive
system 2(Q) of roots for a, and an associated positive Weyl chamber
AJ(Q). The closure of the set U,,,e,,.w“Aq+ (Q)w is a fundamental
domain for the Cartan decomposition. Along each set KAJ(Q)wH the
asymptotic behaviour of the K-fixed Eisenstein integral is described by an
(actually converging) expansion of the form

E(P:n:i)aw)~a*e Y a* T, (Mn (e o)
ueslszutlm

Here the Iy, ,(A) are linear functionals on C¥, meromorphically
depending on A€ a},. We define c-functions Cy, (s : )€ End(C*') by

prw"CQ P pls:A)= FQ,w.o(M,

where pr,, denotes projection onto the coordinate determined by w. For
general K-types the situation is similar, but more involved (see Section 14).
Thus c-functions are defined in terms of leading coefficients of expansions
in (generally) more than one chamber, in contrast with the group case,
where only one chamber is involved.

One of the main results of this paper is Theorem 16.3, which asserts that
the Eisenstein integral allows a normalization so that the associated nor-
malized c-functions are unitary endomorphisms for 1€ ia}. For the K-fixed
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case treated above, this is equivalent to the existence of a meromorphic
scalar function n(4), independent of P, Q, and s, such that

Copls: —A)*Cy, p(s: 1) =n(4), ieak.

This is analogous to a fundamental result of Harish—Chandra [18,
Lemma 3, p. 153]. In the Riemannian case it comes down to
c(—sA)c(sh)y=c(—2) c(4), cf, eg, [20,p. 451, (16)]. In [8] it will be
shown that the corresponding part of the Plancherel measure is essentially
given by n(4) ' times Lebesgue measure on ia¥, in analogy with the group
case.

The second main result of this paper is that Eisenstein integrals satisfy
uniform tempered estimates (Theorem 19.2). In the K-fixed case this comes
down to estimates of the following form, with ue S(ag), Xe U(g), and
C, N> 0 constants depending on u, X:

In(2) E(n : 2 X aw)ll < C [Inll (1 +[A)¥(1 + (log al)" a2

for we W', aecl A (Q), A€iag. Here n is a suitable polynomial function
cancelling the singularities of the Eisenstein integral along iaf. The
estimates allow us, in the final section, to define a Fourier transform on a
Schwartz space on G/H generalizing Harish—Chandra’s Schwartz space for
the group case (cf. Theorem 19.1).

From what has been said so far, it is clear that the results of this paper
are deeply inspired by analogous results of Harish—-Chandra. Indeed we
owe much to the ideas of his papers [16-18]. Nevertheless there are
fundamental differences. The first one, already referred to above, is that the
c-functions are obtained from (generally) several asymptotic expansions:
in [8] this will turn out to be intimately related with the occurrence of
multiplicities in the most continuous part of the Plancherel formula. The
second difference is the meromorphic dependence of the Eisenstein integral
on A. This is caused by the fact that (in [4]) the map j(P:¢&:4) was
obtained by meromorphic continuation starting from a region in ag. which
is quite apart from the imaginary points. This makes it hard to get
estimates of the uniformly tempered type. Let us finish this introduction by
indicating how we obtain them.

In Sections8 and 9 we derive a functional equation for the map
J(P:&:2). This result, Theorem 9.3, is the third main result of our paper.
Its proof involves, among others, an argument inspired by Zuckerman’s
translation principle. The obtained functional equation is sufficiently
explicit to give a priori estimates for the Eisenstein integral with uniformity
in A (see Proposition 10.3).

When this paper was almost finished I learned that our functional equa-
tion in the group case is related to recent work on intertwining operators
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by Vogan and Wallach [31] and by Zhu [36]. Indeed, in the group case,
J(P:&: 1) is essentially a distribution kernel of an intertwining operator
(cf. [71).

In Section 18 we use the differential equations satisfied by the Eisenstein
integral to improve upon the initial estimates, and get estimates of
uniformly tempered type. The proof is inspired by a technique of Wallach
(cf. [33, Theorem 5.6, p. 328]), related to the theory of Jacquet modules: it
allows one to improve initial estimates for matrix coefficients in a number
of steps, each step involving the asymptotic behaviour along a maximal
parabolic subgroup. We have to do this along maximal ¢6-stable parabolic
subgroups however, and with uniformity in the parameter 4 (see Proposi-
tion 18.6 and Theorem 18.3).

1. NOTATIONS AND PRELIMINARIES

In this section we recall some notations and preliminaries from [4]. Lie
groups will be denoted by italic capitals, their Lie algebras by the corre-
sponding German lowercase letters (parabolic subalgebras will sometimes
be denoted by German capitals). If m is a real Lie algebra, we shall write
U(m), resp. S(m), for the universal enveloping resp. symmetric algebra of
the complexification m, of m. Let M be a Lie group with algebra m. Then
we denote the left (resp. right) regular action of M on C*(M) by L
(resp. R). The associated infinitesimal representations are denoted by the
same symbols. Moreover, given f e C*(G), we shall also use the notations
flu; x) =L, f(x), f(x;u):=R,f(x), and uf := L, f, for ue U(m), xe M.

Throughout the paper G will be a real reductive group of Harish-
Chandra’s class, o an involution of G, and H an open subgroup of the
group G° of its fixed points. Let 6 be a Cartan involution which commutes
with o, and K the associated maximal compact subgroup of G. The
derivative of o (resp. 0) at e is denoted by the same symbol; let b (resp. )
denote its + 1 eigenspace, and q (resp. p) its — 1 eigenspace. The composi-
tion 0@ is an involution as well: the associated + 1, —1 eigenspaces in g are
denoted by g, and g_, respectively. Thus

g, =Inb®png g =tna®pnh (1
and
g=g¢g,®g_ (2)

as direct sums of vector spaces.
We extend the Killing form on g,=[g,g] to a non-degenerate
G-invariant bilinear form B on g which is positive definite on p, negative
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definite on £, and for which centre (g) n b and centre(g) N q are orthogonal.
Moreover, we define a Ad(K)-invariant positive definite inner product on
g by (X, Y> = —B(X, 8Y), and denote the associated norm by |-|. All the
above decompositions are orthogonal with respect to (-, - ).

If  is a commutative subalgebra of a Lie algebra |, consisting of semisim-
ple elements, then we write Z(l, j) for the set of non-zero j.-weights in I_.
If Z(L, i) is a (non-reduced) root system, then we denote the associated
refection group by W(, ).

We fix a maximal abelian subspace a, of pnq and extend it to a maxi-
mal abelian subspace a, of p. Given a linear subspace e = g, we agree to
write e,=enb, e;=enp, ¢,=entngq, etc. Then a;=a,,. The root
systems of a, and a, in g are denoted by X' = ZX(g, a,) and 2, = 2(g, a,)
and we fix compatible positive systems X2+ and X, respectively. The set
2,=2(g,,ay) is a subsystem of 2. Let 21 =2, Nn2" and let 4]
denote the associated open positive Weyl chamber in 4, =exp(a,). Then
we have the Cartan decomposition

G=Kcl(A])H. (3)

Further down we will see that the middle part of the corresponding
decomposition of an element need not be uniquely determined, if H is not
connected.

By £ we denote the (finite) set of all af-stable parabolic subgroups of
G containing 4,. Given Pe %, we writt P=M A, N, for its Langlands
decomposition and put M,p=MpAp, Apy=ApnH, Ap,=¢€xpap,, and
M,,=M_,Ap,. Notice that Apq<= A,. Hence if e Z, then either g*=0 or
g*cnp. Put

Z(P)={ael:g"cnp}.

Then np=3,.5pr, 6~ Let P=60P. Then P=¢P and Z(P)= —X(P).
Let M, denote the centralizer of a, in G, and define a = centre(m;) N p.
Then a,=angq. The linear functional ppea* defined by pp(X)=
(1/2) tr(ad(X) | np) vanishes on a,. Thus p,€af and in fact p,€a}, if we
embed a}, < ag ca* via the inner product (-, - .

If Pe#,, then Apqc A,. Moreover, equality holds iff P belongs to the
set #,(A,) of minimal gf-stable parabolic subgroups containing 4,. Let m
denote the orthocomplement of a in m,, and set A =expa, A,=ANH,
M=(M,nK)exp(mnyp), and M,=MA4,. Then M, =MA=M_,A4, as
direct products of groups. For every Pe #,(A4,) we have that M, = M and
Ap=A.

The map P+ 2(P) is a bijective correspondence from #,(4,) onto the
set of positive systems for 2 (cf. [4, Sect. 2]. Writing A (P) for the open
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Weyl chamber in A, associated with the positive system 2(P), Pe Z,(A,).
we have that

d(AF)y= | dA; (P

Pe Pyl Ag)
I(PVnE, =X

If Pe#, then the group W= N(a,)/Zk(a,), the normalizer modulo the
centralizer of a, in K is naturally isomorphic with the reflection group of
the root system X. By conjugation it acts simply transitively on the set
P(A,). Let Wi .y be the canonical image of Ny, y(a,) in W. Throughout
this paper %~ will be a fixed set of representatives for W/Wy . ., in Ng(a,).
If Pe #,(A,) then wi— PwH establishes a one-to-one correspondence from
# onto the set of open H-orbits on P\G (cf. [4, Sect. 3]).

At this point we discuss the decomposition (3) in more detail. The group
W~ acts naturally on X', . Let W§ _ , denote the subgroup of elements
leaving Z'7 invariant, or, equivalently, leaving 4, invariant.

LemMa 11, Wy g>W(g,,a)x Wiy

Proof. We first observe that Wi(g,,a,)~ W, ., . (Here the index e
indicates that the identity component of the group is taken.) The product
map is bijective, since W(g, , a ) acts simply transitively on the 2, -cham-
bers in a,. Moreover, since K~ H normalizes Kn H,= (K H),, it follows
that Wy . 4, normalizes W(g,,a,). [

Remark. Notice that it follows from the above that Wy ., is trivial iff
Wnnu=W(g.,a,) which in turn is equivalent to

H=H,Z . uag), 4)

ie.,, H is essentially connected (cf. [4, Lemma 4.1]).

Lemma 1.2, Let X, Yecl(a]). Then exp Xe Kexp YH<> Xe Wy 4 H.

Proof. We have that H= Ny 4(a,)H,. Hence exp Xe Kexp(WY)H,
for some Wwe Nk, y(a,). It now follows from the results in [12, Sect. 4]
that X=wY for some we W(g, , a,) Wx~y= W~ g Write w=up, with
ue W(g,,a,), ve Wi, . Then vYecl(ay), and u(vY)ecl(ag). It is well
known that this implies v = 1. Hence X e Wy . , Y. The reversed implication
is obvious. [

We recall that by M,, we denote the set of (equivalence classes of)
irreducible finite dimensional unitary representations (¢, »#) of M which
possess a w(M n H)w~'-fixed vector for some we¥". A representation
ceM ps 18 trivial on mp. By trivial extension we will sometimes view it
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as a representation of M, = MA. Given éeM,,, we W we write ¥ (& w)
for the set of w(Mn H)w™'-fixed vectors of £. We endow the spaces
v (&, w) (we #7) with the unitary structure inherited from ¢ and define a
formal direct sum of Hilbert spaces V(&)=L _, 7 (& w). Let V(& w)
denote the canonical image of 77(&, w) in V(&). Then

Vi§)= @ V(& w) (5)

we W’

is an orthogonal direct sum decomposition.

Let PeZ,(A4,), & GMW and A€ ag,. Later in this paper we will need dif-
ferent function spaces associated with the principal series representation
Ind$(¢® A®1). We write

C=(P:¢&:4) (6)

for the space of generalized functions (i.e., the continuous linear functionals
on the compactly supported C*-densities) f:G— 3, transforming
according to the rule

f(manx)=a" " **&(m) f(x) ((m,a,n)e M xAxNp). (D

The group G acts on (6) via the right regular representation R.

It will be useful to work with the compact picture of this induced
representation. Restriction to K induces a bijective linear map from (6)
onto

C™™(K:Q) (8)

the space of generalized functions ¢ : K — #; transforming according to the
rule

p(mk)=E(m) p(k) for meKy=Kn M.

Via the restriction map we transfer the induced representation on (6) to a
/-dependent representation 7, ., of G on (8).

If ge NuU {00}, then we shall write C/(K : £) for the subspace of (8) con-
sisting of the ¢ times continuously differentiable functions. We provide this
space with the usual Fréchet topology. For ¢ finite this is in fact a Banach
topology, and we fix a norm ||-||, once and for all. Moreover, we let
C~ 9K : &) denote the subspace of (8) consisting of the generalized func-
tions of order at most ¢. This space was denoted by 2,(K :§) in [4].

Let dk be the normalized Haar measure on K. If ge Nu {0}, then the
map

(f @)= Cfig> =] <fWk), &lh)> ak 9)
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defines a non-degenerate pairing

CUK: ) xCHYK:¢)-C (10)

which is anti-linear in its second variable. It defines a linear isomorphism
of C~7 with the topological anti-linear dual of C?. We provide C~9(K : &)
with the associated strong dual topology. When ¢ is finite this is a Banach
topology with the dual (operator) norm |- _,.

If geZ U {—o0, 0}, we define CYP:&:1) to be the preimage of
C9K : &) for the (bijective) restriction map from (6) onto (8). The space
is topologized by transference of structure. The pairing (10) induces a
G-equivariant Hermitian pairing

C 9P E:)xCYUP:E:-1)>C (11)

which establishes a G-equivariant identification of C74(P: ¢ : 1) with the
strong topological anti-linear dual of C/(P: ¢: —1).

For we #  the evaluation map ev, : f— f(w) is well defined on the
space C *(P:¢:1)% of H-fixed generalized functions, with values in
¥ (&, w). Let

ev:C (P& D) V() (12)

be the direct sum of the maps ev,.. Then for generic 1€ a}; (ie, for 1in a
Baire subset) the map (12) is bijective. Moreover there exists a unique
meromorphic map

G(PEA)V(E) > C (P& M)

such that evej(P:¢:A)=1 on V(&) (cf. [4, Sect. 5]). Here meromorphy
should be interpreted with respect to the compact picture of the induced
representation: j(P : £ : 1) is meromorphic as a map V(&) > C~*(K: &) in
the sense of [4, p. 375].

If P, Qe #(A,), we recall from [4] that by the methods of [25] we have
an intertwining operator A(P: Q:(:4):C *(Q:¢:A) > C (P &1 A),
depending meromorphically on A. Its action on H-fixed generalized
functions is described by

AQ:P:E:A)oj(P:E:N)=j(Q:E:1)oB(Q:P:L:A).

Here B(Q: P:¢:1)eEnd(V(¢)) depends meromorphically on AeaX (cf.
[4, Proposition 6.1]).
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2. INVARIANT DIFFERENTIAL OPERATORS

In this section we gather some properties of the algebra D(G/H) of
invariant differential operators on G/H needed in this paper, meanwhile
fixing notations.

We recall that the right regular action of G on C*®(G) induces a
surjective algebra homomorphism r: U(g)” - D(G/H) with kernel
ker r= U(g)” n U(g)h (cf. [19]). Thus r factorizes to an isomorphism of
algebras

7: U(g)"/(U(g)" n U(g)bh) - D(G/H). (13)

Let A:S(g)— U(g) be the symmetrization map. Then we have the
following direct sum of vector spaces:

U(g)" = (U(g)" n U(g)h) ® ALS(a)"] (14)

(cf. [19]). It follows from the above that r maps A[ S(q)“] bijectively onto
D(G/H). Set

D := U(g)"/(U(g)" n U(g)h). (15)
Then by the above we have a natural isomorphism D(G/H,)~D. More
generally the inclusion U(g)” = U(g)® induces an embedding of algebras

D(G/H) s D. The following result was communicated to me by professor
T. Oshima, several years ago.

LEMMA 2.1. The natural embedding D(G/H) c D is an isomorphism onto.

Before proving this lemma we fix notations that will be useful elsewhere
too. Let b be a maximal abelian subspace of g, containing a,. Then
b="b,®a,. We recall the duality of [9]. Define a dual real form in g. by

g’=g,.Dig_. (16)
Put #*=h,n g and p?=q.n g°. Then
gd=fd®pd

is a Cartan decomposition for the reductive algebra g“ corresponding to
the Cartan involution 8“=g¢,|g? (here o, denotes the complex linear
extension). Notice that a?=b,ng“ is a maximal abelian subspace of p?,
containing a,. Moreover, we clearly have

S(a)® = 1(p), (17)

the algebra of ad(k?)-invariants in S(p?).
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Proof of Lemma 21. In view of (14) it suffices to show that
S(q)” = S(q)" Let K¢ be the commutant of 9= ¢ in the complex adjoint
group G.. Then Adg(H)< K%here we use that Adg(G)<=G,). Hence it
suffices to show that K¢ acts trivially on (17). Now this is seen as follows.
Let F be the (finite) group of elements of order 2 in expoad(iad). Then
K¢ = F(K?),, hence it suffices to show that F acts trivially on (17). Let B¢
be an extension of the Killing form to a non-degenerate bilinear form on
g? which is positive definite on p? and for which [g% g“] and centre(g®)
are orthogonal. Then B“ is G -invariant, hence its restriction to p? is
F-invariant. In particular the orthogonal projection p?—a? commutes
with F. The induced map I(p“) - S(ad) being injective by Chevalley’s
theorem, it follows that F centralizes I(p?). |}

Let W(b) denote the reflection group of the root system
2(b)=2(g, b) = Z(g% aJ). Then the algebra I(b) of W(b)-invariants in S(b)
equals the algebra I(a3) of invariants in S(ad) for the reflection group Wj
of Z(g% ad). Since D =U(g*)/(U(g))~ U(g?)t’) we have a Harish-
Chandra isomorphism y¢:D — I(ad)= I(b). Via the natural isomorphism
D(G/H)~D we transfer y° to what we call the Harish-Chandra
isomorphism

v: D(G/H) - I(b). (18)

fQe?,weput Hy = M, n H,and H, = M, n H. The natural
isomorphism M,/Hyx Ag, = M ,/H,, induces an isomorphism

D(MIQ/HIQ):D(MQ/HQ)®S(aQq)' (19)

Given DeD(G/H) we define 'uy(D) to be the element of D(M,o/H,y)
satisfying

D—ug(D)eng U(g) + Ulg)b. (20)

Here we have slightly abused notations by not distinguishing between
elements of D(G/H) (resp. D(M ,p/H,,)) and their representatives in U(g)”
(resp. U(m,p)™2). We will continue to do this, as it will not cause any
ambiguity. One readily verifies that D+ 'uy(D) is a homomorphism of
algebras. In view of the decomposition (19) we may view 'uy(D) as a
D(My/H)-valued polynomial function on a3, : we denote its value at 1
by ‘uo(D : A).
Now consider the function dy: M, —» R* defined by

do(m)=/|det Ad(m)[,,|  (meM,yp).

Then dy =1 on M,, and dy(a) =a’e for ae A,,. Moreover, the function
d is right H,y-invariant.

580/109:2-9
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We define the algebra automorphism T, of D(M,,/H,,) by
To(D)=dy'oDod,.

Moreover, we put p,=Tpo'uy and py=Tyopu,. Now b is a maximal
abelian subspace of m,, N q containing a,. Let y, be the Harish-Chandra
isomorphism from D(M,,/H,,) onto the algebra In(b) of Wjy(b)=
W(m,,, b)-invariants in S(b). By rephrasing the above definitions in terms
of D and subalgebras of the dual real form one sees that

Yoo Ho =7 (21)

In particular, u, is an embedding.

It is well known that S(b) is a free I(b)-module of rank # W(b). In fact,
if E is the set of W(b)-harmonic polynomials in S(b) then the natural
multiplication map

I(b)® E - S(b) (22)
is an isomorphism. Similarly we have an isomorphism
Io(b)® E, -> S(b), (23)
where E, denotes the space of W,(b)-harmonic polynomials in S(b).
Taking W ,(b)-invariants in (22) we see that
Io(b) = I(b)® E°, (24)
where we have written E€ for the set of W ,(b)-invariants in E. Combining
these isomorphisms we see that
E~E,® E°. (25)
Hence dim E2 =[W(b): W,(b)] and we infer that I,(b) is a free I(b)-
module of rank [ W(b): Wy(b)].
It now follows from (21) that u,: D(G/H) - D(M,,/H,y) is an injective
homomorphism of algebras. Moreover, D(M,,/H ) is a free uy(D(G/H))-

module of rank [W(b): Wy(b)]. Let V be the linear subspace of
D(M,,/H,,) defined by

V=T, l):5‘(EQ). (26)
Then by (21) and (24) we have a natural isomorphism
D(MIQ/HIQ) ~xV® ,ﬂQ(D(G/H))' (27)
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Moreover, notice that 1€ V. For veb} we define the following ideal of
codimension 1 in D(G/H):

S, =ker y(. : v).

LemMa 2.2, Let veag,. Then V® 'ng(f4,) naturally embeds onto an ideal
F of D(MIQ/HIQ)'

Proof. By (27) the natural map is a linear embedding. Since .#, is an
ideal, whereas i, is a homomorphism of algebras, we have that

uo(D(G/H)) 'Ho(£) < pglL.)

Combining this with (27) we infer that D(M,,/H ;) ‘nol(S) = V' uo(5,).
The reversed inclusion is obviously valid. J

LEMMA 2.3, The inclusion V5 D(M y/H,p) induces a bijection from V
onto D(M ,/H ,)/ #,.

Proof. In view of (27) and the previous lemma we have natural
isomorphisms

D(Mp/H p) % = V& ug(D(G/H))/ no(S)
~ V® 'ug(D(G/H)/S,)
~¥V®C

since ‘n, is injective. Via these indentifications the induced map
corresponds to the map V- V®C, x—»x®1. |

Via the isomorphism V' ~D(M,,/H,,)/ #, described in the above lemma,
the space V carries a v-dependent structure of D(M,,/H,)-module which
we denote by t,. We shall write V, for the space V endowed with the
structure 1, of D(M,,/H,,)-module.

LEMMA 2.4. Let vebr. Then the set of apg-weights of V, equals
(W(d)v+po) | agp,.

Proof. Equivalently we must show that W(b)v|ay,, is the set of
age-Weights of D(M,/H,p)/Ty(#,). Let I, be the ideal of peI(b) with
p(v)=0. Then y, induces an isomorphism of D(M,,/H,,)/Ty(#,) onto
I,(b)/J,, where J, = E?], is the ideal in I,(b) generated by I, (use (24)).
Since 74 is ayqe-equivariant, we must show that W(b)v | ay, equals the set
of agq-weights of Iy(b)/J,. Let b2 denote the space of W y(b)-invariants in
b, then a,, = b2. Thus the assertion will follow from our claim that the set
of weights of the b2-module I5(b)/J, equals W(b)v | b2
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To see the validity of the claim, notice that EZ, is the ideal in S(b)
generated by I,. The b-module S(b)/EI, has W(b)v as its set of weights
(apply duality and use [5, Proposition 4.1]). From the decompositions
(22), (23), (24), (25) we see that the multiplication map EQ®IQ(b) — S(b)
induces a linear isomorphism

E2® (I5(b)/J,) > S(b)/EL,. (28)

The above map is equivariant for the bZ-action if we let b2 act on the
second component in the tensor product. Since the set of weights of the
b2-module on the right equals W(b)v | b2, this proves the claim. |

3. DEFINITION OF THE EISENSTEIN INTEGRAL

Throughout the paper F will be a finite subset of the set K of
(equivalence classes) of finite dimensional irreduible representations of K.
Moreover, we write

V=C(K)p

for the space of right K-finite functions whose isotopy types for the right
regular representation R are contained in FV. It inherits the unitary inner
product from L*(K, dk). Let © denote the restriction of R to V. We put

Hy=HnM, Ky=KnM, and TmM=T| Kp-

Given we Ni(a,), we denote the space of ty,-spherical functions from
M/wH,,w~"! into V by

C(M/wHyw=" : 1y). (29)

This space is finite dimensional because the inclusion Ky, < M induces
a diffeomorphism from K,,/w(Kn Hy)w™' onto M/wHyw™' (cf. [4,
Lemma 3.5]). We fix a M-invariant measure dm on M/wH,w™" of total
measure one and provide (29) with the unitary inner product induced by
those of V and L*(M/wHyw ™', dm). If ¢ is an irreducible finite dimen-
sional unitary representation of M, we write C,(M/wHyw ™' : 7,,) for the
subspace of (29) consisting of the functions all of whose components are of
left isotypy type &. Then clearly we have an orthogonal decomposition

CM/wHyw™ ' 1) = @ C:(M/wHyuw ™' :1y),

leX
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where X is the finite set of £ M ps Which have a K-type in common with
Tare

Recall that #” < N(a,) is a finite set of representatives for W/W, .,
and consider the formal direct sum of Hilbert spaces

=[] CM/wHyw=":1y). (30)

we#’

The image of C(M/wHyw ':ty) in °% is denoted by °%,. Thus
E=@D,cy ¥, Given Y e°¢ we write y, for its component in °%,
(often we shall identify this component with a function in (29)). The left
regular representation induces a unitary action of M on °% in a natural
way. Given £e Mps we write

‘(&)= |] CAM/wHyuw ':1y)

wew

and we see that the following result holds.

LEMMA 3.1. We have the orthogonal decomposition *€ = @ ;. x *€6(¢),
where X is the finite set of € M, which have a K-type in common with
Ta» and where each space *6(¢) is finite dimensional.

Fix P=MANeZ(A,), we ¥, and ¥, € °%,. For Aeay. with Re i+ p,
strictly P-dominant (i.e., strictly dominant with respect to X(P)= —X(P)),
we define the function ¢ (P:4):G -V by

¥ (P : ) (namwh) = a**°"y (m), (31)

for neN, ae A, me M, he H, and by
¥.(P:1)=0 outside PwH. (32)

In view of [4, Proposition 5.6] the function ¢ (P : 1) is continuous on G.
It is easily seen to be right H-invariant. We now define the function
Y(P:1):G->V by

g(P:)=Y PP A).

Finally we define the Eisenstein integral by

EP:y :A)(x)=f (k)" 'P(P : A)(kx) dk, (33)
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for xe G. Let C(G/H : 1) denote the space of continuous t-spherical func-
tions from G/H into V. Then ¢ — E(P : { : 1) defines a linear map from °%
into C(G/H : 7).

4. RELATION WITH THE PRINCIPAL SERIES

In this section we study the relation of the Eisenstein integral E(P : y : 1)
with matrix coefficients of the principal series representation
Ind§(¢ ® A® 1). This relation is then used to extend the Eisenstein integral
meromorphically in 4, and to compute the action of D(G/H) on it.

Let 5 be a Hilbert space model for £, and write

Heri=CK:{)p, (34)

where K-types with respect to the right regular representation are taken.
We endow the above space with the unitary inner product induced by the
unitary structures of ¢ and L*(K, dk).

If Vis a complex linear space, we denote the conjugate complex linear
space by V. If V' is a second complex linear space, then we define

VRV:=V®cV.

Recall the definition of the finite dimensional Hilbert space V(&) from
Section 1. In a natural fashion the space /(&) inherits a unitary inner
product from V(&): if (., .) denotes the inner product of V(&) then the inner
product <.,.> of P(&) is defined by <{v, w) = (w, v). We provide

H.r ® V()

with the induced structure of Hilbert space. Given an element 7= f ® n of
;. r ® V(¢, w) (where we #7) we define a function Y, : M/wHy,w™ ' —
C(K) by

Yr(m)k)=(fltk™"), &m)n) ..

One easily checks that e Co(M/wHyw ™' :1y,). By linearity Ty is
extended to a complex linear map from i ® V(&) into °€(&). Set
d(¢)=dim £, then we have:

Lemma 4.1. The map T d(& )2y is a bijective isometry from
H;:. r ® V(E) onto °€(8).

Proof. Fix we #'. Then it suffices to prove that the map is an isometry
from o ~® V(£ w) onto °€,(&).
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Let C.(M/wHpw™') denote the space of complex valued functions on
M/wHyw~! which are of left isotopy type & Then the linear map
m,: H ® V(E, w)—> CoM/wHyw '), determined by

mw(v ® n)(m): <U’ é(m)r,>§

is bijective. The representation &|K,, is irreducible (cf. [4, Lemma 5.37),
hence by the Schur orthogonality relations the map m, = d(¢)"?m,. is an
isometry.

Let S be the endomorphism of C(K) defined by Sf(k)= f(k'). Then S
is an isometry from C(K) onto V (where K-types with respect to R are
being considered). Hence S®m, is an isometry from E,= C(K);®
[ ® V(¢ w)] onto E, =V Q@ C(M/wHpyw'). Let m, be the representa-
tion L®L{® 1 of Ky, in E,, and let n, be the representation 1,,® L of K,
in E,. Then one readily verifies that S® m,, intertwines n, with n,, hence
maps (E,)*™ =~ . ® V(& w) isometrically onto (E,) ™~ °%,(¢). Now
observe that (S®m, )(T)=d(&)'? y, for Te #. Q. V(L w). 1

We can now relate the Fisenstein integral to matrix coefficients of

principal series representations.

LeMMA 42. If T=f ®@ ne #;, r ® V(&), then for iea¥ with Re A+ p,
strictly P-dominant we have
E(P 7 A)(x) (k)= fy mp e s(kx) (P& D)), (35)
for xeG,kekK.

Proof. 1t suffices to prove this for n=14,€ V(¢, w), we % . From the
definition of ¥, we deduce that

Yr(m)(ky={flk™"), j(P: ¢ Ain,)mw)),

for me M, k € K. From the transformation properties under the left action
by N,A and the right action by H it follows that

Ur(x)k)= (fk™"), J(P & T n, (X)),

for xe PwH. Both the left and the right hand side of the above equation
are zero outside PwH so that it actually holds for all xe G. Now use (33)
and the definition (9) of the equivariant pairing (11). |

Let # be a Fréchet space. Then a #-valued function f on a complex
analytic manifold 2 will be called meromorphic if locally at every point
z€ £ there exists a homomorphic function ¢ such that ¢f is holomorphic
in a neighbourhood of z.
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Let C*(G/H : t) denote the space of t-spherical C*-functions G/H — V.

COROLLARY 4.3. Let ye€°%. If Re A+ pp is strictly P-dominant, then
E(P:y:A) belongs to C*(G/H:1), depending holomorphically on A.
Moreover, A E(P:y : 1) extends to a meromorphic C*(G/H : t)-valued
JSunction on ag;.

Proof. By Lemmas 3.1 and 4.1 it suffices to prove this for ¥ =, with
TeX, r ® V(& w), we #. The result is then an immediate consequence of
Lemma 4.2 and the meromorphy of j(P:£:4), cf [4, Lemma 5.7 and
Theorem 5.10]. |

In the rest of this section we will discuss the action of the algebra of
invariant differential operators on Eisenstein integrals.

Recall the definition of up: D(G/H)—»D(M,/M, H) from Section 2.
Given we % we define u%: D(G/wHw™') - D(M,/M, n wHw™!) similarly
but with H replaced by wHw ~'. Now Ad(w) maps U(g)” into U(g)*™"
and induces an isomorphism of algebras Ad(w) : D(G/H) - D(G/wHw™1).
We define up,, : D(G/H) —» D(M /M, ~nwHw ") by

Given Xe U(g)” let up (X :&: 1) denote the endomorphism by which
tp (X : 1) acts on ¥(¢, w)c H#;, and define up(X:&:1): V() - V(£) to
be the direct sum of these maps.

LEmMA 44. Let Xe U(g)". Then
Ryj(P:E:A)=j(P:&:A)opp(X:E:A)

Proof. Since R, preserves the subspace of H-invariant functions in (6)
it suffices to establish the identity which results if we apply ev,, on the left
(use [4, Theorem 5.10]). For w=1 this identity is a straightforward conse-
quence of the equivariance properties of j locally at e, and the definition of
Up 1= pp. The identity now follows for arbitrary w if we observe that

ev,oRyoj(P:¢: '1)=eV1°RAd(w)X°j’(P:é:A),

where j'(P:£:4) is the map V(é)—»C‘”(P:é:/'L)‘””""_l associated with
wHw ™! and the set #” =#"w~! of representatives for W/ W wme-1- |
Given D e D(G/H) we define an endomorphism of °# by
up(D:2)= @ R(pp(D:1).

wew
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LeMMA 4.5. Let De D(G/H). Then
DE(P:y:A)=E(P:pp(D:A)Y:2)

Proof. By linearity it suffices to prove this for a D with real coeficients
and for Y=y, with T=f, ®n, e ® V(i w) for some LeM,,
we %" Let X be a real representative of D in U(g)*. Then from the defini-
tion of ¥, it follows straightforwardly that

HP(D : 'i)l/,Tz wf»-@ wpwlX & s
Now use Lemmas 4.2 and 4.4 to complete the proof. |

We finish this section with a description of the eigenvalues of the
endomorphisms pp(D : A). The following lemma will be needed at a later
stage as well. Let | be a f-stable Cartan subalgebra of g containing b.

LEMMA 4.6. Let we Nila,). Then there exists a se W(g, i) norn}alizing
b and oy, and such that s|a,=Ad(w)|a,. Moreover, if EeMy has
infinitesimal character A€i¥, then w& has infinitesimal charater sA.

Proof. Using the duality of Section 2, notice that W(g% ad)= W(g, b).
Let

Wi, ={se W(g*, ag);o%os=s00"}.

Then according to [28, Proposition 7.17] (see also [4, Lemma 1.1]),
restriction induces a surjective map W§, —» W. Now Ad(w) | a,e W, hence
Ad(w) | ag=s, | a for some s, € W(g,b). Now j“=j.ng? is a §%stable
Cartan subalgebra of g¢ containing aj. Hence the normalizer of af
in W(g%i“)=W(g,{) maps onto W(g% af)=W(a,b) and we see that
s, =s|b for some se W(g, i)

Since Ad(w')j. is a Cartan subalgebra of m,, there exists a
@, €Aut(m,.)° such that Ad(w')j.=¢,(j.). Now Ad(w)-¢@, e Aut(g.)°
and normalizes j., hence defines an element € W(g, i). Moreover, ¢ | a,=
Ad(w)| ag=s| a4, hence t~'se W(m,, i). Hence t 's=¢,|j. for some
@p,€Aut(m, ). Put ¢ =¢,°¢@,. Then peAut(m)° and y:=Ad(w)-e
normalizes i, and satisfies § | j. =5 ..

Given any automorphism ¢ of m,, we write £ for the infinitesimal
representation £o¢@ ' of m,.. In particular, £44*" denotes the differential
of w&. If ¢ is any element of the identity component of Aut(m, ), then it
is readily verified that £¢ is equivalent to £ Hence w¢ has the same
infinitesimal character as ¢¥. Now ¥ is an automorphism of m,, which
normalizes j.. This implies that £¥ has infinitesimal character

W'y Aa=s4. 1
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The space b, is a Cartan subspace of mnq. Let X'}, be a system of
positive roots for X'; = Z'(m, b, ), and let p,, be haif the sum of the positive
roots, counting multiplicities. Let W, be the associated reflection group,
and write 7, (b, ) for the algebra of W -invariants in S(b,). Then we have
a Harish-Chandra isomorphism y,, : D(M/H ) I,(b,). Notice that for
any Qe #,(A,) we have

Yo=7m® idS(aq)

with respect to the decomposition (19). Now let L be the set of Aeib}
which lift to a character of the torus B, =exp b,.

PROPOSITION 4.7. For every DeD(G/H), Aea}. the endomorphism
up(D : A) of °€ is semisimple and respects the decomposition °€ = @ °%,.({)
(Ee X, weW'). Moreover, let we W', and let s be as in Lemma 4.6. Then the
eigenvalues of up(D : A) | °8,, are of the form y(D : sA+ py + A), with Ae L.

We begin by studying the action of D(M/H,) on the space
C*(M/H ) s, of left Ky,-finite smooth functions on M/H\,. The following
result will be needed at a later stage as well.

LEMMA 4.8. The algebra D(M/H,) acts finitely and semisimply on
C*(M/H )y, The simultaneous eigenvalues of the action are all of the
Jorm Dy (D : A+ py), with Ae L.

Proof. We first notice that b, is also a Cartan subspace of f,;nq.
Moreover, since mnpch, it follows that [by,, mnp]lcmnpng=0.
Hence Z(fy,, by) = 2y, including multiplicities. Set Hy= K\, n H, and

Do = Ulty)™/U(tn)™ 0 U(Ep) bo-

Then we also have a Harish-Chandra isomorphism 7, : Do — Iyy(by). It is
related to y, as follows. From mnpch it follows that U(m)=
U(ty) + Um)(h nm). Let p,: U(m)— U(t,,)h, be the associated linear
surjective map. The induced map p,: U(m)"™ - (U(T,,)" n U(ty) bo)
is easily seen to be an algebra homomorphism with kernel ker p, =
U(m)*™ A U(m)(mb). In view of the fact that [mnhrp, f,Jemnb, it
follows that p, is actually surjective, hence induces an isomorphism of
algebras

p:D(M/H )~ D(Ky/H,).

The second algebra allows a natural embedding in D, (cf. Section 2).
Moreover, from the above definition of p it is clear that

Yim® P=7m (36)
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(use that the definitions of the two Harish-Chandra isomorphisms involve
the same rho-shift). In particular we see that D(K;/Hg) =~ D,. The natural
map i: Ky /Hys M/Hy, is a difftomorphism (cf. [4, Lemma 3.5]). The
associated pull-back i*: C*(M/Hy)— C*(Ky/H,) is a bijective K-
equivariant topological linear isomorphism and from the above definition
of p one readily checks that i*c p(D}= D-i* for all De D(M/H,). There-
fore it suffices to study the right action of U(f,,)" on C*(Ky/H,).

Let &, be the set of equivalence classes of finite dimensional irreducible
representations of K, possessing a Hyfixed vector. Then by the
Peter-Weyl theorem we have the following isomorphism of K,, U(fy)™
modules:

C(Kny/Ho) gy > @ VEQVH (37)

fe s

Hence it suffices to consider the action of U(fy,)” on V. We consider the
action on the possibly bigger space V¥. Let V.=V, ® --- @V, be a
decomposition of V; into irreducible (K;)° modules. Then

=V - @

and this decomposition is preserved by U(f,,)™. It suffices to consider the
action of U(t,)™, on V™, with V an irreducible (K,,)° module. If ¥* =0
then there is nothing to prove. In the remaining case we have dim V%=1,
and it is well known that V has a highest weight A eib}: clearly Ae L.
It is also standard that XeU(fy,)" acts on V™ by the scalar
YeX A+ py). It follows that DeD(M/H,) acts semisimply on
C*(M/Hy)g,, and with eigenvalues 7y, (p(D):A+py). Now use
(36). 1

Proof of Proposition 4771. From the definition of % one readily deduces
that

“‘;0 Ad(w) = Ad(“’,) Shy-tpys

where in the right hand side of the equation Ad(w) denotes the
isomorphism D(M/H,) -» D(M/wH ,w~") induced by Ad(w) : U(m)"™ —
U(m)*#*"' Hence for D e D(G/H) we have

MP,W(D : }') = Ad(u’) ﬂw"Pu(D W ll)
Now consider the bijective intertwining map R, :C*(M/Hy)—

C*(M/wHpw™"') defined by R,, f(m)=f(mw). Then R, cpu=[Ad(w)u]>
R, for pe D(M/H\,). It follows that the eigenvalues of u, (D : 4) are the
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same as those of y,,~1p,(D : w~'4). In view of Lemma 4.8 they are all of the
following form, with Q=w"'Pw, A, €L:

Tmltg(D: w4, +pm)=70(up(D tsT'ANA4, +Pm)
=y(D:A;+py+s5'2)
=y D:sAd+py+4),

where A=A, + pp—5~ 'py. Now s normalizes aq, hence m, by, and X',.
Therefore py;— s~ 'py, is an integral linear combination of roots in Xy,
hence belongs to L. |

5. FINITE DIMENSIONAL CLASS (1, 1) REPRESENTATIONS

The purpose of this section is to describe the finite dimensional
irreducible representations of G possessing both a H- and a K-fixed vector.
These representations will be needed in the translation arguments of Sec-
tions 8 and 9. Most of the results of this section are essentially due to [21].

A continuous representation n of the group G in a finite dimensional
complex linear space V is said to be of class 1 if there exists a non-trivial
vector ve V which is K-fixed. If in addition there exists a non-trivial vector
w e V which is H-fixed, then we shall say that = is of class (1, 1). Let us first
recall the Cartan-Helgason description of finite dimensional irreducible
representations of class 1, meanwhile fixing notations. With notations as in
Section 1 let j be a #-stable Cartan subalgebra of g containing a,. Let
Z*(1) be a system of positive roots for 2(j) = Z(a, {) which is compatible
with X .

Let A(j) denote the set of integral weights in {¥, and let A4(a,) denote the
set of ve ad. such that

(va)
aas L

foreach ael,.

Via the decomposition j =i, ®a, we identify af, with a subspace of jr.
Then A(ay) < A(j).

If = is an irreducible class 1 representation of G in a finite dimensional
complex vector space V, then it is well known that dim ¥* =dim vt=1,
and that ¥ is an irreducible g.-module. Let v(z) € A(j) be its Z'* (j)-highest
weight. Then v(w) belongs to

At(ag)={pued(ag); (v, a)>=0 for aeXy},

Conversely, if veA*(a,), then v=v(x) for a unique finite dimensional



SYMMETRIC SPACES 353

irreducible class 1 representation = of G (up to equivalence). We shall call
7 the class 1 representation of highest weight v. For G connected, semisim-
ple and with finite centre these results can be found, e.g., in [35, Sect. 3.3].
They are easily extended to groups of Harish-Chandra’s class.

If T is a real abelian Lie algebra, and V a complex vector space on which
[ acts finitely, then by V,(I) we denote the generalized weight space of
weight A€} in the I-module V. For future use we list some facts which are
easy to prove.

LEMMA S5.1. Let ve A% (ay), and let (n, V) be the associated class 1
representation of G of highest weight v. Then: (1) V. (ao)=V,(i); (2) if
ve V (ag)\{0} and ee (V*)*\{0}, then e(v)#0; and (3) Z,(a,) acts
trivially on V (ag).

We now recall some results due to [21].

LEMMA 5.2. Let Xep, Yeaq, and assume that both X and Y centralize
ag. Then [X, Y] =0.

Proof. It suffices to prove this for the case that g is semisimple.
Moreover, by maximality of a, in png we may as well assume that
Xepnband Yeqnt Then Z=[X, Y] belongs to [h, q] n[p,t1=qnrp.
Clearly Z centralizes a, and we infer that Z e a,. But using the invariance
of the Killing form one readly chacks that Z is Killing perpendicular to a,:
hence Z=0. |

Recall that b is a maximal abelian subspace of g, containing a,.

COROLLARY 5.3. [ag,bi=0.

By the above result the subspace a,+b is an abelian subalgebra of g
which consists of semisimple elements. We may therefore choose an abelian
subspace j,, < En b such that j =, ® (ap+ b) is a Cartan subalgebra of g.
Notice that j is both ¢- and #-invariant. Via the decomposition of i induced
by (1),(2) we identify ag,ad., and b¥ with subspaces of j* Let

2(b)=2(g, b). The following result (cf. [21, Lemma 1.5]) will allow us to
fix suitable choices of positive roots.

LEMMA 54. Let a€ X(i) be a root whose restriction to a, is zero. Then
either o | ag=0o0r « | b=0.

Proof. Let X, be any element in g;. Then a, centralizes the element
Y=X,+0X,—0(X,+0X,). Now Yeqnt so in view of Lemma 5.2 we
infer that a, centralizes Y. This is only possible in one of the following two
cases.
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(1) o] ag=0. There is nothing left to prove.

(2) At least one of the roots fua, oo, ¢fa equals o. If fa=a, then
a|ay=0 and if ca=o then a|b=0. Finally if 666=0 then a=0 on
iNg_ Dipw®iy, hence on ag+b. |

In view of the above we may fix compatible systems of positive roots for
Z, 2y, 2(b), and 2'(j). We indicate these choices by the superscript +.

Let A(b) denote the set of ve b* such that {a, a> '{v,a)>eZ for each
ae XZ(b), and define

A(aq) = A(ay) N A(b). (38)

Then the following result describes the finite dimensional class (1, 1)
representations. Recall that H is said to be essentially connected iff (4).

PROPOSITION 5.5. Let ve A*(ay), and let (m, V) be the associated finite
dimensional class 1 representation of highest weight v. Then V possesses a
non-trivial b-fixed vector iff ve A(a,). Let ve A(a,). Then:

(1) dim V*=1. If H is essentially connected then V®= V",

(2) Assume ve V,()\{0}. If ee (V*)'\{0} U (V*)'\{0} then &(v) #0.
(3) Vilag)=V.()

(4) M, acts trivially on V (a,).

Proof. In view of the results described earlier in this section, ¥ is an
irreducible g.-module of highest weight v.
Recall the duality of Section 2. Then obviously

yh=pv (39)

It follows from the Cartan—Helgason description that (39) is non-trivial
iffl veA(ad)=A(b). The latter conditition is equivalent to ve A(a,).
Moreover, if that condition is fulfilled, then the space (39) has dimension 1.
Now assume that ve A(a,).

For (1) it remains to be shown that Z, ., «(a,) acts trivially on ¥, in
view of (4). Observe that

Kexp(a)H,=Kexp(a,)H=G (40)

(this holds always, regardless of whether H is essentially connected or not).
Now fix e, e ¥°\{0}, and ee (VF*)*\{0}. Since = is irreducible, it follows
from (40) that the real analytic function x — &(n(x)ey), 4, — C is not iden-
tically zero. Hence there exists a X e a, such that e(n(X)e,) #0. We can
now finish the proof of (1). Let me Z,, ., x(a,). Since Ad(m) normalizes b,
n(m) normalizes the one dimensional space V® hence acts by a scalar ce C
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on it. It follows that c{e n(X)ey) = (e n(X)n(m)e,)={n"(m ')e,
n(X)ey ) = & n(X)ey ), hence c=1.

For (2), notice that by LemmaS.1(1) and duality we have
V.(i)= V. (a,)=V,b). Now apply Lemma 5.1(2) and duality.

To prove (3) notice that M, leaves the space V,(a,) invariant. We claim
that in fact V (ay) is an irreducible m,-module. Indeed let V, be a non-
trivial m,-invariant subspace of V,(a,). Then n annihilates ¥, and from
g=fi@m;®n we see that V=U(g)V,=U(i)V,, hence V,((aj)=
Viag)n Un) Vo= V,. This proves the claim. Now m,=m,@®a,, and
since a4 acts by scalars it follows that ¥ (a,) is an irreducible m,-module
as well. Now fix e"e(V*)"\{0} and &'e (V*)"\{0}. Since V,(a,)> V(i)
we have that ¢" and &' are not identially zero on V.(aq). This implies in par-
ticular that V,(a,) has a non-zero Ky,fixed vector w (use that &' is
K-fixed). From m,npcm,ch it follows that M, =exp(m, nh)K,,. We
infer that for all xeM_, we have that &’(n(x)w)=¢"w). Hence
e¥(m(x) n( y)w) = e%n(x)w) for all x, ye M, and since € | V (a,) is a cyclic
vector for the contragredient m,-module V,(ag)* it follows that ( y)w=w
for all ye M,. Hence V (a,) is the (one-dimensional) trivial M ,-module. [

LEMMA 5.6. For ae Xyu X(b), write & =a | a,. Then

{a,d)

Proof. We restrict to the case that a € X(b), the other case being similar.
Then 2d=o—08a, hence the right hand side of (41) equals
2—2a, Bad<{a, o) ! and the result follows. |

Remark. 1In [21, Lemma 2.3], it is actually shown that (41) belongs to
{1, 2,4}, but we shall not need this.

The following is now obvious.

COROLLARY 5.7. Let vea). Then

S92 4Z for cachaeS = veA(ay)

o, a)

6. FUNCTIONS OF S-PoLYNOMIAL GROWTH

In Sections 8, 9, 10, and 16 we will be dealing with meromorphic func-
tions of A € ad, whose singular and growth behaviour are of a specific type.
The purpose of this section is to describe this type of behaviour, meanwhile
developing some useful terminology.
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Let S be a finite subset of aj\{0}. Then we denote by /75(a,) the subset
of S(a,) consisting of 1 and all products of linear functions a, = C of the
form

(A)=<48)—¢ (42)

with £eS and ceC. Here {.,.)> denotes the Hermitian extension of the
dual of the given inner product on a,. Of course the decomposition of an
element of ITg(a,) as a product of linear factors is unique up to the order
of the factors. We endow I7g(a,) with the partial ordering < defined by
pXgq iff p divides g. Then clearly every subset T of ITs(a,) has a greatest
lower bound inf T in M g(a,).

Let V' be a Fréchet space. We will say that a holomorphic V-valued func-
tion f, defined on an open set 2 — a}. has exponential growth on € if there
exists a constant r >0 and for every continuous seminorm s on V constants
NeN and C>0 such that

S(f(A)) < C(1+ A" ertRet (43)

for all /€ Q. The function f is said to have polynomial growth on € if the
above holds with r=0.

We will say that a meromorphic function f: Q2 — V has S-exponential
(resp. S-polynomial) growth if there exists a polynomial g€ IT5(a,) such
that ¢f is holomorphic and of exponential (resp. polynomial) growth on Q.

In particular we will be interested in functions of S-exponential growth
on open sets of the form

af(P,R):={Aeaf;<{4a)<R for aeZ(P)}; (44)

here Pe #,(A4,) and ReR. The following result will enable us to reduce on
the polynomial ¢ in the definition of S-exponential growth.

LEMMA 6.1. There exists a constant a >0 such that for every ReR and
every holomorphic function f on af(P, R) with values in a Fréchet space V
the following holds. Let pe Ils(a,) be of degree d and suppose we have an
estimate

s(p(A) fFAND S CU + A e®4 (Aead(P, R)),

with s a seminorm, r =0, Ne N, and C > 0. Then for every 0 <¢ <1 we have
the estimate

SUA)) < C2Vad) (‘ t

d
) (1 + A1)~ eReA (45)

for all Aead(P, R—¢)



SYMMETRIC SPACES 357

Proof. It suffices to prove the result for d= 1. The above estimate will
then follow if we apply this result d times with d~ ¢ instead of & Thus we
assume that d=1 and that p has the form (42).

Let

m=min |v|, M= max |v|,
veS veXusS

and write n=1t&, with
€

U0+ M7E
Let A€ aX(P, R—eg). If | p(A)] > (1/2)7 |£|?, then

. L+ M\2 /1 +r
(D) <2< ‘- )( )

£

and (45) follows with a=a, :=2m~?(1 + M)>. We therefore assume that
| p(A)] < (1/2) 7 |€|% For every aec X we have |(n, a)| <tM?<e Hence if
zeC, |z| <1 then A+ zneaX(P, R). On the other hand, if |z} =1, then

I p(A+zn)| 210, ED) — 1 p(A)] > 37 €)%
Hence
s(f(A+2z0)) S DC(1 + |A])N e"'ReH,

with

2 1
D=—=(1+1|&)" ™ <2Nale< +r>.
7 |¢] £

The required estimate now follows with a=a, e if we apply the above to
estimate the integrand in Cauchy’s integral formula for the function
z+—> f(A+ zn) over the unit circle in C. |

7. S-GENERICITY

In this section we define a notion of genericity which will be used in
Sections 8 and 9.

Let a finite subset ScaZ\{0} be given. Then by a S-hyperplane we will
mean a hyperplane in a} of the form /='(0) with /e Ty(a,), deg/=1.
Moreover, we will say that a i-dependent statement (A€ a}.) holds for
S-generic 4 if the statement holds for A in the complement in ag; of a locally
finite union of S-hyperplanes.

580109210
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Let | be a Cartan subalgebra of g as defined below Corollary 5.3. For
future use we fix a particular finite and W-invariant subset Sc<aX\{0}
such that the following conditions are satisfied.

(1) YcS.
(2) IfaelZ(a, i), we W(g, i) then (x—wa)|a,eSu {0}.

Remark 7.1. The first of the above conditions guarantees that the map
J(P:&:4) is well defined as a map from V(&) into C~*(P:¢&:A)¥ for
S-generic A€ ag., by [4, Lemma 9.5]. Moreover, ev being a left inverse (cf.
[4, Theorem 5.10]) the map j(P:¢£: ) is injective as soon as it is well
defined.

The second of the above conditions guarantees that the following lemma
is valid. Note that W(m,, j) is the centralizer of a, in W(g, }).

LEmMMA 7.2. Let n,,n,€1¥ be such that n,¢ W(m,,i)n,. Then there
exists a polynomial q € IIg(a,) such that for /€ ad with q(1)#0 we have

A+, Fw(A+n,) forall we Wi(g,1i).

Proof. If we W(my, i), then the required assertion holds for any A€ a,,
in view of the assumption on 7, , 77,.

For each we W(g, i)\W(m,, i) thee exists a root §,,€2(g, i) such that
the restriction v, = (8, —w~',) | a, is non-zero. The second of the above
conditions guarantees that v,eS. Set /[ (1)=<4,v,>—<wn,—n, B,).
Then A+n,=w(i+n,) implies /,(A)=0. Hence q(4)=11, ¢ wim,, lw(4)
satisfies our requirements. ||

8. PROJECTION ALONG INFINITESIMAL CHARACTERS

In this section we will study projection along an infinitesimal character
in the tensor product of a principal series representation with a finite
dimensional class (1, 1) representation, inspired by an idea of Zuckerman
(cf. [37]). The results will be used in the derivation of the functional
equation for j in the next section.

Let | be the Cartan subalgebra of g introduced above Lemma 5.4. If V
is a Harish-Chandra module and n € an infinitesimal character, then we
denote the projection in V onto the generalized weight space for Z(g)
corresponding to n by p, or just p,.

Let ue A(a,) (cf. (38)), and assume that (x, F) is the finite dimensional
irreducible class 1 representation of extremal weight p.

Let éeM”, and let Ae(m_ nj.)*cj¥ be its infinitesimal character. If
QeP(A,), Acak then Ind5(£® A® 1) has infinitesimal charater A + /.
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ProposITION 8.1. Ler QeP(A,) and pe A(a,). Then for S-generic
A€ aj. we have that

PavisnlCQ:E: ) ®@F)=C(Q: 8 A+ p)i (46)

Proof. Let #, denote the space #; provided with the Q-module
structure ¢ ® A® 1. We consider the G-equivariant map

9 CTQ: 8 )®F-C ™ [ndg(%z(’@ﬂg)
determined by

@;(f @ v)(x)=f(x)®n(x)r.

Then on the level of K-finite vectors, ¢, is an isomorphism of (g, K)-
modules (the proof of this statement goes exactly as the proof suggested by
[24, p. 384, Exercise 6]). In particular -this implies that ¢, is injective on
the space of generalized functions.

We shall first deal with the case that u is Q-dominant. Then by Proposi-
tion 5.5 the a -weight space F, = F,(a,) is a one dimensional subrepresen-
tation of F|,, on which M, acts trivially. Consider the short exact
sequenge of Q-modules

0—F,—F|,— F/F,—0.

Let A(F) be the set of a,-weights of F. Then the composition factors of the
@-module F/F, are all of the form t®v® 1, with 7 a finite dimensional
irreducible representation of M, and ve A(F)\{u}. Let € be the set of
composition factors of the M -modules occurring in £ ® 7, with t as above.
One easily verifies that w +— Indg(w) x 1s an exact functor from the category
of finite dimensional Q-modules to the category of admissible (g, K)-
modules. Hence every composition factor of the (g, K)-module

IndS(#, ® (FIF,))x (47)

is a composition factor of an induced module of the form
Indg(d ® (A + v) ® 1)k, with § € €, v e A(F)\{u}. Therefore every
generalized infinitesimal character of (47) is of the form A;+ A+ v with
As€i¥ the infinitesimal character of € 4, and ve A(F)\{u}. Now suppose
that

A+A+p#Ew(Ad;+A+v), (48)

for all 6e ¥, ve A(F)\{u}, and we W(q,, i.). (According to Lemma 7.2 this
condition is fulfilled for A in the complement of a finite union of S-hyper-
planes.) Then p,, ,, , annihilates (47). On the other hand it is the identity
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on Indg(‘}fg,l@Fﬂ)K: C(Q : & : A+ u)x. Using exactness of induction once
more we infer that p,, ;, , maps IndJ(J#;, ® F|y)« onto Ind(#, @ F,)«.
Applying the isomorphism ¢, we infer that (46) holds for A in the comple-
ment of a finite union of S-hyperplanes, when u is Q-dominant.

Finally, let Q'€ #,(A4,). Then the intertwining operators 4(Q": Q:{: 4)
®17I and A(Q:E&: A+ pu) are isomorphisms for 4 S-generic. Hence (46)
remains valid if we replace Q by Q'. |

We will now investigate the extension of p,, ;. , from the K-finite level
to the space of generalized functions

C™Q:¢:)®F (49)

and its dependence on A. First we need a lemma. Recall the definition of the
A-dependent representation n, =my . ; of G on (8).

LEMMA 8.2. Let Xe U(g) be of order at most d, and let reR. Then
A n,(X) is polynomial (of degree at most d) as a function on af, with
values in the Banach space of bounded linear maps C'(K : £) - C" 4K : &).

Proof. Clearly it suffices to prove this for d=1, and then we may as
well assume that Xep. Let e C~*(K: £). We define ¢, e C~2(Q:&:4)
by ¢, | K=¢. Then

(X)) o(k)=@,(k; X)
=@ (Ad(k) X ; k). (50)
Now modulo n, Ad(k)XY can be written as a finite sum of terms

c(k)(U+ V+ W), where ce C*(K), and Uea,, Vem,, Wel Hence (50)
can be written as a finite sum of terms

k) Ligsvym@a=ck)[KU, A+ pp> +E(V)+ Ly] o(k).  (51)

From this the assertion easily follows. ||

PROPOSITION 8.3. There exist a polynomial qellg(a,) and a mero-
morphic family p (Q :&¢:2) (Aeal) of equivariant continuous linear endo-
morphisms of (49) with the following properties.

(1) For S-generic A we have

PAQ:8:)=Pasiry on CQ:5:A)®F (52)

(2) There exists a deN such that for every reZ the map
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A q(A) p(Q & A) is polynomial as a function on a}. with values in the
Banach space of bounded linear maps

C(K:E)QF->C 4K :E)®F. (53)

Proof. Let u,=u, U,, .., 4, be the collection of distint j-weights of n.
Then it follows from [23, Theorem 5.1] that (49) is admissible and of finite
length, and that

ﬁ NZ, A+ i+ p)] (54)

acts by zero on (49).

We may assume y,, ..., i,, to be ordered so that for a suitable 1 <k<m
we have 1<j<k iff A+ p;e W(m,,i)(4+p). Then by Lemma 7.2 there
exists a polynomial §e IIg(a,) such that for j>k and for every A with
g(4)#0 we have that A+ 14y, is not W(g,j)-conjugate to A+ 1+ pu
Given an element Ze Z(g) we define

NZ, 1)= ﬁ (NZ, A+i+u)—y(Z, A+ 2+ u))].

j=k+1

Let I be the ideal generated by the polynomials (Z), Ze Z(g), and let V,
be its zero set. We claim that §=0 on V,.

To see this, let Ec 2(g) be a finite dimensional linear subspace which
generates the algebra #(g). If A€ V/,, then the polynomial function E — C,
Z—b(Z, 1) is identically zero, hence for some k+1<j<m we have
that y(, A+A+pu)=y(,A+2+pu) on E. Since y is an algebra
homomorphism, this identity actually holds on all of Z(g), and it follows
that A+A+py; is W(g,ij)-conjugate to A+ A+ pu, hence G(A)=0. This
proves the claim.

In particular we see that there exists a Ze Z(g) such that b(Z) is not
identically zero. For Z e Z(g) we write

D(Z,A)= ﬁ [Z—9(Z, A+7+p)]).

j=k+1

Since Y(Z, A+i+pu)=y(Z, A+21+p) for all 1<j<k, ZeZ(g), and

A€ag., we have that

[Z—9Z, A+ A+p)] D(Z, }) (55)

equals (54) hence acts by 0 on (49). To complete the proof we need the
following,
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LEMMA 8.4. Let Ze Z(g). Then for S-generic A we have
[IdG(¢{®A® 1)@ n](D(Z, 1) =WZ, A) pssasn

on the K-finite level.

Proof. The space ker p, . ;. , equals the sum of the generalized weight
spaces corresponding to infinitesimal characters not contained in
W(a, i)(A + A+ p). Hence the power at the left in (55) acts invertibly on
ker ps.;+, The whole of (55) acts by zero, hence D(Z,A)=0 on
ker pA.+ A+pr

On the other hand Z(g) acts semisimply by the infinitesimal character
A+i+ponimp,, ;. for S-generic 4, in view of Proposition 8.1. From
this we see that the equation holds on im p,, ;. , as well. |

Completion of the Proof of Proposition 8.3. Let Ze Z(g) be such that
b(Z)#0. Then by the above lemma the meromorphic family

plQ:E:2):=hZ, 1) ' [Indg¢ ® L@ 1)®n](D(Z, 1))

of equivariant continuous linear maps does not depend on the particular
choice of Z. Set d(Z)=(m—1)deg(Z). Then in view of Lemma 8.2 it
follows from the above definitions that 11— b(Z, 1) p,(Q : ¢ : 4) is polyno-
mial as a function with values in the Banach space of bounded linear maps
from C'(K:¢)® Finto C"""#(K : ()@ F.

By the Nullstellen Satz there exists a constant ve N such that ¢=§"
belongs to 1. Hence we may write

n

g =Y aA)b(Zy, )

k=1

with Z,eZ(g) such that b(Z,)#0, and with a,eS(a,). Let
d=max, ¢, <, d(Z,). Then we infer that g(4) p,(Q:¢: 1) is a polynomial
function of 4 with values in the Banach space of bounded linear maps (53).
Finally let Q, be the complement of 5(Z,) '(0) in a}.. By Lemma 8.4
there exists a locally finite union % of S-hyperplanes such that
for e\, we have p,(Q:¢:A)=py,,4, Put K =U;_, 4. If
Acat\H#, q(2)#0, then 1€ Q,\#, for some k, and (52) follows. |

In the following two lemmas we list transformation properties which will
be useful at a later stage.

LemMMA 8.5. Let Q,, Q,€%,(A,) and consider the intertwining operator
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A(Q,:Q,: 6 )@ from C~™(Q,: £ A)Y®Finto C~*(Q,: £ A)QF. We
have
Pu(Qz 1€:A)e[A(Q,:0,:8:H)®T]
=[A(Q2:Q1:8: )@ 1] p(Q,:E:4)

Proof. By equivariance we have that

Pavivue [A(Q2:Q1: 8 )@ =[A(Q,:0::8: )@ I]opssivy

on the K-finite level. Now apply (52) and a density argument. ||

LEMMA 8.6. Let Qe#(A,), we Nila,), and consider the intertwining
operator Liw)® I from C~<(Q :(: A)®@ Finto C~*(wQw ™' : wé : wi)® F.
We have

[LO$)® 10 pAQ : &1 2) = WO ' s wh)o [L(W)® 1.
Proof. By equivariance we have that

LLW)®IToparivn=Pavirno [LW)RI] (56)

on the K-finite level.

According to Lemma 4.6, there exists a se W(g, {) which normalizes a,
and such that 5| a,= Ad(w) | a,. Moreover, w¢ has infinitesimal character
sA (we view ¢ as a representation of M, cf. Section 1). Finally, wu is an
extremal a,-weight for F, so ti follows that on C(wQw ™' : w¢ : wi) @ F we
have (for S-generic 1)

pA+/l+u=p:(/l+l+u)=ps,1+w},+wu
=P (WOW i wé s wi).

Here we have used Proposition 8.3 to obtain the third equality. Substi-
tuting the above relation into the right hand side of (56), and substituting
Pavivpy=P (0 :&:4) into its left hand side we obtain the desired
equality. |

9. ESTIMATES FOR j
This section is devoted to the proof of the following result; in the next

section it will provide us with an initial estimate for Eisenstein integrals.
Recall the terminology of Section 6.
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THEOREM 9.1. Let (e M, Pe#,(A,), and R>0. Then there exists a
constant s € R such that for each ne V(&)

A j(P:E: M) (57)

defines a meromorphic C°(K : &)-valued function of X-polynomial growth on
ag (P, R).

This result will be proved by means of a functional equation for
J(P:¢&: 1), see Theorem 9.3.

It suffices to prove Theorem 9.1 for H essentially connected (see also the
argument in [4, Remark on p. 381]). We therefore assume condition (4) to
be fulfilled.

Let pe A(ay) and let (n, F) be the finite dimensional irreducible class 1
representation of G with extremal weight u. Then F is of class (1, 1), ie,
it possesses a non-trivial H-fixed vector (cf. Proposition 5.5). The con-
tragredient representation (x ", F*) is also of class (1, 1) and has extremal
weight —ue A(ay).

Let Pe #,(A,), and assume that u is P-dominant. Then we may use the
equivariant pairing F* x F — C to define an equivariant embedding ¢, of F
into C(P:1:pu—pp)x as follows. Fix a non-zero vector ¢ ~# of weight —u
in F*. Then e * is N, and M _-fixed (cf. Proposition 5.5), and we may
define the map ¢, by

g, (v)(x)=<e ¥ n(x)v) (ve F, xe G).

Let exeF be a K-fixed vector satisfying (e % ex> =1. Then the right
K-invariant function &,(ex) vanishes nowhere. We define a continuous
linear map

M C O(P:l:A+pu)>C ®(P: . A)QF
by
froelen)” f®ex.
Thus, as a map from C~*(K:¢) into C™*(K:{)®F, A, is given by
fi> f®ex. Fix H-fixed vectors e, € F and e” € F* such that (e”,e,> =1.

Given Q € #,(A4,) we define the linear map e from C~=(Q:¢:)® F into
C~*(Q:£:4) by

8H(Z ‘PJ®UJ‘)=Z e, v 0; | (58)
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Finally recall the definition of p,(P:£:4) in the previous section, and
define the differential operator

D (E:A):C¥(P:E:A+ ) > C *(P: 1 4)
by
D(¢:A)y=eep(P:E:R)o M,

LEMMA 9.2. There exists a polynomial qe Ilg(a,) and a constant de N
such that for every reZ the map A q(A) D (& :1) is polynomial as a
function on a3, with values in the Banach space of bounded linear maps
C(K:&)—»C 4K &)

Proof. This is a straightforward consequence of Proposition 8.3. J

We can now formulate the functional equation for j.

THEOREM 9.3. Let u be P-dominant. Then there exists a rational
End(V(&))-valued function 4 — R, (& : 1) on af. such that

J(P:&:A)=D(&:A)>j(P:&:A+pu)oR,(E:A) (59)
Moreover, the function A+ R (& : A} is of S-polynomial growth on o, .

Before turning to the proof of this theorem we shall use it to establish
Theorem 9.1.

Proof of Theorem9.1. Let 2 denote the set of Aead such that

{Red+pp,a)<—1 forall aeX(P).

Then A j(P:&: A)n is holomorphic CO(P: & : A)-valued, and of polyno-
mial growth on © (cf. [4, Proof of Proposition 5.6]). In view of
Corollary 5.7 we may select u€ A(a,) such that {u, a) <0 for all xe X(P)
and such that in addition aJ (P, R+ 1/2) + u < Q. Let F be the finite dimen-
sional irreducible class (1, 1) representation of G of P-lowest weight u.
Then in view of Lemma 9.2 and Theorem 9.3 the right hand side of (59)
is meromorphic and of S-polynomial growth on a}(P,R+1/2) as a
V(€)* ® C (K : £)-valued function. Hence A+ j(P: £ : A)n is of S-polyno-
mial growth on aJ(P, R+ 1/2). On the other hand, by [4, Lemma 9.57] we
know already that for some ge IT;(a,) the map A+ g(1) j(P:&:A)n is
holomorphic on ag(P, R+ 1/2). According to Lemma 6.1 the latter map is
therefore of polynomial growth on af(P, R). |}

The remaining part of this section will be devoted to the proof
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of Theorem 9.3. As before we assume that yu is P-dominant. Define the
equivariant map

DAP:L:R):CTP: M@ F->C (P:E:A+p)
by
f®ve,(v)f

Then the following result is a straightforward consequence of the defini-
tions.

LEMMA 9.4. For every peZ the map ® (P : ¢ : 1) restricts to a bounded
linear map from CP°(K:E)®F into CP(K: &) which is independent of A.
Moreover,

PP L A)o M, =1 (60)

In particular, @ (P : ¢ : 1) is surjective.

Notice that .#, is not equivariant. Our next objective is to find an equi-
variant right inverse for @ (P : ¢ : 1), still assuming that u is P-dominant.

LeMMA 9.5. Let u be P-dominant. Then
PP :E:A)op(P:E:A)=D(P:(:4) (61)
Proof. By equivariance we have
B(P:E:0)oParisn=Parsen BuPED)
=@ (P:¢:4), (62)

on the level of K-finite vectors. Now use (52) and meromorphic continua-
tion to complete the proof. [l

We now define
PA(P:L:A):C®(P:L:A+u)>C (P L A)QF

by
Y(P:(:)=p(P:¢:R)oM,.

Notice that
D)= W, (P:E:A) (63)
Now let g€ ITg(a,) and de N be as in Proposition 8.3 with 0 = P.
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LEMMA 9.6. For every reR the function A+ q(1) ¥ (P :  : A) is polyno-
mial as a function on a}, with values in the Banach space of bounded linear
maps from C(K:E)®F into C""4M:&). If q(A)#0, then the map
Y ,(P:&:2) is equivariant and we have

D (P:E: ) WP E: ) =1, (64)
Y(P:E:A)eD (P:C:A)=pUP:E1A) (65)

Proof. The assertion about the polynomial dependence is a straight-
forward consequence of Proposition 8.3. By meromorphy it suffices to
prove the identities (64) and (65) for generic A€ ag.. We suppress P and ¢
in the notations. Using (61) we obtain that

D, (M) ¥ (A)=D (L)op,(A)e A, (66)
=@, (A)odl, =1 (67)

To prove the second identity, we first notice that @ ,(1) maps (im p (1))«
equivariantly onto C(P:&:4+u)g. A surjective endomorphism of an
admissible (g, K)-module is automatically bijective. Thus from (46) and
Proposition 8.3 we infer that for S-generic 4 € aj, the map & (4) is injective
on im p,(4). Next we observe that (64) implies that

Dy (A)o [P, (A)e D ()] =1, (1)
=@,(4)>p,(4)

Using the injectivity of @ ,(4) we may now conclude that (65) holds for
S-generic A.

Finally it follows from (64) and (65) that &, (1) is a bijection from
p(C (P:(:A)@F) onto C~*(P:¢: A+ pu) with inverse ¥, (4). Thus
the equivariance of ¥ ,(2) follows from the equivariance of @ ,(1). |

Our interest in @,(P : ¢ : 1) originates from the following observations.
Let m, be the endomorphism of V(&) defined by

m,=<{e * n(w)ey )1 on V{&, w),

for we ¥ .

LemMa 9.7.  The endomorphism m, of V(&) is invertible.

Proof. Assume not. Then (e * m(w)e,)»=0 for some we# . But
then the function e,(ey)(x)=<e % n(x)e,) vanishes on the open set
PwH by its transformation properties, and hence on the whole of G,
because it is real analytic. On the other hand it is the matrix coefficient



368 E. P. VAN DEN BAN

of two non-trivial vectors of an irreducible representation so it cannot be
identically zero. J

LEMMA 9.8. For every ne V(§) we have
PP E:AJ(P:E:A)n@ey]=j(P:E: A+ pu)m,n. (68)

Proof. By meromorphy it suffices to prove the equation for generic

i€ad (ie., for 1 in a Baire subset). The left hand side of (68) belongs to

C~®(P:&: A+ pu)". Application of ev,, to the left hand side of (68) yields
gu(eﬁ)(w) ve(j(P . é : A)r’) = <e—#’ T[(W) eH> prwr’
=pr,(m,n),

for we #". Since ev: C~%(P: & : A+ u)” > V(&) is bijective for generic A
with inverse j(P: 21+ u) (cf. [4, Lemma 5.7]), this implies the result. ||

If Q is any parabolic subgroup in #,(4,), then the map & defined by
(58) maps [C™(Q:¢: )@ F]" into [C~=(Q:¢&: A+ u)]". We define
the linear endomorphism M, (Q : ¢ : 1) of V(&) by

MAQ:¢:n=evoeop,(Q:E: )J(Q:E: )n®ey]).  (69)

LemMA 99. Let qgellg(a,) be as in Proposition83. Then A—
q(A) M (Q : & : 4) is a polynomial map from af, into End(V(&)).

Proof. If X e U(g) then one readily verifies that
evoe o (RONX)[J(Q:¢: Am®ey]

depends polynomially on A. Hence M, (Q:¢:4) depends rationally on
A€ ag.. On the other hand, since the restriction of j(Q : £ : )5 to the open
H-orbits on P\G depends holomorphically on 4, it follows that
g(4) M (Q : £ : 1) depends holomorphically and hence polynomially on A.

i
LemMma 9.10. If Q, Q'€ #,(A,), then
M(Q :E:0)eB(Q:Q:8:)=B(Q':Q::4)e M (Q:&:2)

Proof. Since ev: C~*(Q: ¢ : 1) - V() is bijective for generic 4, with
inverse j(Q :&:4) (cf. [4, Lemma 5.7]), it follows that

o p(Q:E:NJ(Q:E: ) n®ey]=j(Q:E: AIM(Q:E: M)y (70)
The operator A(Q':Q:¢:2) ® I from C *(Q:(:1) ® F into
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C ™(Q':¢:4)®F is equivariant hence commutes with p,, ;..
Moreover,

A(Q :Q:E: M)oefl =" [A(Q' :Q:E: A)RI].
Hence application of A(Q': Q: &: 1) to (70) yields
eMop Q18 A(Q L) BQ :Q:E: ) n®ey]
=j(Q :&:4)B(Q :Q: ¢ A)e M (Q: ¢ ).
Application of the evaluation map ev compietes the proof. J

ProOPOSITION 9.11. There exists a non-zero constant ceC and two
polynomials q,, q, € IIs(a,) (all independent of Q) such that

detMu(Q:fz/l):cM. (1)

q,(4)

Before turning to the proof of this proposition we shall use it to establish
Theorem 9.3.

Proof of Theorem9.3. Applying ¥, (P :¢: 1) to both sides of (68) and
using (65), we find that

PP C AP C: A ®@ey]=W (P:C:A)oj(P:C A+ pu)m,n.
From (70) we now obtain

HAP:E:An=e"oW (P:E:A)cj(P:E: A+ p)m, oM (P:E:2)" ']

Since D, (& : )=« W(P: & : 1), this proves the functional equation with
R(,:D)=m, oM (P:E:2)"". |
The rest of this section will be devoted to the proof of Proposition 9.11.

In view of Lemma 9.10 the determinant (71) is independent of Q. This will
be crucial for the proof.

LemMA 9.12. Let Qe Z#,(A,). Then for S-generic A€ a}. the map

N p Q8 )J(Q:E: ) n®ey) (72)
is injective from V(&) into (C~*(Q : € :1)® F)~.
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Proof. In view of Lemma 8.5 we may as well assume that u is J-domi-
nant. Using (61) we then infer that

PUQ:C:A)epQ:L:A)J(Q:E:)n®ey)
=@,(Q:8: A2 :<: ) n®ey). (73)

Evaluation of (73) at w yields

elen)w)ev, o j(Q: ¢ A)n=pr,(m,n).

This proves that (72) is injective as soon as it is well defined (i.e., 4 is not
a pole). Now this is true for S-generic 4. ||

Lemma 9.13. Let Qe #,(A,), and assume that pe A(a,) is Q-dominant.
Then there exists a wunique rational function Y, (Q:S:A) a3 —
End(V(&, 1)) such that for ne V(&, 1) we have

(evi®DNop(Q:8:D)J(Q:£: An®ep]=yY(Q:{:A:n)®e,. (74)

Moreover if q is as in Proposition 8.3 then q(A) ¥ (Q : & : A) is polynomial in
A and invertible for S-generic A.

Proof. We use the notations of the proof of Proposition 8.1. As in the
proof of Lemma 9.9 it follows that g(4) times the left hand side of (74)
defines an element of V(&) ® F which depends polynomially on 4. We will
first show that in fact it belongs to V(¢, 1)® F,,.

From the definition of ¢, in the proof of Proposition 8.1 it follows that

evicp,=ev,®I on [C*(Q:¢:A)@F]7
Therefore the left hand side of (74) may be rewritten as
evio@,op(Q: & A)J(Q:L: )n®ey]. (75)

In the proof of Proposition 8.1 it was shown (under the assumption that u
is Q-dominant) that for S-generic A1 the projection p,,;,, maps
C“""Indg(.}fg,l@)FlQ) into its subspace C~*Indg(s#;, ® F,). By equi-
variance we have @ 0 p 4,14, =Pas1+,°9,. Hence

im(@;0p,(Q:€:4)cC™* Indg(H#, ®F,)

for S-generic A (use Proposition 8.3). We conclude that (75) may be rewrit-
ten as Y(1:n)®e, with q(1)Y(4:n)e #; depending polynomially on A
and linearly on 5 € V(&, 1). Moreover from the H n M-invariance of (75) it
follows that y(4 :n)e V(& 1).

Observe that F,=Ce,, by Proposition 5.5. Hence v®e,—v defines a
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linear isomorphism #,® F,— ;. This map in turn induces an
isomorphism of Q-modules #;, ® F,— #, . ,,, hence an isomorphism

v: C‘”IndZ(J@@Fu)—:—» C™(Q:¢:A+p).
Put

u(h:n):i=vo@,opQ:E:Dj(Q:E: n®ey]

Then from the above it follows that u(A:#) is H-invariant and that
ev,u(d:n)=y(4:n), for ne V(& 1). The support of u(4:n) is obviously
contained in the closure of QH; hence

u(d:n)=j(Q:&: D) ¥(A:n), neV(E 1),

as meromorphic functions of 4 (use [4, Theorem 5.1 and Lemma 5.7]). In
view of Lemma 9.12 the map n> u(A:n) is injective from V(& 1) into
[C=(Q:&: 2+ u)]Y, for S-generic 4. This implies that ¢ (Q:¢:4)=
¥(A) is injective for S-generic 4. |1

Now assume that u is Q-dominant. For every we #/, let ¢,,-1, be a non-

zero a,-weight vector in F of weight w 'y, and define the endomorphism
¥ .(4) of V(¢ w) by

Yo A)=LEw ™) oy w ' Qwin e w ) o L(E, w ).

Here L(&, w™') is the map V(&) — V(w™'¢) defined in [4, Lemma 6.10].

COROLLARY 9.14.  For every ne V(&) we have

(ev,®DNep Q& )j(Q:C:)nBey]
=Y. (A:pr,(n)®e,-,. (76)
Proof. Since the map p,(Q:&:1) is support preserving, nothing
changes if we replace 5 in the left hand side of (76) by its V(£, w)-compo-

nent pr,.1. Hence we may as well assume that ne V(&, w) already.
We have that

L& w " )ol(ev,®I)=(ev, @) [LIw )R]
Using Lemma 8.6 we may rewrite the left hand side of (76) as

LEw ) Te(ev,@Dopy-rw ™ 'Qw:w 'Eiw™'4)
w™'ow:iw e w A LIE w ' In®ey]. (77)
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Now w~'u is an extremal weight for F which is w~!Qw-dominant.
Applying Lemma 9.13 we now infer that (77) equals
LEw ™) W ' Qwiw ™ Ew AL w1 ®e,, -,
=4 m®eu i, =Y, (2:pr, M ®e,y,. |

Proof of Proposition 9.11. In view of Lemma 9.10 it suffices to prove the
assertion when u is Q-dominant. But then it follows from Corollary 9.14
that

pProM (Q:E: )n=ev,oeop (Q:E:D)[J(Q:E: )n®ey]
=& (ev, ®@op (Q:E:)[JO:E: M)n®ey]
= <eH9 ew"u> wu(}‘ Prw"l)- (78)

This proves that M, (1)=M(Q :¢: 1) preserves the decomposition (5),
and that its determinant is given by the formula

det M,(A)= [] <e, e,-1,> dety (L),
VE S0

Since {e”, e,-1,>#0 (cf. the proof of Lemma9.7), it now follows by
application of Lemma9.13 that there exists a g¢,€Ils(a,) such that
q,(1) det M (1) is a polynomial which is non-zero for S-generic 4. Any
such polynomial is of the form c¢q,, with ¢, € Ilg(a,) and ¢ a non-zero
scalar. |

10. INITIAL ESTIMATES FOR EISENSTEIN INTEGRALS

In this section we will derive an initial estimate for the Eisenstein
integral. Let Pe#(A,), (e M, and write n;=np, ;. In addition to
Lemma 8.2 we need the following result.

LemMMA 10.1. Let se N. Then there exist constants C >0, r >0 such that
Jor every ac A, the operator n;(a) maps C°(K : &) into itself with operator
norm

[7:(@)]| < C(1 + |4])7 e+ Re 40 g,

Proof. Let pe C~®(K:¢) and define ¢, e C~*(P:(:4) by ;| K=¢.
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Define the maps Hp,:G—a, up,:G-oexp(mnp) and kp:G—>K by
xeNpexp Hp(x) tp(x) kp(x). Then

n,(a) p(k) = ¢,(ka)
= e(/l+pp)l‘lp(ka)é('up(ka)) (p(Kp(ka))
Using that £ is unitary and that
|H p(ka)| < [log al

for all k€ K, ae A, one obtains the desired estimate for s =0.
Now let s be arbitrary, ¢ € C°(K), and suppose that Y e U(f). Then
Ryny(a) o(k)=mn;(a) n;(Ad(a” l) Y) (k)
= Z c;(a) my(a) m,(Y)) olk),

for finitely many Y,e U/(g) and finitely many smooth functions ¢, on
A, satisfying bounds of the form |c;(a)| <exp(r|logal). The result now
follows by applying Lemma 8.2 and the first part of this proof. |

CoroLLARY 10.2. Let éeMW ReR. Then there exists a polynomial
Junction pe I1;(a,) and a constant se N, such that

(1) for every neV(&) the function i p(A)j(P:E:0)n s
holomorphic C (P : & : A)-valued on aX(P, R), and

(2) there exist constants NeN, C>0, r> 0 such that
ma(@) p(A) j(P:&: Al _ S C(1 4 [A])Y e+ IReAD NoBal jyp
Jor all ne V(&), Aead(P, R), and ac A,.

Proof. The first assertion is a reformulation of Theorem 9.1. The second
one follows immediately by application of the previous lemma. |

PROPOSITION 10.3. Let ReR. Then there exists a polynomial function
p € I15(a,) such that for each y € °% the mapping (4, x)+> p(4) E(P : ¢ : 1)(x)
is a C™-function on ag(P, R) x G/H, which is in addition holomorphic in its
first variable. Moreover, if pe IT;(a,) is any polynomial with this property,
then there exist a constant r >0 and for every X € U(g) constants Ne N and
C>0, such that

I p(A) E(P : ¢ : A)(X; a)|| S C(1 + |A])N e+ IReAn Mol |y (79)
Jor all y€°€, Aca(P, R), and ac A,.

580°1092-11
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Proof. It suffices to prove the proposition for a fixed , and we may as
well assume that y =y, with T=f ® ne #;  ® V(&) as in the proof of
Lemma 4.2. Let p,(1) be the polynomial corresponding to j(P:£:4)n as in
Corollary 10.2 and let p(i) be the polynomial defined by p(1)= py(1).
Then pellg(a,) because 2 is invariant under complex conjugation.
Moreover,

P(A) E(P:y : A)X; a)(k) = {my(X) Re-1f,,, ma(@) po(A) j(P: &2 ), ).

The last expression may be suitably estimated when we apply
Corollary 10.2 and Lemma 8.2.

11. FAMILIES OF SPERICAL MODULES

In this section we will investigate the structure of certain families of
spherical (g, K)-modules, related to algebraic models of the spherical
principal series. Our interest in them originates from the following. Given
veb¥, let fe C*(G/H) satisfy the system of differential equations

Df=y(D:v)f, DeD(G/H)

(notations of Section 2). Then f generates a (g, H)-module from the right.
Via duality this module corresponds to a quotient of a spherical principal
series (g, K)-module Y,. With a similar motivation this module has been
studied by [5]. We need stronger results concerning the dependence on the
parameter v however. The main results of this section, Proposition 11.7
resp. Corollary 11.15, and their dual companions, Proposition 12.4 resp.
Proposition 18.8 will be applied in the study of the asymptotic behaviour
of eigenfunctions in Sections 12 and 18.

We start by fixing notations. Let W, = W(g, a,) and let 4 denote the set
of simple roots in X (cf. Section 1). Given a subset F— 4 we shall write
P, for the associated standard parabolic subgroup, P.= My A N, for its
Langlands decomposition, and M,z= M A . Moreover, we put Np=0N,.
If F is the empty set, then we shall also use the subscript O instead of (.
Thus g =t ® a, D i, is an Iwasawa decomposition for g. We also adopt the
notations of Section 2 for the special case ¢ =6. A sub- or superscript Py
will then be replaced by F. In particular y, denotes the isomorphism from
D(G/K) onto I(ay).

Let X be a complex linear space, and suppose that for every value of a
parameter w ranging in a connected open subset £ of a finite dimensional
complex linear space, a (g, K)-representation =, in X is given. We shall
write X, for X together with the structure =, of (g, K)-module. Moreover,
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if 5 K then we shall write X(w, d) for the isotypical component of type &
for n, | K If 3= K, we put

X(w, Y= D X(w, d).

ded

DeFINITION 11.1. We will say that (n,; w € Q) is a holomorphic (resp.
polynomial) family of Harish-Chandra modules in X if the following condi-
tions are fulfilled.

(1) for every weQ the (g, K)-module X, is finitely generated and
admissible;

(2) for every ue U(g) and x € X there exists a finite dimensional sub-
space S c X such that for all w e Q one has n(u)xe S and n,(K)x < S and
moreover

(a) the map wr—n,(u)x, 2 > S is holomorphic (resp. polyno-
mial), and

(b) the map (w, k) x, (k)x,2xK—S is continuous and in
addition holomorphic (resp. polynomial) in its first variable.

LEMMA 11.2. Let (n,;weQ) be a holomorphic family of Harish-
Chandra modules in X. Then Jfor every finite dimensional subspace S X
there exists a finite subset 3 K such that

Sc X(w, 3)

for all w e Q. Conversely, if § is a finite subset of K, then there exists a finite
dimensional subspace S' = X such that

X, §)c§
for all we Q.

Proof. Let T be the linear span of the vectors nw(‘k)x, xesS, kek,
we Q. Then by (2)(b), T is finite dimensional. If deK, let P, ;: X > X

denote the projection onto the isotypical component of type é for n,, | K.
Then

Pos=] dim(3) ys(k ") mo(k) di (80)

where dk is the normalized Haar measure of K, and y, the character of 4.
The operators P, ; map S into the finite dimensional space T, and from
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(80) we infer tpat the map Q2 - Hom(S, T), w+— P, ;| S is holomorphic.
Hence for ¢ € K the subset

Q0)={we; P, ;| S#0}

is either empty or open dense in 2. Now let 3 be the subset of § € K for
which Q(J8)# . Then obviously S« X(w, 3) for every we Q. We will
show that & is a finite set. Indeed, if 9, is any finite ubset of &, then
Q(80) =N 59, L2(9) is open dense. Fix w, € 2(3,). Then for every d € 9, the
space P, 5(S) is a non-trivial subspace in T. Since X is the direct sum of
the spaces P, ;(X) (6 € K) it follows that (36| <dim T. Hence § is a finite
set, and the first assertion follows.

To prove the second assertion, we may as well assume that ' = {4}. We
first show that the function d(w)=dim X(w, §) is uniformly bounded.
Indeed assume this were not so, and let Q,= {weR; dim X(w, d) > j}.
Then F#Q;,, <@, for all j>1. If w,ef;, put §=X(w,, d), and let T
be as in the first part of the proof. Then the map ww— P, ;1S
Q2+ Hom(S, T) is holomorphic. Since P, ; is the identity on S it follows
that the set of w € 2 for which P, ;| S is injective, is open and dense in Q.
But Q, contains this set, hence is open and dense in 2 as well. By the Baire
category theorem it now follows that 2, ={),,, £, is non-empty. Fix
w,€R,.. Then X(w.,d) is infinite dimensional, contradicting the
admissibility of X, .

Let m be the maximal value of the function d=dim X(-, ), and let Q..
be the set of we Q2 for which d(w)=m. Then Q_,,=£,,_,, hence open
and dense. Fix w, € 2,,,,, let S=X(w,, 8), and define T as in the first line
of the proof. Then the rank of P(w, d)| SeHom(S, T) is at most m.
Moreover, it is m for w = w,, hence for w in an open dense subset Q' < Q.
The set P(w, 8)S is contained in X(w, d) for any w € Q; hence for dimen-
sional reasons we have that P(w,d)S=X(w,d) for weQ N2 It
foliows that X(w, 6) is contained in T for we 2., N 2'. We complete the
proof by showing that in fact this holds for all w e (2. Indeed let xe X be
arbitrary, and let T’ be the linear space spanned by T and n(k)x (we R,
ke K). Then T is finite dimensional, and ¢: w— P, 5(x) is a holomorphic
function with values in 7. But in the above we showed that ¢(w)e T for
all we 2,,.. N Q'. By continuity and density this holds for all w e 2. Hence
X(w, d)=P,s(X)cTforall w. |l

Holomorphic families of Harish-Chandra modules may be obtained
by using coinduction. We first discuss the induction procedure without
parameter dependence.

Via the isomorphism (13) (in the special case ¢ =) we shall view the
space U(g)/U(g)t as a right D(G/K)-module. Of course it is also a (g, K)-
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module for the left action by g and the adjoint action by K. If x is a
representation of D(D/K) in a finite dimensional complex vector space W,
then we define the (g, K)-module Y, by

Y, = U@) U@ ®pix W

It is a finitely generated admissible (g, K)-module (use [34, Corollary
34.70).
Let E denote the space of W -harmonic polynomials in S(a,), and define

U = U(fy) ® E.

We shall view # as a left U(iiy)-module. The following result is contained
in [5, Proposition 5.1] (notice that E=T, E).

LemMA 113. The map I :%®D(G/K)— U(g)/U(g)t induced by
u®e®Dr>ueD is an isomorphism of left U(n,)- and right D(G/K)-
modules.

CoOROLLARY 11.4. The linear map U @ W — Y, induced by x@ e @ w
xe ®w is an isomorphism of left U(iig)-modules.

Proof. Write D =D(G/K). Then we have

Y, =[U@@)/U(g]®p W= [U(i) ®ERDI®p W

> U(i)®E® [D®p W]
Now use that D@, W~ W. |

We shall consider the above construction for a representation y, of
D(G/K) in W depending on a parameter w € 2. The family (x,,; w € £2) will
be called holomorphic (resp. polynomial) if for every D e D(G/K) the map
o+ x,(D) is holomorphic (resp. polynomial) from Q into End(W). Let
W, denote W provided with the structure of D(G/K)-module induced by
Xo- Writing Y, for Y, we have

Y,=Ul(g)/U(g)t ®picixy We-

Moreover, let =% ® W. Then by Corollary 11.4 the linear map
¢, %Y, induced by x@e@wr>xe®w is an isomorphism of left
U(itg)-modules. We shall write #,, for the ((g, K)-representation which %
inherits via pull back by ¢,,.

PROPOSITION 11.5. Let (x,; @€ Q) be a holomorphic (resp. polynomial)
family of D(G/K)-representations in W. Then n_, is a holomorphic (resp.
polynomial) family of Harish-Chandra modules in ¥.
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Proof. Since we observed already that each %, is a finitely generated
admissible (g, K)-module it remains to verify condition (2) of Defini-
tion 11.1, and it suffices to do this for x=y@e®w, with ye U(R,), e€ E,
we W. Let ueU(g). Then uye=Y; y,e; D, modulo U(g)f with finitely
many y,;e U(#iy), e;€ E, D,e D(G/K). Hence

nw(“)(}'®e®w)=z Vi®@e;®x.(D;)w.

We conclude that w— n(u)x is a holomorphic (resp. polynomial) map
into a finite dimensional subspace of #.

Finally, let x=y®e®w be as above. Then k+ Ad(k)(ye) is a con-
tinuous map from KX into a finite dimensional linear subspace of U(g). In
view of Lemma 11.3 we may write Ad(k)(ye)=3,m;(k)y;e; D; modulo
U(g)t, with finitely many y, e U(f,), e,€ E, D;e D(G/K), and finitely many
continuous functions m,: K - C. Now

Tk} y®e®@w) =3 mi(k) y.®e;® xu(D)w,
and one sees that condition (2)(b) holds.

Since M, normalizes the algebra ii., the quotient spaces Y/, =Y, /ilY,,
(/=1) are (mz, Kz)-modules. In fact they are finitely generated and
admissible, cf. [34, Sect. 4.3].

Let #/ =% /i), ¥, and let n/, be the (m,;, Kr)-module structure inherited
from n,. Then clearly ¢, factorizes to an isomorphism of (m,r, K,)-
modules ¢/ (%, n])—> Y7/ .

The proof of the following result amounts to a straightforward verifica-
tion of condition (2) of Definition 11.1.

PROPOSITION 11.6. Assume that y,, is a holomorphic (resp. polynomial)
family and let j>1. Then (n/; we Q) is a holomorphic (resp. polynomial)
Sfamily of Harish-Chandra (m g, K z)-modules in %’.

We now apply all the above to a specific situation. Let Q=a},, W=C,
and for ve ag, define the character y, of D(G/K) by x,(D)=7y,(D : v). Then
for j>1 the family n/ is polynomial, hence by Lemma 11.2 there exists a
finite dimensional subspace ¥; %/ such that

¥'(v,1)c¥, foral vea}.

Let ¥; be a finite dimensional subspace of & which is mapped bijectively
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onto ¥; under the canonical projection p;: % — @/, and which contains
1®1 ®1 Moreover, let ¥; denote the image of ¥, under the map

m: % = U(ii,) ® E®Q C — U(g), u®e® z > zue. (81)

Then ¥/ is a finite dimensional subspace of U(f,+ a,) containing 1.

ProPOSITION 11.7. Let j= 1. Then there exist

(1) an endomorphism x,€ End(¥)), depending polynomially on v € ag,,
and such that x (1)=1 for all vea;

(2) an algebra homomorphism b,(v, -) from U(m,()*F into End(7)),
depending polynomially on v € o, ; and

(3) a bilinear map y,:U(m )% x¥;— i} Ufy+a,), depending
polynomially on veaf,,

such that for all ve a¥., De U(m,)**, and ve ¥} we have
Dx (v)=x,(b;(v, D)v)+ y (D, v) mod J,.

Here J, denotes the left ideal in U(q) generated by ¥ and
{D—7yo(D:v); DeU(g)"}.

Proof. Let P, denote the projection in %’ onto the isotypical compo-
nent of type 1 for =, | K;. Then P, maps the space ¥’ into ¥,. Put
%,=P,| 7. Then as in the proof of Lemma 11.2 one verifies that the map
vi— X, maps ag. polynomially into End(¥).

Define the algebra homomorphism b,(v, -) : U(m,)*F - End(¥}) by
b;(v, D)= P,onl(D)oP,| ¥, (82)

Then b,(v, D) depends polynomially on v. Using that P, commutes with
n/(D) for every D e U(m,)¥*, we see that

(D)o X, = P,om|(D)= P, | ¥
=(P,| 7)) P,onl(D)oP,| ¥,
=X,0b,(v, D).
The next step is to transport this structure from ¥, to ¥;. Let n: ¥ — «y be

the inverse of the bijective map m | "ﬁ “V—»“V (cf (81)) and deﬁne
&= p;on, where p; is the canonical projection % —»@’ Then ¢ is a linear
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isomorphism from ¥; onto ¥,. For vea}. and De U(m)* we define
x,, b;(v, D)€ End(¥;) by

x,=¢ 1o X, 0,
bj(v,D)=¢""eby(v, D)o .
Let 1, denote the element 1®1®1e%. Then 1, is a cyclic vector for

the U(g)-module %, (vead.). Let p,: Ulg) > ¥, ur> n,(u)l, be the
corresponding epimorphism, and define

.j'.;v(Ds U) = Pv(va(U) - xv(bj(v9 D)l))),
for veag,, De U(m )", ve ¥;. Then

y~v(D9 U)=nv(D)[rloxv(v)] _’7°xv(bj(", D)U)

which is easily seen to have canonical image zero in %’. Hence
7.(D, v)e it % and it follows that

YD, v):=m(y,(D,v))
belongs to fi. U(fi,) E. Moreover, using that p,om=1/ on % we see that
Dx,(v) = x,(b;(v, D)v) — y,(D, v) (83)
belongs to ker p,. One readily checks that ker p,=J,. |}

Let a be a real abelian Lie algebra, and suppose that X is a complex
vector space in which U(a) has a locally finite representation =, ie.,
dim n(U(a))x < oo for all xe X. If 1€ a* then we shall write X(n, 4) for the
associated generalized a-weight space. Let 4(rn) denote the set of a-weights
of =, i.e., the set of A€ aX* such that X(n, 1) #0. Then of course

X= @ X(=m A)
Ae A(x)
We say that a weight Ae A(n) has finite order if there exists a positive
integer m such that for all Hea we have that (n(H)— A(H))™ vanishes on
X(m, A). The smallest m having this property is said to be the order of 1 in
7, notation o(xn, 4). If A€ A(n) is not of finite order we define o(zn, 1) = oo,
and if AeaX\A(n) we set o(n, 1)=0.

PrROPOSITION 11.8. Let j= 1. Then Proposition 11.7 holds with the addi-
tional properties
(1) AG;(v,-)lap)cA(m) | ag)u {0}
(2) if AeA(b;(v,-) | az) then o(b;(v, -), ) <max{o(xn], A), 1}.
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Proof. We use the notations of the proof of Proposition 11.7. By (83)
it suffices to prove the assertions with b, instead of b, Write
¥,=im(P,)® "V“, where ¥,,=7,nker P,. If De U(m, z)%F, then b;(v, D)
acts by zero on ¥; Moreover n’(D) leaves im(P,) invariant, and by (82),
5» (v, D)—ni(D) acts by zero on im(P,). From this all assertions follow. |

Our next goal is to investigate the weights of n/.

LeMMA 11.9. There exists a positive integer m such that for every ve ad,
and every i€ A(n! | ap) we have o(n!, J)<m.

Proof. Let E’' be the image of CR E®QC in #' According to
Lemma 11.2 there exists a finite subset $ « K, and a finite dimensional sub-
space E"c#"' such that E'c%'(v,3)c E”. One readily verifies that
n(U(m,g)) E'=%" for every veag.. Hence

al(U(m)) X(v, H=X  forevery veag.. (84)

Since ay is centralized by M., n!(a,) leaves the space X(v, ) invariant
and by (84) it suffices to majorize the orders of the weights of n!|a,
restricted to X(v, ). Thus the result is valid with m=dim E".

PROPOSITION 11.10. If k> 1 then the weights of n*|a, are all of the
form (wv—p,) | ap— &, where we W, and where £ can be written as a sum
E=a,+ - +a,(0<I<k) of roots a,€ Z(ng, ag).

Let of be a subset of af. such that Re o/ is bounded. Then for every
EeNZX(ng, ap) there exists a d: =1 such that for every k=1, we W, one
has

o(n* lap, Wwv—po)lap—E)<d,  forall ved.

Proof. The assertion about the set of weights is proved in [6,
Lemma 1.2]. To get a bound on the order we shall inspect the argument
given there. First we need some notations.

The adjoint representation induces a finite dimensional representation u,

of M,r in M, =ik U(ity)/ik+'U(fi;) (k=>1). The set A, = A(u, | ap) of
a-weights of this module equals

Ak= {al + e +ak; a,-E —Z(I‘l,:, (1,:)}.
Consider the natural exact sequences of U(iiz)-modules

u”k®@l @k+l_b_'J?/k__ﬂ)0
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as defined in [6]. They induce exact sequences of (m,., K)-modules
ne®ml " mk i 2 pk 0,

Since apccentre(m,;), these are also exact sequences of locally finite
a-modules. Thus for any Aea¥, we have

oy(A) <oyt (M) <oy + o ®my | ap, A);

here we have written 0*(1) = o(n* | a, 1).
The action of ay on .#, is semisimple, so in view of Lemma 11.9 it
follows that o(u, ® ! | ap, 1) <m. Hence

o*(A)<km  forall vead, k=1 (85)

However, there is a better estimate since the sequence o%(1) becomes
stationary. Indeed let o be a subset of af, such that Re o/ is bounded, fix
we W, Ee NX(ng, ag), and write A, = (wv—pq) | ap— & Then there exists
a bounded subset o' of a} such that for all vesf one has
Re A, +(—A(n! | ag))= o’ Now fix k, such that k> ko= " A, = .
Then

o(u,®n!lag 4,)=0 forall k>=ky ved.

Hence o*(4,)=0*(A,) for k>k,, and combining this with (85) we con-
clude that o*(4,) <mk, for all ve o/, k> 1. Notice that d, ,=mk, only
depends on o/, w, and &. This proves the result with d, =max,, ¢y, ;. |

In the rest of this section we shall investigate the structure of the family
n! of Harish-Chandra (m,z, K;)-modules in %' in more detail.

Let 1, be the representation of D(M,z/K) in V< D(M,/Kr) defined
above Lemma 2.4 in the case o =6, Q = P.. (Notice the bar!) In particular
the set of a-weights of 7, equals

A, | ag)=(Wov—pr)| ag (86)

The family (z,;vead.) is polynomial. Hence we may apply the construc-
tion of a family of Harish-Chandra modules discussed in the first part of
this section to the pair (M,s, Kz) and the data Q=af,, W=V, x,=1,.
Then Z, :=Y,, is the (mf, Kz)-module given by

Z,= U(mlr)/U(mlF)fF®D(M.F/Kp) V,.
Let *fip=f,Nm,z and define

Z=U")@ERV.
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Then the linear map ¢ ,: % — Z, induced by x®@e®@vi—xe®v is an
isomorphism of U(*ii.)-modules. By pull-back under , we obtain a
representation nt of (m,r, K;) on Z. According to Proposition 11.5,
(nf;vead) is a polynomial family of Harish-Chandra (m, s, K;)-modules
in .

Consider the linear map f,: U(m,)® V - U(g)/U(g)I® C defined by
Fix®v)=xv® 1 (here we view V as a subspace of U(m,)/U(m,;)t).

LemMa 11.11. The map P, factorizes to a surjective homomorphism
B.:Z,— Y! of (myf, Kg)-modules.

Proof. From the fact that K, centralizes V viewed as a subspace of
U(m, )/ U(m, )., it follows that f, is a homomorphism of (m,, K)-
modules. Hence the induced map f,: U(m,;)®V — Y! is. From the
decomposition

U(g)=U(m )@ (n. Ulg)+ Ulg)D)

we infer that B, maps U(m,;)/U(m)f®1 onto Y|, hence is an
epimorphism. Using once more that K, centralizes V, we see that f, maps
U(m, )t -® V onto 0, so it remains to be shown that

f(D®@v)=p(1®1,(D)v), (87)
for DeD(M,;/K;), ve V. By (27) we may express Dv as a finite sum

Dv=Y v,'u(X)), (88)

with v;e V, X;e D(G/K). Here we have written u for pp.. On the other
hand, v, 'u(X,) = v, X; modulo i (U(g)/U(g)f), hence
[v, WX)@1])=[v, X;®1]
= [Ui® X\-(Xi)]
=[yo(X;:v)v,®1], (89)

where the brackets indicate that the images in Y! are taken. By definition
we have

Tv(D)D=Z'}’0(Xi:V)Ui (90)

(use (27) and Lemmas 2.2, 2.3). Combining (88), (89), and (90) we obtain
[Dv®@1)=[7,(D)r® 1], hence (87). §
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LEMMA 11.12.  For every ve a},, the map B, :Z,— Y is an isomorphism
of (m,r, Kg)-modules.

Proof. Let a,:Z — %' be the map which makes the following diagram
commutative:

8,
— ¥,

Z,
'/’v] ]"P“,
F = @

Then «, is an epimorphism of U(#iz)-modules, and it suffices to show that
a, is injective. If (z;; 1 <i<m) is a linear basis for the finite dimensional
complex linear space E-® V, then (1®z;; 1 <i<m) is a free basis for the
free U(fiz)-module Z. Therefore it suffices to show that a, | CR E-® V is
injective.

If eeEp, veV, then ¥, (1®e®v)=[e®v] (brackets denote canonical
images in the appropriate quotients). Given n € ag., define T, € Aut(S(ay))
by T,X) =X+ n(X) (X e€ay) Define *ppeaf by *pg(X)=
(1/2) tr(ad(X) | ng), (X €a,). Moreover, write yr=7yp,, and 'yp=T., oyp.
Then ev=e 'yr(v) modulo itz U(g)+ U(g)!. Hence

BY.(1@e®v)=[ev®@1]=[eyr(r)®1].
In view of Lemma 11.13 below we have
[e7r(v)®1]=0([1®e yr(v)®1]).
Hence
2(1®e®@v)=[1Qeyr(v)®1].

The injectivity of o, |CR®E-®V now follows by application of
Lemma 11.13 combined with the observation that E» %!, e~ [1®e® 1]
is an injective linear map. |}

LEmMA 11.13. The linear map E.®@V — S(a,) determined by
e®vi—e 'yp(v) is a bijection onto E.

Proof. For ve V we have
VYe(0) =T, (yr(v)) = T, (vr(Tp,0)).

Using (26) we see that 'y is a bijection from ¥ onto T, (E”), and it suffices
to prove that the multiplication map E,® T, (E®) — S(a,) is a bijection
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onto E. Now this follows from (25) in view of the invariance of Er and E
under the automorphism 7,. [

COROLLARY 11.14. The map D+—[D®1]), V,—Y! is an injective
morphism of U(m,g)**-modules.

Proof. Use that [DR®1]=8.y(1®1®D)=9¢,a(1®1®D). }

Let J, be the left ideal of U(g) generated by U(g)f and D —y,(D :v),
D e D(G/K).

COROLLARY 11.15. There exists a bilinear map y,:D(M /Kp)xV -
fizU(fy @ ay) depending polynomially on v e o, such that

Dv—t(D)v—y(D,v)eJ,, (91)

SJor all DeD(M ;/Kp), ve V, and ve al,.

Proof. Recall the definitions of m: % — U(g), 1, and p,: U(g) > ¥
from the proof of Proposition 11.7. Then p, is zero on U(g)f, hence it
makes sense to define

yv(D’ U) = Pv(DU - TV(D)U)‘
The canonical image in %' equals
[7uD, v)]1=n,(Dv—1,(D)][1,]
=@ ([(Dv—1,(D)®1])
=¢,°B([D®v—1®1,(D)])
=0.
Hence j,(D,v)efi %, and it follows that
D, v):=m(y,(D,v))

belongs to i U(y)E. The assertion (91) now follows as in the proof of
Proposition 11.7. |

12. ASYMPTOTICS OF EIGENFUNCTIONS

In this section we will analyze the asymptotic behaviour of joint eigen-
functions for D(G/H), using the methods of [33, 5, 6].
Let ||-]| : G — [1, o[ be the distance function defined in [6, p. 643] (see
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also [5, p. 112]). (Notice that in these papers a, is denoted by a.) As in
[6] we define

I, = sup Ix =" [£C),

xeG

for reR and any function f: G - C. The Banach space of continuous func-
tions f: G — C satisfying | f)}, < oo is denoted by C.(G). It is invariant
under both the left regular representation L and the right regular represen-
tation R (cf. [5, (2.4-5)]). The Banach space of C?%vectors for L in C(G)
is denoted by C%G) and the Fréchet space of C*-vectors is denoted by
C?(G). The norm on CYG) is denoted by |[-||,,. In [6, p.643] it is
observed that the estimates (2.2-7) of [5] are valid.

The above function spaces are of importance for analysis on G/H for

reasons to be explained shortly. Let [ |, be the distance function
G - [1, o[ defined by [x||2=|xa(x)""(. Then |||, is right H-invariant
and left K-invariant (use [5, Lemma 2.1]). Moreover, since |a*| = |a||* for

aeAd, we deduce that

kah| , = ||al (keK,ac A, he H). (92)

LEMMA 12.1. For every xe G we have
Ixl 2 lixll,-

Proof. Since (.| and |||, are left K-invariant, we may factor out
K ~centre(G) and reduce to the case that G ~ G, xexp aoyz, Where G, is
connected and semisimple and where

apr = {X€ay; a(X)=0 forall aeZ(g, ap)}

is contained in the centre of G. Let Xea,z. Then we may write
X=X, + X, where X,ea5;nq and Xy€aoz-nb. Since X, and X, are
orthogonal, we have that | X,| <|X]. But for every x € G one has that

Ixexp X =l|x| ¢*'  and  |xexpX|,= x|, e
Y

Hence it suffices to prove the assertion for the case that G is connected and
semisimple.

In view of the decomposition G= KA H and the left K-invariance of
both distance functions we may assume that x=ah (a€ A, he H) and
then we must show that

lahll = llall,

by (92). Now use [5, Lemma 14.4]. |
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CoOROLLARY 12.2. Let r=0. Then for every fe C(G/H) we have that
1A= sup x| ;" 1 f(x).

xeG

Proof. 1In view of Lemma 12.1 we have that

A1, < sup {lx|l, " [f(x)l

xeG

for every fe C(G). If in addition f is right H-invariant, then for x = kah
with ke K| ae A, and he H we have

lxll 77 L) = lkall =" | fka)l < | fl,
and the asserted equality follows. |

From Lemma 4.5, Proposition 10.3, and the above corollary we see that
the components of Eisenstein integrals are D(G/H)-finite functions in
C2(G), for suitable r.

Let ve b¥. Then we denote the space of functions f'e C*(G/H) satisfying
the system of differential equations

Df=y(D:v)f  (DeD(G/H))

by £ (G/H). If re R, then the space
¢ (G/H)=¢ 7 (G/H)n CF(G)
is a closed subspace of C°(G), hence a Fréchet space.
The following lemma will be useful at a later stage.
LEMMA 123, Let fe §7(G/H) be left K-finite. Then there exists a r >0
such that fe £ (G/H).

Proof. We use the techniques of [10, 2]. Define the u-spherical function
F:G/H—E as in [2, p.248, Proof of Theorem 7.3]. Then F behaves
finitely under the action of centre U(g). Moreover, f=noF for some
ne E*. For every Pe#,(4,) let £, denote the (finite) set of P-leading
exponents of F as defined in [2]. Moreover fix £,€af such that

ve¥=>Revgé, on claS(P)

Then according to [2, Theorem 6.1], thee exist constants C>0, meN
such that for each Pe #,(4,) we have

IF(a)ll < Ca**(1 + |logal)"  (ae A4S (P)).
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Let ue U(g). Then using [2, Lemma 7.6] we infer that the same estimate
(with C, m depending on u) holds for L, F.

There exists a constant > 0 such that for each Pe #,(A4,) and all me N
the function ar |a| ~"a*?(1 + |log a|)™ is bounded on A*(P) It follows
that for every uelU(g) there exists a constant C>0 such that
IL,F(a)| < C |la|" for all ae 4,. Using the decomposition G = KA H and
the fact that F is left K-spherical we finally conclude that for every u e U(g)
we have an estimate

ILFx) <C.lixll;  (x€G),

with C,>0 a constant depending on u. In view of Corollary 12.2 this
implies that fe C*(G). |

Let A e by, be fixed from now on, and let 1 denote a variable in ag.. Let
Qe? be ﬁxed (cf. Section 1), and write

aj, = {Xeagy; a(X)>0 for all ae Z(Q)}.

We shall investigate the asymptotic behaviour of a function
fe&y,,,(G/H) along aj,.

Without loss of generality we may assume that 2(Q) is compatible with
2+, We recall the duality of Section 2 and select a system Z¢* of positive
roots for X§=2(g% ad)=Z(b). Let 43 denote the set of simple roots in
22+, Denoting parabolic subalgebras with German capitals we have that
Q. N g?= P4 for the finite subset Fc 44 of roots a with a | ag, =0 (cf. also
[4, Sect.2]). Let G¢ be any connected real reductive group of Harish-
Chandra’s class with Lie algebra g% let K¢ be the analytic subgroup with
Lie algebra 14, and let P¢ be the normalizer of BZ in G*. Put

Xo(A4,A)={0} U {v|agy; ve W(b)(A4+A)—po+ [-NZ(Q)]1},

and fix k> 1. Then applying Propositions 11.7, 11.8, and 11.10 to g% K%
P%, and the parameter v= A + A€ b* = ad* we infer the existence of a finite
dimensional linear subspace 7, < U(n F@m, 7= U(iiy @ m,p), containing
1, and such that the following holds.

PROPOSITION 12.4. There exist
(1) an endomorphism x, € End(¥}), depending polynomially on L€ a,
and such that x,(1)=1 for all Ae a;;

(2) an algebra homomorphism b, (4, -) from U(le)"Q into End(%3),
depending polynomially on A€ a}; and
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(3) a bilinear map y,:U(m,p)%x ¥, -5 U(R) U(m,), depending
polynomially on Lealk

ac’
such that for all A€ ak,, De U(m,,)", and ve ¥} we have
Dx,(v)=x,(b(4, D))+ y;(D,v) modJ,, ;,
where J , . , denotes the left ideal in U(g) generated by by and
{D—y(D:A4+1);DelU(g)"}.

Moreover,

A(bk(/{’ ) ‘ aQq) < XQ(A9 i)a

and there exists a locally bounded function d : [0, «o[ — N such that for all
reag., EeA(bi(4, )| ap,) we have
o(b(4, -), £) < d(|Re 4| + [Re ¢]).
Define the function f,:a,,— R by

Bo(X)=min{a(X); aec Z(Q)},

and fix re R. Then the following lemma is proved in the same fashion as
Lemma 6.2 in [5].

LeMMA 12.5. Let ke N, and put
X)) =1|r| ¢; | X] ~kBo(X), (93)

Sor X €ay,, where c, is the constant of [S, Lemma 2.1(iv)].
For each ye ﬁ'{‘2 U(fiy +m,,) there exist constants geN, r' > r, and C>0
such that for all X €aj, we have

”Repr R}f" r S C “f” q.r e‘,'(X)
Sfor feC!G).

We now have the following version of [5, Proposition 6.1], but along
agq- Fix Ag€ag, Xo€aj,, and reR. If 4, and 4, are Banach spaces, we
write B(A4,, A,) for the space of bounded linear maps from A4, into 4,.

PROPOSITION 12.6. There exist, for each NeR

(a) open neighbourhoods Q of X4 in ag. and U of X, in aj;
(b) constants k,qeN, r'=r, and C,e>0;

580/109/2-12
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(¢) a continuous map ¥:QxU— B(CYG), ¥ ¥® C,(G)), holo-
morphic in its first variable; and

(d) an element ne v }*
such that

(i) W(4, X) intertwines the left actions of G on C¥(G) and C,(G), for
all (1, X)eQx U, and

(i) for every Aea}. and every fe &5, ,(G/H)n C4(G) we have that

[ Rexp rx.f — (no€xplbe(4, X)*I1®@1) Y(4, X)f1,. < C I fll,., e "
Jor all Xe U and t 2 0.

Remark 12.7. 1t should be noted that the formulation of Proposi-
tion 6.1 in [5] is not entirely correct. It becomes correct if one replaces
#[i*®¥ by its dual in (c) and (d), and t%(zH) by its adjoint in (ii). The
erroneous formulation has no consequences for the applications in the
paper because the eigenvalues of t%(zH) are the same as those of its adjoint
(counting multiplicities). A similar error has been made in the formulation
of Proposition 1.3 in [6], but again this has no consequences for the other
results in the paper.

Proof of Proposition 12.6. Fix NeR, and select keN such that
y(X;) < N; here 7y is given by (93). Let S(4) denote the set of weights of
the representation t4=b,(4, )| age of ap, in ¥;. Then S(4)c Xy(4, A).
Following [5] we split the set S(4) into two parts. Fix ¢>0 such that
1(X,) + & < N and such that for £ e S(4,) we have

Re &(X,) ¢ [N —2¢, NI.

Next fix a relatively compact connected open neighbourhood U of X, in
ag, such that

HX)+e< N
and
Re é(X)¢ [N—2¢, N — ¢] (94)

for XeU and &€ S(4,). Finally fix a connected bounded open neigh-
bourhood 2 of 4 in aj, such that (94) holds for e 2, {e S(A), and Xe U.
Then for A€ £, the set S(A) is a disjoint union of the subsets S, (1) defined
by

teS, ()= Re é(X)>N—1ie VXeU,

teS_(A)= Re é(X)<N—2¢ VXeU.
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Still following [5] we let ¥, (1) denote the sums of the corresponding
generalized weight spaces for 1%, and E (1) the projection onto V. (4)
along V. (4) (in [5] the analogous projection operators are denoted by
Q.(4)). Then E,(4) depend holomorphically on 4 (use [5, Proposi-
tion 5.8] or Lemma 20.1 of the present paper). If necessary we shrink Q
such that the operator norms of E, (1) are uniformly bounded for A€ Q.

From Lemma 12.5 we now infer that there exist numbers ge N and
¥ = r, and constants C, ¢ >0 such that

[ Rexp ox RO(0)) SN, < Clol 1 £, e, (95)
IRexp ex ROy (X, 0)) [l S C lol I1f, €7, (96)

for all Aca}, XeU, t>0, and ve ¥}. The first of the above inequalities

follows from Lemma 12.5 with k =0, since ¥/ is a subset of U(iiy) U(m,,).
We now define bounded linear maps F,(X, ¢) and G, (X, t) from C4(G)
into C,.(G)® ¥ ¥ by
CEAX, 1) f,0) = Reyp v R(x,(0)) f,
<G}1(X’ t) d, U> = Rexp 12 ¢ R( .V/'.(Xv U))f
The main difference with [57] is that we have not introduced a basis, and
that F depends on the parameter 1. The operator norms of F and G satisfy
the following estimates, analogous to (6.5-6) in [5]:
1F(X, )] < Ce”
and
1G (X, t)]| < Ce?*"

for all Ae2, Xe U, and ¢t =0.
As in [5] the reason for these definitions is that if fe &%, ,(G/H) then
by Proposition 12.4 we have that

Ry R(x,())f = R(x;(b;(X))v))f + R(y:(X, v))f,
for Aead, Xeagy,, and ve ¥,. Now put
B(4, X)=b,(4, X)*

(In [5] the matrix B(4, H) should have been defined as the transpose of
the matrix of t%(H), in order that (6.7) be valid.)
We obtain the C,.(G)-valued differential equation

d
7 P 0 =[B4, X) Fy(X, 1)+ Gy(X. 01f
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for every ieag, fe&Y, ,(G/H)n C{(G), and all Xeay,, teR. The proof
is now completed in the same manner as the proof of Proposition 6.1 in
[5]. Here the map ¥ is given by

W(4, X)=E , (1) F,(X, 0) + f: E, (1) e=B40G (X, 5) ds,

for Aeag, and Xe U. Moreover, 7 is the image of 1 € ¥}, under the canoni-
cal isomorphism 7, ~ ¥ *. |

Let

&%, (G/H)= ) €%, , (G/H).

reR

Then we have the following generalization of [5, Theorem 3.5] (see also
[6, Theorem 1.5]). If V is a finite dimensional real vector space, and me N,
then we denote by P,(V) the space of polynomial functions V' — C of
degree at most m. Let d: [0, co[ = N be the locally bounded function of
Proposition 12.4.

THEOREM 12.8. Let Acag..

(i) Let feé&y,, . (G/H), xeG. Then there exist unique polynomials
P.,(Q1 f, x) on ay, of degree at most d(|Re 4| +|Re &), for € Xp(4, 1),
such that

flxexptX)~ 3 piQIfix 1X)e™  (t-00)  (97)

Ee Xp(4.4)

at every Xo€as,.

(ii) LetreR, (e Xy(A,A), and put d=d(|Re 4] + |Re £|). Then there
exists r'eR such that f p, (Q| f) is a continuous linear map from
&3, ./(G/H) into CX(G)® Pap,), equivariant for the left regular actions
of Gon &7, , (G/H) and C?(G).

Proof. By the same arguments as in [5, p.129], it follows from
Proposition 12.6 that for each { € X (A, 4) there exists a unique continuous
function p, ((Q | £, x) on ag, which is radially polynomial of degree <d,
such that (97) holds, at every Xoeaj,. Let reR and {e Xy(4, 1). Then
given X, €az, there exists a relatively compact open neighbourhood U of
X, in aj, such that

(£, X)=p (21 1, X) (98)

is a continuous map from £, ;  x U into C?(G), which is linear in its first
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variable, and equivariant for the left regular actions. It remains to be
shown that (98) is polynomial of degree <d in its second variable X. Via
restriction we identify P {a,,) with a finite dimensional hence closed sub-
space of the Fréchet space C(U). Then by equivariance it suffices to show
that the function

q(f)=p, Q| fie,-)e C(U)

belongs to P {ay,), for every fe &Y, ; (G/H). By density and continuity it
suffices to prove this for left K-finite fe &%, , (G/H). But for such f it
follows from the (converging) asymptotic expansions in [2] and by
uniqueness of asymptotics that each function p,,(Q | f, e, -) is a polyno-
mial, hence ¢(f)e P(ayp,). From the already established fact that
t— q(f)(2X) is polynomial of degree <d for every X e U it finally follows
that g(f)e Py(age) 1

We also have a generalization of [5, Theorem 3.6], for holomorphic
families of eigenfunctions.

Following [5] we say that a map ¢ from an open subset Q of C” into
C(G) is holomorphic if for each ¢ € N it maps Q holomorphically into the
Banach space C?(G). Equivalently, this means that for every ue U(g) the
map L, ¢ maps £ holomorphically into C,(G).

Let €2, be an open subset of ag,. If f is a function 2,x G/H — C, then
given A€, we shall write f, for the function G/H — C, x> f(4, x). We
define

E,(G/H, A, Q)

to be the space of C*-functions f: Q,x G/H — C such that

(1) for every A€, the function f; belongs to £, , .(G/H), and

(2) for every i,e 9, there exists a constant reR such that i+ f;
maps a neighbourhood of 1, holomorphically into C*(G).

We now have the following generalization of [5, Theorem 3.6].

THEOREM 129. Let fe&(G/H, A,Q,), and fix i,€Q, and &,e
Xo(A, A). Let Z(A) be the union of the set {0} n {&y} with the set of
w(d+4)|aga—po—u (we W(b), ue NX(Q))

such that

w(A+ o) | agq—po—u==Eo.
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Then there exists an open neighbourhood Q = Q of A, and a constant r e R
such that the map

(A" X)H Z pl.f(Qlf,{a', X)ef(X)
e Z(A)
is continuous from 2 x apq into C¥(G), and in addition holomorphic in A.

Proof. The proof is essentially the same as the proof of Theorem 3.6 in
[5] at.the bottom of p. 129. ]

13. PROPERTIES OF THE COEFFICIENTS

The purpose of this section is to investigate properties of the coefficients
P.:(Q | f) in the asymptotic expansion (97). Here Q€ #,. We will show
that the coefficients satisfy certain differential equations. When Q € Z,(4,)
these will allow us to limit the set of exponents.

We start with some simple transformation properties.

LEMMA 13.1. Let A€a}., f€87, ,(G/H), and L€ X (A, 4). Then

Q) fixma, X)=p, (0] f, x, X +log a) at

SJor all xe G, me M, H, and ac A,,.

Proof. The proof is essentially the same as the proof of [5, Lem-
ma85] |

Next we will show that the coefficients are related by recurrence rela-
tions. Recall from Section 2 the definition of the algebra homomorphism
Uo:D(G/H)->D(M /H,p). It is well known that up='ugs. Let
DeD(G/H), and let u be an element of U(g)” whose canonical image in
D(G/H) equals D. Then there exists a w € ity Uity + m,p) such that

u—po(D)ew+ U(g)h.
The element w can be written as a finite sum w=>;w,;, with
w; € U(iig + m,p) such that ad(a,,) acts on w, by a non-zero weight —y;,
with u,e N2(Q).

ProprosITION 13.2. Let De D(G/H), and u, w; as above. Then

[uo(D)—y(D: A+ )] poe(@1 S X)=Z WiPrer (@11 X)
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for all fe&7, , (G/H), £€Xy(A, ), and Xeay,. Here we have adopted
the convention that p,;, =0 if n¢ X (A4, A).

Proof. Proceed as in the proof of [6, Proposition 2.1]. |

We define the partial order <, on ag, by

ni=<gh:<>1,—1n,€ NI(Q)

Let feéX,,.(G/H). Then an element ne X,(4,4) will be called an
exponent of f along Q if p, (@] f,-) is not identically zero. The set of
exponents of f along Q is denoted by &(Q | f). The < ,-minimal elements
of £(Q | f) are called the leading exponents of f along Q; the set of these
leading exponents is denoted by &,(Q | /). The following is now obvious.

CoRrOLLARY 13.3. Let Acag., and fe&} , (G/H). If { is a leading
exponent of f along Q, then the function ¢ € C*(M ) defined by

p(m)=p, Q| f, m0)
is right H\,-invariant and satisfies the system of differential equations
po(Dyp=y(D:4+2)¢  (DeD(G/H)).

Our next objective is to solve the above system when Q is a minimal
a0-stable parabolic subgroup, for generic values of A. Thus from now on we
assume that Qe #,(4,). Then M,, =M, and

05e =104 (Q)

is a Weyl chamber in a, for the root system X = X(g, a,). The set Z(Q) is
the associated system of positive roots for . Fix a system X'}, of positive
roots for X'y =X(m,, b), and let p\ be half the sum of the positive roots,
counting multiplicities. Recall the definition of the set Lcib} above
Proposition 4.7. This set being a lattice, we may fix a basis & for the real
linear space ibg} such that {u, > € Z for all uc L, fe &

Let Aeib¥. Then for every p=(w, B)e W(b)x® and pe L+ py we
define

H, = {Aead; Aw B> =C(utpo—wa, B}

If p belongs to the set IT of pairs (w, f)e W(b) x # such that w= '8 | a, #0,
then 5%, , is a hyperplane in ak. Let 5, denote the (locally finite) union
of the hyperplanes ¥, ,, pell, pe L+ py.
If e Z(b) and « | a,# 0, define the hyperplane
Hl:={lear;{A+4ia)>=0}

qc?
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in aX. Let #2 be the finite union of these hyperplanes, and let ay denote
the set of regular points in a.. Then

0 (A) =g \(Hy U #2) (99)

is the complement of a locally finite union of hyperplanes.

LEMMA 134. Let Aeal/(A), pe L+ pyy, and we W(b).

(1) If w(Ad+2A)—py—peal, then w normalizes a,.
(2) If w centralizes A+ /. then w centralizes a,.

Proof. The hypothesis of (1) implies that i€ ., for all fe#. In
view of the condition on 4 this can only be true if w~'f| a, =0 for every
B e B, or equivalently if w normalizes b,. Hence w normalizes b,’s Killing
orthocomplement a, N g, in g, =[g, g]. It follows that w normalizes aq

Now assume that we W(b) centralizes A+ 1. Then w is a product of
reflections s,, with (o, A +4)>=0. Since A¢#% the latter condition
implies that « | a, =0, hence each reflection s, centralizes a,. ||

PROPOSITION 13.5. Let Aebf,, Aecal(4). Then for every solution
@€ C®(M,/Hy,) of the system of differential equations

Ho(D)o=y(D:A+4)p  (DeD(G/H)) (100)

there exist unique functions ¢,.€ C*(M/Hy), we W= W(g, a,), such that

p(mexp X)= 3 o,(m)e™*r20), (101)

weWw

for me M, Xea,. Moreover, if we W and s€ W(g, ) is as in Lemma 4.6,
then

Do, =ym(D :s4)p,,  (DeD(M/Hy)). (102)

Proof. Let &(M,, A4) denote the space of functions ¢ € C*(M,/Hy,)
satisfying the system (100). The map M xa,—»M,;, (m, X)>mexp X
induces a diffeomorphism ¢ : M/Hy x a;,— M,/Hy,. By pull-back under ¢
we identify C*(M,/Hy,) with C*(M/Hyxa,), and D(M,/Hy,) with
D(M/Hy)® S(ay). Since D(M,/Hy,) is a finite py(D(G/H))-module,
every g e £(M,, A) behaves finitely under the action of D(M/H ), and in
view of Lemma 4.8 it suffices to consider the case that ¢ is an eigenfunction
for D(M/Hy,). Let y(-: 4,) be the associated eigenvalue (Age L + pyy).
We define the map C,, : S(b) » S(a,) by C,(X® Y)=X(A,—pm)Y, for
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X e S(by), Ye S(ay). Then the action of DeD(M,/Hy,) on ¢ is described
by

(Do) | ag=C4,[vm,(D}](0 | ag). (103)

Here ym, =T, °¥m,, and we have identified a, with the subspace {e} xa,
of M/Hyxa,. Let p,=py+p, (this is a rho for Z(b)), and define
7'=T, =7. Then y' =y, up. Hence applying (103) to the system (100) we
infer that ¢ | a, satisfies the system

Ci Y (D)o lag)=y(D: 4+ o lag (DeD(G/H)).

Now define y:b=b,@a,—»C by Y(X+ Y)=e 0 MY p(Y). Then it
follows that

[e Pouce” o =u(d+ )Y (ue S(b)*¥'™).

Using [20, Chap. IT1] we now infer that we have a unique expression

d/= Z qw ew(A+Mf—p' (104)

we Wi(b)/ Wy

where W, denotes the centralizer of 4+ 4 in W(b), and where each g, is
a W _-harmonic polynomial on b. By Lemma 13.4(2), the group W, is con-
tained in the centralizer of a, in W(b) which in turn may be identified with
W(m,, b).

In view of the definition of y we must have that

w(A+A)—po—Apeag, (105)

for every we W(b) with g, , 4, #0. In view of Lemma 13.4(1), the above
condition (105) implies that w belongs to the normalizer W of a, in W(b),
and also that wA = A,. It follows that

w=e:40—ﬂm Z pwewi*PQ,

we WeiW,

where each p, is a W _-harmonic polynomial on b. Since W< W(m,,b)
it follows that p, is annihilated by differentiations from a, hence belongs
to S(bZ). We conclude that for each ¢ € £(M,, 4) we have

olag= T culo)eire, (106)

we W

with ¢,(¢)eC. Since A is a regular element of a,, the functions et weW
are linearly independent. Therefore we may fix points X, € a,, ve W such
that the c¢,(¢) can be solved uniquely from the equations obtained by
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evaluating (106) in the points X,, ve W. It follows that each ¢, is a con-
tinuous linear functional of order 0 on &(M,, A). We define continuous
linear maps C,, from &(M,, A) into C*(M/Hy) by C, (@)m)=c (L,,-1¢).
Then (101) holds with ¢, = C,(¢) and it is clear that the ¢,, are uniquely
determined. Moreover, the maps C,, are left M-equivariant by uniqueness.
Finally Eqgs. (102) have been checked along a4 in the course of the proof.
This is sufficient in view of the equivariance of the C,. ||

CoROLLARY 13.6. Ler Aebf,, AeaX(A4). If &3, ,.(G/H)#0, then
A €sL+ py for some se W(b), normalizing a,.

Proof.  Let the above hypotheses be fulfilled. If fe &7, , ,(G/H) is non-
trivial, then its asymptotic expansion does not vanish identically (use
reduction to K-finite f as in the proof of Theorem 12.8). Hence there exists
a leading exponent (€&, (Q|f) Replacing f by a left translate if
necessary, and using equivariance, we may assume that the function
@€ C®(M,) defined by @(m)=p,  (f, m 0) is non-trivial. Moreover, it
satisfies the system of differential equations of Corollary 13.3. By Proposi-
tion 13.5 there exists a we W such that the system (102) has a non-trivial
solution. In view of Lemma 4.8 this implies that s4A e W(m,b)}(L + py) =
L+pym. Hence Aes N (L+py)=s"'L+pm. |

For holomorphic families of eigenfunctions we can obtain a severe
restriction on the exponents along the parabolic subgroup Q € %,(4,).
If A€ ad, we define

X(Q, )= {wi~po—p; weW,ueNE(Q)}.

THEOREM 13.7. Let Aebf,, Q, an open subset of a., and assume that
f€&,(G/H, A, Q). Then for every A€, ag’ we have that

fixexptX)~ ¥ pi Q] fi, x, 1X) e (1> 00) (107)
EeX(Q.4)

Jor xe G, Xea/(Q). Moreover, if A€ Qy, {o€ X(Q, Ao), put

E(A)={wl—po—u; we W, ueNZ(Q) with wio—po—pu=1C,e}.

Then there exists an open neighbourhood Q2 of A, in 2, and a constant r' R,
such that the map

(4, X)— z P.e(Ql fi 5 X) et

Se=(A)

is continuous from Q x aq into C*(G) and in addition holomorphic in A.
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Proof. In view of Theorems 12.8 and 12.9 it suffices to show that
E(0| f=X(Q, 4) forevery Aie Q. (108)

We first assume that Q, < aX'(4). Let A€ Q, be fixed, and let ¢ be a lead-
ing exponent of f, along Q. Then from Corollary 13.3 and Proposi-
tion 13.5 it follows that there exist unique ¢, € C*(M/Hy) for we W, such
that

PO fiyymexp X,0)=Y ¢, (m)e" 200

we W

for me M and X ea, . On the other hand, from Lemma 13.1 we infer that

Pl fiomexp X,0)=p, Q1 fi,, m, X) e

It follows that ¢{e Wi, —p, for every leading exponent of f,, whence
(108).

For a general open set Q,, fix A,€ 2, and assume that {,e X (4, 4,),
but &,¢ X(Q, 4y). Let =(A) and Q2 be as in Theorem 12.9. Notice that
E(4o) = {&o}, hence Z(do) N X(Q, 4o) = &. Shrinking Q if necessary we
may assume that

ENnX(Q, Y=g forevery AeQ. (109)
If xe G, Xeay, then the function
!I/(A'):' Z P/l,:(Q |f}ux’ X) e:(X)
Ee E(A)

is holomorphic in the open neighbourhood Q of 4,. By the first part of the
proof it follows that ¥y =0 on the open dense subset Qnaf'(4) of Q.

C

Hence  vanishes identically on Q. In particular we have that

Pioe(@ 1 faps X, X)=¥(40) =0,
and we infer that {,¢ £(Q | f,). This implies (108). |
Remark 13.8. Combining Theorem 13.7 with Corollary 13.6 we see that

&, (G/H, A, 2,)#0 implies that AesL+py for some se W(b), nor-
malizing a,.

We will conclude this section by showing that for generic 4 the polyno-
mial functions X+ p, Q| f;, -, X) are constant.
Recall that a¥ =2{a, a) "'o for a€ X, and let

‘ay={Aea};VaeX: (A av)¢Z}.
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LEMMA 13.9. The set 'ag. is the complement of a locally finite union of
hyperplanes. Moreover if A€ ’a}., and sA—tAe ZX for s,te W, then s=1.

q¢>

Proof. The first assertion is obvious. As for the second, write

A'={lea}; VaeZ*: (A av)¢ —N}
Then v'ag. < o', for every ve W. If ue /', then it follows from [22,
Appendix II, Proposition 2(2)] that wu—pueNZ* implies w=1, for
we W. Now let Z¢€’ag., and suppose that sAi — i€ ZX. Then there exists a
ve W such that vt 'sA—vAe NX*. But vAe.’, hence vt " 'sv ' =1, and it
follows that s=1. |}

THEOREM 13.10. Under the assumptions of Theorem 13.1, let se W,
veNZ(Q). Then for ie’af.nQ the C*(G)-valued polynomial X+
Pisi—po-AQ | fi, - X) is constant. Its value

pQ,v(f:s:i) :=P/i.sl—pQ—v(Q|fﬁ"*0) (110)

is holomorphic as a C*(G)-valued function of A€’ad. Q2 and allows a
meromorphic extension to Q. If A,€$, then there exist an open
neighbourhood R, of 1y in Q and a constant r' € R such that (110) defines a
meromorphic C2(G)-valued function of A€ Q.

Proof. Write 'Q="a:nQ. If 1e'Q, s5,,5,e W, and pu,, p, e NZ(Q),
then from Lemma 13.9 we see that

SiA—Po— MU =S1A—Pg— P2 => 5 =53, i1 = lI.

Hence from Theorem 13.7 it follows that for each se W, ve NX(Q) the
function

pi..s,v = p/'.,si.pr— v(Q I f/l)’

depends holomorphically on 1€ 'Q. Thus, in order to show that these func-
tions are of degree zero in their second variable, we may restrict 4 to the
set Q' ="Q na}X/(4). This will be understood from now on. We proceed by
induction on v with respect to the partial ordering < = <.

For A€£’, se W, the exponent sA —p,, is a leading exponent. Applying
Corollary 13.3 we infer that the function @: M, —>C, m p,  o(m,0)
satisfies the system (100). By Proposition 13.5 we infer that ¢ allows an
expression of the form (101). Comparing this with Lemma 13.1 we con-
clude that all ¢,, w#s, in the expression (101) are zero. It also follows
from the comparison that the polynomials X p; ; o(m, X) are constant.
By equivariance we have that p; ;o(x, X)=p; ;i _,,(Q | L(x7 ") f,, e, X).
Thus the assertion about zero degree holds for v=0.
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Next, let ve NX(Q), v#0, and suppose that the assertion has been
established for y<v (where < stands for the strict ordering). Fix 1€ ('
and writt é=sA—py—v. Then for n>¢ we have that R,—n(Y)
annihilates p,=p, (0] f;,-0) for every Yea,. Hence if ad(a,) acts on
we Uiig +m,) by a non-zero weight —pu, peNZ(Q), then Ry—{(Y)
annihilates R, p; , ,. Using Proposition 13.2 and the induction hypothesis
we now infer that the function y: M, /Hy, — C defined by y(m)= p;(m)
satisfies the differential equations

Lup(D) —y(D: A+ )[Ry =YY =0,

for DeD(G/H), Yea,. From this we deduce that for every Yea, the
function ¢ , = [R(Y)—&(Y) ]y is of the form (101). On the other hand, in
view of Lemma (3.1, we have that

w(ma) = aépl‘:(Q l fb m, lOg a)

for me M ,,ae A,. Since ¢ ¢ WA—p,, this must imply that ¢, is zero for
every Yea,. Hence y(ma)= a‘y(m) and we conclude that the polynomial
X p, Q] f; e X) is constant. Applying the same equivariance argu-
ment as before we finally conclude that the function p, .(Q | f;) is constant
in its second variable.

It now remains to prove the statement about the meromorphic continua-
tion. For this we fix s, v, and 1,€ Q. Let = be the set of pairs (1, u)e Wx
NZ(Q) such that ti,— u=si,—v. Then by Theorem 13.7 there exists an
open neighbourhood 2, of 4, in 2 and a constant r’ € R such that for every
Xea, the C*(G)-valued function

VX )= Y e X (fisid) (111)

(s.ple =

extends holomorphically from Q,n a3 to Q, . For A€ ’'a} the functions
e ¥ (5, u)e = are linearly independent. We may therefore fix X,, /e =,
such that the determinant

det(e™* ~#MX0: (s, wye =, le E)

does not vanish identically as a function of 4. By Cramer’s rule this implies
that the functions p,, ,(f:s: 4) may be solved meromorphically as C*(G)-
valued functions of 1 e 2 from the system which arises if one substitutes for
X the values X, [e Z, in Eq. (111).
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14. EXPANSIONS FOR EISENSTEIN INTEGRALS

In this section we will apply the material of the previous two sections to
study the asymptotic expansions along minimal g6-stable parabolic sub-
groups for families of spherical functions like the Eisenstein integral. We
define the notion of principal part of such an expansion, and introduce the
c-functions.

Let 2cad be a connected open subset. Given Aeby we define
8.(G/H, t, A, ) to be the space of functions f: Q2 x G/H -V which are
7-spherical in the second variable, and whose components no f(neV*)
belong to &,(G/H, 4, Q) (see the definition above Theorem 12.9).
Moreover, let &,(G/H, 1, £2) denote the space of functions f: Q x G/H >V
which may be expressed as finite sums /=3 Aty Sa, fa€8(G/H, 1, 4, 2)
(notice that by Remark 13.8 the range of A is restricted). Then we have the
following.

LemMa 14.1. Let Pe#,(A,), Y €°€, ReR, and let ne ll:(a,) be any
polynomial such that A n(A) E(P:y : 1) is regular on ag(P, R). Then the
Sunction (A, x)— n(1) E(P :y : A: x) belongs to £,(G/H, t, a}(P, R)).

Proof. 1In view of Lemma 4.5 and Proposition 4.7 we may restrict our-
selves to the case that y is a simultaneous eigenfunction for the up(D: 4),
DeD(G/H), Aeaf.. Then there exists a Aebg, such that up(D: i)y =
y(D:A+2A)y for all D,A. In view of Lemma4.5 this implies that
n(An-E(P:y :A)e &, (G/H) for neV* lead(P, R). Using Proposi-
tion 10.3 we infer that for every relatively compact open subset
Q cag(P, R) there exists a r >0 such that for every X e U(g) the function

A |Ly[m(A)ne E(P 2y : )],

is uniformly bounded on Q. On the other hand the function
(x, )= n(A)no E(P:y : A)(X; x) is smooth and in addition holomorphic
in A. By a straightforward application of the Cauchy integral formulas
for the coefficients of a power series it finally follows that
A (A)no E(P:y : 1) is a meromorphic map from Q into C°(G/H). |

THEOREM 14.2. Let fe&,(G/H,1,Q2), and assume that Qe Z(A,),
weW . Then there exist unique meromorphic °€.-valued functions
Py (f:5) on Q (ueNX(Q), seW) such that for Ae'a.NQ,
meM,, Xeaf(Q) we have

fi(mexp tXw)
~e P XO NN AP, L (fis AN m) (1> ).

seW ueNX(Q)
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Remark 14.3. Since f; is spherical, it follows from [2] that the above
expansion is actually convergent for ¢ sufficiently large, in view of unique-
ness of asymptotics.

Proof of Theorem 142. By uniqueness of asymptotics it suffices to
prove the existence. Moreover, it suffices to prove the result for w=1 and
arbitrary Q. For assume this has been achived, and observe that

fi(mexp tXw)=t(w) fi(w  'mwexpt Ad(w ") X).

Applying the theorem to f, w 'Qw, 1 one then obtains the above expan-
sion with

Pou fis: ) my=1(w) P i -, (f 1w 7l 0 A)w " imw). (112)

Moreover, one readily checks that the right hand side of (112) belongs to
‘€., as a function of m.

From now on we restrict ourselves to the case w= 1. Then without loss
of generality we may assume that fe&,(G/H, 1, 4, Q) for some Aebf.
Hence Theorem 13.10 applies to every component nef of f. Thus for
4€'ag.n Q2 we may define smooth functions Py, (f:s:4): M, -V by

nePofis:d)=po nof:s:2)| M,

(where we have used the notation of Theorem 13.10). Then for i e ‘ag N
we have the above asymptotic expansion. By uniqueness of asymptotics it
follows that the functions P, ,(f:s:4) are left ty-spherical and right
M| ~ H-invariant, hence belong to °%,. Finally, the functions Poif:s)
are extendable to meromorphic °%,-valued functions by Theorem 13.10. }

Let f be as in the above theorem. Then for Q € Z,(4,), we #  we call the
function f, ,: @ x M; - V defined by

fouldima)=Y a*Py . ofis:2)m) (meM, ae4,)

seWw

the (Q, w)-principal term of f. If we fix @, then the associated principal
terms f, , govern in a sense the asymptotic behaviour of f, in view of the
following lemma.

LEMMA 144. Let Qe Z,(A,). Then the sets Kexp a/ (Q) wH, we W are
mutually disjoint. Moreover,

G= |J) KexpaJ(Q)wH. (113)

wew
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Proof. If Xea,, then Xe v“a:(Q) for a suitable ve W. Let we #
be a representative for v’s canonical image in W/W,, . ,. Ther
XeKexp a: (Q) wH. Hence A, is contained in the union in (113). Now use
(3) to see that (113} holds.

To see that the first assertion holds, suppose that Kexpa/ (Q)w, H=
Kexpa (Q)w,H, for wy,w,e#. Then wi'expal(Q)w,cKw;'
expa.S(Q)w,H, hence Ad(wl“)aq*(Q)cAd(uw{‘)a:(Q) for some
V€ Ny plag) (cf. Section 1). Since W acts simply transitively on 2,(4,) it
follows that w, and w,v™"' have the same image in W. Therefore w,, w,
represent the same element in W/W . ,, hence are equal. ||

If £>0, we define af(¢)={icak; |Re i <e}.

LEmMMA 14.5. Ler O<e<(1/2)min, s |a|, and suppose that fe
€ (G/H, 1, af(e)). Then for every QeP(A,), we W the principal term
So.w(4 :m) has removable singularities (hence is holomorphic) on a}(¢) as a
JSunction of A. Moreover, for all A€ af(e), me M, Xea, (Q) we have that

lim |dy(mexp tX) f,(m exp tXw)— f,, (A :mexp tX)| =0.

Proof. As in the. proof of Theorem 14.2 we may restrict ourselves to the
case w=1. For Aea}, let II(4) be the set of (s, u)e W xNZ(Q) such that
sA—pe WA Then for Aea}(e) we have that II(1)=1I(0)= W x {0}. In
view of Theorem 13.7 it follows from the definition of the Py ; o(f:5:4) in
the proof of Theorem 14.2 that f, (A : ma) has removable singularities as
a function of A€ ag(e). Moreover, if 7€ V* then it follows by holomorphic
continuation that

nofonld:mexprX)y=e®e® % oXp, (Q|nof;, m, 1X), (114)

e Wi—pg

both sides being holomorphic in 4. Now use (107) applied to 5o f taking
into account that every exponent £ e X(Q, A\(WA —p,) satisfies £(X) <0,
for Aeaf(e). 1

Remark 14.6. In particular we see that for imaginary A the principal
term is an appropriate analogue of Harish-Chandra’s notion of the
constant term (cf. [16, p. 153]).

If ¢: Q2 — C is a non-zero holomorphic function, and f: QxG/H—-V a
function such that F=of e &, (G/H, 1, Q) then we define (Q, w)-principal
terms by

fouldm):=@(A)"'Fy (4 :m).
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Let now P, Qe #,(A4,), we #". Then in view of Lemma 14.1 the Eisenstein
integral E(P : ) has a (Q, w)-principal term

Eo (P:y:ma)= Y a’Cgyp,ls: A1) (m) (meM,,aeA,). (115)

se W

Here the Cy)p,{s:4) are uniquely determined Hom(°%, °%,)-valued
meromorphic functions on a}.. We now define meromorphic End(°¢)-
valued functions A+ Cy pls: A) (se W) by

Coipuls i A)=pr,ocCpqpls:4) (we W)

The above functions will becalled c-functions. In the next section we will
show that their behaviour is analogous to the behaviour of Harish-
Chandra’s c-functions as defined in [17, p. 42].

15. THE ¢-FUNCTIONS

In this section we investigate the c-functions which were introduced in
the previous section. In Proposition 15.7 we relate them to intertwining
operators and in Corollary 15.11 we formulate a unitarity result.

Let P, P,e #,(A,), é€ M, and Aeak. From [4, p. 373] we recall the
definition of the meromorphic scalar function 7 by the identity

AP Pyl Q)o APy P E: N)=n(Py: P, E D)L (116)

This identity also holds if we replace A by B, cf. (4, Proposition 6.2].

From [25] we recall that A(P,:P,:6: —D)*=A(P,:P,:¢:1). We
will say that the group G fulfills condition (B) if for all P, P, e %,(4,) and
every (€ M, we have

B(Py: P :¢&:—A)*=B(P,:P,:E: ). (B)

In [4, Theorem 6.3] it is proved that this condition is fulfilled if every
Cartan subgroup of G is abelian, and H = G°, the full fixed point group. In
[7] it is observed that (B) is fulfilled under a weaker but more technical
condition. It would be interesting to have a simple condition on the pair
(G, H), necessary and sufficient for (B) to hold.

By equivariance the intertwining operator induces an endomorphism
A(P,: P, : & : ) of the finite dimensional linear space #; ;, meromorphi-
cally depending on A.

580.109/2-13
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LeEmMMa 15.1. Iji G satisfies condition (B), then the endomorphism u(A) =
A(Py: P, E:2)p ® B(Py: Py: & =) of . p ® V(&) satisfies

u(—A)*u(A)=n(Py: P, :E:A)n(Py: P :E: =D)L

Proof. Use formula (B) and the analogous formula for the transposed
of A(A) in combination with the identity (116) for A(4) and B(—1). |

Recall that » is not identically zero as a function of A (cf. [4, Proposi-
tion 4.87), and let U(P,: P, : &: 1) : °€(&) — °€(&) be defined by

UP,: Py A)Wr=n(Py: P ¢ _l)_l'pA(PZ:Pl:C:—J.)@B(PZ:PI:{:I)T’

for TeH;, ,® V(£). Then in view of Lemma 4.1, U(P,:P,:{: )€
End(°#(¢)) depends meromorphically on A. Moreover, if (B) holds then
this endomorphism is unitary for imaginary A, by Lemma 15.1. We define
the linear map U(P,:P,:A): °¥ — °€¥ by

UPy: P :2) | "6(L)=U(P,: P, : ¢ ),
for each éeMw.

LEmMMA 15.2. Let P,, P, Z,(A,). Then
E(P,:UP,: P, :A)Y:A)=E(P,:{:4) (117)

Proof. It suffices to prove this for ¢y =y, with T=f®@ neH#; , ®
V(¢). From Lemmad4.2 we then infer, suppressing P,:P,:{ in the
notations, that n(—A)=n(P,: P, : &: —A) times the left hand side of (117)
equals

CA(=A)f, py e 1(kx) j(Py 2 & 2 )
= CA(=A) [, mpy g kx) AQ) j(P & A)n)
= CAA)* A= A) [, mp, e s (kx) j(Py 2 &2 D))
=n(—A)E(P,:y: ). (118)

This implies (117).

COROLLARY 15.3. Let P,, P, #(A,). Then for all Q € Z,(4,), s€ W we
have

Coip(s:4)=Coypls:4)o U(Py: Py 2 ). (119)

Moreover, if (B) holds, then the map U(P,:P,:1) is unitary for
imaginary A.
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Proof. This follows from Lemma 15.2 by uniqueness of asymptotics. |

Let Pe 2,(4,), and fix we N(a,). We recall from [4, Lemma 6.10] that
the intertwining operator L(w):C~ (P :&: )= C™*(wPw ™' 1w wl)
induces a unitary linear map L(&, w) : V(&) > V(w&). Moreover, L(w) maps
, ¢ unitarily onto . . We define the unitary map £(¢, w): °€({) —
*€(w&) by

LEWW =V (1) ® izt
for Te #; » ® V(£). We define the unitary bijection
L(w): °€ - °%
by Z(w)| °€(&)= 2L (&, w).
LEMMA 154. Let Pe #,(A,), we Nla,). Then
E(P:y:4)=EwWPw ' L(w){y:wi) {120)
Proof- The proof is similar to the proof of Lemma 15.2. |
By uniqueness of asymptotics we now obtain:
CoOROLLARY 15.5. Let P,QeP(A,), we Nila,). Then
Co (s : A) = Cyppu-tsw ™" 1 wh)o L(w), (121)
for se W, dea}.

For Qe #,(A,), let the bi-invariant Haar measure dii of N, be nor-
malized as in [25, Sect. 4]. Then the positive real number

~1
c(Aq)=(L_] eZPQ”Q‘ﬁ’dﬁ> (122)
Q

is independent of Q; here Hy: G —a, is defined by xe N, exp Hy(x)
M,K (xeG).

Given Pe#,(A,) we shall say that aec 4, tends to infinity along P,
notation a —— oo, if a* — oo for all ae X(P)

LEMMA 15.6. Let Aecay,, and assume that (Re i—p,,a)>0 for all
aeXZ(Q) If feC(Q:&:0), geC(Q:&: —A), then

lim a' " f, R(a)g) = c(AJ<[AQ: Q: 81 1) f1(e), g(e)) s (123)

the integral defining the intertwining operator being absolutely convergent.
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Proof. Without loss of generality we may assume that Z(Q) is com-
patible with the positive system X (cf. Section 1). Let a#* denote the
positive Weyl chamber in af, and let *a, be the closed dual cone in a,,
ie, Tag={Xeay; v(X)>0:Vveal*} Let Hy:G—-a, be the map
defined by xe Nyexp Hy(x)K (xeG). Then it is a well known result of
Harish-Chandra that for 7e N, we have

’_Ho(ﬁ)e +ao

(see, e.g., [20, Chap. IV, Corollary 6.6]). Now let the maps xy, gy, Hp, v,
from G into K, exp(m,, N p), ap, N, respectively be defined by

X =vg(x)exp Hy(x) po(x) kolx) (xeG). (124)

Then Hy(x) is the orthogonal projection of Hy(x) onto a,<a,. Hence
pooHo=pyoHy (cf. Section 1). .

The assumption on ie€ag, implies that Rel—p,€ead*. Hence for
rie N, we have that

/()] = e <Re 4+ 2o 5o || f(kc o(7))]] < €270 sup || £(k)I,
kekK

and it follows that
AQ:Q:E: 0 fle)=| fi)d
No

with absolutely convergent integral.

We now recall that the map 7+ (KN M) ky(7) is a diffeomorphism
from N, onto an open dense subset of (K M \K and has Jacobian
c(Aq) €27 (cf. [17, p. 45]). Hence by transformation of variables and by
using the decomposition (124) for x =7, the transformation rules for f, g
and the unitarity of £ we infer that

a*=*{ f, R(a) g> =c(A4,) f}v {f(A), gla™'na)} p, dn. (125)
Q

Now observe that

lg(a™"iia)|| = e<Re*~pe-Ho@ 5> || g(ic p(a~"Fia))| S:ug I g(®)ll,

using again that Re A —p,caf*. By the dominated convergence theorem
we may take the limit under the integral sign in (125) as a-% o0, and
(123) follows. |
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PROPOSITION 15.7. Let Te ¥, ; ® V(&). Then

CQ|Q(1 :A)'IJTzc(Aq)‘p(A(Q:Q:::AM@J”T' (126)

Proof. We may assume that T= f ® n, with f € #; r, ne V(). Assume
that Re 1+ p,, is strictly Q-dominant. Then g,=j(Q :¢: 1)y belongs to
C(Q : &: 1), by [4, Proposition 5.6]. Let ;€ C(Q : £ : —4) be the function
defined by f, | K= f. Then from (35) we obtain, for we #", me M, ae A,
that

E(Q 1y 71 A)(maw)(k) = (RZ} £, R(@)[R, 1.
Applying Lemma 15.6 and observing that R, g;(e) =pr,n we obtain that

lim a * *2E(Q : y+: A)(maw)(k)

=(A(Q:Q:&:—=A) film™ k"), pron>
=V(A(Q:Q:¢:~1)®prwlT(m)(k)- (127)
On the other hand, from the asymptotic behaviour of the Eisenstein

integral (cf. (115) and Lemma 14.5) we see that the left hand side of (127)
equals

pr,.° CQ[Q(l DAW r(m)(k).

This implies the result for Re i strictly Q-dominant. Now apply
meromorphic continuation. |

Let P, P,e#,(A,) and let ¢ € My,, the set of (equivalence classes of)
finite dimensional irreducible unitary representations of M. Then according
to [25] we have that

NPy P :E:N)=n(P,:P,::A) (128)

Now let e X be a reduced root, and define the closed subgroup G(«)
of G as in [4, p.392]. Then G(x) is o- and B-invariant and of Harish-
Chandra’s class, and ag(a) = (ker a)* is maximal abelian in g(a)npnaq.
Thus G(«) is of g-split rank 1. Let P(a) = G(a) be the o0-stable parabolic
subgroup associated with the root « as in [4, p. 392]. Given Aeaj, put
A, = 4| ay(a). We define the function 7, by

N(&: 1) =n(G(a) : Pa): Pla):&:4,)  (Aead).

Notice that (128) implies
nA&:A)=n_,(L:4). (129)

Given a subset S < X we shall write S, for the set of reduced roots in S.
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LeMMA 158. n(Py: P ¢ )=T,cx pynspyMalS i A)

Proof. The proof is standard and follows [25], but with respect to the
root system of a,. First we use the product decomposition of intertwining
operators to reduce to the case that P, and P, are o-adjacent (cf.
[4, p. 390]). Let then a be the reduced root in X(P,)n X(P,), and let
G(2) be as above. Then restriction induces surjective linear maps
i*.C*(P;:§:2) » C2(G(a): Pi(x): £ : 4,) where Pi(a) = P, n G(w),
Jj=1,2. Moreover, the associated intertwining operators are related by
A(Py(a) : P(a):E:A,)0i*=i*cA(P,:P,:¢:2) and a similar formula
with P,, P, interchanged. Since P,(x)= P(a), P,(a)= P(x), this implies the
result. |

In view of (129) the function

n(E:A)= T nu&:4)

+
2P

is independent of the chosen of positive roots. In particular it follows that
n(&:A)=n(Q:Q:¢:4) (130)
for every Qe Z,(A4,).
LEMMA 159. Let &€ My,. Then for every QeZ(A,) we have
AQ:Q:¢: =Dy oA(Q:0:E: )=n: M)
1 ;:)r)oof.l Use [4, Proposition 4.6(ii)] in combination with (116) and
(130).

LEMMA 15.10. Let &€ My,. Then for every we W we have n(w¢ : wi) =
n(€:A) (Aeag)

Proof. Use [4, Lemma4.10] in combination with the previous
result. |

COROLLARY 15.11. For all P,Qe®,(A,), (€ M,,, s€ W, we have that
Co,p(5 : A) defines a linear map “€(&) — °€(s) depending meromorphically
on Aeag.. Moreover, if (B) holds, then on °6({) we have

Coipls: —2)*Cg p(s: Ay =c(A)n(E : )1 (131)
Proof. From Proposition 15.7 and Lemma 4.1 we infer that Cy, 5(1: 1)

maps °€(&) into itself. Thus, combining Proposition 15.7 with Lemma 15.9
we obtain the result with P={, and s=1. Applying Corollary 15.3 we



SYMMETRIC SPACES 411

obtain the result for all P, Q and s=1. Let se W, and let we N(a,) be a
representative for s. Then by (121) we have that

Coipls : A)=Cp ope1(1:52) L ().

Now Z(w) maps “#(¢) unitarily onto °¢(s¢). By the first part of the proof
this implies that Cy p(s:4) maps °€(S) onto *€(sC). Moreover, if (B)
holds, then

Copls: = A)*Cp pls 1 4) = c(Ag)n(s& : sA) T

on °€(&). Now use Lemma 15.10 to complete the proof.

16. A NORMALIZED EISENSTEIN INTEGRAL

With Proposition 15.7 in mind, we define the normalized Eisenstein
integral

E‘(P:x/z:/l)::E(P:Cp,,,(l:,1)"‘!//:}1), (132)

for Pe #(A,), Y€ €, Aeai. Notice that the present normalization is
slightly different from the ones introduced by Harish-Chandra (cf. [15,
p. 135, 18, p. 152]). Nevertheless the effect of the present normalization still
is that the functional equations for the normalized Eisenstein integral are
cast in a nice form. Moreover, if G satisfies (B), then the associated
normalized c-functions Cj, (s : 4) turn out to be unitary for imaginary 4
(Theorem 16.3). We also show that the normalization does not affect the
nature of the initial estimates for the Eisenstein integral (Proposition 16.1
and Corollary 16.2).
Recall the definition (44) of ag (P, R).

ProposiTION 16.1. Let ReR. Then A+ Cp p(1: 1)~ " is a meromorphic
End(°% )-valued function of Z-polynomial growth on af(P, R).

We postpone the proof to the end of this section.

COROLLARY 16.2. Lemma 4.5, Proposition 10.3, and Lemma 14.1 hold
with the normalized Eisenstein integral E' instead of E.

Proof. From Proposition 15.7 and the displayed formula for u, in
the proof of Lemmad4.5 we infer that for every DeD(G/H) the
endomorphisms pp(D:4) and Cpp(1:4) of °¢ commute. Hence
Lemma 4.5 holds for E'. Proposition 10.3 now follows for E' if we use
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Proposition 16.1, and Lemma 14.1 follows from these results with unaltered
proof. |

In view of the above result the normalized Eisenstein integrals possess
(Q, w)-principal terms (Q € 2,(4,), we #°) as defined in Section 14. They
are given by

Ej (P :y :1)(ma)
= Y @*[Chp.ls: AW ](m) (meM,, aed,), (133)

seWw
where
Cél,,(szll) :=CQ,P(S:A)on,P(1:A)" (134)

are called normalized c-functions. The following unitarity result is the
analogue of [18, Lemma 6].

THEOREM 16.3. Let P, Q € #,(A,), and suppose that G satisfies condition
(B) of the previous section. Then

Chypls: —A)*eCL pls 1 ) =1, (135)

for Aeal.. In particular Cy p(s : A) is unitary for imaginary A.

Proof. 1t suffices to prove the above identity on °¢(¢), for Ee M ps- BUL
then the identity is a direct consequence of definition (134) and
Corollary 15.11. |

We now arrive at the functional equation for the normalized Eisenstein
integral.

PROPOSITION 164. Let P,, P,e #(A,), Y €°€, sc W. Then
EYPy:Chp(s: )W :sA)=E"(P,: ¢ : 4).

Proof. Let we Ng(a,) be a representative for s. Then by application of
Lemma 15.4 and Corollary 15.5 we obtain that

E'(Py:y :sA)=E(Py: Cp,p(1:54) "'y : 54)
=E(w 'Pyw: L (W) 'Cp, p,(1:54)" Y : 4)
=E(W'P,w : Cpypy-tppls : A) 71 1 ). (136)
Applying Lemma 15.2 to (136) and using that

UP :w™ Pw:A) Cpymipp(s 1 A) ' =Chpyp s 4) !
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(see Lemma 15.3) we find that

E(Py:y:sA)=E(P,:Cp,p(s:2) Y1)
—ENP, i Chpls: ) id) 1

COROLLARY 16.5. Let Q, P, Pe#(A,), s, te W. Then
Coiplt:5A) Chyp(s:A)=Cy pl1s: 4).

In the rest of this section we shall estimate the inverted c-function
Cpp(1:1)"". According to Proposition 15.7 this comes down to
estimating intertwining operators and their inverses on the level of K-finite
functions.

Suppose that ¢eM,,, let FcK be a finite subset, and write
A(P,: P, :&:A)p for the restriction of the intertwining operator to
C(K : &)r. Moreover, if ReR put

aX(P,, P\, R)={Aeak; Re(4,a) <R for aeZ(P,)nX(P)}.

LEMMA 16.6. Let ReR. Then the End(C(K:¢&)g)-valued functions
A= APy P& M) and A A(Py: P E:0);" are of X-polynomial
growth on af(P,, P,, R).

Proof. We shall prove this by using an embedding of the induced
representation into the (non-unitary) principal series. Let notations be as
in [4, Proof of Lemma 4.5]. Thus a, is a maximal abelian subspace of p
containing a,, and (P;), =Py, AN, are minimal parabolic subgroups
containing A, = exp a, as defined in [4, p. 372]. Let (N,), be the unipotent
radical of (P),, j=1,2. Then (N,),n(N,),=N,nN,. Hence if
x € 2(g, ap) is a root occurring in (n,), N (it,),, then « | aqu(Pz)mZ(F,).
In addition there exists a suitable R’ € R such that (Re 4 — py,, a)> < R’ for
ieag(P,, P, R). Using the embeddings in the principal series described
by the diagram in [4, p. 373], we see that we may reduce the proof to the
case that o = 6. Then a,=q, and P,, P, are minimal parabolic subgroups.

Without loss of generality we may assume that F= {5}, where 6 K. Let
V5 be a representation space for §. By the usual product decomposition for
intertwining operators we may restrict ourselves to the case that P,, P, are
adjacent. Let o be the reduced root in Z(P,)n Z(P,).

By the Peter—Weyl theorem and Frobenius reciprocity we have a natural
bijective linear map

¢: V;®@Homy(V;, #;) - C(K:¢),
intertwining 0® 7 with R It is given by o(v® f)(k)=f(6(k)v). By



414 E. P. VAN DEN BAN

equivariance the endomorphism ¢ ' A(P,: P,:¢: 1)o@ is of the form
I® J(4), where J(4i)e End(Hompy(V;, #;)) depends meromorphically on
A€ad,.. Moreover, an easy calculation shows that J(1)=c(1)* ® I, where
c(A)eEnd,(V;5). For (Re A, a) >0 this endomorphism is given by the
absolutely convergent integral

c(l)=f e+ POHIR 54 (7)) dii.

Ny Ny

Here p,=pp and the maps H,:G—-a,, x,:G—K are defined by
xe N, exp H,(x) k,(x), for xeG.

Now let G,(a)=Zskera), K(a)=KnG(2), N,=N,nG,(a), and
Ag(x) =exp(agnker at). Then

G(a) =N, Ao(x) K(x)

is the Iwasawa decomposition of a split rank one subgroup of Harish-
Chandra’s class. This decomposition is compatible with G =N, 4, K, so the
associated maps H,: G(a) - ao(a) and k,: G(a) = K(«) are the restrictions
to G(a) of H, and «k,, respectively. Let p, € ag(a)* be defined by p.(X)=
(1/2) tr[ad(X) | n,]. Then with G(a) and ¢’ = | K(«) we may associate the
c-function Cy.: ag(a)* — End (V) defined by

Cs(v)= fﬁ eV eI HalR) 51y (71)) dif.

Now N, N,=N, and p,=p, | ap(z), and we see that
c(A)=Cs(A|ag(x))  (Lead.).

According to [32, 29] the matrix entries of C4(v) are linear combinations
of products of functions of the form

F(r(v,tx>+s), (137)
I'(r{v,a>+1)

where r>0, s, teR. This implies that C;(v) is of {«}-polynomial growth
on sets of the form (Rev,a) >R, ReR (see also the argument in [1]).
Moreover, in [11] it is proved that det C,(v) is a product of functions of
the form (137) and by Cramer’s rule it follows that C,(v) ! is of {«}-poly-
nomial growth on sets (Re v, ) > R. These estimates give us the desired
estimates for the intertwining operator and its inverse. |}

Proof of Proposition 16.1. It suffices to prove the assertion for the
restriction of the inverted c-function to each invariant subspace °%({),
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éeM Now by Proposition 15.7 and the previous lemma it follows
that ir— Cpp(1:4)"" is of Z-polynomial growth on —ad(P, P, R)=
ag(P,R). 1

17. ScCHWARTZ FUNCTIONS

In this section we characterize the generalization to G/H of Harish-
Chandra’s space of Schwartz functions in the group case. In particular this
provides us with the dual notion of temperedness on G/H.

Throughout this section ¥ will be a complete locally convex (Hausdorff)
space, and .4"(V) will denote the set of continuous seminorms on V. Given
se A°(V) we shall sometimes use the notation |v|,=s(v) (ve V).

Let 7: G— [0, o[ be defined by

t(kah) = |log a| (keK,ae Ay, he H).

For 1 < p< oo we define the space €7(G/H, V'} of L?-Schwartz functions on
G/H to be the space of all C* functions f: G/H - V (where C* means that
all partial derivatives exist), such that for all ue U(g), r =0, and se .¥"(V)
the function (1 + 1) |uf|, has finite LP-norm; here we recall that uf =L, f.
In particular we shall write ¢(G/H, V) for the L>-Schwartz space.

The space €7(G/H, V) equipped with the seminorms

Sl +) uflll,  (ueUlg), r=0) (138)

is a complete locally convex space. If V is Fréchet, then the same holds
for €7(G/H, V). The space 4°(G/H):=%"(G/H,C) was introduced in
[2, p. 246].

The purpose of this section is to establish a different characterization of
the space 4”(G/H, V) in terms of sup norms. Let = denote Harish-
Chandra’s bi-K-invariant elementary spherical function ¢, on G (cf. [30,
p- 3291]). Define the real analytic function @: G/H — 0, «o[ by

Ox)=./E(xa(x)™ ") (xeG). (139)

We now define 45(G/H,V) to be the space of smooth functions
f:G/H - V for which all seminorms

u?, (f)=sup @ P(1+ 1Y |uf|,

G/H

(se #(V), ue U(g), r20) are finite. Equipped with these seminorms the
space €4(G/H, V) is a complete locally convex space; it is Fréchet if V is
Fréchet. The main result of this section is the following generalization of a
well known result of Harish-Chandra (cf. [30, Theorem 9, p. 348]).
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THEOREM 17.1. The spaces €°(G/H, V) and 4%(G/H, V) are equal, and
their topologies are the same.

The rest of this section will be devoted to the proof of this result. First
we need some properties of the function ©. Let a, be a maximal abelian
subspace of p containing a,. Let 2, be the root system of a, in g and
let d be one half times the number of indivisible roots in Z2,. Then the
following result describes the asymptotic behaviour of ©.

PROPOSITION 17.2.  Let Qe #,(A,). Then there exists a constant C>0
such that for all aecl A (Q) we have that

a o< O(a)< Ca "1 +1(a))’

Proof. Fix a system X of positive roots for X, which is compatible
with 2(Q). Then for the associated positive Weyl chambers we have
aS(Q)cclag. Let pgeag be half the sum of the roots in £, counted
with multiplicities. Then p, = p, | a,.

If aeclA;(Q), then ac(a) '=a’ecld;, and we have that
©(a)* = E(a?). We now obtain the above estimates as a straightforward
consequence of the well known estimates for = on cl A4S, see [30,
Theorem 30, p. 339]. 1

We shall also need the following (more elementary) properties of 6&.
They are straightforward consequences of the corresponding properties of
Z, cf. [30, p. 329].

ProOPOSITION 17.3.  The function @ is real analytic and has the following
properties.

(1) 0<@(x)=060(a(x))<1 (xeq).
(2) Let E be a compact subset of G. Then there exists a ¢ > 0 such that
for all xe G/H, ye€ E we have

¢ '0(x) < O(yx) < cO(x).
(3) Let ue U(g). Then there exists a C>0 such that
[uO(x)| € CO(x) (xe G/H).
(4) ©(x) depends on x only through Ad(xo(x)™").

Finally we recall some properties of t from [3, Proposition 2.1]. Let
75: G = R be defined by t5(k,ak;)=|logal| for k, k,e K, ac A,.

PROPOSITION 17.4. The function t is continuous, and left K- and right
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H-invariant. Moreover, t1(e)=0 and t(x)>0 for x¢ KH. Finally, if xe G/H,
y€ G, then

t(x) = t(o(x)),
(yx) <1l y) + t(x).

Notice that from the last inequality in the above proposition it follows
that

L+ 2(px)<(1+16(¥))(1 + t(x)). (140)

From Propositions 17.3 and 174 it follows that the space €5(G/H, V) is
invariant under the left regular representation L of G.

Let G, denote the closed subgroup (Kn H)exp(pnq) of G. Its Lie
algebra is g, (cf. (1)). If S is a subgroup of G we write S, =SNG, . Thus
H,=K,=HnK Put X=G/H and X, =G_,/H,. We shall view the
Riemannian symmetric space X', as a subspace of X.

Consider the action of the group K, on KxX, by k, -(k,x,)=
(kk ' k. x,). Then the map (k, x, )+ kx, induces a diffeomorphism

KXKF\HX+_!—)X;

this is a straightforward consequence of the fact that the map (4.3) in [12]
is a diffeomorphism. It follows that there exists a unique left K-invariant
real analytic function J_: X — J0, oo[ such that

J ferae=] [ stkx )7 () dx, dk (141)

for all fe C (X). Here dx, denotes normalized left G, -invariant measure
on X, . Let 27 be a choice of positive roots for the root system X, of a,
in g . Then on the associated positive Weyl chamber 4, we have that

J=J_J,,

where J(J, ) denotes the Jacobian of the G=Kcl(4, )H decomposition
(resp. G, =K, cl(4, ) K, decomposition). From the formulas for these
Jacobians (cf. [13, Theorem 2.6]) we obtain that (for a suitable choice of
normalization for dx )

J_(a)= n (@*+a - (acA,). (142)
aeXt

Here 2 is a choice of positive roots for X = X(g, a,) which is compatible
with 2%, and m_(x)=dim(g,ng_).
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Now let =, denote Harish-Chandra’s spherical function for G,. We
extend =, to a left K-invariant real analytic function on X.

PROPOSITION 17.5. There esist constants meN, C>0 such that on
X =G/H we have

C i (1+1) "0 <JZV*E, < C(1+1)"6.

Proof.  This follows easily from (142) combined with the estimate to €
in Proposition 17.2 and the analogous estimate for £, . |

COROLLARY 17.6. There exists a me N such that
(1+1)""0@%*e L'(G/H).

Proof. Use the analogous result for £, in combination with the above
estimate and formula (141). J

COROLLARY 17.7. The space €5(X, V) is a subspace of 6°(X, C), the
embedding being continuous.

Thus we have established (the easy) part of Theorem 17.1. We will prove
the converse inclusion by reduction to the space X', via (141). In this way
we avoid some of the technicalities which would arise from a reduction to
AS via the Kcl(A, )H-decomposition (compare with the proof in [30,
pp. 346-3487). This is due to the fact that the Jacobian J_ allows a nice
estimate from below (Proposition 17.5).

We start with a simple lemma. Let X, ..., X, be an orthonormal basis for
I, and define Q € U(f) by

Q=1-X>— ... - X2
If 6e K, let ¢(8) denote the constant by which @ acts on the f-module
associated with 6.
Let L” (X, V) denote the space of fe C*(X, V) such that |uf|, e L?(X)

for all ue U(g), se /' (V). Put L? (X)=L? (X, C). If f is a complex valued
measurable function on X, we put

/4
||f||x+,,,=(fx J_(x,) |f(x+)|”dx+> .

LEMMA 17.8. There exist constants meN, C > 0 such that for each € K
and every e L? (X); we have

W, ., < Ce(8)™ LA,
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Proof. Proceed as in the proof of Lemma 6 of [30, p. 346]. |

COROLLARY 17.9. There exist constants me N, C>0 such that for all
feL? (X, V) we have

Is( M, ,<Cls(QUFWN,  (sed (V).
Proof. Let m be as in the previous lemma and fix ne€ N such that

Y e(8)™ " dim(d)* < oo.

sek

We have f=3 ;¢ a5 * f, where a; denotes dim J times the character of 8’s
contragredient. Hence

Is( M, o< X sas * lx,

sek

<C Y e(8) Istog = 1),

de Kk

<C Y c(d)" " |Is(as * 7)),

sek

<c( T ar " dim@r) 1@, I

e K

In the following we need a function ¢ having the same growth behaviour
as 7, but allowing differentiations. Let v be a §- and o-stable central sub-
algebra of g such that G~ °G xexpo (cf. [2, p.227]). Given an element
Yeo we write Y=Y,+Y,, with Yyevnb, Y ,evnq We define the
function ¢: G —» R by

@(x exp Y)=m—log O(x) (xe°G, Yen).
LEMMA 17.10. The function ¢ is real analytic, and left K- and right
H-invariant. Moreover, there exists a ¢ >0 such that on G we have
c'1+1)<p<c(l +1).
Finally, if ue U(g)g, then the function u is uniformly bounded.
Proof. This follows from Propositions 17.2 and 17.3. |
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Lemma 17.11. Let se A (V). Then there exist v;e U(g), s;e (V)
(1<j<r), and meN such that for all fe L? (X, V) we have

sup €72 |f1,< max (147)"5,0,/ -
X < /<

s/sT

Proof. It suffices to prove a similar estimate for the supremum over
X . ; the general estimate then follows from replacing f by L, f (k € K).

Write ® _ = @5 ". Then from Proposition 17.5 it follows that there exist
¢>0, /€N such that

c1+1)7'<J?0_<c(l+1).

The analogue of the lemma for X, is valid by a result of Harish-Chandra,
cf. [30, Theorem9, p.348]. Hence there exist u,, .., u,eU(g,),
Vi, V€A (V), and neN such that for fe L7 (X, V) we have

sup @ | f|,<C max [|(1+7)";(u;[6 2 I rixs
X4

EYAY)

<C" max [(1+71)" 0%, (u,[O-7f )|, ,. (143)
1<j<q
where n'=n+1.
We now observe that for every we U(g, ) there exists a constant C,,>0
such that

|L,0-%"<C,0-%,

(This follows from Proposition 17.3(3) and the analogous estimate for =,
by repeatedly using the Leibniz rule.) Hence there exist u!, .., u,e U(g,)
and s, .., S,€A4(V) (not depending on f), such that (143) may be
estimated by

C, max ||s,(¢"u; .
11$]$’|| A" u ik, ,

Taking into account that ¢ is left K-invariant and using Corollary 17.9 and
Lemma 17.10 we can estimate the latter expression by

C, 1max 11+ ) s, (2" F)l,

<j<sr

with C, a constant independent of f. This is the required estimate. |

Completion of the Proof of Theorem 17.1. Let neN, se A (V). Then
it suffices to prove that fsup, [(1+17)"@ 7 f|, is a continuous semi-
norm on %”(X, V). Now apply the previous lemma to ¢"f, and use
Lemma 17.10. J
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18. UNIFORM TEMPEREDNESS OF EIGENFUNCTIONS

The purpose of this section is to improve upon initial estimates for
families of eigenfunctions like the Eisenstein integrals, using the differential
equations satisfied by them. In particular this will imply that Eisenstein
integrals are tempered, with uniformity in A.

Let b be as in Section2, write W(b)= W(g.,b,), and let
v: D(G/H) - S(b)*® be Harish-Chandra’s isomorphism. If &> 0, we recall
that

aX(e)={Aeak; [Re(i)| <e}.

Fix Ae€ib¥. Then by &(G/H, A, ¢)=8&(A,¢) we denote the space of
C*-functions f: af(e) x G/H - C such that

(1) f is holomorphic in its first variable; and
(2) for every Aeaf(e) we have

Df,=y(D:4+4)f,  (DeD(G/H)) (144)

Here f; = f(4, ). A function fe &(4, &) will be called uniformly tempered
of scale s if for every u e U(g) there exist constants ne N, C > 0 such that

|Lufl(x)| < Cl(l, _x”"@(x) eSIRC Al tix)

for all xeG/H and Aeaj(e). Here we have written (4, x)[=
(1+1A1)(1 +t(x)). The space of these functions will be denoted by
T (A, e, 3).

Remark 18.1. Let €’'(G/H) be the space of tempered distributions on
G/H, i.e., the continuous linear dual of ¢(G/H), provided with the strong
dual topology. If feJ (4, ¢, s), then it follows from Corollary 17.6 that
A+ f; is a holomorphic map from af(e) into €'(G/H) (via a choice of
invariant measure we identify functions with distributions in the usual
way).

Let S be a finite subset of U(g), and let C, be a sequence of positive
constants. Then the family v=(v,,; ¢>0, neN) of seminorms
Ven: C*(aF(e) x G/H) - [0, o] defined by

Veu(f)=C,max sup [(4, x)|7"O(x)" e SIRHN L f(x)|
ueS ;EG/I‘I)
ea;(s

will be called a string of 7 (s)-seminorms. For later use we need the
following lemma.

580/109.2-14
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LeMMA 18.2. Let A€ibf, s>0,ande>¢e' >0. If fe T (A, ¢, s), then for
every uc U(g), be S(ag) there exist constants ne N, C> 0 such that

[f(A; b, u; )| S C (4, x)|"O(x) e A=) (xeG/H, Leak(e')).

Proof. When degb=0 this is immediate from the definition of
T (A, ¢, 5). For general b the result follows by an application of Cauchy’s
integral formula involving a polydisc centered at A and of radius
min((2 /m) " Ye—¢'), (1 +1(x)) '), m=dima,. 1

The purpose of this section is to give a useful criterion for functions to
be in the class of uniformly tempered functions.

A function fe &(4, ¢) will be called uniformly moderate of exponential
rate reR, if for every ue U(g) there exist constants ne N, C > 0 such that

|L, f1(x) S C(1 +|A])" e

for all xe G/H and A€aj(¢). The space of such functions will be denoted
by #(4, ¢ r). If S is a finite subset of U(g) and C, a sequence of positive
constants, then the family of seminorms p = (4, ,; € >0, ne N) defined by

Honlf)=C,max sup (1+]4])7"e™|L, fi(x)|
ueS xeG/H
}.eaq‘(e)
will be called a string of .#(r)-seminorms. The main result of this section
will be that every function fe&(A,¢) which is uniformly moderate is
automatically uniformly tempered. More precisely we have the following.

THEOREM 18.3. Let reR. Then there exists a s>0 such that for €>0
sufficiently small one has

M(A, g, 1) T (A, ¢, 5).

Moreover, for every string v of F (s)-seminorms there exists a string u of
M (r)-seminorms and a constant N € N, such that for sufficiently small ¢ >0
one has

ve‘n+ N(f) sue,n(f.)s
Jor every fe&(A,¢) and all neN.

It suffices to prove this theorem when G = °G. For the proof we need yet
another type of function spaces. Let Pe £,(4,), and neaf, s> 0. Then we
define &5(A4, &, 1, 5) to be the space of functions f e &(A4, ¢) such that for
every ue U(g) there exist constants ne N, C> 0 such that

L. filka)| < C |(4 a)|" a" ¢* " Hogel
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for all AeaX(e), ke K, and aecl A (P). If S is a finite subset of U(g), and
C, a sequence of positive constants, then the family v = (v, ,) of seminorms
defined by

vo(f)=max sup |(4 )| "a e cReANRA L 1 (ka)|
ueS aeclAT(P)
ke K ie a;(e)
is called a string of &x(7, s)-seminorms.

We first compare the spaces &p(4, ¢, 17, s) with the spaces .#(A4, ¢, r) and
T (A, ¢, s). For this it will be necessary to vary the parabolic subgroup P.
Select Poe #,(A,) and set P(Py) = {w 'Pow; we #"}. Then from (113) we
deduce that

6= U KIZ(PH.

Pe #(Py)

The following lemma is now straightforward to prove (use Proposi-
tion 17.2):

LEMMA 18.4. Let reR. Then there exists for every Pe #(P,) a npea}
such that for every ¢ >0 we have

MA e,y () Ep(A, e np,0)
Pe P(Py)

Moreover, fix & >0 and let for every Pe P(P,) a string vp of &x(1p,0)-
seminorms be given. Then there exists a string of .#(r)-seminorms such that
for every 0 <e < ¢’ we have

max vP.e.n(f)gﬂE.n(f)’

PeP(Py)

Jor all feé&(A,¢), neN.

The following lemma is also straightforward to check.
LEMMA 18.5. Let s=0, e>0. Then

m (gP(A’sa _pPﬁs)Cg-(A987s)-

PeP(Py)

Moreover, for every string v of T (s)-seminorms there exist strings vp of
Ep(—pp, s)-seminorms (P € P(P,)) such that

v&,n(f) s max VP,E.n(f)
P e P(Pp)

for all e>0, fe&(A, &), and neN.
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In the following proposition it is asserted that estimates can be improved
step by step along each maximal of-stable parabolic subgroup. Its proof
owes much to [34, Theorem 4.3.5].

Let Pe #(A,). Then there is a one to one correspondence between the
maximal ¢f-stable parabolic subgroups containing P and the set 4(P) of
simple roots in Z(P). If Q=M,A,N, is such a maximal parabolic sub-
group, then the corresponding simple root f,, is the unique root in 4(P)
which does not vanish on a,,. Conversely let & = 4\{f,}. Then

ag,= () kera,
xeO
and
neg= @ g
ae Z(P)\N&

Let aj, = {Xeap,; Bo(X)>0}. If neag, we define ip(n) € af, its improve-
ment along Q, by

io(n)=n on ker fy;
=max(—pp,1—38p) onag,.
PropPoSITION 18.6. Let Q be a maximal o0-stable parabolic subgroup

containing Pe Z,(A,), and let ne af, s > 0. Then there exists s' >0 such that
for ¢ sufficiently small we have

Ep(A, 6,1, 5) < Ep(A, &, ip(n), 5).
Moreover, if v is a string of &p(iy(n), s')-seminorms, then there exists a string

v’ of &p(n, s)-seminorms and a constant N € N, such that for sufficiently small
>0 we have

ve,n+N(f) S v\,e,n(f)
for all fe&(A, &) and neN.

Before giving the proof of this proposition we will derive Theorem 18.3
from it.

CorOLLARY 18.7. Let Pe #,(A,), neay, and s>0. Then there exists a
constant s' >0 such that for ¢ sufficiently small we have

gP(A9 & n, S)C gP(A’ & —Pp, s’)'
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Moreover, if v is a & — p p, 5')-seminorm string, then there exist a string v'
of &px(n, s)-seminorms and a constant N e N such that

ve.n+ N(f) S v;:,n(f)’
for ¢>0 sufficiently small, f e £(A, ¢), and ne N.

Proof. First we observe that by repeatedly applying Proposition 18.6
we see that its assertions remain valid if we redefine iy(n) by

iglny=n  ker By;

+
=—pp onag,.

Let B, (1<,</) be an enumeration of 4(P), and let Q; be the maximal
parabolic in #, with B, = B,. Then we define a sequence n, (0<j</) in af
recursively by no=n and for i > 1,

n;=n;,_, on ker ;;

=-—pp ONay,.

We claim that n,= —p,. The coroliary then follows by applying the
improved version of Proposition 18.6 repeatedly. Indeed, let H,---H,
be the basis for a, which is dual to §,---f, (we assumed G =°G). Then
ker ;=@ ,.,RH,, and ay,=RH, Hence by induction it follows that
ni=—ppon @,;;RH;. |}

Proof of Theorem 18.3. The theorem follows straightforwardly when we
combine the above corollary with Lemmas 18.4 and 18.5. |

For the proof of Proposition 18.6, we need the following companion to
Proposition 12.4.

PrROPOSITION 18.8. Let Qe #,. Then there exist:

(1) a finite dimensinal linear subspace V< D(M,,/H ;) containing 1;

(2) an algebra homomorphism b(4,-) from U(m,,)% into End(V),
depending polynomially on A€ a}; and

(3) a bilinear map y,: U(my)exV —>i,Ulfig+m,,) depending
polynomially on A€ al,,

such that for all A€ ak, De U(m,,)%, and ve V we have

Dv=b(l, D)o+ yD,v) modJ,,,,
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where J , . , denotes the left ideal in U(g) generated by b and
{D—y(D:A+i); De U(g)®}.

Finally, the set of agq-weights of b(4, -) equals (W(b)(A+A)—py) | ag,.

Proof. Using duality this can be obtained from Corollary 11.15 in the
same way as Proposition 12.4 is obtained from Proposition 11.7. The asser-
tion on the weights is then a consequence of (86). |

The remaining part of this section will be devoted to the proof of
Proposition 18.6. Let Pe #,(A,) and let Q be a fixed maximal of-stable
parabolic subgroup containing P. Let neag, s >0. Throughout the proof
we assume that 0 <e<¢'. Here ¢’ is a positive constant on which condi-
tions will be imposed in the course of the proof. Let V' be the subset of
D(M,y/Hy) as defined in Proposition 18.8 and fix Heag,, with |H|=1.
We define the operator ¢ from £(4, &) into C*(af(e) x M,,/Hy)® V* by

(o)A, m),v) =filmyv)  (veV).

Similarly we define the operator y from &(4,¢) into C¥(af(e)x
M,,/Hy)® V* by

Y )4, m), v = flm; y,(H,v)).

Then both ¢ and ¢ are left (m,,, Ky)-equivariant maps. We agree to write
@a(f, -) for o(f)(4,-) and ¥ ,(f; -) for Y(f)(4, -). Moreover, let B=B,.

LemMMA 18.9. There exists a string v of Ep(n, s)-seminorms and a constant
de N such that for all €€ 10,¢'], fe&(A, ), and ne N we have

[@0(f, @) <V,..(f) (4, )] a” e3 IReA llosa! (145)
[¥2(fs @)l SV () |(A )|+ a"—F ¢* IReA loBal, (146)
for all aecl A (P), Aeaf(e)

Proof. We first observe that every element uenf,U(fi,+m,) can be
expressed as a sum of terms u,, £ e NX(P), where each u, belongs to the
— ¢ —kp weight space for ad(a,). Hence for aecl 4 (P) we have

[fulasu) =la~ "y a=*fi(u; ; a)|
4

<a (4, a)|" a" e°'Red losal y! (), (147)

for a suitable string v’ of &x(1, s)-seminorms, only depending on u.
In order to prove the first estimate it suffices to estimate
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o (fHa),v)=Ff,(a;v) for a fixed ve V. Now v has a representative
ue Ui, + m,). Hence (145) follows if we apply the above with k=0.

Let d be the polynomial degree of A+ y,(H, -). Then for a fixed ve V we
may express y,(H, v) as a sum of terms p(4)u, with ueii, U(iip, 4+ m,) and
pe S(a,) of degree at most d. Hence (146) follows if we apply the first part
of the proof with k=1. |

For fe &(A, ¢) we have the differential equation

d
7 @, mexp tH)=T(2) ¢,(f, mexp tH) + Y;(f, mexp tH)

for all me M, and teR. Here I'(4)=b(4, H)* has eigenvalues contained
in the set

(w(4+4)—pl(H), weW(b),

where we have written p=p,. The above differential equation can be
rewritten as an integral equation

@;(f, mexp tH)

l
=TV fym)+eT P [ e Y (£ mexptH) dr.  (148)
0

We decompose W(b) as a disjoint union
Wh)=W, uWw._,
as follows. First of all we observe that W(b) leaves by :=ib, @ a, invariant.

Therefore (wA — p)(H) is a real number for every we W(b). We define the
subsets W, of W(b) by

we W, < (wA—p)(H)>n(H)— 3B(H),
weW_ <« (wA—p)(H)<n(H)—;p(H).
Fix a constant ¢ € R with
n(H)— 3p(H) <o <n(H)— 3B(H) (149)

and such that (wA—p)H)>o for we W, and (wA—p)H)<o for
we W _. Our first condition on ¢’ is that

(wAd —p)H)>o0+ 3¢ (weW.),

(150)
(wA —pYH)<0o—3¢ (weW_).
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Let E_.(4) denote the projection in V* onto the sum of the generalized
eigenspaces of I'(1) corresponding to the eigenvalues

(WA +2) = p)(H), we W }.

LemMa 18.10. The projections E , (1) e End(V*) depend holomorphically
on Aeaf(e'), and we have that E (A)+ E_(A)=1 Moreover, there exist
constants C20 and LeN such that

le " TWE (A <Ce "1 4+ AL (151)
and
[eTPDE _(A) < Ce =1+ |A]), (152)

Jor all Zeag(e’), t20.

Proof. The eigenvalues of I'(1) are ¢&,(A)=(w(A+1)—p)(H),
we W(b). There real parts are given by Re &, (1)=(wA + Re wi—p)(H).
Hence in view of conditions (150) we have that

Rel,.(A)+2e' <o <Re,(1)—2¢ (153)

for every we W_, ve W, and Aeag(e’) (here we used that |H|=1). All
assertions now follow by application of the results of Appendix 20. |

For te R we write A, =exp(tH). Our second condition on ¢’ is
£'(2+5) < iB(H). (154)
Then the following is valid.

PROPOSITION 18.11. For every e€ 10,¢'], fe &(A,¢n,s), and
aecl AJ(P), the integral

Lif.a)=[" eV (1) WS, ah,) de (155)

is absolutely convergent. Moreover, the function
e (fia)=E () @[, a)+ L,(f, a) (156)

depends holomorphically on i€ af(¢), and there exists a string v' of &p(n, 5)-
seminorms such that for all ¢€10,¢'], fe&(A,z¢), aeclAq*(P), and
A€ag(e) we have

I3 (f, @)l S v A(f) (4, @)|"* 9+ E g gfIReA llowal, (157)
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Proof. Using (146) we infer that for aecl A (P), >0 we have
WS, ah ) v, f) (2, @)™+ a? e Rt o8l 4 (1), (158)
where
A (t)= (1 4 1)7+d ptInth = B + 5 ReiD)
{141y tderts 20, {159)

The latter inequality is a consequence of (149) and (154). By application of
(151) we infer that the integrand of (155) can be estimated from above by

v&n(j‘) HA! a)ln+d+L a’ es]Rell Jlogal e»r—Je'r.

This implies the estimate for I,(f, a). The estimate for E,(4) ,(f, a)
follows from (145) and (151) with +=0. |}

For fed&p(d, e, 5), aecl A/ (P), 120, Aeaf(e) we define R,(f, 1, a}) =
RUf t,a)+ RI(f, t,a)+ R (/. 1, a), where

RS t,a)=eTME _(A) @uf. a)

RF(fita)=—[ e OTVIE (1) YA f. ah,) dr,

R (fit.a)= j; e ITROE (1) fi ah,) dr.

From the integral equation (148) it follows that
@S ah)=e"VoT(f,a)+ RS 1, a). (160)
LemMMA [8.12.  There exists a string v' of £p(n, s)-seminorms such that for
all e 10, ¢'], fedulA, &, n) we have
|R;.(f, t, an S V;,,(f} (1" l“_’ a”n+d+L eisei] {logaj etw+£'_" (161 )

Jor neN, deag(e), aecl A:(P), and t=20. Moreover, R, ([, t, a) depends
holomorphically on i.

Proof. From (145) and (152) it is immediate that RS satisfies an
estimate like (161).

From (159) and (151) we obtain that for all 7 > ¢ we have
IA,,(t_)e"""”“EAl)[ SC(I + ‘M)L e(¢7+t:')l(1 + I')"+d€—3€'r.

Combining this estimate with (158) we see that the integral for R} (/. ¢, a)
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converges absolutely and depends holomorphically on A. Moreover, we
find that

IRI(f 6, @) S C, et My, (f) (A, @)+ 9+ E g7 ¢ IReA Noval,

with suitable constants C, only depending on » and ¢'.
In order to prove similar assertions for R (f, t,a) we combine the
estimates (159) and (152) to see that for 0 <t <t we have

|An(T) e"_””“E_(/l)l <C(1 + ‘M)L e(a—e’)t(l +T)n+de-—e’r.

The integral over t of the above expression from 0 to ¢ is majorized by
C,e°(1+|4|)*, with a suitable constant only depending on » and &'
Combining these estimates with (158) we find that

IR;(f, 1, ) €C, e, (f) (4 a)|"*“a" e* R llosal

and the proof is complete. J

In order to estimate e’/ %)

Then

0 (f, a), we proceed as follows. Put 7 =i,(n).

fi(H) = max(—p(H), n(H) — ;p(H)).
We split the set W as a disjoint union W, = W, u W,, where
we W, < (wd —p)(H)<ii(H),
we W, < (wA—p)(H)>f(H).

Let W, denote the normalizer of a, in W(b). Then W= W(g, a,) is a
quotient of W,. Notice that for we W, W, we have wA(H)=
A(w™1H) =0, hence

W, nW,cW,.
Our third condition on the magnitude of ¢ is
(w4 —p)(H) +2¢' < (w, 4~ p)(H)—2¢, (162)

for all w, e W,,w,e W,.

LemMa 18.13. For i=1, 2, let E;(4) be the projection in V* onto the sum
of the generalized eigenspaces for I'()) corresponding to the eigenvalues
w(A+ A)(H)— p(H), we W;. Then E,(A) and E,(1) depend holomorphically
on A€ag(&'). Moreover

E\(A)+ Ex(A)=E (4), (163)
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and there exist constants C; >0, L' e N such that
[eTHE (A)] S Cy(1 4 |AE (1 4 1) gt Rett vt (164)

for all t20, Leaf(e'); here d'=dim V.

Proof. We use the notations of the proof of Lemma 18.10. Let W, be
the complement of W, in W(b). Then W,=W _u W,. Let Ey(4) be the
projection in V* onto the generalized eigenspaces for (1) corresponding
to the eigenvalues &, (4), we W,. Then E (1) + E,(A) =1 From (153) and
(162) we deduce that

Reé, (1) —Re &, (A1) >2¢
for every w,e W,, woe W, and Aeaf(¢'). Moreover, if we W, then
Re £ () <#(H) + Re 4],

for all A€ af(¢). Applying the resuits of Appendix 20 we infer that E, and
E, are holomorphic and that we have an estimate of the form

|e’”“EO(l)| < C’(l + t)d'(l + M‘)L et(ﬁ(H)+1RcA|)_ (165)
From (151) with =0 we infer that
|E (DI <C(+1AD" (166)

We now observe that E,(A)=Ey(4)c E (4). Consequently the desired
estimate follows from (165) and (166), with L'=2L. ||

PrOPOSITION 18.14. Let €€ 10,¢'], f€ Ep(A, €, 1, 5). Then
Ex(A) 37 (f,a)=0,
for all Leag(e), aecl AJ(P).

We will prove this by reduction to K-types. The following lemma will
make the reduction possible. Recall the definitions of 2, a;, ¢(8) (6 € K)
from the proof of Corollary 17.9. For jeN define K;= {6 ¢ K; c()> j}.
Then §,=K\K; is a finite set. Given fe&(4,¢) define P,fe&(4,¢) by
ij('l,x)=2(ses,°‘a*f1(x)«

LemMMA 18.15. The map P; maps &x(A, ¢, n, s) into itself. Moreover, for
every string v of &p(1, s)-seminorms there exists a string v' of &p(1, 5)-semi-
norms such that for all j >0 and all f e (A, &) we have

1
vs,n(f_ij)s}vle.n(f)'
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Proof. Choose meN such that 3;. ¢ c(6)~™ converges. We have that
S=P;f=2;cx % * f Hence

1
Vel /=P, L)<= Y c(8)" v, (a5 % Q™)

Ssek;

sf( v c(é)-'") V(27

éek,

with v” a suitable string of seminorms independent of . From this the
result easily follows. |

Proof of Proposition 18.14. By holomorphy we may restrict ourselves to
the case that ¢’ is so small that in addition to the conditions previously
imposed we have

(wA—p)H)>R(H)+¢' forall we W,. (167)

Fix 0<e<¢’, and let Aeaf(e). Using the above lemma in combination
with the estimate (157) we infer that @°(P;f,a)— @(f, a) as j— c.
Hence we may as well assume that f is K-finite from the left. Fix
ieag(e)nag'(4) (with notations as in (99): it suffices to prove the asser-
tion for A in this dense subset). According to Lemma 12.3 there exists a
r>0 such that f,e&Y, , (G/H). Let ue U(g). Then from the proof of
Theorem 13.7 it follows that the exponents of L, f; along P are all con-
tained in the set Wi—p—NIX(P). According to [2, Theorem 6.3] this
implies the existence of a constant C >0 such that

IL.f(@)| < Ca=r ¢ lose

for all aecl 4 (P). By the same argument as in the proof of Lemma 18.9
this leads to an estimate

l@:.(f)a) < Ca*e "B (aeclA](P)).
Now fix aecl A (P). Then ah,ecl A (P) for >0, so it follows that

l@a(fNah,)| < Ce® 7 (£20)

with C >0 a suitable constant. In view of (160} and the estimate (161) we
infer the existence of a C >0 such that

e"@ee(f,a)l<Ce®  (120),
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where R=max(¢' —p(H), 0 +&')<A(H)+¢". In view of the identity (163)
and the estimate (164), we now see that

T HEL(L) 9F(f, @) < C e+

But t— @(1) :=e"WE,(1) ¢(f, a) is a polynomial exponential function
with exponents whose real parts are all strictly greater than fj(H)+¢', in
view of (167). Hence by uniqueness of asymptotics (cf. [14, p. 305,
Corollary]) it follows that ¢ =0. ||

CoRrOLLARY 18.16. For all €€ 10,¢'], feép(A, &,n,5), and all L€ af(e).
aecl A;(P), t=0 we have
le'™E (4) 9 F(f, a)l

S C1V2_n(f) |('{, a)|n+d+L+L'av1 e:lReM ]logal(l + t)d' el(lRe}.|+ﬁ(H)).

Proof. In view of Proposition 18.14 and (163) we have that the left
hand side in the above inequality equals the norm of e WE (1) 9 *(, a).
The result now follows by combining the estimates (157) and (164) |

Completion of the Proof of Proposition 18.6. From (149} it follows that
o < #j(H). The final condition on ¢’ is

o+¢ <i(H).

From the equality (160), the estimate (161), and the above corollary, we
infer that there exists a string u of &p(n, s)-seminorms such that for
£€]0,¢'}, fe&p(A, e n,s), Acaf(e) we have

1@ fs aoh )l S pon(f) 1(4, @g)|" 4+ E+E af et ReA HoBmI(] 4 1)@ gMA,
for 120, ayecl 4 (P)~exp(ker B). Here
M(2)=max(o + ¢, |Re A| +7(H))
=|Re 4| +7(H) = |Re A| +iy(n)(H)

by the final requirement on ¢'. Every element aecl 4 o (P) can be written
as a=ayh,, with g, and ¢ subject to the above restrictions. Moreover, since
{log ay, log H) >0, we have |log a,| < |log al| and < |log al. Since f, is a
component of @,(f), the above estimate yields (with N=d+d'+ L+ L")

L@ S el f) [(A, @)|" " Maielm gls+ 1) IReA] Hloga, (168)

for all e€ ]0,¢'], fe&p(A, e n,5), Leak(e), and ae A; (P). Fix ue U(g),
then /® L(k ')L, leaves &4(A, ¢, 1, s) invariant, for every k € K. Hence in
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the above estimate we may replace f by [I® L(k~')L,]f One easily
checks that there exists a string of seminorms pu’ such that
e ([ IQ Lk~ "L, 1f)< ., (f) for all ke K. We therefore obtain the
estimate

(4, a)] ="+ Mg lem g=CH DIRedllosal | I £ (ka)l < pg W(f).

This completes the proof; notice that we may take s'=s+1. |}

19. THE FOURIER TRANSFORM

By the results of the previous section the normalized Eisenstein integrals
belong to the class of uniformly tempered functions. This allows us to
define a Fourier transform which maps a space of spherical Schwartz
functions continuously into a Euclidean Schwartz space.

Let V and 7 be as in Section 3. If f, g: G/H — V are t-spherical functions
such that the function x> {f(x), g(x))> is integrable on G/H, then we
write

Srodai=[ <S> dx

Let Pe 2,(4,) be fixed. If fe C*(G/H, 1), the space of compactly sup-
ported smooth t-spherical functions G/H — V, then we define its Fourier
transform #f = %, f to be the meromorphic function a} — °¢ given by

CFALYI=KLE'P:Y: =)D, (Ye°¥) (169)

Notice that by Proposition 10.3 and Corollary 16.2, #fis of X-exponential
growth on every set of the form af(P, R), ReR.

Let nel; (a,) be any polynomial such that A () E'(P:y:1) is
regular on iay, for every y € °% (for its existence see Proposition 10.3 and
Corollary 16.2). Let ¥(G/H, t) denote the space of t-spherical L*-Schwartz
functions G/H -V and let &(ia}) denote the usual space of Schwartz
functions on iaJ. Then we have the following.

THEOREM 19.1. The map fr>nFf|iaf extends (uniquely) to a con-
tinuous linear map from €(G/H, 1) into ¥ (iaf)® °€.

Remark. The above result actually holds with 7 = 1. This will be proved
eisewhere.

We prove the theorem in the course of this section. Basic for the proof
is the following uniform estimate for the normalized Eisenstein integral. We
agree to write E (Y : A)=n(A) E'(P:y :A), and &, f=nZFf | ia].
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THEOREM 19.2. Let ueS(af), XeU(g). Then there exist constants
NeN, C>0 such that

|EL(§ 2 A;u: X; ) < C (4, x)VO(x),
for ye°€, xeG, and ieiag.

Proof. In view of Lemma 4.5, Proposition 4.7, and Corollary 16.2 it suf-
fices to prove the estimate for a fixed y with the property that E (i} : 4)
satisfies a system of differential equations of the form (144). Moreover, E,
being spherical, it suffices to prove the estimate for f(4, x)=
E_ (¢ : A)(x)(1). Being of X-polynomial growth the function 4+ f; has its
singularities in aJ(P,1) on a finite union of hyperplanes of the form
{4,a)> =c. Hence there exists a £¢>0 such that fe&(4,¢). In view of
Proposition 10.3, Corollary 16.2, and Lemma 6.1 we have that
feHM(A, e r) for a suitable r >0 (shrink ¢ if necessary). By application of
Theorem 18.3 we infer that /e 7 (4, ¢, 5) for suitable ¢, s> 0. The desired
estimate now follows by application of Lemma 18.2. ||

From the above theorem, Corollary 17.6, and the characterization of the
Schwartz space in Theorem 17.1 one straightforwardly deduces that %,
allows a unique extension to a continuous linear map ¥(G/H,t)—
C*(iay)® °¥, defined by the formula (169). The stronger assertion that
the Fourier transform maps continuously into the Schwartz space will be
proved in the usual manner by using partial integrations.

LemMMa 193. Let De D(G/H). Then for every f e €(G/H, t) we have
F(Df YA =pp(D: 1) Z.f(2)  (Leia)

Proof. By continuity of #, as a map into C*(iaJ)® °%, it suffices to
prove this for a fixed f in the dense (cf. [2, Lemma 7.1]) subspace
CX*(G/H, t). From (169) and Lemma 4.5 we infer that then & (Df)(1)=
pp(D*: —1)* Z, f(4). Here D* denotes the formal adjoint of D with
respect to (-, ->,, and the second star denotes the adjoint with respect to
the unitary structure of °#¢. We must therefore show that u(D*: —1)=
pe(D: A)*.

From the definition of y, in Section 4 one readily checks that it suffices
to show that u,(D*)= up(D)*, where the second star denotes the formal
(Hermitian) adjoint in D(M,/H,, ). Moreover, without loss of generality
we may assume that D has real coefficients. The canonical anti-
automorphism X'+ XV of U(g) induces automorphisms of D(G/H) and
D(M,/H,,), which are both denoted by D— D". Let n: g.— g. be the
conjugation associated with the real form g. Being real, D has a repre-
sentative X e U(g)” with #(X)=X. Hence X" is a representative for D*,
and D* = DY, Moreover, the decomposition (20) is n-stable, so that u,(D)
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is real, and we see that it suffices to show that u,(D")=pup(D)". In view
of (21) this equality follows from the fact that the maps y and y » commute
with the canonical anti-automorphism (reduce to the Riemannian case as
in the proof of Lemma 2.1, and then use [20, p. 307]). |}

LEMMA 194. Let Q be the canonical image of the Casimir in D(G/H).
Then there exists a R>0 such that for A€ia} with |A| 2 R we have that
up(R2 : 2) is invertible and

142 lpe(R:2)71<2 (1A= R).

Proof. This is a straightforward consequence of the easy fact that
pp(€2, 1) — (4, 4) belongs to End(°¢)® S,(a,): here (-, -) denotes the com-
plex bilinear extension of the dual of the positive definite form B | a,x a,,
and the index 1 indicates the space of elements of order at most 1. |

Completion of the Proof of Theorem 19.1. Let R be as in Lemma 19.4.
Then by continuity of %, as a map into C*(ia})® °%, it suffices to prove
the following statement. Let MeN, ue S(a}). Then there exists a con-
tinuous seminorm s on ¥(G/H, t) such that

|Z S5 ) < (L+ A1)~ Ms(f)

for all fe¥(G/H, t) and all Aeiaf with |A| >R

We shall prove this by induction on the degree of u. In view of
Theorem 19.2 and Corollary 17.6 there exists a seminorm s, such that for
fe¥(G/H, t) we have

| Z f(A )l (1 +12D)"Yso(f)  (Aeiad).
Using Lemma 19.4 we now obtain that
lup(Q: ) " QWL u) <L+ 1ADY *s,(f) (1A= R) (170)

for a suitable seminorm s,. In view of Lemma 19.3 this proves the result
already when deg u =0.

To prove the assertion in generality we assume that it has been estab-
lished for operators of degree at most d. Let u have degree d+ 1. We
observe that % f(A;u) can be rewritten as up(2:1) "F (2"1))(4; u)
modulo a finite sum of terms of the form

pe(Q:4)""q(A) Z(f)4; v)

with ge S(a,) ® End(°€) and with ve S(af) of degree at most 4. The
proof is now completed by using (170) together with the induction
hypothesis. ]
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20. APPENDIX: SPECTRAL PROJECTIONS

The purpose of this section is to provide estimates for spectral projec-
tions associated with parameter dependent endomorphisms of a finite
dimensional complex vector space V of dimension n> 2.

Let X be an open subset of a finite dimensional real vector space, 2 an
open subset of a finite dimensional complex vector space, and

I': XxQ - End(V)

a C*-map which is holomorphic in its second variable. We assume that
continuous functions &, .., ¢ XxQ2 - C are given so that {&(x, 4);
1 < j<k} is the set of eigenvalues for I'(x, 4), for every (x, 1)e X x Q (here
we do not count them with multiplicities).

Let 1 </<k be a fixed integer, and define P_(x, 1) e End(V) to be the
projection onto the sum of the generalized eigenspaces corresponding
to the eigenvalues &(x, 4), 1<;</, along the remaining generalized
eigenspaces. Let P, (x, 1) be the complementary projection. Then
P (x,A)+P,(x,A)=Tforall (x,)e XxQ.

LeMma 20.1. Suppose that for every (x, 1) e X x 2 we have
{EGn A t<isin{g(x Asi<j<k}=

Then the functions P , (x, 1) depend smoothly on (x, A) and holomorphically
on A

Proof. Fix (x4, 40) € X x Q2. Then there exists a bounded open subset D

of C with (compact) smooth boundary D such that for (x, 1) = (x,, 4o) we
have

&(x,)eD(j<I) and  &(x, A)¢d D (I<}). (171)

By continuity (171) still holds for (x, 1) in a sufficiently small open
neighbourhood N(x,, 44) of (x4, 44). Then for (x, 1) € N(x,, 1,) we have

1
P_(x, 1) =Zz’iLD (21— I(x, A)) "' dz,

where 0D is provided with the induced orientation. All assertions now
easily follow. |

580/109/2-15
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We now come to a result involving estimates. We assume that there
exists a constant C,> 0 and positive integers p, ¢ such that

17(x, )| < Co(1 + 14])7
1&;(x, AN < Co(1+[4])* (1<j<k)
for all (x, ) e X x . Define

¢_(x, )= max Re(x, 4),

I<j<!

and
E,(x,A)= Im_ink Re &;(x, 4).

<js
PROPOSITION 20.2. Assume that
¢-(x4)<¢i(x,4)
Jor all (x, A)e X x 2, and put
O(x, Ay=min(1, & (x, 1) — & _(x, 1)).
Then there exist constants C>0, Le N such that

1+¢
o(x, 4)

1+t
o(x, )

lle =P _(x, A)| <c( ) (1+]ap*ere-te (172)

le= TP (5, D < C (o5 ) (141 e o0, (173)

for all (x,A\)eXxQ and t20. In fact one may take L=q+
(n—1) max(p, g).

Proof. 1t suffices to prove (172) since (173) will then follow if we
replace I'(x, A) by —I'(x, 4). Put

There exists a constant C, >0 such that
1&;(x, A) — plx, )| < C (1 +]4])*

for all (x,A)eXxQ and 1<j<k. For (x,A)eXxQ and >0 we define
D(1, x, A) to be the set of ze C with
é(x, A)

|z — pu(x, A) < Cy(1 +Iil)"+5(1—+t—)
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and
o(x, 4)
200+1)

Then clearly &,(x, A)eD(1, x, A) for j<I and ;(x, 4)¢cl D(z, x, 4) for
I < j< k. Hence

Rez< & (x,A)+

1
e TAp_(x, A)=——,j ez — I'(x, 1))~ dz. (174)
278 Japr, x. i)

Now there exists a constant C, > 0 such that
length(aD(t, x, 1)) < Cy(1 + |A])? (175)

for all (x, A)e Xx 2, t=0. Hence it suffices to estimate the integrand of
(174). Tt is straightforward to see that for ze dD(t, x, 1) we have

|et2| gelif(x./’-)+1."2' (176)

To estimate the remaining part of the integrand we recall that by Cramer’s
rule there exists a polynomial map M : End(V)— End(¥V) such that for
every AeGL(V) one has A '=(det A)"'M(A). Since M has degree
<n—1 there exists a constant C;> 0 such that (r = max(p, q))

“M(ZI— F(x, i))” < C3(l + I/” )r{n- 1)

for all (x,A)eXxQ, t=0, and zedD(s, x, 1). On the other hand, if
z€0D(t, x, A) then zI— I'(x, 1) has the eigenvalues z —¢;(x, 4) (1 <j<k).
All of those have absolute value not less then (1/2) 8(x, A)(1 +¢)~'. Hence

d(x, 4) >"

|det(zI— I'(x, A))| = (m

and we infer that

1 n
I(z1 = I(x, 1)) ' <27Cy (ﬁ) (1+1A)=", (177)

for all (x,A)eXxQ, 20, and zedD(t, x, A). The estimate (172) now
follows from (175), (176), and (177). |
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