Maass—Selberg relations for Whittaker functions

on a real reductive group

Erik P. van den Ban
17 November 2025

Contents

1

2

3

10

11

12

13

14

15

Definition of the map j(Q, o, v)

Interaction with the Weyl group

The B-matrices, reduction arguments

Reduction to maximal parabolic subgroups
Smoothness of J

A useful integral formula

Comparison of J with J(®)

Comparison of B with B(*), proof of Lemma 4.12
The C-functions and the Maass—Selberg relations
Maass—Selberg relations in the basic setting

The radial part of the Casimir operator

A result of Harish-Chandra

The normalized Whittaker integral

Fourier transform and Wave packets

The functional equations

16

21

24

30

36

39

45

46

52

55

59

67

71

73



16 Appendix: criterion of smoothness for distributions 75

17 Appendix: divergence for a convex polyhedron 78

Introduction

In this paper we give a complete proof of the Maass—Selberg relations for Whittaker
integrals on a real reductive Lie group. These relations were announced in 1982 by
Harish-Chandra as an important part of the Plancherel formula for Whittaker functions.
Because of his untimely death in 1983, no further details appeared until 2018, when
V.S. Varadarajan and R. Gangolli published an edited version of Harish-Chandra’s
manuscripts, [7, pp. 141-307]. The results of the present paper are based on a result of
[7] for a basic case. Harish-Chandra’s proof for this basic case involves an asymptotic
analysis of boundary terms reflecting the non-symmetry of the Casimir operator over
an expanding K-invariant domain in G / Ny whose radial part is a simplex. In particular,
this involves the application of Gauss’ divergence theorem on a simplex. A detailed
account of Harish-Chandra’s arguments is given in Sections 11 and 12 of the present
paper.

Starting with the proof for the basic case, there appears to be a complete proof of
the Maass-Selberg relations in [7]; however, we have not been able to understand the
details. In the present paper we follow a different approach by combining the result
for the basic case with ideas from the theory of reductive symmetric spaces, in which
the action of the so-called standard intertwining operators plays a central role. We
believe the obtained information is of separate interest. As an application of the Maas-
Selberg relations we prove that the normalized Fourier and Wave packet transforms are
continuous linear maps between appropriate Schwartz spaces.

N. Wallach [13] independently developed another approach to the Whittaker—
Plancherel formula, in which the Whittaker Maass-Selberg relations do not seem to
play a role.

The results of the present paper will be of key importance in a proof of the Plancherel
theorem that I have outlined in several lectures in recent years. The accompagnying
slides are available on my website. Details will appear in a follow up paper.

We will now describe the results of our paper in more detail. It is assumed that G
is a real reductive Lie group of the Harish-Chandra class, that K is a maximal compact
subgroup, and that G = KAN is an Iwasawa decomposition. Furthermore, y is a fixed
unitary character of Ny which is regular in the sense that for any simple root « of a in
1o the restriction of y. := dy(e) to the root space g, is non-zero. Here a and 1y denote
the Lie algebras of A and N, respectively, in accordance with the convention to denote
Lie groups by roman capitals and their Lie algebras by the corresponding gothic lower
cases.

The root system of a in g is denoted by X. Furthermore, X* denotes the positive
system for which n is the sum of the associated root spaces g, for @ € X*.



We denote by % the finite set of parabolic subgroups of G containing A and by Py
the subset of the standard ones among them, i.e., the P € # such that P contains the
minimal parabolic subgroup Py := Zg(a)Ny. Every Q € P is conjugate to a unique
P € P, under the action of Ng(a). The action of the latter group on a induces an
isomorphism from Ng(a)/Zk(a) onto W(A), the Weyl group of the root sytem X.

Given Q € P we denote its Langlands decompositionby Q = MpApNg. By AZQ,dS
we denote the set of equivalence classes of representations in the discrete series of M.

ForQ e P, o € ]\/JQ,dS and v € a*QC we define C*°(G/Q : o : v) to be the Fréchet
space of smooth functions ¢ : G — H, transforming according to the rule

@(xman) = a~* P20 (m)p(x), (x € G,(m,a,n) € Mg x Ap X Np).

Equipped with the left regular representation this space realizes the space of smooth
vectors for the normalized induced representation

Indj(cevel). 0.1)

Let C™(G/Q : o : v) denote the continuous conjugate linear dual of the Fréchet
space C*(G/Q : o : —v). Via the standard G-equivariant sesquilinear pairing by
integration over K, C*(G/Q : o : v) is injectively and G-equivariantly mapped into
C™™(G/Q : o : v). Accordingly, the latter is viewed as the space of generalized vectors
for (0.1). We write

C(G/Q:0:v), 0.2)

for the subspace of C™(G/Q : o : v) consisting of ¢ such that ¢(nx) = y(n)ep(x),
for x € G,n € Ny. Its elements are called the generalized Whittaker vectors of type y.

If P is an opposite standard parabolic subgroup then NyP is open in G. In [2, Thm.
8.6] it is shown that every function ¢ € C™(G/P : o : v), restricts to a continuous
function NoP — H,>, satisfying ¢(nm) = y(n)o(m)~'¢(e) forn € No and m € Mp.
In particular, ¢(e) € H * satisfies

o(n)e(e) = x(n)e(e),  (n € Mpn No).
We define xp := x|(mpnn,) and put

H ={ne€H;"|VneMpnNy:o(nn=xp(nn}.

a.XP

In [2, Prop. 8.15] it was proven that the evaluation map ev, : C"*(G/P : 0 : v), —
H." , is a bijective linear map of finite dimensional linear spaces, for every v € ajp,.
The inverse of ev, is denoted by

JP:o:v):HS

o C(G/P:0:v),. (0.3)

Furthermore, according to [2, Prop. 8.14], for every n € H(;f;P the function v —
J(P,o,v)n is holomorphic as a function on aj,_ with values in C™*(K/Kp : op) (in
the compact picture).



In [2, Prop. 8.10] the Whittaker integrals for P € P are essentially defined as
finite sums of matrix coefficients of K-spherical matrix coefficients with the generalized
Whittaker vectors for Indg (0 ® ¥ ® 1). The Maass—Selberg relations give information
about their asymptotic behavior towards infinity, on the closed positive Weyl chamber
clA*. In the theory of reductive symmetric spaces these Maass—Selberg relations can
be reformulated in terms of the action of standard intertwinining operators on the
analogues of the generalized vectors j(P : o : ¥)1. The known product decomposition
of these operators then reduce the Maass-Selberg relations to a basic case, where they
can be established more directly. For this approach to work in the Whittaker setting,
one needs to define the generalized Whittaker vectors for Indg (c®vel),withQ e P
not necessarily opposite standard. This is worked out in Section 1, making use of the
existence of an element v € Ng(a) such that vQv~! is opposite standard. The orbit
NovQ is the unique open Ny-orbit on G/Q. In this setting, evaluation at v defines a
bijective linear map ev, : C**(G/Q : 0 : v), — H;f;Q, whose inverse j(Q : o : V)
gives the appropriate generalization of j(P,o,v), P € Py. At the end of Section
1 we give the definition of the corresponding Whittaker integral as a finite sum of
matrix coefficients of K-spherical vectors with the Whittaker vectors of the induced
representations Indg (c®-vel).

In Section 2 it is shown that for parabolic subgroups P,Q € ¥ with equal split
components (i.e., ap = ap) there is a unique meromorphic map v — B(Q, P, o, v),
ap, — Hom(H;?),, H;?y ) such that

AQ,P,o,v)j(P,o,v)=j(Q,0,v)B(Q,P,0,v), (v €eap.).

(o)

Each space H;*) 0’ for Q € P, carries a natural structure of Hilbert space. In terms of
these structures, the Maass-Selberg relations can be formulated as

B(Q,P,0,-v)"'B(Q,P,0,v) =n(Q,P,0,v), 0.4)
where n(Q, P, o, v) is the scalar meromorphic function on ap. = a*Q(C determined by
A(Q,P,o,-v)"A(Q,P,0,v) =n(Q,P,0,v).

The interaction of these structures with the Weyl group W (a) is discussed.

In Section 3 we study the operators B(Q, P, o, v) in detail. The Maass—Selberg
relations (0.4) for B are formulated in Theorem 3.1. By using the well-known product
decomposition of the standard intertwining operators in terms of those with adjacent P
and Q we reduce the proof of the relations (0.4) to the setting in which P, Q are adjacent.
We discuss the well-known technique of chosing a subgroup G(® of G in which P and
Q determine opposite maximal parabolic subgroups P(«a) and Q(«). It is then shown
that B(Q, P, o, v) is essentially equal to the B-matrix for G@), Q("),P("), o,V, see
Lemma 4.12. The proof of that lemma requires comparison of distributions on G with
distributions on G(®). This makes it long and technical, see Sections 4 - 8.



In the end, the proof of the Maass-Selberg relations for B is reduced to the basic
setting in which G has compact center and P and Q are opposite maximal parabolic
subgroups, see Lemma 4.14.

In Section 9 we introduce the C-functions as coeflicients in certain constant terms
of the Whittaker integrals, see Theorem 9.2. These C-functions can be expressed in
terms of the standard intertwining operators and the B-matrices, see Lemma 9.5. We
show that the Maass—Selberg relations for B imply similar Maass-Selberg relations for
C-functions Cgp(s,v), with Q, P associated and s € W(ap | ap). They eventually
take the form

Coip(s,=V)"Cgip(s,v) = n.(P, P,~v)

see Theorem 12.8.

Conversely, it is not a priori clear that the Maass-Selberg relations for the C-
functions imply those for the B-matrices. However, in the basic setting they do, as is
explained in Section 10. The completion of the proof of the Maass-Selberg relations
thus depends on their validity for the C-functions in the mentioned basic setting. The
latter case is addressed in the next two sections, 11 and 12, which are based on Harish-
Chandra’s work in [7].

Section 11 is preparatory, determining a useful formula for the radial part of the
Casimir operator, which leads to a formula given without proof in [7, p. 208]. That
formula allows the application of Gauss’ divergence theorem for a simplex, which in
turn leads to asymptotic information in Section 12, see Thm. 12.7. At the end of
Section 12, the obtained asymptotic information turns out to imply the Maass-Selberg
relations for the C-functions in the basic setting.

In Section 13 we introduce the normalized Whittaker integrals Wh° (P, ¢) and the
associated normalized C-functions C? po for P,Q € Py, following the definitions of
Harish-Chandra, [7]. The Maass-Selberg relations imply the following relations for the
normalized C-functions, for s € W(ag|ap),

C5|P(S, —V)*Cé“)(s’ V) = I (V S a;)c)-

These, combined with the uniformly tempered estimates obtained in [2], allow us to
show that the normalized Whittaker integrals are (finite sums of) functions of type
I} ;- In view of results in our paper [3] (to apppear in the near future) this allows
us, in Section 14, to define for each standard parabolic P € $y a normalized Fourier
transform %, which is continuous linear from the Harish-Chandra type Schwartz space
C(7: G/Ny : x) to the Euclidean Schwartz space S(ia}, Az p). The conjugate Wave
packet transform Jp is continuous linear between these Schwartz spaces in the converse
direction.

In Section 15 we establish the functional equations for the normalized Whittaker
integrals as given by Harish-Chandra [7, §17.1] In turn these imply transformation
formulas for the normalized C-functions, the normalized Fourier transform, and the
Wave packet transform.



1 Definition of the map j(Q, o, v)

A parabolic subgroup Q € P is said to be opposite standard if Q is standard. The set of
Q € P with Q € Py is denoted by Py. For this paper it will be necessary to describe the
action of standard interwining operators on Whittaker vectors of parabolically induced
representations. To make this possible, we need to extend the definition of the map
j(Q, o, v) to the setting of all parabolic subgroups Q from P, beyond those from Py;.
To prepare for this we start with the description of the open orbits NovQ in G, for
v € Ng(a). We assume that Q € P.

Lemma 1.1 G is a finite union of double cosets of the form NovQ, forv € Nk (a). The
coset NovQ is open in G if and only if vNQv_1 C Ny, which in turn is equivalent to the
condition that vQu~" € Py.

Proof. There exists an s € Ng(a) such that P := sQs~! is opposite standard. By
the Bruhat decomposition, G is the disjoint union of the sets PovPy for v € W(a).
Since PovPy = NovPy C NovsQs~!, it follows that G is a finite union of sets of the
form NovQs~', with v € Ng(a). Hence, G = Gs is a finite union of orbits NovQ, for
v € Ng(a).

Put 'ng := no N'my. Then NovQ is open in G if and only if the map No X Q — G,
(n, g) — noq is submersive at (e, ¢). This is equivalent to to g + Ad(v)(q) = g, which
in turn is equivalent to Ad(v)"'ng + q = g. Since Ad(v) maps a-root spaces to a-root
spaces the latter assertion is equivalent to

Ad(U)_ln() + "o + Mg + np = o + g + g + 1.
This in turn is equivalent to Ad(v) "1y D fig, hence to vNgv~! € Ny and to vQv™! >
po. O

We denote by Wy (a) the centralizer of ap in W(a). The following lemma is well
known through its formulation in terms of root systems.

Lemma 1.2 LetQ € P, s,t € W(a).
(a) If s € W(a) is such that sQs™! = Q then s € Wy (a).

(b) The group Q is W(a)-conjugate to a unique P € Py.

Proof. We start by proving (b). The existence part of (b) is well-known (and also
follows from the previous lemma). So, there exists an s € W(a) and a P € P such that
sQs~! = P. It follows that s(aé) = a}. If Q is opposite standard , then aé c —cl(a®).
Fix X € a};; then both X and sX belong to —cl(a™). Since the latter set is a fundamental
domain for the action of W(a) on a, we conclude that sX = X. Now s can be written
as a product of simple reflections in roots vanishing on —X hence on a}. Therefore,

s € Wp(a). This in turn implies that aé = alt hence P = Q and uniqueness follows.
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Assume now that Q is general, and let t+ € W(a) be such that P’ := Q¢! is
standard. Then P’ is W (a)-conjugate to P and from the argument above it follows that
P = P’. This establishes uniqueness of P.

For (a) we fix t € W(a) and P € Py such that 1Qt~! = P. Then sQs~!' = Q implies
that conjugation by ¢st~! fixes P. By (b) this implies that #~!s¢ belongs to Wp(a). This
in turn implies that s € tWp(a)t~! = Wo(a). a

Let Q € P. Then by the lemma above there exists a unique P € Py that is Weyl
conjugate to Q. We fix v € Nk (a) such that vQu~! = P. Then UNQU_I = Np C Ny and
by Lemma 1.1 it follows that NovQ is open in G. The image of v in Wp(a)\W(a) is
independent of the possible choices of v. Likewise, the image of v in W(a)/Wp(a) is
also independent of such choices.

Corollary 1.3 Let Q € P(A). Then precisely one of the Ny-orbits on G/Q is open.
This orbit equals NovQ for any v € N (a) such that vQu~" is opposite standard.

Corollary 1.3 allows us to make the following choice once and for all.

Definition 1.4 For the remainder of this paper we fix a map Q — vp, P(A) — Ng(a)
such that

(a) forevery O € P(A) the double coset Nov,Q is open in G;
(b) if O € Py thenvg = e.

We define
C™(G/Q:0:v), (1.1)

to be the subspace of C™*(G/Q : o : v) consisting of ¢ such that p(nx) = y(n)ep(x),
forx € G,n € Ny. The elements of (1.1) are called the generalized functions of type
X-

For w € Nk(a) we define the representation wo- of wMow™' in H, by wo :=
o ow~!. Furthermore, we write H,, for H, equipped with the representation wo . Let

Ry:C(G/Q:0:v) = C™(G/wQuw™" : wo : wv)

be the unique continuous linear G-intertwining operator which is given by the right
regular action by w on the subspace of smooth functions.

It maps functions of type y for the left regular action by Ny bijectively onto functions
of the same type in the image space.

Suppose Q € P(A) and let P € Py be the unique opposite standard parabolic
subgroup that is W(a)-conjugate to Q. Let v € Nk(a) be such that vQuv~! = P; this
condition is equivalent to v € Nk, (a)vg and to v € vgNg, (a).

Clearly, UMQU_1 = Mp. Since Mp = Kp(Mp N A)(Mp N Np) is an Iwasawa
decomposition for Mp it follows that

Mg = Ko(Mg N A) (Mg N v~ Nov) (1.2)

7



is an Iwasawa decomposition for My. Its N-component is given by My N v Nov =
v~ (Mp N Nop)v. The associated character My N v~ !Nov — C, given by

v ixp: n y(onv™), (1.3)

will in general depend on the particular choice of v € Nk (a). To avoid any ambiguity
we agree to exclusively use the notation y for the character (1.3) defined with v = vg,
see Definition 1.4.

Lemma 1.5 Put v = vg. The character x¢o of Mg Nv(Mp N No)v™'defined by (1.3) is
regular with respect to the Iwasawa decomposition (1.2).

Proof. This is immediate from the regularity of x|m.nn, relative to the Iwasawa
decomposition Mp = Kp(Mp N A)(Mp N Ny), see [2, (8.12)]. a
In analogy with [2, (8.12)], we define

H;?;Q ={neH," |VmeMgn vélNon co(m)n = xo(m)n}. (1.4)

In general, if L is a closed subgroup of G, m a unitary representation of L and & a
unitary character of a closed subgroup N C L, we agree to write

H 7 ={neH;"| VYmeN: a=(mn=_E(mn}.

Given v € G, we denote by vrr the unitary representation of vLv™!' in H, given by
vr(y) = m(v~'yv). Furthermore, vé denotes the character of vNv~! given by vé(z) =
£(v'zv). Tt is readily verified that

H Y =H]7" (1.5)

m,é vm,vé*

Indeed, the space on the left consists of all n € H,* such that 77 (m)n = £(m)n.
Substituting m’ = vmv~" we see that the condition on m’ € vNv™! is (vr)™®(m’) =
v[r=®](m’) = vé(m’) for all m’ € vNv~!. This in turn is equivalent to 7 € Hv‘;:g.
Corollary 1.6 Let Q € P and let P € Py be W(a)-conjugate to Q. Let v = vg. Then
forall o € Mg gs,

H;?;Q = HU_O??XP'
Proof. From (1.3) we see that yp = v™! yp. Now apply (1.5). O

Lemma 1.7 Let Q € P(A) and put v = vg and P = vQuv~!. Then P € Py. For every
¢ € C™*(G/Q : 0 :v), the following assertions are valid:

(a) the restriction of ¢ to the open subset NovQ is a continuous function NovQ —
H;®;

(b) ¢(v) € Hy%,.



Proof. This can be proven in the same fashion as [2, Thm. 8.6] where Q is assumed to be
opposite standard and where v = e. Alternatively, one may apply the mentioned result
as follows. The generalized function R,¢ € C™*(G/P : vo : vv),, when restricted
to NoP, yields a continuous function NoP — H,>. Consequently, ¢ is continuous on
NoPv with values in H, > = H_*. Now NoPv = NovQ so (a) follows.

For (b) we note that ¢(v) = Ry(e) € H,;,,, by the mentioned result. We now
apply Corollary 1.6. O

Corollary 1.8 Let Q € P(A), v = vp, and P := vQu~!. Then for every v € a*Qc the

following is a commutative diagram of linear maps. All appearing maps are linear
isomorphisms between finite dimensional spaces.

v

C™(G/Q:0:v), &, C™™(G/P:vo :vv),

l evy l CVe
—00 = —00
HO' X0 HUO' SXP

Proof. Fix v € aj_. It follows from the arguments of the above lemma that for
¢ € CT(G/Q : o : v), we have ev.R,¢ = ¢(v) = ev,p. Hence the diagram
commutes. It follows from [2, Cor. 14.5] that the vertical map on the right is a linear
isomorphism of finite dimensional linear spaces. Clearly the horizontal maps are linear
1somorphisms. Therefore, the vertical map on the left is a linear isomorphism. Since
the linear spaces on the right are finite dimensional, all appearing spaces are. a

We agree to write evg for the evaluation map

eV : CT(G/Q 01 v), > HY,

appearing in the left column of the diagram of Corollary 1.8. The above definition
depends on our choice of vy € Nk (a). Any alternative choice v € Nx(a) must satisfy
vQuv~! = P or, equivalently, v = vou with u € Nk, (a). The following result expresses
the dependence of our definition of evp on the choice of vg.

Lemma 1.9 Let Q € P and let v = vgu withu € Nk, (a). Then for every v € a*QC the
following diagram commutes

C™(G/Q:0:v),

evp / \ evy
T MON e
O',XQ MU',XQ *

The horizontal map at the bottom is given by n — o (u)~'n. All maps in the diagram
are linear isomorphisms.



Proof. Letp € C"(G/Q : 0 : v),. Thenev,(¢) = ¢(v) = ¢(vou) = 0'(u)_190(vQ) =
a(u)_ler(go). Now evg is a linear isomorphism and the map 7 : n o(u) 1y is
a linear automorphism of H_*. Hence, it suffices to show that T maps H_°, onto

o.X0
H,; - Letn € H;) . and suppose that n € Mg N vélNon. Then

uo () [(n)] = uor(m)[o(w)™'n] = o™ m)n = o™ xe(m)n = xo(W)7(n),

so that 7(n) € . In a similar fashion it is shown that 77! ( ) C H,% O

—00 —00
HuO',XQ HMO',XQ ,XQ'

Definition 1.10 Let Q € $. Foreach v € a”‘QC the map

j(Q9O-’ V) : H(;?;Q - C_OO(G/Q L0 V)X

is defined to be the inverse of evg :=ev,, : C™*(G/Q : 0 :v), — H;f’;Q.

Corollary 1.11 Let Q € P, and put v = vg and P := vQu~". Then P € Py. For every

v € a*Q o» the following is a commutative diagram of linear maps.

v

C™(G/Q:0:v), &, C™(G/P:vo :vv),

T Jj(Q,0.v) _ T Jj(P,vo,vv)
H;?;Q - HU_O?TXP

All maps are linear isomorphisms of finite dimensional spaces.

Proof. This is immediate from Cor. 1.8. O

We chose a non-degenerate Ad(G)-invariant symmetric bilinear form
B:gxg—R (1.6)

as in [2, (2.1)] and define an Ad(K) positive definite inner product on g by (X, Y) :=
—B(X,60Y). For Q € £ and R > 0 we put

a“(Q,R)={ve a”‘Q(C | (Rev, @) > R (Va € Z(ng, ap))}. (1.7)

Note that for w € Ng(a) we have wa*(Q, R) = a*(wQuw™', R).

Corollary 1.12 Let Q € P, 0 € MQ,dS andn € H(;f;Q. For every R € R there exists
a positive integer s such that the assignment v — j (Q, o, v) is holomorphic as a map
a*(Q,R) = C*(K/Kg : 0y).

Proof. 1f Q is opposite standard , this follows from [2, Lemma 14.3]. For general
Q € % we observe that it follows from Cor. 1.11 that for a fixed € H,” , we have
Jj(Q,0,v)n = Ry-10j(P,vo,vv) forall v € a*QC. Now R,-1 restricts to a continuous
linear map C~(K : vo) — C~*(K : o), independent of v. Therefore, the required

result follows from the established case. a

10



Remark 1.13 If Q c a*Q . is a bounded open subset, then it follows from Cor. 1.12
that there exists a positive integer s such that for all 7 the assignment v — j(Q, o, v)n
is holomorphic as amap Q — C™*(K/Kg : 0p). The smallest s with this property will
be called the order of j(Q, o, -) over Q.

Remark 1.14 The definition of the space C™* (K /Ky : 0p) appearing in the preceding
statements is explained in [2, §7].

If P € Py we fix an arbitrary positive invariant density drizp on Mp/Mp N No.
If O € P is conjugate to P, then vQQvél = P and conjugation by vp induces a

diffeomorphism from My /Mo N vé‘Non onto Mp/Mp N Ny. The pull-back of dmp

under C,, is a positive invariant density on Mg /Mg N vélNon which we denote by
dmg.

Lemma 1.15 Let Q,Q’ € P be Nk(a)-conjugate to the same opposite standard
parabolic subgroup P. Put w = vb‘va. Then Q' = wQuw™!, w(Mp N vélN()vQ)w_1 =
(Mo N vé}Non/) and

C,(dmg) = dmyg.

Proof. The first assertions are evident. By definition of w we have C,, = Cj, C:Q_,I.
Hence
C,(dmg) = C;Q(dl’ﬁp) =dmyg.
O
LetQ e P,o € MQ’dS. According to [2, Lemma 9.2] with My in place of G, we
have the matrix coefficient map

Ho = Ho.o : He ® HySy, — L*(Mg/Mg N vy Novg : xo) (1.8)

given by u, (z®n)(m) = (oc(m)~'z, ), forz € H®,n € H;% andm € Mp. Here the
L2-norm is defined with respect to the invariant measure dig on Mg/Mgp N vélNon.

From [2, Cor. 9.5] it follows that the finite dimensional space H;f’; o carries a
unique inner product such that the map (1.8) is an isometric linear map onto a closed

subspace, which we denote by
LZ(MQ/MQ N UélN()l)Q : XQ)O’-

Definition 1.16 Let Q € £ and o € MQ,ds. From now on we assume that H;f;Q is
equipped with the unique Hermitean inner product that makes pg - isometric.

%
conjugation by C,,! defomes a diffeomorphism from My onto from Mg, which maps
Mo N vl Novg onto the similar intersection with everywhere Q replaced by Q’. In turn
this implies that pull-back under conjugation C, -1 induces an isometric isomorphism

Let Q' be conjugate to Q and put w = }vQ. Then it is readily verified that

Ay : Lz(MQ/MQ N vélNon : )(Q)o- - LZ(MQ//MQ/ N l)é}N()l)Q/ : )(Q’)wa'-

11



Lemma 1.17 Let Q,Q’ € P be such that wQw™' = Q’ for w = vél vo. Let o € Z\ZQ,dS.
The linear spaces H;?, 0 and H,; Yo @re equal as subspaces of H;™. The Her-
mitean inner products, as specified in Definition 1.16 are the same.

Proof. Putvg =vand v’ = vp. Thenw = v’ ~1v. Tt follows from Corollary 2.6 1.6 that

—00  __ —00 _ —00 _ —00
HO',XQ - HUO',XP - Hv”lvcr,)(Q/ - HwU"X'Q'
In view of our choices of measure, the map A, given above is an isometry. For z € H,
—00
andn € H;?, , we have that

Awo (0.0 (z®M)](m) = po.o(z®n) (W' mw) = g we(wo ® n)(m).

The maps pp - and po- - are unitary by definition, and we see that the identity induces
a unitary map

Hy ® Hy%y = Huo ® Hyg -

Since the identity map H, — H,, is unitary, we conclude that the identity map

H;%o = Hugy,, 18 unitary as well. a

Lemma 1.18 Let Q € P and u € Nk, (a). Then the map n +— o (u)~'n is an isometry

—00 —00
from H™  onto H,5°, .

Proof. From Lemma 1.9 it follows that the linear map 7 : H,® — H,*®, & — o (u)™1¢

maps H7 o onto Hy o We will finish the proof by showing that 7 is isometric on
H:b

Forv e H7 andn € H.7 , the matrix coeflicient attached to v ® 7 is the function
in C*¥(Mg/Mg N vélNon . xo) defined by

fogy(m) = (o (m)~ o, ), (m € My).

The sesquilinear map (v,77) — m,g, induces a linear isometry from the pre-Hilbert
space Hy ® H,”) , to L*(Mp/Mg N vél Novg : xo). This implies that for all v € HY
andn € H,") 0’

2 —

loliZ Nl ,, = |ty (m)|* ding. (1.9)

‘/ZWQ/MQQUQI Novg

The representation uo- of My defined by uo(m) = o (u™'mu) is irreducible unitary
and belongs to the discrete series of My again. We write H,, for the Hilbert space
H; equipped with the representation uo and will discuss the induced inner product
on H,° . The identity map is unitary from H, to H,,. If v € H, thenv € H . If

uo,xo

neH,;, 0 then the associated matrix coefficient ,u;®n, is given by

Mgy (m) = ([uc](m)~ v, ') = (o (™Yo (m™ Yo (o, ') = puger iy (u™'m).
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Substituting ” = 7(r7) we find that

Using the analogue of (1.9) for uo and y’, combined with the left invariance of the
measure drig, we infer that

2 2 -
ey = 012 e (1€ HFS).
Hence, 7 is isometric as stated. O

In [2] the Whittaker integral Wh(P, -) for P € Py is expressed in terms of ma-
trix coefficients involving j(P, -). Guided by this definition we will now use matrix
coefficients involving j(Q, -) to define the notion of Whittaker integral Wh(Q, -), for
Q € P arbitrary.

As in [2, §9], which in turn relies on Harish-Chandra [6, Lemmas 7.1,9.1] we aim
at defining a linear isomorphism

T yr, C¥(1:K/Kg:09)®Hzy, — LZ(TQ :Mgo/Mp N vélNon L X0)or-

Here o € M\Q,ds and o denotes the restriction of o to K. Furthermore, (7, V) is
a finite dimensional unitary representation of K and 7y denotes the restriction of 7 to
KQ =KnNnM 0-

We define the space of spherical functions

LZ(TQ : MQ/MQ N I)élN()UQ :XQ) (1.10)

to be the subspace of Ko-fixed elements in L*(Mg /Mg Nv' Novg : xo) ® Vy. Viewing
(1.10) naturally as a space of functions My — V; we shall express the spherical
behavior of its functions by f(km) = 7(k)f(m), for m € Mg and k € Kp. The
space is equipped with the restriction of the tensor product Hilbert structure, and thus
is a Hilbert space of its own right. The space of functions in (1.10) which belong
to L*(Mg/Mg N vg'Novg : xo)s ® V- is indicated by the subscript o™ on the right.
Since only finitely many representations of the discrete series of Mg have a Kp-type in
common with 7g, it follows that

LZ(TQ : MQ/MQ N UélN()UQ :XQ) = @ Lz(TQ : MQ/MQ N UélN()UQ Z)(Q)o-
O'EMQ’L]S

is finite dimensonal. In particular the (orthogonal) sum over the ¢ is finite. From this
it also follows that

L2(TQ :Mg/Mgp N vélNon t x0) =Cl(1g : Mg/Mp N vélNon 1 X0)s

where the definition of the space on the right is obvious. By finite dimensionality, the
center 3o of U(myg) acts finitely on the space on the right. For this reason, that space
is also denoted by A, ;.
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The subspace C(Mo/Mg N vy Novg : X0)o ® Ve N A, 5 is denoted by A, 5 .. We
have the finite orthogonal direct sum

ﬂz,Q‘ = GB(TEMQ,(}S\?(Z,Q_,O"

After these preparations we define, for ¢ € C®(1g : K/Kg : 0g) andnn € H;”) 0
the function g, : Mg — V; by

Yan(m) = ((c(m™") ® Dp(e) , M1, (m € Mp),

where the sesquilinear pairing (-, - )o.1 : (Hy ® V;) X H;%, — Vr is given by
<Z®U’ r]>0’,1 = <Z’ r])O'U'

Lemma 1.19 The map (¢,n) — Yooy induces an isometric linear isomorphism
T = yr from C=(7 : K/Kg : 0g) ® Hyy,, onto Ay 5 -

Proof. The proof, which relies on an application of Frobenius reciprocity, is identical
to the proof for the case that Q = P € Py, in [2, Lemma 9.8]. O

Finally, we are prepared to define the Whittaker integral associated with Q € P.

Definition 1.20 Let Q € #. The Whittaker integral Wh(Q, ¢, v), for ¢ € A o and
for generic v € a*Q . is defined to be the function in C* (7 : G/Np : x) determined by
the following requirements.

(a) Wh(Q, ¢, v) depends linearly on ¢ € A p;

(b) foro € MQ,ds andT =¢p®neC®(t:K/Kp:0p) ®H," , we have

[ee)
X6’

Wh(Q,yr,v)(x) = <7TQ‘,0,_V(X)_190, j (O, o, 7)), (x € Mp).

We retain our assumption that Q € P, 0 € MQ,ds and putov = VG- Then P := vQu~!
is the unique standard parabolic subgroup which is conjugate to Q. The Whittaker
integral Wh(Q) can now be expressed in terms of Wh(P).

Lemma 1.21 There exists a unique isometric linear isomorphism Rg : Az g — Az p
such that for all o € Mg 4 the following is valid

(a) Ro maps Az g, onto Az p o
(b) forallT € C*(t : K/Kp : 09) ® H;?;Q we have
Rov¥r = ¥ (r,enT- (L.11)

Here R, : C*(1 : K/Kp : 0g) — C®(7 : K/Kp : (vo)p) is the map induced by
right translation by v.
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Proof. Since Ay g decomposes as the orthogonal finite direct sum of the subspaces
A 0,0 and since for each o the map ¥, : T +— 7 is an isometry from V,; := C*(7 :
K/Kp : 09g) ® H;f;Q_ onto As g, Uniqueness is obvious.

Foreach o € MQ,dS themapR, : C* (1 : K/Kg : 0g) = C¥ (7 : K/Kp : (vo)p)is
induced by right translation by v, which is clearly an isometry. Furthermore, I denotes
the identity map from H, ;?;Q to H, ,j;fXP , which is an isometry by Lemma 1.19. We thus
see that R, : T + (R, ® I)T is an isometry from V- onto V,. The condition on Ry
may now be reformulated as Rg o ¥y = ¥y 0 R, 00 Vr. Thus, Rp = Wy 0 o Ry 0 ‘P;l
on Aj g.. This establishes the existence. O

Proposition 1.22 Let Rp be as in Lemma 1.21. Forall o € MQ,ds andally € Ay p
we have

Wh(Q, ¥, v,x) = Wh(P, Roy,vv, x),

forallv e agc andx € G.

Proof. Let o € MQ,ds andT = ¢9®n € C¥(r : K/Kg : 0p5) ® H;%,- Then by
Definition 1.20 and Corollary 1.11 we have
Wh(Q.¢7.v.x) = (15,_,(x)"'¢, j(Q.0,7.1)
= (Rg o, ()@, j(P,vo, 07, 1m))
(7 yir—oy(X) ' Rop, j(P,vo, 07, 1))
= Wh(P, Y (r,enr,VV,X).
The proof is completed by using (1.11). O

Lemma 1.23 Let Q € # and letv = vy. Then P = vQu~! is standard. Furthermore,

Jorye Arpandyv € cf"QC such that Re (vv, a) > 0 for all @« € £* we have

WhQ.wn)() = [ kgl ) g ) di - (x€G).
No

Remark 1.24 For Q standard and v = e, we retrieve Harish-Chandra’s formula.

Proof. First of all, by Definition 1.4, vQu™! € Py and it follows that P is standard. By

linearity, it suffices to consider the case thatyy = Y7, withT = ¢ ®n € C*(7 : K/Kp :

0g) ® H;f’;Q_, where o € Mg 4. Write _,, for the function in C*(7 : G/Q : o : V)

given by ¥_, |k = ¢. Then

Wh(Q.yr,v)(x)

<7TQ_,0',—V(X)_1‘/’ , J(Q, 0, —v)n)
/ (p—v(xk), j(Q. 0, =v.m) (k) dk
K/Kg

<(,D_V(Xl)l’l) s ](Q_9 ag,—V, 77)(071» dn
No

/ x(onv™h) (e, (xvn), 1) dn.
Ng
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The required representation now follows from the equality

(O—v(¥)> M) =¥5.0.-y(¥), (y € G).

By left 7-sphericality and right Ny-invariance, it suffices to prove the latter equality
for y = ma € MgpAg. This in turn follows from

(p-v(ma), ) = a”*P2(c(m) " p(e), n) = a"*2yr(m) = Y5, _,(ma).

2 Interaction with the Weyl group
We assume that Q € P and that o € A’/ZQ,dS.
Lemma 2.1 Let w € Ng(a), and put Q' = wQuw™". There exists a unique linear map

. —00 —00
Rw,Q . Ha',)(Q - Hwa',)(Q,

such that for every v € a*Q . the following diagram commutes:

C™(G/Q:0:v), LiCN C™™(G/Q :wo :wv),

L evo L evyr 2.1)
Ruy
H-* 8 H-®
T,X0 wo,x o’

The map R, g is a unitary linear isomorphism.

Proof. Uniqueness of the map follows from the fact that the remaining maps in diagram
(2.1) are linear isomorphisms. Let P be the unique parabolic subgroup in Py such that
Q is W(a)-conjugate to P. Let v = vg and v" = vgp-. Then conjugation by v'w maps Q
to P; hence v'w = vu for a suitable element u € Nk, (a).

We put w’ = wu~" so that w’ = (v)~'v and observe that R,, equals the composition
RyRy, with R, : C**(G/Q : 0 : v), = C(G/Q : uo : uv), and with R,/ :
C(G/Q :uo :uv), > C(G/Q :wo :wv),. If fe C"(G/Q :0 :v),, then

evoR.f = f(vou) = o(u) 'evo(f).

From Lemma 1.18 we know that 7 : 57 — o (1)~ !5 defines an isometric linear isomor-
phism

—00 —00
: —
T: Ha,xQ HW’XQ.
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*

This gives us the first square of maps in the diagram below, for every v € a oc-

C™(G/Q:0:v), RN C™(G/Q :uo :v), M C™(G/Q":wo 1 wv),

l (70] l evo l err
Rt
—00 7 —00 w',Q —00
HO',)(Q HMO',XQ HwO',)(Q/'

(2.2)

To understand the second square of maps, let g € C™*(G/Q : uo : uv),. Then

evo (Ryg) = g(v'w’) = g(v) = evp(g). Since w’ = v’ "o, it follows from Lemma

1.17 that there is a unique linear isomorphism R, o from H, >, , onto H,,; Yo which
makes the second square of maps commutative. Furthermore, R,/ o is isometric.

The map R, := Ry o7 makes the diagram (2.1) commutative, and is the

composition of two isometries, hence an isometry of its own right. O

Corollary 2.2 Let Q € #, w € Nk(a) and let Ryo @ HyY), — Hyg | be the

WO X 0

isometry of Lemma 2.1. The following diagram commutes for every v € a*Q .

C=(G/Q:0:v), Ru C™(G/wQuw™ : wo :wv),
T .o T j(wQuw™wor,wv) (2.3)
oo Rw,Q — oo
(HO' ))(Q - (Hwo- )Xwa’l

The map Ry, g is an isometric linear isomorphism.

Before proceeding we list some properties of the standard intertwining operators
for two parabolic subgroups Q; € P(A) (j = 1,2) with equal split components. Let
Q; = M;A;N,, be their Langlands decompositions, then A; = A, and M; = M,. We
denote by X(Q;) the set of a;-roots in np,. For R € R we define

(02|01, R) :={veay . [(Rev,a)>R (Yo € 2(02) NE(Q1))}.  (24)

Fixo € Mygsandy € a*(02|01, 0). Then the standard intertwining operator A(Q», Q1, 7, v)
from C*(G/Q; : o :v)to C®(G/Q, : o : v) is given by the usual integral formula

A 0o S () = [ pai) dn @5)
NaNNy
for f € C*(G/Q):0 :v).

We agree to equip any nilpotent subalgebra n., of g with the Riemannian inner
product obtained by restriction of the positive definite inner product —B( -, 6( -)). The
associated analytic subgroup N, of G is equipped with the associated bi-invariant
unit Haar measure. As a result, for every k € K the map n — knk~' is measure
preserving from N, to kN.k~!. In particular, all standard intertwining operators will
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be normalized in this way. Then for all w € Ng(a), all v € a*(Q2|Q1,0) and all
feC®(G/Q;: o :v)wehave

A(Q2,01,0,v)f = R;lA(szw_l, lew_l, wo, wv)Ry, f. (2.6)

Indeed this follows from the integral formula (2.5) in view of the normalization of
measures specified in the above.

We shall now describe the well known meromorphic continuation of the intertwin-
ing operator in terms of the compact pictures of the induced representations, where we
exploit the topological linear isomorphism

C*(G/Qj:0:v)=C*(K[Ky,; : 0g,),

induced by restriction to K. By transfer under this isomorphism, the left regular repre-
sentation L in the first space becomes a v-dependent representation 7g . -, of G in the
second space. The operator A(Q», Q1, 0, v) can now be viewed as a continuous linear
operator of Fréchet spaces C*(K/Kp, : 0) — C*(K/Kp, : o). The dependence
of the intertwining operator of v € aj_ is known to be meromorphic, by [11], with
singular locus S(Q», Q1, o) alocally finite union of affine root hyperplanes of the form
(v, @) = ¢, with @ € X(g,a;) and ¢ € R. As a result, the equality (2.6) is valid as
equality of meromorphic functions on aj_ with values in C* (K /Ky, : og,).

Via the equivariant sesquilinear pairing (-, -) of the space C*(Q : o : v) with
C*(Q : o — V) by integration over K/Kp we may embed the first space in the con-
jugate continuous linear dual of the second, denoted C~*(Q : o : v). In view of the
formula A(Q1, Q2,0 : =v)* = A(Q2,Q1, 0, v) one sees that the intertwining operator
A(Q»,Q1,0,v) has a continuous linear extension to a continuous linear intertwining
operator C~*(G/Q1 : 0 : v) —» C(G/Q, : o : v) for non-singular values of v.
In [4] this extended operator is shown to depend meromorphically on v € aj_ in the
following way, in terms of the compact picture.

Lemma 2.3 For every R € R there exists a polynomial function q € P(aj_), with
zero set contained in S(Q», Q1,0), and a constant r € N such that for every positive
integer s the assignment

v p(v)A(Q2,01,0,v)

defines a holomorphic function on a*(Q7|Q1, R) with values in the Banach space
B(C™*,C™57") of bounded linear maps C~*(K/P; : O'KPI) — C57(K/P; : O'KPZ).

By continuity and density it now readily follows that (2.6) is valid for all f €
C™™(G/Q; : 0 :v), provided v € a]_\ S(Q2,01,0).

Corollary 2.4 Let Q be a bounded open subset of a]_. Then there exists an r € N
such that for every s € N the assignment v — A(Q», Q1, 0, V) defines a meromorphic
function on Q with values in in the Banach space B(C™*,C™*7") of bounded linear
maps C~*(K /P : O'KPI) — C7(K/P;: O'KPZ).
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Definition 2.5 The smallest » € N for which the above is valid will be called the order
(of smoothness loss) of the family A(Q», Q1, 0, -) over Q.

Lemma 2.6 Let Q C C(”‘QC be open and suppose that f : Q — C™(K /Ko : 0g) is a
holomorphic function such that

no.ov(n)fy = x (1) fy, (v € Q,n € Ny). 2.7)

Then v v evg( f,) is a holomorphic function Q — H;f’;Q.

Proof. Fix vy € Q. Put I** = C**(K /Ky : o). Furthermore, put V := H;?y,- Then
j(v) = j(Q,0,v) is a linear map V — [~ which depends holomorphically on v.
From evg o j(v) = idy it follows that j(v) is injective for every v € Q.

Let E := j(vo)(V) and let E*+ denote the annihilator of £ c I~ in I*. We fix
a linear subspace Wy C I which is complementary to E*. Then the restriction map
r:I™® — Wy, & — £lw, is continuous linear and restricts to a linear isomorphism
from E onto W.

Since r is continuous linear, the function J : v + ro j(v) is holomorphic with
values in Hom(V, W(). As J(vy) is bijective linear V. — W{, the same is true for v
in a sufficiently small open neighborhood € > vo in Q. Furthermore, the function
v - J(v)~! is holomorphic on Q) with values in Hom(W;, V).

Let f satisfy the hypotheses, and put a(v) = evgf,. Then f, = j(v)(a(v)) for
v € Q. Furthermore, since v — f, is holomorphic as a map with values in /™ it
follows that v + r(f,) = roj(v)[a(v)] is holomorphic in v with values in W]. It
follows that v — a(v) = J(v)~'[r(f,)] is holomorphic on Q) with values in V. Hence,
evgp o f is a holomorphic function £y — V. a

Let Q1,02 € P have equal split components: ap, = agp,. In analogy with the
theory of symmetric spaces, we define, for a regular point v € a*Qlc of A(Q»,01,0, +),

the linear map B(Q»,Q1,0,v) : HE?;QI - HE?;Q2 by

B(Q2,01,0,v)1 := evp,A(Q2, 01,0, ) j(Qu, o), (neHgy, ). (28)

Here evg, = ev,,, with vz = vg,, so that v20s0; ! belongs to Pq.

Lemma 2.7 Let Q1, Q> € P have the same split component, and let o € ]\’/ZQI,dS.

(@) The function B(Q2,Q1,0, +) : aj. — Hom(H;j’;Q1 , H;f;QZ) is meromorphic.

(b) Foreveryn € H;?;Ql,

A(Q2,01,0,v)j(Q1,0,v)n = j(Q2,0,v)B(Q2,01,0,v)n (2.9)

k

as an identity of meromorphic C~* (K /Ky, : 0¢,)-valued functions of v € a, o
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Proof. For (a), assume that vo € a o and let Q be a sufficiently small bounded
neighborhood of vy in a*Q1 .- Then there exists a holomorphic function ¢ : a*QIC - C
such that the function

A TV B gp(V)A(QQ,Ql,O', V)

is holomorphic on € with values in End(C™(K/Kp, : 0p,)) in the sense that there
exists an 7 > 0 such that for every k > 0 the function A defines a holomorphic func-
tion on Q with values in the Banach space B(C~*, C™*") of bounded linear operators
from C"‘(K/KQ1 e C_k"(K/KQ2 : 0p,). Furthermore, by holomorphy of
j(Q1,0, -) and boundedness of Q, there exists s > 0 such that j(Qi, o, -) defines
a holomorphic function Q — B(H(;f;Q1 ,C™). Hence, f : v = A(v)j(Q1,0,v)n
defines a holomorphic function on Q with values in C™*™" (K /Ky, : 0¢,). By the trans-
formation property under Ny of j(Q1, o, v)n and the equivariance of A(Q3, Q1, 0, v) it
follows that f, satisfies the transformation property (2.7) with Q = Q5. By application
of Lemma 2.4 it now follows that ev, o« A(v)(Q1, o, v) is holomorphic in v € a*él . with
values in H;*) 0 Hence v — ¢(v)B(Q», Q1, 0, v)n is holomorphic, and assertion (a)
follows.

The validity of (b) is checked by applying the evaluation evg, to both sides of
the equation (2.9) and using that ev, is a bijection from C™*(G/Q> : o : v), onto
H;f;gz, forevery v € aj, . O
Corollary 2.8 Let w € Nkg(a) and let Q1, Q> € P have common split component. Let
o€ MQlds- Then

R0, © B(Q2, 01,07, v) = B(wQaw™ ,wQiw™, wor, wv) o R g,

. . . . oo oo
as meromorphic functions of v € a]_ with values in Hom(HU’XQ1 , HU’XQz).

Proof. From (2.6) for generalized functions it follows, for generic v € a*Ql . that

RyA(Q2,01,0,v)j(Q1,0,v) = A(wQw ™, wQiw™", wo, wv) Ry j(Q1, T, v).

Applying ev,,,-1 to both sides of the equation and using Lemma 2.1 and Corollary
2.2 we find the asserted equality. ]

Corollary 2.9 Let Q1, Q> € P have the same split component. The following state-
ments are equivalent, for any meromorphic functionn : a*Qlc — Candanyw € Ng(a).

(@A) B(Q2,01,0,-v)*B(Q2,01,0,v) =n(v)l for generic v € a*Q]C,

(b) B(wQow™, wQiw™", wo, —wy)*B(wQow™", wQiw™", wo,wv) = n(M)I  for
generic v € a;

Qic’
Proof. Letv € a*Q1 . be aregular value for each of the finitely many functions involved.
It follows from Lemma 2.1 that R, o : H, ;f;Q — H,5 ogu-1 is unitary. The result now
follows by a simple argument, using Corollary 2.8. ]
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3 The B-matrices, reduction arguments

Let P,Q € % have the same split component. Then My = Mp. If o € Mp’ds then
for generic v € aj_ the composition A(P,Q,0,v)A(Q, P,o,v) of standard inter-
twining operators is a self intertwining operator of Indg (c ® v ® 1). Since the latter
representation is irreducible for generic v, it follows that

A(P,Q,0,v)A(Q,P,0,v) =n(0, P,o,v)id, (v € ap.), 3.1

for a unique meromorphic function n(Q, P, o, v). It is easy to see that n(Q, P, o, v) =
n(P,Q, o, v). Furthermore, suppressing id,

A(Q,P,o,-v)"A(Q,P,0,v) =n(Q,P,0,v), (v e ap).

For this and other properties of 1, we refer to [9]. In the course of this and the next
sections we will prove the following manifestation of the Maass — Selberg relations.

Theorem 3.1 Let P,Q € P and suppose that ap = ag. If o € M p.ds, we have the

Jollowing identity of meromorphic functions a),, — End(H;", ) :

B(Q,P,0,-v)*B(Q,P,0,v) =n(0Q,P,0,v), (v € ap.). (3.2)

This result will be proven in the course of the next sections, through reduction to
a basic setting where G has compact kernel and P is a maximal standard parabolic
subgroup.

Remark 3.2 It immediately follows from (3.1) that B(P,Q,o0,v)B(Q,P,0,v) =
n(Q, P, o, v). Therefore, the identity (3.2) is valid if and only if

B(Q,P,0,-v)" = B(P,Q,0,v), (v € ap).

Remark 3.3 Note that for a non-cuspidal parabolic subgroup P € ¥ the group Mp has
no discrete series, so that Mp 4; = (0. This means that for trivial reasons the assertion
of Theorem 3.1 is automatically fulfilled for Q € # with ap = ap.

We will write G = MgAg for the Langlands decomposition of G, viewed as a
parabolic subgroup of G. Here Ag := exp ag, where ag is the intersection of the center
of g with p. The group G has compact center if and only if Ag = {e}. The group Mg
is also denoted °G and equals the intersection of the kernels ker & where & runs over
the collection X (G )of multiplicative characters G — R,. Write A = AN °G. Then °G
is of the Harish-Chandra class, with Iwasawa docomposition

°G = K °ANy.

Let °® denote the finite set of parabolic subgroups of °G containing °A. Then the map
0 — °Q :=0N°Gisabijection P — °P, with inverse °Q — °QAg. Note that every
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v € Ng(a) leaves °A invariant. We define °v : °P — Ng(°A) by °veg = g|-4, for
Qe?P.

We note that for Q € ¥, °Q has the Langlands decomposition °Q = Mp°AgNo,
where °Ap = ApN°G. Thus, if P, Q € P then P and Q have the same split components
as elements of P if and only if °P and °Q have the same split components as elements
of °P.

Furthermore, if Q € P, My C °G. Therefore, if o € MQ,dS, we may identify the
space H;°) 0 with the similar space for the pair °G, °Q. The same is true for the inner
products on these spaces.

Accordingly, we may define the B matrices for °G, denoted °B(°Q, °P, o, i) in

the obvious fashion as endomorphisms of H;f;P, for P,Q € P with ap = agp and for

o € Mpgs and pu € °aj_. Then p — °B(°Q,°P, o, u) is a meromorphic function on
°ap, with values in End(H;7y ). We agree to write °v := vleq, for v € aj.

Lemma 3.4 Let notation be as in the above text. Then for generic v € a),_,

(@ n(Q,P,o,v) =°n(°Q,°P,0,°v);

(b) B(Q,P,0,v) =°B(°Q,°P,0,°v).

Proof. The proof is straightforward, but a bit tedious. Details are left to the reader. O

Corollary 3.5 The assertions of Theorem 3.1 are valid for G if and only if they are
valid for °G.

Let P € . A root of P is defined to be a non-trivial linear functional @ € ap*
such that the space g, := Npea, ker(adH —a(H)) is contained in np. Equivalently this
means that a is the restriction of a root § € X(a) with gg C np. The set of P-roots is
denoted by X(P). We note that a}, is the set of points H € ap such that a(H) > 0O for
all @ € Z(P).

A P-root @ € X(P) is called reduced if the multiples of @ in X(P) are all of the
form ca, with ¢ > 1.

For two parabolic subgroups P, Q € P with the same split component, a P-root « is
said to separate a}, and aé if the sign of @ on ay is negative, or equivalently, @ € £(Q).

The distance d(P, Q) is defined to be the number of reduced P-roots that separate
ay and aa P and Q are said to be adjacent if d(P,Q) = 1. Equivalently this means
that all roots in £(P) N X(Q) are proportional.

If P, Q have the same split component and are different, then there is a parabolic
subgroup R € P with split component ag = ap such that P and R are adjacent, and
d(R,Q) < d(P,R). It is well known, see e.g. [9, Cor. 7.7], that for o € Mp,ds one has
in this case that

A(Q,P,0,v) =A(Q,R,0,v)A(R,P,0,V), (3.3)

1 *
for generic v € aj,_.
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Lemma 3.6 [n the above setting, B(Q, P,o,v) = B(Q,R,0,v)B(R,P,0,v).

Proof. This follows from 3.3 by application of Lemma 2.7 and (2.8). a

Lemma 3.7 [f the identity of Thm. 3.1 holds for all adjacent Q, P € P then it holds
forall Q,P € P with ap = ag.

Proof. We assume that G is fixed and that the identity of Thm. 3.1 holds for all
P,Q € P with d(P,Q) = 1. Arguing by induction on d(P, Q) we will show that the
identity holds for all P, Q with the same split component.

Let £ > 1 and suppose that the identity holds for P,Q € P with d(P,Q) < k.
Assume now that d(P, Q) = k + 1. Then there exists R as in the text leading to (3.3).
By induction we know that

B(Q,R,0,—V)"B(Q,R,0,v) =n(Q,R,0,v).
Therefore,

B(Q,P,o,-v)*B(Q,P,0,v) =
= B(R,P,0,-v)*'B(Q,R,0,—v)* o B(Q,R,0,v)B(R,P,0,V)
= B(R,P,o,-v)'n(Q,R,0,v)B(R,P,0,v)
= n(Q,R,o,v)-B(R,P,0,—V)"B(R,P,0,V).

Since d(P,R) = 1, the expression on the last entry of the array equals the product
n(Q,R,o,v)n(R,P,o,v). In turn, as a consequence of (3.3), this product equals
n(Q,P,o,v). a

Lemma 3.8 Suppose the identify of Theorem 3.1 holds for G, P, Q, 0 and all v € a),_.
If v € Ni(a), then the identity of the theorem also holds with G,vPv™',vQu~", vo in
place of G, P, Q, o respectively, and all v € va),_.

Proof. Let the hypothesis be fulfilled, then it suffices to prove the following identity
forall v € aj,_,

B(va_l, vPv ! oo, —v?)*B(va_l, vPv~ ! o, oY) = n(va_l, vPv ! oo, vY).
(3.4)
Using Cor. 2.8 and the unitarity of R, o and R, p we may rewrite the expression on the
left-hand side of 3.4 as

R, pB(Q,P,0,—V)"'R; , Ry 0B(Q, P,0, V)R, p =
= R;pB(Q,P,0,—v)*B(Q,P,0,v)Ryp

= n(Q,P,o,v).
The result now follows from the observation thatn(va_l ,oPv~lvor, vv) = n(Q,P,o,v),
in view of (2.6) and the definition of n(Q, P, o, v). |
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4 Reduction to maximal parabolic subgroups

In this section we will discuss a method that will allow reduction of the proof of the
Maass-Selberg relations to those for maximal parabolic subgroups of lower dimensional
groups of the Harish-Chandra class.

To prepare for this, we will first discuss well known aspects of the structure of
parabolic subgroups. We briefly write X(a) := X(g, a). If P is a parabolic subgroup
of G, we denote its Langlands decomposition by P = MpApNp. The collection of
ap-roots in np is defined as in the text below Cor. 3.5 and denoted by X(P).

The positive chamber a}, consists of the points X € ap such that o(X) > 0 for all
a € X(P).

Given a point X € a we put

2 (a,X) := {@ € 2(a) | @(X) > 0}.

We note that for a root @ € X(a), one has (X)) < 0 & -a € X"(a,X) and
a(X) =0iff ta ¢ Z*(a, X).
We define the equivalence relation ~ on a by

X~Y & I*(a,X)=2"(a,Y), (X,Y € a). 4.1)
For X € a we define the subspace px = my ® ay ® ny of g by

Px =M+ a+ Byes+(a,x) Ga- 4.2)

Then, clearly, px = py < X ~Y.

Suppose now that X* is a positive system for X(a) and a* the associated open
positive chamber in a. If X € cl(a™) then one readily verifies that py = my ® axy ® ny
is the standard parabolic subalgebra pr with F the collection of simple roots in X*
vanishing on X. The indicated Langlands decomposition is determined by

my = °34(X), ay = [X], nx = Boest(ax) Gos

where [X] denotes the class of X for the equivalence relation ~ . Write spec(X) for
the spectrum of ad(X) € End(g), and spec(X), for its positive part. Then it is readily
checked that

px = kerad(X) + ®jespec(x), ker(ad(X) — Al).

By using Ad(K) conjugacy, we see that this definition gives a parabolic subalgebra of
g for any X € g with 8(X) = —X. Furthermore, its Langlands components are given by

my+ay = 3Q(X), Ny = 69/1>0ker (ad(X) - /l[).

As usual, the parabolic subgroup with algebra py is defined by Py := Ng(px). Its
Langlands components are given by

Mx =°Zg(X), Ax =exp(ax), Nx =exp(ny).

The following lemma will be used repeatedly in the sequel.
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Lemma 4.1 [fb is an abelian subspace of s and X € b then for each A € spec(X) the
associated eigenspace ker(ad(X) — A) in g equals the direct sum of the ad(b)-weight
spaces gg for § € X(b) U {0} with B(X) = A.

Proof. For each X € s, the endomorphism adX of g is symmetric with respect to
the inner product (-, -) hence semisimple with real eigenvalues. The proof is now
straightforward. O

Let P € P have split component ap. The complement of the union of the finitely
many hyperplanes ker 8 with 8 € X(g, ap) consists of finitely many convex polyhe-
dral components, called the chambers of ap. These chambers are readily seen to be
equivalence classes for the equivalence relation ~ given by (4.1). For each chamber
[Y] the associated parabolic subgroup Py := Py has split component ap and positive
chamber a}',[Y] = [Y]. Conversely, for each parabolic subgroup Q with split component

ap = ap the positive chamber aé is a chamber in ap.

Two parabolic subgroups P, Q € £ with the same split components are said to be
adjacent if their positive chambers are separated by precisely one hyperplane from the
collection of hyperplanes kera C ap for @ € Z(np, ap). Aroot B € (g, ap) is said to
be reduced iff all its real multiples in (g, ap) are of the form ¢g with |c| > 1. Thus, P
and Q are adjacent if there is a unique reduced ap-root @ € X(np, ap) such that o < 0
on aa Note that —a is the unique reduced root in X(1g, ap) which is negative on ap.
In this situation it is easy to see that

np N ﬁQ =Ny = Dc>1 Gcas 4.3)

where the summation is over the real ¢ > 1 such that ca is a root of ap. We note that
the reduced root & has the property that ker @ N cl(a}) has non-empty interior in ker .
Conversely if such a reduced root « is given, then there is a unique parabolic subgroup
QO with split component ap that is adjacent to P. It is determined by the requirement
that (4.3).

Let P € . We assume that P is not maximal and fix a reduced root @ € X(np, ap)
such that ker @ N cl(a}) has non-empty interior as a subset of the hyperplane ker « in
ap. A point X in this interior will be called (P, )-regular if it has the property that for
all B € X(g, ap),

B(X) =0 = Blkera = 0.
As we explained, the pair (P, @) uniquely determines an adjacent Q. A point X in the
interior of kera Ncl(a}) = kera N cl(aé) is (P, )-regular if and only if it is (Q, —a)-
regular. We may select a (P, a)-regular point X in the interior of ker @ N cl(a}). We
fix such an X and define the parabolic subalgebra px as in (4.2). The corresponding
parabolic subgroup Ng (px) has the Levi decomposition M;xNy. We put G(@ := M,
ignoring the precise dependence on the choice of the (P, a)-generic element X.

Lemma 4.2 The Lie algebra of G is given by

g =f, ®@mp®n,. (4.4)
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Proof. By Lemma 4.1, ¢¥ = m;x = @3 gz where the sum is taken over the
B € Z(ap) U {0} for which either (a): Bla, = 0 or (b): Blqe, # 0 and B(X) = 0.
Condition (a) is equivalent to gg C mp. Condition (b) is equivalent to Blxera = 0
which in turn is equivalent to 5 = ca for a constant ¢ € R. The validity of (4.4) follows.
O

Lemma 4.3 np =n, ® ny.

Proof. mp is the direct sum of the weight spaces gg for 5 € X(ap) U {0} such that
Blaz, > 0. This collection of B splits into (a) those such that S(X) > 0 and (b) those
such that 8(X) = 0 and B |a; > (. The terms satisfying (a) are contained in ny, those
satisfying (b) satisfy Blkere = 0 and B # 0 hence 8 = ca for ¢ > 0. It follows that
np C 1, ® ny. Conversely, 1y is the direct sum of the spaces gg with S(X) > 0. The
latter condition implies g > 0 on a;“, hence gg € np. We see that ny C np. Finally,
1, is the sum of the root spaces g., with ¢ > 1. Since @ > 0 on a;;, it follows that
1, C np. This proves the required identity. a

Lemma4.4 p C pyx.
Proof. p is the direct sum of the spaces gg were 8 € X(a) U {0} is such that 8 > 0 on
a}. For all such 8 one has (X) > 0 so that gg C px. a

From p C py it follows that
P@:=PNMyx=PnGY
is a parabolic subgroup of G® with Langlands decomposition
P = MpApN,,

The centralizer of G(®) in ap equals ker @, which has codimension 1. From this we see
that P(® is a maximal parabolic subgroup of G(®).
Let now Q be the adjacent parabolic subgroup determined by the pair (P, «). Then
X is (Q, —a) generic, and it follows from an easy adaptation of the proof of Lemma
4.3 that
ng = 1, + Ny, 4.5)

and that Q@ = Q0 N G is a parabolic subgroup of G(®, with the Langlands decom-
position

0@ = MpApN, = P, (4.6)

Lemma 4.5 The group G'® is of the Harish-Chandra class, and P and Q'® are
maximal parabolic subgroups of G®). They have the common split component Ap and
are adjacent and opposite.
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Proof. Since the group G'® = My is the centralizer of ay in G, it belongs to
the Harish-Chandra class. From (4.6) it follows that both P(® and Q(“) have split
component Ap.

The maximality of the parabolic sugroups P(® and Q(®) was established in the
above. These parabolics are opposite. In view of their maximality it follows that they
are adjacent as well. O

The following results will turn out to be key for the argument reducing the proof
of the Maass—Selberg relations for B to the case of maximal parabolic subgroups. It
makes that certain data for G and for G'®) are suitably compatible.

Lemma 4.6 The group G'® normalizes np N ng.

Proof. The intersection 11p N1y is the sum of the root spaces gg, (8 € X(a)) with 5 > 0
on both a}, and a7 From the choice of X on claj N claé we see that the condition on
B is equivalent to (X) > 0. The latter condition in turn is equivalent to gg C nx. It
follows that np N1 = ny. As G® = My, the result follows. O

Lemma 4.7 We have the following direct sums as linear spaces:
(@) p=mp ®n, ®ny,

(b) g =mp&n, ®ny.
If P is standard, then
(c) ng = n(()“) ® ny.

Proof. Since P and Q are adjacent, mp = mp. Consequently, (a) and (b) follow from
Lemma 4.3 and (4.5). If P is standard, so is Py, in view of Lemma 4.4. It follows that

noz(noﬂmlx)®nxzné“)®nx. O

The algebra a is maximal abelian in the —1 eigenspace of the Cartan involution
B]q(a). It follows that the normalizer of A in K (@) maps onto the Weyl group W@
of the root system X(®) = X(g®, a). It follows from Lemma 4.6 that W ® preserves

My =1npNng.
Lemma 4.8 Letv € Ng(o) () be such that Néw)v 0 is open in G\Y. If P is standard,
then NovQ is openin G.

Proof. The orbit N(()a)vQ_(") is open in G iff n(()") + Ad(v)§® = ¢(@. By adding
Ny + fiy to the left and the right of the latter expression, we find, using that Ad(v)

normalizes ny,
(ng +ny) + Ad(v)(§'¥ +iix) = g. 4.7)

From Lemma 4.7 (b), we see that q(“) + 1y = @. Using this and (4.7), we find, by
taking Lemma 4.7 (c) into account that

1o + Ad(v)q = g.
This implies that NovQ is open in G. O
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From now on, we will assume that P is standard. Since 6X = —X, the group
G = Mix = Zg(X) is invariant under 6. The restriction 6(® := 0| is a Cartan
involution. Its group of fixed points is the maximal compact subgroup K® = KNG®
of G,

Furthermore, a is a maximal abelian subspace of s* = s N g(®). The algebra
g\ = my is the direct sum of the weight spaces gp for B € Z(a) U {0} such that
B(X) = 0. It follows that

2(g',a) = {B € Z(a) | B(X) = 0}.

Since P is standard, cl(a}) C cl(a™), hence also X € cl(a™). Therefore,
2*(g',0) = 2(g'™, 0) N T7(g, )

is a positive system for X(g'®, a). It is well-known that the associated set of simple
roots is given by
A = {BeA|B(X) =0}

The standard minimal parabolic subgroup Py of G is contained in Px. Hence, P(()“) =
Py N G is a minimal parabolic subgroup of G(*) = M;x. The nilpotent radical of
P(()a) equals Néa) = Ny N G'¥). Accordingly, the Iwasawa decompositions

G=KANy and G@ = K@aAN”

are compatible. The restriction y(®) := y| y( 18 a unitary character of Né“).
0

Lemma 4.9 The character ¥V is regular with respect to G®) | A, N(()a) .
(()“) form the positive system X*(g(®), a). Let 8 be a simple root

(@)
B

gp. The derivative dx'¥ (e) is the restriction of dy(e) to n(()a). Since y is regular and
[ simple,

Proof. The a-roots in n

for this positive system. Then 8 € A and 8(X) = 0. The simple root space g, ~ equals

dx'V(e)lg, = dy(e)lg, # 0.
It follows that y (%) is regular. ]

The groups P'*) = MpApN, and Q® = §P® are opposite maximal parabolic
subgroups of G® with the same split component. They are adjacent and compatible
with Q and P. Let o be a representation of the discrete series of Mp = M. We consider
the characters

XP = X|mpon, and )(;ffr)y) = X(a)lMPmNg“)'
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Lemma 4.10
(@) NoN Mp = N\" N Mp;

(®) xp=x\:

© Hyly, =H ™ ()
XP((F)

(d) the Hermitian inner products on the spaces in (c) are equal.

Proof. If B € X*(a) is such that gg C mp then S|y, = 0 so that S(X) = 0 which in
turn implies that gg C n( ) This implies (a). Since clearly

XlMPﬂN(()a) = X(a)

|MpmN(§“)

it follow from (a) that (b). Assertion (c) is now immediate. For (d) we note that the
inner product on H;%  is determined by the requirement that the matrix coefficient
map

ot HY ® Hy, — L*(Mp/Mp N\ Ny : xp)

g.xp

is an isometry. In view of (a), (b) and (c), the matrix coeffient map u, coincides with
the matrix coefficient map

p HY ® =, = L*(Mp/Mp O N 1),

A pla)

Remark 4.11 For (d) it is essential that we agree to equip Mp/Mp N N(()a) with the
same positive invariant measure as Mp/Mp N Ny.

We have now introduced all ingredients needed for the definition of B(*) (Q(®) P(“) o,V)
for the group G (¥, the adjacent parabolic subgroups P(®), 0® and any o € M P.ds, aS

an End(H™* , )-valued meromorphic function of v € a},_. The following is a crucial
a
Ap(a)
reduction result.

Lemma 4.12 Let P,Q € P be as before, and assume P is standard. Then for all
o € Mp 45 we have

B(Q,P,0,v) = B(PD P & v),

as End(H

oyp)-valued meromorphic functions of v € ay,_.

Remark 4.13 Here it is important that the Haar measures on Np N Np and on N,

used in the definition of the standard intertwining operators for G and for G(®, are
equal.
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The proof of Lemma 4.12 will be given in the next few sections. In the text below
we shall explain its role in completing the proof of Theorem 3.1.

By a Whittaker datum we shall mean a triple (G, KANy, x) with G a group of the
Harish-Chandra class, KANj an Iwasawa decomposition of G and y a regular unitary
character of Ng. An MS setting is a Whittaker datum as above together with a tuple
P, Q of parabolic subgroups of G containing A, and with equal split components. We
will say that such a setting satsfies he assertions of Thm. 3.1 if for all o € M p.ds the
identity (3.2) is valid. Finally, an MS setting (G = KANy, x, P, Q) is called basic if
P, Q are maximal and adjacent. In particular, in this case P and Q are opposite.

Lemma 4.14 [f the assertions of Thm. 3.1 hold for every basic M S-setting, then they
hold in general.

Proof. Suppose the assertions of Thm. 3.1 are valid for every basic setting, and
let (G = KANy, y) be a Whittaker datum. Let P’,Q’ determine an associated MS
setting. By Corollary 3.5 it suffices to prove the assertions of Theorem 3.1 for the
setting (G = KANy, x, P’,Q’) under the assumption that G has compact center. By
Lemma 3.7 it suffices to prove the assertions under the additional condition that P’, Q'
are adjacent. By Lemma 3.8 we may further reduce to the case that P’ is opposite
standard. If P’ is maximal, so is Q" and hence (G, P’, Q’) is basic, and by hypothesis
there is nothing left to be proven. Thus, we may in addition assume that P’ is not
maximal. We write P’ = P, with P standard. Then Q := Q’ is adjacent to P. It
remains to prove the assertion of Theorem 3.1 for the setting (G = KANy, x, P, Q).
We now select a subgroup G (®) of G related to the pair (P, Q) as in the previous section.
Then (G = K (")AN(()Q), ¥ is a Whittaker datum, and (P(®), Q(®)) determines an
associated MS-setting. By Lemma 4.12 it suffices to prove the assertions of Thm. 3.1
for the latter setting. By Lemma 3.4 we see that it suffices to verify the assertions
of Thm. 3.1 for the setting (G(“) = K(“)OAN(()Q),X(“), opla) °Q(“)). Since the latter
setting is basic, the validity of the assertions is garanteed by the hypothesis. O

5 Smoothness of J

In this section, we assume that P,Q € P are adjacent parabolic subgroups of G,
containing A. In addition we assume that P is standard and not maximal. Furthermore,
a € Z(P) and X € ker a are as in Section 4. We retain the notation introduced in the
text following Lemma 4.1.
Fixn € H;?;P; recall that P is standard. For v € a;«c we define &, : NoP — H™™
by
&y(nman) = x(n)a™>*** o~ (m)n,

forn € Np,m € Mp,a € Ap and 1 € Np. We view the restriction of &, to K N NP as
an almost everywhere defined function K — H_™. This function satisfies €, (km) =
o(m)~'e, (k) for almost all k € K and m € Kp.
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From [2, Prop. 8.12] it follows that for Re v P-dominant the Whittaker vector

Jjv := j(P, o, v)nis represented by &, in the sense that in the compact picture one has,
forall ¢ € C*°(K/Kp : op),

Uy ) = /K ey (K) . o(k)) dk, 5.1)

with absolutely convergent integral.
Likewise, the element j'¥ = j(P@), &, v)y associated with G(@ is, for v € ap.

with Re v(H,) > 0, given by the almost everywhere defined function
&9 (nman) = y(n)a™"*r@ ¢~ (m)n,

for n € N;,a),m € Mp,a € Ap and i € Np(a). Here ppa) is the tho of the standard
parabolic subgroup P(*) in G® . We note that the difference pp — p pla) TEStricts to zero
on ker @ = °a'® hence does not appear in the analysis on °G (®).

For u € aj, . we define ¢, : G — Cby

¢ (kman) = a™*, (ke K,m € Mp,a € Ap,i1 € Np).
We note that the operator
My, :C(GIP:0:v) > C(G/P:0o:v), ¥ oup

is given by the identity of C*(K/Kp : op) in the compact picture. In particular,
it follows that the operator has a unique continuous linear extension to an operator
C(G/P:0o:v) > C*(G/P: o :v+ u). We denote this operator by m, , again,
and write m, , : ¢ = @,. In the compact picture the extended operator m,, ,, is given
by the identity of C~°(K/Kp : op).

It follows from Cor. 1.12 that v + j, defines a holomorphic function aj. —
C™(K/Kp : op). Clearly, (v, u)v, u — @, jy—y is given by (v, u) — j,_,|x in the
compact picture, hence is holomorphic on a),_ X a}, .

It follows from [2, Prop. 8.14-15] that for Re v strictly P-dominant the generalized
function ¢, j,—, € C™*(G/P : o : v) is represented by ¢,&,_, in the sense that for all
¢ € C*(K/Kp : op),

(Oulv—ps> ) = /K<8v—/x(k)a p(k)) dk.

Put A(v) = A(Q,P,0,v) andlet Sy C a}. denote the singular locus for A( - ). For
(v, ) € (ap. \ Sa) X ap, we define

v = AN [@ujv-pl € C(G/Q : 0 : V). (5.2)

The extra parameter y is introduced to allow the choice of pairs (v, ) where A(v) and
Jv—u are simultaneously representable by a convergent integral and a locally integrable
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function, respectively. This idea is inspired by an argument of T. Oshima and J.
Sekiguchi [10, text prec. Lemma 4.13], developed further by [1, Lemma 7.4], see also
[5, Prop. 6].

Our first main goal is to understand the dependence of 7, ,(1)Jy,, on (n, v, ) €
Np X ap, X ap.

From (1.7) and (2.4) we have, for R € R,

a*(P,R): = {veap.| Re(B,v)>R, (BeX(P))},
a’(QIP,R): = {vea; |Re(B,v)>R, (BeZ(Q)NI(P))}.

From [2, Prop 14.8] we know that for every R € R there exists a positive integer s
such that v — j(P, o, v) is holomorphic as a map ap(P,R) —» C*(K/Kp : op).
Furthermore, for o € M p.ds- we know by Lemma 2.3 that for every R € R there
exists a polynomial function g : a),  — C and a constant r € N such that for every
t € N the assignment
v = q(v) AQ, P, o, v)

is holomorphic as a function on a*(Q|P, R) with values in B(C™,C~'~"), the Banach
space of bounded linear maps C~"(K/Kp : op) —» C"""(K/Kp : op).

Lemma 5.1 For every bounded open subset Q of ay,_ X ay,_ there exists a p € N and
a polynomial function q € P(a}) such that the map (n,v,u) — q(V)ng 5., (1)Jy
is a smooth map Np X Q — C7P(K/Kp : op) which is holomorphic in the variable
(v, n) € Q.

Proof. Without loss of generality we may assume that = €; X Q; with Q; bounded
open in a}_.. We will write C*(K : op) := C*(K/Kp : op), and keep in mind that
Kp = Kg. For every s € Z we will write ¢ — |k for the isomorphism C*(G/P : o :
v) — C*(K : op) induced by restriction to K. Note that with this notation,

mp oy (M@ (Poo, v —pumllk = ¢, w[j(P,o,v - pu.n)lk]

where
W (n, ) (k) = x(0) oy (n'k) = x () ap(n k)

is a smooth function Np X ap,. — C%(K/K)), which is holomorphic in the second
variable. Let r be the order of j(P,o, -)over Q) —Qy ={v—u|veQ,ue}.
Then (v, u) = j,—, defines a holomorphic map Q — C™"(K : op). It follows that the
map

(I’l, Vs ,Ll) = 7T13,0',v(n) [‘P,ujv—y|l<]

is smooth Np X Q — C7"(K : op) and in addition holomorphic in the second variable.
Let ¢ be the order of the family A(Q, P, o, - ) over Q. Then there exists a polynomial
function g : a},. — C such that for every positive integer s the operator A(Q, P,o,-)
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defines a holomorphic function Q; — B(C™(K : op),C*(K : op)). Since the
natural map

B(C"(K :0p),C" (K :0p)) X C"(K:0p) = C " (K :0p)

is a continuous bilinear map of Banach spaces, it follows from the usual rules for
differentiation that

(n,v) — Q(V)TIQ_,O',V(H)JV,/J

= q(V)A(V)ﬂP,a-,v(n) [Qo,ujv—,ulK] (5.3)
defines a smooth map from Np X Q to C™"(K : op) which is holomorphic in the
second variable. This proves the result with p = r + 1. a

In view of the results of Section 1 for the group G® in place of G there exists an
element v € Ng(a) (a) such that N(()a)vQ_(") is open in G We may therefore choose

(@)

Q(") =0

v =V
for our maps v : £ — Ng(a) and 0@ : P@ — N (a) for G and G@ as
discussed in Definition 1.4. Then P = vQu~!. It follows that G° := NpvQ is a right
Q-invariant (dense) open subset of G. The action map Np — G/Q, n +— nvQ, induces
an open embedding into G/Q with image G°/Q. Composing the defined embedding
Np — G/Q with the inverse of the diffeomorphism K/Ky — G/Q we obtain an
embedding Np — K/K( with image K° = [NpvQ] N K. The defined maps form a
commutative diagram of diffeomorphisms

Np — G°/Q

N\ T
K°/Kp.

By pull-back we then obtain for every v € a},_ a commutative diagram of topological
linear isomorphisms

C'(Np,Hy;) «— C'(G°/Q:0:V)
AN T
Cr(KO/KQ : O'Q).

The diagram with arrows representing the inverted maps is still a commutative diagram
of topological linear isomorphisms. For a given u € H_ we consider the embedding
ty : CP(Np) — CP(Np,H,), f +— f ® u. Combining this with the inverted diagram,

we obtain a diagram of continuous linear maps

T, _
C"(Np) — C'(G°/Q:0:v)
uTv\ l ry

Cr(KO/KQ . O'Q).

5.4)
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k

oc’
T[Q_,O',v(n) OuTv = uTv OLn’ (l’l I= NP)

Lemma 5.2 Foreveryu € HY andv € a

Proof. This follows readily from the definitions. ]

Given a compact subset K ¢ Np we will denote the canonical image of Kvin G/Q
by K’ and the image in K/Kp by K”. Note that K’ ¢ G°/Q and K” c K°/Ky. Letr
be a positive integer. Identifying C’.,(G°/Q : o : v) with C’,(G/Q) in the usual way,
through extension by zero, and using the analogous identification for functions on K,
we infer that the diagram (5.4) induces a commutative diagram

T, _
C'.(Np) 5 C.(G/Q:0:v)
" PMTV\ " Lry (5.5)
C;(,,(K/KQ : O'Q)

of bounded linear maps between Banach spaces. If f € C"(Np) we denote by , Jo.0v
the function G° — H given by

wSG.ry(noman) = a™**2 f(n) ® o(m)~"u, (5.6)
forn € Np,m € Mg,a € Ag and i € Ng. Then T, and ,T, are given by

T () = ufpeys and JT,(f) = ,T,(lkes  (f € C"(Np)).

If f € C4.(Np) we view ;Tv(f) as an element of C, (G/Q : o : v) as explained above.
Then , T, (f) = ;Tv(f)lK-

Lemma 5.3 Let K C Np be compact, and v € ay_. For every r € N the map
(u, f) = «T,,([f) is continuous bilinear Hy x Cq(Np) — Cy.,(K/Kg, 0g).

Proof. Straightforward. See also [2, Lemma 8.8] for a related discussion. O

We will now investigate the family J, , € C™"(G/ Q : o : v) in more detail.
First of all, if J € C7"(G/Q : o : v) and u € HY we define the continuous linear
functional ,J : CL(Np) — C by

W () =5 uT5 (), (f € C"(Np)). (5.7)

We denote by a; the function K° — A (uniquely) determined by
X € vaMQaQ(x)NQ, (x € K°).

Then ag is real analytic Ko/Kg — Ag. Forr € N and v € a},, we define the map
m, : C"(K°/Kg : 0g) — C"(K°/Kp : 0p) by

m, () (k) =ag()”f(k),  (f € C.(Kqo/Kp)).
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Lemma 5.4 Let K be a compact subset of Np. Then for every v € ay,_ the map
m, restricts to a bounded automorphism of the Banach space C.,,(K/Kg : o). The
assignment v > m,, is holomorphic as a function on a),_ with values in the space of
bounded operators B(C/.,,(K/Kp : 0p)).

Proof. Straightforward. O

Lemma 5.5 Letu € Hy. Let K C Np be a compact subset. For f € Cg.(Np) and
v e a*QC we have

(a) uTv(f) € C) z(K/KQ O V);
(®) T, (f) = my (W To(f));

(¢) the map ,T, is a bounded linear map between the Banach spaces Cg.(Np) and
Cyor (K/Kg @ 09);

(d) the assignment v + T, is holomorphic as a function on ay, , with values in
the Banach space B of bounded linear maps from Cg.(Np) to Cy.,,(K/Kg : 0g),
equipped with the operator norm.

Proof. Assertion (a) is true by definition. For (b), fix k € K”. Then k has a unique
decomposition k = nvmaii € KvQ = KoMgAgNg C NpvQ. It follows that

Ty (f) (k) fma™*ea(m)™ u
ag (k)" uTo(f) (k) = mu(To(f)) (k).

From (a) and (b) it follows that ,7}, = m, o ,Ty. Thus, view of Lemma 5.4 it suffices
to show (c) for v = 0.

Put X = C}(Np), Y = C},,(K/Kg : 0p); these are Banach spaces. We equip
B(X,Y) and B(Y) with the operator norms and consider the natural map 8 : B(X,Y) X
B(Y) — B(X,Y) (t,u) +— pot. Then g is bilinear and [|B(7, u)|lop = [[poTllop <
lgl||IT|]. Thus, B is continuous. If v — 1, and u + u, are holomorphic, it follows
readily that u — B(Y,, u,) is holomorphic with values in B(X,Y), Applying this to
7, = ,Top and u, = m,, we find that v — my.,T, = B(,To,m,) is holomorphic

a*QC — B(X,Y), This establishes (d). O

Recall the definition of J, , from (5.2), for (v, u) € (a}.\ Sa) x a},_.. Foru € HY
we define ,J, ;, as in (5.7). This is an element of C;?(N p)’ for every compact K C Np.

Theorem 5.6 For every u € Hy and (v, u) € (ap.\ Sa) X a},_ there exists a unique

smooth function Mfw € C*(Np) such that ,J, , is represented by the density uf,,,ﬂdn P
in the sense that

() = /N Tou(np) fnp)dnp,  (f € C(Np)).

If Q C ajp_ X ap_ is a bounded open subset then there exists a polynomial function
q : ap. — Csuch that the map (v, p) — q(v)uJyy is holomorphic Q — C*(Np).
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Proof. Letu € H} be fixed. The asserted uniqueness is clear. Therefore, it suffices to
prove the assertions that arise if we replace (a}, \ Sa) X aj,_ by (€1 \ Sa) X €2, and Q
by Q1 X €, for an arbitrary pair €1, Q; of bounded open subsets of a}, .. Suppose such
a pair is fixed and let ¢ € P(aj,_) and p € N, be associated with Q = Q1 X Q, as in
Lemma 5.1.

Let K c Np be a compact subset. We fix an open neighborhood V of e in Np
whose closure in Np is compact. Then K, := cl(V‘1)7( 1s a compact subset of Np. We
fix K, and K as in the discussion of the diagram (5.5) with K, in place of K.

For f € Ch.(Np) andn € V we have L, f € C%e (Np). We now note that

Lnludvyls Y = Cadvys L' )
= Uy aTus Ly F1)
Jops 7TQ,0',—17(n)_1 [T u—s f1)
= <7TQ,0',v(n)Jv,,u , uT—V(f_»-

We write X = C,‘;(Np) and Y = CP(K/Kg : o). Furthermore, Y denotes the
conjugate of Y and B(X,Y) the space of bounded linear maps from X to Y, equipped
with the operator norm.

It follows from Lemma 5.5 (d) that f + ,T_;(f) is an element of B(X,Y), depend-
ing holomorphically on v € aj,_. On the other hand, (n,v, u) = q(v)rg,c(n)Jy , is
a smooth function VX Q — Y’ = C7P(K/Kg : o), which is holomorphic in (v, u).

We now consider the natural bilinear map 8 : B(X,Y) x Y’ — X’ given by
(t,m) — not. Note that ||B(z,n)|| < |Inll|i]|; this shows that 3 is continuous bilinear.
We observe that

Ly [qu,,u] =BT, ﬂQ,a,v(”)Jv,,u)-

By the usual rules for differentiation it follows that (n, u,v) = q(v)L,[uJy ] is a
smooth map Np X Qg, g, — C;)((N p)’, which is holomorphic in the variable from Q.
Let ‘v,..., ‘v, be a basis of the Lie algebra of Np and let v; = L., be the
associated right invariant vector fields on Np. Then it follows for all (v, u) € Q and
every multi-index @ € N” that the distribution g(v)v®(,J,,) belongs to C(I;((Np)/.
Furthermore,
(V’ ,u) = Q(V)Uw(u‘]v,u) : QR1,R2 - Cg((NP)/

is holomorphic. By application of the lemma of the appendix we now conclude that
q(v)uJy, is a smooth density of the form asserted, with holomorphic dependence on

(v, ). 0

6 A useful integral formula

We keep working under the hypothesis of Section 4. Thus, P € % is standard non-
maximal, Q is adjacent to P and @ € Z(P) N [-X(Q)]. The element X € kereNcl(a})
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is generic. Py is the unique parabolic subgroup having X in its positive chamber, and
G = M;x = PxnN P_X-

We define smooth maps ks : G — K, mp : G = MpnNexps,ap : G — Ap and
np:G — Npby

x = kp(x)mp(x)ap(x)np(x), (x € G).

The multiplication map K X P — G factors through a diffeomorphism K xg, P — G.
Since a=?*?dmdadn defines a right-invariant measure on the group P, it follows that
for a Lebesgue integrable function f : G — C we have

/ f(x)dx = / f(kmai) dkdmdadn.
G KxMpxApxNp

Lemma 6.1 Let ¢ : K — C be Lebesgue integrable. Then
Jowyac= [ pthpnckn) aptoxka) " dnxd,
K NxXK(“’)
Proof. We fix ¢ € C.(P) left Kp-invariant, such that
/ ¥ (mai)a=** dmdadii = 1. (6.1)
MPXAPXNP

Furthermore, we extend ¢ to G by the formula

¢(kman) = ¢(k)y (man),

for k € K,m € Mp,a € Ap and i1 € Np. Then ¢ is Lebesgue integrable on G and

/G w(x) dx

/ i (k)¢ (man)a=*? dkdmdadn
KXMpXAXNp

/K(p(k) dk.

Since K@ normalizes Ny, the density dnydk, on Ny XK (@) s left invariant. Therefore,

/ o(x) dx = / o(nxkomai) a >* dnxdk'”dmdadn, (6.2)
G NxxK(@xMpxApxNp

provided the measures are suitably normalized. The pull-back of a~>* dmdadn on P
under left multiplication by majn; equals afp ?a=2PP dmdadn. Therefore, the second
integral in (6.2) equals

/ o(kp(nxky))ap(nxkq)*? w(maﬁ)al_szﬁpdmdadﬁdnxdka
Nx XK@ xMpxApxNp

- / o(kp(nxka)) alnxke) dnydks.
NxxK (@)
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Lemma 6.2 Let f : G — C be such that f|g is Lebesgue integrable and

f(xman) = a®* f(x),

forallx € G,(m,a,ii) € Mp X Ap X Np. Then

/ F(k)dk = / Flnxka) dnxdke.
K NxxK (@)

Proof.

/ F(k)dk / F(kp(nxka)) ap(nxka)® dnxdke.
K NxXK((I)

/ f(nXka) dnxdk,.
NyxK (@)

Remark 6.3 In proof given above we have not used the particular definitions of Ny
and K@ . The proof works under the assumptions that 1y, 11, are sums of a-root spaces
such that ny ® n, = np, Ny = expny, @) =N (g, +1iy) + fp and K@ is the group
generated by exp(£(*))Kp. In particular the proof works for the case 1, = 0, so that in
particular Ny = Np and K (@) = K. In this setting the above result is well known.

In the sequel we will also need the following result, for P € Py, and Q = v Po,
(/S NK((I).

Lemma 6.4 Let f : G — C be right MyNg-invariant, and let R, f = a*le f for all
a € Ag. If f|k is Lebesgue integrable, then

/f(k) dk = f(nv) dn.
K Np

Proof. The function L,f : G — C has the same Q-equivariance on the right at f. In
view of Remark 6.3 we obtain

/va(k) dk :/ f(vnQv_lv)an = f(nv)dv.
K No Np

Since dk is left invariant, the desired result follows. O
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7 Comparison of J with J(@

The preceding discussion applies to any Whittaker datum (G = KANy, x). In particular
it applies to the group G(@ = K (")ANSQ) , with the character y (@ = y| y(@ 3 see Lemma
0

4.9 and its adjacent parabolic subgroups P(*) = PN G and Q@ = Q N G,
Their respective nilpotent radicals are N, and N,. Accordingly, P*) and Q® are
opposite parabolic subgroups of G(® with split components Ap. Since they are
maximal parabolic subgroups of G(®) they are adjacent. The element v belongs to the
normalizer in K® of a. In particular, from P = vQu~! it follows that P(®) = pQ @y~
Thus, NovQ is open in G and N(()a)vQ(“) is open in G(@. Moreover, NovQ = NpvQ
and N(()Q)UQ_(“) = NvQ@,

We recall that np = n, ® ny. Since both n, and ny are subalgebras of np and each
of them is a direct sum of root spaces gz with § € X(a), it follows that the multiplication
map Nx X N, — Np is a diffeomorphism. Since G '@ normalizes Ny, it follows that
Nx is a normal subgroup of Np and

Np = NxN, = Nx = N, (semidirect product).
We note that also NxK (¥ is a closed subgroup of G; clearly
NxK® = Ny = K@,

Forv € aj,_withRe v strictly P(®_dominant the Whittaker vector Jj (@) (15(“) , 0, V,1)
is represented by the function £® : G(*) — C defined by

Sw(/a) (ngmariy) = X(na)O'(m)_la_H'pP(ﬂ)n

for (ng,m, a,iiy) € NoXMpXx ApXxN, and by zero on the complement of N, MpApN,,.
For u € aj, the function gol(f) : G — Cis defined by

o\ (kgmang) = a*,
for (ko,m,a,ng) € K@ x Mp x Ap X Np. We define the character ¢ : Ap — R by
f(a) = gPPPpla)

and note that & = 1 on expRH,. Now expRH, € Mx = °G® commutes with
Ax = expker a. It follows that & uniquely extends to a character of G®) which is 1 on
My . This extension is also denoted by £. The following result is straightforward.

Lemma 7.1 Forallv,u € aj,

&vlgla) = §850’) and ¢,lg = goff‘).
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As the character & is only non-trivial on the center of G () its role is easily understood
in the calculations that follow. From the lemma it follows that ¢,&,_, restricts to
fgofla)efff)ﬂ. This suggests that J, , and J%) might be related.

In fact, we will show that the following is valid.
Proposition 7.2 Letu € Hy. Then, for (v, u) € aj,_ X ajp_,

7 _ TFlo)
qu,/z|N(, - uJV,,u-

For the proof we need some preparation. First we will describe a direct relationship

between ¢, j,—, and t,aff‘) jﬁfi,.

Lemma 7.3 Let Q C a},_Xay,_ be a bounded connected open subset which contains a
point (u,v) such that Re (v — u) is P-dominant. There exists a positive integer r such
that the following assertions are valid.

(a) The map (u,v) = jy—, is holomorphic Q — C™"(K/Kp : op).

(b) Forevery f € C"(K/Kp : op) the function Nx x Q — C" (K@ /Kp : op),

(nx, v, ) & Ly (0p) Lyt (fp.or=7) (@
is smooth, and holomorphic in the variable (v, i) from Q.

(c) Forevery f € C"(K/Kp : op) with support contained in K N NpP,

(Oujvn» [) = /N x () G k@ s La (@) Lk (5.0 —5) g dnx
X

forall (v, u) € Q.

Proof. Assertion (a) follows from Corollary 1.12. Assertion (b) is obvious. We address
(c). The set Qg of points (u, v) € Q such the real part Re (v — p) is strictly P-dominant
is non-empty and open. Let (v, u) € Qo; then it follows that for f € C"(K/Kp : op)
the function (¢, j,—., f)s is integrable over K/Kp. We now observe that the function
F:x  {@ux)jy-u(x), fo.0—7(x))s on G is right MpNp-invariant, and satisfies
R,F = a*°PF for all a € Ap.In view of Lemma 6.2 it follows that

a1 = [ vk (afp g ) (k) dny i, =

/ (nx) / (&9 (ke 0a(nxka) f5 o) (nxka)) dkqdnx
Nx K(@)

[ )G Ly o) Lgs U g ) din.
X
This establishes the identity of (c) for (v, u) € Q.
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If f satisfies the mentioned support condition, it follows that there exists a compact
set K C Ny such that

Ln;(l (fﬁ,o-,—v) |K<a) =0

for all v € aj,_and all nx € Nx \ K. From this it is readily seen that the expressions
on both sides of the equation in (c) are holomorphic functions of (v, u) € Q. The full
result now follows by analytic continuation. O

For ¢x € C°(Nx) and ¢, € C°(N,), define px ® ¢, € C°(Np) by
Ox ® o (nxng) = ex(nx)pa(ng).

'We note that for v € a’l“,c. According to the definition,
W (@x ® 9a) € C'(G/Q 1 0 1 v)
is given by
2T (0x ® @) (nxngoman) = a™"**2 px (nx)ga(ng) o (m)~'u

for (nx, ny, mai) € Nx X Ny X MpApNg and by )T, (¢x ® ¢,) =00n G \ NpvQ. We
recall that
T,(¢x ® ¢a) =, T, (¢x ® ¢o)|k € C"(K/Kp : op).

The map MTV(“) is defined similarly for the group G®; note that N p(a) = N,. For
@ € CL(N,), u € HY and v € aj,_ we define ;Tv(”)(go) e C"(GY/Q@ : g :v)by

VT (@) (ngomait) = a0 - (m) ™ g (ng)u

for novman € NQUMPAPNQ(Q) and by ;Tv(a)((p) = 0 on G \ N,oQ¥. Finally,
T 2 Cr(N,) — C"(K@/Kp : op) is defined by

T = 3T (@) g, (9 € CLN)).

Suppose now that R is either of the parabolic subgroups P and Q. In this situation,
the natural multiplication map Ny x K@ Xk, R — G is an open embedding. If
¢x € CL(Nx), ¢y, € C"'(K“9/Kp : op) and v € a,., we define the C"-function
Spyv(px ®¥o) : G — Hy by

'Sk (9x ® Ya) (nxkomai) = a™" PR oy (nx)yq (koo (m) ' u,

for (nx, ke, mait) € Ny X K, X R, and by ‘Sg,(¢x ® /o) = 00n G \ NxK,R. Thus,
Sry(ox ®Yqa) € C"(G/R : o : v). As before, we define

Sryv(ox ®WYa) ="Sry(ex ®W¥a)lk
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Lemma 7.4 Letu € H. Then for ox € CL.(Nx) and ¢, € C.(N,),

To(ex @ ¢a) = Sou (#x 9. (00))
forv € ay..

Proof. We will use the notation o, for the character of Q given by o, (man) =
a’Peg(m).

Let k € K and suppose ,T,(¢x ® ¢)(k) # 0. Then there exist ny € Nx and
ne € N, such that k = nyn,vg with g € Q and

uTy(@x ® 0a) (k) = 0 (D)™ (9x (%) @a (na)u).
In particular, ¢, (ny) # 0. Write nyv = koG,, with k, € K@ and Go € §(?. Then
k = nxkoq.q. Hence,
So(x ® uTy" pa) (k)
= 0(Gad) " ex(nn) (g ko)
v (§ad) " ox (nx) 0 (Ga) Palna)u

O-V(q_)_l(pX(nX) $a(ng)u
WL (ox ® ¢o) (k). (7.1)

Conversely, suppose that

Sov(px ® uTy(”)goa)(k) #0.

Then there exist nxy € Nx, ko, € K, such that k = nxk,q with g € 0. Moreover,
Sox(px ® Ty 6a) (k) = () px (nx) WT3" (0a) (ka).

In particular, uT,fa)(cpa)(ka) # 0. Hence, there exist n, € N, and G, € Q'@ such that
ko = navﬁ(“). Now
uTv((Y)‘Pa(ka) = O'V(q_a)_l‘/’a(na)-

We now have k = nxk,g and k, = n,vg, so that k = nxny,vg.q. It follows that

Wy (x ® ¢o) (k)
= O'V(q_aCY)_l‘PX(nX)SOQ(na)”
(@) ex (nx) (T3 ¢a) (ko)
= Sou(px ® T 6a) (k).
Thus, we have shown that for k € K, ,T,(¢x ® ¢o)(k) is non-zero if and only if

Sov(px ® uTv(a) ¢q) (k) is non-zero, and that the desired equality is valid at such k. In
the remaining points k, both functions are zero, hence also equal. ]
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Lemma 7.5 Suppose that Q is a bounded connected open subset of a),_, containing a
point v such that Re v is Q-dominant. Let t dominate both the order of A(P,Q, o, )
over Q and the order of A (P, 0¥ o,v) over Q. Then for ¢x € C'*'(Nx) and
Y € CM (Ko /Kp : op),

A(pa Q_7 O-’ V)SQ,V(CPX ® ‘ﬁa/) = SP,V(SOX ® A(a) (P(a)’ Q_(CU), O-’ V)',[/a).
as meromorphic functions of v € Q with values in C" (K /Kp : o).

Proof. The statements about meromorphy are well-known, and serve here to allow
meromorphic continuation of identities. Let g be the set of v € Q such that Re v is
Q-dominant.Then € is open and non-emtpy. For v € Qq the intertwining operators
are given by the familiar integral formulas. We use the abbreviated notation A(v) and
A@ (v) for the above mentioned intertwining operators. Then it suffices to show that

A(v) \SQ,V(")OX ®Yq) = \SP,V(SOX ®A(0‘)(V)%0a)

at each point g := nyk,p € NxK(® P. Since the elements on both sides of the equation
belong to C"(G/P : o : v), we may as well assume that g = nyk,. Then

A 'Spy(0x ® W) (g) = /N Spo(0x ® o) (nxkafta)dita.

Since 7, € G'® we may write i, = k(7ig)p (ne) with k(7ig) € K® and p(ii,) € P
smoothly depending on 7i,. Therefore,

A(v) \SP,V(SOX ® o) (g) / O'V(ﬁ(ﬁoz))_l \SP,V(SOX ® Yo ) (nxkok(iia))diig

No

</1\7 O'V(ﬁ(ﬁaf))_l ox(nx) o (kok(iia)) ditg

ox(nx) /N o (B () W (kak () dita

ox(nx) /N Va(kafla) dita = ox (n) [A® (W] (k)

‘S0 (ox ® A (M) (g).

|

Proof of Prop. 7.2. Suppose that u € H; is fixed. It suffices to prove the identity
for (v, ) € Q, where Q is an open subset of aj,_ X aj,_ satisfying the conditions of
Lemmas 7.3 and 7.5.

43



Let px € C2°(Nx) and ¢, € C°(N,); then

/ T (s 1) ox(nx) @alne) dny dna 72)
Nx XN g4

= wlvu(ex ® o)

= (o> uT-5(Px ® @a))

= (vu> So-5(8x ®.T'Y (8a))

= (A(Q, P, 0, v)(Puiv-4) > So.-+(@x ®uT'S (Ba))

= A ufv—p» A(=V)Sg3(Px ® Ya, 7))

= A@uiv-u> Sp-5(@x ® A (=7)0 7)) (7.3)
where we have written A(-v) = A(P, Q, o, —v), A® (=7) = A@(P@) @) & _7)
and Yoy = T'? (o). Put

F = Sp5(¢x @ A (=9)0,-5).

Then F € C"(K/Kp : op). Applying Lemma 7.3 with F in place of f, we find that
(7.3) equals

(Pufv-p»> F) = /N X(”X)(J'&m[((m , Ly o)) Ly (Fpo—7)|g) dnx.  (1.4)
X

Now
Fp.o—3(nxka) = gx(nx) A (=9) e —5(ka),
so that (7.4) equals
/N X(nX)SOX(nX)(]\(/C—%K(a) s Ly (o) A (=P)g, -5l o) dny. (7.5)
X

The equality of (7.2) with (7.5) for arbitrary ¢x € C°(Nx) implies that for every
nx € Ny,

/ udy (1%, 10) €0 (Ma) dne = X (nx) G g » Lt (@) A (=)0 5] ).
Na

Substituting nx = e, we find that

/ Toa(eana) @ang) dna

a

= (k@ s (@) AD (=7)a—slg)
= (ADQ®, P o, v)p@ i T ()

= u]éil)(cpa) = / ufv,,u(”a)ﬁoa(na)dna-
No
As this is valid for any ¢, € C°(N,), we conclude that

uj;/,u(e’ Ng) = M:]:(/’CL) (nq),
forall n, € N,. O

44



8 Comparison of B with B(?), proof of Lemma 4.12

We retain the notation of the previous section.

Lemma 8.1 For every u € H the assignment v + uZ/,O is meromorphic ay,_ —
C*(Np) and given by

wlvo(n) = x(n)(B(Q, P,o,v)n, u)s,  (n € Np), @.1)
as an identity of meromorphic functions of the variable v.

It follows from the assertion about the singular set in Theorem 5.6 that v — uZ/,O
is a genuine meromorphic function of v with values in C*(Np). On the other hand,
by definition, for regular values of v € aj,_ the following identity of elements of
C™(G/Q : 0 :v),is valid:

Jvo = A(Q, P, v)¢oj(P,o.,n) = j(Q,,v)B(»)n,

where B(v) = B(Q, P, o, v). From this equality combined with Lemma 1.7 and [2,
Thm. 8.6] it follows that for regular v, the generali_zed function J, o € C~°(G/ Q:0:
v) is continuous H_*-valued on the open set NpvQ where it is given by

0l npug (noman) = x(n)a>**eo~ (m)B(v)n,  (n € Np,ma € Q),

in the sense that the identity is valid after testing with any function ¢ from C*(G/Q :
o : —v) whose support is contained in NpvQ, i.e.,

Jyo, @) = /K rolypeg » @) (k) d.

Let u € HY; then for any f € CX(Np) the function ¢ = ,T_;(f) is of this type.
The function F := (J, 0, ,T_7(f))c is a continuous function G — C which is right
MgNg-invariant and transforming according to the rule R, F = e’PCF. Hence, by
Lemma 6.4 its integral over K is given by

(Jvo, uT5(f)) = . (Jvo(nv),  T-5(f)(nv)) dn (8.2)
= NP<JV,o(nv),f(n)u> dn
- /N B0 (n) dn (8.3)
The expression on the left-hand side of (8.2) is equal to
0> uT-5(F)) = wlvo(f) = . f(m)udyo(n) dn (8.4)

see the text preceding Theorem 5.6. It follows that the integral in 8.4 is equal to the
integral in (8.3) for all f € C2°(Np). Since ,J, o and y are continuous functions on Np
the desired identity follows. O
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End of proof Lemma 4.12. All arguments presented so far in this section are valid
for the triple G@ p@), Q(") = P@ jp place of G, P, Q. In particular, if u € H, then
the function uﬂv%) € C%(N,) depends meromorphically on v € a},. and is given by

T (1) = X ()(BDQW, PO, o vy, u) 85
for n € Npa) = N,. From Proposition 7.2 it follows that
wJvo(e) = w8 (e)

as meromorphic functions of (v, u) € a}_ X aj.. Combining this with (8.5) and (8.1)
we obtain that

(B(Q,P,0,v)n, u) = (B(QW, P o, v, u).

Since this holds for every u € H; the proof is complete. O

9 The C-functions and the Maass—Selberg relations

From now on we assume thatt € m is maximal abelian, so thath) = t® a is a maximally
split Cartan subalgebra of g. Let R € . We write “hg for the orthocomplement of ag
in b. This is a maximally split Cartan subalgebra of mg, which decomposes as

*[)R =t® *ag.

We consider the (7-spherical) Whittaker integral Wh(R,y, v), for ¢y € Arp =
Aor(t : Mgr/Mpg N v;elNovR : xr)- If R is non-cuspidal, then Ay g = O so that the
Whittaker integral is trivial. Therefore, we assume R to be cuspidal.

Let A € *bp.. be the infinitesimal character of a representation of the discrete series
of Mg. For & > 0 we define aj(¢) = {v € aj_ | [Re (v)| < &}. Forr, & > 0 we consider
the set Ilyo (A, ag, €, r, 7) of families of type Il as defined in [3, §7]. This set consists
of families ( f,,)vea;(g) of functions f, € C* (7 : G/Ny : x) such that

(a) the function v > f, is holomorphic a}(g) — C*(7 : G/No : x);
b) Zfy =y(Z,A+v)fy (veay(e), Z e J);
(c) forevery u € U(g) there exist C > 0 and N € N such that

L. f,(x)] < Cy|(x, v)|Ne PHO#HRMIEWI () x) € ak(e) x G).

Here |(x,v)| := (1 + |H(x)])(1 + |v]).

Lemma 9.1 Let for o € M r.ds- There exist constants & > 0,r > 0 such that for every
Y2.Ro € Az ro the family ap . — C(7: G/Ny : x),

v > Wh(R, ¢, v)
belongs to llyo (A, ag, &,7,T); here A denotes the infinitesimal character of o .

Proof. See [3]. O
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In particular, the function Wh(R, ¥, v) belongs to the space A(t : G/Ny : x) of
7-spherical tempered Whittaker functions. More precisely, it follows from Lemma 9.1
and from the theory developed in [3] that for v € ia*, its constant term along a parabolic
subgroup Q € P, defined as in [7, §1.4], is denoted by Who (R, ¢/, v).

It follows from the theory in [3] that for &€ > O sufficiently close to zero this
constant term extends to a holomorphic function Why (R, ¢, ) on ay (&) with values
inC®(t:G/Ny: x).

For this constant term to be non-zero for any particular value of v € iaj, the
parabolic subgroup Q needs to be standard (see [7] and [3]), and there needs to be a
standard parabolic subgroup P contained in Q such that P ~ R (meaning that ag and ap
are conjugate under W(a)). In this case, if O + R the functionm — R,[Whg (R, ¢, V)]
is perpendicular to LﬁS(T :Mg/MgpNNy : x)foralla € Ag.If Q ~ R, then the function
m +— R,[Whg(R,y,v)] belongs to L(le(r : Mg /Mo NNy : ) forall a € Ap. In this
case, the precise form of the constant term is given in the following result.

If O, R € P then W(agp|ag) denotes the set of s € Hom(ag, ag) for which there
exists aw € W(a) such that s = w|q,.

Theorem 9.2 Let R € P. Then for € > 0 sufficiently small and for every Q € Py with
Q ~ R there exist unique meromorphic functions Co|r(s, ) on ay_(&) with values in
Hom(A g, Az,g) such that for all v € ay (&) and € Ay g, we have

Who (R, v)(ma) = ) a”Colr(s,v)(¥)(m), ©.1)

seW(aglar)

form € Mg and a € Ag, as meromorphic functions of v.

From now on we will assume that € > 0 is sufficiently small. We proceed to
obtain more detailed information on the C-functions from their characterization through
Theorem 9.2.

Lemma 9.3 Let Q € Py. Then for each o € ]\’/ZQ,ds appearing as an isotype in

Ax(t: Mo/Mp NNy : xp),and forallT € C*(1 : K/Kg : 09) ® H(;f’;Q, we have

CQ|Q(1 VW = W[A(Q,Q,g,—v)w]T 9.2)

as an identity of meromorphic functions of v € a*Q(s).

Proof. By linearity we may assume that 7 = ¢ ® n, with ¢ € C*(7 : K/Kg : 0¢p) and

ne H;?;Q. Then by Definition 1.20 we have, for all v € a"‘Q(C with (Re v, a) > 0 for all
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@ € X(ag,g), and for all (m,a) € Mg x Ap,

WhiQ.ur,)ma) = [ (og,,(mak). j(@.cFm) (k) dk

/Ko

/ (050 (man) . j(0. 0, 7,7)(n)) dn
No

- @0 [ gm0 )
No

a’~Pe / X(a‘ln_la)(O'(m)_l‘,OQ‘,U,_V(n),77> dn.
No

The integrand of the final integral may be estimated by &(n) := Ce”2)Ho(™  with
C > O uniform in n € Np and a € Ap. Since the mentioned function & is absolutely
integrable over Ny, it follows by dominated convergence that

lim a~"*QWh(Q, yr,v)(ma) = [ (o (m)'¢g,_,(n), n) dn
[ No

a—0oo

= (o (m)"'A(Q. 0.0, V), 1) AN = W 4(0.0.—v)pim (M)

Here the limit means that a® — oo for_ each O-root @. On the other hand, it follows from
(9.1) that for v € a*Q(s) with Re v Q-dominant the limit is given by Cpo(1 : v)yr.
This establishes (4.2) for all v in a non-empty open subset of a*Q (¢). The validity of
(4.2) for all generic v € a*Q (&) follows by application of analytic continuation. O

Lemma 9.4 Let P, P’ € P have the same split component and suppose o € M pds- If
T is an element of C* (7 : K/Kp : 0p) ® H;";P, then for generic v € ap (&),

Wh(P,yr,v) = Wh(P', Y a(p.pr o —v)- 1 @B(P P07 |T> V) (9.3)
Proof. We may assume that 7 = ¢ ® n. It follows from Lemma 2.7 that

AP, P,o,v)j(P,o,v)n=j(P,o,v)B(P',P,o,v)n.
Using this and the identity A(P, P’, o, v)* = A(P’, P, o, —v), we infer that

Wh(P,y7,v)(x) = (mp,_,(x)" ¢, j(P,o, 7))
= (Mpy_y(X) '@, AP, P, %) j(P' o, 7)B(P', P, o, 7))
= <7Tp/,o_’_v(x)_]A(p,P’,O’,—V)_lcp,j(P/,O',V)B(P,,p,O',V)i]>.

The required identity now follows. O
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Lemma 9.5 Let P € ¥ and Q € Py have the same split component and suppose
0 € Mpgs. If T is an element of C* (1 : K/Kp : op) ® H;°;P, then

Colp(LLYWT = Y100 —v)0B(0.P.o7)|T

In particular, v — Cqp(1,v) extends to a meromorphic Hom(Aj p, Az p)-valued
function on a,_.

Proof. For any P’ €  with the same split component as P we obtain, by taking the
constant terms of the Whittaker integrals in (9.3) along QO and comparing coefficients
of exponents,

Colp(L )Yt = Coip (L, VIV AB.F o —v) - @B(P'.P.or.3)|T
In particular, substituting P” = Q and using Lemma 9.3 we obtain

Coip(Lv)yr = Y14(0.0.0.-v)A(P.O.0~v) "1 @B(Q.P.c.7)|T

= Y140.P.c.-v)®B(0.P.o.7)T"
O
Corollary 9.6 Let Q € Py and suppose o € MQ’ds. If T is an element of C*(1 :
K/KQ : O'Q) ®Hé°;Q, then
Cop (LYWt =¥ epo.00mr (V€ ag0).

Proof. This follows from the previous lemma by taking P = Q, a

The next step is to obtain a formula for Co|p(s,v), for s € Ng(a). Let Q € Py,

P € Pandlets € Nk (a) suchthat sPs~! = Q. Then the right regular action of s defines

an intertwining operator Ry : C*(G/P : o :v) — C®(G/Q : so : sv). According to
Cor. 2.2 applied with P, s in place of O, w there exists an isometric isomorphism

Rs,P : H;;o — H. >

SO, X ps—1

such that Ry j(P,o,v) = j(sPs™!,so,sv) o R, p. Furthermore, R, induces an iso-
metric isomorphism R : C*(7 : K/Kp : op) = C¥(1 : K/Kp : s0¢). As in Lemma
1.21 it follows that there exists a unique isometric isomorphism R : Az p — A, ;ps-1,
such that for every o € Mp,ds andevery T € C*(7 : K/Kp : op) ® H;EF

ES(wT) = w(Rq@)R;,P)T € ﬂZ,sPs",so"
Lemma 9.7 Let P € P and s € Nk (a). Then, forx € G,

Wh(P, ¢, v)(x) = Wh(sPs™!, R, sv), (v € ap.).
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Proof. This is derived from the intertwining property of R as follows. Let o € M P.ds
be a type appearing in A, p. By linearity it suffices to check the identity fory € A p .
Then ¢ = Yy withT € C*(t : K/Kp : 0p) ® H;" .. By linearity we may assume that
T = ¢ ®n. Then

Wh(P.y. V() = (5, ()0, j(Poo, 7))

= (Ry7py_,(x)" 0, Ry j(P,o,v))

= <7rs,5s_1’w,_sv(x)_17€sgo , j(sPs7Y, so, s¥) Ry p)
= Wh(sPs_l, YR, 0@R; prp> SV) (X)

= Wh(sPs™, Rr, sv)(x).

Corollary 9.8 Let s € Nx(a) be such that s(ap) = ag. Then

CQ|P(S’ V)wT = CQ|sPs‘l (1’ SV)Esz

for generic v € ia),.

Corollary 9.9 Let s € Ng(a) be such that sPs™' = Q, and let o € Mp,ds. Then for
w € ﬂP,Z,O’a _
Coip(s,=v)"Coip(s,v)¥ =n(P,P,o,-v)y. 9.4)

Proof. 1t suffices to prove this for ¥ = Y7 with T = f ® v. Combining Cor. 9.8 and
Lemma 9.3 we find

Coip (s, VY1 = Colo(1, SVIUT = ¥ (4(0,0.50,-sv)01)T-
Hence,
Coip(s,=¥)"Coip(s, VT = V(0.6 sy = 1(s Q5,57 Qs, 07, =v)yr

=n(P,P,o,—v)yr.
O

Let P € P be a cuspidal parabolic subgroup. We denote by [ P] the set of Q € Py
that are associated with P.

Definition 9.10 The following relations MSC(P) will be called Maass-Selberg rela-
tions for the C-functions of the Whittaker integral Wh(P)

MSC(P): for all Q1,02 € [Pl and all s; € W(ag,,ap), (j = 1,2),
ICo,1p(s1, VY|l = [ICoyp(s2, VIVl (Y € Arp), 9.5)

. o
for generic v € ia),.

Lemma 9.11 The Maass-Selberg relations MSC(P) for P as stated above are equiva-
lent to the following.

50



MSC(P)’: for all Q € [Plg, all s € W(ag | ap), all o € Mﬂds and all generic v € iaj,
Coip(s,v)* Coip(s,v) =n(P,P,0,—v) on Azp,.

Proof. Assume that MSC(P) hold. There exists aunique Q1 € Py whichis W-conjugate
to P. Itis givenby Q| = s1Ps1_1, where 51 = vp. In particular, Q1 € [P]g, s1 € W(ap |
ap) and it follows from Corollary 9.9 that (9.4) is valid with Q1, s in place of Q, s, for
all y € Ap, . For such ¢ we find by application of MSC(P) that

(Coip(s.v) Coip(s: Y. ) = (Coyp(s1.v) Co,p(s1. V)Y )
= U(P,P_,O',_V)<w’ W)

Now Cg,p(s,v)*Cgp(s,v) is Hermitian, and the only eigenvalue of its restriction to

Apo.s can be n(P, P,o,—v). It follows that the latter Hermitian map is the scalar
n(P,P,co,-v) on Ap .. Therefore, MSC(P)’ holds.
The converse implication is straightforward. O

We will now compare the Maass—Selberg relations formulated above with those for
the B-matrix. Recall from the text following (3.1) that (P, Q, o, v) = n(Q, P, o, v).
Proposition 9.12 Let P € P and o € Mpﬁs. Then the following assertions are
equivalent, for each Q € [Ply and all s € W(ap | ap).
(@) Coip(s,v)*Cgip(s,v) =n(P, P,o,—v) on App,o for generic v € iay,;

(b) B(s™'Qs, P,o, )" B(s™' 05, P, o, —v) = (s~ 05, P, o, ~v) on H;%,,
Jfor generic v € ia),.

Proof. Lets € W(ag | ap). For T € C®(r : K/Kp : op) ® H, ), we have, by
Corollary 9.8 and Lemma 9.5 that

Coip(s : VY1 = Colspe1 (L svIY_[(Rs ® Ry p)T]
W_[(A(Q, sPs™!, so, —sv) ® B(Q,sPs™!, so, —sv)R,T].

Since T +— Y is unitary from C®(7 : K/Kp : op) ® H;‘f;P onto Ap 2+, and unitary

from C® (7 : K/Kp : sop) ® HS‘;‘,’XP onto A p s, it follows from the above that

Coip(s:v)"Ys =y_[R-1(A(Q, sPs7! so, —sv)* ® B(Q,sPs™!, sor, sv)")S].

for § € C¥(r : K/Kp : sop) ® H" . Combining the above, and using that

a.xp*

A(Q, sPs~! so, —sv)*A(Q, sPs! so, —sv) =n(Q, sPs7L, so, —sv), we infer

Coip(s 1 v)"Cop(s : vIYr = y-[n(Q, sPs7!, so, —sv) ® b(v))T] (9.6)
where

b(v) = Ro-1B(Q,sPs so,—sv)*B(Q,sPs™!, so, —sv)R;
= B(s7'Qs,P,o,—v)*B(s'Qs, P, o, —v)
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and where we have used the notation ¢_T := 7. Suppose now that (a) is valid. Then it
follows from (9.6) that »(v) must be a multiple of the identity map by the (non-negative
real) factor

n(P,P,o,-v)n(Q,sPs™!, so, —sv)™!
= n(P’ P_’ g, —V)U(S_IQS,P, g, _V)_l
= U(S_IQS, P’ g, _v)a
and (b) follows.

Conversely, suppose that (b) is valid. Then it follows that b(v) is the scalar
n(s~'Qs, P, o, —v). From (9.6) we now see that Coip(s,v)"Cqp(s,v) is the scalar

n(Q, sPs™', so,—sv)n(s~'Qs, P, o, —v)
= n(s7'Qs, P,a,—v)n(s"'Qs, P, o, —v)
= n(P,P,o,-v).

O

Definition 9.13 The following relations MSB(P) will be called Maass-Selberg rela-
tions for the B-matrices associated with P:

MSB(P): forall Q € ¥ withap = apandall o € Mp,ds
B(Q.P,o,v)*B(Q,P,o,v) =n(0,P,0,v)
for generic v € ia),.

From Proposition 9.12 we see, for each P € %, that the validity of the relations
MSB(P) implies the validity of the relations MSC(P)’. The converse is not clear a priori,
except in the basic setting, where G has compact center and P is maximal. This will
be addressed in the next section.

10 Maass—Selberg relations in the basic setting

We consider the basic setting in which G has compact center, and P € ¥ is a maximal
parabolic subgroup. In this case there is precisely one Q € P which is adjacent to P,
namely P. From Proposition 9.12 it follows that the Maass-Selberg relations MSB(P)
for the B-matrix imply the relations MSC(P)’ for the C-functions, but the converse is
not obvious. In the present section we will show that the converse is obvious for the
basic setting.

Lemma 10.1 The following assertions are equivalent.

(@) [W(ap)| = 1;
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(b) P is not W(a)-conjugate to P;
(¢) [P]s has two elements.

Proof. First of all, by using the action of W(a) we see that we may as well assume that
P is standard.

Suppose (a). Then a}, and —a}, are not W (ap)-conjugate hence not W(a)-conjugate
and (b) follows.

Suppose (b), then P is W(a)-conjugate to precisely one Q € Py which we know
cannot be P. It follows that [P] has at least 2 elements. If R were a third element
of [P]y then there would be an element s € W(a) such that s(ap) = ag. Then either
s(a}) = aj or s(—aj) = ak. In the first case it would follow that aé and a} are
W (a)-conjugate. But then, since P, R € Py, it would follow that R = P, contradiction.
In the second case, it would follow that Q, P and R are conjugate under W (a) hence
R = Q, contradiction.

Finally, suppose (c). Then there is a parabolic subgroup Q € P\ {P}. such that ag
is W(a)-conjugate to ap. Hence, aé is conjugate to either a}, or —a},. The first cannot
be true since then P = Q. Therefore, a}, is not conjugate to —a}. From this it follows
that —a}, cannot be conjugate to a},. It follows that a}, and —a7}, are not conjugate under
W (ap). Hence, (a) follows. O

Remark 10.2 It follows from the proof that in any case [ P]y has at most two elements.

Proposition 10.3 Let P € P be a maximal parabolic subgroup of G.

(@) If |W(ap)| = 1 then [P]g consists of two distinct elements, Q1,02 € Py. The
constant terms of Wh(P,y,v) along Q;, for j = 1,2, are of the form

Wh(P’ lﬁ, V)Qj (ma) = aSjVCQj|P(Sj’ V)W(m)’

with W(ag, | ap) = {s;}. Furthermore, s1|q, = —$2la,. In this case the Maass-
Selberg relations MSC(P) are equivalent to

ICo,1p (51, W = ICoy1p (52, VIYII®. (10.1)
forall y € Ay p and a dense set of v € iay,.

(b) If [W(ap)| = 2, then [Pl consists of a single element Q in Ps and |W(ag |
ap)| = 2. The constant term of Wh(P, ¥, v) along Q is of the form

Wh(P,y,v)g(ma) = a* Cgp(s,v)¥(m) +a*"Coip(=s, V) (m).

where W(aglap) = {s,—s}. In this case the Maass-Selberg relations MSC(P)
are equivalent to

ICoip(s : V)Y = |Cop(=s : v)y*. (10.2)

for all fy € Ay g and all regular values of v € ia),.
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Proof. (a) P is conjugate to a standard parabolic subgroup Q. Clearly Q| € [P]y.
The latter set has two distinct elements, hence equals {Q, 0>} with Q; a second
maximal parabolic subgroup associated with P. Since W(ap) has a single element,
there exist for each j = 1,2 a single element s; € W(ag;,ap). Since Q;, Q> are
standard and not equal, they cannot be W(a)-conjugate. The element s = szsl_l of

W(a) maps ag, to ag, but not a/, to a/, . Therefore, there exist a point X € aj, such

that s, Is1(X) ¢ aj. Since aj, is one dimensonal and since s; I's1 is length preserving,
it follows that sglsl(X) = —X. Hence, si|ap = —52]ap-

By application of Proposition 9.12 we see that in this case the Maass-Selberg
relations associated with P are completely described by (10.1).

We turn to case (b). By Lemma 10.1 there is aunique Q € Py suchthat [P]sy = {Q}.
Hence ap and ap are W(a)-conjugate and [W(ag|ap)| = [W(ap)| = 2. The constant
term of Wh(P,y, v) along Q is described by

Wh(P,y,v)o(ma) = Z a® Copp(s : v)r(m).

seW(ag,ap)

Take s € W(aglap), then W(aplap) = {£s} and it follows that the description of the
Maass-Selberg relations is complete. ]

Lemma 10.4 Let G have compact center and let P € P be a maximal parabolic
subgroup of G. Assume the relations MSC(P) are valid. Then for every o € Mp 45 the
Maass-Selberg relations MSB(P) are valid, i.e.

B(P,P,o,-v)*B(P,P,o,—v) =n(P,P,o,—v) (10.3)
for generic v € iay,.

Proof. First assume that we are in case (a): |[W(ap)| = 1. Then [P]y = {Q1,Q>} and
s1, 2 are as in Proposition 10.3. Fix o € M pds- Then assertion (a) of Prop. 9.12 is
valid for each choice (Q, s) € {(Q1, s1), (Q2, 52)}. It follows that assertion (b) is valid
for each choice. For one of the choices one has s™!Qs = P hence s™!Qs = P and the
validity of assertion (b) now implies that (10.3).

Next assume that we are in case (b): |W(ap)| = 2. Then [P]s = [Q]s and there
exists a s € W(agp, ap) which maps aj to —aa Then sPs~! = Q. The condition (a) is
fulfilled hence also (b). We find (10.3). O

Thus, in order to complete the proof of the MS relations for the B-matrix, it suffices
to give a proof of the assertions of MSC(P) for the basic setting, as listed in Proposition
10.3. We will do this, following a method of Harish-Chandra [7] in Sections 11 - 12.
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11 The radial part of the Casimir operator

By the Iwasawa decomposition G = K ANy, the multiplicationmapm : KXAXNg — G
is a diffeomorphism. Accordingly, we may define a topological linear isomorphism
TT: C®(A,V;) = C®(t: G/Ny : x) by

T'f(kan) = x(n)"'7(k) f(a),

for f € C*(A) and (k,a,n) € K X A X Ny. The inverse of this isomorphism is given
by the restriction map 7 : f + f|4.

For an element u € U(g)™° we consider the differential operator R, on C®(G, V;)
given by R, (f)(x) := f(x;u). Then R, restricts to a differential operator r, on C*(7 :
G /Ny : x). The radial part of the latter, denoted I1(u), is defined by

M(u) =T or,oTT.

We will determine the radial part of the Casimir element Q € J associated with the
invariant symmetric bilinear form B on g, see (1.6). For each @ € X* we fix a basis
Xo.i, 1 <i < mg,, which is orthogonal with respect to the positive definite inner product
X,Y — —B(X,6Y). Furthermore, we put X_,; = —6X,,;. Let H, € a be defined by
H, L kera and a(H,) = 1. Then @ = B(H,, -). Itis readily seen that

[Xei» X—0,i] = Hq, (1 <i<my).

The Casimir operators of m and a, defined relative to the restrictions of B to these Lie
algebra’s, are denoted by Q,,; and Q,. It is now well known that

Q= Qu + Q0+ ) (XeiXoai + X-0iXai):

a,l

here the summation ranges over @ € X* and 1 < i < m,. The radial part of an operator
X € U(g)N0 may be calculated by from a decomposition of the form

X = ij(a)ij_lujvj’ (a € A),
J

with f; € C*(A), Z; € U(Y),u; € U(a),v; € U(ng). Here the superscript a!
indicates that the image under Ad(a)~! is taken. Given a decomposition as above the
radial component may be expressed by

[TI(X)¢](a) = Z fi(a) 7u(z;) @(azu;) x«(vy).
J
Put Z,,; := X4 ; — X_o. Then Z, ; € . Furthermore, for each @ € £* and 1 <i < my,,
—a~a”! —2a
Xoai=a "Zy; +a " Xais
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It follows from this that
Y . — azaly —2a 2
XoaiXei=a "Z8; Xoi +a X2,

On the other hand,
Xa,,‘X_a,i = X—a,ion,i + HOt'

Hence,
XoiX-ai+ X-0iXai = 2X_qiXoi + Ho = 24728 Xo; + Ho +2a729X2,
Lemma 11.1

H('Q') = T*(Qm) + Q4 + Z mqH, + Z _[za_aT(Za,i)X*(Xa,i) + 2a_2aX*(Xa,i)2]
@ a,i

For two functions f, g € C* (7 : G/Ny : x) we define the function [ f,g] : G — C
by
[f,8](x) = (f(x:€), g(x)) = {f(x), g(x;Q)). (11.1)

We define w € U(a) by
w =8+ Z mqoH,.

aext

Lemma 11.2

[f.8l(a) = {f(a:w), g(a)) = (f(a), g(a;w)).

Proof. Since 7 and y are unitary, the operators 7.(Y) for Y € f are anti-Hermitian,
while y.(X) € iR for X € ng. It follows from this that the operators

Ty (Q)’ T(Za/,i), T(Zoz,i)/\/* (Xa,i)

from End(V;) are Hermitian, while y.(X,;)?> € R. It follows that

S(a) 1= (@) + 3 =120 (Zai) - (Xa) + 2072 1 (X))

a,i

is Hermitian for all a. Now Q = w + S(a). Hence

[f,gl(a) (fla;w)) +S(a)f(a), g) —(f, gla;w) + S(a)g(a))
(fla;w), gla)) —(f. gla;w)) +(S(a)f(a), g) — (f, S(a)g(a))

(fla;w), gla)) = ([, gla;w)).
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Lemma 11.3 a”’owoa™ =Qq - (p, p).

Proof. Let H; be an orthonormal basis for a. The dual inner product on a* makes
B : a — a” orthogonal; in particular, B(H;), for 1 < j < ¢, is an orthonormal basis
for a*. Accordingly, if 4, u € a” then (1, B(X;)) = A(H;) and it follows that

(A, uy =) A(Hpp(H;).

1<

The Casimir operator of a is given by Q, = 25:1 sz Moreover u +— af ouoa™”
equals the algebra automorphism 7" = 7_,, of U(a), determined by T'(H) = H — p(H).
From this it follows that

TQq = Y [H; - p(H))* = Qa = Y 2p(H)H; + (p, p).
J J

On the other hand,
Z 2p(H)H; = Z Z maa(H)H; = Z maB(Hy, Hj)H; = Z moH,
j a>0 j a>0,j a>0
from which
TQ, = Q4 — ZmaHa +{p, p).
Hence,

T(w) = T(Qu+ ) maHy)

Qq = D map(Ha) +(p, p)

Qa‘(/O’ ,0>

|

Let A denote the collection of simple roots for the positive system X*. We define

o

a:=°gNa.

This is the orthocomplement of the intersection of root hyperplanes ker a, for @ € A.
Let {H? | @ € A} be the B-dual of the basis A in °g. This subset of °a is determined by

B(Hy, Hp) = 6ap.  (@,BE€A).
Lemma 11.4 Suppose G has compact center, then

(f(@:Qa), g(a)) = (f(a), g(a;Q))
= > R(HHWRHS, gy = (f, R(H)E))(a)

a€A
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Proof. Since {H} is B-dual to {H,} we have

Qq = ) HoHY.

a€eA

In the following, we will abbreviate R(H) f by H f. By substituting this in the left hand
side of the above equation, and by application of the Leibniz rule for differentiation, we
find that the above equation holds provided we add to the right hand side the expression

R(f.g.a) = Y (HOf(a). Hog(a)) — (Hof (a) . HOg(a)).

a€eA

We will finish the proof by showing that R(f,g,a) = 0. Substituting H, =
Y B(Hy, Hy)H; and H) = 3\; B(HY, H;)H;, we find that

R(f.g) = ) |B(Hy, H)B(Hy, Hj) — B(Ho, H)B(HY, H)I(H.f , Hjg).

a,i,j
Fix i, j. By duality of {H,} and {H"}, H;=3,B(H,, Hj)Hg. In turn this implies

B(H;, H;) = Z B(HY, H))B(H,, H;).

By a similar reasoning this identity holds with i/ and j interchanged. Therefore,

R(f.8) = Y [B(H;, H}) = B(H;, H)[(H;f , H;g) = 0.

0 0
Given f,g € C*(A,V;) and H € a, we define the function (f,g)y : A — Cby
(f,&)ula) = do(a)® [(f(a; H) , g(a)) = (f(a), g(a; H))], (11.2)
for a € A. The following lemma is given without proof in [7, page 208].

Lemma 11.5 Ler f,g € C*(t: G/Ny : x). Then

do(a)’[f.8](a) = D Ha(f,8)n(a),  (a€A).

a€eA

Proof. 1t follows from Lemma 11.2 that

do(a)*[f,gl(a) = do(a){w[(a), g(a)) = (f(a), wg(a)).
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Using Lemma 11.3 we now find that

do(a)’[f.gl(a) = (Qu(dof), dog)(a) = (dof , Qu(Dog))(a)
= > Ho((Hodof , dog) — (dof , Hydog))(a)

a€eA

= D HodJ((HOf + p(Ho) £ 8)(a) = (f , Hyg + p(Ha)g)(a)

aeA

= ) Hod((HOf, g)(a) = (f , Hog)(a))

a€eA

= D Ha(f,8) (@),

a€eA

12 A result of Harish-Chandra

We retain the assumption that G has compact center.

Let 4 € a* be defined by (u, @) = 1 forall @ € A. Equivalently, B!t = 3 ,cp HY.
For t > 0 we define a[7] to be the subset of a consisting of the points H € a such that
forall @ € A,

(HY, Hy <tand u(H) > —t.

Clearly, a[7] = ta[1]. We agree to write A[¢] = exp a[z] and G [7] = KA[¢]No.
Lemma 12.1 The set a[1] is a compact neighborhood of 0 in a.

Proof. Put u, = BHY = (HY, -); then yu = ¥, o- The set a[1] is given by the
inequalities u, < 1 and p > —1, hence closed, and a neighborhood of 0. It remains to
prove its boundedness. If H € a[1] then

po(H) = p(H) = > B(H) = =1 = (|A] = 1) = —[A].

B+a
Since {u, | @ € A} form a set of linear coordinates for a, the boundedness follows. O

Note that the argument in fact demonstrates that a[ 1] is an ¢£-dimensional simplex,
with £ = dima.

In the discussion that follows we will make full use of the Euclidean structure on A
obtained by transfer of structure under the exponential map exp : a — A. Our notation
will be in terms of the multiplicative group in order to emphasize the connection with
the structure of the group G.

For f,g € C*(t : G/Ny : y) it is readily checked that the function [ f, g] is left
K-invariant, and right Ny-invariant. Hence, for ¢ > 0,

/ [f.g](x) dF = / do(aL £ ] (a) da.
G[t]/No Alr]
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Using Lemma 11.5 we find

#ldr = o(f-8)uy (@) da. 12.1
/G[Z]/No[f gl(x)dx /AMZH (f+ &) (a) da 121

a€A

The integration over A[t] coincides with the Lebesgue integration over a[¢] and the
differentiation on A induced by the right regular action coincides with the usual direc-
tional derivative on a. This makes Gauss’ divergence theorem for the simplex a[#] in
a available, and we obtain:

[ vawa=Y [ t.H)Comds@. 22
G[1]/No e Y OA[T]

Here v corresponds to the outward normal vector to the boundary da[¢] and ds is
the ¢ — 1 dimensional Euclidean Lebesgue measure on the boundary.

We will now introduce some structure that is necessary for a proper understanding
of the integral on the right. The boundary da[1] of a[1] is the union of ¢ simplices
s,, for y € AU {v}, of dimension £ — 1, namely sg for § € A and a remaining
simplex s,. More precisely, sz (8 € A) is the intersection of a[1] with the hyperplane
op:={Hea|(H, Hg) = |B|} and s, is the intersection of a[1] with the hyperplane
oy = {H € a | u(H) = —1}. The outward normals are vg, = Hg for B € A and

vs, = —|u|"' B~ . We note that
(vsy» Hy) = 8ap and (vs,, Ho) = —|ul™".

For t > 0 we define the multiplication operator M; : A — A by M;(exp H) = exptH
for H € a. Then M; maps A[1] onto A[t] and JA[1] onto A[¢]. Since v is the outward
unit normal, we find that v(M;a) = v(a) for a € dA[1]. The pull-back of the surface
measure ds by M, is given by M;ds = t'"!ds.

Write A = AU {u}andputc, = 1fory € Aand ¢y = —|u|™  fory = u. Fory € A
we put S, = exp(s,). Then UyeZSV = dA[1] and (12.2) takes the following form.

Lemma 12.2 Fort >0and f,g € C*(1t : G/Ny : x),

-/G[t]/NO [f’ g] (x)dx = yGZZC)/ ./]V[,Sy(f’ g)Hg(a) ds(a).

We will investigate the asymptotic behavior of the given integrals over the hypersurfaces

M;S, as t — oo. The dominant asymptotic behavior will come from y € A and

neighborhoods of the point exp Hg € S,. The integral for y = u will turn out to have

exponential decay for t — co. The following lemma suggests the relevance of our

discussion for the behavior of the constant terms along maximal parabolic subgroups.
If f1, f, € C*(A,V;) and H € a, we define the function (f;, f>)g : A — Cby

(i, fou(a) = (fila;H), fa(a)) = (fi(a), f2(a:H)), (aeA). (123)

The following useful lemma is easy to prove.
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Lemma 12.3 Ler ¢ : A —]0, 00 be a character. Then for fi, f» € C*(A,V;),

EXfi, fm = Efs Efn.

If fi,/op € C®(t : G/Ny : x) and H € a then by using the isomorphism C®(t :
G/Ny : x) = C*(A,V;) we define the function (f;, fo)g : A — C as above. Note
that by (11.2) we have

(fi, L) = d3{fi, oy = (dofi, dofo)n. (12.4)

For fi,f» € C®(t : Mip/(Mir N Ny) : x) we identify fj, f» with functions in
C*(A,V;) and then,
@(fi, L= Cdfy, ). (12.5)

Here "d(a) = do(a)/dF(a). Harish-Chandra [7, p. 211] uses the notation ( f1, f>)y for
the function in (12.5), which he also used for the different function (12.3). We tried to
avoid the confusion that may arise from this.

Let fi,p € A(t:G/Ny: x),a €A, F = F, = A\ {a}. We write f;r, for fjp,,
forj=1,2.

Lemma 12.4 Let U, be a sufficiently small open neighborhood of exp Hg inSqy. Then
there exist C, 6 > 0 such that, fort > 0,

/MU ‘(flafz)Hg(a) —(d fir, » "d frr, ) (a)|ds(a) < Ce™".

Proof. We write F for F, = A\ {a} and define R; € C*(A,V;), for j = 1,2, by
Rj(a) = dp(a)fj(a) - f,p(a) Then
(f1: Do, = (do fi, do f2)po = (d (fir + R1), “d (far + R2))

hence

(fl’fZ)H(()l - <*df]F, *df2F>Hg =
= (d fir, dRy)yo + ("d Ry, "d for)yo + (d Ry, "dRy)po.  (12.6)

By the theory of the constant term, there exists an open neighborhood V of H? in a, a
constant 61 > 0 and for every X € U(a); a constant C; > 0 such that for all H € V and
t >0, one has, for j = 1,2,

I'd(exptH)Rj(exptH)| < Cie 0!,

Replacing V by a smaller open neighborhood if necessary, we may arrange to have in
addition an estimate of the form

*d(exptH)|fir(exptH)| < Co(1 + 1)V, (HeV,t>0),
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for j = 1, 2. Combining these estimates with (12.6) we find for a fixed 0 < 3 < 97 that
there exists a constant C3 > 0 such that for all H € V and ¢t > 0 we have the estimate

‘(fl’fz)H?x(eXp tH) = ('d fiF, . "d f2r,) o (exp tH)‘ < Cze ™,

Let now U, = exp(V) N S, then by pulling back the integration over M,U by M,, we
find

./ \U%ﬁmﬂw—vwﬁm,Whnnmﬁﬂdﬂmsc@fwa+g“ﬂ/ ds.
M, U, v,

The proof is now easily completed. ]

Following Harish-Chandra, let f,g € A(7r : G/Ny : x), and suppose that fr = 0
for F c A with |A\ F| > 2. For @ € A we define the function {f, g}, : M1r, — C by

(£, gYa(m) := (fr, (m;HY) , gr, (m)) — (fr, (m), gr,(m;HY)).

For ¢t € R we define the function {f, g}a, : Mr, — Cby

{f.&Yau(m) = {f.g}o(mexptHY). (12.7)

Furthermore, we consider integral

um&o:/ (fs ¢}ar diin (12.8)
Mr, [(MF,NNp)

Lemma 12.5 Assume that fr = 0 for F C A such that |A\ F| > 1. Let « € A. Then
the integral in (12.8) converges absolutely. If U, is a sufficiently small neighborhood
of exp HY in S, then there exist constants C > 0,8 > 0 such that for all t > 0,

< Ce™. (12.9)

‘/ (d*)2<fFa s gF(,>Hg ds(a) - -]Ot(f’ g, t)
MUy

Proof. For t € R we define the function f,; : Mp — Vy,m — fr, (mexp tH?). The
function gf,, , is defined in a similar way. Both of these functions behave finitely under
d/dt, hence can be expressed as

E k t E : k t
fF(nl = fF(hU’k t e 7 gF(r,t = gF(,,n,k t e TI’ (1210)
ne&,0<k<n ne&,0<k<n

where & C iR a finite subset and n € N. Since the exponential polynomial functions
t > tke™ are linearly independent over C, the expressions in (12.10) are unique. By
temperedness of f and g, the functions fr,_, x and gr,, .« belongto A(t : Mp/MpNNy :
*x). By transitivity of the constant term, each fF,, , « has constant term zero along every
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proper standard parabolic subgroup of M. This implies the existence of constants € > 0
and C > O such thatforalln € &Eand 0 < k < n,

|fFaJ—,’k(eXp *H) S Ce_*p(*H)_¢9|*H|, (*H c *a)'

For g there exist constants C’, N > 0 such that for all € & and 0 < k < n we have the
tempered estimates

|8Fu i (exp “H)| < C'(1+ [FH)Ne™ ?C ("H € *a).

It follows from the definitions that, for m € Mgr andt € R,

(8 ) = (5 frosOn) 810 Om)) = (Frpa(m), g, (m).

From the estimates given above, we infer the existence of C” > 0 and &’ > 0 such that
for all ¢,

{f-8}au(exp*H) < C"(1 +1)>e 2 PCHI=THI (v e *q).
This implies the estimates

{8} (m)] < C" (1 4 1) > PUHmI=EHINL (i € M)
so that the integral defining J,(f, g, 1), see (12.8), converges absolutely, and

Jo(f 8.0l =O((1+[t)*") (1 €R).
Let now U, be a neighborhood of Hg in S,. Then the set V,, := log U, is a neighborhood
of HY in s, = da[1] N (HY + *a). Therefore, V,, = "V, + HY, with *V, := V, N all%
a neighborhood of 0 in *a. It follows that U, = *U, exp H? with *U, a neighborhood
of e in *A. Hence, M,U, = M;(*U,) exp(tH"). The Euclidean measure ds on M,U,, is

the translate of the Euclidean measure d’a on M,(*U,) by exp tH". Consequently, the
integral on the left of (12.9) may be rewritten as

/ d(@)*{f. g)o(aexptHY) d'a = / A(a){f. gy (a)d .
M*Uqy

t"Ua

In view of (12.7) the latter integral may be rewritten as

/0 {f,&}as(m) dm, (12.11)
where O is the image of KpM;(*U,) in Mp/MFp N Ny. The difference of (12.11) with

Jo(f, g, t) is the integral with O, replaced by its complement Ofin Mr/Mp N Ny. To
finish the proof, it suffices to show that there exists a ¢ > 0 such that

[ 1 ghaston)] i = O™,
o7
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Choose r > 0 such that the ball B, c *a with center O and radius r > 0 is contained
in log ‘U, . Then O; contains the image of Ky exp(¢B,) in Mir/Mir N Ny, hence its
complement Oy is contained in Kr exp(¢B¢)Ny, so that

IA

/Hf,g}a,t(m)um / Fd(a{f. g ("a)|da
(o) exptB¢

/ C"(1+0)¥e s gy,
*a\rB,

Now fix 0 < 6 < &'/r; then by using polar coordinates one readily checks that there
exists a constant C > 0 such that the latter integral is bounded by Ce™, for¢t > 0. O

Lemma 12.6 With assumptions as in Lemma 12.5, let Hy be any point of da[1]
different from the points Hg, for @ € A. Then there exists an open neighborhood U of
exp Hy in 0A[1] and constants C, 6 > 0 such that

/MU ’(f,g)Hg(a)‘ ds(a) < Ce™". (12.12)

Proof. We will show that there exists an open neighborhood V of Hj in a and constants
Cq, 61 > 0 such that for all H € V and ¢t > 1 we have the estimate

|(f> &)po (exp(tH))| < Cre™*", (12.13)

Before proving this estimate we will first show that it implies the required estimate
(12.12). Indeed, let U = VN A[1]. By pulling back under M; and applying substitution
of variables we obtain

[ | o ] - sca)
/ Cre """V ds(a).
U

[ |trom@)| as
MU

IA

From this the result follows for any 0 < ¢ < ¢ and for C suitably chosen.

We now turn to the proof of (12.13). Let Hy € a[1] and assume that Hy # H° for
all @ € A. First we assume that Hy ¢ cl(a™). By the argument of [2, Cor. 2.4] it follows
that for any r > 0 there exists an open neighborhood V of Hj and a constant C* > 0
such that for ¢ equal to one of the functions f, Lyov f, g or Lyovg, we have

lp(tH)| < C'e™"/, (HeV,t>1).
In view of (11.2) the above estimate implies

[(f. &) | < (C))’do(exptH) ™ = (C')%e™"
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with " <r —2supy.y p(H).

Note that if Hy € S, then u(Hp) < —1 so that Hy ¢ cl(a™) and we are in the setting
just discussed.

We now assume that Hy € cl(a*). As just noticed, Hy ¢ S, so that Hy € UyeaS,.
Let F be the collection of @ € A vanishing on Hy. Since Hy # Hg for every a € A, it
follows that |A \ F| > 1, so that by assumption, fr = 0. It now follows by application
of [3, Lemma 3.8]that also [LHgvf |F = 0. Thus for ¢ equal to f or Loy f it follows
from the estimation of dr¢ — ¢ in [3, Lemma 3.5] that for a sufficiently small open
neighborhood V of Hj in a there exist constants C, N,n > 0 such that, for H € V and
t >0,

|dro(tH)| < C(1 +1)Ne™ PEEH) g1

Hence, for 0 < " < n there exists C’ > 0 such that
lp(tH)| < C'e U= (HeV,t>0).

Combining this with the tempered estimates for g and Ly:vg, and using (12.3) we
obtain (12.13) with 0 < §; < n” and a suitable C; > 0. O

Theorem 12.7 [Harish-Chandra] Let f, g € A(t : G/Ny : x) and assume that fr = 0
for each subset F C A with |A\ F| > 1. Then there exists 6 > 0 such that

[ e di=Y s(fen+0E®). (-,
G[t]/No

a€eA

Proof. For each a € A let U, be an open subset of S, with the properties of Lemma
12.4. Put U,, = 0. Then it follows from combining Lemmas 12.2, 12.4 and 12.5, that

, di— ) Jo(f,g,1) =
Ji IR GRS WA

aeA

ZCY/ (f1, f2)ppo (@) ds(a) +0(e™).
)/GZ Mt(Sy\Uy)

We now consider the compact set K = dA[1] \ U, Uy - 1t follows by application of
Lemma 12.6 and compactness that there exist constants C, d > 0 such that the estimate
of the lemma is valid with U replaced by K. This implies the existence of 6 > 0 such
that

Z /M (fl,fz)Hg(a) ds(a) =

’}/EA f(S)/\U

Z /M (fl,fz)Hg(a) ds(a) = O(e™).

-y ((Sy0)
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We will now show that in the basic setting Theorem 12.7 implies the Maass-Selberg
relations, see also [7, p. 206]. In the basic setting, G has compact center. P € Py is a
maximal standard parabolic subgroup P of G. Suppose o € M pdsand Y € Ay p . Let
A € *bp be the infinitesimal character of . Then A is real and regular in the sense
that the inner products with the roots of *fp in mp. are real and non-zero. In addition
we fix v € iaj such that v # 0, A + v is regular. Put f = f, = Wh(P,y,v). The
infinitesimal character of Indg (0 ®—-v)isgivenby Z — y(Z, A—v). From Definition
1.20 one sees that

Zf:sz:’)/(Z,A—V)f, (ZEB)

It follows that the Casimir Q acts on f by the real eigenvalue (A, A)+{v, v)—{(pp, pp).
In turn this implies that

Lf, f1=0;
see (11.1). Since P is maximal, it follows from the discussion below Lemma 9.1 that

the constant term of f, along a standard parabolic subgroup Q is zero if Q is not
maximal. From Theorem 12.7 it now follows that

DI fi) 50 (1> ). (12.14)
aeA
Fora@ € Alet F, = A\ {a}. We write fF, for the constant term of f along the standard
parabolic subgroup P, whose split component is RHY.
According to Poposition 10.3 there are two possibilities, (a): |W(ap)| = 1 and (b):
[W(ap)| = 2.
In case (a) there exist precisely two distinct roots a1, @2 € A for which Q; :=
Ppaj ~ P. Moreover, W(C(le(lp) = {s;} and s, = —s1, so, form; € Mpaj,t e R,

fro, (miexptHY) = e o1(m1),  fr, (maexptHy) = e ™oy (my)
with 2 = —iv(HY) € R\ {0}. It now follows that
‘]0'1 (f’ f’ t) + Jaz(f’ f’ t) = _/12“01 P 901> + /12<(P2 ’ (P2> - O’

from which we conclude that || ||> = ||¢2]|>

In case (b) we have |[W(ap)| = 2 and there is precisely one simple root @ € A
such that Q := Pr, ~ P. It follows that W(ag|ap) consists of two elements, s and —s.
Moreover, the constant term of f along Q is of the form

i

fro(mexptHy) = e g1 (m) + e pa(m)

form € MF,, t > 0. It follows that

Ja'(f’ f9 l_) — i/l(@i/n§01 _e_i/thOZ, ei/h‘(pl + €_Mt(,02> _
CiAe N gy 4 e M gy e — e )
= 2iA(lerl* = le2ll?)
From J,(f, f,t) — 0 it now follows that ||¢1]|> = |l¢2||>. O
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Completion of the proof of Theorem 3.1. In view of Proposition 10.3, we have
now completed the proof of the Maass-Selberg relations MSC(P) for the basic setting.
According to Lemma 10.4 this implies the validity of MSB(P) for the basic setting. By
Lemma 4.14 this implies the validity of the Maass-Selberg relations for the B-matrix
as formulated in Theorem 3.1. a

Proof of the Maass-Selberg relations MSC(P). By Proposition 9.12 we now conclude
the validity of all Maass-Selberg relations for the C-functions as formulated in Lemma
9.11. a

For P € P we define the meromorphic function 7. (P, P) : ap. — End(A p) by

1n+(P, P, | A po = N(P, P,o,v) id|a, p,-

We may now formulate the validity of the entire collection of Maass-Selberg relations
for the C-functions as follows.

Theorem 12.8 Let P € P, Q € Py and suppose that Q ~ P. Then for each s €
W(aglap), i
Coip(s,=V)"Cgip(s,v) = n.(P,P,-v)

as an identity of meromorphic functions in v € ap_.

Proof. The expressions on both sides of the equation define meromorphic functions of
y € a’I‘;C. Hence, it suffices to prove the identity

CQ|P(S, V)*CQ|P(S? V) = n*(P’ Pa _V)

for generic v € iaj,. This identity is equivalent to the MSC(P) as formulated in Lemma
9.11, which were proven to be valid in the text preceding the theorem. a

13 The normalized Whittaker integral

For P € P (standard is mandatory) we consider the meromorphic function v
Cpip(1,v),ap. — End(Az p). We recall from Lemma 9.3 that for each o € Mp 45 and
allT € C*(1t: K/Kp : op) ® H,°)  we have

a.XP
Crip(L VYT =¥ (AP po—v)aD)T

as meromorphic functions of v € aj,_ with values in End(Aj p-). We recall that, for
R >0,
ap(P,R) :={veap. | (Rev,a) >R (Va € Z(P))}.

For Q € P we define HZ(Q),R(G*Q) to be the set of polynomial functions g € P(a*Q)
which can be written as a product of linear factors of the form (@, -)—c witha € Z(Q)
and ¢ € R.

The following result is due to Harish-Chandra.
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Lemma 13.1 For every R € R there exist C,N > 0 and a polynomial function
q € Hy(pyr(ap) such that the meromorphic function v +— q(v)Cpip(1,v) is regular
on ay(P, R) and such that

llg(")Crip(1,V)llop < C(1 +[I¥VIDY, (v € ap(P,R).

Proof. It suffices to prove this for the restriction of Cpp(1,v) to Az p ., for each
representation of the finite set of o € M p.ds for which Ay p» # 0. Since T +— Y7 is a
linear isomorphism of finite dimensional spaces, it suffices to prove a similar estimate
for A(P, P, o, —v) restricted to the finite dimensional space C® (7 : K/Kp : op). By
equivalence of norms on the latter space, that estimate is a consequence of [4, Cor. 1.4]
which in turn is a straightforward consequence of [11], see [12]. d

Lemma13.2 Leto € M p.ds- There exist constants €, C,N > 0 such that the mero-
morphic function v — n(P, P,o,v)~" is regular on ay(e) and

In(0,P,o,v) | <C(1+ vV, (v € ap(8)).

Proof. This result is due to Harish—Chandra for o~ a representation of the discrete series
of Mp. His notation for n(P, P, o, v)™! is up,(v). Under the weaker assumption that
o is unitary with real infinitesimal character, the same result is proven in [11, p. 235].
O

Recall the definition of 7.(P, P,v) € End(Ap) in the text preceding Theorem
12.8.

Corollary 13.3 There exist a polynomial function q € Ilyp)r(ay) and constants
g,C,N > 0 such that the meromorphic function v — q(v)Cpp(1, v)~is regular on
a,(e) and

lg)Crip(1,v) M lop < CL+ VDN, (v € aj(8)).
Proof. From Theorem 12.8 it follows that
CP|P(1’ V)_l = ﬂ*(P, P’ V)_ICP|P(1’ _‘7)

as meromorphic functions of v € aj, . The result now follows from Lemmas 13.1 and
13.2. a

For P € P we define the associated normalized Whittaker integral by
Wh®(P, ¢, v)(x) := Wh(P, Cp|p(l, v)_lw, v)(x),

*
foryr € App,vea,,x €G.
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Let &, g asin Corollary 13.3, and let o € M p.ds- Itis readily verified that for suitable
0<é& <eg,r>0andfory € A, p, the function

v g(v)Wh(P,y,v) € C¥(t : G/Ny : x) (13.1)

belongs to o1 (A, a}‘,, g, r, 7). Here A, denotes the infinitesimal character of o.
The constant term of (13.1) along a standard parabolic subgroup Q € Py associated
with P is given by

qOIWhG (P, g, v,ma) = q(v) > a”[Cy(s,vw](m)(a),

seW(aglap)

for v € iay,, m € My, a € Ag. Here

C5|P(s’ V) = CQ|P(S5 V)CP|P(1’ V)_l

are meromorphic Hom(A» p, A2 o)-valued functions of v € a;c. The following result
is an important manifestation of the Maass-Selberg relations.

Lemma 13.4 Let P,Q € Py. Then for all s € W(agp|ap),
C&P(s, —17)*C5|P(s, v) =ida, ,
as meromorphic functions of v € a),_.

Proof. This follows from Theorem 12.8. O

Lemma 13.5

(a) There exists a constant € > 0 such that v +— C& p(8,v) is a holomorphic
Hom(Ay,p, Az,p)-valued function on ay(e).

(b) The constant € > 0 can be chosen such that there exist C, N > O such that

ICHp(s: I <CA+DY, (v e ap(e)).

(c) The constant & > 0 can be chosen such that for allu € U(a},) there exist constants
C,, N, > 0 such that

1C5 (s, vi)ll < Cull + v,

Proof. From Cor. 13.3 and [3, Lemmas 10.1, 10.2] it follows that there exists a
q € llgpy(a}) and a constant &€ > 0 such that I" : v > q(V)C&P(s, v) is holomorphic
on aj, (&) and satisfies the estimate

ITMllop < CA+ DY (v € ap(e)). (13.2)
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Let £ : v — (a, v) — ¢ be a linear factor of g. Then £~1(0) consists of v € a*QC
such that Im{a, v) = Imc and Re(v, @) = Rec. If Rec # 0 then for 0 < ¢ <
IRe c|(1 + |e|)~! we have £71(0) N ay(g) = 0. Furthermore,

L)™' < (Rec|—&)™" (v € ap(e)).

We may write ¢ = gog1 with go equal to the product of the linear factors ¢ with
Re ¢ = 0 and with g equal to the product of the remaining factors. By choosing € > 0
sufficiently small we may arrange that |g;|~' is bounded from above on ay(g). Then
qo(v)Célp(s, v) = ¢q1v)"'T'(v) is holomorphic in v € a, (&) and we have an estimate
like (13.2) with q]_1 I' in place of I'. Thus, we may as well assume that g = g from the
start.

From Lemma 13.4 it follows that the Hilbert-Schmid norm ||C 5| (s, V)| is bounded

for v € ia} \ g~'(0). The latter set is open and dense in i ap. Let £ be a linear factor
of ¢, and let vy € £71(0) N iay. There exists a sequence u; in iaj, \ ¢~1(0) with limit
vo. The sequence ||C5|P(s,,uj)|| is bounded, hence I' (i) = q(,uj)C&P(s,pj) tends to
zero for j — oo. It follows that I'(v) = 0. Hence I = 0 on £~1(0) N iay. The latter set
is a hyperplane in the real linear space ia},. Furthermore. =1(0)N ay (&) is a connected
open part of the complex hyperplane £~ (0). By analytic continuation it follows that
I'=0ont1(0)N a}, (). We claim that this implies that £ ~IT extends to a holomorphic
function I" on a,(€). Indeed, by choosing suitable (affine linear) coordinates z; on aj,_
we may arrange that £ = z;. By using local power series expansions we find that z;
divides I'.

By a straightforward application of Cauchy’s integral formula we infer that "
satisfies an estimate of type (13.2) with £ = £/2 in place of &. Repeating this process
we reduce ¢ to a non-zero constant, so that (a) and (b) are valid.

Finally, (c) follows from (b) by an easy application of Cauchy’s integral formula.
O

We observe that on account of Lemma 13.5 we have

Lemma 13.6 Let P, Q € Py be associated and suppose that s € W(aglap). Then the
map

L (AN EAR T
is continuous linear from S(ia}, Az p) to S(ia*Q, Az ). Here s~ denotes pull-back
1

cial —iak.

under s P 0

Corollary 13.7 There exist € > 0,r > 0 such that for each o € M p.ds the function
v = Whe(P,,v) belongs to 11} (ap, A, &,7,7).

Proof. This follows from [3, Cor. 11.5], in view of Lemma 13.5. O
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14 Fourier transform and Wave packets

Let P € Pg. Since Ay p is the finite orthogonal direct sum of the finite dimensional non-
zero subspaces Ay p» With o € Mp 4 it follows from Cor. 13.6, that the normalized
Whittaker integral Wh® (P, ¢) satisfies the uniformly tempered estimates of [2, Thm.
16.2].

In analogy with the definition of the Fourier transform #p in [2, §16] we define the
normalized Fourier transform F, : C(7 : G/Np : x) — CO(iaj{,, Ar.p) by

(Fp(N) ¥y =(f, Wh(P,¢,v))2 := /G/N (f(x), Wh*(P, 4, v)(x))r di,

fory € Az p, v € iap.
Theorem 14.1 The normalized Fourier transform ¥ ° defines a continuous linear map.
Fp :C(t:G/No: x) = S(iap, Az p). (14.1)

Proof. This result is the analogue of [2, Thm. 16.6]. The proof is identical, provided
one uses the uniformly tempered estimates for the normalized Whittaker integral. O

Later on it will be convenient to employ a characterization of the normalized Fourier
transform in terms of an integral kernel. For this point of view it is convenient to view
the normalized Whittaker integral Wh°(P, -, v), for P € Py and v € aj;c, as a function
G — Hom(Aj p, V). Accordingly we write

Whe (P, v)(x)y := Wh° (P, ¢, v, x),

for x € G and ¥ € Ay p. Note that v — Wh°(P,v) may thus be viewed as a
meromorphic function with values in the Fréchet space C* (G, Hom(A, p, 7)).

We adopt the similar point of view for the unnormalized Whittaker integral Wh(P, v, x)
and note that the two are related by

Wh®(P,v,x) = Wh(P,v,x)Cpp(l, y)~!

We proceed to the promised characterization of #; with an integral kernel. For
A € Hom(Aj p,V;) we denote by A* the Hermitian adjoint in Hom(V;, A p) with
respect to the given Hilbert structures on A, p and V;. Next, we define the dual
Whittaker integral Wh* (P, v) by

Wh*(P,v)(x) := Wh°(P, —v,x)", (v € ap.,x € G).

We note that v — Wh*(P, v) is ameromorphic function ay, . — C*(G, Hom(V, Az p))
satisfying the transformation laws

Wh*(P, v, kxn) = y(n)Wh*(P, v,x)t(k)™",
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forx e G,k €e Kandn € Ny. If f € C(t : G/Ny : x) we use the notation Wh*(P, v) f
for the function G /Ny — A p defined by

Wh*(P,v) f : x > Wh*(P,v)(x) f(x).

It is now readily checked that the normalized Fourier transform (14.1) is given by

Fpf(v) = Wh*(P, v, x) f(x) dx, (v eiap). (14.2)
G /Ny

We retain the assumption that P € P and denote by dv the Lebesgue measure on
the real linear space ia},, normalized in such a way that the usual Euclidean Fourier

transform ¥, : S(Ap) — S(ia}) given by F.(f)(v) = fA f(a)a™ da is an isometry
for the obvious L?-inner products on S(Ap) and S(i ap).

Definition 14.2 The inverse transform Jp : S(iay, Az p) — C¥(7 : G/Ny : x), also
called Wave packet transform, is defined by the formula

Jrp(x) = / Wh° (P, v,x)e(A) dA, (14.3)

for (S ﬂz’p,x eq.

We note that by the integral (14.3) is absolutely convergent and defines a smooth
function of x in view of the uniformly tempered estimates for the normalized Whittaker
integral.

Theorem 14.3 The normalized Wave packet transform Jp, for P € P, defines a
continuous linear map

Ip 1 S(iap, Az p) = C(t: G/Np : x).

Proof. We fix o € M p.ds such that Ay p » # 0. Let ¥ be an element of the latter space.
Then by linearity and finite dimensionality of Aj p it suffices to show that the map

@ / e(V)Wh®(P,y,v,x) dx
ia’l‘,

is continuous linear S(ia}) — C(7 : G/Ny : x). Since Wh®(P,y) is a family in
H;lol(aj;, Ao, e,r,7), see Cor. 13.7, this follows from [2, Thm. 12.1]. O

Lemma 14.4 Let P € Py. The transforms ¥, and Jp are conjugate in the sense that

(Fpfs@)={f,Tpe)
for f € C(t: G/Ny : x) and ¢ € S(ia}) ® Az p.
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Proof. The brackets on the left indicate the L*-type inner product on L?(ia}, Az p)
and the brackets on the right indicated the inner product on L?>(t : G/Ny : x).
The inclusions S(ia}, Az p) — Lz(ia}‘,,ﬂz,P) and C(t : G/Ny : x) — L*(t :
G /Ny : x) are continuous linear. It follows that the pairings (f, ¢) — (F, f, ¢) and
(f,9) = {f, Jpyp) are continuous sesquilinear C(7 : G/Ny : x) X S(ia}p, Az p) —
C. By density of C(t : G/Np : x) in C(t : G/Ny : x) and of C°(ia}, Az p)
in S(iay, Az p) it suffices to prove the identity for f € C(t : G/No : x) and
¢ € C(ia}p, A p). For such f and ¢ we have

(FF o) /< WhE(P,v.2) f(x)dx, ¢(v)) d

iap o G/No

[ [ o ernsw. o) drav
iaj; G/Ny

/ (f(x), Wh®(P,v,x)¢(v)) dv dx
G/Ny Jias,

<f > j})‘10>2

15 The functional equations

Based on the results of the previous section, we shall now derive Harish-Chandra’s
functional equation, see [7, §1.7].

Lemma 15.1 Let P, Q € Py be associated and let s € W(ap | ap). Then
Wh°(P,v) = Wh°(Q, sv) C&P(s, V) (15.1)
as an identity of meromorphic functions of the variable v € a}, .

*

Proof. We will first establish the existence of a meromorphic function F : ap. —
Hom(Ajy p, Az o) such that

Wh°(P,v) = Wh°(Q, sv)F(v), (v eap). (15.2)
Indeed, by Lemma 9.7 there exists an element Fy € Hom(A2 p, Az o) such that
Wh(P,v) = Wh(sPs™', sv)F;, (v €ap).

Since sPs~! and Q have the same split component, it follows from Lemma 9.4 that
there exists a meromorphic G : a”‘Q(c — End(Aj3,p) such that

Wh(s™'Ps, sv) = Wh(Q, sv)G (v).
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Combining these assertions it follows that (15.2) is valid with everywhere Wh in place
of Wh® and with G(v)Fj in place of F(v). If we combine this observation with the
definition of the normalized Whittaker integrals, we find that (15.2) is valid with

F(v) = C;’,ug(l,v)_1 o G(Vv)oFy 0C5|Q(1,sv), (v eap).

Let Q C ia*Q be the set of all v € i a*Q which are a regular point of all meromorphic
functions in the above expression for F', and for which the elements vv, for v € W(agp),
are mutually distinct. Then Q is open dense in ia’,. For v € Q, the functions on the
left and right of (15.2) are tempered and belong to A(7 : G/Ny : x). By taking the
constant terms of these functions along Q and comparing the appearing exponential
functions with exponent sv, we find that F'(v) = C& p(s,v) for all v € Q. By analytic

continuation this identity is valid as an identity of meromorphic functions of v € a*QC,
and (15.1) follows. O

Corollary 15.2 Let P, Q, R € Py all be associated to each other. For all s € W(ag |
ap) andt € W(ag | ag),

C;|P(ts, V) = C;|Q(t, sV) Célp(s, %) (15.3)
as an identity of meromorphic functions of v € a),_.

Proof. Let v € ia), be a regular point for each of the three meromorphic functions
appearing in equation (15.1). Then (15.3) follows by taking the constant terms along R
of the tempered functions on both sides of (15.1). The proof is finished by application
of analytic continuation. O

The functional equations have important consequences for the Fourier and Wave
packet transforms.

Corollary 15.3 Let P,Q € Py be associated and suppose that s € W(ap|ap). Then
forall f € C(t:G/Ny: x),

Cop(s:MFp f(v) =F5f(sv), (v €iap) (15.4)
Proof. From Lemma 15.1 we deduce that, for v € ia;’;,
Wh*(P,v) = C(oz'P(s, -7)*Wh*(Q, sv) = C&P(s, v)"'Wh*(Q, sv).

This implies that
C&P(s, v)Wh*(P,v) = Wh*(Q, sv).

The identity (15.4) now follows in view of the characterization of the normalized
Fourier transform in (14.2). O
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Corollary 15.4 Let P,Q € Py be associated and suppose that s € W(ag|ap). Then
forall ¢ € S(ia}, Azp),

Jre = Tos~ " [Cop(s = el
Here s™'* denotes pull-back by s~! : ia*Q — iy,

Proof. By using the definition of Jp and Lemma 15.1, taking into account Lemma
13.6 we find

Jpy

/* Wh*(Q, sv)Cp p (s, v)e(v) dv

/ S Wh*(Q,9)s™[Ch (s, )@l (v) .
zaQ

Now use the definition of Jp.

O
Corollary 15.5 Let P,Q € Pg. Then
FeFof = JoF5f.  (f€C(r:G[Ny: x)).
Proof. By Corollaries 15.4 and 15.3 we have
JpFi f = Jos " [Cop(s, VFp 1 =Tos " [s"(F5 /)] = ToFGf-
O

16 Appendix: criterion of smoothness for distributions

In this appendix, we will prove a result needed in Section 5. Let U be a smooth manifold
of dimension n. For K c U a compact subset and u € D’(U) = CZ(U)" we denote by
ugc the restriction of u to C2(R"). We will say that u has order r on K if ugy extends
to a continuous linear functional on Cg.(U).

We will write CZ(U) for the Fréchet space of smooth functions ¢ € C*(U) with
support contained in K. For p € N we have CZ(U) c Cé’((U ). The latter space has
a natural Banach topology, for which the inclusion is continuous with dense image.
Transposition induces a natural inclusion of the dual spaces equipped with the strong
dual topologies,

Ch(U) c CR(U)".

The topology on the first of these spaces is the dual Banach topology.
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Let Q be an open subset of R? and suppose amap 7 : Q — C°(U)’, y =T, =
T (y) is given. For a compact subset K C U we define

Ty : Q — CX(UY (16.1)

by
Tx(y) == Tilezw),  (xel).

We say that T maps to the Banach space C%(U)’ if Te(y) € C,‘;’((U)’ for all y € Q.
Letuvy, ..., v, be acollection of smooth vector fields on U, such that for each x € U
the vectors v; (x) span the tangent space 7, U. If @ € N, we denote by v® the differential

| ag
operator v, v, onU.

Theorem 16.1 Let Q C R" be open and letT : Q — CZ(U)’ be a map.
If for each a € N1 and every compact set K C U the map

= [0 (1)) ]x (16.2)
is continuous from € to the Banach space C‘;((U ), then

(a) for every y € Q the density T, is of the form ty,dx with T, € C*(U) and dx a
smooth positive density on U,

(b) for each & € N" the function y — 0%(1y), Q — C*(U), is continuous.

IfQ c R¥ x C! and for every compact K U the map (16.2) is continuous from € to
the Banach space C%(U Y and in addition holomorphic in the variable from Ct, then
for each a € N4 the function y — v*(1y), Q — C*(U), is continuous and in addition
holomorphic in the variable from Ct.

Proof. 1If y € CZ°(U) then by a straightforward application of the Leibniz rule for
differentiation, it follows that the map 7' : y +— 7, fulfills the hypotheses with T in
place of T. Clearly, it suffices to prove the conclusions (a), (b) and the final assertion
with 7 in place of T, for any choice of y.

Therefore, we may as well assume that there exists a compact set K, contained in
the interior of a compact subset K C U such that supp 7, C K for all y € Q. Then
the hypothesis that for every @ € N” the function (8.2) is continuous is fulfilled for
this particular K. We will keep the sets Ky and K fixed from now on and fix a cut off
function y € CZ(R") which is 1 on an open neighborhood of Ko. Then x7o = T, for
every distribution 7, € C*(U)’ with support contained in K. In particular this is true
forT, =T, (y € Q).

We denote by ¥ the Euclidean Fourier transform which on a function f from the
Schwartz space S(R”) is given by

71 = [ et e,
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This operator is a topological linear isomorphism from S(R) onto itself. The inverse
transform is given by S(R") > g — S¥ (g), where Sg(x) = g(—x). (No constant is
appearing provided Lebesgue measure is replaced by a suitable positive multiple.)

On the space S’(R") of tempered distributions, the Fourier transform is given
by transposition of the transform on Schwartz functions, hence a topological linear
isomorphism from the space S’(R") onto itself; it is also denoted 7. This is compatible
with the notation for Schwartz functions if we embed S(R”) into S’(R”") by f +— fdx,
where dx denotes the standard smooth density on R". On the space of tempered
distributions, the inverse Fourier transform is given by the transpose of SF.

For every y € Q the distribution 7} is compactly supported, with support in Kj. Let
T, € CZ(U)’ be any distribution with compact support contained in K and such that
(0T, )¥ belongs to C;’((U )/, for every @ € N”". It particular, such a T is a tempered
distribution and the associated Euclidean Fourier transform is the tempered distribution
given by the analytic function R" — C defined by

F(T.): - To(e™),  (£€R).

Here ¢~ denotes the exponentional function x > e¢™¢* R" — C. By the inversion
formula,

T, =F o S(FT,). (16.3)
We fix anorm || - ||« which gives the Banach topology on Cf;((U ),

llellx.p := max sup [0%¢],
lel<p ¢

and we denote the dual norm on C;’((U ) by || - ||*. One readily verifies that there exists
a constant ¢ > 0 such that for every & € R",

e ™ g, < c(L+ €7, (£ eR).

Suppose now that for every @ € N” the distribution 0%(7,) satisfies (0°T,)x €
C,Z(U)’. PutA:= 3", 8?. Then for every N € N and all £ € R”,

(1= V) ()]
(1= AT, e ™))
1= VT Il < () (1 + €D,

(1L + €N F (7o) (&)

IA

where
Cn(To) := cll(1 = ANT|I.

This leads to the estimate

|F(To) ()] < Ch(To) (1 + [IENDHPFN, (£ €RY) (16.4)
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for every N € N. It follows from this estimate that the inverse Fourier transform of
¥ (T) is the continuous density given by T, = T.dx where dx is the standard smooth
density on R”, and where

To(x) = SFF(T.)(x) = / e F(T,) (€) déE. (16.5)
Rn
Using the estimate (16.4) — with N sufficiently large — for domination under the
integral sign, we infer that 7, is a smooth function and for each g € N", the derivative
987, is given by differentiation under the integral sign. Substituting T, for T in the
resulting expression, and writing 7y = 7,dx, we obtain

o) = [ e T e, (5 e, (16.6)

We note that y +— (7)« is continuous  — C;J((U )’ by assumption. On the other
hand, it is straightforward that & - ye™ is continuous R" — Cj.(U). Since the
natural pairing C%(U )’ X C%(U ) — C is continuous bilinear it follows that the map

QXR" = C, (y,&) = (Ty, xe ™) = F(T,) (&)

is continuous. It now easily follows that the integrand /(y, x, &) of (16.6) is a continuous
function of (y, x, &) € Q X U x R"™. On the other hand, the integrand is dominated by

Ch(Ty) (1 + (IENPI(L + (]2 —N (16.7)

while Cn(Ty) is locally bounded in y. Since this is valid for N arbitrarily high, we
conclude that the function (y,x) +— (937'y (x) belongs to C(Q x U). This in turn is
equivalent to the assertion that y + 9Pt is continuous from Q to C(U). As § € N"
was arbitrary we conclude that y + 7, is continuous Q — C*(U).

We now turn to the statement about holomorphy. Write y = (z, 1) according to the
decomposition RY ~ R¥ x C’. It remains to prove the final assertion about holomorphy
in the variable A. For this we first investigate the holomorphy of 7 (7).

By assumption the map y + 7y is continuous Q — C;;(U )" and holomorphic in 4.
This implies that (y, &) — (T, , e~¢) is continuous Q x R” — C, with holomorphy in
the variable A. The integrand /(y, x, ¢) introduced above is continuous, and holomor-
phic in 4, while it is dominated by (16.7). It is a well-known result that this implies
that (x,y) +— 8P(ty)(x) is holomorphic in the variable A. It follows from this that the
map y — Ty is continuous from  to C*(U) and holomorphic in the variable 4. O

17 Appendix: divergence for a convex polyhedron
This appendix gives a rigorous proof of Gauss’ divergence theorem for a compact

convex polyhedral set in Euclidean space. For a more systematic treatment of Stokes’
theorem on manifolds with singularities, we refer the reader to [8].
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By an affine hyperplane o in R” we mean a translate of a linear subspace of
codimension 1. Its complement R" \ ¢ is a disjoint union of two open half-spaces. The
closures of these are called the closed half-spaces associated with o-. The latter can be
retrieved as the intersection of its closed half-spaces.

Any affine hyperplane can be described by a formula of the form oo = {x € R" |
&(x) = ¢}, where ¢ € R™ \ {0} and ¢ € R. The associated closed half-spaces are then
described by € < c and by & > c.

In this section we assume that C is a compact convex polyhedral subset of R”, i.e.,
a compact finite intersection of closed half-spaces.

Assume that C has non-empty interior. Then by a hyperplane facet of C we mean
an affine hyperplane o such that C is contained in precisely one of the two closed half-
spaces determined by o and such that C, := C N o has non-empty interior (denoted
by C) as a subset of o. The sets C, and C,. will be called the closed and open facets
associated with o-. Note that o is the affine span of the open facet C;,.. The collection
Y = Z(C) of affine facets of C is finite. Furthermore, it is readily verified that

0C = Uges Co

If o and o are distinct affine facets, then C;, N C3, = 0. If o € X then by v, we
denote the unit vector in o+ which points away from the closed half-space associated
with o that contains C. We write v : dC — R" for the partially defined function
determined by v(s) = v, for s € C;.. This function is called the outward unit normal
to 0C.

If f:U — Risa C'-function on an open subset U ¢ R” and H € R”" then we
define the directional derivative dy f by dy f(x) = d/dt f(x + tH)|;=0, (x € U).

Lemma 17.1 Let f : C — R be a continuous function which is partially differentiable
on int(C) with partial deriatives that extend continuously to C. Then for every H € R",

[ansoas= [ o). 5 as.
c ac
Remark 17.2 Let X denote the set of affine facets of C. Then

[ @ mseryas= Yooty [ g5

oy Cno

The lemma will be proven in the rest of this section. We start with investigating
partial differentiation for integration over R/}, where R, =] 0, oo [.

Lemma 17.3 Let f : R — R be a C'-function, with partial derivatives up to order
1 extending continuously to [0, co[" and with support bounded in R". Then for every
HeR",

n
/ Oy f(x) dx:Z:‘/‘1 _ —H; f(x,0,y) dxdy.
R? 0 IR
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Proof. Thisiselementary from Fubini, and the formula—f(x, 0, y) = /Ooo O f (x,t,y)dt.
O

As a next step, we consider the cone I" in R"” generated by an n-tuple of distinct
vectors y1, . .., Y,. We denote by ;1" the cone generated by the points y, k # j. Then
JI is the union of the cones d;I". The outward unit normal to d;I" is denoted by v;.

Lemma 17.4 Let f : int(I') — R be a C! function with partial derivatives up to order
1 that extend continuously to . In addition it is assumed that f has bounded support.
Then

/raHf(X) dx = jz:(vj, H>/ajrf(S) ds.

Proof. The previous lemma is a special case. To obtain the more generala result from
the present lemma, let 7 : R” — R”" be the linear map determined by Te; = ;, for
1 < j < n. Then T(R}) = I'. The boundary part 9,;I" is the image under T of the
boundary part d; := d;R{. The outward normal vector n; at points of the interior of 9;
relative to the affine span of 0; is related to v; as follows.

A half-line x + RyH emanates from 0;I" in the outward direction if and only if
T~!x + RyT~'H emanates from d; in the outward direction. From this it follows that
for all H € R" \ {0}, we have that (v;, H) > 0 if and only if (n;, T-'H) > 0. This
implies that there exists a constant ¢; > 0 such that

vi=c; T™"(n)). (17.1)

Since v; has unit length it follows that ¢; = ||T_1*nj |I-!.
By linear substitution of variables and application of the previous lemma we obtain

/@J@)w:/°@fa&»ﬁ
r R”

|detT| ./Rn (')Tle [T*f] (Z) dz

| det T| Z/
=17k

) —~(T7'H); (T* f)(x,0, y)dxdy, (17.2)

A
where £/ = (x; .. .Xj—1Xj+1 . ..Xn). We consider the j —th term, and compare with the

surface integral over 0,I". Let U, := Rfl x {0} x R'fj . Then a regular parametrisation
of 9;T"is given by themap 7, : U; — 0,T", (x,y) = T(x,0,y). Now

A#wJMﬂ@%=/OmHHUU&w)Mﬂﬂﬁ@, (17.3)

Uj
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where J;(T) =Te; X --- X Te\j X --- X Te,. By the definition of the exterior product,
we have, for all v € R”, that

(J;(T),v) = det(v,Tey,...,Te;,...Tey)
= detT-det(T'lv,el,...,Ej,...,en)
= (=1)/"NdetT - (T7'); = (1) - detT - {n;, T"'0),

from which we infer that J;(T) = (—1)/ detT - T~"n;, so that ¢;|J;(T)| = | det T|, see
the line below (17.1). Using (17.1) it now follows that

(vi, Hy|J;(T)| = c;{n;, T"HY|J;(T)| = (n;, T"'H)| detT].

Hence the integrals on the right of (17.2) and of (17.3) are identical. O

Completion of the proof of Lemma 17.1. By an easy translation argument, Lemma
17.1 is seen to be valid with domain a + I" (a € R") in place of I".

We will now give the proof for C an n-dimensonal simplex in R", i.e., the convex
hull co(ay, ..., a,) of n + 1 points in R” whose affine span is R”. For 0 < j < 0 we
denote by I'; the cone in R” spanned by a; —aj, fori # j. Then C C a; +T';.

By a simple argument there exists a cover of C by bounded open subsets O; C R”,
for 0 < j < n, such that a; € O; and 5J- Nco(ag,...,aj,...,a,) = 0. We fix
a C'-partition of unity {y ;i 10 < j <0} over C subordinate to the given cover.
Thus, ; € C1(0;),0 < ¢, < 1, and Z?:O ; = 1 on an open neighborhood of C.
Let f satisfy the hypothesis of Lemma 17.1 and define, for each j, f; = ¢ f. Then
f= Z;fzo f; and by linearity it suffices to prove the assertion of the lemma for each f;;
fix j.

The function f; : int(C) — R is continuous and its partial derivatives up to order
1 extend continuously to C. Moreover, since f; = 0 on an open neighborhood of
co(ag,...,dj,...,ay) it follows that the extension of f; to a; + I';, by requiring it to
be zero outside C has bounded support and its partial derivatives of order at most 1
extend continuously to a; + I';. By the first part of this proof, it follows that

/ Onfi(x) dx = / (vr;» H) f(s)ds.
a;+I; a;+or;

The integrands of both integrals are zero on an open neighborhood of (a; +I'"\ C).
Therefore,

/ O fi(x) dx = / (vrj , H)f(s)ds.

C CN(a,+3T))

The domain of the latter integration equals dC \ co(ay,...,a j»e-.>ay). Since f;
vanishes on co(ag, . ..,a j»-..»ay) itfollows that the value of the latter integral remains

unchanged if the domain is replaced by dC. This completes the proof for C a simplex.
Let now C C R” be a compact convex polyhedral set with non-empty interior and
fix a simplicial decompostion X of C. Let let X, denote the (finite) set of n-dimensional
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simplices S € 2. Then C = UZ, while all points of overlap are contained in the union
of the simplices from Z,_;. The integral of dy f over C equals

2 /SaHf () dx = ) /6 (rss D (s)ds

SeZn SEZn

> (e, HY f(5)ds. (17.4)

Sex, 0eS,_1(88) Y7

where S,_[0S] denotes the set of o € S,_; which are contained in dS (the appearing
unit normal v, points out of §). The double sum presenting the last integral can be
rewritten as a sum of integrals over o € S,_;. The elements of S,_1[0C] cover 0C
with overlap contained in the negligable set US,_>. The remaining elements, from
Sn-1 \ Sp-1[0C], can be grouped in pairs of simplices in XZ,_[S N S'], (5,8 € S,)
equipped with opposite unit normals. As the contributions of these pairs cancel each
other, the final sum in (17.4) can be rewritten as

2. /<V‘T’H>f(s)dS:/aC<Va,H)f(s)ds.

o€, 1[4C]
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