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ABSTRACT 

We study the action of standard intertwining operators on H-fixed generalized vectors in the mini- 

mal principal series of a reductive symmetric space G/H of Harish-Chandra’s class. The main re- 

sult is that - after an appropriate normalization - this action is unitary for the unitary principal 

series. This is an extension of previous work under more restrictive hypotheses on G and H. 

The present result implies the Maass-Selberg relations for Eisenstein integrals of the minimal 

principal series. These play a fundamental role in the most-continuous part of the Plancherel de- 

composition for G/H. 

INTRODUCTION 

Let G be a connected real semisimple Lie group with finite center (or, more 

generally, a group of Harish-Chandra’s class), o an involution of G and H an 

open subgroup of the group G” of fixed points for O. Moreover, let 0 be a Cartan 

involution of G commuting with 0. In the Plancherel decomposition of 

L2(G/H), the most-continuous part is built from the minimal principal series 

for G/H. This is a series of parabolically induced representations 7rt-x = 

Indj?(< @I X @ l), where P = MAN is a minimal &stable parabolic subgroup 

of G with the indicated Langlands decomposition, [ a finite dimensional uni- 

tary representation of M and X E a& the space of complex characters v of A 

with c‘v = --Y. Let Cdw(P : < : A) denote the space of generalized sections of 

the homogeneous vector bundle in which rrc,~ is naturally realized. Then the 

subspace Cpm(P : [ : X)H of H-fixed generalized sections, also called the space 

of spherical vectors for X(,X, governs the contribution of X(,X to the Plancherel 
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decomposition. In the theory an important role is played by the standard in- 
tertwining operator 

with Q a parabolic subgroup associated to P (i.e., its Langlands M,A-parts 
are the same). By equivariance the standard intertwining operator maps the 
spherical vectors for ?TP,~J to those for ?TQ,& A. 

In [l] we established the existence of a finite dimensional Hilbert space V(c) 
and a linear map 

j(P : 5 : A) : V(C) --t C-m(P : c : A)“, 

depending meromorphically on X E a& and bijective for generic X E a& We 
also established the existence of a unique endomorphism B(Q : P : 5 : A) of 
V(e), depending meromorphically on X E a&, such that the following diagram 
commutes: 

C-CG(p : 5 : A)” A@:P:5:X) , C-oO(Q : c: X)H 

(1) j(P:{:X) 1 i i(Q:F:N 

B(Q:P:c:X) 
V(C) - V(5) 

Note that B(Q : P : < : A) thus essentially describes the action of the standard 
intertwining operators on the spherical vectors of the representations of the 
minimal principal series. In [l] we proved the following formula, where the 
suffix * indicates the adjoint of an endomorphism of the Hilbert space V(l): 

(2) B(Q : P : ,$ : -A)* = B(P : Q : < : A). 

For part of the argument leading to this formula we needed the restrictive as- 
sumptions that H = G”, the full fixed point group, and that all Cartan sub- 
groups of G are abelian. The main result of the present paper is that (2) holds 
without restrictions on G, H. 

The main difficulty in the proof is caused by the fact that the group G, fl P 

need not be connected. Therefore a major part of the present paper is devoted 
to the description of connected components of parabolic subgroups and the 
action of o on them. 

The formula (2) plays a fundamental role in the harmonic analysis on G/H, 

since it lies at the heart of the Maass-Selberg relations for Eisenstein integrals 
related to the minimal principal series, see [2]. These Maass-Selberg relations 
in turn play a fundamental role in normalizations of Eisenstein integrals, see 
[4], and in the most-continuous part of the Plancherel decomposition for G/H, 

see [5]. 
The main result of this paper was (implicitly) announced some time ago in 

the survey paper [6] (cf. Theorem 11). In recent work ([7]) J. Carmona and 
P. Delorme have established Maass-Selberg relations in the more general 
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context of Eisenstein integrals for non-minimal a&stable parabolic subgroups, 
following a completely different method, involving the idea of truncation of 
eigenfunctions. The results of the present paper can now also be obtained by an 
application of the result of Carmona and Delorme (use the ideas of [2], Lemma 
15.1 and Cor. 15.3). 

It is my pleasure to thank Jacques Carmona, Patrick Delorme, Hans Duis- 
termaat, Henrik Schlichtkrull and David Vogan for some stimulating con- 
versations about the contents of this paper. 

I. THE MINIMAL PRINCIPAL SERIES 

Throughout this paper G will be a group of Harish-Chandra’s class, o an in- 
volution of G and H an open subgroup of the group G” of fixed points for g. Let 
0 be a Cartan involution of G commuting with 0. We denote the associated in- 
finitesimal involutions of Q, the Lie algebra of G, by the same symbols. Let g = 
f @ p = h @ q be the associated decompositions into + 1 and - 1 eigenspaces for 
6 and U, respectively. Then h is the Lie algebra of H. In general we adopt the 
convention to denote Lie groups by Roman capitals and their Lie algebras by 
the corresponding lower case Gothic letters. 

We extend the Killing form on [g, g] to an invariant non-degenerate bilinear 
form B on q that is negative definite on I, positive definite on n, and invariant 
under Q. 

Let a4 be a maximal abelian subspace of p n q. Then C := C(y, uq) is a 
(possibly non-reduced) root system. By a a-parabolic subgroup of G we will 
mean a parabolic subgroup that is invariant under the composition 00. If P is a 
o-parabolic subgroup and P = MpApNp its Langlands decomposition, then 
MP and Ap are both c- and O-invariant, and UP = BP is the opposite p of P. We 
write MIP = MpAp, Aph = Ap n H, and 

Then Ap N Aph x Apq. Via the associated direct sum decomposition clp = 
uPh $ apq we identify the complexified dual a&c with a subspace of a& 

Let ?(A,) denote the set of minimal o-parabolic subgroups that contain 
A, := expag. The components Mp and Ap are independent of the particular 
choice of P E P(A,). We therefore write M and A for these components. 
Moreover, A pq = A,. We write Ml = MA in accordance with the notations in- 
troduced before. Let C(P) denote the set of roots of aq in np. Then P H C(P) 

defines a one-to-one correspondence from P(A,) onto the set of positive root 
systems for C. The Weyl group W = W(g, a,) associated with the root system is 
naturally isomorphic with NK(u,)/ZK(U,), the normalizer modulo the cen- 
tralizer of a, in K.Via conjugation it acts freely and transitively on the set P(A,). 

The group NK(u~) normalizes M, and naturally induces an action of W on 
the set 2rU of (equivalence classes of,) irreducible finite dimensional unitary 
representations of M. Let 2~ be the subset of { E A%rU for which there exists a 
w E W such that w< possesses a non-trivial M n H-fixed vector. 
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If P E P(A,), then the element pp _itr(ad(.) 1 nP) of a> vanishes on uPh 
hence defines an element of ai. If E E Mr,,, let ?it be a fixed Hilbert space on 
which < is (unitarily) realized. If in addition X E a& then we define 

(3) c-m(P: I: A) 

to be the space of generalized functionsf : G + ‘1~ transforming according to 
the rule: 

f(manx) = a x + PP@r)f(X) 

for x E G, m E M, a E A, n E Np. We equip this space with the restriction of the 
right regular representation R of G. The Harish-Chandra module associated 
with the induced representation thus defined is denoted by Ind:(< @ X 18 1). The 
series of representations Indg(< @I X 8 1) with 5 E *H, X E a& is called the 
(minimal non-unitary) principal series for G/H. 

In the following we shall describe the space C-m(P : 5 : A)” of H-fixed ele- 
ments in (3). Let WK”H denote the canonical image of NK~H(u,) in W. Fix a 
set W of representatives for the quotient space W/ WK”H in NK(u~). Then the 
map w H PwH defines a one-to-one correspondence from W onto the set of 
open H-orbits on P\G. If j is an H-fixed element of (3), then j is a smooth 
function on every open H-orbit. Thereforej(w) is a well defined element of ‘l-t<. 
In fact one readily verifies thatj(w) is w(M fl H)w-l-fixed. Thus we have a well 
defined evaluation map evY : j -j(w) from the space of H-fixed elements in (3) 
to U([, w) := (?@@“H)I(‘- . Equip V(c, w) with the restriction of the Hilbert 
structure of ‘Ht, and define the formal direct sum of Hilbert spaces: 

Then the direct sum ev of the evaluation maps ev,, w E W, defines a linear map 

ev : Cpm(P : < : X)H + V(t). 

From [l], Corollary 5.3 and Theorem 5.10, we recall that for generic X E a& the 
map ev is a bijection. Here and in the following we will say that a statement 
holds for generic X E a$ if it holds for X in the complement of a countable 
union of complex hyperplanes of aio. 

The inverse to ev is given by the following result of [l]. For its appropriate 
formulation we need the compact picture of the induced representation 
Indg(< 6~ X @ 1). In view of the decomposition G = PK, the restriction map 
f H f 1 K induces a bijection from (3) onto the space 

(5) C-OO(K: () 

of generalized functions f : K + 7-t~ transforming according to the rule: 

f WI = E(m)f (k) f or all mE&:=KflM and kEK. If sEN, then by 
C”(K : 5) we denote the subspace of (5) consisting of the s-times continuously 
differentiable functions. This space carries a Banach topology since K is com- 
pact. If s E N, then by C-“(K : 6) we denote the subspace of (5) consisting of 
the generalized functions of order at most S. Being the dual of CS(K : t”), this 
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space carries a Banach topology as well. Let R c at@ be an open subset, then a 

function cp : R + C-“(K : <) will be called holomorphic if for every X0 E R 

there exists an open neighborhood 00 of X0 in R and a constant s E N such that 

cp(Ro) c C?(K : <) and ‘p ) R . 0 IS a holomorphic map from 00 into the Banach 

space CS(K : E). A partially defined C-“(K : [)-valued function on R will be 

called meromorphic if for every X0 E ti there exists a holomorphic C valued 

function $I in a neighborhood of X0 such that ,4’/(p is holomorphic on this neigh- 

borhood. The following result is essentially [l]. Theorem 5.10. 

Proposition 1.1. Let P E P(A,), [ E ikf,,. Then there exists a unique mero- 

morphicfunctionj(P : E : .) : ctic + V(t)* @ C-“(K : <) such that 

(a) j(P : < : X)v E CpW(P : < : X)HfbraZZr] E V(l) andforgeneric X E a(;@: 

(b) for generic X E a(;@ we have ev o j(P : < : A) = Zv,o. 

2. INTERTWINING OPERATORS 

Let P, Q E P(A,). We recall that for generic X E “CT@ the standard intertwining 

operator from Indg(J@ X 18 1) to Indz(<@ X @ 1) uniquely extends to a 

(equivariant) continuous linear map 

A(Q : P : [ : A) : C--(P : < : Xj --+ C-%(Q : ( : A). 

In a suitable sense (cf. [l], 94) the intertwining operator depends meromor- 

phically on X E a&. By equivariance it maps H-fixed elements to H-fixed ele- 

ments. We recall from [1], Proposition 6.1, that there exists a unique End( V(t))- 

valued meromorphic function B( Q : P : [ : .) on uic such that the diagram (1) 

commutes for generic X E a& From Proposition 1.1 (b) and the commutativity 

of diagram (1) we see that the endomorphism B is also given by 

(6) B(Q : P : 5 : A) = ev o A(Q: P:<:X) oj(P:<:X). 

The following result, which is the main result of this paper, was proved in [I] 

under the restrictive hypotheses that all Cartan subgroups of G are abelian and 

H equals the full group G” of fixed points for (T in G. If B is an endomorphism of 

V(E), let B* denote its adjoint with respect to the Hilbert structure defined 

above. 

Theorem 2.1. Let P, Q E P(A,). Th en we have thefollowing identity of End V(t)- 

valued meromorphic functions on aGc : 

B(Q: P: I: -i)* = B(P : Q: [: A). 

We will reduce the proof of this theorem to a particular case. The following 

lemma provides a first step in this reduction. 

Lemma 2.2. Let HI, H2 be open subgroups of G” such that HI c Hz. If Theorem 

2.1 is true with H = HI, then it is also true with H = Hz. 
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Proof. We assume that Theorem 2.1 holds for H = HI. For k = 1,2, put Wk = 
W KnHke Let P : W/WI --f W/ WZ be the natural projection map. Each of its 
fibers has [ W2 : WI] elements. 

Let Wz be a set of representatives for W/ W2 in NK(oq). For each w2 E W2 
and every s E p-l (W2) we select a representative WI(S) E W~NK~H~(I~J C 

NK(&,) for s. Let ~21 : WI + TV2 be the map corresponding to p. Then the 
above choice comes down to 

2, EP~~(U)NK~&$) for each ‘u E wi. 

Note that by [l], Remark 6.5, the choice of representatives does not affect the 
validity of Theorem 2.1. 

Now that compatible choices for Wi , Ml2 have been made, let for k = 1,2 the 
objects vk([), evk, jk(P : < : A), &(Q : P : < : iI) be defined as before, but with 
Z& in place of H. 

For k = 1,2, let F(k&, ‘Fit) denote the space of functions l%$ -t ‘?i,t, 
equipped with the direct sum Hilbert structure. Define the map ik : vk(c) + 

F(wk, ‘Fit) by ik(q)(W) = VW f or w E wk. Then ik is an isometry from vk(<) into 
F(wk, ‘Ftl). Via this isometry we shall view vk(<) as a subspace of F(wk, 7-@. 

Let P& : 3042,7-Q 4 F(W1,T-l~) be defined by pull-back: p&‘p = (~~0~21. 
Since each fiber of p21 has [ W2 : WI] elements, it follows that [ W2 : WI]-‘~;~ is 
an isometric embedding. One readily checks that pzimaps I’?(J) into Vi (6). Let 
ii2 be the restriction ofp;, to V2(5), then it follows that 

(7) iT2 0 i12 = [W2 : Wl]Z~~(fj. 

Let 112 : Cpm(P : t : X)H2 - Cm(P : c : X)H’ be the inclusion map. Then one 
readily checks from the definitions that evi o 112 = i12 o ev2 and that 

jl(P : < : A) 0 i12 = 112 0 j2(P : < : A) on I$(<). 

Combining the last two formulas with (6) we infer that for all P, Q E ?(A,) we 

have: 

(8) Bi(Q : P : c : A) o i12 = ilz o &(Q : P : < : A). 

Taking adjoints of both sides of (8), applying ii2 to the right and using (7) we 
obtain: 

(9) 
1 

[W2 : Wi]&(Q : P : < : A)* = i;, o &(Q : P : c : A)* o i2l 

=i~1~B1(P:Q:~:-x)oi21, 

the last equality being a consequence of the hypothesis. In view of (8) with 
Q, P, E, X replaced by P, Q, c, -x, it follows that the right hand side of (9) may 
be rewritten as 

i;l o i21 o &(P : Q : P : ( : -X) = [W2 : Wi]&(P : Q : p : < : -X). 

Hence Theorem 2.1 holds for H = H2 as well. q 
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Reduction of the proof of Theorem 2.1 to a particular case. Before we proceed 
with the proof of Theorem 2.1, we discuss its reduction to a particular case that 
we did not succeed to handle in full generality in [ 11. 

As we mentioned above, Theorem 2.1 was proved in [l] under the two as- 
sumptions that all Cartan subgroups of G are abelian and moreover that 
H = G*. The first of these assumptions was used to ensure that M = M,F, with 
F a finite abelian subgroup. This fact was used at precisely two places in [I]: 
Lemma 5.4 and Lemma 6.16. The last assumption was not explicitly men- 
tioned, but used in the proof of Lemma 6.16. 

The first part of the proof of Theorem 2.1 consists of a reduction to the a-split 
rank one case, i.e., dim a, = 1. This reduction does not rely on any of the as- 
sumptions mentioned above, and can therefore be used in the present situation 
as well. Thus it suffices to prove Theorem 2.1 with Q = p in case dim us = 1. If 
C = 0 then a, is central in G, and there is nothing to prove. Therefore we may, 
and will, assume that C # 0. Then the Weyl group W has order two, so that 
W/ WK~H has either one or two elements. The proof in [l] of Theorem 2.1 in the 
latter case does not make any use of the assumptions mentioned above, and is 
valid without change in the present situation. Thus it remains to prove Theorem 
2.1 in the case that dim a, = 1 and 1 W/ WK”H\ = 1. Moreover, by Lemma 2.2 
we may in addition assume that H is connected. We call the resulting case, 
where these three assumptions are fulfilled, the reduced case. The proof of 
Theorem 2.1 in the reduced case will be given in Section 8. 

3. CONNECTED COMPONENTS OF PARABOLIC SUBGROUPS 

This section is independent of the rest of the paper. Its purpose is to give a 
characterization of the possible connected components of parabolic subgroups 
of G when G is a connected group of Harish-Chandra’s class. 

Let no be a maximal abelian subspace of p. let CO be the system of roots of no 
in g and let CT be a choice of positive roots for this system. 

Let PO = MaAoNo be the minimal parabolic subgroup of G associated with 
the pair (a~, C,‘), and let P be any parabolic subgroup of G containing PO. In 
this section we shall write P = MAN for its Langlands decomposition. and 
Mi =MA.Let 

COM := {IY E CO 1 (Y = 0 on a}. 

Then .&M equals the system of roots of a0 in the centralizer ml of a in (;7. 
Moreover, CiM := COM n Co’ is a choice of positive roots for this system. 

Finally, we put E,(P) := C,‘\C OM. Then Co(P) equals the set of roots of no 
in n. Let nM = no n 111. Then 

Let SO, SOM denote the sets of simple roots of Ci and C&,,, respectively. Then it 
is well known that 

(10) &M = SO n COM. 
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Let WO, WOM denote the Weyl groups of the root systems CO and _&J, respec- 
tively. Then we have natural isomorphisms: 

wo = NK(uo)lzK(ao), WOM cv ~K,hf(aO)/&“M(aO). 

The following lemma is crucial for the purposes of this section. We recall that 
by the Bruhat decomposition the map s H NasP induces a bijection from 
WO/ WOM onto the set No\G/P of No-orbits on G/P. Let 

M wo = {u E w ( t@,‘,) c z=,‘}. 

Then it is well known that the multiplication map M IV0 x WOM -+ II’0 is a bi- 
jection. Hence the map s H NosP defines a one-to-one correspondence from 
M WO onto No\G/P. 

Lemma 3.1. Let w E NK(UO) be a representativefor s E WO. Then the orbit NowP 
on G/P has dimension one ifand only ifs E s, WOM, with (Y E SO a simple root such 
that 

(a) dimg,= 1; 

(b) (-Y$zOM. 

Remark 3.2. Note that (a) implies that 2a # CO. 

Proof. If o E SO satisfies (b) then sa E M WO. We therefore assume that 
s E M WO; then it suffices to show that NosP has dimension 1 if and only ifs = s, 
with Q E SO such that (a) and (b) hold. Let w be a representative of s in NK(uo). 

Recall that P has Lie algebra ml + n. By a standard computation of differ- 
entials one therefore readily checks that the orbit NosP has dimension one if 
and only if 

dim[no/no n Ad(w)(mt + n)] = 1, 

which in turn is equivalent to 

(11) dim[no/no n Ad(w)(nM + nM + n)] = 1. 

The hypothesis on s implies that no n Ad(w)(uM) = 0, hence (11) is equivalent 
to the assertion that no n Ad(w)(no) = no n Ad(W)(nM + n) has codimension 1 
in no. Since Ad(w) leaves no + no invariant, the latter assertion is equivalent to 

(12) dim[no n Ad(w) = 1. 

From (12) it follows that s is a Weyl group element of length 1, hence s = s, with 
Q E SO. This implies that ito n Ad(w = g_, + g_2o1, hence (a). Moreover, (b) 
follows from the hypothesis that s E M WO. 

Conversely assume that Q E SO satisfies conditions (a) and (b) and puts = s,. 
Then s E M WO. Moreover, no f’ Ad(w = g_, + g_2a, and from (a) and Re- 
mark 3.2 it follows that the latter space has dimension 1, whence (12). q 

If P is a parabolic subgroup of G containing PO, we write Tp for the set of roots 
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(Y E So such that conditions (a) and (b) of Lemma 3.1 are fulfilled. If Q is an- 

other such parabolic, then P > Q + Tp c TQ. Put 

(13) rs = TpO = {n E So 1 dima = 1). 

Then in particular we have Tp c TO. 
For every Q E TO, let H, E a0 be the element orthogonal to ker rw determined 

by CE(H,,) = 2. We define 

Obviously g(a) is a &invariant subalgebra of g. Since ga is one-dimensional, 

this subalgebra is isomorphic to sf(2, R). We fix once and for all an element 

X, E gn such that [Xa, 0Xa] = -H,. Since ga is one-dimensional, there are two 

possible choices of X,, which differ by a minus sign. 

Put X_,, = -0X,. Then the triple H,, X,, X_, is a standard s/(2, R)-triple. 

Let i, : s/(2, R) -+ g(a) be the Lie algebra isomorphism defined by 

(14) 

Then the pull-back of 0 by i, is the standard Cartan involution X H - X’ of 

s/(2, R). 

For every ~1: E TO we define 

(15) 

Then w, is a representative of the simple reflection s, in NK(Q), and J;, is con- 

tained in MO, the centralizer of a0 in K. 

Let FO be the group generated by the elementsf, (cy E TO). Then FO c MO. 

Lemma 3.3. Thegroup FO is afinite subgroup of MO. Moreover, Ad(Fo) is abelian, 
consists of quadratic elements, and centralizes mo. 

Proof. Let Go be the connected complex automorphism group of the com- 

plexification ga, of g. Then Ad(G) is a subgroup of Go. The Lie algebra of Ga: is 

naturally isomorphic with the complexification (adg),. 

Fix Q E TO. Let j, : s/(2, C) ---f (adg)o be the complex linear extension of the 

monomorphism ado i,. Since SL(2, C) . IS simply connected, j, lifts to a Lie 

group homomorphism j, : SL(2, C) -+ Gc. Let f be minus the identity matrix 

in SL(2, C). Then using (14) one readily sees that j(\(f) = Ad(&). From f” = I 

it now follows that Ad(f,)2 = I. Let F = {k E Ad(K) ) k2 = Z}. Then it is 

known that 

F = Ad(K) n exp(iadao); 

hence F is a finite abelian group that centralizes mo (cf. [9], p. 435, Exercise A3). 

Since Ad maps the generators of FO into F, it follows that Ad(Fo) c F, and all 

assertions follow. 0 
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For every a E Tp we define the smooth curve c, : [-7r/2,7r/2] + G/P by 

(16) ca(s) = w, exp[s(X, + O&)] P. 

Then ca(-7r/2) = eP and ca(7r/2) = w,‘P = fa P = eP, hence c, is a loop in G/P 

based at eP. Its class in the fundamental group III (G/P, eP) of G/P relative to 
the base point eP is denoted by [cJ. 

Lemma 3.4. The fundamental group l7l (G/P, eP) is generated by the classes [cJ, 

a E Tp. 

Proof. The manifold G/P is equipped with the structure of CW-complex whose 
cells are the orbits for the natural No-action. Let Ci denote the union of the 
closures of the one-dimensional cells, that is (Lemma 3.1): 

Cl = lJ cl(Now,P). 
CXCTP 

Then the inclusion map i : Cl -+ G/P induces a surjective homomorphism of 

groups i, : I71 (El, eP) + I71 (G/P, eP). We will finish the proof by showing that 
the loops c, are all contained in Ci ,( and that I71 (Cl, eP) is the free group gen- 
erated on the classes of the loops c,, LL E Tp. 

For cr E Tp, let G(o) be the analytic subgroup of G with Lie algebra g(o); 
recall that the latter algebra is isomorphic to sZ(2, R). The group P(Q) = G fl P 
is a (minimal) parabolic subgroup of G(a); hence G(a)/P(a) is a circle, and the 
inclusion map G(o) + G induces an embedding Ok : G(a)/P(cx) --f G/P. The 
image of ca is denoted by S,. By a straightforward SL(2, aB) computation it 
follows that the class of c, generates 171 (Sn, e) E Z. We will finish the proof by 
showing that the spheres S,, Q E Tp, form a bouquet with basepoint eP and 
union Cl. 

If (Y E Tp, then &\{eP} equals the image under oa of G(cx)/P(cx) minus the 
origin eP(a). The Bruhat decomposition of G(a)/P(a) consists of the two cells 
eP(cr) and N(cr)w, P(a), where N(o) = exp(g,) is the unipotent radical of 
P(a). We conclude that &\(eP} = ga(N(cr)waP(a)) = N(cr)w,P. Thus if 
a, /3 E Tp and the spheres &, So have a point besides eP in common, then 
N(cr)w,PflN(P)wpP#Q), hence Now,PrlNow~P#0, from which it follows 
that s, W,,M = sg WI)M, hence s, = so. 0 

Remark 3.5. The above discussion is in [8], p. 335. It suggests the natural 
question whether the relations between the [c,] can be determined explicitly in 
terms of root data, thus providing an explicit presentation of 171 (G/P, eP). 
Recently this question has been answered completely in [14]. 

We finish this section by a characterization of the connected components of P 
that will be of crucial importance later on. 

Lemma 3.6. Let P, denote the identity component of P. Then P = FpP,. 

326 



Proof. Consider the natural coveringp : G/P, --+ G/P. The group ni (G/P, eP) 

acts in a natural way transitively on the fiber p-‘(eP). We shall describe this 
action in terms of the generators [ca], (Y E Tp. Fix (Y E Tp and xP, E p-‘(eP) 

(i.e., x E P). Then by the unique lifting theorem for curves there exists a unique 
curve C, : [-7r/2,7r/2] 4 G/P, with &(-7r/2) = xP, and p o C, = c,. From (16) 
one sees that the lifting is given by: 

&a(s) = w, exp[s(X, + OX,,)]xP,. 

The action of [ca] on xP, is now given by [c,]xPe = &(7r/2), hence 

[cn]xPe = w,2xP, = faxPe. 

Since the [c,] generate fli (G/P,eP), it follows that the action of IIl(G/P,eP) 

on the fiber p-l (eP) preserves the image FpP, of Fp in G/P, (which is obviously 
a subset of the fiber). By transitivity of the action it now follows that FpP,, = 

p-‘(eP), whence P = FpP,. 0 

4. LIFTING OF INVOLUTIONS 

In this section we assume that G is a connected group of Harish-Chandra’s 
class. An involution of the Lie algebra g need not lift to the group G; it does 
however lift to a finite covering of G (which is again of Harish-Chandra’s 
class), provided a natural condition is fulfilled. More generally we shall for- 
mulate a result for finite groups of involutions of g. Note that such groups are 
necessarily abelian. 

Lemma 4.1. Let G be a connectedgroup of Harish-Chandra’s class and let L be 

the lattice in the center of g consisting of X E center(g) with exp X = e. More- 

over, let 7 be afinite group of involutions of g such that 

(17) span 
[ 1 n 7(L) = center(g). TE7 

Then there exists a finite covering group G’ of G such that every I- E I lifts to G’. 

Proof. First assume that the result holds in the case that G is abelian as well as 
in the case that G is semisimple. In the second half of the proof we will establish 
these partial results; we start by showing that the general result follows from 
these partial results. 

Let g = g1 @ c be the decomposition of g into its semisimple part and its 
center, respectively. Let Gi, C be the analytic subgroups of G with Lie algebras 
gl and c, respectively. Then obviously G = Gi C. The groups Gi and C are con- 
nected closed subgroups of Harish-Chandra’s class; moreover, Gi is semi- 
simple and C is commutative. By the hypothesis we may select finite coverings 
p1 : G[ --f Gi and p2 : C’ + C such that for every r E 7 the involutions 7)gl 
and ~(c lift to involutions ri’ of GI and 72’ of C’, respectively. Then the group 
G’ = GI x C’ has Lie algebra g, ED c = g and the involution T lifts to the 
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involution 7’ = 7-i x ~2 of G’. Moreover, the group homomorphism p : 

G,’ x C’ + G, (g, c) H p1 (g)pz(c), is a local diffeomorphism onto G, hence a 
covering of G. Its kernel consists of the set of elements (g, c) E G{ x C’ such 
that p1 (g)pz(c) = e, or equivalently such that g E p;‘(Gl rl C), c E pc’ (GI n C) 
and p1 (g)pz (c) = e. Now G1 n C is finite and p1 and p2 are finite coverings, 
hence kerp is finite and we see that p is a finite covering. 

It remains to prove the result in the cases that G is abelian or semisimple. We 
first discuss the case that G is abelian. Then exp : 9 -+ G is the universal cover- 
ing. Let L be the kernel of exp, then by the assumption (17) we have that LO = 

n 7 E I T(L) is a spanning discrete subgroup of g; hence it is a sublattice of L of 
full dimension. This implies that the natural map p : G’ = g/Lo -+ G is a cov- 
ering homomorphism which is finite since g/Lo is compact. If r E 7, then LO is 
r-stable, hence the map T factorizes to an involution of G’, which is the lifting 
of 7. 

We finally turn to the case that G is semisimple. Being of Harish-Chandra’s 
class, G has finite center Z(G). By [lo], Theorem 3.1 and the remark before 
Theorem 3.7, there exists a maximal compact subgroup Z? of Aut g containing 
7. Let K be the preimage of k under Ad : G --f Aut(g). Then K is maximally 
compact in G and its Lie algebra f is I-stable, i.e., invariant under every r E 1. 
Let E, be the semisimple part off, and c its center. Let K,, C be the associated 
analytic subgroups of G, respectively. Let n be the lattice of X E c such that 
exp X = e, and let no be the lattice of X E c such that eadX = Z (this is the A for 
the adjoint group Ad(G)). Then A c A,. We will show that 

(18) span [ 1 0 r(A) = c. 7E7 
To see that this holds, let g = g1 $ . . $ g,, be the decomposition of g into its 
simple ideals. Put Ij = qj II f and Cj = gj n C. Then we have decompositions f = 
fi @ . . $ f, and c = cl @ . . . CB c,. Here each Cj is either 0 or l-dimensional. For 
1 5 j 5 n, let Aj be the lattice of X E Cj with exp X = e, and let A; be the lattice 
of X E Cj such that eadX = 1. Th en Aj c A;, and since dimcj 5 1, there exists a 
strictly positive integer pj such that Aj = pj/‘i. 

We obviously have 

A > Al @ . . @ A,, 

and similarly A0 > A: @. . . @ A:. On the other hand, if X E A’, write X = 
Xi + . . . + X,, with Xj E Cj, and fix 1 5 k < n for the moment. Then eadX = Z 
on gk and e adT = Z on gk for j # k. Hence e adXk = Z on gk. Thus xk E Ai for 
each 1 5 k 5 II. Hence: 

Let p be a common multiple of the pj, 1 5 j 5 n. Then it follows that Aj = 

pj A; > PAY”. Hence 

A > PA’. 

Now the lattice A0 is invariant for every automorphism of g that leaves f in- 
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variant, hence for every r E 7. This implies that the space on the left-hand side 

of (18) contains pA” hence equals c. 

The result having been established already for the commutative case, it fol- 

lows from the claim that there exists a finite covering homomorphism p2 = 

C’ 4 C such that for every r E 7 the restriction 72 = TIC lifts to an involution 

72’ of C’. Let pi : K,’ -+ K, be the universal covering. It is finite since K, is 

compact semisimple. Moreover, for every 7 E 7 the involution 72 = rlfs has 

a lifting to an involution ~2’ of K,‘. Now the map p : K,’ x C’ + G. 

(k c) ++ P1 W)P 2 c , is a finite covering by the same argument as in the first part ( 1 
of the proof. Moreover, for every r E 7 the map r,’ x ri is a lifting of rlf to the 

finite covering group K,’ x C’. By the Cartan decomposition there exists a finite 

covering G’ + G which over K is isomorphic to K,’ x C’ + K. By the above 

every r E 7 lifts to G’. EI 

Recall the definition of 70 from (13). We will end this section by attaching an 

involution to each root of TO. 

Lemma 4.2. If cr E TO, then there exists a unique automorphism ro: : g + g such 

that 

(a) 7, = I on mo + a~; 

(b) rcu = I on gofor all ,5’ E &\{cy}; 

(c) 7, = -I on gLy. 

The map ra is an involution that commutes with 0 and with Ad(Mo). Finallv. r, 

lifts to some$nite covering group of G. 

Proof. Let t be a maximal torus in mo, then h = t $ as is a Cartan subalgebra 

of g. We denote the root system of h in gc by A. Let A+ be a system of positive 

roots compatible with Cl, and let @be the associated fundamental system. Let 

A0 be the set of roots in A with zero restriction to a~, and let A, be its com- 

plement. Then A0 may be naturally identified with the root system oft in mo@. 

Moreover, restriction to as induces a surjective map rg : A, -+ CO. Put @JO = 

Cp n A0 and Qr = @ n A,. Then @O is a fundamental system for Ao, and ro maps 

@, onto SO. Since dim ga = 1, the set ro’(~) consists of a unique Cu E A,, which 

belongs to @r. It follows that SO\{(Y) equals the image of GT\{(Y} under rg. Let r 

be an automorphism of g; we denote its complex linear extension to gc by the 

same symbol. If r satisfies conditions (a)-(c), then by the above observations it 

follows that 

(i) T = I on $a, and on the root spaces (gc),, y E @\{&}; 

(ii) 7 = -I on (gc),. 

The automorphism r is uniquely determined by the properties (i) and (ii); this 

establishes uniqueness. 

To establish existence we observe that, by Weyl’s theorem, there exists a 

unique automorphism T of gc satisfying (i) and (ii). The automorphism is the 

identity on 
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This space is the centralizer of a0 in gc, hence equals (mo + a~)@. 
On the other hand, if /3 E SO, then 

(19) (gak = ED) (SC),. 
II 

If /3 # a, then ro’ (/3) consists of roots in A+ contained in a set of the form 
fi + span(&) with 6 E Qr\{&}. It follows from condition (i) that r = Z on (19). 
If /3 = Q, then r&‘(P) = {&} and it follows from (ii) that r = -Z on go. Thus in 
all cases it follows that r leaves the real subalgebra gp invariant. Any auto- 
morphism of gc that leaves mo, a0 and ga (p E C,‘) invariant, leaves the root 
spaces g_p (/3 E C,‘) invariant as well. Hence r leaves the real subalgebra g 
invariant. Moreover, in the above argument we have seen that 7, := 7 satisfies 
conditions (a)-(c). This establishes existence. 

To establish the final assertion, note that T,’ = Z on hc and on all the root 
spaces for the simple roots in @. Hence ra * = I. If m is an element of MO, then 
Ad(m) leaves MO, a0 and every root space gp (p E CO) invariant. It follows that 
Ad(m) o T, = r. o Ad(m) on mo + a0 and on all go, ,0 E SO. This implies that 7, 
commutes with Ad(Mo). Finally, we notice that from (a)-(c) it follows that 
7, = @)I on gp, /3 E SO, where E(P) = 1 if /3 # Q, and where e(o) = -1. It now 
follows that 7, o 8 = 0 o TV on mo + as and on every root space ga (/I E SO). 
Hence TV commutes with 8. 

By (a) we have that T, = Z on the center of g. Hence the final assertion fol- 
lows by application of Lemma 4.1. q 

5. SOME RESULTS ON o-PARABOLIC SUBGROUPS 

In this section we assume that G is a group of Harish-Chandra’s class. We se- 
lect a maximal abelian subspace a0 of p containing aq and put A0 = exp a0 and 

n/l, = &(uo). 
Let Cog be the set of roots Q E CO = C(g, as) such that o 1 a, # 0. Let _?&M be 

the complement of ,220~ in CO. Then we may naturally identify COM with the root 
system of a0 in ml, the centralizer of aq in g. 

Restriction to aq induces a surjective map from Cos onto C, the root system 
of a, in g. We select a positive system C+ for C and a compatible system Cl of 
positive roots for CO, i.e., if a E Coq, then cy E C$ w LY~U~ E C+. Let n be the 
sum of the positive root spaces for Cf, and put N = expn and MI = Zo(as). 
Then P = M1N belongs to P(A,) (cf. Section 1). Let P = MAN be its Lang- 
lands decomposition. Then a4 = a n q. 

Lemma 5.1. Zfa E ,?!&f then ga c fj. 

Proof. From aa = a it follows that D leaves ga invariant. Suppose that X E 
ga n q. Then aq centralizes X. Hence X - 8X belongs to p n q and centralizes 
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a,. Since aq is maximal abelian in p f~ q, it follows that X - 8X E nq. This im- 

plies that a0 centralizes X - f3X, hence X = 0. We conclude that gN f’ q = 0, 

whence the result. q 

Let m, be the non-compact part of m, i.e., the smallest ideal in m containing 

m n p. Then M,, the corresponding analytic subgroup of M, is invariant under 

both u and 0. Moreover, h4, is a closed normal subgroup, and the quotient 

It4/Mn is a compact Lie group. 

The following lemma is well known. 

Lemma 5.2. Let < E kf,,. Then < = 1 on M,, 

Lemma 5.3. The non-compactpart m, of m equals the subalgebra of mgenerated 

by 00~ = a0 fl m and the root spaces grr, Q E .&jM. 

Proof. Let b denote the subalgebra generated by @M = a0 n nr and &. (k E 

&,M. Then nr = nro + b and since nro centralizes no and normalizes the root 

spaces RCI, we see that the algebra b is an ideal in m. Moreover, from 0 c 

no + CrrtCo &, it follows that m n p c b. Hence mn c b. 

To see that the converse inclusion also holds, let X E (I~~, Q E ,!?&. Then 

X - 0X E m n p c nr,. Select H E c@M such that Q(H) = 1. Then X+0X = 

[H, X - 19x1 belongs to m, as well, since m, is an ideal; we conclude that X E 

m,. Hence (I,, c m, for every (Y E COM and it follows that b c m,. (7 

Corollary 5.4. The non-compact part M, of M is contained in (M n H), 

PrOOf. We have that d0M c a0 fI b. Moreover, Qa C fj for every 0 E &M, by 

Lemma 5.1. From the previous lemma it now follows that m, c m n b. [7 

Let SM E Aut(ao) be the longest Weyl group element for the root system &M, 

relative to the system CzM := ,&M n Cz of positive roots. 

Corollary 5.5. The Weylgroup element sM has a representative in M, n K. 

Proof. This is an easy consequence of Lemma 5.3. 0 

We now fix a representative 21~ of .FM in M, n K. Note that by Corollary 5.4 we 

have 

‘l!M E (M n H n K),. 

Note also that by Lemma 5.2 we have that 

<(wM) = 1 for every < E Mf,. 

Let WOM be the centralizer of a, in WC,. The elements of WOM normalize the 

decomposition a0 = aoh @ aq, hence commute with fl and 0. In particular, .~M 
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commutes with 0,8, hence the automorphism s~a0 of a0 is an involution. If ‘p 
is an automorphism of as, we denote its inverse transpose < H < o cp-l, a; -_) a; 
by the same symbol. The accordingly defined involutions (T, 0,s~ of a; ob- 
viously leave CO invariant. 

Lemma 5.6. The involution sM(Teof ai kUVeS the Sets &,, .&M, co’, SO, SQ, SOM 

and Tp invariant. 

Proof. If (Y E CO, then SM(T&% Ia, = cy 1 a4, since sM& centralizes a,. Hence 
sM& leaves the sets Cog and Co’g invariant. On the other hand, if (Y E CzM, then 
SMffeo = -SMa E z&,, and we see that sM& kiVeS c:M and &,M invariant. 
Since Cl = ZIM U E& it follows that sMo0 leaves Cc invariant. It is now ob- 
vious that SO, Sag, SOM are invariant as well. Finally, let (Y E Tp, and put p = 
s&o. Then Q E &\COM = SQ, hence /3 E Sag, and it follows that /3 E 
SO\.&M. Moreover, gp = Ad(wM)&g,, hence dimgo = dimg, = 1, and we 
conclude that /3 E Tp. q 

Finally, we define the compact part m, of m to be the orthocomplement of m, 
in m, with respect to B (cf. Section 1). Then m = m, CD m, as a direct sum of Lie 
algebras. 

Lemma 5.7. The compactpart m, of nt is contained in mo. 

Proof. This is an immediate consequence of Lemma 5.3. 0 

6. INVOLUTIONS OF THE ROOT SYSTEM C,, 

We retain the assumptions and notations of the previous section. We shall need 
the following lemma relating the set S of simple roots for Cf with the set S,-, of 
simple roots for Ci. Recall that SO = SOM U SQ (disjoint union). Recall also 
that P E ?(A,) and E(P) = C+. Moreover, Tp is a subset of SO which is dis- 
joint from SOM, hence Tp C sag. 

Lemma 6.1. There exists apermutation 6 of Soq of order at most two such thatfor 
every CY E Soq we have aecu E 29(a) + N&M. Let r-0 : Coq + C be the map induced 
by restriction to a,. Then r-0 maps &, onto S. Moreover, its$bers are precisely the 
orbits of the permutation 8. 

Proof. See [13]. 0 

In the rest of this section we assume that a4 is not central in g (so that C # 0) 
and that dim aq = 1. Then S has one element, hence by the above lemma Soq 
has either one or two elements. It follows that Tp has at most two elements. 

We recall that SM denotes the longest Weyl group element of the root system 
‘!&M (relative to SOM) and that z)M is a representative of SM in (M,, II K fl H),. It 
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follows that the conjugation map dd(uM) : G --+ G, x H VMX~~ commutes 

with both u and 0. 

If S is a system of simple roots for a root system R, we shall write ‘D(S) for 

the associated Dynkin diagram; moreover, for brevity of speech we identify 

simple roots in S with the associated vertices in D(S). If Si c S then ‘o(Si) is the 

Dynkin diagram that arises from 2)(S) by omitting the roots from S\Si. If ‘p is 

an automorphism of the root system R which leaves S invariant, then cp induces 

an automorphism of the Dynkin diagram 2)(S), which we denote by cp again. If 

Si c S is invariant under (p, then the automorphism cp of 2)(S) restricts to an 

automorphism of D(S). 

In particular, it follows from Lemma 5.6 that so& induces involutions on 

D(SO) and D(SOM). 

Lemma 6.2. The involution s~o13 leaves the connected components of the Dynkin 

diagram 2)(&M) invariant. 

Proof. Use that 8~00 = -SM on SOM. 0 

We recall from Lemma 5.6 that the involution sM& leaves the sets Tp c Soq c 

SO invariant. The purpose of the following three lemmas is to distinguish cases, 

depending on the action of sM& on Tp. 

Lemma 6.3. Assume that Tp contains ajixedpointfor s~a0. Then Soq consists oj 

precisely one element. In particular Tp = SO,. 

Proof. Let Q E Tp be fixed under SM&. Then &a = SMQ. Elements of BOM 

leave the set Q + Z&M invariant; hence &cr E Q + z&M. On the other hand 

we have &n E 6(a) + NS OM, where 13 is the permutation of Soq defined in 

Lemma 6.1. By linear independence of the elements of SO it follows that ti(c~) = 

a. The desired result now follows from the last assertion of Lemma 6.1. •I 

Before proceeding we prove a lemma that will be useful at a later stage. 

Lemma 6.4. Let the assumptions of Lemma 6.3 befuljilled, and let a E Seq. Then 

the involution r, of 9, dejined in Lemma 4.2, is trivial on m and commutes with 

Ad(wM) and o. 

Proof. The subalgebra m, is generated by no n m and the root spaces gis, 

where y E SOM. Since SOM n Tp = 8, it follows that 7, = I on m,. Since ~~~ is 

trivial on mo and mo > m, by Lemma 5.7, it follows that 7, = I on m. Hence r,, 

commutes with Ad(M,), and in particular with Ad(vM). Since 7, commutes 

with 8 as well, it suffices to show that 7, commutes with $J := Ad(vM) 08. Now $J 

leaves mo and as invariant, commutes with 8, and permutes the roots of SO. By 

the hypothesis it follows that +cu = (Y. It now easily follows that $ o 7,, = TV o $ 

on mo @ a0 and on every gp, p E SO. Hence 1c, and TV commute. •I 
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Lemma 6.5. Assume that Tp contains a root Q such that CII and p := sMo&X are in 
dcflerent connected components of the Dynkin diagram of So. Then So, = {(Y, /I} 
and (Y and ,/3 are isolated vertices in the Dynkin diagram of SO. 

Proof. From the hypothesis it follows that (Y I ,13. Since Sag contains Tp and 
consists of at most two elements we must have Soq = {a,p}, hence &M = 
&\{a, ,f3}. Now suppose that y E &M and y J Q. Then s&&y J ,& hence y and 
sM&y are in different connected components of the Dynkin diagram of SO, 
contradicting Lemma 6.2. We conclude that LY is isolated. By symmetry in the 
argument p is isolated as well. q 

If V is a Dynkin diagram, and cr, ,8 are simple roots in the same connected 
component of V, then there exists a sequence of mutually different simple roots 
70,. . . , yn in 27 such that 

(a) o = 70, P = x; 

(b) yjJ+/j+l for OSj<n. 

Since a Dynkin diagram cannot contain a closed circuit, the above sequence is 
unique. We call it the sequence of roots in 2) connecting (Y and ,O. 

Lemma 6.6. Let Q E Tp, and assume that the root /3 = sMu& is differentfrom (Y, 
but contained in the same connected component of a(&). Then the sequence yo = 

a,...,y,=P (n> 1) f o roots in V(S0) connecting (Y and /3 has the following 
properties. 

(a) sMa6yj = Yn _j for all 0 5 j < n; 

(b) the Dynkin diagram V(y) := V({Tj IO <j 2 n}) is of type An+,, i.e., it is 
of the following form: 

C-Y = -lo 71 Yn-1 Yn = P 
0 A _----___--____ 0 

(c) yj E &M for all 0 < _i < n; 
(d) the Dynkin diagram V(T) equals the connected component of V(S0) con- 

taining (Y (and /3). 

Proof. By applying SMae to the sequence rj we obtain a sequence SMaOyj 

connecting /3 and Q. Condition (a) follows by uniqueness of the connecting 
sequence. 

Suppose that yj and yj+ 1 are connected by a multiple link. Then so are their 
respective images Y,, -j and yn _j_ 1 under sM(T8. Since a connected Dynkin 
diagram can contain at most one pair of roots connected by a multiple link, it 
follows that j + 1 = n -j. Hence SMaeyj = yj+ 1, from which we see that yj and 
yj+ 1 have equal length, contradicting the assumption that they are connected 
by a multiple link. Thus we see that all pairs rj, Tj+ 1 are connected by a single 
link, and (b) follows. 
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Since Soq consists of at most two elements we must have &\(cI, /j} c &M. 
Hence the sequence satisfies condition (c). 

Suppose now that (d) does not hold. Let y E SO be any root different from the 
ri such that y ,l! ok for some 0 5 k 5 n. Then y and SMC+Y are in the same 
connected component of the Dynkin diagram of &M, hence these roots are 
connected by a sequence of roots from &M. If k = 0 or k = n this would imply 
the existence of a closed circuit in the Dynkin diagram of SO which is im- 
possible. Hence 0 < k < n (and in particular n is at least 2). From the assump- 
tion on y it follows that sM&Y is not perpendicular to pn_ k. By inspection of all 
possible connected Dynkin diagrams we now see that k = n - k, hence n is even 
and at least two, and k = n/2. Again by inspection of all Dynkin diagrams we 
see that either n = 2 or n = 4. 

If n = 2, then the full connected component of the Dynkin diagram of So 
must be of type Dl, with I 2 4. Put yj = y and let rj, 4 5 j < I, be determined 
by the requirement that the rj, 0 5 j 5 I- 1, are mutually different, and that 
~,j~~,;+1forall3~j<I-l;seefigurel. 

8 

T-1 

71-2 

Q=Yo Yl 72 = P 

Figure 1. 

Then obviously sM& fixes the roots rj with j @ {0,2}. But these roots con- 
stitute a connected component of the Dynkin diagram of SOM, and sM& acts 
on them as minus the associated longest Weyl group element. This contradicts 
the fact that in the root system AI _ 2 the longest Weyl group element does not 
equal minus the identity. 

It follows that we must have n = 4. By inspecting all possible Dynkin dia- 
grams we then see that the connected component of the Dynkin diagram of SO 
containing cx is of type E6 and consists of the roots 70:. . . ,74, y (see figure 2). 

Figure 2. 
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The subdiagram consisting of the roots yi,yz,ys,y is of type Dq. Now sMff0 
induces an automorphism of this subdiagram which on the one hand is not the 
identity, and on the other hand equals minus the associated longest Weyl group 
element. The latter commutes with all automorphisms of the diagram hence 
must be the identity, contradiction. 

Thus we see that the assumption that (d) does not hold leads to a contra- 
diction. •I 

Corollary 6.7. Let Q, p E Tp be as in Lemma 6.6. With the notations of that 
lemma let r = CO n span{yj, 0 5 j 5 n}. Then: 

(a) for every y E I? we have dim gr = 1; 
(b) the Lie subalgebra g(r) of g g enerated by the root spaces gr, y E r, is an 

ideal isomorphic to sl(n + 2, Iw); 

(c) aea=y1 +...+yn-1 +p; 

(d) the Lie subalgebra generated by the space ga and its images under o, 8, a0 is 
isomorphic to sl(3, [w); 

(e) for allf E Fp we have f 2 E H,. 

Proof. Let y E r be an indivisible root. Then y belongs to the reduced root 
system spanned by simple roots of D(y). This root system is of type A,,+ 1, hence 
y is Weyl conjugate to CX. It follows that dim gr = dim ga = 1. Moreover, since 
2a $ CO, it follows that 27 is not a root. Hence all roots in r are reduced and of 
multiplicity one, and (a) follows. 

Since D(y) is a connected component of D(&), all roots from Co\r are or- 
thogonal to lY Hence g(r) is an ideal. Since all roots in r are reduced and of 
multiplicity 1, it follows that g(r) is the normal real form of the complex simple 
algebra of type A,+ 1. Hence g(r) N sl(n + 2, rW>. 

Now that (a) and (b) have been established, it follows by a straightforward 
computation in sl(n + 2, [w) that sop = ,O + yi + . . . + Ye. But a&~, = sM@ and 
(c) follows. 

To establish assertion (d), put y = U&X. Then y + cx is the longest root of the 
root system r. Hence the root system R generated by a: and y consists of 
ok, y, a + y and their inverses: it is therefore of type AZ. Since R is D- and O-in- 
variant and consists of roots of multiplicity one, (d) follows. 

To establish the last assertion we note that from (b) it follows that (a, &a) = 
(a,n). Put (Y~ = CX,CYJ = &a; then from (d) it follows that gaj, g_, (j = 1,2) 
generate a subalgebra G of g that is stable under c and 6’ and isomorphic to 
s/(3, R). Let S be the corresponding analytic subgroup of G. Since SL(3, W) has 
trivial center and a universal cover which is twofold, it follows that S is iso- 
morphic to either SL(3, R) or its double cover. It follows that the center Z(S) of 
S has at most two elements. Now S is invariant under a, and so is its center 
Z(S). We claim that Z(S) c H,. This is obvious if Z(S) consists ofone element. 
In the remaining case CJ fixes the neutral element of Z(S); hence it must also fix 
the second element. Hence Z(S) c S”. But in this case the group S is simply 
connected; hence S” is connected (see [3]) and the claim follows. 
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Let F(S) be the subgroup of S generated by the elements f&, j = 1,2. Then 

by a straightforward computation in SL(3, W) we see that f 2 E Z(S) for every 

f E F(S); hencef2 E H, for allf E F. 

To finish the proof we distinguish between the cases IZ = 1 and n > 1. If Iz = 1 

then Fp = F(S) and (e) follows. 

If n > 1 then a! I p, hence fo/ andf;j commute. Since the latter elements gen- 

erate Fp, it follows that Fp is abelian, and it suffices to show that f’ E H, for 

f E { fa,fd}. By symmetry in the roles of o! and ,0 it suffices to show that f;” E 

H,. But this follows from the above sincef, E F(S). II 

7. THE AUTOMORPHISM 7 

The purpose of this section is to construct a special automorphism 7 of g that 

will be needed in the proof of the main result in the reduced case, which will be 

given in the next section. 

We keep the assumptions and notations of the previous section. In particular 

we assume that aq has dimension one and is not central in g. Thus C is non- 

empty. We recall that Q H C(Q) defines a bijection from P(A,) onto the col- 

lection of positive systems for C = C(g, a4). Let P E ?(A,) be determined by 

C(P) = C+, and let P = MAN be its Langlands decomposition. Then P(A,) = 

{P, P}, and any Q E P(A,) has the Langlands decomposition 

(20) Q = A4ANp. 

Put fi, = QHe, and let the real analytic maps aQ : flQ + A, and mQ : fi?Q + 
M/M n H, be defined by 

X E N@ZQ(X)mQ(X)H, (X E 0,). 

If cp is an automorphism of g mapping fiQ onto nQ, then its restriction to iiQ 
lifts to an isomorphism between the associated simply connected nilpotent 

groups, which we denote by the same symbol ‘p : NQ 4 NQ. Let the Haar 

measures of the nilpotent groups NQ, NQ be normalized as in [11], Section 4 

(see also [I], p. 370). Finally we write C”(M n H,\M/M n H,) for the space 

of bi-(A4 n H,)-invariant real analytic functions on M. 

Proposition 7.1. There exists an automorphism T of the Lie algebra g with the 

following properties: 

(a) r commutes with CT, 0 and Ad(vM); 

(b) r leaves the subspaces no, a, n, and m invariant, and T = -I on CT,: more- 

over, zfQ E P(A,), then 

(c) T maps i?Q onto nQ; 

(d) the lifted isomorphism r : @Q + NQ satisfies r*(dnQ) = diiQ; 

(e) the lifted isomorphism r maps NQ n GQ into NQ n L?Q, andfor ever-v func- 

tion cp E C”(M fl H,\M/M rl H,) and all ii E NQ n flQ we have: 

P(mQ(‘fi)) = P(mQ(fi)-‘). 
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In the proof of this proposition we need the following lemma. Let M,, and A& 
be the analytic subgroups of M with Lie algebras m, and m,, respectively. 
Moreover, let ZM(M~) denote the centralizer of M, in M. 

Lemma 7.2. Let cp E P(M fl H,\M/M n H,). Then: 

(a) cp(am) = cp(m-') (m E Me); 

(b) cp(w) = 4.~) =9(m) @EM, Y EM& 
(4 cp(fm) =cp(W-) (~EM~>~EZW(K)). 

Proof. (a) By analyticity of ‘p it suffices to prove the equation for m in a 
neighborhood of e in M,. Thus, it suffices to prove the equation for m = exp Xh 
with X E m n q, h E H,, and in fact we may as well assume that h = e by the bi- 
H-invariance of cp. But for such m we have m-l = grn and the equation follows. 

For the remaining assertions we note that the natural map K rl M + 

M/M n H, is surjective. By the Peter-Weyl theorem it is therefore sufficient to 
prove (b) and (c) for a function cp of the form 

(21) cp(m) = (~1 I Jb)772), 

with < E hr,,, and with nt ,772 vectors in ‘l-t, that are fixed under <(M n H,). For 
such a function cp the assertion (b) follows by application of Lemma 5.2. 

For assertion (c) we first note that M, = McM,,. Let m E M, and f E 
ZM(M,). Write m = xy with x E M,, y E M,. Then f centralizes m,, hence 
normalizes the complementary ideal mn of m, and we see that f -'yf E M,. In 
view of(b) it now follows that 

cp(fm) =dfv) =cp(xf) =vbff-'vf) =cp(mf). 0 

Proof of Proposition 7.1. It follows from Corollaries 5.4 and 5.5 that I = 
VM, hence o commutes with Ad(vM). It is now immediate that the properties 
(a)-(d) are all satisfied if r is replaced by any of the automorphisms (T, 13. Since 
VM E (M fl K),, the automorphism Ad( VM centralizes a and normalizes the ) 
spaces n and n, the action on the two latter spaces being by maps with de- 
terminant 1. Thus we see that (a)-(d) are also fulfilled with g o Ad(vM) in place 
of 7. 

It remains to find an automorphism satisfying condition (e) in addition. For 
this we treat the case Tp = 0 and the cases distinguished in Lemmas 6.3,6.5,6.6 
separately. 

Case (a). Assume that Tp = 0. Then M = Mp is connected by Lemma 3.6. We 
put 7 = U. Then obviously g maps NQ n L'Q onto NQ n 0~ and if E E NQ n L'Q 
then mp(?-n) = TmQ(ti) = umQ(fi). From Lemma 7.2 (a) we now see that r sat- 
isfies (e). 

If we are not in case (a), then Tp # 0, and we distinguish between the case 
that sM& has a fixed point in Tp (case (b)), and the remaining case that this is 
not so (case (c)). 
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In the latter case Tp consists of two different roots Q and /?, and j? = ~~cr0ti. 

We split this case in the subcases that either Q: and 0 are in different connected 

components of the Dynkin diagram of So (case (cl)), or these roots are in the 

same connected component of the Dynkin diagram (case (~2)). 

Case (b). Assume that s~a6’ has a fixed point o in Tp. Then by Lemma 6.3 we 

have Soq = Tp = {a}. The root space ga has dimension 1 and is invariant under 

the automorphism cp = Ad(vM Thus ‘p acts by a scalar c E IR on !I,,. On 

the other hand, since v& centralizes no it follows that ,trh E MO, hence p’ = 

Ad(trM)’ acts by the scalar fl on gn. Hence c2 = il and it follows that c = 

-(-1)’ for some E E {O,l}. We define T = Tc:Ad(vM)a. Before proceeding we 

note that with this definition: 

(22) r= -0 on ga. 

Combining the discussion at the beginning of this proof with Lemma 6.4 we see 

that conditions (a)-(d) are fulfilled. We claim that (e) is fulfilled as well. 

One readily sees that it suffices to prove this for any finite covering group of 

G. In view of Lemma 4.1 we may therefore as well assume that the involutions (T 

and T,~ of g lift to involutions of the group G. This will be assumed from now on. 

Since T leaves a invariant by condition (b), its lifting 7 leaves M invariant. By 

condition (a) the map 7 leaves M n H,, invariant, hence induces a diffeomor- 

phism of M/M n H,, which we denote by Y- again. From (b) and (c) we see that T 

maps RQ onto QQ, and that for all x E QQ we have: 

rnQ(7.Y) = 7mp(.u). 

Therefore it suffices to prove that for any cp E C”(M n H,\M/M n H,) and all 

no NQnRpwehave 

F'hQ(fi)) = dmQ(fi)-'h 

For this it suffices to show that for all m E M we have: 

(23) c&-m) = cp(m-‘). 

By real analyticity and bi-(M n H,)-invariance of cp. and in view of the fact that 

M = FpM, by Lemma 3.6, it suffices to establish (23) for m = f exp X, with j’ E 

Fp and X E m n q. 
In the present case Fp is the group generated by J1 = exp(X, + 19x(,). where 

X,, E gn is chosen as in (14). Using (22) and the fact that 7 commutes with 0 we 

see that 

7-fey = exp(T(X, + OX,)) = exp(-0X, - Xn) =J;;_‘. 

It now follows that T(S) =f-’ for all f E Fp. 
On the other hand, for X E m n q we have that 

-r(exp X) = exp(7X) = exp(T:Ad(vM)aX) = VM exp(-T<EX) frM1. 

Since 7, = 1 on m by Lemma 6.4, it follows that 

T(expX) = VM exp(-X)1$‘. 
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Combining these observations we obtain, for f E Fp, X E m n q, that 

r(fexpX) =f-l~~ exp(-X)v;‘. 

Note that f centralizes m. by Lemma 3.3, hence m, by Lemma 5.7. Moreover, 
WM E MD. Hence for cp E CW(M n H,\M/M n H,) we have, by Lemma 7.2: 

(P(r(fexpX)) = v(felVM exp(-X)“G1) = (P(?JMexp(-X)f-‘) 

= cp(exp(-X)f-‘). 

We thus see that (23) holds for m =fexpX with f E Fp, X E m II q. This 
completes the proof in case (b). 

Case (cl). In this case we put r = g. Then T satisfies all properties (a)-(d), and 
it remains to establish property (e). Since LT maps fin, = @QAMH, onto RQ = 
NQAMH,, it follows that for all ii E NQ n 65'~ we have: 

Hence it suffices to show, for every cp E C”(M n H,\M/M n H,), that the 
identity 

(24) cp(am) = cp(m-‘) 

holds form = mQ(ii). 
By Lemma 6.5 we have that Tp = SQ = {a, ,B} with Q, /3 isolated vertices in 

the Dynkin diagram D(So). From this and the fact that 2a, 2/3 9 CO (cf. Re- 
mark 3.2) it follows that C& = Sos = {c~,p}. Moreover, SM centralizes the 
roots a, j3, and we conclude that p = a&. 

Let g(7’p) be the Lie subalgebra of g generated by the root spaces g+,, y E 
Tp. Then g(Tp) is invariant under the involutions (T and 0. Now a + ,8 is not a 
root, and it is immediate that g(Tp) = g(a) @ g(/3) as Lie algebras; here we 
have written g(y) for the Lie algebra generated by gr, g_ y, for y E {a, ,O}. Select 
X, E gu as in (14); thus H,, X,, X, = -0(X,) is a standard s1(2,lR)-triple. Put 
X, = &X0. Then Hp, Xp, X-p are the respective images of Ha, X,, X_, under 
ue. Let i,, ip be the associated embeddings of s1(2, [w) into g defined as in (14). 
Then i, x is is an isomorphism from 6 := sZ(2, [w) x sZ(2, W) onto g(Tp); the 
respective pull-backs g*, 0 * of cr and 0 under this isomorphism are given by 
0*(X, Y) = (-Xl, -Y’) and c*(X, Y) = (Y,X). 

Since g(a) and g(p) commute, it follows that fa and fp commute. Hence Fp 

is commutative. Put U = X, + X0. Then U and 8lJ are c-stable, and hence 
f& = exp(r( U + OU)) belongs to H,. Moreover, (T(&) =fo and CT(&) =fa. 
Thus we see that f cr( f) E H, if f is any of the generators fa, fp of Fp. Since Fp is 
commutative we infer that f c( f) E H, for all f E Fp. Let now f E Fp. Then 

ff(f >-’ =f (4f >f 1-l Ef We n F). F rom this we see that (24) holds for every 
m E Fp. It therefore suffices to show that mQ maps NQ n fi?Q into Fp/Fp n H,. 

In the above we inferred that C& = {(Y, p}, hence NQ and NQ are contained 
in the analytic subgroup G(Tp) of G with Lie algebra g(Tp). It follows 
that mQ maps NQnfiQ into M n G(Tp)/He n G(Tp). Since A4 n G(Tp) c 
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MO n G(TP) c FP it follows that mQ maps fiQ n fd?Q into Fp/Fp f’ He. This 
completes the proof of(e) in case (cl). 

Case (~2). This is the case occurring in Lemma 6.6. We define r = 8. Then 
obviously T satisfies conditions (a)-(d). We will finish the proof by showing 
that ‘r satisfies condition (e) as well. Since 8 maps fig = NQAhff& onto RQ = 

NQAhfff,, it follows that for all fi E NQ n flQ we have: 

mt)(rfi)= TmQ(fi)=hQ(ti). 

Hence to prove (e) it suffices to show that for all 8 E NQ n fiQ we have: 

(25) 6mQ(fi) E mQ(fi)pl(MnHc). 

In the following we shall use the notations and conclusions of Lemma 6.6 and 
Corollary 6.7. From g(r) 2 sl(n + 2, R) it follows that 

where aa is the ((n + 1)-dimensional) vector sum of the lines (ker Yj)‘, 0 2 
j < n. We note that a, c aa( hence 

aO(r) = aOh @a,, 

where @h(r) = a,)(r) 0 I). Moreover, Cog = {o E CO 1 alaq # 0) is contained 
in co(r). Hence for Q E P(A,) we have that NQ,#Q c G(r), where the latter 
denotes the analytic subgroup of G with Lie algebra g(r). 

Let Ml(r) = Ml n G(F). Then Ml(r) is the centralizer of a4 in G(r), and 
we see that Q(r) = i!!fl(r)NQ is a minimal o-parabolic subgroup of G(r). 
Moreover, we readily see that Q(r) = Q n G(P). 

Let H(r) = H n G(T). Then H(r) is an open subgroup of G( r)O. The root o 
restricts to a root Y of aq in g(r). Let g(r), be the associated root space. If X E 
ga\{O}, then X + cr0X is a non-trivial &stable element of g(r),. Hence 
E(g(r)ue, aq) # 8 and it follows that the set fi?Q(r) := Q(r)H(r), is open and 
dense in G(r) ( use [l], Appendix B). This implies that #Q fl fi?Q(=) is open and 
densein NQ nf2Q. 

Next we observe that 

(26) ml(r) = a0V) @ Cl3 gr. 

“rE~n‘%vl 

Let M(r) be the Langlands A4 of Q(r). Then m(r) is contained in the ortho- 
complement of a4 in ml(r), with respect to B. From (26) we now see that 
m(r) c h(r). in view of Lemma 5.1. Hence M(r), c H(T),, and by Lemma 
3.6 the inclusion Fp + M(r) induces a surjective map from Fp onto the dis- 
crete space M(f )/M(r) n H(T),. 

Let mQ(r1 : flQ(r) 4 M(l’)/M(I’) n H(P), be the map defined by 

x E NQAqmQ(r)(x) H(r)e. 
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Then by compatibility of decompositions it is obvious that for fi E Np n O,(,) 
the element mQ(r)(ti) E M(r)/M(r) fl H(T), has canonical image mQ(fi) in 
M/M 0 H,. It follows that WZQ(NQ n L'Q,,J) is contained in the canonical image 
of Fp in M/M n He. By density and continuity it finally follows that for every 
fi E fiQ n fi?Q there exists af(?i) E Fp such that 

mQ(fi) =f(fi)(hfn He). 

Hence 

hQ(fi) =f(fi)(M n H,) =f(fi)-‘(M fI H,) E mQ(ti)-‘(M n He), 

from which (25) follows. 0 

For Q E ?(A,), let hQ : G + A be the real analytic map defined by 

(27) XENQ~Q(X)MQK (XE G). 

Then we have the following consequence of Proposition 7.1. 

Lemma 7.3. Let T be an automorphism of g satisfying conditions (a)-(e) of 
Proposition 7.1. Moreover, let Q E P(A,). Then for every v E c$~ and all ii E NQ 
we have: 

(28) hQ(T”)u = h,(n)-“. 

Moreover, for every p E aia: and all ii E ~VQ n 6'~ we have rfi E NQ n On, and 

Proof. It suffices to prove the assertions for any covering group of G to which D 
has a lifting. By replacing G by a suitable finite covering we may as well assume 
that both o and r have a lifting from g to G (use Lemma 4.1). 

The automorphism T of G commutes with 0 by condition (a) of Proposi- 
tion 7.1 and therefore stabilizes K. Moreover, r preserves a, hence Ml and M. It 
maps NQ onto NQ. Thus if ti E NQ then from fi E NQhQ(n)MK it follows that 
7ii E NQ?-hQ(ti)MK, and we conclude that ho(Tti) = ThQ(fi). Since r = -Z on 
aq this implies (28). 

The automorphism 7 of G commutes with cr as well, hence leaves H, in- 
variant. It therefore maps the decomposition RQ = NQAMH, onto 0, = 
NQAMH,. The assertion (29) now follows by an argument similar to the one 
above. q 

In the proof of the main result in the next section, a key role is played by the 
following corollary. 

Corollary 7.4. Let I- be an automorphism of g satisfying conditions (a)-(e) of 
Proposition 7.1, and let Q E P(A,). Let E E dfu, and assume that ql,r/z E Ii;. 
Then for all X, u E a;o and all ii E NQ n fi?Q we have 
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Proof. By unitarity of < the expression in the left-hand side of (30) equals 

(31) hQ(n)“ap(n)X-V+PQ(771,~(111e(ii))-’777). 

The function m H (71, <(m)nl) belongs to C”(M n H,\M/M n H,). Applying 

Proposition 7.1 and Lemma 7.3 we may therefore rewrite (31) as 

hQ(r”)-Vap(7fi)- X+“+PQ(rll~E(mp(7~))~2). 

which in turns equals the right-hand side of (30). q 

8. PROOF OF THE MAIN RESULT IN THE REDUCED CASE 

In this section we work under the same assumptions as in the previous one. 

Thus aq has dimension one and is not central in g. Moreover, P is a minimal 

o-parabolic subgroup containing A,. Thus P(A,) = {P> P}. 
We assume that the group H is connected. Then 0p = QHE = QH for every 

Q E W&J 
Let < E &r” be fixed from now on. In the course of this section we shall prove 

the following result. 

Proposition 8.1. Let ~1, r/2 E l-l?” “. Then 

(B(P : P : r( : X)q,r/& = (q1,B(P : P : c$ : -X)72) 

as an identity of meromorphicfunctions of X E ai@. 

Before beginning with the proof of this proposition we will first derive Theo- 

rem 2.1 from it. 

Proof of Theorem 2.1 in the reduced case. Assume in addition that 1 W/ WKn H / = 

1. Then we are in the reduced case where Theorem 2.1 still needs to be proved. In 

this case the direct sum (4) has one term, so that I’(<) 2 ‘Fly” “. The above 

proposition therefore implies Theorem 2.1 with Q = p. This is sufficient since 

P(‘4,) = {P,P}. 0 

To explain the idea of the proof of Proposition 8.1, we will first discuss a se- 

quence of equalities that hold in a formal sense. Later these equalities will be 

interpreted by means of a meromorphic continuation. 

Let prl : V(t) + ?-t, MnH be the projection onto the u’ = 1 component in the 

decomposition (4). Let Q E P(A,), n E ‘Hy”“. Our first goal is to obtain a 

formal expression for pri o B(Q : Q : < : X)q. Using [l], Theorem 5.10 and 

Proposition 6.1, we obtain that 

(32) pr, o B(e : Q : < : X)77 = evl o A(0 : Q : < : A) j(Q : < : X)q 
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as an identity of meromorphic functions in X E at@. For Q E P(A,) and R E LI! 
we put: 

a*,(Q, R) = {A E a*qC 1 (Re A, o) < R, ‘dc~ E C(Q)}. 

Then by [l], Proposition 4.1, there exists a constant C > 0 such that for all Q E 
P(_4,) and all X E ai(Q, C) the intertwining operator is given by an absolutely 
converging integral on continuous functions: 

(33) [A@ : Q : t : X)f](x) = J f(fix)dfi (x E G) 
NQ 

forf E C(Q : 5 : A). 

On the other hand, we have the following result about the continuity of 

At : 4. 

Lemma 8.2. Let Q E P(A,), and 7 E lf~“H. Then for X + pQ E a*,(Q, 0) the 
H-Jxedgeneralizedfinction j( Q : tf : X : v) . IS continuous andgiven by theformula 

(34) 
j(Q : < : x : v)(X) = aQ(x)‘+” t(mQ(x))v for-Xc flQ= Qff? 

=o elsewhere. 

Proof. This follows from [l], Proposition 5.6 and the display preceding 
Lemma 5.7. 0 

Combining (32), (33) and (34) we obtain 

(35) pr, 0 B(e : Q : < : ii)v = s “&++““~(mQ(fi))~d” 
NQI~T~Q 

for X in the intersection of a,(& C) and a,(Q, 0). Unfortunately this intersec- 
tion is empty, so that we can only interpret (35) in a formal sense. Continuing in 
this formal fashion, let 71, r]2 E NFI, MnH Let r be an automorphism of g satis- . 

fying conditions (a)-(e) of Proposition 7.1. Then applying Corollary 7.4 with 
v = 0 we obtain (formally): 

(36) (B(P : P : t : 4711,772) = J (ap(ii)X’“E(mp(ii))171,r/2) dfi 
Npnfzp 

We now make the substitution of variables n = rii. Since r : ~3 H rn, Np --f 
Np = I?p, is a diffeomorphism with r*(dn) = dti (see Proposition 7.1 (d)), the 
integral in (37) becomes: 

(38) 
N ;$a- ( 

771, e(n) -X+Pp[(mp(n))~2) dn = (71, B(P : p : [ : -x)772). 

P P 

We will interpret the above sequence of equalities by a meromorphic con- 
tinuation, involving an additional parameter v E a;@. The particular con- 
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tinuation is based on an idea that goes back to [ 121, and was also applied in [ 11, 
Sections 7 and 8. 

Let Q E P(A,), n E ?-tynH. Then for every (A, V) E a\@ x u;c such that 
j(Q : ( : . : r]) is regular at X - V, we define an element of C-““( Q : < : A) by: 

(39) J(Q:&A:v:‘I)=~;~(Q:[:X-~:~), 

where hp is defined by (27). Then viewed as a Hom(‘FIcMnH, C”(K : <))-valued 
function, J(Q : ( : X : v) depends meromorphically on (A, V) E a;c x a:@. 

From [l], Corollary 4.14, it follows that A(Q : Q : [ : X)J( Q : 6 : X : v : 7) re- 
stricts to a smooth function on OH, whenever (A, V) is not a singular point for 
any of the meromorphic factors involved. In particular the expression may then 
be evaluated at the identity element. Put 

(40) B(Q: Q: <: X : v)n = ev,oA(Q:Q:<:X)J(Q:<:X:v:n). 

Lemma 8.3. The linear map 

(41) B(e : Q : < : X : V) E Hom(‘H~nH,‘H~) 

depends meromorphically on (X, u) E a& x aGC. Moreover, if X0 E aiC is not 
a singularity for any of the meromorphic maps X H A(0 : Q : < : A) or X H 
j(Q : ( : A), then (X0,0) . 1s not a singularity for (4 1 ), and 

B@ : Q : < : X0 : 0) = p ri o B(Q : Q : < : As) 1 HynH. 

Proof. From the assumptions it follows that the right-hand side and hence the 
left-hand side of (39) depends holomorphically on (A, V) in a neighborhood of 
(A,, 0). Combining this observation with (40) and applying [l], Corollary 4.14, 
we see that (41) is regular at (X0,0). Moreover, if n E 3itMnH, then 

B(Q : Q : < : A,, : 0)~ = ev,oA(e:Q:<:&)J(Q:<:Xo:O:q) 

= ev, o A(0 : Q : < : As)j(Q : E : X0 : 7) 

= pr, oB(Q : Q: < : X0)7. q 

In view of Lemma 8.3, Proposition 8.1 is now a straightforward consequence of 
the following result. 

Proposition 8.4. Let 71,772 E 3-t:” H. Then we have the following identity qf 
meromorphicfunctions of (X, u) E ai@ x a*qC:: 

(42) (B(P : P: .( : x : v)711,772) = (q1,B(P: P : 5-x : -2qp). 

Proof. We will establish this proposition by the reasoning indicated in equa- 
tions (36)-(38). We start with a useful lemma. If Q E P(A,), let 

dQ= {(X,Y) E aGc x cr*,,IX~a*,(Q,c) and A-v+pQ E $(Q,O)}. 

Then obviously dQ is a non-empty open subset of c$c x abc. 
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Lemma 8.5. Let Q E ?(A,) and (A, V) E de. Then for all q E 7iynH we have: 

(43) B($!j : Q : < : X : v)n = J he(n)“ae(~)x-“‘PQ~(me(n))77dii, 
NQnflQ 

the integral being absolutely convergent. 

Proof. Consider equation (40). Since X - v + pQ E aG(Q, 0), the occurring 
function J is continuous (use Lemma 8.2 and the continuity of he), and since 
X E a:( Q, C), the integral for the intertwining operator A converges absolutely. 
Therefore the left-hand side of (43) equals: 

J- J(Q:<:A:v:v)(E)dE. 
flQ 

Using (39) and (34) we may rewrite this integral as the right-hand side of 
(43). 0 

Completion of the proof of Proposition 8.4. By meromorphy it suffices to es- 
tablish (42) for (A, V) contained in the non-empty open set dp. Then by Lem- 
ma 8.5 with Q = P the left-hand side of (42) may be written as the absolutely 
convergent integral: 

Let r be an automorphism of g satisfying conditions (a)-(e) of Proposition 7.1. 
Then applying Corollary 7.4 we see that the above integral equals 

Using the substitution of variables n = ~fi we may rewrite this integral as 

(44) 
N ,s,- ( 

w,a~(n>- “‘“‘P’hp(n)-“E(mp(n))~~) dn. 
P P 

Now (--I, -V) E .A,, so that we may use Lemma 8.5 with Q = p to infer that 
(44) equals (71, B(P : p : < : -1 : --V)r/z)). This establishes (42). q 
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