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INTRODUCTION 

In this paper we develop a theory of Eisenstein integrals related to the 
principal series for a reductive symmetric space G/H. Here G is a real 
reductive group of Harish-Chandra’s class, o an involution of G and H an 
open subgroup of the group G” of fixed points for c. The group G itself is 
a symmetric space for the left x right action of G x G: we refer to this 
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setting as the group case. Up to a normalization, our Eisenstein integrals 
generalize those of Harish-Chandra [18] associated with a minimal 
parabolic subgroup in the group case. 

In [4] we studied the principal series for G/H and their H-fixed 
generalized vectors, motivated by the expectation that they constitute the 
building blocks for an explicit Plancherel decomposition of L&(G/H), the 
most continuous part of L’(G/H). Let K be a a-stable maximal compact 
subgroup of G. Then on the level of left K-finite functions the decomposi- 
tion should be described in terms of matrix coefficients of K-finite and 
H-fixed vectors, i.e., in terms of Eisenstein integrals. In the present paper 
we concentrate on the Eisenstein integrals, and their asymptotic behaviour 
towards infinity. The main results are: (1) a unitarity result for c-functions, 
(2) uniform tempered estimates for the Eisenstein integral, and (related to 
this) (3) a functional equation for H-fixed generalized vectors. These results 
will be applied in a forthcoming joint paper with H. Schlichtkrull [S] 
where the decomposition of f&(G/H) will be given. 

We shall now describe the results of this paper in more detail (for 
unspecified notations see Section 1). The principal series for G/H is a series 
of parabolically induced representations rtc,l = Indz(< @I @ 1 ), with P a 
minimal 00 &stable parabolic subgroup (here 0 is the Cartan involution 
associated with K). Moreover, if P = MAN is the Langlands decomposition 
of P, then 5 E tips, an appropriate set of finite dimensional irreducible 
unitary representations of M, and I, E a:, where a, is the - 1 eigenspace for 
c in the Lie algebra a of A. The main object of study in [4] was the space 
of H-fixed elements in the space C- “(P : 5 : A) of generalized vectors of 
Indz(r 0 3, @ 1). We established the existence of a fixed finite dimensional 
Hilbert space V(r) and a linear map j(P : 5 : A) : V(r) --) C-“(P : t : A)“, 
depending meromorphically on A E a,*,, and bijective for generic A. 

Eisenstein integrals, defined in Section 3 of the present paper, are essen- 
tially linear combinations of matrix coefficients of K-finite vectors with the 
H-fixed vectors j(P : 5 : A. : q), q E F’(c) (cf. Section 4). They depend 
meromorphically on the parameter 1 E a,*, and behave finitely and semi- 
simply under the action of the algebra D(G/H) of invariant differential 
operators. Hence by [ 10,2] they may be represented by converging series 
expansions describing their asymptotic behaviour towards infinity. In order 
to control the dependence of these expansions on 1 we adopt a technique 
which was used in [S], see Sections 11-14. 

Let us discuss what the expansions look like for the simplest case of left 
K-invariant Eisenstein integrals. These Eisenstein integrals occur as matrix 
coefficients for the induced representations with r = 1 and generalize the 
elementary spherical functions of a Riemannian symmetric space (cf. [ 143) 
as well as the spherical functions introduced by Oshima and Sekiguchi 
[27] for the symmetric spaces of K-type. They are parametrized as follows. 
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Consider the Weyl group W= N,(a,)/Z,(a,) and its subgroup WKnH, the 
canonical image of NKn H ap ( ). Let wL^ be a fixed set of representatives for 
WI WKn H in N,(a,). Then w t+ PwH is a bijective map from 9V onto the 
set of open H-orbits in P\G. In our example we may identify V( 1) with C” 
provided with the standard inner product. If q E C”, then j(P : 1 : 2. : q) E 
C-“(P: 1 :A)” is completely determined by j(P: 1 :,I:~)(w)=~..,M’E%‘. 
Notice that in the Riemannian case (i.e., H = K) we have C” = C and 
j(P : 1 : i : 1) equals the function 1 I defined by 1 ;(nak) = u*+~P (we induce 
from the left). 

The K-fixed Eisenstein integrals may be parametrized by C * as well (for 
general K-types the situation is more complicated). They are defined as 
matrix coefhcients: 

E(P : q : l)(x) = (1 P1, n,,;(x) j(P : 1 : i : q)> (E.Ea4*,,xEG). 

Notice that in the Riemannian case E( P : 1 : ,I) equals the elementary 
spherical function cp _ il. 

The asymptotic expansions may now be described as follows. Consider 
the Cartan decomposition G = KA, H. Let Q be a second minimal (T 0 8- 
stable parabolic subgroup containing A,. Then Q determines a positive 
system X(Q) of roots for a4 and an associated positive Weyl chamber 
Al(Q). The closure of the set u,., #. H’- ‘A:(Q)w is a fundamental 
domain for the Cartan decomposition. Along each set KA:(Q) wH the 
asymptotic behaviour of the K-fixed Eisenstein integral is described by an 
(actually converging) expansion of the form 

Here the f,.,,,(n) are linear functionals on C” , meromorphically 
depending on A E a,*,. We define c-functions C, , Js : 1) E End(C”*) by 

where pr, denotes projection onto the coordinate determined by w. For 
general K-types the situation is similar, but more involved (see Section 14). 
Thus c-functions are defined in terms of leading coefkients of expansions 
in (generally) more than one chamber, in contrast with the group case, 
where only one chamber is involved. 

One of the main results of this paper is Theorem 16.3, which asserts that 
the Eisenstein integral allows a normalization so that the associated nor- 
malized c-functions are unitary endomorphisms for A E ia:. For the K-fixed 
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case treated above, this is equivalent to the existence of a meromorphic 
scalar function q(A), independent of P, Q, and s, such that 

cp,AJ: -4*c,,k4s: l)=rl(J), ka,*,. 

This is analogous to a fundamental result of HarishChandra [18, 
Lemma 3, p. 1533. In the Riemannian case it comes down to 
c( -d) c(sl)=c( -A) c(A), cf., e.g., [20, p. 451, (16)]. In [8] it will be 
shown that the corresponding part of the Plancherel measure is essentially 
given by q(A) - ’ times Lebesgue measure on ia:, in analogy with the group 
case. 

The second main result of this paper is that Eisenstein integrals satisfy 
uniform tempered estimates (Theorem 19.2). In the K-fixed case this comes 
down to estimates of the following form, with u E ??(a:), XE U(g), and 
C, N> 0 constants depending on U, A’: 

II7@)E(fj :il;u :x;aw)(( <c ((qll (l+ Inl)“(l+ lloga()Na-~Q 

for w E %‘“, a E cl A:(Q), A E ia:. Here R is a suitable polynomial function 
cancelling the singularities of the Eisenstein integral along ia:. The 
estimates allow us, in the final section, to define a Fourier transform on a 
Schwartz space on G/H generalizing Harish-Chandra’s Schwartz space for 
the group case (cf. Theorem 19.1). 

From what has been said so far, it is clear that the results of this paper 
are deeply inspired by analogous results of Harish-Chandra. Indeed we 
owe much to the ideas of his papers [16-18). Nevertheless there are 
fundamental differences. The first one, already referred to above, is that the 
c-functions are obtained from (generally) several asymptotic expansions: 
in [S] this will turn out to be intimately related with the occurrence of 
multiplicities in the most continuous part of the Plancherel formula. The 
second difference is the meromorphic dependence of the Eisenstein integral 
on 1. This is caused by the fact that (in [4]) the map j(P : 6 : A) was 
obtained by meromorphic continuation starting from a region in a& which 
is quite apart from the imaginary points. This makes it hard to get 
estimates of the uniformly tempered type. Let us finish this introduction by 
indicating how we obtain them. 

In Sections 8 and 9 we derive a functional equation for the map 
j(P : r : A). This result, Theorem 9.3, is the third main result of our paper. 
Its proof involves, among others, an argument inspired by Zuckerman’s 
translation principle. The obtained functional equation is suficiently 
explicit to give a priori estimates for the Eisenstein integral with uniformity 
in ;I (see Proposition 10.3). 

When this paper was almost finished I learned that our functional equa- 
tion in the group case is related to recent work on intertwining operators 
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by Vogan and Wallach [31] and by Zhu [36]. Indeed, in the group case, 
j(P : 5 : A) is essentially a distribution kernel of an intertwining operator 
(cf. c711. 

In Section 18 we use the differential equations satisfied by the Eisenstein 
integral to improve upon the initial estimates, and get estimates of 
uniformly tempered type. The proof is inspired by a technique of Wallach 
(cf. [33, Theorem 5.6, p. 328]), related to the theory of Jacquet modules: it 
allows one to improve initial estimates for matrix coefficients in a number 
of steps, each step involving the asymptotic behaviour along a maximal 
parabolic subgroup. We have to do this along maximal o&stable parabolic 
subgroups however, and with uniformity in the parameter I (see Proposi- 
tion 18.6 and Theorem 18.3). 

1. NOTATIONS AND PRELIMINARIES 

In this section we recall some notations and preliminaries from [4]. Lie 
groups will be denoted by italic capitals, their Lie algebras by the corre- 
sponding German lowercase letters (parabolic subalgebras will sometimes 
be denoted by German capitals). If m is a real Lie algebra, we shall write 
U(m), resp. S(m), for the universal enveloping resp. symmetric algebra of 
the complexification m, of m. Let A4 be a Lie group with algebra m. Then 
we denote the left (resp. right) regular action of A4 on Cm(M) by L 
(resp. R). The associated infinitesimal representations are denoted by the 
same symbols. Moreover, given fe Cm(G), we shall also use the notations 
f(u;x) :=&f(x),f(x; U) :=&f(x), and uf:= L,f, for UE U(m), XE M. 

Throughout the paper G will be a real reductive group of Harish- 
Chandra’s class, o an involution of G, and H an open subgroup of the 
group G” of its fixed points. Let 8 be a Cartan involution which commutes 
with U, and K the associated maximal compact subgroup of G. The 
derivative of o (resp. 0) at e is denoted by the same symbol; let 5 (resp. f) 
denote its + 1 eigenspace, and q (resp. p ) its - 1 eigenspace. The composi- 
tion 08 is an involution as well: the associated + 1, - 1 eigenspaces in g are 
denoted by g+ and g-, respectively. Thus 

and 

g+=fnt)0pnq g- =fnq@pnt) (1) 

9=9+ 0% (2) 

as direct sums of vector spaces. 
We extend the Killing form on g, = [g, g] to a non-degenerate 

G-invariant bilinear form B on g which is positive definite on p, negative 
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definite on f, and for which centre (9) n $ and centre(g) n q are orthogonal. 
Moreover, we define a Ad(K)-invariant positive definite inner product on 
g by (X, Y) = -B(X, t9Y), and denote the associated norm by 1.1. All the 
above decompositions are orthogonal with respect to ( ., . ). 

If j is a commutative subalgebra of a Lie algebra 1, consisting of semisim- 
ple elements, then we write Z(1, j) for the set of non-zero j,-weights in I,. 
If Z(I, j) is a (non-reduced) root system, then we denote the associated 
refectibn group by W(I, j). 

We fix a maximal abelian subspace a, of p n q and extend. it to a maxi- 
mal abelian subspace a, of p. Given a linear subspace et g, we agree to 
write e,,=ent), e,=enp, e,,=enfnq, etc. Then a,=a,,. The root 
systems of aq and a, in g are denoted by Z = Z(g, ag) and Z. = C(g, ao) 
and we fix compatible positive systems ,E’+ and Z,+, respectively. The set 
Z+=E(g+,a,) is a subsystem of .X Let Z~=Z+nZ+ and let AZ 
denote the associated open positive Weyl chamber in A, = exp(a,). Then 
we have the Cartan decomposition 

G=Kcl(A;)H. (3) 

Further down we will see that the middle part of the corresponding 
decomposition of an element need not be uniquely determined, if H is not 
connected. 

By gD we denote the (finite) set of all o&stable parabolic subgroups of 
G containing A,. Given PEAR we write P= M,A,N, for its Langlands 
decomposition and put MIP= MPAP, AP,,=ApnH, Ap9=expa,,, and 
Map = MPAPL. Notice that A,, c A,, . Hence if a E Z, then either g” = 0 or 
g=Cnp. Put 

Z(P)= (aeL:gacnp}. 

Then np = Cm, zfpj 9”. Let P=OP. Then P=aP and Z(P)= -Z(P). 
Let M, denote the centralizer of a, in G, and define a =centre(m,) np. 
Then a9 = a n q. The linear functional pp~ a* defined by pp(X) = 
(l/2) tr(ad(X) 1 np) vanishes on a,,. Thus pp E a: and in fact pp E a&, if we 
embed a& c a: c a* via the inner product ( ., . ). 

If PE 9$., then A,, c A,. Moreover, equality holds iff P belongs to the 
set pc(A,) of minimal o&stable parabolic subgroups containing A,. Let m 
denote the orthocomplement of a in m,, and set A = exp a, A, = A n H, 
M=(M,nK)exp(mnp), and M,=MA,,. Then M,=MA=M,A, as 
direct products of groups. For every P E gck( A,) we have that M, = M and 
A P=A. 

The map PwL’(P) is a bijective correspondence from $(A,) onto the 
set of positive systems for Z (cf. [4, Sect. 21. Writing A,+(P) for the open 
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Weyl chamber in A, associated with the positive system C(P), P E PO(A,), 
we have that 

If PEAR’,, then the group W=N,(a,)/Z,(a,), the normalizer modulo the 
centralizer of a, in K is naturally isomorphic with the reflection group of 
the root system Z. By conjugation it acts simply transitively on the set 
EM,). Let WKrrH be the canonical image of N,, “(Q~) in W. Throughout 
this paper 9V will be a fixed set of representatives for W/WKr,H in N,(a,). 
If PE 9JA,) then w H PwH establishes a one-to-one correspondence from 
#/ onto the set of open H-orbits on P\G (cf. [4, Sect. 31). 

At this point we discuss the decomposition (3) in more detail. The group 
W Kn H acts naturally on x + . Let WK, H denote the subgroup of elements 
leaving ZI invariant, or, equivalently, leaving Ai invariant. 

LEMMA 1.1. WKnH% W(g+, a,)xl W;,,. 

ProoJ We first observe that W(g + ) a,,) z W,, HP. (Here the index e 
indicates that the identity component of the group is taken.) The product 
map is bijective, since W(g+ , a() acts simply transitively on the E+-cham- 
bers in a,,. Moreover, since K n H normalizes K n H, = (K n H),, it follows 
that WKnH normalizes W(g + , a,). 1 

Remark. Notice that it follows from the above that W,&H is trivial iff 
W KnH= w(g+, a,) which in turn is equivalent to 

H= HeZ,,,(a,), (4) 

i.e., H is essentially connected (cf. [ 4, Lemma 4.13 ). 

LEMMA I .2. Let X, YE cl(a: ). Then exp X E K exp YH o X E Wk, H H, 

Proox We have that H = N KnH(a,,)He. Hence exp XE Kexp(r?iY)H, 
for some C E N KnH(ag). It now follows from the results in [12, Sect. 43 
that X= WY for some WE W(g+, a*) WKnH= WKnH. Write W=UV, with 
Uf W(g+, a,), DE FnH. Then VYE c&a: ), and u(vY) E cl(a:). It is well 
known that this implies v = 1. Hence XE Wg, H Y. The reversed implication 
is obvious. 1 

We recall that by tiP we denote the set of (equivalence classes of) 
irreducible finite dimensional unitary representations (5, JQ of M which 
possess a w(Mn H) w -‘-fixed vector for some w E ,W. A representation 
5 E tiP is trivial on m n p. By trivial extension we will sometimes view it 
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as a representation of M, = MA. Given 5 E tip, ~1 E YY we write *v(<, w) 
for the set of w(Mn H)w-‘-fixed vectors of 5. We endow the spaces 
%‘“(<, w) (I~‘E f’) with the unitary structure inherited from [ and define a 
formal direct sum of Hilbert spaces V( 5) = II,., *- Y(<, w). Let I’(<, w) 
denote the canonical image of Y(<, w) in I’(<). Then 

is an orthogonal direct sum decomposition. 
Let PE~?JA,), r~&?~, and A E a,*,. Later in this paper we will need dif- 

ferent function spaces associated with the principal series representation 
IndF(< 6 A @ 1). We write 

c-‘“(P:5:A) (6) 

for the space of generalized functions (i.e., the continuous linear functionals 
on the compactly supported P-densities) f : G + St transforming 
according to the rule 

f(manx)=a~+PP~(m)f(X) ((m,a,n)EMxAxNp). (7) 

The group G acts on (6) via the right regular representation R. 
It will be useful to work with the compact picture of this induced 

representation. Restriction to K induces a bijective linear map from (6) 
onto 

C-“(K: cl), (8) 

the space of generalized functions 40 : K + St transforming according to the 
rule 

cp(mk) = 5(m) cp(k) for mEKM=KnM. 

Via the restriction map we transfer the induced representation on (6) to a 
I-dependent representation ?rP,c,A of G on (8). 

If q E N u {co }, then we shall write Cq(K : 0 for the subspace of (8) con- 
sisting of the q times continuously differentiable functions. We provide this 
space with the usual Frechet topology. For q finite this is in fact a Banach 
topology, and we fix a norm 1) -II4 once and for all. Moreover, we let 
Cq(K : <) denote the subspace of (8) consisting of the generalized func- 
tions of order at most q. This space was denoted by 9i(K: 5) in [43. 

Let dk be the normalized Haar measure on K. If q E N u {co}, then the 
map 



SYMMETRIC SPACES 339 

defines a non-degenerate pairing 

C-qK:~)xCq(K:()+C (10) 

which is anti-linear in its second variable. It defines a linear isomorphism 
of Cpq with the topological anti-linear dual of Cq. We provide Cq(K: 5) 
with the associated strong dual topology. When q is finite this is a Banach 
topology with the dual (operator) norm /I .I1 -y. 

If qE Z u { - 3cj, co}, we define Cq(P : 5 : A) to be the preimage of 
Cq(K : 0 for the (bijective) restriction map from (6) onto (8). The space 
is topologized by transference of structure. The pairing (10) induces a 
G-equivariant Hermitian pairing 

c-q(P:{:A)xcq(P:(: -X)-C (11) 

which establishes a G-equivariant identification of Cq(P : 5 : A) with the 
strong topological anti-linear dual of Cq(P : 5 : - I). 

For u’ E %lI’ the evaluation map ev,. : f ~f( uf) is well defined on the 
space C “(P : 5 : A)H of H-fixed generalized functions, with values in 
‘l’(<, IV). Let 

ev : C”(P: 5 : A)” -+ V(t) (12) 

be the direct sum of the maps ev,. Then for generic 1 E a,*, (i.e., for 1 in a 
Baire subset) the map (12) is bijective. Moreover there exists a unique 
meromorphic map 

such that evoj(P : < : A) = 2 on V(5) (cf. [4, Sect. 53). Here meromorphy 
should be interpreted with respect to the compact picture of the induced 
representation: i(P : 5 : A) is meromorphic as a map V( 5) + C “( K : <) in 
the sense of [4, p. 3751. 

If P, Q E Yc(A,), we recall from [4] that by the methods of [25] we have 
an intertwining operator A(P: Q : 5 : A) : C-=(Q : 5 : A) + C-=(P: 5 : A), 
depending meromorphically on A. Its action on H-fixed generalized 
functions is described by 

A(Q:P:[:l)oj(P:{:I)=j(Q:c:l)oB(Q:P:5:;1). 

Here B(Q : P : 5 : A) E End( V(5)) depends meromorphically on 1 E a$ (cf. 
[4, Proposition 6.11). 
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2. INVARIANT DIFFERENTIAL OPERATORS 

In this section we gather some properties of the algebra D(G/H) of 
invariant differential operators on G/H needed in this paper, meanwhile 
fixing notations. 

We recall that the right regular action of G on C”(G) induces a 
surjective algebra homomorphism r: U(g)H + D(G/H) with kernel 
ker r = U(g)“n U(g)h (cf. [ 191). Thus r factorizes to an isomorphism of 
algebras 

f: U(&‘/(Wd”n Wdt)) + WGIW. (13) 

Let A: S(g) + U(g) be the symmetrization map. Then we have the 
following direct sum of vector spaces: 

(14) 

(cf. [19]). It follows from the above that r maps A[S(q)“J bijectively onto 
D( G/H). Set 

D := UdW4dh n Wdt)). (15) 

Then by the above we have a natural isomorphism D(G/H,) N D. More 
generally the inclusion U(g)H c U(g)h induces an embedding of algebras 
D(G/H) 4 D. The following result was communicated to me by professor 
T. Oshima, several years ago. 

LEMMA 2.1. The natural embedding D(G/H) 4 D is an isomorphism onto. 

Before proving this lemma we fix notations that will be useful elsewhere 
too. Let b be a maximal abelian subspace of q, containing a,. Then 
b = b,@ a4. We recall the duality of [9]. Define a dual real form in g, by 

gd=g+Oig-. (16) 

Put fd = h, n gd and pd = qe n gd. Then 

gd= fd@ pd 

is a Cartan decomposition for the reductive algebra gd, corresponding to 
the Cartan involution ed= or 1 gd (here of denotes the complex linear 
extension). Notice that at= b, n gd is a maximal abelian subspace of p”, 
containing aq. Moreover, we clearly have 

S(qT = 4Pd), 

the algebra of ad(kd)-invariants in S(pd). 

(17) 
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Proof of Lemma 2.1. In view of (14) it sutlices to show that 
S(q)“= S(q)h. Let Ki be the commutant of f3:= cr, in the complex adjoint 
group G,. Then Ad,(H)c Kf(here we use that Ad,(G)c G,). Hence it 
suffices to show that Kf acts trivially on (17). Now this is seen as follows. 
Let F be the (finite) group of elements of order 2 in expo ad(iat). Then 
Kz= F(Ki),, hence it sufllces to show that F acts trivially on (17). Let Bd 
be an extension of the Killing form to a non-degenerate bilinear form on 
gd which is positive definite on pd and for which [g’, gd] and centre(gd) 
are orthogonal. Then Bd is Cc-invariant, hence its restriction to pd is 
F-invariant. In particular the orthogonal projection pd + at commutes 
with F. The induced map Z(pd) + S(af) being injective by Chevalley’s 
theorem, it follows that F centralizes Z(pd). 1 

Let W(b) denote the reflection group of the root system 
C(b) = z(g, 6) = C(gd, at). Then the algebra Z(b) of W(b)-invariants in S(b) 
equals the algebra Z(a,d) of invariants in S(ag) for the reflection group Wt 
of z(gd, at). Since D = U(gd)‘“/(U(gd)ld, U(gd)td) we have a Harish- 
Chandra isomorphism yd : D + Z( ai) = Z(b). Via the natural isomorphism 
D(G/H) ‘v D we transfer )ld to what we call the Harish-Chandra 
isomorphism 

y: D(G/H) + Z(b). (18) 

If Q E Pn”,, we put H,, = M,, n H, and H, = M, n H. The natural 
isomorphism M,/H, x A,, z M,,/H,, induces an isomorphism 

(19) 

Given DE D(G/H) we define ‘p&D) to be the element of D(M,o/H,,) 
satisfying 

D-‘P~(D)E~~WI)+ U(g)b. (20) 

Here we have slightly abused notations by not distinguishing between 
elements of D(G/H) (resp. D(M&H,o)) and their representatives in U(g)H 
(resp. U(mio)H1c), W e will continue to do this, as it will not cause any 
ambiguity. One readily verifies that D H ‘pLp(D) is a homomorphism of 
algebras. In view of the decomposition (19) we may view ‘&D) as a 
D(M,/H,)-valued polynomial function on a&,,: we denote its value at 1 
by ‘pQ(D : A). 

Now consider the function dQ: M,, --* R+ defined by 

d&l = Jldet Ad(m)I ,,Ql (m E Ml,). 

Then d, = 1 on M,, and d,(a) = apQ for a E A,,. Moreover, the function 
d, is right Hip-invariant. 

58O!lW?-9 
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We define the algebra automorphism T, of D(M,,/H,,) by 

T,(D)=d,‘oDod,. 

Moreover, we put pQ = TQ 0 ‘JQ and Z& = TQ 0 ZQ. Now b is a maximal 
ahelian subspace of m,o n q containing a,. Let yQ be the Harish-Chandra 
isomorphism from D(M,,/H,,) onto the algebra IQ(b) of W,(b)= 
w(mlQ, b)-invariants in S(b). By rephrasing the above definitions in terms 
of D and subalgebras of the dual real form one sees that 

YQ"PQ=Y+ (21) 

In particular, j.iQ is an embedding. 
It is well known that S(b) is a free Z(b)-module of rank # W(b). In fact, 

if E is the set of W(b)-harmonic polynomials in S(b) then the natural 
multiplication map 

W)@E-+-,S(b) (22) 

is an isomorphism. Similarly we have an isomorphism 

z,(b) @E, -+ S(b), (23) 

where E, denotes the space of WQ(b)-harmonic polynomials in S(b). 
Taking We(b)-invariants in (22) we see that 

(24) 

where we have written EQ for the set of We(b)-invariants in E. Combining 
these isomorphisms we see that 

Ez EQ@EQ. (25) 

Hence dim EQ = [ W(b) : W,(b)] an we infer that IQ(b) is a free Z(b)- d 
module of rank [W(b) : We(b)]. 

It now follows from (21) that pQ: D(G/H) -+ D(M,Q/H,Q) is an injective 
homomorphism of algebras. Moreover, D(Mio/Hio) is a free /JQ(D(G/H))- 
module of rank [W(b) : We(b)]. Let V he the linear subspace of 
D(M,Q/H,Q) defined by 

V= T;‘y$(EQ). (26) 

Then by (21) and (24) we have a natural isomorphism 

WMIQIHIQ) N v@ 'PQ(WG/W)- (27) 
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Moreover, notice that 1 E V. For v E b,* we define the following ideal of 
codimension 1 in D(G/H): 

9” = ker y(. : v). 

LEMMA 2.2. Let v E a&. Then VQ ‘p,(&) naturally embeds onto an ideal 
X of WM,,IH,,). 

Proof By (27) the natural map is a linear embedding. Since YU is an 
ideal, whereas z.+ is a homomorphism of algebras, we have that 

‘P~(WGIW) ‘~~(-8) = ‘Pi. 

Combining this with (27) we infer that D(M,o/HIQ) ‘po(Y,,) c V ‘pQ($). 
The reversed inclusion is obviously valid. 1 

LEMMA 2.3. The inclusion VG D(M,,/H,,) induces a bijection from V 
OntO W~lQIH,QVA. 

Proof: In view of (27) and the previous lemma we have natural 
isomorphisms 

since ‘~1~ is injective. Via these indentifications the induced map 
corresponds to the map V -+ V@ C, x H x @ 1. 1 

Via the isomorphism V = D(M,,/H,Q)/yU described in the above lemma, 
the space V carries a v-dependent structure of D(M,Q/H,Q)-module which 
we denote by rv. We shall write V, for the space V endowed with the 
structure T” of D(M,Q/H,Q)-module. 

LEMMA 2.4. Let v E b,*. Then the set of aQq+eights of V, equals 
W’W+pQ) 1 aQq. 

Proof. Equivalently we must show that W(b)v 1 ao,, is the set of 
ao,-weights of D(M,Q/HIQ)/Tp(X). Let I, he the ideal of PEZ(b) with 
p(v) =O. Then yo induces an isomorphism of D(M,o/H,o)/To($;) onto 
Z,(b)/J,, where .Z, = EQI, is the ideal in Z&b) generated by I, (use (24)). 
!%rce yQ is aQ,-equivariant, we must show that W(b)v 1 apl equals the set 
of ao,-weights of Z,(b)/J,. Let bf denote the space of Wp(b)-invariants in 
b,, then aQs c b:. Thus the assertion will follow from our claim that the set 
of weights of the b$module Zo(b)/.Z, equals W(b)v ) bf. 
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To see the validity of the claim, notice that EZv is the ideal in S(b) 
generated by I,. The b-module S(b)/EI, has W(b)v as its set of weights 
(apply duality and use [S, Proposition 4.11). From the decompositions 
(22), (23), (24), (25) we see that the multiplication map Eo@Z,(b) + S(b) 
induces a linear isomorphism 

EQO U,(b)/J,) + WYEZ,. (28) 

The above map is equivariant for the b$action if we let 6: act on the 
second component in the tensor product. Since the set of weights of the 
b,P-module on the right equals W(b)v ) bf, this proves the claim. 1 

3. DEFINITION OF THE EISENSTEXN INTEGRAL 

Throughout the paper F will be a finite subset of the set R of 
(equivalence classes) of finite dimensional irreduible representations of K. 
Moreover, we write 

v = C(K),” 

for the space of right K-finite functions whose isotopy types for the right 
regular representation R are contained in F”. It inherits the unitary inner 
product from L2(K, A). Let T denote the restriction of R to V. We put 

H,=HnM, K,=KnM, and z~=z) K,. 

Given won,, we denote the space of r,-spherical functions from 
M/wH, w-l into V by 

C(M/wH,w-’ : rM). (29) 

This space is finite dimensional because the inclusion K, c M induces 
a diffeomorphism from K,/w(Kn H,)w-’ onto M/wH,w-’ (cf. [4, 
Lemma 3.53). We fix a M-invariant measure dm on M/wH, w-’ of total 
measure one and provide (29) with the unitary inner product induced by 
those of V and L2(M/wH, w -‘, dm). If 5 is an irreducible finite dimen- 
sional unitary representation of M, we write Cc(M/wH,w-’ : rM) for the 
subspace of (29) consisting of the functions all of whose components are of 
left isotypy type t. Then clearly we have an orthogonal decomposition 

C(M/wH,w-’ : rM)= @ CJM/wH,w-’ : zJ, 
t;EX 
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where X is the finite set of r E i@, which have a KM-type in common with 
t;. 

Recall that %L’ c N,(a,) is a finite set of representatives for W/W,, H 
and consider the formal direct sum of Hilbert spaces 

“V= u C(M/wH,w-’ : TM). (30) 
WE* 

The image of C(kf/wH,~y-’ : rM) in ‘%? is denoted by “q,,,. Thus 
“V= @k’Ew- Y?,,,. Given J/ E “5?? we write $,,, for its component in YZBR,. 
(often we shall identify this component with a function in (29)). The left 
regular representation induces a unitary action of M on “%’ in a natural 
way. Given 5 E ii?, we write 

and we see that the following result holds. 

LEMMA 3.1. We have the orthogonal decomposition “%? = @ c E x “%T( r ), 
where X is the finite set of 5 Ed, which have a KM-type in common with 
t&, and where each space “%T( 5) is finite dimensional. 

Fix P=MANE~~(A,), WE%‘“, and I,+,,,E’?,,,. For 13Ea$ with Rei+p, 
strictly P-dominant (i.e., strictly dominant with respect to Z(P) = -Z(P)), 
we define the function $J P : A) : G + V by 

$,,,(P : L)(namwh) = a’+PPl(l,,,(m), (31) 

for nEN, aEA, mEM, hEH, and by 

$,(P : A) = 0 outside PwH. (32) 

In view of [4, Proposition 5.63 the function $,(P : A) is continuous on G. 
It is easily seen to be right H-invariant. We now define the function 
$(P:A):G+V by 

l&P: A)= 1 lJ,(P: A). 
W’E 1. 

Finally we define the Eisenstein integral by 

E(P: 1(1 : A)(x)= j r(k)-‘$(P: J)(kx)dk, 
K 

(33) 
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for x E G. Let C(G/H : 7) denote the space of continuous c-spherical func- 
tions from G/H into V. Then 1(1 H E(P : @ : A) defines a linear map from “%? 
into C(G/H : 7). 

4. RELATION WITH THE PRINCIPAL SERIES 

In this section we study the relation of the Eisenstein integral E(P : I,$ : A) 
with matrix coefficients of the principal series representation 
IndF(< @A@ 1). This relation is then used to extend the Eisenstein integral 
meromorphically in 1, and to compute the action of D(G/k) on it. 

Let SC be a Hilbert space model for 5, and write 

se& := C(K: l)F, (34) 

where K-types with respect to the right regular representation are taken. 
We endow the above space with the unitary inner product induced by the 
unitary structures of 5 and L2(K, dk). 

If V is a complex linear space, we denote the conjugate complex linear 
space by E If V’ is a second complex linear space, then we define 

Recall the definition of the finite dimensional Hilbert space V(5) from 
Section 1. In a natural fashion the space p(t) inherits a unitary inner 
product from V(r): if (. , .) denotes the inner product of V(g) then the inner 
product (. , . ) of P(t) is defined by (v, w ) = (w, u). We provide 

with the induced structure of Hilbert space. Given an element T= f @ q of 
X& & I’(& w) (where w E %‘) we define a function eT : M/wH, w-’ + 
C(K) by 

tiAm)(k) = <fW’h S(mh>c. 

One easily checks that $T~ Cc(M/wH, w -’ : TV). By linearity TH t,br is 
extended to a complex linear map from X& @ V(r) into “U(t). Set 
d(5) = dim r, then we have: 

LEMMA 4.1. The map Tw d(<)“2$ T is a bijective isometry from 
Jq*F 63 v(t) onto W5). 

Proof: Fix w E %‘-. Then it suffices to prove that the map is an isometry 
from ti&.@ V(& w) onto “WJt). 
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Let C,( M/wH, w -‘) denote the space of complex valued functions on 
M/wH, w - ’ which are of left isotopy type 5. Then the linear map 
m,.: X< @ I’({, w)-+ Ce(M/wH,wpl), determined by 

m,.(o 63 s)(m) = (b5W)rl>c 

is bijective. The representation c;* 1 K, is irreducible (cf. [4, Lemma 5.3]), 
hence by the Schur orthogonality relations the map m,. = d(O”‘m,,. is an 
isometry. 

Let S be the endomorphism of C(K) defined by S’(k) = f(k ~ ’ ). Then S 
is an isometry from C(K), onto V (where K-types with respect to R are 
being considered). Hence S@ m,. is an isometry from E, = C(K),@ 
[X{ @ V(& w)] onto E2 = V@ C&M/wH,w ‘). Let rr, be the representa- 
tion L @ c @ 1 of K, in E,, and let 7c2 be the representation rM @ L of K, 
in E,. Then one readily verities that S@ m,. intertwines rt, with n,, hence 
maps (E,)KM = J& @ V([, w) isometrically onto (E2)KM = Y&(5). Now 
observe that (S@m,.)(T)=d(l)“’ tirfor TE&@,~(~,M’). 1 

We can now relate the Eisenstein integral to matrix coefficients of 
principal series representations. 

LEMMA 4.2. Zf T= f a q E S& @ V(t), then .for 1 E a,*, with Re 1+ pP 
strictly F-dominant we have 

E(P: tic J)(x)(k)= (.L ~p.:.~(k-x).dP: 5 : &pr), (35) 

for xEG, kE K. 

Proof. It suffices to prove this for q = v,,,E V(& )i!), IZ’E Y#-. From the 
definition of ti7 we deduce that 

~.(m)(k)=(f(k~~'),j(P:4:X:~,.)(mM')): 

for m E M, k E K. From the transformation properties under the left action 
by N,A and the right action by H it follows that 

for x E PwH. Both the left and the right hand side of the above equation 
are zero outside PwH so that it actually holds for all ?I E G. Now use (33) 
and the definition (9) of the equivariant pairing (11). fl 

Let 9 be a Frechet space. Then a g-valued function f on a complex 
analytic manifold Q will be called meromorphic if locally at every point 
z E S2 there exists a homomorphic function cp such that cpf is holomorphic 
in a neighbourhood of z. 
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Let C”(G/H : T) denote the space of r-spherical P-functions G/H + V. 

COROLLARY 4.3. Let @E “%f. If Re A+ pp is strictly F-dominant, then 
E(P : $ : A) belongs to C”(G/H : T), depending holomorphically on 1. 
Moreover, 1 w E(P : + : A) extends to a meromorphic C*(G/H : r)-valued 
function on a&. 

Proof: By Lemmas 3.1 and 4.1 it suffices to prove this for # = tiT, with 
TE #c,F @ I’(<, w), w E W. The result is then an immediate consequence of 
Lemma 4.2 and the meromorphy of j(P : 5 : A), cf. [4, Lemma 5.7 and 
Theorem 5.101. 1 

In the rest of this section we will discuss the action of the algebra of 
invariant differential operators on Eisenstein integrals. 

Recall the definition of pP: D(G/H) + D(Mi/M, n H) from Section 2. 
Given w E W we define p;: D(G/wHw-‘) + D(M,/M, n wHw-‘) similarly 
but with H replaced by WHW-‘. Now Ad(w) maps U(g)” into U(g)WHW-’ 
and induces an isomorphism of algebras Ad(w) : D(G/H) + D(G/wHw-‘). 
We deline pP,W : D(G/H) + D(M,/M, n WHW-‘) by 

PP.W = ji;;o Ad(w). 

Given XE U(g)H let lp,JX: l : 2) denote the endomorphism by which 
pp,,(X: 2) acts on V(& w)c X<, and define ep(X: t : 2) : V(r) + V(r) to 
be the direct sum of these maps. 

LEMMA 4.4. Let X E U(g)H. Then 

Proof: Since Rx preserves the subspace of H-invariant functions in (6) 
it suIIices to establish the identity which results if we apply ev, on the left 
(use [4, Theorem 5.101). For w = 1 this identity is a straightforward conse- 
quence of the equivariance properties of j locally at e, and the definition of 
PP.1 = PP. The identity now follows for arbitrary w if we observe that 

ev,o Rx0 j(P : 5 : A) = ev, 0 RAdcwJXo j’(P : r : A), 

where j’(P:c:A) is the map V(t) + C-“(P: < : i)wHw-L associated with 
WHW-’ and the set W’ = Ww - ’ of representatives for W/W,, wHw-~. 1 

Given D E D(G/H) we defme an endomorphism of “W by 

~P(D : A) = 0 N~p,JD : A)). 
wsw 
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LEMMA 4.5. Let DED(G/H). Then 

DE(P : 1(1 : A) = E(P : pp(D : A)$ : A). 

Proof. By linearity it suffices to prove this for a D with real coefficients 
and for $=$r with T=f,@q?,~3&@ V(<,w) for some ~EI%?~, 
w E f’. Let X be a real representative of D in .V(g)H. Then from the detini- 
tion of I/I~ it follows straightforwardly that 

Now use Lemmas 4.2 and 4.4 to complete the proof. i 

We finish this section with a description of the eigenvalues of the 
endomorphisms pp(D : A). The following lemma will be needed at a later 
stage as well. Let j be a O-stable Cartan subalgebra of g containing b. 

LEMMA 4.6. Let U’E N,(a,). Then there exists a s E W(g, i) normalizing 
b and a,, and such that s 1 aq = Ad(w) I a,. Moreover; if 5 E M, has 
infinitesimal character A E i:, then wl has infinitesimal charater sA. 

Proof. Using the duality of Section 2, notice that W(g“, a:) = W(g, b). 
Let 

w&= (SE W(gd, Q~);odoS=S~od}. 

Then according to [28, Proposition 7.171 (see also [4, Lemma l.l]), 
restriction induces a surjective map W& + W. Now Ad(w) ( aq E W, hence 
Ad(w) I a,=s, 1 a, for some SUE W(g, b). Now jd=iengd is a &‘-stable 
Cartan subalgebra of gd containing ai. Hence the normalizer of a: 
in W(gd, id)= W(g, j) maps onto W(gd, a$= W(g, b) and we see that 
sI=s( b for some SE W(g,i). 

Since Ad(w is a Cartan subalgebra of mlrr there exists a 
q,~Aut(m,,)” such that Ad(w-‘)j,=rp,(j,). Now Ad(w)orp,EAut(g,)” 
and normalizes j,, hence defines an element I E W(g, j). Moreover, c I a, = 
Ad(w)) ap=s I a,,, hence t-*sE W(m,, j). Hence tm’s=cpz I i, for some 
(~~~Aut(rn,,)‘. Put cp=cpIo(pz. Then rp~Aut(m,,)” and $:=Ad(w)av 
normalizes j, and satisfies $ I j, = s I j,. 

Given any automorphism cp of m,, we write rV for the infinitesimal 
representation 5 0 cp -r of m,,. In particular, r Ad(w’ denotes the differential 
of wt. If cp is any element of the identity component of Aut(m,,), then it 
is readily verified that 5” is equivalent to 5. Hence w< has the same 
infinitesimal character as tti. Now + is an automorphism of m,, which 
normalizes j,. This implies that 5”’ has infinitesimal character 
(+-‘)*A =sn. 1 
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The space 6, is a Cartan subspace of mnq. Let ,X& be a system of 
positive roots for E, = ,J?(rn, bL), and let pM be half the sum of the positive 
roots, counting multiplicities. Let W, be the associated reflection group, 
and write ZM(bL) for the algebra of W,-invariants in S(b,). Then we have 
a Harish-Chandra isomorphism y M : D(M/H,) -+ Z,(b,). Notice that for 
any QEP~(AJ we have 

with respect to the decomposition (19). Now let L be the set of A E ib,* 
which lift to a character of the torus B, = exp b,. 

PROPOSITION 4.1. For every DE D(G/H), I E a,*, the endomorphism 
c(,(D : A) of “V is semisimple and respects the decomposition “% = @ “W,,,(~) 
(5 E X, w E W). Moreover, let w E W, and let s be as in Lemma 4.6. Then the 
eigenvalues of pp(D : A) ) “%‘,,. are of the form y(D : sA + pM + A), with A E L. 

We begin by studying the action of D(M/H,) on the space 
C=‘W/%d, of left Z&,-finite smooth functions on M/HM. The following 
result will be needed at a later stage as well. 

LEMMA 4.8. The algebra D(M/H,) acts finitely and semisimply on 
W~/%dKM- The simultaneous eigenvalues of the action are all of the 
form D H ym(D : A + pM), with A E L. 

Proof. We first notice that b, is also a Cartan subspace of f, n q. 
Moreover, since m n p c Ij, it follows that [bk, m n p] c m n p n q = 0. 
Hence E(f,, 6,) = z,, including multiplicities. Set HO = K, n H, and 

Do = W,8W&dh0 n Wf,)bo. 

Then we also have a Harish-Chandra isomorphism yKU : DO + Z,(b,). It is 
related to yrn as follows. From mn p c h it follows that U(m) = 
W,) + Um)($ n m). Let p. : V(m) --, U(f,)$, be the associated linear 
surjective map. The induced map p, : U(m)HH + (U(f,)“‘I n U(t,) bo) 
is easily seen to be an algebra homomorphism with kernel ker p, = 
U(rn)‘jM n U(m)(m n h). In view of the fact that [m n b n p, fM] c m n $, it 
follows that p, is actually surjective, hence induces an isomorphism of 
algebras 

P: WWH,) --) WJUHo). 

The second algebra allows a natural embedding in Do (cf. Section 2). 
Moreover, from the above detinition of p it is clear that 

YKM’P=YM (36) 
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(use that the definitions of the two Harish-Chandra isomorphisms involve 
the same rho-shift). In particular we see that D(K,/H,) 2: D,. The natural 
map i : KM/H, cs M/H, is a diffeomorphism (cf. [4, Lemma 3.53). The 
associated pull-back i* : C=(M/H,) + Cm(KM/Ho) is a bijective KM- 
equivariant topological linear isomorphism and from the above definition 
of p one readily checks that i* 0 p(D) = D 0 i* for all DE D(M/H,). There- 
fore it s&ices to study the right action of U(f,)Ho on C”(K,/H,). 

Let 9, be the set of equivalence classes of finite dimensional irreducible 
representations of K, p ossessing a H,-fixed vector. Then by the 
Peter-Weyl theorem we have the following isomorphism of K,, U(t,)“O 
modules: 

C”‘(K,,,‘H&, -c @ I’? @ J’p. (37) 
:EF, 

Hence it suffices to consider the action of U(f,)“” on VP. We consider the 
action on the possibly bigger space VP. Let V, = V, 0 ... 0 V,,, be a 
decomposition of V: into irreducible (K,)” modules. Then 

and this decomposition is preserved by U(fM)“O. It suffices to consider the 
action of IVES, on Vho, with V an irreducible ( KM)O module. If Vha = 0 
then there is nothing to prove. In the remaining case we have dim Vho = 1. 
and it is well known that V has a highest weight n E ib,*: clearly n E L. 
It is also standard that XE U(tM)“” acts on Vho by the scalar 
Y&X: A + pM). It follows that DE D(M/H,) acts semisimply on 
WW%,),,, and with eigenvalues y,,(p(D) : A + pM). Now use 
(36). I 

Proof qf Proposition 4.7. From the definition of ~‘;1 one readily deduces 
that 

where in the right hand side of the equation Ad(w) denotes the 
isomorphism D(M/H,) + D(M/wH,w-‘) induced by Ad(w) : U(m)HM -+ 
(-J(m)H’HMH’-‘. Hence for DE D(G/H) we have 

pp,,,(D : A)= Ad(w) P~~I~,,(D : w-‘A). 

Now consider the bijective intertwining map R,. : Cm(M/HM) + 
C”(M/wH,w-‘) defined by R,f(m)= f(mw). Then R,.Q~= [Ad(w)p] J 
R, for ~ED(M/H~). It follows that the eigenvalues of pL,,,(D : A) are the 
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same as those of p,,,-Ip,(D : B~-ill). I n view of Lemma 4.8 they are all of the 
following form, with Q = w - ‘Pw, A, E L : 

where ,4 =/ii +~~-s-‘p~. Now s normalizes a,, hence m, bk, and C,. 
Therefore pM - s-lpM is an integral linear combination of roots in C,, 
hence belongs to L. 1 

5. FINITE DIMENSIONAL CLASS (1, 1) REPRESENTATIONS 

The purpose of this section is to describe the finite dimensional 
irreducible representations of G possessing both a H- and a K-fixed vector. 
These representations will be needed in the translation arguments of Sec- 
tions 8 and 9. Most of the results of this section are essentially due to [21]. 

A continuous representation R of the group G in a finite dimensional 
complex linear space V is said to be of class 1 if there exists a non-trivial 
vector t)~ V which is K-fixed. If in addition there exists a non-trivial vector 
w E I’ which is H-fixed, then we shall say that R is of class (1, 1). Let us first 
recall the Cartan-Helgason description of finite dimensional irreducible 
representations of class 1, meanwhile fixing notations. With notations as in 
Section 1 let j be a O-stable Cartan subalgebra of g containing a,. Let 
,Z’+ (i) be a system of positive roots for Z(i) = Z(g, i) which is compatible 
with Z,+. 

Let /i(i) denote the set of integral weights in i:, and let n(a,) denote the 
set of v E a& such that 

(v, a> 
<GL,dZ 

for each a E &, 

Via the decomposition j = jL@ a, we identify a,*, with a subspace of j:. 
Then n(a,) c n(i). 

If 7c is an irreducible class 1 representation of G in a finite dimensional 
complex vector space V, then it is well known that dim VK = dim V’= 1, 
and that V is an irreducible g.-module. Let v(a) E n(j) be its Z+(i)-highest 
weight. Then v(z) belongs to 

A+(a,)= (pE/i(a,); (v,cr>>O for aECo+}, 

Conversely, if v E n +(a,,), then v = V(K) for a unique finite dimensional 
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irreducible class 1 representation rc of G (up to equivalence). We shall call 
rr the class 1 representation of highest weight v. For G connected, semisim- 
ple and with finite centre these results can be found, e.g., in [35, Sect. 3.33. 
They are easily extended to groups of Harish-Chandra’s class. 

If I is a real abelian Lie algebra, and V a complex vector space on which 
1 acts finitely, then by V,(l) we denote the generalized weight space of 
weight 1 E 1: in the I-module V. For future use we list some facts which are 
easy to prove, 

LEMMA 5.1. Let v E A +(a,,), and let (71, V) be the associated class 1 
representation of G of highest weight v. Then: (1) V,,(Q) = V,(i); (2) if 
u E V,(a,)\,(O} and EE ( V*)K\(O}, th en E(v)#O; and (3) Z,(a,) acrs 
trivially on v,,(a,). 

We now recall some results due to [21]. 

LEMMA 5.2. Let XE p, YE q, and assume that both X and Y centralize 
aq. Then [X, Y] = 0. 

Proof. It suffices to prove this for the case that g is semisimple. 
Moreover, by maximality of a,, in p n q we may as well assume that 
XE p n h and YE q A f. Then Z = [X, Y] belongs to [h, q] n [p, I] c q n p. 
Clearly Z centralizes a,, and we infer that ZE a,,. But using the invariance 
of the Killing form one readly chacks that Z is Killing perpendicular to a,: 
hence Z = 0. 1 

Recall that b is a maximal abelian subspace of q, containing a,,. 

COROLLARY 5.3. [a,, b] = 0. 

By the above result the subspace a0 + b is an abelian subalgebra of g 
which consists of semisimple elements. We may therefore choose an abelian 
subspace IL,, c f n h such that i = ita @ (a,, + b) is a Cartan subalgebra of g. 
Notice that i is both o- and e-invariant. Via the decomposition of 1 induced 
by ( 1 ), (2) we identify a,*,, a&, and b,* with subspaces of I:. Let 
C(b)=z(g, 6). The following result (cf. [21, Lemma 1.51) will allow us to 
fix suitable choices of positive roots. 

LEMMA 5.4. Let arc be a root whose restriction to a, is zero. Then 
either c1 I a,, = 0 or a 1 b = 0. 

Proof. Let X, be any element in 9,“. Then a,, centralizes the element 
Y = X, + 0X, - 0(X, + 0X,). Now YE q n f so in view of Lemma 5.2 we 
infer that a, centralizes Y. This is only possible in one of the following two 
cases. 
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(1) a ( a, = 0. There is nothing left to prove. 
(2) At least one of the roots 8a, ga, &a equals a. If 8a =a, then 

a( a,=0 and if oa=a then a 1 b=O. Finally if &or=0 then a=0 on 
jng- xjph@jk,, hence on a,+b. 1 

In view of the above we may fix compatible systems of positive roots for 
C, ZO, Z(b), and Z(j). We indicate these choices by the superscript +. 

Let n(b) denote the set of VE 6: such that (a, a)-‘(~, a) EZ for each 
a E Z(b), and define 

A(a,) = A(Q) n /i(b). (38) 

Then the following result describes the finite dimensional class (I, 1) 
representations. Recall that H is said to be essentially connected iff (4). 

PROPOSITION 5.5. Let v E A’(a,), and let (a, V) be the associatedfinite 
dimensional class 1 representation of highest weight v. Then V possesses a 
non-trivial lj-fixed vector iff v E A(a,). Let v E A(a,). Then: 

(1) dim V” = 1. Zf H is essentially connected then Vh = VH. 

(2) Assume VE V,(j)\(O). Zf.zE(V*)h\{O}u(V*)f\{O} then.$v)#O. 

(3) V,(a,) = V,(i). 
(4) M, acts trivially on V,(a,). 

Prooj: In view of the results described earlier in this section, V is an 
irreducible g,-module of highest weight v. 

Recall the duality of Section 2. Then obviously 

v” = pd. (39) 

It follows from the Cartan-Helgason description that (39) is non-trivial 
iIf v~ll(a,d) = n(b). The latter conditition is equivalent to VE n(a,). 
Moreover, if that condition is fulfilled, then the space (39) has dimension 1. 
Now assume that v E n(a,). 

For (1) it remains to be shown that Z,,,(a,) acts trivially on Vh, in 
view of (4). Observe that 

Kexp(a,)H, = Kexp(a,)H= G (40) 

(this holds always, regardless of whether H is essentially connected or not). 
Now fix et, E V”\(O), and E E ( V*)K\{Oj. Since 7c is irreducible, it follows 
from (40) that the real analytic function x I-+ s(x(x)e?), A, + C is not iden- 
tically zero. Hence there exists a XE ap such that s(n(X)ei,) # 0. We can 
now finish the proof of (1). Let m E ZH,, Aas). Since Ad(m) normalizes lj, 
n(m) normalizes the one dimensional space V” hence acts by a scalar c E C 
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on it. It follows that C(E, rr(X)e,) = (E, n(X) rr(m)er,) = (n”(mP’)s. 
n(X)e,) = (E, n(X)e,), hence c= 1. 

For (2), notice that by Lemma 5.1( 1) and duality we have 
V,(i) = V,,(ao) = V,(b). Now apply Lemma 5.1(2) and duality. 

To prove (3) notice that M, leaves the space V,(a,) invariant. We claim 
that in fact V,(a,) is an irreducible m,-module. Indeed let V0 be a non- 
trivial ml-invariant subspace of V,,(a,). Then n annihilates V,, and from 
g=ii@m,@n we see that V=U(g)V,=U(fi)V,,, hence V&a,)= 
V,,(a,) n U(n) V, = VO. This proves the claim. Now m, = m,@ a,, and 
since aq acts by scalars it follows that V,(a,) is an irreducible m,-module 
as well. Now fix E”E( V*)“\(O) and E’ E (V*)‘\(O). Since V&a,,)3 V,(i) 
we have that sh and st are not identially zero on V,(a,). This implies in par- 
ticular that V,(a,) has a non-zero I&,-fixed vector )C (use that sr is 
K-fixed). From m, n p c m, c h it follows that M, = exp(m, n h)K,. We 
infer that for all XE M, we have that sh( x(.x)w) = .@( IV). Hence 
E~(x(.Y) 7c( y)ul) = E~(Tc(x)M’) for all X, y E M,, and since sh 1 !‘,(a,) is a cyclic 
vector for the contragredient m,-module V,(a,)* it follows that 7c( +v)M’ = M 
for all y E M,. Hence V,,( a,,) is the (one-dimensional) trivial M,-module. i 

LEMMA 5.6. For a E Z,, u Z(b), write & = a 1 a,. Then 

4 (WEZ 
(a,u) ’ 

(41) 

ProoJ We restrict to the case that a E Z(b), the other case being similar. 
Then 26 = u - Bu, hence the right hand side of (41) equals 
2-2(a, Ba)(a, a)-’ and the result follows. 1 

Remark. In [21, Lemma 2.31, it is actually shown that (41) belongs to 
{ 1, 2,4}, but we shall not need this. 

The following is now obvious. 

COROLLARY 5.7. Let v E a,*,. Then 

(v, a> --442 for eachcrEL - 
(a, a> 

v E A(a,). 

6. FUNCTIONS OF S-POLYNOMIAL GROWTH 

In Sections 8, 9, 10, and 16 we will be dealing with meromorphic func- 
tions of 1 E a: whose singular and growth behaviour are of a specific type. 
The purpose of this section is to describe this type of behaviour, meanwhile 
developing some useful terminology. 
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Let S be a finite subset of a,*,\(O). Then we denote by I7Ja,) the subset 
of S(a,) consisting of 1 and all products of linear functions a,*, + C of the 
form 

4n)= (A<>-c, (42) 

with < E S and c E C. Here (. , . ) denotes the Hermitian extension of the 
dual of the given inner product on a,,. Of course the decomposition of an 
element of IZ,(a,) as a product of linear factors is unique up to the order 
of the factors. We endow ZZ,(a,) with the partial ordering < defined by 
p < q iff p divides q. Then clearly every subset T of ns(a,) has a greatest 
lower bound inf T in ZZJa,). 

Let V be a Frechet space. We will say that a holomorphic V-valued func- 
tion f; defined on an open set .Q c a $ has exponential growth on Q if there 
exists a constant r 2 0 and for every continuous seminorm s on V constants 
NEN and C>O such that 

s(f(A)) < C( 1 + IL/)” erlReAt (43) 

for all A E Q. The function f is said to have polynomial growth on D if the 
above holds with r=O. 

We will say that a meromorphic function f: Sz + V has S-exponential 
(resp. S-polynomial) growth if there exists a polynomial q E I7,(a,) such 
that sfis holomorphic and of exponential (resp. polynomial) growth on Q. 

In particular we will be interested in functions of S-exponential growth 
on open sets of the form 

a,*(P, R) := {AEa,$; (A, u> < R for a E X(P)}; (4) 

here P E Pc(A,) and R E R. The following result will enable us to reduce on 
the polynomial q in the definition of S-exponential growth. 

LEMMA 6.1. There exists a constant a > 0 such that for every R E R and 
every holomorphic function f on a,*(P, R) with values in a Frkchet space V 
the following holds. Let p E II, be of degree d and suppose we have an 
estimate 

s(p(1) f(1)) G C( 1 + IAON erlRe” (A E a:(P, R)), 

with s a seminorm, r > 0, NE N, and C > 0. Then for every 0 < E < 1 we have 
the estimate 

s(f (A)) < C(2Nad)“ 

for all 1 E a,*( P, R - E). 
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Proof. It suhices to prove the result for d= 1. The above estimate will 
then follow if we apply this result d times with d-l& instead of E. Thus we 
assume that d= 1 and that p has the form (42). 

Let 

m=min Jv(, 
IES 

M=,Fys 14, 

and write r] = r[, with 

‘=(l +r)(El +M)” 

Let ;1~a:(P, R--E). If Ip( >(1/2)r ItI*, then 

and (45) follows with a= a , := 2tnd2( 1 + M)‘. We therefore assume that 
Ip( <(1/2)r j512. For every aEG we have I(q,a)l frM’<~. Hence if 
z E C, (zl < 1 then A + zn E a:(P, R). On the other hand, if (zl = 1, then 

Hence 

s(f(A + zq)) < DC( 1 + \A!)” erlRe”, 

with 

D=---i 2 (l+TKl) 
7 I51 

The required estimate now follows with a = a,e if we apply the above to 
estimate the integrand in Cauchy’s integral formula for the function 
z H~(A + zq) over the unit circle in C. 1 

7. S-GENERICITY 

In this section we define a notion of genericity which will be used in 
Sections 8 and 9. 

Let a finite subset S c a:\ (0) be given. Then by a S-hyperplane we will 
mean a hyperplane in a& of the form I-‘(O) with 1c n,(a,), deg 1= 1. 
Moreover, we will say that a A-dependent statement (A E a:) holds for 
S-generic Iz if the statement holds for A in the complement in a:= of a locally 
finite union of S-hyperplanes. 

580’1092.L0 
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Let j be a Cartan subalgebra of g as defined below Corollary 5.3. For 
future use we fix a particular finite and W-invariant subset S c a,*,\(O} 
such that the following conditions are satisfied. 

(1) zcs. 
(2) If aEZ(g,j), WE W(g,j) then (a---a) 1 a,eSu (0). 

Remark 7.1. The first of the above conditions guarantees that the map 
i(P: 5 : n) is well defined as a map from P’(t) into CMm(P: 5 : A)H for 
S-generic 1 E ag*, , by [4, Lemma 9.51. Moreover, ev being a left inverse (cf. 
[4, Theorem 5.101) the map j(P : 5 : A) is injective as soon as it is well 
defined. 

The second of the above conditions guarantees that the following lemma 
is valid. Note that W(m, , 1) is the centralizer of a, in W(g, 1). 

LEMMA 7.2. Let ql, v~E$” be such that q, $ W(m,, i)q2. Then there 
exists a polynomial q E I7,(a,) such that for 1 E a$ with q(1) # 0 we have 

A+rj,#@;i+rf,) forall WE W(g,i). 

ProojI If w E W(m,, j), then the required assertion holds for any 1 E a,, 
in view of the assumption on ‘I, , qZ. 

For each w E W(g, j)\W(m,, j) thee exists a root fl,,,~C(g, i) such that 
the restriction v,. = (b,,. - W-ifi,,,) ) ap is non-zero. The second of the above 
conditions guarantees that v, E S. Set 1,(A) = (A, v,,) - (WV, - qI, 8,). 
Then A + rf, = w(L + q2) implies /,,(A) = 0. Hence q(A) = n,, W,m,,,, l,(A) 
satisfies our requirements. m 

8. PROJECTION ALONG INFINITESIMAL CHARACTERS 

In this section we will study projection along an infinitesimal character 
in the tensor product of a principal series representation with a finite 
dimensional class (1, 1) representation, inspired by an idea of Zuckerman 
(cf. [37]). The results will be used in the derivation of the functional 
equation for i in the next section. 

Let i be the Cartan subalgebra of g introduced above Lemma 5.4. If V 
is a Harish-Chandra module and q E j,* an infinitesimal character, then we 
denote the projection in V onto the generalized weight space for b(g) 
corresponding to q by p: or just p,,. 

Let p E A(a,) (cf. (38)), and assume that (rc, F) is the finite dimensional 
irreducible class 1 representation of extremal weight p. 

Let c&tap, and let A E (m, n I=)* c le ’ * be its infinitesimal character. If 
Q E Pc(A,), A E a& then Indz(t @ 18 1) has infinitesimal charater A + 1. 
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FROP~SITION 8.1. Let QEY~(A~) and pi n(a,). Then for S-generic 
,I E a$ we have that 

~n+icJC@ : ti : A)KOf’l= C(Q : 5 : A+P),. (46) 

Proof: Let && denote the space X< provided with the Q-module 
structure s’ @ ,? @ 1. We consider the G-equivariant map 

rp,: C-m(Q : t : l)@F+ C-” Ind~(X&@FIo) 

determined by 

cp,(f@ u)(x) =f(?r)@ n(.u)o. 

Then on the level of K-finite vectors, cp j. is an isomorphism of (g, K)- 
modules (the proof of this statement goes exactly as the proof suggested by 
[24, p. 384, Exercise 61). In particular this implies that cpi is injective on 
the space of generalized functions. 

We shall first deal with the case that p is Q-dominant. Then by Proposi- 
tion 5.5 the a,-weight space F, = F,( a,) is a one dimensional subrepresen- 
tation of F(,, on which M, acts trivially. Consider the short exact 
sequence of Q-modules 

O+F,-+FI,-,F/F,-,O. 

Let A(F) be the set of a,-weights of F. Then the composition factors of the 
Q-module F/F,, are all of the form r @ v 0 1, with r a finite dimensional 
irreducible representation of M, and v E A(F)\{p}. Let V be the set of 
composition factors of the M,-modules occurring in < 0 r, with T as above. 
One easily verities that o I-+ Indg(o), is an exact functor from the category 
of finite dimensional Q-modules to the category of admissible (g, K)- 
modules. Hence every composition factor of the (9, K)-module 

(47) 

is a composition factor of an induced module of the form 
Indz(G 0 (A + v) 8 llK, with 6 E %?, v E /1(F)\{p}. Therefore every 
generalized infinitesimal character of (47) is of the form A, + ,I + v with 
II d E j: the infinitesimal character of 6 E %, and v E n(F)\ { /J }. Now suppose 
that 

n+A+p#w(n,+A+v), (48) 

for all 8~%, v~n(F)\(p}, and MI E W(g,, j,). (According to Lemma 7.2 this 
condition is fulfilled for I in the complement of a finite union of S-hyper- 
planes.) Then pn + i. + ,, annihilates (47). On the other hand it is the identity 
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on Indz(X(, 0 F,), = C(Q : t : ,I + ,u)~. Using exactness of induction once 
more we infer that p,, + 1 + c1 maps Ind~(& @I FIQ)K onto Indz(& @ F,),. 
Applying the isomorphism ‘pl we infer that (46) holds for A in the comple- 
ment of a finite union of S-hyperplanes, when p is Q-dominant. 

Finally, let Q’E Pi. Then the intertwining operators A(Q’ : Q : g : 2) 
@I and A(Q : tl : 2 + p) are isomorphisms for 1 S-generic. Hence (46) 
remains valid if we replace Q by Q’. 1 

We will now investigate the extension of p,, + i + Ir from the K-finite level 
to the space of generalized functions 

C-m(Q : 5 : A)@F (49) 

and its dependence on 1. First we need a lemma. Recall the definition of the 
l-dependent representation 7~~ = ~o,~,~ of G on (8). 

LEMMA 8.2. Let XE U(g) be of order at most d, and let rE R. Then 
1 H K*(X) is polynomial (of degree at most d) as a function on a:= with 
values in the Banach space of bounded linear maps C’(K : r) + C’-d(K : <). 

Proof: Clearly it su!Iices to prove this for d= 1, and then we may as 
well assume that XE~. Let ~EC-“(K:l). We define P~EC-~(Q:~:L) 
by cpl ( K= cp. Then 

al(X) P(k) = cp#; w 

= cp,(Ad(k)X’; k). (50) 

Now module n, Ad(k)X” can be written as a finite sum of terms 
c(k)(U+ V+ W), where CEC”(K), and UE~,, Vent,, WEE. Hence (50) 
can be written as a finite sum of terms 

c(k)L,,+.+,,cp,=c(k)C(U, ~+Pp>+5(O+Lwl v(k)- (51) 

From this the assertion easily follows. 1 

PROPOSITION 8.3. There exist a polynomial qE II, and a mero- 
morphic family p,(Q : t; : 1) (A E a$) of equivariant continuous linear endo- 
morphisms of (49) with the foIlowing properties. 

(1) For S-generic I we have 

P,(Q:M)=P,+J.+. on C(Q : ( : I),@F. (52) 

(2) There exists a d E N such that for every r E Z the map 
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,I H q(1) p,(Q : 5 : A) is polynomial as a function on azC with values in the 
Banach space of bounded linear maps 

C’(K: ()@F+C’-d(K: 5)OF. (53) 

Proof. Let p, = CL, pLz, . . . . CL, be the collection of distint j-weights of 7t. 
Then it follows from [23, Theorem 5.13 that (49) is admissible and of finite 
length, and that 

,fJ, Cz-I4zn+~.+P,)l (54) 

acts by zero on (49). 
We may assume pr, . . . . p,,, to be ordered so that for a suitable 1 <k < m 

we have 1 < j < k iff A + pj E IV(m, , j)(A + 11). Then by Lemma 7.2 there 
exists a polynomial 4 E I7Ja,) such that for i> k and for every A with 
q(A) # 0 we have that A + A+ pj is not W(g, j)-conjugate to A + I + p. 
Given an element ZE a(g) we define 

j=k+ I 

Let I be the ideal generated by the polynomials b(Z), ZE a(g), and let V, 
be its zero set. We claim that 4 = 0 on V,. 

To see this, let E c a(g) be a finite dimensional linear subspace which 
generates the algebra %0(g). If A E V,, then the polynomial function E -+ C, 
Z I-+ b(Z, A) is identically zero, hence for some k + 1 <i < m we have 
that y(., A +A+p)=y( ., ,4 +A+pj) on E. Since y is an algebra 
homomorphism, this identity actually holds on all of a(g), and it follows 
that A + A + pj is W(g, j)-conjugate to A + A+ p, hence q(A) = 0. This 
proves the claim. 

In particular we see that there exists a Z E b(g) such that b(Z) is not 
identically zero. For Z E 2(g) we write 

D(Z,A.)= fi [Z-y(Z,A+A+p,)]. 
j=k+ 1 

Since y(Z,A+~+~j)=y(Z,A+n+~) for all l<j<k, ZEzT’(g), and 
AEa:, we have that 

Cz-y(z,n+n+~)l”D(Z,~) (55) 

equals (54) hence acts by 0 on (49). To complete the proof we need the 
following. 
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LEMMA 8.4. Let Z E Z?‘(g). Then for S-generic ;1 we have 

CInd~(S@~@ l)@~l(WZ ~))=b(Z, ~)P~+~+~ 

on the K-finite level. 

Proof: The space ker p,, + 1 + cI equals the sum of the generalized weight 
spaces corresponding to infinitesimal characters not contained in 
W(g, j)(A + A + p). Hence the power at the left in (55) acts invertibly on 
ker pn+i+r. The whole of (55) acts by zero, hence D(Z, A) = 0 on 
ker P,&+~. 

On the other hand a(g) acts semisimply by the infinitesimal character 
A+L+p on imp,+,+, for S-generic 1, in view of Proposition 8.1. From 
this we see that the equation holds on im pn +I+u as well. 1 

Completion of the Proof of Proposition 8.3. Let Z E I(g) be such that 
b(Z) # 0. Then by the above lemma the meromorphic family 

p,(Q : e : 2) :=b(Z, ~)-‘[Ind~(<Ol@ l)@lrl(D(Z, A)) 

of equivariant continuous linear maps does not depend on the particular 
choice of Z. Set d(Z) = (m - 1) deg(Z). Then in view of Lemma 8.2 it 
follows from the above definitions that 3, H b(Z, A) p,(Q : r : I) is polyno- 
mial as a function with values in the Banach space of bounded linear maps 
from C’(K: &j)@Finto CYdCZ)(K: &J)@F. 

By the Nullstellen Satz there exists a constant VEN such that q = 4” 
belongs to Z. Hence we may write 

4(l) = i akU) Wkv A) 
k=l 

with Z,E~@) such that b(Zk) #O, and with akE S(a,). Let 
d’maxlckGn d(Z,). Then we infer that q(1) p,(Q : 5 : A) is a polynomial 
function of 1 with values in the Banach space of bounded linear maps (53). 

Finally let ak be the complement of b(Z,)-‘(0) in a&. By Lemma 8.4 
there exists a locally finite union xk of S-hyperplanes such that 
for nE&\Mk We have p,(Q: r :I)=P,,+~+~. Put x=u;=, Sk. If 
1 E a:\*, q(1) # 0, then 1 E &?k\zk for some k, and (52) follows. 1 

In the following two lemmas we list transformation properties which will 
be useful at a later stage. 

LEMMA 8.5. Let Q,, Q2 E gG(A,) and consider the intertwining operator 
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A(Q,:Q,:g:n)offromC-“(Q1:5:~)OFintoC-”(Q,:r:~)~F. We 
have 

P,(Q~ : t; : l)oCA(Q, : Q, : t : ~)OJl 
= [A(Q2: QI:<:A)@Z]~p,(Q, : 5: A). 

Proof By equivariance we have that 

P n+~+~~CA(Q~:Q,:tl:~)o~l=CA(Q,:Q,:5:~j0~l~~,~+i+~ 

on the K-finite level. Now apply (52) and a density argument. 1 

LEMMA 8.6. Let Q EY~(A,,), w E N,(a,), and consider the intertwining 
operator L(w)@Zfrom Cpm(Q : 5 : A)@Finto C-“(WQH-~ : w[ : wI)@F. 
We have 

Proof. By equivariance we have that 

CL(~‘)~~l~P,+~+II=P,+l+r”CL(~)O~I 

on the K-finite level. 

(56) 

According to Lemma 4.6, there exists a s E W(g, i ) which normalizes ap, 
and such that s I a, = Ad(w) I a,. Moreover, ~(75 has infinitesimal character 
sn (we view 5 as a representation of M, , cf. Section 1). Finally, wp is an 
extremal a,-weight for F, so ti follows that on C(wQw-’ : w< : w1),@ F we 
have (for S-generic A) 

PA +i+p= Ps(A+a+p)= PsntnAtqt 

= pH,J WQW ~ ’ : wt : WA). 

Here we have used Proposition 8.3 to obtain the third equality. Substi- 
tuting the above relation into the right hand side of (56), and substituting 
Pn+A+p = p,(Q : 5 : 1) into its left hand side we obtain the desired 
equality. 1 

9. ESTIMATES FOR j 

This section is devoted to the proof of the following result; in the next 
section it will provide us with an initial estimate for Eisenstein integrals. 
Recall the terminology of Section 6. 
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THEOREM 9.1. Let < E ML, P E gu(A,), and R > 0. Then there exists a 
constant s E R such that for each q E V(c) 

1 Hj(P : < : n)q (57) 

defines a meromorphic c’( K : 5 )-ualued function of Z-polynomial growth on 
a,*(P, R). 

This result will be proved by means of a functional equation for 
j(P : 5 : A), see Theorem 9.3. 

It suffices to prove Theorem 9.1 for H essentially connected (see also the 
argument in [4, Remark on p. 3811). We therefore assume condition (4) to 
be fufilled. 

Let p E &a,,) and let (a, F) be the finite dimensional irreducible class 1 
representation of G with extremal weight p. Then F is of class (1, 1). i.e., 
it possesses a non-trivial H-fixed vector (cf. Proposition 5.5). The con- 
tragredient representation (rc ” , F* ) is also of class ( 1, 1) and has extremal 
weight -p E A(a,). 

Let PE~~(+,!, and assume that p is p-dominant. Then we may use the 
equivariant parrmg F* x F + C to define an equivariant embedding E, of F 
into C(P : 1 : p - pp)K as follows. Fix a non-zero vector e-P of weight - ,u 
in F*. Then e-@ is N, and MO-fixed (cf. Proposition 5.5), and we may 
define the map E, by 

~Ju)(x) = (e-p, dx)u) (uEF, XEG). 

Let eKE F be a K-fixed vector satisfying (eeP, eK) = 1. Then the right 
K-invariant function .sp(eK) vanishes nowhere. We define a continuous 
linear map 

Thus, as a map from C-“(K: 0 into C-“(K: r)@F, J, is given by 
f++f@eK. Fix H-tixed vectors eH E F and eH E F* such that (eH, eH) = 1. 
Given Q E YO(A,) we define the linear map t?’ from C-O”(Q : r : A) @IF into 
C-m(Q : r : A) by 

P(Cpj@vj)=~ (eH,vj)qj. (58) 
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Finally recall the definition of p&P : < : ,I) in the previous section, and 
define the differential operator 

LEMMA 9.2. There exists a polynomial q E ZT,(a,) and a constant dE N 
such that for every r E Z the map 1 H q(A) D,(t : A) is polynomial as a 
function on a$ with values in the Banach space of bounded linear maps 
C’(K: l) + C’-d(K: 5). 

Proof This is a straightforward consequence of Proposition 8.3. 1 

We can now formulate the functional equation for j. 

THEOREM 9.3. Let p be p-dominant. Then there exists a rational 
End( V(S))-valued function 1 w R,(r : A) on ag*, such that 

j(P:5:A)=D,,(&+j(P:~:A+u)oR,,(&I). (59) 

Moreover, the function 1 t-* R,(< : A) is of S-polynomial growth on ate. 

Before turning to the proof of this theorem we shall use it to establish 
Theorem 9.1. 

Proof of Theorem 9.1. Let Q denote the set of 13 E a& such that 

<Rel+p,,a)< -1 for all c( E C(P). 

Then i t+ j(P : 5 : i)q is holomorphic C”(P : 5 : I)-valued, and of polyno- 
mial growth on Q (cf. [4, Proof of Proposition 5.61). In view of 
Corollary 5.7 we may select p E n(a,) such that (p, a) < 0 for all a E Z(P) 
and such that in addition a,*(P, R + l/2) + p c Sz. Let F be the finite dimen- 
sional irreducible class (1, 1) representation of G of P-lowest weight p. 
Then in view of Lemma 9.2 and Theorem 9.3 the right hand side of (59) 
is meromorphic and of S-polynomial growth on a,*(P, R + l/2) as a 
V(c)* @ Ced(K : [)-valued function. Hence A t+ j(P : r : 1)~ is of S-polyno- 
mial growth on a:(P, R + l/2). On the other hand, by [4, Lemma 9.51 we 
know already that for some qE n,(a,,) the map I t--r q(A) j(P : 5 : A)q is 
holomorphic on a:(P, R f l/2). According to Lemma 6.1 the latter map is 
therefore of polynomial growth on aX(P, R). 1 

The remaining part of this section will be devoted to the proof 
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of Theorem 9.3. As before we assume that ,u is F-dominant. Define the 
equivariant map 

by 

@,(P:~:1):C-“(P:~:1)@F-K-“(P:~:1+p) 

f@ lJ l-b -qv)f: 

Then the following result is a straightforward consequence of the defini- 
tions. 

LEMMA 9.4. For every p E 2 the map @J P : 5 : A) restricts to a bounded 
linear map from CP(K: <)@ F into Cp(K: r) which is independent of 1. 
Moreover, 

@,(P:~:A)QJz~=I. (60) 

In particular, @,(P : r : A) is surjective. 

Notice that &p is not equivariant. Our next objective is to find an equi- 
variant right inverse for @,(P : r : A), still assuming that p is F-dominant. 

LEMMA 9.5. Let p be P-dominant. Then 

@,(P:g:R)op,(P:<:1)=@,(P:&i). (61) 

Proof: By equivariance we have 

~r(P:e:n,nP,+*+,=Pn+I+pO~~(P:5:A) 

= @,(P : < : A), (62) 

on the level of K-finite vectors. Now use (52) and meromorphic continua- 
tion to complete the proof. 1 

We now define 

YJP:r:A):C-“(P:~:I+p)-+C-“(P:<:A)@F 

by 
YJP:~:A)=p,(P:~:~)uz~. 

Notice that 

D,(<:n)=&“oYJP:r:n). (63) 

Now let q E I7s(a,) and de N be as in Proposition 8.3 with Q = P. 
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LEMMA 9.6. For every r E R the function A I-+ q(A) ‘Y,(P : 5 : A) is pofyno- 
mial as a function on a$ with values in the Banach space of bounded linear 
maps from C’(K: {)QF into Crdd(M: 5). If q(A)#O, then the map 
Y&P : 5 : A) is equivariant and we have 

Qi,,(P:5:I)o~~(P:5:1)=1; (64) 

cv,(P:~:;1)c@,(P:W)=p,(P:U). (65) 

Proof. The assertion about the polynomial dependence is a straight- 
forward consequence of Proposition 8.3. By meromorphy it suffices to 
prove the identities (64) and (65) for generic 1 E a&. We suppress P and 5 
in the notations. Using (61) we obtain that 

~,(n)5Yp(~)=~p(~)npp(E.)c,~~ (66) 

= @,(A) 0 JiJQ = I. (67) 

To prove the second identity, we first notice that @,,(A) maps (im p,,(A)jK 
equivariantly onto C(P : 5 : I + F)~. A surjective endomorphism of an 
admissible (g, K)-module is automatically bijective. Thus from (46) and 
Proposition 8.3 we infer that for S-generic 1 E a,*, the map @,(A) is injective 
on im p,(l). Next we observe that (64) implies that 

Using the injectivity of @,,(A) we may now conclude that (65) holds for 
S-generic 1. 

Finally it follows from (64) and (65) that @,(A) is a bijection from 
p,(C-‘O(P : < : I)@ F) onto C-“(P : r : I+ CL) with inverse ‘Y,(1). Thus 
the equivariance of Y,,(J) follows from the equivariance of @,(A). 1 

Our interest in @,(P : r : 1) originates from the following observations. 
Let m,, be the endomorphism of V(r) defined by 

mr= (epP, 7C(w)eH)Z on V(5. WV), 

LEMMA 9.7. The endomorphism m, of V(5) is invertible. 

Proof. Assume not. Then (edp, rr(tit)eH) =0 for some WE -llr. But 
then the function sC(eH)(x) = (edV, n(x)eH) vanishes on the open set 
PwH by its transformation properties, and hence on the whole of G, 
because it is real analytic. On the other hand it is the matrix coefficient 
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of two non-trivial vectors of an irreducible representation so it cannot be 
identically, zero. 1 

LEMMA 9.8. For every q E V(r) we have 

@,(P:<:;l)[j(P:(:2)tf@e,]=j(P:~:I+p)m,q. (68) 

Proof: By meromorphy it suffkes to prove the equation for generic 
Am,*, (i.e., for A in a Baire subset). The left hand side of (68) belongs to 
Cpco(P : r : I + P)~. Application of ev, to the left hand side of (68) yields 

qAeHNw) ev,(i(P : 5 : Ah) = (eep, n(w) eH> pr,v 

= pr Jm, rl L 

for WEYV. Since ev:C-“(P:l:l+p)” + P’(e) is bijective for generic 1 
with inverse j(P : 1+ 10 (cf. [4, Lemma 5.7]), this implies the result. 1 

If Q is any parabolic subgroup in P#(A,), then the map sH defined by 
(58) maps [C-m(Q : < : A)@ F] ” into [Cm(Q : t : n+p)]“. We define 
the linear endomorphism M,(Q : < : 1) of V(5) by 

MJQ: 5 : l)q=evo~~op~(Q : < : A)[j(Q : [ : A)qOe,]. (69) 

LEMMA 9.9. Let qE II, be as in Proposition 8.3. Then 1 N 
q(1) M,(Q : r : A) is a polynomial map from a: into End( V(r)). 

Proof. If XE U(g) then one readily verifies that 

ev~c”O(R@rc)(X)Cj(Q : r : A)?@eH] 

depends polynomially on 1. Hence M,(Q : 5 : n) depends rationally on 
i E ag*E. On the other hand, since the restriction of j(Q : 5 : 2)~ to the open 
H-orbits on P\G depends holomorphically on 1, it follows that 
q(2) MJQ : < : A) depends holomorphically and hence polynomially on 1. 

LEMMA 9.10. If Q, Q’E$(A~), then 

A4p(Q’:~:~)oB(Q’:Q:~:~)=B(Q’:Q:~:~)hfp(Q:~:~). 

Proof. Since ev: Cdm(Q : < : A)” + V(5) is bijective for generic I, with 
inverse j(Q : r : A) (cf. [4, Lemma 5.7]), it follows that 

.?o~JQ:( :A)[j(Q: t:A)q@e,]=j(Q:< :A)M,(Q:t:I)q. (70) 

The operator ,4(Q’:Q:<:n) @ I from C-a(Q:r:2) &I F into 
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C-=(Q’ : 5 : A)@ F is equivariant hence commutes with p,, +l+kc. 
Moreover, 

Hence application of A(Q’ : Q : 5 : A) to (70) yields 

~~~p~(Q’:~:A)[j(Q’:~:i)d3(Q’:Q:~:~)~@e,] 

=j(Q’:{:A)~E(Q’:Q:~:A)~M,(Q:~:i)q. 

Application of the evaluation map ev completes the proof. a 

PROWSITION 9.11. There exists a non-zero constant CE C and two 
polynomials q,, q2 E 17,(a,) (all independent sf Q) such that 

q,(J) detM,(Q:<:n)=c- 
92(J)’ 

(71) 

Before turning to the proof of this proposition we shall use it to establish 
Theorem 9.3, 

Proof of Theorem 9.3. Applying YJP : 5 : 1) to both sides of (68) and 
using (65), we find that 

p,(P:<:I)[j(P:~:1)~@e,]=‘Y,(P:~:IZ)oj(P:~:I+p)m,q. 

From (70) we now obtain 

Since D,( < : 1) = sH 0 Y( P : 5 : A), this proves the functional equation with 

R,(t:,I)=m,oM,,(P:<:I)--‘. 1 

The rest of this section will be devoted to the proof of Proposition 9.11. 
In view of Lemma 9.10 the determinant (71) is independent of Q. This will 
be crucial for the proof. 

LEMMA 9.12. Let Q E pU(A,). Then for S-generic ;1 E a,*, the map 

?Hpp(Q:r:Iz)(j(Q:r:n)~~ee,) (72) 

is injectiue from V(5) into (C-O”(Q : 5 : ,I)@IF)~. 
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Proof In view of Lemma 8.5 we may as well assume that p is Q-domi- 
nant. Using (61) we then infer that 

@,(Q : 5 : n)op,(Q : t : i)(j(Q : 5 : 1) v@e,) 

= @,(Q : t : l)(j(Q : t : 1) r18e,). (73) 

Evaluation of (73) at u’ yields 

This proves that (72) is injective as soon as it is well defined (i.e., 1 is not 
a pole). Now this is true for S-generic 1. 1 

LEMMA 9.13. Let Q E gc(A,), and assume that p E A(a,) is Q-dominant. 
Then there exists a unique rational function $,(Q : [ : 1) : a$ + 
End( V(<, 1)) such that for q E V(<, 1) we have 

(ev18Z)op,(Q:~:1)Cj(Q:5:l)r10e,l=~~(Q:5:1:1)0e,. (74) 

Moreover if q is as in Proposition 8.3 then q(1) Ic/,(Q : r : A) is polynomial in 
1 and invertible for S-generic A. 

Proof: We use the notations of the proof of Proposition 8.1. As in the 
proof of Lemma 9.9 it follows that q(1) times the left hand side of (74) 
defines an element of V(t) @ F which depends polynomially on 1. We will 
first show that in fact it belongs to V(<, 1) @ F,,. 

From the definition of ‘p,. in the proof of Proposition 8.1 it follows that 

ev,ocp,=ev,@Z on [Cm(Q : r : A)@ F]“. 

Therefore the left hand side of (74) may be rewritten as 

ev,ocpAop,(Q : t : A)[i(Q : t : I)rlOe,l. (75) 

In the proof of Proposition 8.1 it was shown (under the assumption that p 
is Q-dominant) that for S-generic ;i the projection p,, +l+p maps 
C-“Indg(scn@ FIQ) into its subspace C-mInd~(X~k@FF,). By equi- 
variance we have (~~op,,+~+~=p,,+~+~~~~. Hence 

for S-generic 12 (use Proposition 8.3). We conclude that (75) may be rewrit- 
ten as +(A : q)@e, with q(1) $(A: V)E Xc depending polynomially on rl 
and linearly on q E V( r, 1). Moreover from the H n M-invariance of (75) it 
follows that I(/(n : V)E V(& 1). 

Observe that F,, = Ce,, by Proposition 5.5. Hence v @ e, H v defines a 
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linear isomorphism XE 6 F,, -% Xc. This map in turn induces an 
isomorphism of Q-modules &,@ F,, ‘L, Z&+p,, hence an isomorphism 

Put 

Then from the above it follows that u(A : q) is H-invariant and that 
ev, u(A : q ) = II/( A: q), for q E V( t, 1). The support of u( I : q ) is obviously 
contained in the closure of QH; hence 

u(A : q) = j(Q : 5 : A) $(A : q), v E v5. l)T 

as meromorphic functions of A (use [4, Theorem 5.1 and Lemma 5.73). In 
view of Lemma 9.12 the map qw u(l: q) is injective from V(<, 1) into 
[C =(Q : r : 1+ p)]“, for S-generic A. This implies that $,(Q : l : A) = 
II/(A) is injective for S-generic A. 1 

NOW assume that ~1 is Q-dominant. For every MI E *w, let e,,,-1, be a non- 
zero a,,-weight vector in F of weight M? ‘p, and define the endomorphism 
II/..(J) of V5, tb,) by 

IL..(i)) = L(S, K -‘)-‘o~,.~,~(~~--lQ~~: w-‘( : M’-‘,l)oL((, w-l). 

Here L(5, bt’-‘) is the map V(5) -+ V(w-‘5) defined in [4, Lemma 6.10). 

COROLLARY 9.14. For every q E V( 5 j we have 

(ev,.OOop,(Q : 5 : n)Cj(Q : t : A)vOeH1 
= $dA : pr,,(rl))Oe,-I,. (76) 

Proof: Since the map p,(Q : 5 : d) is support preserving, nothing 
changes if we replace q in the left hand side of (76) by its V(g, w)-compo- 
nent pr,q. Hence we may as well assume that q E V(& w) already. 

We have that 

f.(& w-‘)o(ev,.OZ)=(ev,OZ)G [L.(H,-‘)@Z]. 

Using Lemma 8.6 we may rewrite the left hand side of (76) as 

~(~,w-‘)~‘~(ev,~Z)~~~-~,(w~‘Qw:~~~~:~~~’~) 

[ j(w-‘Qw : u~--‘~ : 6’A) .L((. w’)q Be,]. (77) 
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Now w-‘~ is an extremal weight for F which is w-‘Qw-dominant. 
Applying Lemma 9.13 we now infer that (77) equals 

Proof of Proposition 9.11. In view of Lemma 9.10 it suffices to prove the 
assertion when p is Q-dominant. But then it follows from Corollary 9.14 
that 

pr,,M,(Q : < : l)q=ev,oEHopfl(Q : 5 : i)[j(Q : t : l)q@e,] 

=&“o(ev,OI)op,(Q:5:1)Cj(Q:r:n)?Oe,l 
= (eH, e,.-1,) $,(A: prd). (78) 

This proves that M,(1) = M,(Q : < : A) preserves the decomposition (5), 
and that its determinant is given by the formula 

det M,(1) = n (en, er-lp) det +,.(A). 
WEW 

V(C* W)fO 

Since (e”, eW,-la) #O (cf. the proof of Lemma 9.7), it now follows by 
application of Lemma 9.13 that there exists a q, E 17,(a,) such that 
q,(l) det M,(I) is a polynomial which is non-zero for S-generic 1. Any 
such polynomial is of the form cq, , with q, E n,(a,) and c a non-zero 
scalar. 1 

10. INITIAL ESTIMATES FOR EISENSTEIN INTEGRALS 

In this section we will derive an initial estimate for the Eisenstein 
integral. Let PEAR, 5 E&~, and write x1 = IC~,<,~. In addition to 
Lemma 8.2 we need the following result. 

LEMMA 10.1. Let s E N. Then there exist constants C> 0, r > 0 such that 
for every a E A,, the operator al(a) maps C”(K : 5) into itself with operator 
norm 

Proof: LetcpEC-OD(K:[)anddefinerp,~C-“(P:~:;1)bycpj.IK=cp. 
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Define the maps H,: G + a, pp:G+exp(mnp) and K,:G+K by 
x E N, exp HP(x) pp(x) KJx). Then 

xi.(a) cp(k) = cp,@) 

= e(“+PP’HP(k~lS(~L,(ka)) cp(ic,(ka)). 

Using that 5 is unitary and that 

lH,(ka)l ,< llog al 

for all k E K, a E A, one obtains the desired estimate for s = 0. 
Now let s be arbitrary, cp E C”(K), and suppose that YE U,(f). Then 

R,n,(u) v(k) =x,(a) n,W(a-‘1 Y) v(k) 

= 1 ci(u) n,l(a) n;.( yi) VCk)7 

for finitely many Yip U,(g) and finitely many smooth functions ci on 
A, satisfying bounds of the form jci(u)l fexp(r Ilog al). ‘The result now 
follows by applying Lemma 8.2 and the first part of this proof. 1 

COROLLARY 10.2. Let (~&i~, RE R. Then there exists a polynomial 
function p E l7=( a,,) and a constant s E N, such that 

(1) for every REV the function L~p(1)j(P:<:,I)q is 
holomorphic C-“(P : t; : A)-valued on a:(P, R), and 

(2) there exist -constants NE N, C > 0, r > 0 such that 

Ilnr(u)p(l)j(P:[ :I)tl(l_,~C(l+(~l)Necr+‘Re”)“og~i \(q(I, 

for all VE V(t), l~a:(P, R), unduEAq. 

Proof: The first assertion is a reformulation of Theorem 9.1. The second 
one follows immediately by application of the previous lemma. 1 

PROPOSITION 10.3. La RER. Then there exists a polynomial function 
p E I7,(a,) such thatfir each $ E “W the mapping (A, x) H p(L) E(P : @ : L)(x) 
is a Ca)-function on a:(P, R) x G/H, which is in addition holomorphic in its 
first variable. Moreover, if p E 17=(aq) is any polynomial with this property, 
then there exist a constant r > 0 and for every XE U(g) constunts NE N and 
C>O, such that 

lip(l) E(P : $ : A)(X; u)ll < C(l + IA.))” e(r+~Rea~)~‘ogu~ ll$ll 

for all $ E “%, Iz E a,*( P, R), and a E A,. 

(79) 

580~109 ?-II 
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ProoJ: It sullices to prove the proposition for a fixed $, and we may as 
well assume that $ = rl/T, with T= f @ ‘1 E Xc,F @ V(t) as in the proof of 
Lemma 4.2. Let p,,(L) be the polynomial corresponding to j(P: [ :,l)q as in 
Corollary 10.2 and let p(J) be the polynomial defined by p(l)= p,,(X). 
Then PE n,(a,) because Z is invariant under complex conjugation. 
Moreover, 

~(1) E(P : J/ : A&f; a)(k) = (~0) Rk-lfw, xl(a) pd)j(P : 5 : X)tl,,). 

The iast expression may be suitably estimated when we apply 
Corollary 10.2 and Lemma 8.2. 

11. FAMILIES OF SPERICAL MODULES 

In this section we will investigate the structure of certain families of 
spherical (9, Q-modules, related to algebraic models of the spherical 
principal series. Our interest in them originates from the following. Given 
v E b,*, let f~ C”(G/H) satisfy the system of differential equations 

Of =yW: v)f, DE D(G/H) 

(notations of Section 2). Then f generates a (9, H)-module from the right. 
Via duality this module corresponds to a quotient of a spherical principal 
series (9, K)-module Y,. With a similar motivation this module has been 
studied by [S]. We need stronger results concerning the dependence on the 
parameter v however. The main results of this section, Proposition 11.7 
resp. Corollary 11.15, and their dual companions, Proposition 12.4 resp. 
Proposition 18.8 will be applied in the study of the asymptotic behaviour 
of eigenfunctions in Sections 12 and 18. 

We start by fixing notations. Let We = W(g, a,,) and let d denote the set 
of simple roots in Zc (cf. Section 1). Given a subset Fc A we shall write 
PF for the associated standard parabolic subgroup, P, = MF A FNF for its 
Langlands decomposition, and M,,= iUFAF. Moreover, we put RF= BN,. 
If F is the empty set, then we shall also use the subscript 0 instead of 0. 
Thus g = f @ a, @ 13, is an Iwasawa decomposition for g. We also adopt the 
notations of Section 2 for the special case u = 0. A sub- or superscript P, 
will then be replaced by F. In particular y0 denotes the isomorphism from 
D(G/K) onto I(a,). 

Let X be a complex linear space, and suppose that for every value of a 
parameter o ranging in a connected open subset 0 of a finite dimensional 
complex linear space, a (9, K)-representation rr, in X is given. We shall 
write X, for X together with the structure rrL, of (9, K)-module. Moreover, 
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if 6 E K then we shall write x(0,6) for the isotypical component of type 6 
for q,, ( K. If 9 c k, we put 

X(w, 9)= @ X(0,6). 
de9 

DEFINITION 11.1. We will say that (n,,, ; w E Q) is a holomorphic (resp. 
polynomial) family of Harish-Chandra modules in X if the following condi- 
tions are fulfilled. 

(1) for every o E Q the (g, K)-module X,, is finitely generated and 
admissible; 

(2) for every u E U(g) and x E X there exists a finite dimensional sub- 
space S c X such that for all o E B one has rc,,(u)x E S and n,( K)x c S and 
moreover 

(a) the map w H rc,(u)x, Q -* S is holomorphic (resp. polyno- 
mial), and 

(b) the map (CO, k)~ rc,(k)x, Q x K + S is continuous and in 
addition holomorphic (resp. polynomial) in its first variable. 

LEMMA 11.2. Let (n,; WE Q) be a holomorphic family of Harish- 
Chandra modules in X. Then for every finite dimensional subspace S c X 
there exists a finite subset 9 c R such that 

s c X(0,3) 

for all w E 52. Conversely, if 9’ is a finite subset of k, then there exists a finite 
dimensional subspace S’ c X such that 

X(0,9’) c S’ 

for all 0 E 0. 

Proof. Let T be the linear span of the vectors n&)x, XE S, ke K. 
o E a. Then by (2)(b), T is finite dimensional. If 6 E k, let P,,, : X + X 
denote the projection onto the isotypical component of type 6 for 71, ( K. 
Then 

P,,, = I dim(b) Xa(k-‘) q,,(k) dk, (80) 
K 

where dk is the normalized Haar measure of K, and x6 the character of 6. 
The operators P,,, map S into the finite dimensional space T, and from 
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(80) we infer that the map a + Hom(S, T), WI+ Po,6 1 S is holomorphic. 
Hence for 6 E R the subset 

Q(s)= +Q; p,,, I S#O} 

is either empty or open dense in Q. Now let 9 be the subset of 6 E R for 
which Q(s) # 0. Then obviously S c x(0,9) for every o E Q. We will 
show that 9 is a finite set. Indeed, if 9,, is any finite ubset of 9, then 
Q(h)= n,,, Q(6) is open dense. Fix o,, E Q(9,). Then for every 6 E So the 
space P,,.,(S) is a non-trivial subspace in T. Since X is the direct sum of 
the spaces P,,6(X) (PER) it follows that ($,I <dim T. Hence 9 is a finite 
set, and the first assertion follows. 

To prove the second assertion, we may as well assume that 9’ = {S}. We 
first show that the function d(o) =dim x(0,6) is uniformly bounded. 
Indeed assume this were not so, and let Qj = {w E 0; dim x(0,6) >i}. 
Then @#s2j+,csZj for all i>l. If ceO~SZj, put S=X(q,,6), and let T 
be as in the first part of the proof. Then the map UH P,,, I S, 
52 H Hom(S, T) is holomorphic. Since Pw,d is the identity on S it follows 
that the set of o E 51 for which Po,6 1 S is injective, is open and dense in 52. 
But Qj contains this set, hence is open and dense in IR as well. By the Baire 
category theorem it now follows that 52, = ni,, Qj is non-empty. Fix 
U,E8,. Then X(0,, 6) is infinite dimensional, contradicting the 
admissibility of Xmm. 

Let m be the maximal value of the function d = dim X( ., 6), and let Q,,, 
be the set of o E 52 for which d(o) = m. Then a,,,,, = Sz, _ i, hence open 
and dense. Fix w1 E a,,,., let S = X(w, ,6), and define T as in the first line 
of the proof. Then the rank of P(w, 6) I SE Hom(S, T) is at most m. 
Moreover, it is m for o = o,, hence for o in an open dense subset Q’ c Q. 
The set P(o, S)S is contained in x(0,6) for any o E Q; hence for dimen- 
sional reasons we have that P(o, 6)S= X(w, 6) for OE Q,,, n Q. It 
follows that x(0,6) is contained in T for o E Q,,, A 0’. We complete the 
proof by showing that in fact this holds for all o ~52. Indeed let x E X be 
arbitrary, and let T’ be the linear space spanned by T and r&)x (o E 8, 
k E K). Then T’ is finite dimensional, and cp : o H P,,,(x) is a holomorphic 
function with values in T’. But in the above we showed that q(o) E T for 
all OESZ,,, n 52’. By continuity and density this holds for all w E 52. Hence 
X(w, 6) = P,.a(X) c T for all o. 1 

Holomorphic families of Harish-Chandra modules may be obtained 
by using coinduction. We first discuss the induction procedure without 
parameter dependence. 

Via the isomorphism (13) (in the special case b= 0) we shall view the 
space U(g)/U(g)f as a right D(G/K)-module. Of course it is also a (g, K)- 
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module for the left action by g and the adjoint action by K. If x is a 
representation of D(D/K) in a finite dimensional complex vector space W, 
then we define the (g, Q-module Y, by 

y, := ww(9)f Q’D,m, w 

It is a finitely generated admissible (g, K)-module (use [34, Corollary 
3.4.71). 

Let E denote the space of W,-harmonic polynomials in S(a,), and define 

3’ = U(ii,) Q E. 

We shall view 42 as a left U(n,)-module. The following result is contained 
in [S, Proposition 5.11 (notice that E = Tpo E). 

LEMMA 11.3. The map r:%@D(G/K)+U(g)/U(g)f induced !P.I 
u Q e Q D H ueD is an isomorphism of left U(n,)- and right D(G/K)- 
modules. 

COROLLARY 11.4. The linear map $2 @I W + Y, induced by x 0 e @ w F-+ 
xe @I w is an isomorphism of left U(iit,)-modules. 

Proof. Write D = D(G/K). Then we have 

Y,= CWgW(gYl6h, Wz C~(%,)@~@Jl@, W 
= U(%)QEQ CD%, WI. 

Now use that DC&, W 1: W. 1 

We shall consider the above construction for a representation x0 of 
D(G/K) in W depending on a parameter w E Q. The family (x,; w E a) will 
be called holomorphic (resp. polynomial) if for every D E D(G/K) the map 
o H x0(D) is holomorphic (resp. polynomial) from Q into End(W). Let 
W,, denote W provided with the structure of D(G/K)-module induced by 
x,,. Writing Y, for Y, we have 

Moreover, let % = %@ W. Then by Corollary 11.4 the linear map 
cp”: g + Y, induced by x@ e @I w H xe @ w is an isomorphism of left 
U(ii,)-modules. We shall write 7c, for the ((9, Q-representation which g 
inherits via pull back by rp,. 

PROPOSITION 11.5. h-t (x,; o E 8) be a holomorphic (resp. polynomial) 
family of D(G/K)-representations in W. Then n, is a holomorphic (resp. 
polynomial) family of Harish-Chandra modules in g. 
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ProoJ Since we observed already that each gU is a finitely generated 
admissible (9, Q-module it remains to verify condition (2) of Defini- 
tion 11.1, and it suffices to do this for x=y@e@w, with v~U(ii,,), eEE, 
w E W. Let UE U(g). Then uye E xi yi ei Di modulo U(g)f with finitely 
many yi E U(ii,), eiE E, Di E D(G/K). Hence 

We conclude that o H K,(U)X is a holomorphic (resp. polynomial) map 
into a finite dimensional subspace of g. 

Finally, let x = y@ e @ w be as above. Then k H Ad(k)( ye) is a con- 
tinuous map from K into a finite dimensional linear subspace of U(g). In 
view of Lemma 11.3 we may write Ad(k)( ye) = xi mi(k) yi ei Di modulo 
U(g)f, with finitely many yip U(&), eiE E, Dig D(G/K), and finitely many 
continuous functions mi: K + C. Now 

and one sees that condition (2)(b) holds. 1 

Since MIF normalizes the algebra R,, the quotient spaces Yi = Y, /iii, Y, 
(j>l) are (mlF, Q-modules. In fact they are finitely generated and 
admissible, cf. [34, Sect. 4.33. 

Let %j= g(liti’, g, and let x’, be the (m,,, K,)-module structure inherited 
from n,. Then clearly rp, factorizes to an isomorphism of (ml,+ KF)- 
modules pp’, : (a/ rr’,) + YL. 

The proof of the following result amounts to a straightforward verifica- 
tion of condition (2) of Definition 11.1. 

PROPOSITION 11.6. Assume that xw is a holomorphic (resp. polynomial) 
family and let j> 1. Then (n&; o E Q) is a holomorphic (resp. polynomial) 
famiIy of Harish-Chandra (mlF, KF)-modules in 5Yi. 

We now apply all the above to a specific situation. Let D = a&, W= C, 
and for v E a& define the character xy of D( G/K) by x,(D) = y,,(D : v). Then 
for j> 1 the family Z: is polynomial, hence by Lemma 11.2 there exists a 
finite dimensional subspace 3 gj such that 

W(v, l)t< for all vEa&. 

Let q be a finite dimensional subspace of ‘9 which is mapped bijectively 
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onto 5 under the canonical projection pi: Y + Yj, and which contains 
10 10 1. Moreover, let *I; denote the image of < under the map 

m: Y = U(iii,)@E@C -9 U(g), u@e@zzzue. (81) 

Then 9; is a finite dimensional subspace of U( ri, + ao) containing 1. 

PROPOSITION 11.7. Let j > 1. Then there exist 

(1) an endomorphism x, E End(q), depending polynomially on v E a&, 
and such that x,,( 1) = 1 for all v E a,*; 

(2) an algebra homomorphism bj(v, .) from U(m,F)KF into End(V;), 
depending polynomially on v E a&; and 

(3) a bilinear map y,: U(m,,)KF x P; -+ ii’, U(ii, + a,), depending 
polynomially on v E a&, 

such that for all vea&, DE U(m,F)KF, and VE 3: we have 

Dx,,(u) - x,,(b,(v, D)u) + y,(D, u) mod .I, 

Here J,, denotes the left ideal in U(g) generated by f and 

{D-y,(D:v); DEU(~)~}. 

Proof. Let P, denote the projection in Yj onto the isotypical compo- 
nent of type 1 for n, ) K,. Then P, maps the space Yj into 9;. Put 
X, = P, 1 5. Then as in the proof of Lemma 11.2 one verifies that the map 
v H X, maps a& polynomially into End( $7). 

Define the algebra homomorphism 6j(v, .) : V(m,,)KF --, End(q) by 

bj(v, D)=P,on{(D)oP,) 3;. (82) 

Then 6j(v, D) depends polynomially on v. Using that P, commutes with 
n{(D) for every DE U(m,,)“‘, we see that 

K{(D) 0 X,, = P, 0 n;(D) 0 P, ( 9; 

=(P, 1 Y+P,,wT/;(D)oP,( F; 

= X, 0 6,(v, D). 

The next step is to transport this structure from T to 9’;. Let q: 9>+ $; be 
the inverse of the bijective map m I $> : F; + 5 (cf. (81)) and define 
5 = pjo q, where pi is the canonical projection Y + Y”‘. Then [ is a linear 
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isomorphism from T onto c. For v E a& and DE U(m,,)KF we define 
x,, bj(v, D) E End(V;) by 

X,=~-‘.Z”~~, 

bj(V, D)=<-‘o~~(v, D)o{. 

Let 1, denote the element 10 18 1 E Y. Then 1, is a cyclic vector for 
the U(g)-module YV (v E a,*,). Let py: U(g) + Y, u I+ a,(u)l, be the 
corresponding epimorphism, and define 

Jv(Dv 0) = P,(DX,(u) - X,(bj(v, D)u)), 

for v E a&, D E U(m,,)“$ u E 5. Then 

9v(D, u)= ~v(D)Ctl~~v(v)I -~oXv(bj(Vy D)‘-J) 
which is easily seen to have canonical image zero in Yj. Hence 
J,(D, u) E iii Y and it follows that 

YAD, 0) := m(J,(D, 0)) 

belongs to ii$. U(ii,)E. Moreover, using that py 0 m = I on Y we see that 

Dxv(u) - xv(bj(V, D)u) - ~v(Dv ‘J) (83) 

belongs to ker py. One readily checks that ker py = J,. 1 

Let a be a real abelian Lie algebra, and suppose that X is a complex 
vector space in which U(a) has a locally finite representation n, i.e., 
dim rr(U(a))x < cc for all x E X If 1 E a,* then we shall write X(X, A) for the 
associated generalized a-weight space. Let A(n) denote the set of a-weights 
of II, i.e., the set of ;1 E a: such that X( a, A) # 0. Then of course 

We say that a weight Aen has finite order if there exists a positive 
integer m such that for all HER we have that (x(H) - A(H))m vanishes on 
X(X, A). The smallest m having this property is said to be the order of 1 in 
n, notation o(a, A). If Iz E A(n) is not of finite order we define ~$11, A) = co, 
and if AEa,*\A(rc) we set o(rr, A)=O. 

PROPOSITION 11.8. Let j3 1. Then Proposition 11.7 hola3 with the addi- 
tional properties 

(1) A(bj(v9 -1 I ad c 4ai I aF) u (0); 
(2) ifl~A(b~(v, .) ( aF) then o(bJv, .), I)<max{o(lc$ A), l}. 
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Proof. We use the notations of the proof of Proposition 11.7. By (83) 
it &ices to prove the assertions with Sj instead of b,. Write 
Y~=im(P,)@~,, where c,,=+TnkerP,. If D~lJ(rn,~)~~, then 6,(v,D) 
acts by zero on q,“. Moreover, n{(D) leaves im(P,) invariant, and by (82), 
6.i(v, D) - n<(D) acts by zero on im( P,). From this all assertions follow. [ 

Our next goal is to investigate the weights of rri, 

LEMMA 11.9. There exists a positive integer m such that for every v E a& 
and every 1 E A(x~ I aF) we have o(n!,, A) <m. 

Proof Let E’ be the image of C Q E@ C in d%r. According to 
Lemma 11.2 there exists a finite subset 9 c R, and a finite dimensional sub- 
space E” c?/’ such that E’c +Y’(v, 9) c E”. One readily verities that 
ni( U(m,,)) E’ = @Y’ for every v E a&. Hence 

for every v E a&. (84) 

Since aF is centralized by M,F, nk(aF) leaves the space X(v, 9) invariant 
and by (84) it suffices to majorize the orders of the weights of x:, ( aF. 
restricted to X(v, 9). Thus the result is valid with m = dim E”. 1 

PROPOSITION 11.10. [f k 2 1 then the weights of X: 1 aF. are all of the 
form (WV-~,,) ) aF- <, where w E W,, and where 5 can be written as a sum 
5 = a, + . . . + a, (0 <I < k) of roots a, E Z(n,, a,). 

Let d be a subset of a& such that Red is bounded. Then for every 
5 E Nz:(n,, a,) there exists a d, 2 1 such that for every k 2 1, w E W, one 
has 

Proof: The assertion about the set of weights is proved in [6, 
Lemma 1.21. To get a bound on the order we shall inspect the argument 
given there. First we need some notations. 

The adjoint representation induces a finite dimensional representation pk 
of M,, in .& :=iii”, U(tiF)/iik,+‘U(iiF) (k>, 1). The set Ak = A(,u~ ) aF) of 
a.-weights of this module equals 

Ak= {al + ... +a,; aiE -C(n,, a,)}. 

Consider the natural exact sequences of U(ii,)-modules 
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as defined in [6]. They induce exact sequences of (m,,, K,)-modules 

Since aFccentre(mlF), these are alSO exact SeqUeIIaS Of lOCdy finite 

a,-modules. Thus for any A E a:, we have 

ok(A) < 0: + ‘(A) < o!(A) + o(,& @ ni 1 aF, A); ” 

here we have written ot(A)=o(nt 1 aF, A). 
The action of aF on A& is semisimple, so in view of Lemma 11.9 it 

follows that o(pk @ zi ( aF, A) ,< m. Hence 

o:(A) <km for all vea,*,, k2 1. (85) 

However, there is a better estimate since the sequence o:(A) becomes 
stationary. Indeed let d be a subset of a& such that Re d is bounded, fix 
WE If’,, t E Nz(tt., a,), and write 1, = (WV - pO) 1 aF- t. Then there exists 
a bounded subset d’ of a: such that for all VE d one has 
Re 1, + (-A(ai 1 aF)) c &‘. Now fix k, such that k > k, S- a” n Ak = 0. 
Then 

Hence ,:(A”)= oF(Ay) for k> k,,, and combining this with (85) we con- 
clude that ot(A,) < mk, for all v E &, k 3 1. Notice that dt+, = mk, only 
depends on d, W, and c. This proves the result with d, = max,,, WO d,,,. 1 

In the rest of this section we shall investigate the structure of the family 
$, of Harish-Chandra (ml,, &)-modules in 9’ in more detail. 

Let T, be the representation of D(MiF/KF) in F’cD(M~~/K~) defined 
above Lemma 2.4 in the case o = 8, Q = P,. (Notice the bar!) In particular 
the set of a,-weights of t, equals 

n(zv 1 aFk(wov-PF) 1 aF. (86) 

The family (T,; v E a&) is polynomial. Hence we may apply the construc- 
tion of a family of Harish-Chandra modules discussed in the first part of 
this section to the pair (Mi,, KF) and the data 52= a&, IV= V, xy= T”. 
Then 2, := Y,” is the (m,,, K,)-module given by 

zv= U(m,F)/U(m,F)fF&)D(MI,/,,, vv- 

Let *ii F=iion mlF, and define 

2 = U( *ii,) @I EF@ I’. 
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Then the linear map $,, : d + Z, induced by xQe@v++xe@v is an 
isomorphism of V( *fit,)-modules. By pull-back under I#J” we obtain a 
representation rrr of (m,,, KF) on 2”. According to Proposition 11.5, 
(7~:; v E a&) is a polynomial family of Harish-Chandra (m , F, K,)-modules 
in 3. 

Consider the linear map fly: U(m,,)@ V+ u(g)/lr(g)t@C defined by 
~,(x@v)=xv@l (h ete we view I/ as a subspace of V(m,,)/U(m,,)f). 

LEMMA 11.11. The map 8. factorizes to a surjecfive homomorphism 
fl,, : Z,. + Yi of (III,,, K,)-modules. 

Proof. From the fact that K, centralizes V viewed as a subspace of 
Vm,.)lUm,.)f,, it follows that B,, is a homomorphism of (m,,, KF)- 
modules. Hence the induced map By: V(m ,F) @ V + Yi is. From the 
decomposition 

WI) = Wm,,)O (fir: U(g) + U(g)f) 

we infer that 8, maps T.J(m,,)/~(m,,)r,@l onto Yt, hence is an 
epimorphism. Using once more that K, centralizes V, we see that 8, maps 
U(m,,)f.@ V onto 0, so it remains to be shown that 

B\.CD 0 v) = A.( 1 Q r,(D)v), (87) 

for DE D(M,,/K,), VE V. By (27) we may express Dv as a fmite sum 

Dv = 1 vi ‘p( A’,), (88) 

with VIE V, Xi~ D(G/K). Here we have written p for pp,. On the other 
hand, vi ‘p(Xi) s vi Xi modulo fiF( U(g)/U(g)f), hence 

[Vi ‘PL(Xi)Q l] = [Vi XjQ 1 1 

= CviO Xv(xi)l 

= CYo(X; : ~I)V,Q 11, (89) 

where the brackets indicate that the images in YL are taken. By definition 
we have 

r,(D)v = c y,,(X; : v)v; (90) 

(use (27) and Lemmas 2.2, 2.3). Combining (88), (89), and (90) we obtain 
[DUO l] = [TJD)v@ 1], hence (87). 1 
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LEMMA 11.12. For every v E a&, the map /?” : 2, + Yt is an isomorphism 
of (M ,F, K,)-modules. 

Proof Let u, : .9‘ --) SY’ be the map which makes the following diagram 
commutative: 

Then a, is an epimorphism of U(ii,)-modules, and it suffices to show that 
a, is injective. If (zi; 1 ,< i < m) is a linear basis for the finite dimensional 
complex linear space EF@ V, then (1 @ zi; 1 < i ,< m) is a free basis for the 
free U(ti,)-module 9. Therefore it suffices to show that a, ) C @ EP@ V is 
injective. 

If e E E,, v E V, then $J 1 @e @ v) = [e @ v] (brackets denote canonical 
images in the appropriate quotients). Given q E a,*,, define T,, E Aut(S(a,)) 
by T,(X) = X + q(X) (X E a,). Define *pF E a$ by *pF(X) = 
(l/2) tr(ad(X) 1 n,), (XE ao). Moreover, write yF= yp,, and ‘yp= T.,,,oYJ=. 
Then ev z e ‘yF(u) module iitF U(g) + U(g)f. Hence 

In view of Lemma 11.13 below we have 

Hence 

The injectivity of u,, ( C@ EF@ V now follows by application of 
Lemma 11.13 combined with the observation that E + g”, e H [ 1 @ e @ 1 ] 
is an injective linear map. 1 

LEMMA Il. 13. The linear map EF@ V + S(a,) determined by 
e@ v H e ‘ydv) is a bijection onto E. 

Proof: For v E V we have 

‘yF(v)= T.,,(YF(V))= Tpo(Y~(T~P)). 

Using (26) we see that ‘yF is a bijection from V onto T,,(l?), and it suffices 
to prove that the multiplication map E,@ Tp,(EF) + S(a,) is a bijection 
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onto E. Now this follows from (25) in view of the invariance of E, and E 
under the automorphism T,,. 1 

COROLLARY 11.14. The map D w [D @I 11, V,, + Yk is an injectiue 
morphism of U( m ,F) KF-modules. 

Proof. Use that [D~1]=~,~,,(1@l@D)=cp,a,,(l@1@D). 1 

Let .I, be the left ideal of U(g) generated by U(g)f and D - yO(D : v), 
DE D(G/K). 

COROLLARY 11.15. There exists a bilinear map yv: D(MLF/KF) x V-* 
iit,U(ii, CB ao) depending polynomially on v E a&, such that 

Du-r,(D)u-y,(D, u)EJ,,, (91) 

for all DE D(MIF/KF), u E V, and v E a&. 

Proof. Recall the definitions of m : +Y + U(g), 1 br and p, : U(g) -+ y 
from the proof of Proposition 11.7. Then p,. is zero on U(g)f. hence it 
makes sense to define 

j,(D, u) = pv(Du - ~,tD)u). 

The canonical image in +Y‘ equals 

CF,(R v)l = nt(Do - ~,(D)~lC1,1 

=~P:(C(DU-L(D)O~ 11) 

=cphWD@u- l@~,(D)ul) 
= 0. 

Hence jr,(f), u) E fi,B, and it follows that 

y,(D, 0) := m(.F,(D, 0)) 

belongs to fi, U(ii,)E. The assertion (91) now follows as in the proof of 
Proposition 11.7. 1 

12. ASYMFTOTICS OF EIGENFUNCTIONS 

In this section we will analyze the asymptotic behaviour of joint eigen- 
functions for D(G/H), using the methods of [33, $61. 

Let I( . (1 : G + [ 1, oz [ be the distance function defined in [6, p. 6431 (see 
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also [S, p. 112)). (Notice that in these papers a, is denoted by a.) As in 
[6] we define 

Ilfll, = sup IIXII --I If(x 
XE G 

for r E R and any function S: G + C. The Banach space of continuous func- 
tions f: G + C satisfying Ilfll, < cc is denoted by C,(G). It is invariant 
under both the left regular representation L and the right regular represen- 
tation R (cf. [S, (2.4-5)]). The Banach space of P-vectors for L in C,(G) 
is denoted by C:(G) and the Frechet space of C’“-vectors is denoted by 
C:(G). The norm on C;(G) is denoted by [(.1(4,r. In [6, p. 6431 it is 
observed that the estimates (2.2-7) of [5] are valid. 

The above function spaces are of importance for analysis on G/H for 
reasons to be explained shortly. Let 11. (Id be the distance function 
G+ [l, co[ defined by [lxlli= Ilxa(x)-‘11. Then (( .llb is right H-invariant 
and left K-invariant (use [S, Lemma 2.11). Moreover, since /la’// = lla112 for 
aE A,, we deduce that 

IlkaM, = lbll (kEK,aEA,,hEH). (92) 

LEMMA 12.1. For every x E G we have 

ll-dl 2 llxll,. 

Proof Since 11. I( and II . II6 are left K-invariant, we may factor out 
K n centre(G) and reduce to the case that G N G, x exp a,, where G, is 
connected and semisimple and where 

a,= {XEa,; a(X)=0 for all aEZ(g, a,)} 

is contained in the centre of G. Let XE a,,. Then we may write 
X=X,, + X,,, where Xg~ aoL-n q and X,,E a,,n h. Since X, and X, are 
orthogonal, we have that IX,,1 < 1x1. But for every x E G one has that 

[lx exp X1( = (Jx(J elX’ and 11x exp XII d = llxll D e’*q’. 

Hence it sullices to prove the assertion for the case that G is connected and 
semisimple. 

In view of the decomposition G = KA, H and the left K-invariance of 
both distance functions we may assume that x = ah (atz A,, h E H) and 
then we must show that 

Wll 2 lbll, 

by (92). Now use [S, Lemma 14.43. 1 
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COROLLARY 12.2. Let r > 0. Then for every f E C(G/H) we have that 

Ilf llr=sup bll,’ If(x I[ E G 

Proof. In view of Lemma 12.1 we have that 

Ilf llr G SUP IIXII ,’ If( 
I E G 

for every f E C(G). If in addition f is right H-invariant, then for x = kah 
with kEK, aEA,, and hEH we have 

Ilxll;’ If( = IIW + If(ka)I G Il.fll, 

and the asserted equality follows. a 

From Lemma 4.5, Proposition 10.3, and the above corollary we see that 
the components of Eisenstein integrals are D(G/H)-finite functions in 
CT(G), for suitable r. 

Let v E b,*. Then we denote the space of functions f E ?(G/H) satisfying 
the system of differential equations 

Df=y(D:v)f (DE WGIW) 

by 8,” (G/H). If r E R, then the space 

J’~JG/H) = bp(G/H) n C,“(G) 

is a closed subspace of C,“(G), hence a Frechet space. 
The following lemma will be useful at a later stage. 

LEMMA 12.3. Let f E b,“(G/H) be left K-finite. Then there exists a r > 0 
such that f e 8Fr(G/H). 

Proof. We use the techniques of [ 10,2]. Define the p-spherical function 
F: G/H + E as in [2, p. 248, Proof of Theorem 7.33. Then F behaves 
finitely under the action of centre U(g). Moreover, f = q 0 F for some 
q E E*. For every PE 4”,(A,) let 5Zp denote the (finite) set of P-leading 
exponents of F as defined in [23. Moreover fix tp E a,* such that 

Then according to [2, Theorem 6.11, thee exist constants C > 0, m E N 
such that for each P E pc(A,) we have 

IIF(a)ll < Ca5’( 1 + (log al)” (aEA:(P)). 
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Let UE tT(g). Then using [2, Lemma 7.61 we infer that the same estimate 
(with C, m depending on u) holds for L,F. 

There exists a constant r > 0 such that for each PE pO(A,) and all m E N 
the function a I+ [lull -‘&( 1 + Jlog al)” is bounded on A:(P). It follows 
that for every UE U(g) there exists a constant C> 0 such that 
JIL,F(a)(l < C llc~lj’ for all a E A,. Using the decomposition G = KA,H and 
the fact that F is left K-spherical we finally conclude that for every UE U(g) 
we have an estimate 

IILFb)ll <C, Ilxll:, (x E G), 

with C, > 0 a constant depending on u. In view of Corollary 12.2 this 
implies that f e C,“(G). 1 

Let A E b,*, be fixed from now on, and let 1 denote a variable in a,*,. Let 
Q E Y0 be fixed (cf. Section 1 ), and write 

a& = {XE aQq; a(X)>0 for all adz}. 

We shall investigate the asymptotic behaviour of a function 
fE& 7, ,,,WfO along a& 

Without loss of generality we may assume that Z(Q) is compatible with 
C+. We recall the duality of Section 2 and select a system ,?Yt+ of positive 
roots for Zi = Z(gd, at) = C(b). Let A,d denote the set of simple roots in 
L.5 {+. Denoting parabolic subalgebras with German capitals we have that 
Cr, n gd= ‘p”, for the finite subset Fc At of roots c1 with a ( apq = 0 (cf. also 
[4, Sect. 21). Let G“ be any connected real reductive group of Harish- 
Chandra’s class with Lie algebra g’, let Kd be the analytic subgroup with 
Lie algebra f’, and let PC be the normalizer of ‘$3; in Gd. Put 

xQ(A, A)= (0)” tv 1 aQq; VE W(b)(A+A)-po+ C-N.UQ)lI, 

and fix k> 1. Then applying Propositions 11.7, 11.8, and 11.10 to gd, K”, 
P$ and the parameter v = A + 1 E 6: = a,d, we infer the existence of a finite 
dimensional linear subspace “v;, c V(fig@ mG) = V(ri, 0 m,o), containing 
1, and such that the following holds. 

PROPOSITION 12.4. There exist 

( 1) an endomorphism x1 E End( Vk), depending polynomially on ,I E a$, 
and such that x~( 1) = 1 for all 1 E a$; 

(2) an algebra homomorphism b,(l, .) from U(m,,)h!J into End(Vk), 
depending polynomially on 1 E a,*, ; and 
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(3) a bilinear map y,: U(m,Q)hQ x 9,; 4 ?itk,U(fi) U(m,), depending 
polynomially on A E a,=, 

such that for all A E a;, D E U(m,e)hQ, and v E V,Y,Y we have 

Dx,(u) z x,(b,(l, D)u) + y,(D, v) mod J,, + ;. 3 

where J,, + I denotes the left ideal in U(g) generated by b and 

{D-~(D:A+A);DEU(~)~]. 

Moreover, 

and there exists a locally bounded function d : [0, rx, [ -+ N such that for all 
1~ a& [gA(b,(A, .) ) a+,) we have 

o(bdL .), t),<d(lRe 4 + IRe 41). 

Define the function BP: ao,, -+ R by 

PQ(X)=min{a(X);aE~(Q)}, 

and fix r E R. Then the following lemma is proved in the same fashion as 
Lemma 6.2 in [S]. 

LEMMA 12.5. Let k E N, and put 

Y(X) = I4 c2 WI- kBQ(W, (93) 

for XE apq, where c2 is the constant of [S, Lemma 2.l(iv)]. 
For each y E iii U(R, + m,o) there exist constants q E N, r’ > r, and C > 0 

such that for all X E a& we have 

for f E C;(G). 

IIR exp x &f II ,, d C Ilf II q,r eycxJ 

We now have the following version of [S, Proposition 6.11, but along 
a,,. Fix L,Ea&, XQEa&;,, and r E R. If A i and A1 are Banach spaces, we 
write B(A , , A 2) for the space of bounded linear maps from A I into A 2. 

PROPOSITION 12.6. There exist, for each NE R 

(a) open neighbourhoodr s2 of A0 in a: and U of X0 in a& ; 
(b) constants k, qEN, r’> r, and C, E >O; 

580:109:?- I? 
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(c) a continuous map Y: Q x (I + B(C:(G), Y,* @ C,.(G)), holo- 
morphic in its first variable; and 

(d) an element q E V,** 

such that 

(i) ‘P(A, X) intertwines the left actions of G on C:(G) and C,.(G), for 
all (A, X) E 52 x U, and 

(ii) for every 1 E a$ and every f E &;I”+ *(G/H) n C:(G) we have that 

for all XE U and t 2 0. 

Remark 12.7. It should be noted that the formulation of Proposi- 
tion 6.1 in [5] is not entirely correct. It becomes correct if one replaces 
$Y/fik?Y by its dual in (c) and (d), and r:(tH) by its adjoint in (ii). The 
erroneous formulation has no consequences for the applications in the 
paper because the eigenvalues of Tf;(tH) are the same as those of its adjoint 
(counting multiplicities). A similar error has been made in the formulation 
of Proposition 1.3 in [6], but again this has no consequences for the other 
results in the paper. 

Proof of Proposition 12.6. Fix NE R, and select ke N such that 
7(X,) < N; here y is given by (93). Let S(n) denote the set of weights of 
the representation ?: = b,(i, .) ( apq of aps in *y^. Then S(n) c x,(/l, A). 
Following [5] we split the set S(1) into two parts. Fix E >O such that 
7(X,) + E < N and such that for <E S(&) we have 

Re 5(X0) $ CN - 2~ NC. 

Next fix a relatively compact connected open neighbourhood II of X, in 
ai, such that 

y(X)+c-=N 

and 

Re r(X)+ [N-2&, N- $1 (94) 

for XE U and 5 E S(&,). Finally fix a connected bounded open neigh- 
bourhood Q of 1 in ai’ such that (94) holds for I E Q, r E S(n), and XE U. 
Then for 1 E Q, the set S(1) is a disjoint union of the subsets S,(n) defined 
by 

res+(n)- Re&X)>N-is, VXEU, 

(ES-(L)- Re r(X) < N- 2.s, VXE U. 
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Still following [5] we let V,(n) denote the sums of the corresponding 
generalized weight spaces for r:, and E,(J) the projection onto V,(i) 
along I/+ (I) (in [S] the analogous projection operators are denoted by 
Q +(A)). Then E, (,I) depend holomorphically on I (use [ 5, Proposi- 
tion 5.83 or Lemma 20.1 of the present paper). If necessary we shrink Sz 
such that the operator norms of E+(J) are uniformly bounded for 1 E n. 

From Lemma 12.5 we now infer that there exist numbers qE N and 
r’ 2 r, and constants C, c > 0 such that 

IIR ,,,,xRb,W)fll,~~ C I4 Ilflly,re“‘. (95 1 

IIR exp rX R ~0’~ o))fll r, Q C I4 llfll y.r ey’x”3 (96) 

for all 1 E a,*,, XE U, t > 0, and u E “I;. The first of the above inequalities 
follows from Lemma 12.5 with k=O, since 3; is a subset of U(ti,) V(m,,). 

We now define bounded linear maps FJX, t) and G,(X, 1) from Cg( G) 
into C,.(G)@ V,* by 

(FAX, t)f, u> = Rexprx R(x,(u)).L 
(G,(X t)d 0) =Rcxp,,yR(.v;.(X u))f. 

The main difference with [S] is that we have not introduced a basis, and 
that F depends on the parameter 1. The operator norms of F and G satisfy 
the following estimates, analogous to (6.5-6) in [S]: 

and 

IIF;.(X t)ll G Ce” 

IlG,(X, r)ll G CeY’X” 

for all 1~52, XE U, and r>O. 
As in [53 the reason for these definitions is that if f~ 82, ,(G/H) then 

by Proposition 12.4 we have that 

R,Nx,(u)V-= Nx,(b,(W)L~))f+ R(Y,K u))J 

for 13Ea,*,, XEapsr and !I E Vk. Now put 

B( 1, A’) = bk(A, A’)*. 

(In [S] the matrix B(1, If) should have been defined as the transpose of 
the matrix of r:(H), in order that (6.7) be valid.) 

We obtain the C,.(G)-valued differential equation 

f FAX t)f= C&J, X) FAX t) + G,(X t)lf 
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for every 1 E a,*,, f~ ST+ ,(G/H) n C;(G), and all XE aps, r E R. The proof 
is now completed in the same manner as the proof of Proposition 6.1 in 
[S]. Here the map Y is given by 

Y(u(n, X) = E+(l) F,(X, 0) + fom E+(1) e-‘B’“-X’GI(X, s) ds, 

for 1 E a: and XE U. Moreover, q is the image of 1 E Vk under the canoni- 
cal isomorphism Yk = *l/t*. 1 

Let 

8” Xl+&* (G/H) = u ~~+ ,,,UW). rcR 
Then we have the following generalization of [S, Theorem 3.53 (see also 
[6, Theorem 1.51). If V is a finite dimensional real vector space, and m E N, 
then we denote by P,( V) the space of polynomial functions V-, C of 
degree at most m. Let d: [0, cc [ + N be the locally bounded function of 
Proposition 12.4. 

THEOREM 12.8. Let ,l~aE. 

(i) Let f~~~+JG/H), x E G. Then there exist unique polynomials 
P&Q If, x) on a es of degree ut most d(IReII+IRecI), for ~~X~(/i,l), 
such that 

f(x exp tx) w c pn.&Q I f, x, tW et’(*) (t+cQ) (97) 
CCXQ(A.~) 

at every X0 E a&. 
(ii) LetrER, ~EX~(A,A), undput d=d(jReAI+IRe<1). Then there 

exists r’ E R such that f w P~,~(Q ( f) is a continuous linear map from 
~~+JG/W into WWWAaQ,)9 q e uivariant for the left regular actions 
ofGon&’ T+,,(G/H) and G’(G). 

Proof: By the same arguments as in [S, p. 1291, it follows from 
Proposition 12.6 that for each 5 E X&A, A) there exists a unique continuous 
function p&Q I J x) on a&, which is radially polynomial of degree <d, 
such that (97) holds, at every X,,E a&,. Let rE R and 5 E X&A, A). Then 
given X0 E a& there exists a relatively compact open neighbourhood U of 
X0 in a& such that 

(SI W- pi,c(Q I 5 -9 W (98) 

is a continuous map from 82, j.., x U into C?(G), which is linear in its first 
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variable, and equivariant for the left regular actions. It remains to be 
shown that (98) is polynomial of degree <d in its second variable X. Via 
restriction we identify Pdaeg) with a finite dimensional hence closed sub- 
space of the Frechet space C(U). Then by equivariance it suffices to show 
that the function 

belongs to P,(ao,), for every fe 8T+A.I (G/H). By density and continuity it 
suffkes to prove this for left K-finite ~E&F+,,(G/H). But for such f it 
follows from the (converging) asymptotic expansions in [2] and by 
uniqueness of asymptotics that each function p,,(Q ) f, e, .) is a polyno- 
mial, hence q(f) E P(apq). From the already established fact that 
t H q(f)( tX) is polynomial of degree <d for every XE U it finally follows 
that q(f) E CAaQ,). I 

We also have a generalization of [S, Theorem 3.61, for holomorphic 
families of eigenfunctions. 

Following [S] we say that a map rp from an open subset s2 of C” into 
C,“(G) is holomorphic if for each q E N it maps 52 holomorphically into the 
Banach space CT(G). Equivalently, this means that for every u E U(g) the 
map L, 0 cp maps s2 holomorphically into C,(G). 

Let n,, be an open subset of a&. If f is a function s2, x G/H + C, then 
given A. E 52, we shall write fi for the function G/H + C, .Y H f(A, x). We 
define 

to be the space of P-functions f: 52, x G/H + C such that 

(1) for every I E a, the function fi belongs to 8’2, ,,.(G/H), and 
(2) for every &E&J,, there exists a constant PER such that AH f;. 

maps a neighbourhood of I,, holomorphically into C,“(G). 

We now have the following generalization of [S, Theorem 3.61. 

THEOREM 12.9. Ler f c &,.(G/H, A, O,), and fix &,EQ, and g,,~ 
X,(A, A). Let Z(A) be the union of the set (0) A { <,} with the set of 

w(n+n) I aps-Pe-p (we W(b), PEN-UQ)) 

such that 
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Then there exists an open neighbourhood Sz c a,, of lo and a constant r’ E R 
such that the map 

is continuous from Sz x agq into C,?(G), and in addition holomorphic in A. 

Proof: The proof is essentially the same as the proof of Theorem 3.6 in 
[S] at. the bottom of p. 129. 1 

13. PROPERTIES OF THE COEFFICIENTS 

The purpose of this section is to investigate properties of the coefficients 
p&Q I f) in the asymptotic expansion (97). Here QEP~. We will show 
that the coefficients satisfy certain differential equations. When Q E PO(A,) 
these will allow us to limit the set of exponents. 

We start with some simple transformation properties. 

LEMMA 13.1. Let IEU,*,, ~E&‘T+~,.(G/H), and ~EX~(A, 1). Then 

PA&Q I f, xma, Jf) = P&Q I f, x3 X+ log a) a’ 

for allxEG, mEM,enH, andaEAo,. 

Proof: The proof is essentially the same as the proof of [S, Lem- 
ma 8.51. 1 

Next we will show that the coefficients are related by recurrence rela- 
tions. Recall from Section 2 the definition of the algebra homomorphism 
&: D(G/H)+ D(Mle/HIQ). It is well known that ,ub= ‘,u~. Let 
DE D(G/H), and let u be an element of U(g)n whose canonical image in 
D(G/H) equals D. Then there exists a w E ii, U(ii, + mla) such that 

u-&(D)Ew+ Wdt). 

The element w can be written as a finite sum w =xi wi, with 
wit ~Y(&+rn,~) such that ad(app) acts on wi by a non-zero weight -pi, 
with pi E NZ(Q). 

~oPosITIoN 13.2. L.et DE D(G/H), and u, wi as above. Then 
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for all fEd~+I,. (G/H), 5 E X&A, A), and XE aQ,,, Here we have adopted 
the convention that pi,V = 0 if q # X,(A, A). 

Proof. Proceed as in the proof of [6, Proposition 2.11. 1 

We define the partial order 4 o on a&, by 

rl,~~wvz-~,~WQ)~ 

Let f E8,T+A,. (G/H). Then an element q E X&A, i) will be called an 
exponent of f along Q if pl,,(Q 1 f, . ) is not identically zero. The set of 
exponents of f along Q is denoted by S(Q ) f ). The <e-minimal elements 
of &(Q ( f) are called the leading exponents of f along Q; the set of these 
leading exponents is denoted by cS~(Q ( f ). The following is now obvious. 

COROLLARY 13.3. Let AE~,*,, and f E8P;I+I,*(G/H). If 5 is a leading 
exponent off along Q, then the function cp E Cx(M,p) defined 6~ 

v(m) = pi,<(Q I f, m, 0) 

is right H,e-invariant and satisfies the system ?f differential equations 

PpbP = w : A + l)cp (DE D(GIW). 

Our next objective is to solve the above system when Q is a minimal 
c&stable parabolic subgroup, for generic values of 1. Thus from now on we 
assume that QE~~(A~). Then M,,= M,, and 

is a Weyl chamber in aq for the root system C = Z(g, a,). The set Z(Q) is 
the associated system of positive roots for Z. Fix a system ,Z’& of positive 
roots for Z, = Z(m,, b), and let pM be half the sum of the positive roots, 
counting multiplicities. Recall the definition of the set L c ib,* above 
Proposition 4.7. This set being a lattice, we may fix a basis &? for the real 
linear space ib,* such that (p, 8) E Z for all p E L, fi E W. 

Let AEiblf. Then for every p=(w,fi)~W(b)xB and p~L+p~ we 
deline 

HP,, := (1 E aP*e; (A, ~1~~ ‘B>=<P+PQ-~mw. 

If p belongs to the set ZZ of pairs (w, /I) E W(b) x 9 such that w-‘fl ( a,, # 0, 
then &$, is a hyperplane in a&. Let X’i denote the (locally finite) union 
of the hyperplanes XpVr, p~I7, p~L+p~. 

If a E Z(b) and a 1 a, # 0, define the hyperplane 
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in a&. Let 2’; be the finite union of these hyperplanes, and let a$’ denote 
the set of regular points in a$. Then 

(99) 
is the complement of a locally finite union of hyperplanes. 

LEMMA 13.4. Let 1 E a,*,‘(A), p E L + phi, and w E W(b). 

(1) Zfw(A+A)-pp--~a$ then w normalizes a9. 
(2) Zf w centralizes A + 1 then w centralizes a,. 

Proof: The hypothesis of (1) implies that il E J&,,, for all BE 9. In 
view of the condition on 1 this can only be true if w-‘B 1 ap = 0 for every 
BE 99, or equivalently if w normalizes bk. Hence w normalizes b,‘s Killing 
orthocomplement a4 n g, in g, = [g, g]. It follows that w normalizes a,,. 

Now assume that w E W(b) centralizes A + 1. Then w is a product of 
reflections s,, with (a, A + A) =O. Since 13 $ %s the latter condition 
implies that CI 1 ap = 0, hence each reflection s, centralizes a,. 1 

PROPOSITION 13.5. Let A E bz=, A E a,*p’ (A). Then for every solution 
rp E Caj(M1/HM,) of the system of dlyferential equations 

there exist unique functions cp,, E Cm(h4/Hm), w E W = W(g, a,,), such that 

cp(m exp X) = 2 p,(m) e(w’-pQ’(x), 
wsw 

(101) 

for m E M, XE a,,. Moreover, if w E W and s E W(g, j) is as in Lemma 4.6, 
then 

DP, = Y&D : sA)cpw (DE WMIH,)). (102) 

Proof: Let b(M,, A) denote the space of functions rpe Cm(MI/HM,) 
satisfying the system (100). The map M x ap + M,, (m, X) I+ m exp X 
induces a diffeomorphism t : M/HM x a,, + M,/HM,. By pull-back under t 
we identify P(M,/H,,) with C”(M/H,x a,,), and D(M,/H,,) with 
D(M/H,)@S(a,). Since D(M,/H,,) is a finite &(D(G/H))-module, 
every cp E 6(M,, A) behaves finitely under the action of D(M/H,), and in 
view of Lemma 4.8 it suffices to consider the case that cp is an eigenfunction 
for D(M/H&. Let yM(. : A,) he the associated eigenvalue (A, EL + pM). 
We define the map C,, : S(b) + S(a,) by C,,(X@ Y) = X(A, - pw) Y, for 
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XES(~~), YcS(a,). Then the action of DED(M,/H,,) on cp is described 
by 

C&J I a,=Cn,C~IM,(~)l(v I a,). (103) 

Here yk, = T,* 0 yM,, and we have identified a, with the subspace {e} x a, 
of M/H,x a,,. Let p, =pM+pe (this is a rho for Z(b)), and define 
7’ = T,, : y. Then y’ = yh, 0 &. Hence applying (103) to the system (100) we 
infer that cp 1 a,, satisfies the system 

C.,,C~‘l~)l(cp I a,) = Y(D : A + 1) v I a, (DE WGIW). 

Now define $ : b = bk @ a,, -+ C by tj(X+ Y) = ecnoP PM’(VJ& Y). Then it 
follows that 

[epPLOUoe “‘]11/=24(A+A)+ (u E S(b)w’b’). 

Using [20, Chap. III] we now infer that we have a unique expression 

(104) 

where W, denotes the centralizer of A + A in W(b), and where each q,, is 
a WC-harmonic polynomial on b. By Lemma 13.4(2), the group W, is con- 
tained in the centralizer of a9 in W(b) which in turn may be identified with 
Wm,, b). 

In view of the definition of 1(1 we must have that 

u(A+A)--p,-A,Ea,*, (105) 

for every U’E W(b) with qw+ w. # 0. In view of Lemma 13.4(l), the above 
condition (105) implies that w belongs to the normalizer W, of a1 in W(b), 
and also that wA = A,. It follows that 

where each pw is a WC-harmonic polynomial on b. Since W, c W(rtt,=. 6) 
it follows that p,,, is annihilated by differentiations from a, hence belongs 
to S(b,* ). We conclude that for each cp E b( M, , A) we have 

rp 1 aq = 1 c,(p) ewnePQ, (106) 

with c,(cp)~C. Since 1 is a regular element of a,,, the functions en’*, M’E W 
are linearly independent. Therefore we may fix points X, E a,, u E W such 
that the c,.(cp) can be solved uniquely from the equations obtained by 
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evaluating (106) in the points X,, u E W. It follows that each c,. is a con- 
tinuous linear functional of order 0 on b(M,, A). We define continuous 
linear maps C, from b(M,, A) into Coo(M/H,) by C,,(p)(m) = c,,,(L,-,(p). 
Then (101) holds with cpw = C,,,(q) and it is clear that the cp, are uniquely 
determined. Moreover, the maps C, are left M-equivariant by uniqueness. 
Finally Eqs. (102) have been checked along a,, in the course of the proof. 
This is sufficient in view of the equivariance of the C,.. # 

COROLLARY 13.6. Let A E bt=, AE a,*,‘(A). Zf &,“+A,.(G/H) ~0, then 
A E s6 + pM for some s E W(b), normalizing a,, . 

Proof Let the above hypotheses be fulfilled. If f E &‘~+I,.(G/H) is non- 
trivial, then its asymptotic expansion does not vanish identically (use 
reduction to K-finite f as in the proof of Theorem 12.8). Hence there exists 
a leading exponent 5 E gL(Q ( f). Replacing f by a left translate if 
necessary, and using equivariance, we may assume that the function 
cp E C”(M,) defined by v(m) = P,& m, 0) is non-trivial. Moreover, it 
satisfies the system of differential equations of Corollary 13.3. By Proposi- 
tion 13.5 there exists a w E W such that the system (102) has a non-trivial 
solution. In view of Lemma 4.8 this implies that s/l E W(m,, b)(L + pM) = 
L+p,. Hence AEs-‘(L+p,)=s-‘L+p,. 1 

For holomorphic families of eigenfunctions we can obtain a severe 
restriction on the exponents along the parabolic subgroup Q E pO(A,). 

If A E a,*, we define 

THEDREM 13.7. Let A E b&, l2, an open subset of a$, and assume that 
f E &(G/H, A, a,). Then for every I E Sz,, n a: we have that 

fA(x exp tx) m C PJQ I fA, x3 tJ3 e’c;(X’ (t+co) (107) 
CEWQ.A) 

for XEG, XEU:(Q). Moreover, if&~52,,, t,,~x(Q, &), put 

S(A)= {WA-~,--; WE W,~ENNC(Q) with WA,-pp-p=&,}. 

Then there exists an open neighbourhood Sz of & in B0 and a constant r’ E R, 
such that the map 

(A WI-+ c PU(Q I fi, .) X) eCcx) 
eEz(A) 

is continuous from D x a, into C?(G) and in addition hoiomorphic in A. 
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Proof. In view of Theorems 12.8 and 12.9 it suffices to show that 

at2 I fi., = WC27 i) for every 1 E Q,. (108) 

We first assume that S& c a,*,l(A ). Let i, E 0, be fixed, and let 5 be a lead- 
ing exponent of fnO along Q. Then from Corollary 13.3 and Proposi- 
tion 13.5 it follows that there exist unique cp,, E Cx(M/H,) for IV E W, such 
that 

ph,JQ ( fro, m exp X, 0) = 1 q,.(m) ecw”-p~‘rXJ 
WE u. 

for m E M and XE aq. On the other hand, from Lemma 13.1 we infer that 

P&JQ I fA,, m exp X 0) = P&Q I fb, w X) Py’. 

It follows that r E WA0 -p. for every leading exponent of fA,, whence 
(108). 

For a general open set IR,,, fix &~52, and assume that cOe X,(4 A,), 
but to # X(Q, A,). Let Z(A) and a be as in Theorem 12.9. Notice that 
E(&) = { &,}, hence =(A,,) n X(Q, A,) = 0. Shrinking B if necessary we 
may assume that 

E(l) n X(Q, A) = Qr for every A E a. (109) 

If x E G, XE a,, then the function 

is holomorphic in the open neighbourhood a of A,. By the first part of the 
proof it follows that I,$ = 0 on the open dense subset a n a,:‘(A) of 8. 
Hence + vanishes identically on 52. In particular we have that 

~~,.,,(QIf,,x.X)=~(1,)=0, 

and we infer that to $ &(Q 1 f&). This implies (108). 1 

Remark 13.8. Combining Theorem 13.7 with Corollary 13.6 we see that 
&JG/H, A, 51,) #O implies that A ESL + pM for some SE W(b), nor- 
malizing a,. 

We will conclude this section by showing that for generic i, the polyno- 
mial functions XI-* pA,JQ ( fA, *, X) are constant. 

Recall that a” =2(a, a)-‘a for aEL’, and let 



400 E.P.VANDENBAN 

LEMMA 13.9. The set ‘a,*, is the complement of a 1ocallyJnite union of 
hyperplanes. Moreover if R E ‘a,*, , and&-t;lEZCfors,tEW, thens=t. 

Proof The first assertion is obvious. As for the second, write 

d’=(A~ajl*,; Vcr~C+:(13,a”)~!-N}. 

Then v’a,*, c sY, for every VE W. If ,u E &‘, then it follows from [22, 
Appendix II, Proposition 2(2)] that wp -p E NZ+ implies w = 1, for 
WE W. Now let IIE ‘a$, and suppose that s2 - tA E ZZ. Then there exists a 
v E W such that vt ~~ ‘.rA - VA E NE’+. But VA Ed’, hence vt --i.sv -’ = 1, and it 
follows that s = t. 1 

THEOREM 13.10. Under the assumptions of Theorem 13.7, let SE W, 
v E NL( Q). Then for 1 E ‘a,*, n Q the C”(G)-valued polynomial XI+ 
Pl,&--pa-v (Q 1 fA, ., X) is constant. Its value 

pe,Af: s : A) := p;.sl+,a-v(Q I fi, .) 0) (110) 

is holomorphic as a C”(G)-valued function of 1 E ‘a,*, n Sz and allows a 
meromorphic extension to Sz. If A,, E L2, then there exist an open 
neighbourhood LJO of 1, in Sz and a constant r’ E R such that (110) defines a 
meromorphic Cr?( G)-valued function of A E Sz,. 

Proof Write ‘D =‘a$n52. If ~E’IR, s,, S,E W, and ,u,, ,u2eN.?JQ), 
then from Lemma 13.9 we see that 

s,~-p~-~,=s2~-p,-~(,=>s,=s,,~,=~~. 

Hence from Theorem 13.7 it follows that for each SE W, v E NC(Q) the 
function 

P2,S.V = Pi,sj. - po- v.(Q I fA)v 

depends holomorphically on 1 E ‘Sz. Thus, in order to show that these func- 
tions are of degree zero in their second variable, we may restrict 1 to the 
set 52’ = ‘Sz n a,*,‘(n). This will be understood from now on. We proceed by 
induction on v with respect to the partial ordering $ = <o. 

For 1 E n’, s E W, the exponent s1- pp is a leading exponent. Applying 
Corollary 13.3 we infer that the function rp: M, -+ C, m H pl,s,o(m, 0) 
satisfies the system (100). By Proposition 13.5 we infer that cp allows an 
expression of the form (101). Comparing this with Lemma 13.1 we con- 
clude that all (Pi., MJ #s, in the expression (101) are zero. It also follows 
from the comparison that the polynomials XH pj.,S,o(m, X) are constant. 
By equivariance we have that pl,S,O (xv W = PA,~~-JQ I Ux-‘)fi, e, 9. 
Thus the assertion about zero degree holds for v = 0. 
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Next, let v E NZ(Q), v # 0, and suppose that the assertion has been 
established for p < v (where < stands for the strict ordering). Fix IE I?’ 
and write 5 =sA--pp- v. Then for q > r we have that Ry- q(Y) 
annihilates p,, = p,+J Q ) fA, ., 0) for every YE a,. Hence if ad(a,) acts on 
M’E I/(no+m,) by a non-zero weight -p, ~ENZ(Q), then R,-5( Y) 
annihilates R,, p; + ~. Using Proposition 13.2 and the induction hypothesis 
we now infer that the function I/I: M,/H,, -*C defined by $(m)= p&m) 
satisfies the differential equations 

for DE D(G/H), YE a,. From this we deduce that for every YE a, the 
function cp ,, = [R( Y) - <( Y)] q is of the form (101). On the other hand, in 
view of Lemma 13.1. we have that 

for mEML,aEAq. Since 54 WA-p,, this must imply that (py is zero for 
every YES,. Hence Jl(ma)=a~J/(m) and we conclude that the polynomial 
Xb p,.JQ 1 fl, e, X) is constant. Applying the same equivariance argu- 
ment as before we finally conclude that the function p>.,:(Q 1 fi) is constant 
in its second variable. 

It now remains to prove the statement about the meromorphic continua- 
tion. For this we fix s, v, and & E Sz. Let Z be the set of pairs (t, cl) E W x 
NZ(Q) such that t&,-p = s&, - v. Then by Theorem 13.7 there exists an 
open neighbourhood 52, of I, in Sz and a constant r’ E R such that for every 
XE aq the CT (G)-valued function 

extends holomorphically from g,,n ‘a,*, to a, . For AE ‘a$ the functions 
eSimev’, (s, p)czE are linearly independent. We may therefore fix X,, 1 E Z, 
such that the determinant 

det(e (sj--u)(G); ts, p)Ez, lEy 

does not vanish identically as a function of 2. By Cramer’s rule this implies 
that the functions p&f: s : A) may be solved meromorphically as C;(G)- 
valued functions of ;1 E Q from the system which arises if one substitutes for 
X the values X,, 1 E E, in Eq. (111). 
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14. EXPANSIONS FOR EISENSTEIN INTEGRALS 

In this section we will apply the material of the previous two sections to 
study the asymptotic expansions along minimal o&stable parabolic sub- 
groups for families of spherical functions like the Eisenstein integral. We 
define the notion of principal part of such an expansion, and introduce the 
c-functions. 

Let fz c a,$ be a connected open subset. Given ,4 E b& we define 
&(G/H, r, A, a) to be the space of functions f: $2 x G/H + V which are 
r-spherical in the second variable, and whose components rl of(q E V* ) 
belong to &JG/H, A, a) (see the definition above Theorem 12.9). 
Moreover, let J*(G/H, T, 52) denote the space of functions f: L2 x G/H 4 V 
which may be expressed as finite sums f = C,, E,,L f,, , f,, E G*(G/H, T, A, 8) 
(notice that by Remark 13.8 the range of A is restricted). Then we have the 
following. 

LEMMA 14.1. Let PEY~(A,), $ E “V, RE R, and let ~ZE f7,(a,) be any 
polynomial such that 1 I+ ~(1) E(P : II/ : 1) is regular on a,*(P, R). Then the 
function (A, x) H n(l) E(P : $ : 1: x) belongs to &JG/H, r, a,*(P, R)). 

Proof: In view of Lemma 4.5 and Proposition 4.7 we may restrict our- 
selves to the case that $ is a simultaneous eigenfunction for the pp(D : A), 
DE D(G/H), A E a& 
y(D : ,4 + A)$ for 

Then there exists a A E b& such that e,(D : A)# = 
all D, A. In view of Lemma4.5 this implies that 

n(A)rlo E(P : $ : A) E JA + ,(G/H) for q E V*, 1 E a,*(P, R). Using Proposi- 
tion 10.3 we infer that for every relatively compact open subset 
a c a:(P, R) there exists a r 2 0 such that for every XE U(g) the function 

is uniformly bounded on Sz. On the other hand the function 
(x, A) t--r a(l)q 0 E( P : 9 : 1)(X; x) is smooth and in addition holomorphic 
in 1. By a straightforward application of the Cauchy integral formulas 
for the coefficients of a power series it finally follows that 
1 I+ z(A)? o E(P : # : A) is a meromorphic map from 8 into Cp(G/H). 1 

THEOREM 14.2. Let f E &(G/H, T, a), and assume that Q egO(Ag), 
w E w. Then there exist unique meromorphic “bP,-valued functions 
Pp.w.r(f: ~1 on 52 (PANS, SE W) such that for r3e ‘a$ na, 
m E M,, XE at(Q) we have 

fA(m ew txw) 
- e-‘<PQsX> c c e’<sA-P.x>p 

Q,w,,(f: s : a)(m) (t + al). 

SEW poNZ(Q) 
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Remark 14.3. Since fA is spherical, it follows from [2] that the above 
expansion is actually convergent for t sufficiently large, in view of unique- 
ness of asymptotics. 

Proof of Theorem 14.2. By uniqueness of asymptotics it suffices to 
prove the existence. Moreover, it suffices to prove the result for w = 1 and 
arbitrary Q. For assume this has been achived, and observe that 

f;.(m exp ~XW) = t(ul) fA(\t’p’mw exp t Ad(\r-‘)X). 

Applying the theorem to ,L w -‘Qw, 1 one then obtains the above expan- 
sion with 

PQ,w.,,(f: s : A)(m)= T(w) P,,-law,,,,,- Ir(f‘: C’S : A)(C ‘mw). (112) 

Moreover, one readily checks that the right hand side of (112) belongs to 
5&, as a function of m. 

From now on we restrict ourselves to the case II’ = 1. ,Then without loss 
of generality we may assume that f E &*(G/H, T, A, 9) for some n E bzC. 
Hence Theorem 13.10 applies to every component q c f of ,f: Thus for 
I E ‘a,*, n 5;! we may define smooth functions P,. ,Jf: s : A) : M, -+ V by 

rls Pg.,.Jf: s : 1) = Pp.,(r7”f: 3 : A) I M, 

(where we have used the notation of Theorem 13.10). Then for 1 E ‘a,*, n Q 
we have the above asymptotic expansion. By uniqueness of asymptotics it 
follows that the functions PQ.L,fi(f: s : A) are left t,-spherical and right 
M, n H-invariant, hence belong to “$. Finally, the functions Pe.,,,(f : s) 
are extendable to meromorphic “%,-valued functions by Theorem 13.10. 1 

Let f be as in the above theorem. Then for Q E $(A,), w E W* we call the 
function fe, ,,, : Sz x M, -+ V defined by 

fe.JJ : mu) = 1 u’“P~,~,.~(~: s : A)(m) (mE:M,,aEAq) 
SE w 

the (Q, ul)-principal term of J If we fix Q, then the associated principal 
terms f&, govern in a sense the asymptotic behaviour of f, in view of the 
following lemma. 

LEMMA 14.4. Let Q E PJA,). Then the sets K exp a:(Q) wH, w E W’ are 
mutually disjoint. Moreover, 

G= U Kexpa:(e)wH. 
WEII 

(113) 
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ProoJ: If XE aq, then XE v-%:(Q) for a suitable UE W. Let WE V 
be a representative for v’s canonical image in W/W,,,. Then 
XE K exp a,+(P) wH. Hence A, is contained in the union in (113). Now use 
(3) to see that (113) holds. 

To see that the first assertion holds, suppose that Kexp a:(Q) w, H = 
Kexpa:(Q)w>H, for wi, w,EW. Then w;‘expa:(Q)w,cKw;’ 
exp a,+(Q) w,H, hence Ad(w;‘) a,‘(Q)CAd(uw;‘) al(Q) for some 
VEN KnH(aP) (cf. Section 1). Since W acts simply transttively on PO(A,) it 
follows that w, and wZv-’ have the same image in W. Therefore w, , w2 
represent the same element in W/W,,, hence are equal. m 

If s>O, we define a:(s)= {nga&; (ReI( <E). 

LEMMA 14.5. Let 0 <E < (1/2)min,,, (a/, and suppose that f e 
&(G/H, T, al(s)). Then for every Q EY~(A,,), w E YV rhe principal term 
f&l : m) has removable singularities (hence is holomorphic) on a:(s) as a 
function of 1. Moreover, for all 1 E a:(s), m E M, XE a:(Q) we have that 

lim 
,-cc 

l&(rn exp tX) fA(m exp tXw) - f,,..(A : m exp tX)l = 0. 

Proof: As in the. proof of Theorem 14.2 we may restrict ourselves to the 
case w = 1. For 1 E a:, let Z7(n) be the set of (s, p) E Wx N.Z’(Q) such that 
sl-p(~ WA. Then for A~ag*(s) we have that n(n)= n(O)= Wx (0). In 
view of Theorem 13.7 it follows from the definition of the Pe,,,Jf: s : A) in 
the proof of Theorem 14.2 that fa,JL : mu) has removable singularities as 
a function of ,l E a:(a). Moreover, if q E V* then it follows by holomorphic 
continuation that 

q0f (J.mexprX)=e’Pe’x’ Q,w' . c e’“x’pA,c(Q I vofi, m, rX), (114) 
tE W&-pQ 

both sides being holomorphic in A. Now use (107) applied to q 0 f taking 
into account that every exponent 5 E X(Q, A)\( WA - pQ) satisfies t(X) < 0, 
for lEa:(c). 1 

Remark 14.6. In particular we see that for imaginary L the principal 
term is an appropriate analogue of Harish-Chandra’s notion of the 
constant term (cf. [16, p. 1531). 

If cp : a -+ C is a non-zero holomorphic function, and f: Sz x G/H + V a 
function such that F= cpf E &*(G/H, 5,51) then we define (Q, w)-principal 
terms by 

f@,,(n : m) := q(l)-‘FQ,,(n : m). 
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Let now P, Q E $(A,), w E W. Then in view of Lemma 14.1 the Eisenstein 
integral E(P : $) has a (Q, w)-principal term 

EQJP : + : ma) = 1 u~~cQ,p,~,(s : A : J/)(m) (m E M,, UE Aq). (115) 
SE w 

Here the Co, p,,.( s : A) are uniquely determined Hom( “V, %&.)-valued 
meromorphic functions on a$. We now define meromorphic End(V)- 
valued functions ;1 I+ Co, p(~ : A) (S E IV) by 

C,,,..(s:~):=pr,,.oC,,.(s:I) ( 11’ E -iv”). 

The above functions will becalled c-functions. In the next section we will 
show that their behaviour is analogous to the behaviour of Harish- 
Chandra’s c-functions as defined in [ 17, p. 42). 

15. THE c-FUNCTIONS 

In this section we investigate the c-functions which were introduced in 
the previous section. In Proposition 15.7 we relate them to intertwining 
operators and in Corollary 15.11 we formulate a unitarity result. 

Let P,, P, E YO(A,), 5 E ti.p, and A E a:. From [4, p. 3733 we recall the 
definition of the meromorphic scalar function rl by the identity 

A(P,:P,:(:A)~A(P*:P,:(:;1)=q(P,:P,:<:;i)Z. (116) 

This identity also holds if we replace A by B, cf. [4, Proposition 6.21. 
From [25] we recall that A(Pz : P, : 6 : -A)* = A(P, : P, : e : A). We 

will say that the group G fulfills condition (B) if for all P,, P2 E YO(A4) and 
every r E I@, we have 

B(P2:P, :<: -X)*=B(P, :P,:<:l). (B) 

In [4, Theorem 6.31 it is proved that this condition is fulfilled if every 
Cartan subgroup of G is abelian, and H = G”, the full fixed point group. In 
[7] it is observed that (B) is fulfilled under a weaker but more technical 
condition. It would be interesting to have a simple condition on the pair 
(G, H), necessary and sufficient for (B) to hold. 

By equivariance the intertwining operator induces an endomorphism 
A(P2 : P, : 5 : A), of the finite dimensional linear space Z&, meromorphi- 
tally depending on 1. 

580.‘109’2-I3 
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LEMMA 15.1. Zf G satisfies condition (B), then the endomorphism u(2) = 
A(P, : P, : r : 1)r 8 B(P, : P, : < : -1) of X{,r @ V(r) satisfies 

u( -X)*u(n) = n(P, : P, : < : n) n(P, : PI : [ : -;E)z. 

Proof Use formula (B) and the analogous formula for the transposed 
of A(1) in combination with the identity (116) for A(1) and B( -A). 1 

Recall that q is not identically zero as a function of 1 (cf. [4, Proposi- 
tion 4.8]), and let U(P, : P, : r : A) : ‘Y(r) -+ “U(t) be defined by 

U(P2:P, :t:~M,=w,:p,:5: -~)-‘~A(q:P,:C:--l)~~B(P*:P,:~:L)T, 

for TE#~,~ @ V(r). Then in view of Lemma 4.1, U(P, : PI : r : A)E 
End(“V(r)) depends meromorphically on 1. Moreover, if (B) holds then 
this endomorphism is unitary for imaginary 1, by Lemma 15.1. We define 
the linear map V( P2 : P, : 2) : “V + “V by 

U(P2 : P, : 1) I “g(g) = U(P2 : P, : 5 : Ir), 

for each 5 E 8,. 

LEMMA 15.2. Let P,, P2 ES~“(A~). Then 

E(P, : U(P2 : P, : A)$ : 2) = E(P, : $ : A). (117) 

Proof It suffices to prove this for tj = tiT, with T= f @I q E Xc,F @ 
V(t). From Lemma 4.2 we then infer, suppressing P2 : P, : < in the 
notations, that q( -1) = n(Pz : P, : < : -1) times the left hand side of (117) 
equals 

(At-AM ~P,,&xMP, : tf : h) 

= (A(-2l.L +&x) A(hlP, : 5 :&I) 

= (A(A)*4 -ALL ~,,,c,rW API : 5 : J)rl> 

= q( -A) E(P, : $ : A). (118) 

This implies (I 17). [ 

COROLLARY 15.3. Let PI, P, E gC(A,). Then for all Q E gf(A,), s E W we 
have 

CQIP,(S : A) = COlf*(S : A)0 U(P, : P, : A). (119) 

Moreover, if (B) hoI&, then the map U(P, : P, : 1) is unitary for 
imaginary 1. 
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Proof. This follows from Lemma 15.2 by uniqueness of asymptotics. 1 

Let PE $JA,), and fix w E N,(a,). We recall from [4, Lemma 6.101 that 
the intertwining operator Z,(w) : Cpcc(P: < : A) + CX:(wPw-’ : w[ : 1~1) 
induces a unitary linear map L(t, w) : V(t) + V(w{). Moreover, L(w) maps 
X& unitarily onto Y&.. We define the unitary map 9’(<, M’) : “U(5) -+ 
“W ~5 ) by 

W5? wMT= +(L,w.,@ L(<.W))T 

for TE X& @ V(t). We define the unitary bijection 

U(w): “V + “% 

LEMMA 15.4. Let P E gO(A,), w E N,(a,). Then 

E(P:JI:;1)=E(wPw-‘:Y(w)ll/:w~). (120) 

Proof The proof is similar to the proof of Lemma 15.2. 1 

By uniqueness of asymptotics we now obtain: 

COROLLARY 15.5. Let P, Q E YU(A,), w E N,(a,). Then 

cQ,p(s:;l)=cQ,~,p,~~I(sw-’ :wn)odP(w), 

&for sE W, A.Ea$. 

(121) 

For Q E YC(A,), let the bi-invariant Haar measure &i of No be nor- 
malized as in [25, Sect. 43. Then the positive real number 

c(A,)= jNQe2pQnQ(i)dfi)e’ 
( 

(122) 

is independent of Q ; here H, : G -+ ap is defined by x E N, exp HQ(x) 
M,K (xEG). 

Given PE $(A,) we shall say that a E A, tends to infinity along P, 
notation a P, 00, if a” + co for all u E Z(P). 

LEMMA 15.6. Let I E a:, and assume that (ReI-pQ,u)>O for all 
~EJY(Q).Z~~EC(Q:~:A), gEC(Q:c: -A), then 

li-m 
a4 hrn 

~“~“~(f, Na)g) =cMJ<C4& : Q : 5 : l)f I(e), g(e)>,,y (123) 

the integral defining the intertwining operator being absolutelv convergent. 
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ProoJ Without loss of generality we may assume that E(Q) is com- 
patible with the positive system C,+ (cf. Section 1). Let a$ + denote the 
positive Weyl chamber in a$, and let +a0 be the closed dual cone in a,, 
i.e., +a,= {XEtl,, v(X)aO:VvEa,*+}. Let H,:G+a, be the map 
defined by XE iVO exp H,(x)K (XE G). Then it is a well known result of 
Harish-Chandra that for fi E No we have 

-H,(n) -5 +a0 

(see, e.g., [2O, Chap. IV, Corollary 6.61). Now let the maps K~, ,ue, H,, vQ 

from G into K, exp(m le n p), ap, m, respectively be defined by 

x = vQ(x) exp HQ(x) P&) K~(x) (x E G). (124) 

Then H&x) is the orthogonal projection of N,,(x) onto as c a,. Hence 
pp 0 H, = pp 0 H, (cf. Section 1). 

The assumption on 1 E a$ implies that Re A- pp ~a,“‘. Hence for 
E E NQ we have that 

Ilf(~)ll = e cRe i+PQ*HQ(A)> I/j-(K&))ll < ezpQHo(‘) sup llf(k)ll, 
keK 

and it follows that 

with absolutely convergent integral. 
We now recall that the map fi I+ (Kn MP) ~&ii) is a diffeomorphism 

from R, onto an open dense subset of (Kn MQ)\K and has Jacobian 
c(A ) eZPQH(“) (cf. [ 17, p. 453). Hence by transformation of variables and by 
usilg the decomposition (124) for x = 2, the transformation rules for f, g 
and the unitarity of l we infer that 

a”-“Q(f, R(a)g) =c(A,) INQ u-m da-‘W),, &. (125) 

Now observe that 

1) g(a-‘iiu)l( = e <Rei-pp,Hp(o-‘lo)> 11 g(K&-‘fid)ll s SUP 11 idk)li, 
ksK 

using again that Re A- pe E a 7. By the dominated convergence theorem 
we may take the limit under the integral sign in (125) as a & co, and 
(123) follows. 1 
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PRoms~rro~ 15.7. Let T E S& 63 V( 5 ). Then 

CQ,Q(l :a)IL7=c(Ay)~,A,~:Q:::-Il~,)T. (126) 

Proof. We may assume that T = f &0 ‘I, with f E Xt,F, ‘1 E V( 5). Assume 
that Re 1+ pp is strictly Q-dominant. Then g, = j( Q : 5 : 2)~ belongs to 
C(Q : C; : I), by [4, Proposition 5.61. Let fi E C(Q : 5 : --A) be the function 
defined by fAl K=f: Then from (35) we obtain, for WE%‘“, meM, UEA,. 
that 

E(Q : IL, : aNmaw)( (Rk;nlfi., Na)CR,gJ >. 

Applying Lemma 15.6 and observing that R, gA(e) = pr,,,q we obtain that 

1i.m a ~ 
CI 4 nc 

A-PQE(Q : tiT : A)(maw)(k) 

=(A(Q:Q:<: -l)fi(m-'k-'), pr,,q) 

‘Y(AC~:Q:C: -i)@pdm)@). (127) 

On the other hand, from the asymptotic behaviour of the Eisenstein 
integral (cf. ( 115) and Lemma 14.5) we see that the left hand side of ( 127 ) 
equals 

prw,’ c~lQ(l : a)+T(m)(k). 

This implies the result for Re 1 strictly Q-dominant. Now apply 
meromorphic continuation. i 

Let P,, Pz~go(Aq) and let t~fi,,, the set of (equivalence classes of) 
finite dimensional irreducible unitary representations of A4. Then according 
to [25] we have that 

q(P,:P,:5:A)=q(P,:Pz:{:L). (128) 

Now let C(E Z be a reduced root, and define the closed subgroup G(a) 
of G as in [4, p. 3921. Then G(a) is o- and e-invariant and of Harish- 
Chandra’s class, and a,(a) = (ker a)” is maximal abelian in g(a) n p n q. 
Thus G(a) is of o-split rank 1. Let P(a) c G(a) be the &stable parabolic 
subgroup associated with the root a as in [4, p, 3921. Given 1 E a:, put 
A, = 2 1 a,(a). We define the function qX by 

q,(< : A) = q(G(a) : P(a) : P(a) : < : A.,) (aEa&). 

Notice that (128) implies 

1,(5 : n)=t1-,(5 : A). (129) 

Given a subset S c C we shall write S, for the set of reduced roots in S. 
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LEMMA 15.8. ?(p, : p, : t : 1) = ~a~~,~~~~n~,,~,~ tl,(t : 1). 
Proof: The proof is standard and follows [25], but with respect to the 

root system of aq. First we use the product decomposition of intertwining 
operators to reduce to the case that P, and P, are a-adjacent (cf. 
[4, p. 3901). Let then a be the reduced root in Z(P,) n .Z’(P,), and let 
G(a) be as above. Then restriction induces surjective linear maps 
i* : C”(P,: t : 1) + C=(G(a) : Pi(a) : 5 : ,I,) where Pj(cr) = Pi n G(a), 
j= E, 2. Moreover, the associated intertwining operators are related by 
A(P,(a) : P,(a) : r : 2,) 0 i * = i* 0 A(Pz : P, : 5 : A) and a similar formula 
with P,, P2 interchanged. Since P,(a) = P(a), PJa) = F(a), this implies the 
result. m 

In view of (129) the function 

is independent of the chosen of positive roots. In particular it follows that 

q((:A)=,(Q:Q:(A) (130) 

for every Q E $(A,). 

LEMMA 15.9. Let r E fi,. Then for every Q E 4”,(A,) we have 

A@:Q:<: -~)*o~(~:~:r:n)=~(e:n)L 

Proof: Use [4, Proposition 4.6(ii)] in combination with (116) and 
(130). I 

LEMMA 15.10. Let < eufu. Then for every WE W we have q(wc : WA)= 
rl(< : A) (1 E a:). 

Proof Use [4, Lemma 4.101 in combination with the previous 
result. 1 

COROLLARY 15.11. For aN P, Q E pc(A,), r E &f,, s E W, we have that 
C,, & : A) defines a linear map “U(t) + “%‘(sr) depending meromorphically 
on Iz E a$. Moreover, if(B) hola!s, then on “U(<) we have 

CpIp(s : -x)*C,,& : A) =c(AJ2q(< : 1)Z. (131) 

Proof. From Proposition 15.7 and Lemma 4.1 we infer that Cp,8( 1 : 2) 
maps W(r) into itself. Thus, combining Proposition 15.7 with Lemma 15.9 
we obtain the result with P= Q, and s = 1. Applying Corollary 15.3 we 
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obtain the result for all P, Q and s = 1. Let SE W, and let WE N,(a,) be a 
representative for S. Then by ( 121) we have that 

NOW Y(MJ) maps “g(g) unitarily onto “%(sl). By the first part of the proof 
this implies that Co, p(~ : ,I) maps V’(5) onto “U(s~). Moreover, if (B) 
holds, then 

on “$?(.<). Now use Lemma 15.10 to complete the proof. 1 

16. A NORMALIZED EISENSTEIN INTEGRAL 

With Proposition 15.7 in mind, we define the normalized Eisenstein 
integral 

El(P:~:l):=E(P:CPIP(l:~)~‘J/:~), (132) 

for PE pO(A,), f+b E “%, I E a,*,. Notice that the present normalization is 
slightly different from the ones introduced by Harish-Chandra (cf. [15, 
p. 135, 18, p. 1521). Nevertheless the effect of the present normalization still 
is that the functional equations for the normalized Eisenstein integral are 
cast in a nice form. Moreover, if G satisfies (B), then the associated 
normalized c-functions C’ o,Js : 2) turn out to be unitary for imaginary 2 
(Theorem 16.3). We also show that the normalization does not affect the 
nature of the initial estimates for the Eisenstein integral (Proposition 16.1 
and Corollary 16.2). 

Recall the definition (44) of a,*(P, R). 

hoPosrTIoN 16.1. Let RER. Then At+ CpIp(l : A)-’ is a meromorphic 
End( “%))-valued function of Z-polynomial growth on a:(P, R). 

We postpone the proof to the end of this section. 

COROLLARY 16.2. Lemma 4.5, Proposition 10.3, and Lemma 14.1 hold 
with the normalized Eisenstein integral EL instead of E. 

Proof From Proposition 15.7 and the displayed formula for pp in 
the proof of Lemma 4.5 we infer that for every DIzD(G/H) the 
endomorphisms pp(D : A) and Cp,J 1 : J.) of “%’ commute. Hence 
Lemma 4.5 holds for E’. Proposition 10.3 now follows for E’ if we use 
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Proposition 16.1, and Lemma 14.1 follows from these results with unaltered 
proof. 1 

In view of the above result the normalized Eisenstein integrals possess 
(Q, w)-principal terms (Q E pc(A,), u’ E YV) as defined in Section 14. They 
are given by 

E;, ,(P : $ : A)(ma) 

=sFwa’“CC ;,P,w(s : nMl(m) @EM,, aEAq), (133) 

where 

c~,~(s:l):=c,,.(s:l)~cp,p(l :A)-’ (134) 

are called normalized c-functions. The following unitarity result is the 
analogue of [ 18, Lemma 63. 

THEOREM 16.3. Let P, Q E YO(A,), and suppose that G satisfies condition 
(B) of the previous section. Then 

Cj),.(s : -X)*d&p(s:n)=z~ (135) 

for J E a&. In particular Ch, p( 5 : 2) is unitary for imaginary A. 

Proof: It suffices to prove the above identity on “U(5), for r E fiF. But 
then the identity is a direct consequence of definition (134) and 
Corollary 15.11. 1 

We now arrive at the functional equation for the normalized Eisenstein 
integral. 

PROPOSITION 16.4. Let P,, P, E gc(A,), t+b E “g, s E W. Then 

E’(P, : Cfp2,p,(s : A)$ : s1) = E’(P1 : $ : 1). 

Proof: Let w E N,(aJ be a representative for s. Then by application of 
Lemma 15.4 and Corollary 15.5 we obtain that 

E’(P2:$:~IZ)=E(P2:CP2,P2(1 :sJ)-‘Il/:sA) 

= E(w-‘P,w : Y(w)-‘Cq,,,(l : sA)-‘+ : A) 

= E(w-‘P,w : CpI,w-~pJs : ,I)-‘$ : ,I). (136) 

Applying Lemma 15.2 to (136) and using that 

U(P, : w-‘P,w : 2) cp*,s-Lsw(s: A)-‘=c&,p,(s: A)-’ 
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(see Lemma 15.3) we find that 
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E(P, : 1(1: d)=E(P, : Cp2,& : A)- ‘I) : A) 

= E’(P, : C;2,p,(s : ,I-‘$ : A). 1 

COROLLARY 16.5. Let Q, P, , P, E pm(A,), s, t E W. Then 

In the rest of this section we shall estimate the inverted c-function 
Cp,p(l : A)-‘. According to Proposition 15.7 this comes down to 
estimating intertwining operators and their inverses on the level of K&rite 
functions. 

Suppose that 5 E fir., let Fc k be a finite subset, and write 
A(P, : P, : < : i)F for the restriction of the intertwining operator to 
C(K : 0,. Moreover, if R E R put 

a:(P,, p,, R)= {A-g*e; Re(1, cr) < R for ccEC(P2)nZ(PI)). 

LEMMA 16.6. Let RE R. Then the End(C(K: l),)-valued functions 
1t+A(P2:P,:t:A), and 1 I+ A(P2 : P, : r : ii); ’ are of C-polynomial 
growth on a:(P,, P,, R). 

Proof: We shall prove this by using an embedding of the induced 
representation into the (non-unitary) principal series. Let notations be as 
in [4, Proof of Lemma 4.53. Thus a, is a maximal abelian subspace of p 
containing a,, and (P,), = P, ANj are minimal parabolic subgroups 
containing A, = exp a, as defined in [4, p. 3721. Let ( Nj)p be the unipotent 
radical of (P,&,, j= 1,2. Then (N,),n(~,),=N,n~,. Hence if 
a E C(g, a,) is a root occurring in (n,), n (it,),, then a j a4 E ,X(P,) n Z(P,). 
In addition there exists a suitable R’ E R such that (Re J - phlr a) < R’ for 
,I E a,*(P,, P,, R). Using the embeddings in the principal series described 
by the diagram in [4, p. 3733, we see that we may reduce the proof to the 
case that (T = 8. Then a, = ap and P,, P, are minimal parabolic subgroups. 

Without loss of generality we may assume that F = { 6}, where 6 E k. Let 
V, be a representation space for 6. By the usual product decomposition for 
intertwining operators we may restrict ourselves to the case that P, , P2 are 
adjacent. Let a be the reduced root in C(P,) n Z(P,). 

By the Peter-Weyl theorem and Frobenius reciprocity we have a natural 
bijective linear map 

cp: V,@HomMtV6, Xc)-,CtK: 5Ja 

intertwining 6@Z with R. It is given by cp(o@f)(k)=f(6(k)v). By 
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equivariance the endomorphism q - i oA(P,:P,:c:l)ocp is of the form 
Z@ J(n), where J(;L) E End(Hom,( I’,, St)) depends meromorphically on 
1 E a&. Moreover, an easy calculation shows that J(n) = c(n)* @I, where 
c(J)E End,( V,). For (Re 1, a) >O this endomorphism is given by the 
absolutely convergent integral 

Here pi =L+, and the maps H,:G+aO, K,:G+K are defined by 
xsN,expH,(x)K,(x), for XEG. 

Now let G,(a) = Z,(ker a), K(a) = Kn G,(a), N, = N, n G,(a), and 
A,(a) = exp(a, n ker a’). Then 

G(a) = N,&(a) K(a) 

is the Iwasawa decomposition of a split rank one subgroup of Harish- 
Chandra’s class. This decomposition is compatible with G = N, A0 K, so the 
associated maps H,: G(a) --) a,,(a) and K,: G(a) + K(a) are the restrictions 
to G(a) of H, and K,, respectively. Let poI E a,,(a)* be defined by p,(X) = 
(l/2) tr[ad(X) ( n,]. Then with G(a) and 6’ = 6 ( K(a) we may associate the 
c-function C,,: a,(a),* + End,( I’,) defined by 

Now Nz n m, = R= and p.: = p, ( aO(a), and we see that 

44 = GO I ada)) (A E a,*,). 

According to [32,29] the matrix entries of C,(v) are linear combinations 
of products of functions of the form 

Qr(v, a> +s) 
T(r(v, a) + 1)’ 

(137) 

where r > 0, S, t E R. This implies that C,.(v) is of {a}-polynomial growth 
on sets of the form (Re v, a ) > R, R E R (see also the argument in [I I). 
Moreover, in [l 1 ] it is proved that det C,.(v) is a product of functions of 
the form (137) and by Cramer’s rule it follows that C6.(v)-’ is of {a}-poly- 
nomial growth on sets (Re v, a) > R. These estimates give us the desired 
estimates for the intertwining operator and its inverse. 1 

Proof of Proposition 16.1. It suffices to prove the assertion for the 
restriction of the inverted c-function to each invariant subspace “U(c), 
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5 E fips. Now by Proposition 15.7 and the previous lemma it follows 
that A H Cp, J 1 : 1))’ is of Z-polynomial growth on -a:(P, P, R) = 
a:(P, R). I 

17. SCHWARTZ FUNCTIONS 

In this section we characterize the generalization to G/H of Harish- 
Chandra’s space of Schwartz functions in the group case. In particular this 
provides us with the dual notion of temperedness on G/H. 

Throughout this section V will be a complete locally convex (Hausdorff) 
space, and A’(V) will denote the set of continuous seminorms on V. Given 
s E A’“( V) we shall sometimes use the notation (r(, = s(v) (v E V). 

Let t: G + [0, co[ be defined by 

r(kah) = (log aJ (~EK,~EA,JIEH). 

For 1~ p < cc we define the space W(G/H, V) of LP-Schwartz functions on 
G/H to be the space of all C” functions f : G/H --) V (where C” means that 
all partial derivatives exist), such that for all u E U(g), r > 0, and s E I V( V) 
the function (1 + z)~ lufl, has finite Lp-norm; here we recall that uf = LJ 
In particular we shall write %(G/H, V) for the Lz-Schwartz space. 

The space %fp(G/H, V) equipped with the seminorms 

ft-+ ll(l +rY b!flsllp (u E U(g), r 2 0) (138) 

is a complete locally convex space. If V is Frechet, then the same holds 
for gp(G/H, V). The space Vp(G/H) :=%Tp(G/H, C) was introduced in 
[2, p. 2461. 

The purpose of this section is to establish a different characterization of 
the space qp(G/H, V) in terms of sup norms. Let Z denote Harish- 
Chandra’s bi-K-invariant elementary spherical function cpO on G (cf. [30, 
p. 3291). Define the real analytic function 8 : G/H + 10, co [ by 

e(x) = Jm (xEG). (139) 

We now define %gP,(G/H, V) to be the space of smooth functions 
f: G/H -+ V for which all seminorms 

P&Jf):=SUP @-2'p(l + TY w-l, 
GIH 

(s E JV( V), u E U(g), r 20) are finite. Equipped with these seminorms the 
space %$(G/H, V) is a complete locally convex space; it is Frechet if V is 
FrCchet. The main result of this section is the following generalization of a 
well known result of Harish-Chandra (cf. [30, Theorem 9, p. 3481). 
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THEOREM 17.1. The spaces Up( G/H, V) and %{(GfH, V) are equal, and 
their topologies are the same. 

The rest of this section will be devoted to the proof of this result. First 
we need some properties of the function 0. Let a, be a maximal abelian 
subspace of p containing a,. Let Z, be the root system of a, in g and 
let d be one half times the number of indivisible roots in Z:,. Then the 
following result describes the asymptotic behaviour of 0. 

PROPOSITION 17.2. Let Q E qU(A,). Then there exists a constant C> 0 
such that for all a E cl Al(Q) we have that 

appe < @(a) < Ca-ee( 1 + T(a))d. 

Proof: Fix a system ,?Y,+ of positive roots for Z, which is compatible 
with Z(Q). Then for the associated positive Weyl chambers we have 
a:(Q)ccl a:. Let po~a$ be half the sum of the roots in Zc, counted 
with multiplicities. Then pe = p. 1 a,,. 

If aEc1 A:(Q), then so(a)-‘=a’EclA,+, and we have that 
@(a)‘=Z(a’). We now obtain the above estimates as a straightforward 
consequence of the well known estimates for Z on cl AZ, see [30, 
Theorem 30, p. 3391. 1 

We shall also need the following (more elementary) properties of 8. 
They are straightforward consequences of the corresponding properties of 
z, cf. [30, p. 3291. 

PROPOSITION 17.3. The function 8 is real analytic and has the following 
properties. 

(1) O<@(x)=@(a(x))dl (xEG). 
(2) Let E be a compact subset of G. Then there exists a c > 0 such that 

for all x E G/H, y E E we have 

c - ‘Q(x) < Q( yx) < &9(x). 

(3) Let u E U(g). Then there exists a C > 0 such that 

luQ(x)l < CQ(x) (x E G/H). 

(4) 8(x) depends on x only through Ad(xa(x)-‘). 

Finally we recall some properties of T from [3, Proposition 2.11. Let 
TV: G + R be defined by t,(k,ak,) = Jllog a/ for k,, k2 E K, aE A,. 

PROPOSITION 17.4. The function T is continuous, and left K- and right 
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H-invariant. Moreover, r(e) = 0 and T(X) > 0 for x 4 KH. Finally, if x E GJH, 
y E G, then 

T(X) = $4x)), 

Notice that from the last inequality in the above proposition it follows 
that 

l+T(yx)~(l+tG(y))(l+T(X)). (140) 

From Propositions 17.3 and 17.4 it follows that the space Wg(G/H, V) is 
invariant under the left regular representation L of G. 

Let G, denote the closed subgroup (KnH) exp(p nq) of G. Its Lie 
algebra is g + (cf. (1)). If S is a subgroup of G we write S + = S n G + . Thus 
H, = K, = Hn K. Put X=GJH and X, =G,,lH,. We shall view the 
Riemannian symmetric space X, as a subspace of X. 

Consider the action of the group K, on K x X, by k + . (k, x + ) = 
(kk ; ‘, k + x + ). Then the map (k, x + ) H kx + induces a diffeomorphism 

Kx X+5X; KnH 

this is a straightforward consequence of the fact that the map (4.3) in [ 121 
is a diffeomorphism. It follows that there exists a unique left K-invariant 
real analytic function J- : X + IO, a~[ such that 

i,ftx)dx=JKi, f(kx+)J-(x+)dx+ dk 
+ 

(141) 

for all f~ C,(X). Here dx + denotes normalized left G +-invariant measure 
on X,. 
in g+. 

Let Zz be a choice of positive roots for the root system .Z+ of a, 
Then on the associated positive Weyl chamber Ap’ we have that 

J=JpJ+, 

where J(J+ ) denotes the Jacobian of the G = K cl(A:)H decomposition 
(resp. G, = K, cl(A:) K, decomposition). From the formulas for these 
Jacobians (cf. [13, Theorem 2.61) we obtain that (for a suitable choice of 
normalization for dx + ) 

J- (a) = n (a’ + a-e)m-(arJ (a E A,,). (142) 

Here Z+ is a choice of positive roots for C = Z(g, a,) which is compatible 
with ,Z’I, and m-(a)=dim(g,ng-). 
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Now let S, denote Harish-Chandra’s spherical function for G, . We 
extend Z+ to a left K-invariant real analytic function on X. 

PROPOSITION 17.5. There esist constants m E N, C> 0 such that on 
X = G/H we have 

C-‘(1+r)-“8~‘-“*5+~C(1+~)“8. - 

Proof: This follows easily from (142) combined with the estimate to 8 
in Proposition 17.2 and the analogous estimate for .Z+ . 1 

COROLLARY 17.6. There exists a m E N such that 

(1 +T)-“‘@*d(G/H). 

Proof. Use the analogous result for Z+ in combination with the above 
estimate and formula (141). 1 

COROLLARY 17.7. The space Ug( X, V) is a subspace of gp(X, C), the 
embedding being continuous. 

Thus we have established (the easy) part of Theorem 17.1. We will prove 
the converse inclusion by reduction to the space X, via (141). In this way 
we avoid some of the technicalities which would arise from a reduction to 
A: via the Kcl(A:)H-decomposition (compare with the proof in [30, 
pp. 346-3481). This is due to the fact that the Jacobian J- allows a nice 
estimate from below (Proposition 17.5). 

We start with a simple lemma. Let X,, . . . . X,, be an orthonormal basis for 
t, and define Sz E V(t) by 

&?=1-x:- . . . 4;. 

If 6 E& let c(6) denote the constant by which 8 acts on the f-module 
associated with 6. 

Let t”,(X, V) denote the space of f E Ca(X, V) such that ]uf l,e Lp(X) 
for all t( E U(g), s E X( V). Put L%(X) = LP,(X, C). If f is a complex valued 
measurable function on X, we put 

VP 

llfll = X+.P J-b,) l.fIx+)lpdx+ . 
> 

LEMMA 17.8. There exist constants m E N, C > 0 such that for each 6 E d 
and every f E L%(X), we have 

Ilf II x+.pG WRY Ilf II,. 
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Proof. Proceed as in the proof of Lemma 6 of [30, p. 3461. 1 

COROLLARY 17.9. There exist constants m EN, C>O such that for all 
~EL$,(X, V) we have 

Proqf: Let m be as in the previous lemma and fix n E N such that 

1 c(6)“-” dim(h)* < KI. 
SER 

We havef=C 6E R a6 * f, where as denotes dim S times the character of 6’s 
contragredient. Hence 

IMf)ll x+.pG c IId% *f’NX+J 
6E.e 

d C 1 c(c?)~-~ Ils(a, * Qnf )I\, 
aed 

dC 1 c(6)“-“dim(h)* Ils(Q”f)/,. 1 
6ER > 

In the following we need a function q having the same growth behaviour 
as T, but allowing differentiations. Let D be a 8- and o-stable central sub- 
algebra of g such that G ‘v “G x exp D (cf. [2, p. 2271). Given an element 
YED we write Y=Y,,+ Yq, with Y,,eont), Y,,Eonq. We define the 
function cp : G + R by 

cp(x exp Y) = Jl + I( Y,ll* -log 8(x) (x E “G, YE D). 

LEMMA 17.10. The function cp is real analytic, and left K- and right 
H-invariant. Moreover, there exists a c>O such that on G we have 

c-1(1 +T)<cp<c(l +r). 

Finally, if u E U(g)g, then the function ucp is uniformly bounded. 

Proof. This follows from Propositions 17.2 and 17.3. 1 
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LEMMA 17.11. Let s E A’“( V). Then there exist uj E U(g), sj E ,Cr( V) 
(l<j<r), andmENsuch thatforallfEL~,(X, V) we have 

SUpQ-2’p Ifl.G,lnn$, ll(l +t)“sj(vjf)llp* 

x . . 

Proof: It suffices to prove a similar estimate for the supremum over 
X, ; the general estimate then follows from replacing f by Lk f (k E K). 

Write 8 _ = 89; ‘. Then from Proposition 17.5 it follows that there exist 
c>O, IEN such that 

c-y1 +r)-‘<J’iW dc(1 +r)‘. 

The analogue of the lemma for X, is valid by a result of Harish-Chandra, 
cf. [30, Theorem 9, p. 3481. Hence there exist U, , . . . . uq E U(g + ), 
Vl 9 .a., vq E X( V), and n E N such that for f E LP,(X, V) we have 

suPQ-2’plfl.6CI,~~~y II~~+~~“~~~~jC~Z2~pf1~IILP(X+) 
X+ . . 

<“I ,Ty:, ll(l +z)“‘s’lPvj(uj[s~2’pf])ll~+,p~ (143) 

. . 

where n’=n+l. 
We now observe that for every w E U(g + ) there exists a constant C, > 0 

such that 

(This follows from Proposition 17.3(3) and the analogous estimate for 5, 
by repeatedly using the Leibniz rule.) Hence there exist u;, . . . . U:E U(g+) 
and s,, . . . . S,E A”( V) (not depending on f ), such that (143) may be 
estimated by 

Taking into account that rp is left K-invariant and using Corollary 17.9 and 
Lemma 17.10 we can estimate the latter expression by 

c2 ,TT:, IIt + TYsj(anujf IlIp . . 

with C, a constant independent off: This is the required estimate. 1 

Completion of the Proof of Theorem 17.1. Let n E N, s E JV( V). Then 
it suffices to prove that f t-+ sup* I( 1 + r)“8-2’P f IS is a continuous semi- 
norm on %‘P(X, V). Now apply the previous lemma to cp”’ and use 
Lemma 17.10. 1 
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18. UNIFORM TEMPEREDNESS OF EIGENFUNCTIONS 

The purpose of this section is to improve upon initial estimates for 
families of eigenfunctions like the Eisenstein integrals, using the differential 
equations satisfied by them. In particular this will imply that Eisenstein 
integrals are tempered, with uniformity in 1. 

Let b be as in Section 2, write W(b)= W(g,, b,), and let 
7 : D( G/H) -+ S(b) W(b’ be Harish-Chandra’s isomorphism. If E > 0, we recall 
that 

a:(c) = {AE a$; (Re(A:)( <E}. 

Fix 14 ~ibz. Then by 6(G/H, A, E) = &(A, E) we denote the space of 
C”-functions f: a:(s) x G/H -+ C such that 

(1) f is holomorphic in its first variable; and 
(2) for every J E a:(c) we have 

Dfk=y(D: n +n)fi (DE WGIW). (14) 

Here fi =f(& . ). A function f E &(A, E) will be called uniformly tempered 
of scale s if for every u E U(g) there exist constants n E N, C > 0 such that 

for all XE G/H and 1 E a:(c). Here we have written I(1, x)1 = 
(1 + !A!)( 1 + T(X)). The space of these functions will be denoted by 
.F( A, E, s). 

Remark 18.1. Let W(G/H) be the space of tempered distributions on 
G/H, i.e., the continuous linear dual of %(G/H), provided with the strong 
dual topology. If f o Y(n, E, s), then it follows from Corollary 17.6 that 
1~f~ is a holomorphic map from a:(s) into V’(G/H) (via a choice of 
invariant measure we identify functions with distributions in the usual 
way). 

Let S be a finite subset of U(g), and let C, be a sequence of positive 
constants. Then the family v = (v,,, ; E > 0, n E N) of seminorms 
V c.n : P(a:(e) x G/H) + [0, co] defined by 

v,Jf)=Cnmax sup ~(~,~)~~~~(x)~‘e~*~~~~~~~~~‘~L~f~(x)( 
us.5 XEGIH 

leap’ 

will be called a string of F(s)-seminorms. For later use we need the 
following lemma. 
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LEMMA 18.2. Let A E ibz, s > 0, and E > E’ > 0. Zf f E F(A, E, s), then for 
every u E U(g), b E S(a:) there exist constants n E N, C > 0 such that 

jf(A; b, u;x)( <C I(A, x)!“@(x) es’Re’lr(-r) (x~G/f&ka:(E')). 

Proof When deg b =0 this is immediate from the definition of 
Y(/1, E, s). For general b the result follows by an application of Cauchy’s 
integral formula involving a polydisc centered at 1 and of radius 
min((2&)-‘(E-E’), (1 +T(x))-‘), m=dim cq. 1 

The ljurpose of this section is to give a useful criterion for functions to 
be in the class of uniformly tempered functions. 

A function f E b(/l, E) will be called uniformly moderate of exponential 
rate r E R, if for every u E U(g) there exist constants n E N, C > 0 such that 

IL, fJx)l d C( 1 + (11)” errcr) 

for all x E G/H and 1 E a:(~). The space of such functions will be denoted 
by .,#(A, E, r). If S is a finite subset of U(g) and C, a sequence of positive 
constants, then the family of seminorms p = (pL,,,; E > 0, n E N) defined by 

p,,.(f) = C, max sup (1 + 14)-nerr(r) IL, fA(x)l 
ueS xeGfH 

1Et+) 

will be called a string of 4(r)-seminorms. The main result of this section 
will be that every function f E &‘(/l, E) which is uniformly moderate is 
automatically uniformly tempered. More precisely we have the following. 

THEOREM 18.3. Let r E R. Then there exists a s > 0 such that for E > 0 
sufficiently small one has 

“&(A, E, r) c F(fl, E, s). 

Moreover, for every string v of F(s)-seminorms there exists a string p of 
A(r)-seminorms and a constant NE N, such that for sufficiently small E > 0 
one has 

VW+ N(f) G A,,(f ), 

for every f E &(A, E) and all n E N. 

It suffices to prove this theorem when G = “G. For the proof we need yet 
another type of function spaces. Let P E 9$-t,), and q E a:, s 2 0. Then we 
define &(A, E, q, s) to be the space of functions f E&A, E) such that for 
every u E U(g) there exist constants n EN, C > 0 such that 

IL,f,(ka)l <C I(A, a)l” a” es’Re” “0g4 
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for all IE al(s), kE K, and a~cl Al(P). If S is a finite subset of U(g), and 
C, a sequence of positive constants, then the family v = (v,,) of seminorms 
defined by 

v,,,(f) = max sup \(/I, a)1 -“a-” e m-1 IReAl Ilog4 IL,f(ka)l 
ues oaclAf(P) 

ksK.AEcz;(e) 

is called a string of gpp(q, s)-seminorms. 
We first compare the spaces r?JA, E, q, s) with the spaces A(A, E, r) and 

s(A, E, s). For this it will be necessary to vary the parabolic subgroup P. 
Select P,E~~(A~) and set .Y(P,)= {M-‘P~M’; H’E%~). Then from (113) we 
deduce that 

G= u KmH. 
PEB(fO) 

The following lemma is now straightforward to prove (use Proposi- 
tion 17.2): 

LEMMA 18.4. Let r E R. Then there exists for every I! E 9’(P0) a qp E a,* 
such that for every E > 0 we have 

Moreover, fix E’ >O and let for every PEG a string vp of &Jqp, O)- 
seminorms be given. Then there exists a string of ,X(r)-seminorms such that 
for every 0 -c E < E’ we have 

mm PEafoI 
vP.&n(f) s P,,,(f ), 

for all fER(A,c), nEN. 

The following lemma is also straightforward to check. 

LEMMA 18.5. Let ~20, E>O. Then 

n wb, -pp,Sb=~(~,E,S). 
PP9g(fO) 

Moreover, for every string v of Y(s)-seminorms there exist strings vp of 
gp( - pe, s)-seminorms (P E .9’( P,,)) such that 

for ail E > 0, f E &(A, E), and n E N. 
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In the following proposition it is asserted that estimates can be improved 
step by step along each maximal &stable parabolic subgroup. Its proof 
owes much to [34, Theorem 4.3.5). 

Let PE PD(A,). Then there is a one to one correspondence between the 
maximal a&stable parabolic subgroups containing P and the set A(P) of 
simple roots in Z(P). If Q = M, A,N, is such a maximal parabolic sub- 
group, then the corresponding simple root Be is the unique root in A(P) 
which does not vanish on ae4. Conversely let 8 = A\{ Be}. Then 

and 

Let a& = {XE ap4; Be(X) > O}. If q E a:, we define i&n) E a,*, its improve- 
ment along Q, by 

iQ(rl) = rl on ker Be ; 

= mad -pp, rl- iBQ) on a&. 

PROPOSITION 18.6. Let Q be a maximal a&stable parabolic subgroup 
containing P E $(A,), and let q E a,*, s 2 0. Then there exists s’ > 0 such that 
for E sufficiently small we have 

Moreover, if v is a string of &p(iQ(n), s’)-seminorms, then there exists a string 
v’ of &,,(n, s)-seminorms and a constant NE N, such that for sufficiently small 
E>O we have 

Before giving the proof of this proposition we will derive Theorem 18.3 
from it. 

COROLLARY 18.7. Let PE YD(A,), n E a,*, and s > 0. Then there exists a 
constant s’ > 0 such that for E sufficiently small we have 
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Moreover, if v is a c$~( - pp, s’)-seminorm string, then there exist a string v’ 
of ~F~p(q, s)-seminorms and a constant NE N such that 

V ,..+df)~ L(f), 

for E > 0 sufficiently small, f E b( A, E), and n E N. 

Proof. First we observe that by repeatedly applying Proposition 18.6 
we see that its assertions remain valid if we redefine ia by 

iQ(rl) = 9 ker PO; 

= -Pp on a&. 

Let /?, ( 1 < j < I) be an enumeration of A(P), and let Q, be the maximal 
parabolic in p0 with flo, = b,. Then we define a sequence q, (0 < j < 1) in a: 
recursively by I]~ = q and for i > 1, 

‘Ii=‘II-1 on ker pi; 

=- PP On aQrq. 

We claim that q,= -pp. The corollary then follows by applying the 
improved version of Proposition 18.6 repeatedly. Indeed, let H, ... HI 
be the basis for a, which is dual to /I, ... b, (we assumed G = “G). Then 
kerp,= BjziRHj, and a - RH,. Hence by induction it follows that 
vi= -pp on 0. .RH. I61 I’ 

itq- 

Proof of Theorem 18.3. The theorem follows straightforwardly when we 
combine the above corollary with Lemmas 18.4 and 18.5. 1 

For the proof of Proposition 18.6, we need the following companion to 
Proposition 12.4. 

PROPOSITION 18.8. Let Q E YO. Then there exisr : 

(1) a finite dimensinal linear subspace V c D(M,Q/H,Q) containing 1; 
(2) an algebra homomorphism b(A, .) from U(m,Q)hQ into End(V), 

depending polynomially on 1 G a:; and 

(3) a bilinear map yi: U(m,Q)hQx V+tiQU(iiQ+m,Q) depending 
polynomial/y on 1 E a:, 

such that for all J E a$ DE U(m,Q)” , and VE V we haoe 

Dv= b(l, D)v + yi(D, v) modJ,,+A, 
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where J,, + A denotes the left ideal in U(g) generated by lj and 

{D - y(D : A + A); DE U(g)‘)}. 

Finally, the set of aQ,-weights of b(A, .) equals (W(b)(A + A) - pa) 1 ao,,. 

Proof: Using duality this can be obtained from Corollary 11.15 in the 
same way as Proposition 12.4 is obtained from Proposition 11.7. The asser- 
tion on the weights is then a consequence of (86). l 

The remaining part of this section will be devoted to the proof of 
Proposition 18.6. Let PE g#(A,) and let Q be a fixed maximal a&stable 
parabolic subgroup containing P. Let q E a,*, s 2 0. Throughout the proof 
we assume that 0 <E GE’. Here E’ is a positive constant on which condi- 
tions will be imposed in the course of the proof. Let V be the subset of 
D(M,,/H,) as defined in Proposition 18.8 and fix HEN&,, with 1HI = 1. 
We define the operator cp from &‘(A, E) into Cco(a$(s) x M,o/Hp) @ V* by 

(df)(5 ml, 0) =fh; 0) (UE V). 

Similarly we define the operator Ic/ from &‘(A, E) into COO(a$(s) x 
~I~&) 63 V* by 

(+(f )(A m), 0) =f(m; YAK 0)). 

Then both cp and $ are left (mo,, Ko)-equivariant maps. We agree to write 
cpAf, . ) for df )(A . ) and $kL . ) for +(f )(A . ). Moreover, let B = BP. 

LEMMA 18.9. There exists a string v of Jp(q, s)-seminorms and a constant 
deN such thatfor all~E]O,&‘], fEB(A,e), andnEN we have 

IrpJf, a)1 <v,,,(f) I(A, a)l” a” es’Re” “ogn’ (145) 

ItjA(f, a)1 <v,.,(f) I(A, a)ln+das-8es’Re”“og~‘, (146) 

for all a E cl A:(P), 1 E a:(s). 

ProoJ: We first observe that every element UE 6; U(ii, + m,) can be 
expressed as a sum of terms z+, 5 E NE(P), where each u5 belongs to the 
- < - /CD weight space for ad(a,). Hence for a E cl Al (P) we have 

If&; u)l = la-ks 1 a-‘f,(u; ; al 

< a-k8 I;, a)l” a” estReA’ “Og4 v:,(f ), (147) 

for a suitable string v’ of &(q, s)-seminorms, only depending on u. 
In order to prove the first estimate it sulkes to estimate 
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(q&)(a), o) =fn(a; u) for a fixed u E V. Now v has a representative 
u E U(n, + m,). Hence (145) follows if we apply the above with k = 0. 

Let d be the polynomial degree of A ++ JJ~(H, . ). Then for a fixed u E V we 
may express y,(H, u) as a sum of terms p(A)u, with u E 6, U(ti, + m,) and 
p E S(a,) of degree at most d. Hence (146) follows if we apply the first part 
of the proof with k = 1. 1 

For f~a(A, E) we have the differential equation 

f cpi(f, m exp tH) = f(A) cp,(f, m exp rH) + Icl;.(.f, m exp tH) 

for all m E M,, and t E R. Here I-(A) = 6(12, H)* has eigenvalues contained 
in the set 

Cw(A + A) - Pl(W, WE W(b), 

where we have written p =pP. The above differential equation can be 
rewritten as an integral equation 

s 

I 
= p(i) (p,Jf, m) + err(‘) eCrrcA’+l(f, m exp rH) dr. (148) 

0 

We decompose W(b) as a disjoint union 

W(b)= W, v Wp, 

as follows. First of all we observe that W(b) leaves hR := ib, @ a, invariant. 
Therefore (wA - p)(H) is a real number for every w E W(b). We define the 
subsets W, of W(b) by 

w E W, - (WA - p)(H) > r/(H) - fa( H), 

WE Wp=(wA-p)(H)<q(H)+(H). 

Fix a constant cr~R with 

rl(W - ii/W) < 0 < v(H) - t/W) (149) 

and such that (WA-p)(H)>0 for WE W, and (WA-p)(H)<0 for 
w E W_ . Our first condition on E’ is that 

(WA -p)(H) > u + 3~’ (WE w, ); 

(WA-p)(H)<o-33~’ (WE w-). 
(150) 
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Let E,(1) denote the projection in V* onto the sum of the generalized 
eigenspaces of r(n) corresponding to the eigenvalues 

((‘4~ +n)-p)w), WE W,}. 

LEMMA 18.10. The projections E + (A) E End( V* ) depend holomorphicafly 
on I E a:(~‘), and we have that E + (,I) + E- (1) = I. Moreover, there exist 
constants C 2 0 and L E N such that 

and 

le-“-(“)E+(1)1 GCe-‘“+““‘(l + (;iOL; (151) 

lerr(‘)E - (A)[ < C e(+“)‘(l + (AI )L, (152) 

for all 1Eaq*(s’), t>O. 

Proof: The eigenvalues of f(l) are t,(A)= (w(/i +A) -p)(H), 
WE W(b). There real parts are given by Re <,,,(1) = (w/l + Re WA-~)(H). 
Hence in view of conditions (150) we have that 

Re <,(A) + 2~’ < g < Re r,(n) - 2~’ (153) 

for every w E W- , u E W,, and 1 E a:(&‘) (here we used that IH( = 1). All 
assertions now follow by application of the results of Appendix 20. 1 

For t E R we write h, = exp(tti). Our second condition on E’ is 

E’(2 + s) < $/3(H). (154) 

Then the following is valid. 

FQOP~SITION 18.11. For every E E IO, E’], f E &‘(A, E, q, s), and 
agcl A:(P), the integral 

ZA(f, a) = jrn e-“““‘E+(A) til(f, ah,) dT 
0 

(155) 

is absolutely convergent. Moreover, the function 

cp,“(f, a) = E+(l) rpAf, a) + Z,d.L a) (156) 

depends holomorphically on 1 E a,*(e), and there exists a string v’ of gp(q, s)- 
seminorms such that for all E E IO, E’], f E &(A, E), aE cl A:(P), and 
A E a$(&) we have 

(157) 
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Proof Using ( 146) we infer that for a E cl A: (P), r 3 0 we have 

It),(J ah,)1 6 v,Jf) ((A, u)InCd d estReZ’ ‘logo’ A,(s), (1%) 

where 

A,t(T)=(l +T) r?+der[~(H)--LW+~ IRei)] 

n+d r(n--2~ I 
d(l+T) e (159) 

The latter inequality is a consequence of (149) and (154). By application of 
(151) we infer that the integrand of (155) can be estimated from above by 

v,n(f) 1(;1, a)(n+d+ L aq es lReJ.1 Ilog4 e -~.1c’r, 

This implies the estimate for ZJj; a). The estimate for E+(A) ~~(f, a) 
follows from (145) and (151) with t=O. a 

Forf~~~(~,~,~,s),a~cIAqC(P),t~O,~~ag*(&)wedefineR,(f,t,a)= 
R$f, t, a) + R: (J t. a) + R; (1; I, a), where 

From the integral equation (148) it follows that 

LEMMA 18.12. There exists u string v’ ~f&~p(q, s)-serninorms such that for 

all E E 10, E’], JE -Sp(A, E, 7) we have 

IRi(.J t, a){ <v:,,(f)a” l(iL, u)(“+~+~ esiReZt”“goi erla+“‘, (161) 

for n E N, E. E a,*(c), a E cl Al(P), and t 2 0. Moreover, R,(.f, t, a) depends 
holomorphically on 1. 

ProojI From (145) and (152) it is immediate that R: satisfies an 
estimate like ( 16 1). 

From (159) and (151) we obtain that for all r 2 t we have 

IA,(?)e(‘--“n’)E+(~)( <C(l + IAl)L e’O+““‘(l +~)“+~e-~“~, 

Combining this estimate with (158) we see that the integral for R:(f, t, a) 
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converges absolutely and depends holomorphically on A. Moreover, we 
find that 

1R:t.L t, a)l G C, e (~+~‘k,,~(f) !(A, u)(“+d+ L uv es IReAl Ilowl, 

with suitable constants C, only depending on n and E’. 
In order to prove similar assertions for R;(f; t, a) we combine the 

estimates (159) and (152) to see that for 0 < T < t we have 

(A,(t) e(‘-‘)ni)E-(I)I d C(l + IAl)’ e’+““‘( 1 +r)n+de-E’r. 

The integral over T of the above expression from 0 to t is majorized by 
C, ea’( 1 + IAl)L, with a suitable constant only depending on n and E’. 
Combining these estimates with (158) we find that 

IR;(f, t, a)[ <C, eb’v,,,(f) I(& a)lnfdarl es’Reil”ogal 

and the proof is complete. 1 

In order to estimate etr(‘) a; cpl (f, a), we proceed as follows. Put q = i&q). 
Then 

NW = max( -P(H), u(H) - 9(W). 

We split the set W, as a disjoint union W, = W, u W,, where 

WE w,-(w/l-p)(H)<ij(H), 

w E w, 0 (WA -p)(H) > (j(H). 

Let W,, denote the normalizer of a, in W(b). Then W = W(g, a,) is a 
quotient of W,. Notice that for w E W, n W,, we have w/l(H) = 
A(w-‘H)=O, hence 

W,nW,cW,. 

Our third condition on the magnitude of E’ is 

(162) 

for all w,E W,, w2E W,. 

LEMMA 18.13. For i = 1, 2, let Ei(A) be the projection in V* onto the sum 
of the generalized eigenspuces for r(A) corresponding to the eigenvulues 
w(A + A)(H) - p(H), w E Wi. Then E,(A) and E2(A) depend holomorphically 
on 1 E a:(~‘). Moreover 

E,(n) + E2G) = E+(1), (163) 
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and there exist constants C, > 0, L’ E N such that 

lerni)E,(l)( < C,( 1 + (A( )L’( 1 + t)d’ e’(‘ke” + +(H”, (164) 

for all t 2 0, I E a:(~‘); here d’ = dim V. 

Proof. We use the notations of the proof of Lemma 18.10. Let IV,, be 
the complement of W, in W(b). Then W, = W_ u W,. Let E,,(n) be the 
projection in V* onto the generalized eigenspaces for f(d) corresponding 
to the eigenvalues c,.(1), \VE W,. Then E,(,I)+E,(A)=Z. From (153) and 
(162) we deduce that 

Re5JI) - Re t,,.,,(n) > 2~’ 

for every U’?E W,, U’~E W,, and JEW:. Moreover, if M’E W,, then 

Re 5,,.(A) 6 r?(H) + IRe 4, 

for all 2 E a:(e). Applying the results of Appendix 20 we infer that E,, and 
El are holomorphic and that we have an estimate of the form 

le ‘r’“‘&(~)( < (Y’( 1 + t)d’( 1 + 111)” er(~(H’+~ReAl’. (165) 

From ( 15 1) with t = 0 we infer that 

IE+(~)l d C(1 + VI)“. (166) 

We now observe that E,(n)= E,,(A)0 E+(A). Consequently the desired 
estimate follows from (165) and (166), with L’ = 2L. 1 

PROPOSITION 18.14. Let E E 10, E’], f~ gp(A, E, q, s). Then 

W) cp,“(f, a) = 0, 

for all IEa:(E), aEclA:(P). 

We will prove this by reduction to K-types. The following lemma will 
make the reduction possible. Recall the definitions of Sz, ah, c(6) (6 E fi) 
from the proof of Corollary 17.9. For in N define kj = (6 E I?; c(6) > j>. 
Then Sj = k\gj is a finite set. Given f c &‘(A, E) define Pjf E &‘(,4, E) by 
Pjf(n,X)=C6E9a6*f~(X). 

LEMMA 18.15. The map Pj maps (RIP(A, E, 9, s) into itself. Moreover, for 
every string v of &p(q, s)-seminorms there exists a string v’ of cFP(q, s)-semi- 
norms such that for all j 2 0 and all f E b( A, E) we have 

1 
v6,n(f-Pjf)~7VLn(f). 

J ’ 
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Proof. Choose m EN such that z ap~c(6)-” converges. We have that 
fbpjf=Z 6Ek, ag * f. Hence 

with v” a suitable string of seminorms independent off: From this the 
result easily follows. 1 

Proof of Proposition 18.14. By holomorphy we may restrict ourselves to 
the case that E’ is so small that in addition to the conditions previously 
imposed we have 

(WA -p)(H) > ii(H) + E’ for all WE IV,. (167) 

Fix 0 <E < E’, and let 1~ a:(~). Using the above lemma in combination 
with the estimate (157) we infer that q,“(P,f, a) + pT(fi a) as j + co. 
Hence we may as well assume that f is K-finite from the left. Fix 
1 E U:(E) n a:‘(n) (with notations as in (99): it suffices to prove the asser- 
tion for J in this dense subset). According to Lemma 12.3 there exists a 
r>O such that fAE&T+I,r (G/H). Let u E U(g). Then from the proof of 
Theorem 13.7 it follows that the exponents of L,f, along P are all con- 
tained in the set WA-p-NC(P). According to [2, Theorem 6.31 this 
implies the existence of a constant C > 0 such that 

(L, fA(a)l < Capp e” J’OgO’ 

for all a E cl A:(P). By the same argument as in the proof of Lemma 18.9 
this leads to an estimate 

jqA(f)(a)l <Cu-pes”‘OguJ (aecl AC(P)). 

Now fix a~cl A:(P). Then ah,~cl A:(P) for t>O, so it follows that 

IqJf)(ah,)l < Ce(E’-p(H))’ (t >O) 

with C > 0 a suitable constant. In view of (160) and the estimate (161) we 
infer the existence of a C > 0 such that 

le ‘rc““‘cp~(~ a)1 < CeR’ (t20), 
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where R=max(a’-p(H), cr+~‘)<$(H)+s’. In view of the identity (163) 
and the estimate (164), we now see that 

le”‘(“‘E,(R) cp,“(f, a)1 < C e(ri’H)+c’)‘. 

But ri+ q(t) :=efrc”&(A) cp,“(f, ) a is a polynomial exponential function 
with exponents whose real parts are all strictly greater than q(H) + E’, in 
view of (167). Hence by uniqueness of asymptotics (cf. [ 14, p. 305, 
Corollary] ) it follows that cp = 0. 1 

COROLLARY 18.16. For all ~~10, E’], f~c!?J/i. E, q,s), and all AEON. 
UECI A:(P), r20 \ce have 

le’““‘E+tA) cp,“(f, alI 
<~,,,:,~(f) l(n, a)l”+d+L+L’av ,slRell lW(l + t)d’eOW+fiWII, 

Proof. In view of Proposition 18.14 and (163) we have that the left 
hand side in the above inequality equals the norm of e’Fc’)E,(I) (pp(J a). 
The result now follows by combining the estimates (157) and (164). 1 

Completion of the Proof of Proposition 18.6. From (149) it follows that 
(J < if(H). The final condition on E’ is 

0 + E’ < t-j( z-z). 

From the equality (160), the estimate (161), and the above corollary, we 
infer that there exists a string ZI of &Jq, s)-seminorms such that for 
E E 10, E’], f E 6Tp(A, E, q, s), 2 E a:(s) we have 

I~A(~a,h,)l <p,,Jf) )(3L,a,)~“+d+L+L’a~e”Rei’i’ogoo~(l +t)d’eM(A”. 

for t 3 0, a, E cl Al (P) n exp( ker fl). Here 

M(I) = max(a + E’, (Re AI + q(H)) 

=IReII+ij(H)=IRe~)+i~(rl)(H) 

by the final requirement on E’. Every element a E cl Ai (P) can be written 
as a = a&,, with a,, and t subject to the above restrictions. Moreover, since 
(log a,, log H) 2 0, we have llog a,( < llog a( 1 and t < (log a). Since fA is a 
component of cp,(f ), the above estimate yields (with N = d + d’ + L + L’) 

If;.(a)1 G A.Af) ItA a)l n + Nary ,b + 1) IReAl Ilog (168) 

for all EE]O,E’], fEJ~(A,c,q,s), A~ag*(s), and aeA:(P). Fix u~U(g), 
then Z@ L(k-‘)L, leaves gp(A, E, q, S) invariant, for every k E K. Hence in 
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the above estimate we may replace f by [Z@L(k-‘)L,]J: One easily 
checks that there exists a string of seminorms p’ such that 
p, .([Z@Z,(k-‘)L,] f) <p:,,(f) for all kE K. We therefore obtain the 
estimate 

[(A, a)1 -(“+N)u -iQ(4) e-‘“+ 1) IReAl lbs4 (L,f,(ka)l <,J 6-n (f ). 

This completes the proof; notice that we may take s’ = s + 1. 1 

19. THE FOURIER TRANSFORM 

By the results of the previous section the normalized Eisenstein integrals 
belong to the class of uniformly tempered functions. This allows us to 
define a Fourier transform which maps a space of spherical Schwartz 
functions continuously into a Euclidean Schwartz space. 

Let V and r be as in Section 3. If f, g : G/H + V are r-spherical functions 
such that the function x H (f(x), g(x)) is integrable on G/H, then we 
write 

CL g>z :=5,,, (f(x), g(x)) d-x. 

Let PE $(A,) be fixed. If f o C,“(G/H, 7), the space of compactly sup- 
ported smooth r-spherical functions G/H + V, then we define its Fourier 
transform .Ff = 5$ f to be the meromorphic function a$ + “% given by 

<Ff(J.), ICI> = <f, E’(P: * : -a>, t* E “W (169) 

Notice that by Proposition 10.3 and Corollary 16.2, Ff is of z-exponential 
growth on every set of the form a,*(P, R), R E R. 

Let a E Z7, (a,) be any polynomial such that It+ K(A) E’(P : + : I.) is 
regular on ia:, for every I++ E “V (for its existence see Proposition 10.3 and 
Corollary 16.2). Let %‘(G/H, t) denote the space of r-spherical L2-Schwartz 
functions G/H + V and let Y(ia:) denote the usual space of Schwartz 
functions on ia:. Then we have the following. 

THEOREM 19.1. The map f w nFf I ia: extends (uniquefy) to a con- 
tinuous linear map from %QG/H, 7) into Y(ia,*) @I “5%‘. 

Remark. The above result actually holds with IC = 1. This will be proved 
elsewhere. 

We prove the theorem in the course of this section. Basic for the proof 
is the following uniform estimate for the normalized Eisenstein integral. We 
agree to write I?,(@ : A) = a(A) E’(P : $ : A), and $$ f = z.Ff 1 ia:. 
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THEOREM 19.2. Let u E S(a,*), XE U(g). Then there exist constants 
NEN, C>O such that 

for $IE’%, XEG, and,lEiag*. 

Proof. In view of Lemma 4.5, Proposition 4.7, and Corollary 16.2 it suf- 
fices to prove the estimate for a fixed JI with the property that E,(I(I : E.) 
satisfies a system of differential equations of the form (144). Moreover, E, 
being spherical, it suffices to prove the estimate for f( I, x) = 
E,(+ : A)(x)( 1). Being of Z-polynomial growth the function A t-+ fi has its 
singularities in a,*(P, 1) on a finite union of hyperplanes of the form 
(A, a) = c. Hence there exists a E > 0 such that f E 8(/i, E). In view of 
Proposition 10.3, Corollary 16.2, and Lemma 6.1 we have that 
f E JZ( A, E, r) for a suitable r > 0 (shrink E if necessary). By application of 
Theorem 18.3 we infer that f E Y(A, E, s) for suitable E, s > 0. The desired 
estimate now follows by application of Lemma 18.2. 1 

From the above theorem, Corollary 17.6, and the characterization of the 
Schwartz space in Theorem 17.1 one straightforwardly deduces that p= 
allows a unique extension to a continuous linear map V(G/H, 7) -+ 
C=(ial) @I “%?, defined by the formula ( 169). The stronger assertion that 
the Fourier transform maps continuously into the Schwartz space will be 
proved in the usual manner by using partial integrations. 

LEMMA 19.3. Let DE D(G/H). Then for every f E%‘(G/H, T) we have 

%W'fW)=pdD :~)EfU) (A e ia:). 

Proof. By continuity of RX as a map into CZ(ia:)@ ‘%, it suffices to 
prove this for a fixed f in the dense (cf. [2, Lemma 7.11) subspace 
CF(G/H, r). From (169) and Lemma45 we infer that then &(Df)(A)= 
pp(D*: -A)* s= f(A). Here D* denotes the formal adjoint of D with 
respect to ( ., . )2, and the second star denotes the adjoint with respect to 
the unitary structure of “%. We must therefore show that pp(D*: -A") = 
pi0 : A)*. 

From the definition of pp in Section 4 one readily checks that it suffices 
to show that pp(D*)=pp(D)*, where the second star denotes the formal 
(Hermitian) adjoint in D(M,/H,,). Moreover, without loss of generality 
we may assume that D has real coefficients. The canonical anti- 
automorphism XN X” of U(g) induces automorphisms of D(G/H) and 
D(M,/H,,), which are both denoted by D H D ". Let q: ge + gc be the 
conjugation associated with the real form g. Being real, D has a repre- 
sentative XE U(g)H with q(X) =X Hence X” is a representative for D*, 
and D*=D”. Moreover, the decomposition (20) is q-stable, so that pp(D) 
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is real, and we see that it suffices to show that ,nJD”) =pp(D)“. In view 
of (21) this equality follows from the fact that the maps y and yP commute 
with the canonical anti-automorphism (reduce to the Riemannian case as 
in the proof of Lemma 2.1, and then use [20, p. 3071). 1 

LEMMA 19.4. Let Q be the canonical image of the Casimir in D(G/H). 
Then there exists a R > 0 such that for 1~ ia: with 111 > R we have that 
c(~(SZ : A) is invertible and 

WI2 II/#-J : n)--‘ll<2 (VI 2 R). 

ProoJ: This is a straightforward consequence of the easy fact that 
,+(Q, A) - (A, A) belongs to End( ‘V) 0 S,(a,): here (., .) denotes the com- 
plex bilinear extension of the dual of the positive definite form B 1 ap x a,, 
and the index 1 indicates the space of elements of order at most 1. 1 

Completion of the Proof of Theorem 19.1. Let R be as in Lemma 19.4. 
Then by continuity of Fn as a map into F(ia:)@ “V, it suffices to prove 
the following statement. Let MEN, ups. Then there exists a con- 
tinuous seminorm s on V(G/H, T) such that 

for all f E V(G/H, r) and all I E ia: with llzl > R. 
We shall prove this by induction on the degree of u. In view of 

Theorem 19.2 and Corollary 17.6 there exists a seminorm s0 such that for 
f E %‘(G/H, T) we have 

IErf(4 u)l G (I+ I4 )%3(f) 

Using Lemma 19.4 we now obtain that 

(3, E ia,*), 

I&4Q : ~)-nRsv-)(~; u)l G (I+ 14P2”~,(f 1 (14 2 R) (170) 

for a suitable seminorm s,. In view of Lemma 19.3 this proves the result 
already when deg u = 0. 

To prove the assertion in generality we assume that it has been estab- 
lished for operators of degree at most d. Let u have degree d+ 1. We 
observe that Fnf(l; u) can be rewritten as &a : A)-“9n(Wf))(A; u) 
modulo a finite sum of terms of the form 

p&J : ~)-W) R(f )(k v) 

with qE S(a,)@ End( “%?) and with v E S(a,*) of degree at most d. The 
proof is now completed by using (170) together with the induction 
hypothesis. 1 
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20. APPENDIX: SPECTRAL PROJECTIONS 

The purpose of this section is to provide estimates for spectral projec- 
tions associated with parameter dependent endomorphisms of a finite 
dimensional complex vector space V of dimension n > 2. 

Let X be an open subset of a finite dimensional real vector space, 52 an 
open subset of a finite dimensional complex vector space, and 

r:XxQ-+End(V) 

a C”-map which is holomorphic in its second variable. We assume that 
continuous functions <, , . . . . tk: XxQ-+C are given so that {t;,(x, J.); 
1 G j G k} is the set of eigenvalues for T(x, II), for every (x, A) E Xx Q (here 
we do not count them with multiplicities). 

Let 1 G 1 <k be a fixed integer, and define Pm (.u, A) E End(V) to be the 
projection onto the sum of the generalized eigenspaces corresponding 
to the eigenvalues ci(x, ,I), 1 < j < I, along the remaining generalized 
eigenspaces. Let P+(x, A) be the complementary projection. Then 
P~(x,~)+P+(x,~)=Zfor all (x,A)EXxQ. 

LEMMA 20.1. Suppose that for eoeg’ (x, A) E Xx R we have 

Then the functions P + (x, A) depend smoothly on (x, A.) and holomorphically 
on 1. 

Proof. Fix (x,, 1,) E Xx Q. Then there exists a bounded open subset D 
of C with (compact) smooth boundary ao such that for (x, 1) = (x,, &) we 
have 

6jtx, ljED (jG1) and 5,(x, A)$clD (l<j). (1711 

By continuity ( 171) still holds for (x, ,I) in a sufficiently small open 
neighbourhood N(x,, A,,) of (x,, A,,). Then for (x, J) E N(x,, I,) we have 

where aD is provided with the induced orientation. All assertions now 
easily follow. 1 

580,109i2-15 
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We now come to a result involving estimates. We assume that there 
exists a constant Co > 0 and positive integers p, q such that 

IImG n)ll G Cdl + 14 1” 

It;iCx, AN < Cdl + I4 )’ (1 ,<j<k) 

for all (x, A) E Xx 52. Define 

and 

PROPOSITION 20.2. Assume that 

for all (x, 1) E Xx 0, and put 

6(x, A)=min(l, 5+(x, A)-r-(x,2)). 

Then there exist constants C > 0, L E N such that 

Ile’r(x*‘)P-(x, A)11 < C 
( > 

-$+j n (1 + Ill)” e’e-(X,i) (172) 
3 

Ile-‘rc-x*A)P+(x, A)ll G C stx, n) 
( > 
l+t n (1 + J~I)~,-~<+(x.A), (173) 

for all (x,I)~Xxa and t>O. In fact one may take L=q+ 
(n - 1) mad p, 4). 

Proof: It suffices to prove (172) since (173) will then follow if we 
replace T(x, A) by -T(x, A). Put 

~(X,~)=f(5-(X,~)+r+(X,~)). 

There exists a constant C, > 0 such that 

Itjtx, n)-P(X9 n)l G cI(l + InI)” 

for all (x, A)EXXQ and 1 <j<k. For (x, 1)~Xxa and t>O we define 
D(t, x, A) to be the set of z E C with 

Iz-P(X, A)l <C,(l+ IW+~ 
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and 
6(x, i) 

Rez<<-(x, A)+- 
2(1+ t) 

Then clearly rj(x, n)~D(t, x, 2) for j<Z and tj(x, i)$cl D(t, x, ;i) for 
1-c j<k. Hence 

Now there exists a constant C, > 0 such that 

length(dD( t, x, A) j < C,( 1 + IA) )” (175) 

for all (x, A) E Xx Q, t 2 0. Hence it suffices to estimate the integrand of 
( 174). It is straightforward to see that for z E itD( t, x, 1) we have 

rc-(x,2)+ I:2 le”(Ge . (176) 

To estimate the remaining part of the integrand we recall that by Cramer’s 
rule there exists a polynomial map it4 : End(V) --, End(V) such that for 
every A E GL( V) one has A --’ = (det A) - ‘M( A ). Since M has degree 
<n - 1 there exists a constant C3 > 0 such that (r = max( p, q)) 

lIM(zZ- f(x, n)jll < C,(l + III )“n- ” 

for all (x, 1) E Xx 52, t 2 0, and z E dD(t, x, ,I). On the other hand, if 
z~dD(t,x,1) then zZ--Z’(x,A) has the eigenvalues z-tj(x,A) (l<j<k). 
All of those have absolute value not less then (l/2) 6(x, A)( 1 + t)) ‘. Hence 

and we infer that 

Ilw-f(x,I))-lII <2”C, s ( > n (1 + (;II)r(n-I), (177) 3 

for all (x, 1) E Xx Q, t >, 0, and z E aD(t, x, I). The estimate (172) now 
follows from (175), (176), and (177). 1 
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