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Introduction
In this paper we give a complete proof of the Maass–Selberg relations for Whittaker
integrals on a real reductive Lie group. These relations were announced in 1982 by
Harish-Chandra as an important part of the Plancherel formula for Whittaker functions.
Because of his untimely death in 1983, no further details appeared until 2018, when
V.S. Varadarajan and R. Gangolli published an edited version of Harish-Chandra’s
manuscripts, [7, pp. 141-307]. The results of the present paper are based on a result of
[7] for a basic case. Harish-Chandra’s proof for this basic case involves an asymptotic
analysis of boundary terms reflecting the non-symmetry of the Casimir operator over
an expanding 𝐾-invariant domain in𝐺/𝑁0 whose radial part is a simplex. In particular,
this involves the application of Gauss’ divergence theorem on a simplex. A detailed
account of Harish-Chandra’s arguments is given in Sections 11 and 12 of the present
paper.

Starting with the proof for the basic case, there appears to be a complete proof of
the Maass-Selberg relations in [7]; however, we have not been able to understand the
details. In the present paper we follow a different approach by combining the result
for the basic case with ideas from the theory of reductive symmetric spaces, in which
the action of the so-called standard intertwining operators plays a central role. We
believe the obtained information is of separate interest. As an application of the Maas-
Selberg relations we prove that the normalized Fourier and Wave packet transforms are
continuous linear maps between appropriate Schwartz spaces.

N. Wallach [13] independently developed another approach to the Whittaker–
Plancherel formula, in which the Whittaker Maass-Selberg relations do not seem to
play a role.

The results of the present paper will be of key importance in a proof of the Plancherel
theorem that I have outlined in several lectures in recent years. The accompagnying
slides are available on my website. Details will appear in a follow up paper.

We will now describe the results of our paper in more detail. It is assumed that 𝐺
is a real reductive Lie group of the Harish-Chandra class, that 𝐾 is a maximal compact
subgroup, and that𝐺 = 𝐾𝐴𝑁0 is an Iwasawa decomposition. Furthermore, 𝜒 is a fixed
unitary character of 𝑁0 which is regular in the sense that for any simple root 𝛼 of 𝔞 in
𝔫0 the restriction of 𝜒∗ := 𝑑𝜒(𝑒) to the root space 𝔤𝛼 is non-zero. Here 𝔞 and 𝔫0 denote
the Lie algebras of 𝐴 and 𝑁0, respectively, in accordance with the convention to denote
Lie groups by roman capitals and their Lie algebras by the corresponding gothic lower
cases.

The root system of 𝔞 in 𝔤 is denoted by Σ. Furthermore, Σ+ denotes the positive
system for which 𝔫0 is the sum of the associated root spaces 𝔤𝛼, for 𝛼 ∈ Σ+.
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We denote by P the finite set of parabolic subgroups of 𝐺 containing 𝐴 and by Pst
the subset of the standard ones among them, i.e., the 𝑃 ∈ P such that 𝑃 contains the
minimal parabolic subgroup 𝑃0 := 𝑍𝐺 (𝔞)𝑁0. Every 𝑄 ∈ P is conjugate to a unique
𝑃 ∈ Pst, under the action of 𝑁𝐾 (𝔞). The action of the latter group on 𝔞 induces an
isomorphism from 𝑁𝐾 (𝔞)/𝑍𝐾 (𝔞) onto𝑊 (𝐴), the Weyl group of the root sytem Σ.

Given𝑄 ∈ P we denote its Langlands decomposition by𝑄 = 𝑀𝑄𝐴𝑄𝑁𝑄 . By 𝑀𝑄,ds
we denote the set of equivalence classes of representations in the discrete series of 𝑀𝑄 .

For 𝑄 ∈ P, 𝜎 ∈ 𝑀𝑄,ds and 𝜈 ∈ 𝔞∗
𝑄C

we define 𝐶∞(𝐺/𝑄 : 𝜎 : 𝜈) to be the Fréchet
space of smooth functions 𝜑 : 𝐺 → 𝐻𝜎 transforming according to the rule

𝜑(𝑥𝑚𝑎𝑛) = 𝑎−𝜆−𝜌𝑄𝜎(𝑚)−1𝜑(𝑥), (𝑥 ∈ 𝐺, (𝑚, 𝑎, 𝑛) ∈ 𝑀𝑄 × 𝐴𝑄 × 𝑁𝑄).

Equipped with the left regular representation this space realizes the space of smooth
vectors for the normalized induced representation

Ind𝐺𝑄 (𝜎 ⊗ 𝜈 ⊗ 1). (0.1)

Let 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈) denote the continuous conjugate linear dual of the Fréchet
space 𝐶∞(𝐺/𝑄 : 𝜎 : −𝜈̄). Via the standard 𝐺-equivariant sesquilinear pairing by
integration over 𝐾, 𝐶∞(𝐺/𝑄 : 𝜎 : 𝜈) is injectively and 𝐺-equivariantly mapped into
𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈).Accordingly, the latter is viewed as the space of generalized vectors
for (0.1). We write

𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 (0.2)

for the subspace of 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈) consisting of 𝜑 such that 𝜑(𝑛𝑥) = 𝜒(𝑛)𝜑(𝑥),
for 𝑥 ∈ 𝐺, 𝑛 ∈ 𝑁0. Its elements are called the generalized Whittaker vectors of type 𝜒.

If 𝑃 is an opposite standard parabolic subgroup then 𝑁0𝑃 is open in 𝐺. In [2, Thm.
8.6] it is shown that every function 𝜑 ∈ 𝐶−∞(𝐺/𝑃 : 𝜎 : 𝜈)𝜒 restricts to a continuous
function 𝑁0𝑃→ 𝐻−∞𝜎 , satisfying 𝜑(𝑛𝑚) = 𝜒(𝑛)𝜎(𝑚)−1𝜑(𝑒) for 𝑛 ∈ 𝑁0 and 𝑚 ∈ 𝑀𝑃 .

In particular, 𝜑(𝑒) ∈ 𝐻−∞𝜎 satisfies

𝜎(𝑛)𝜑(𝑒) = 𝜒(𝑛)𝜑(𝑒), (𝑛 ∈ 𝑀𝑃 ∩ 𝑁0).

We define 𝜒𝑃 := 𝜒 | (𝑀𝑃∩𝑁0) and put

𝐻−∞𝜎,𝜒𝑃 = {𝜂 ∈ 𝐻−∞𝜎 | ∀𝑛 ∈ 𝑀𝑃 ∩ 𝑁0 : 𝜎(𝑛)𝜂 = 𝜒𝑃 (𝑛)𝜂 }.

In [2, Prop. 8.15] it was proven that the evaluation map ev𝑒 : 𝐶−∞(𝐺/𝑃 : 𝜎 : 𝜈)𝜒 →
𝐻−∞𝜎,𝜒𝑃 is a bijective linear map of finite dimensional linear spaces, for every 𝜈 ∈ 𝔞∗

𝑃C
.

The inverse of ev𝑒 is denoted by

𝑗 (𝑃 : 𝜎 : 𝜈) : 𝐻−∞𝜎,𝜒𝑃 → 𝐶−∞(𝐺/𝑃 : 𝜎 : 𝜈)𝜒 . (0.3)

Furthermore, according to [2, Prop. 8.14], for every 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑃 the function 𝜈 →
𝑗 (𝑃, 𝜎, 𝜈)𝜂 is holomorphic as a function on 𝔞∗

𝑃C
with values in 𝐶−∞(𝐾/𝐾𝑃 : 𝜎𝑃) (in

the compact picture).
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In [2, Prop. 8.10] the Whittaker integrals for 𝑃 ∈ Pst are essentially defined as
finite sums of matrix coefficients of𝐾-spherical matrix coefficients with the generalized
Whittaker vectors for Ind𝐺

𝑃̄
(𝜎 ⊗ 𝜈̄ ⊗ 1). The Maass–Selberg relations give information

about their asymptotic behavior towards infinity, on the closed positive Weyl chamber
cl𝐴+. In the theory of reductive symmetric spaces these Maass–Selberg relations can
be reformulated in terms of the action of standard intertwinining operators on the
analogues of the generalized vectors 𝑗 (𝑃̄ : 𝜎 : 𝜈̄)𝜂. The known product decomposition
of these operators then reduce the Maass-Selberg relations to a basic case, where they
can be established more directly. For this approach to work in the Whittaker setting,
one needs to define the generalized Whittaker vectors for Ind𝐺

𝑄
(𝜎 ⊗ 𝜈 ⊗ 1), with𝑄 ∈ P

not necessarily opposite standard. This is worked out in Section 1, making use of the
existence of an element 𝑣 ∈ 𝑁𝐾 (𝔞) such that 𝑣𝑄𝑣−1 is opposite standard. The orbit
𝑁0𝑣𝑄̄ is the unique open 𝑁0-orbit on 𝐺/𝑄. In this setting, evaluation at 𝑣 defines a
bijective linear map ev𝑣 : 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 → 𝐻−∞𝜎,𝜒𝑄 , whose inverse 𝑗 (𝑄 : 𝜎 : 𝜈)
gives the appropriate generalization of 𝑗 (𝑃, 𝜎, 𝜈), 𝑃 ∈ P̄st. At the end of Section
1 we give the definition of the corresponding Whittaker integral as a finite sum of
matrix coefficients of 𝐾-spherical vectors with the Whittaker vectors of the induced
representations Ind𝐺

𝑄̄
(𝜎 ⊗ −𝜈 ⊗ 1).

In Section 2 it is shown that for parabolic subgroups 𝑃,𝑄 ∈ P with equal split
components (i.e., 𝔞𝑃 = 𝔞𝑄) there is a unique meromorphic map 𝜈 ↦→ 𝐵(𝑄, 𝑃, 𝜎, 𝜈),
𝔞∗
𝑃C
→ Hom(𝐻−∞𝜎,𝜒𝑃 , 𝐻

−∞
𝜎,𝜒𝑄
) such that

𝐴(𝑄, 𝑃, 𝜎, 𝜈) 𝑗 (𝑃, 𝜎, 𝜈) = 𝑗 (𝑄, 𝜎, 𝜈)𝐵(𝑄, 𝑃, 𝜎, 𝜈), (𝜈 ∈ 𝔞∗𝑃C).

Each space 𝐻−∞𝜎,𝜒𝑄 , for 𝑄 ∈ P, carries a natural structure of Hilbert space. In terms of
these structures, the Maass-Selberg relations can be formulated as

𝐵(𝑄, 𝑃, 𝜎,−𝜈̄)∗𝐵(𝑄, 𝑃, 𝜎, 𝜈) = 𝜂(𝑄, 𝑃, 𝜎, 𝜈), (0.4)

where 𝜂(𝑄, 𝑃, 𝜎, 𝜈) is the scalar meromorphic function on 𝔞∗
𝑃C

= 𝔞∗
𝑄C

determined by

𝐴(𝑄, 𝑃, 𝜎,−𝜈̄)∗𝐴(𝑄, 𝑃, 𝜎, 𝜈) = 𝜂(𝑄, 𝑃, 𝜎, 𝜈).

The interaction of these structures with the Weyl group𝑊 (𝔞) is discussed.
In Section 3 we study the operators 𝐵(𝑄, 𝑃, 𝜎, 𝜈) in detail. The Maass–Selberg

relations (0.4) for 𝐵 are formulated in Theorem 3.1. By using the well-known product
decomposition of the standard intertwining operators in terms of those with adjacent 𝑃
and𝑄 we reduce the proof of the relations (0.4) to the setting in which 𝑃,𝑄 are adjacent.
We discuss the well-known technique of chosing a subgroup 𝐺 (𝛼) of 𝐺 in which 𝑃 and
𝑄 determine opposite maximal parabolic subgroups 𝑃(𝛼) and 𝑄(𝛼). It is then shown
that 𝐵(𝑄, 𝑃, 𝜎, 𝜈) is essentially equal to the 𝐵-matrix for 𝐺 (𝛼) , 𝑄 (𝛼) , 𝑃(𝛼) , 𝜎, 𝜈, see
Lemma 4.12. The proof of that lemma requires comparison of distributions on 𝐺 with
distributions on 𝐺 (𝛼) . This makes it long and technical, see Sections 4 - 8.
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In the end, the proof of the Maass-Selberg relations for 𝐵 is reduced to the basic
setting in which 𝐺 has compact center and 𝑃 and 𝑄 are opposite maximal parabolic
subgroups, see Lemma 4.14.

In Section 9 we introduce the 𝐶-functions as coefficients in certain constant terms
of the Whittaker integrals, see Theorem 9.2. These 𝐶-functions can be expressed in
terms of the standard intertwining operators and the 𝐵-matrices, see Lemma 9.5. We
show that the Maass–Selberg relations for 𝐵 imply similar Maass-Selberg relations for
𝐶-functions 𝐶𝑄 |𝑃 (𝑠, 𝜈), with 𝑄, 𝑃 associated and 𝑠 ∈ 𝑊 (𝔞𝑄 | 𝔞𝑃). They eventually
take the form

𝐶𝑄 |𝑃 (𝑠,−𝜈̄)∗𝐶𝑄 |𝑃 (𝑠, 𝜈) = 𝜂∗(𝑃, 𝑃̄,−𝜈)
see Theorem 12.8.

Conversely, it is not a priori clear that the Maass-Selberg relations for the 𝐶-
functions imply those for the 𝐵-matrices. However, in the basic setting they do, as is
explained in Section 10. The completion of the proof of the Maass-Selberg relations
thus depends on their validity for the 𝐶-functions in the mentioned basic setting. The
latter case is addressed in the next two sections, 11 and 12, which are based on Harish-
Chandra’s work in [7].

Section 11 is preparatory, determining a useful formula for the radial part of the
Casimir operator, which leads to a formula given without proof in [7, p. 208]. That
formula allows the application of Gauss’ divergence theorem for a simplex, which in
turn leads to asymptotic information in Section 12, see Thm. 12.7. At the end of
Section 12, the obtained asymptotic information turns out to imply the Maass-Selberg
relations for the 𝐶-functions in the basic setting.

In Section 13 we introduce the normalized Whittaker integrals Wh◦(𝑃, 𝜓) and the
associated normalized 𝐶-functions 𝐶◦

𝑄 |𝑃, for 𝑃,𝑄 ∈ Pst, following the definitions of
Harish-Chandra, [7]. The Maass-Selberg relations imply the following relations for the
normalized 𝐶-functions, for 𝑠 ∈ 𝑊 (𝔞𝑄 |𝔞𝑃),

𝐶◦
𝑄 |𝑃 (𝑠,−𝜈̄)

∗𝐶◦
𝑄 |𝑃 (𝑠, 𝜈) = 𝐼 (𝜈 ∈ 𝔞∗𝑃C).

These, combined with the uniformly tempered estimates obtained in [2], allow us to
show that the normalized Whittaker integrals are (finite sums of) functions of type
II′hol. In view of results in our paper [3] (to apppear in the near future) this allows
us, in Section 14, to define for each standard parabolic 𝑃 ∈ Pst a normalized Fourier
transform F ◦

𝑃
which is continuous linear from the Harish-Chandra type Schwartz space

C(𝜏 : 𝐺/𝑁0 : 𝜒) to the Euclidean Schwartz space S(𝑖𝔞∗
𝑃
,A2,𝑃). The conjugate Wave

packet transformJ𝑃 is continuous linear between these Schwartz spaces in the converse
direction.

In Section 15 we establish the functional equations for the normalized Whittaker
integrals as given by Harish-Chandra [7, §17.1] In turn these imply transformation
formulas for the normalized 𝐶-functions, the normalized Fourier transform, and the
Wave packet transform.

5



1 Definition of the map 𝑗 (𝑄, 𝜎, 𝜈)
A parabolic subgroup𝑄 ∈ P is said to be opposite standard if 𝑄̄ is standard. The set of
𝑄 ∈ P with 𝑄̄ ∈ Pst is denoted by P̄st. For this paper it will be necessary to describe the
action of standard interwining operators on Whittaker vectors of parabolically induced
representations. To make this possible, we need to extend the definition of the map
𝑗 (𝑄, 𝜎, 𝜈) to the setting of all parabolic subgroups 𝑄 from P, beyond those from P̄st.
To prepare for this we start with the description of the open orbits 𝑁0𝑣𝑄 in 𝐺, for
𝑣 ∈ 𝑁𝐾 (𝔞). We assume that 𝑄 ∈ P .

Lemma 1.1 𝐺 is a finite union of double cosets of the form 𝑁0𝑣𝑄, for 𝑣 ∈ 𝑁𝐾 (𝔞). The
coset 𝑁0𝑣𝑄 is open in 𝐺 if and only if 𝑣𝑁𝑄𝑣−1 ⊂ 𝑁̄0, which in turn is equivalent to the
condition that 𝑣𝑄𝑣−1 ∈ P̄st.

Proof. There exists an 𝑠 ∈ 𝑁𝐾 (𝔞) such that 𝑃 := 𝑠𝑄𝑠−1 is opposite standard. By
the Bruhat decomposition, 𝐺 is the disjoint union of the sets 𝑃0𝑣𝑃̄0 for 𝑣 ∈ 𝑊 (𝔞).
Since 𝑃0𝑣𝑃̄0 = 𝑁0𝑣𝑃̄0 ⊂ 𝑁0𝑣𝑠𝑄𝑠

−1, it follows that 𝐺 is a finite union of sets of the
form 𝑁0𝑣𝑄𝑠

−1, with 𝑣 ∈ 𝑁𝐾 (𝔞). Hence, 𝐺 = 𝐺𝑠 is a finite union of orbits 𝑁0𝑣𝑄, for
𝑣 ∈ 𝑁𝐾 (𝔞).

Put ∗𝔫0 := 𝔫0 ∩𝔪𝑄 . Then 𝑁0𝑣𝑄 is open in 𝐺 if and only if the map 𝑁0 ×𝑄 → 𝐺,

(𝑛, 𝑞) ↦→ 𝑛𝑣𝑞 is submersive at (𝑒, 𝑒). This is equivalent to to 𝔫0+Ad(𝑣) (𝔮) = 𝔤, which
in turn is equivalent to Ad(𝑣)−1𝔫0 + 𝔮 = 𝔤. Since Ad(𝑣) maps 𝔞-root spaces to 𝔞-root
spaces the latter assertion is equivalent to

Ad(𝑣)−1𝔫0 + ∗𝔫0 + ∗𝔫̄0 + 𝔫𝑄 = ∗𝔫0 + ∗𝔫̄0 + 𝔫̄𝑄 + 𝔫𝑄 .

This in turn is equivalent to Ad(𝑣)−1𝔫0 ⊃ 𝔫̄𝑄 , hence to 𝑣𝑁̄𝑄𝑣−1 ⊂ 𝑁0 and to 𝑣𝑄𝑣−1 ⊃
𝑃̄0. 2

We denote by 𝑊𝑄 (𝔞) the centralizer of 𝔞𝑄 in 𝑊 (𝔞). The following lemma is well
known through its formulation in terms of root systems.

Lemma 1.2 Let 𝑄 ∈ P, 𝑠, 𝑡 ∈ 𝑊 (𝔞).

(a) If 𝑠 ∈ 𝑊 (𝔞) is such that 𝑠𝑄𝑠−1 = 𝑄 then 𝑠 ∈ 𝑊𝑄 (𝔞).

(b) The group 𝑄 is𝑊 (𝔞)-conjugate to a unique 𝑃 ∈ P̄st.

Proof. We start by proving (b). The existence part of (b) is well-known (and also
follows from the previous lemma). So, there exists an 𝑠 ∈ 𝑊 (𝔞) and a 𝑃 ∈ P̄st such that
𝑠𝑄𝑠−1 = 𝑃. It follows that 𝑠(𝔞+

𝑄
) = 𝔞+

𝑃
. If 𝑄 is opposite standard , then 𝔞+

𝑄
⊂ −cl(𝔞+).

Fix 𝑋 ∈ 𝔞+
𝑄

; then both 𝑋 and 𝑠𝑋 belong to −cl(𝔞+). Since the latter set is a fundamental
domain for the action of 𝑊 (𝔞) on 𝔞, we conclude that 𝑠𝑋 = 𝑋. Now 𝑠 can be written
as a product of simple reflections in roots vanishing on −𝑋 hence on 𝔞+

𝑃
. Therefore,

𝑠 ∈ 𝑊𝑃 (𝔞). This in turn implies that 𝔞+
𝑄
= 𝔞+

𝑃
hence 𝑃 = 𝑄 and uniqueness follows.
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Assume now that 𝑄 is general, and let 𝑡 ∈ 𝑊 (𝔞) be such that 𝑃′ := 𝑡𝑄𝑡−1 is
standard. Then 𝑃′ is𝑊 (𝔞)-conjugate to 𝑃 and from the argument above it follows that
𝑃 = 𝑃′. This establishes uniqueness of 𝑃.

For (a) we fix 𝑡 ∈ 𝑊 (𝔞) and 𝑃 ∈ P̄st such that 𝑡𝑄𝑡−1 = 𝑃. Then 𝑠𝑄𝑠−1 = 𝑄 implies
that conjugation by 𝑡𝑠𝑡−1 fixes 𝑃. By (b) this implies that 𝑡−1𝑠𝑡 belongs to𝑊𝑃 (𝔞). This
in turn implies that 𝑠 ∈ 𝑡𝑊𝑃 (𝔞)𝑡−1 = 𝑊𝑄 (𝔞). 2

Let 𝑄 ∈ P . Then by the lemma above there exists a unique 𝑃 ∈ Pst that is Weyl
conjugate to 𝑄. We fix 𝑣 ∈ 𝑁𝐾 (𝔞) such that 𝑣𝑄𝑣−1 = 𝑃. Then 𝑣𝑁𝑄𝑣−1 = 𝑁𝑃 ⊂ 𝑁0 and
by Lemma 1.1 it follows that 𝑁0𝑣𝑄̄ is open in 𝐺. The image of 𝑣 in 𝑊𝑃 (𝔞)\𝑊 (𝔞) is
independent of the possible choices of 𝑣. Likewise, the image of 𝑣 in 𝑊 (𝔞)/𝑊𝑄 (𝔞) is
also independent of such choices.

Corollary 1.3 Let 𝑄 ∈ P(𝐴). Then precisely one of the 𝑁0-orbits on 𝐺/𝑄 is open.
This orbit equals 𝑁0𝑣𝑄 for any 𝑣 ∈ 𝑁𝐾 (𝔞) such that 𝑣𝑄𝑣−1 is opposite standard.

Corollary 1.3 allows us to make the following choice once and for all.

Definition 1.4 For the remainder of this paper we fix a map𝑄 ↦→ 𝑣𝑄 , P(𝐴) → 𝑁𝐾 (𝔞)
such that

(a) for every 𝑄 ∈ P(𝐴) the double coset 𝑁0𝑣𝑄𝑄 is open in 𝐺;

(b) if 𝑄 ∈ P̄st then 𝑣𝑄 = 𝑒.

We define
𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 (1.1)

to be the subspace of 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈) consisting of 𝜑 such that 𝜑(𝑛𝑥) = 𝜒(𝑛)𝜑(𝑥),
for 𝑥 ∈ 𝐺, 𝑛 ∈ 𝑁0. The elements of (1.1) are called the generalized functions of type
𝜒.

For 𝑤 ∈ 𝑁𝐾 (𝔞) we define the representation 𝑤𝜎 of 𝑤𝑀𝑄𝑤
−1 in 𝐻𝜎 by 𝑤𝜎 :=

𝜎 ◦𝑤−1. Furthermore, we write 𝐻𝑤𝜎 for 𝐻𝜎 equipped with the representation 𝑤𝜎. Let

𝑅𝑤 : 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈) → 𝐶−∞(𝐺/𝑤𝑄𝑤−1 : 𝑤𝜎 : 𝑤𝜈)

be the unique continuous linear 𝐺-intertwining operator which is given by the right
regular action by 𝑤 on the subspace of smooth functions.

It maps functions of type 𝜒 for the left regular action by 𝑁0 bijectively onto functions
of the same type in the image space.

Suppose 𝑄 ∈ P(𝐴) and let 𝑃 ∈ P̄st be the unique opposite standard parabolic
subgroup that is 𝑊 (𝔞)-conjugate to 𝑄. Let 𝑣 ∈ 𝑁𝐾 (𝔞) be such that 𝑣𝑄𝑣−1 = 𝑃; this
condition is equivalent to 𝑣 ∈ 𝑁𝐾𝑃

(𝔞)𝑣𝑄 and to 𝑣 ∈ 𝑣𝑄𝑁𝐾𝑄
(𝔞).

Clearly, 𝑣𝑀𝑄𝑣
−1 = 𝑀𝑃 . Since 𝑀𝑃 = 𝐾𝑃 (𝑀𝑃 ∩ 𝐴) (𝑀𝑃 ∩ 𝑁0) is an Iwasawa

decomposition for 𝑀𝑃 it follows that

𝑀𝑄 = 𝐾𝑄 (𝑀𝑄 ∩ 𝐴) (𝑀𝑄 ∩ 𝑣−1𝑁0𝑣) (1.2)
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is an Iwasawa decomposition for 𝑀𝑄 . Its 𝑁-component is given by 𝑀𝑄 ∩ 𝑣−1𝑁0𝑣 =

𝑣−1(𝑀𝑃 ∩ 𝑁0)𝑣. The associated character 𝑀𝑄 ∩ 𝑣−1𝑁0𝑣→ C, given by

𝑣−1𝜒𝑃 : 𝑛 ↦→ 𝜒(𝑣𝑛𝑣−1), (1.3)

will in general depend on the particular choice of 𝑣 ∈ 𝑁𝐾 (𝔞). To avoid any ambiguity
we agree to exclusively use the notation 𝜒𝑄 for the character (1.3) defined with 𝑣 = 𝑣𝑄 ,
see Definition 1.4.

Lemma 1.5 Put 𝑣 = 𝑣𝑄 . The character 𝜒𝑄 of 𝑀𝑄 ∩ 𝑣(𝑀𝑃 ∩ 𝑁0)𝑣−1defined by (1.3) is
regular with respect to the Iwasawa decomposition (1.2).

Proof. This is immediate from the regularity of 𝜒 |𝑀𝑃∩𝑁0 relative to the Iwasawa
decomposition 𝑀𝑃 = 𝐾𝑃 (𝑀𝑃 ∩ 𝐴) (𝑀𝑃 ∩ 𝑁0), see [2, (8.12)]. 2

In analogy with [2, (8.12)], we define

𝐻−∞𝜎,𝜒𝑄 := {𝜂 ∈ 𝐻−∞𝜎 | ∀𝑚 ∈ 𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜎(𝑚)𝜂 = 𝜒𝑄 (𝑚)𝜂}. (1.4)

In general, if 𝐿 is a closed subgroup of 𝐺, 𝜋 a unitary representation of 𝐿 and 𝜉 a
unitary character of a closed subgroup 𝑁 ⊂ 𝐿, we agree to write

𝐻−∞𝜋,𝜉 := {𝜂 ∈ 𝐻−∞𝜋 | ∀𝑚 ∈ 𝑁 : 𝜋−∞(𝑚)𝜂 = 𝜉 (𝑚)𝜂}.

Given 𝑣 ∈ 𝐺, we denote by 𝑣𝜋 the unitary representation of 𝑣𝐿𝑣−1 in 𝐻𝜋 given by
𝑣𝜋(𝑦) = 𝜋(𝑣−1𝑦𝑣). Furthermore, 𝑣𝜉 denotes the character of 𝑣𝑁𝑣−1 given by 𝑣𝜉 (𝑧) =
𝜉 (𝑣−1𝑧𝑣). It is readily verified that

𝐻−∞𝜋,𝜉 = 𝐻−∞𝑣𝜋,𝑣𝜉 . (1.5)

Indeed, the space on the left consists of all 𝜂 ∈ 𝐻−∞𝜋 such that 𝜋−∞(𝑚)𝜂 = 𝜉 (𝑚)𝜂.
Substituting 𝑚′ = 𝑣𝑚𝑣−1 we see that the condition on 𝑚′ ∈ 𝑣𝑁𝑣−1 is (𝑣𝜋)−∞(𝑚′) =
𝑣[𝜋−∞] (𝑚′) = 𝑣𝜉 (𝑚′) for all 𝑚′ ∈ 𝑣𝑁𝑣−1. This in turn is equivalent to 𝜂 ∈ 𝐻−∞

𝑣𝜋,𝑣𝜉
.

Corollary 1.6 Let 𝑄 ∈ P and let 𝑃 ∈ P̄st be 𝑊 (𝔞)-conjugate to 𝑄. Let 𝑣 = 𝑣𝑄 . Then
for all 𝜎 ∈ 𝑀𝑄,ds,

𝐻−∞𝜎,𝜒𝑄 = 𝐻−∞𝑣𝜎,𝜒𝑃 .

Proof. From (1.3) we see that 𝜒𝑄 = 𝑣−1𝜒𝑃 . Now apply (1.5). 2

Lemma 1.7 Let 𝑄 ∈ P(𝐴) and put 𝑣 = 𝑣𝑄 and 𝑃 = 𝑣𝑄𝑣−1. Then 𝑃 ∈ P̄st. For every
𝜑 ∈ 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 the following assertions are valid:

(a) the restriction of 𝜑 to the open subset 𝑁0𝑣𝑄 is a continuous function 𝑁0𝑣𝑄 →
𝐻−∞𝜎 ;

(b) 𝜑(𝑣) ∈ 𝐻−∞𝜎,𝜒𝑄 .
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Proof. This can be proven in the same fashion as [2, Thm. 8.6] where𝑄 is assumed to be
opposite standard and where 𝑣 = 𝑒. Alternatively, one may apply the mentioned result
as follows. The generalized function 𝑅𝑣𝜑 ∈ 𝐶−∞(𝐺/𝑃 : 𝑣𝜎 : 𝑣𝜈)𝜒, when restricted
to 𝑁0𝑃, yields a continuous function 𝑁0𝑃 → 𝐻−∞𝑣𝜎 . Consequently, 𝜑 is continuous on
𝑁0𝑃𝑣 with values in 𝐻−∞𝑣𝜎 = 𝐻−∞𝜎 . Now 𝑁0𝑃𝑣 = 𝑁0𝑣𝑄 so (a) follows.

For (b) we note that 𝜑(𝑣) = 𝑅𝜑 (𝑒) ∈ 𝐻−∞𝑣𝜎,𝜒𝑃 , by the mentioned result. We now
apply Corollary 1.6. 2

Corollary 1.8 Let 𝑄 ∈ P(𝐴), 𝑣 = 𝑣𝑄 , and 𝑃 := 𝑣𝑄𝑣−1. Then for every 𝜈 ∈ 𝔞∗
𝑄C

the
following is a commutative diagram of linear maps. All appearing maps are linear
isomorphisms between finite dimensional spaces.

𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒
𝑅𝑣−→ 𝐶−∞(𝐺/𝑃 : 𝑣𝜎 : 𝑣𝜈)𝜒

↓ ev𝑣 ↓ ev𝑒

𝐻−∞𝜎,𝜒𝑄
=−→ 𝐻−∞𝑣𝜎,𝜒𝑃

Proof. Fix 𝜈 ∈ 𝔞∗
𝑄C
. It follows from the arguments of the above lemma that for

𝜑 ∈ 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 we have ev𝑒𝑅𝑣𝜑 = 𝜑(𝑣) = ev𝑣𝜑. Hence the diagram
commutes. It follows from [2, Cor. 14.5] that the vertical map on the right is a linear
isomorphism of finite dimensional linear spaces. Clearly the horizontal maps are linear
isomorphisms. Therefore, the vertical map on the left is a linear isomorphism. Since
the linear spaces on the right are finite dimensional, all appearing spaces are. 2

We agree to write ev𝑄 for the evaluation map

ev𝑣𝑄 : 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 → 𝐻−∞𝜎,𝜒𝑄

appearing in the left column of the diagram of Corollary 1.8. The above definition
depends on our choice of 𝑣𝑄 ∈ 𝑁𝐾 (𝔞). Any alternative choice 𝑣 ∈ 𝑁𝐾 (𝔞) must satisfy
𝑣𝑄𝑣−1 = 𝑃 or, equivalently, 𝑣 = 𝑣𝑄𝑢 with 𝑢 ∈ 𝑁𝐾𝑄

(𝔞). The following result expresses
the dependence of our definition of ev𝑄 on the choice of 𝑣𝑄 .

Lemma 1.9 Let 𝑄 ∈ P and let 𝑣 = 𝑣𝑄𝑢 with 𝑢 ∈ 𝑁𝐾𝑄
(𝔞). Then for every 𝜈 ∈ 𝔞∗

𝑄C
the

following diagram commutes

𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒

ev𝑄 ↙ ↘ ev𝑣

𝐻−∞𝜎,𝜒𝑄
𝜎(𝑢)−1

−→ 𝐻−∞𝑢𝜎,𝜒𝑄 .

The horizontal map at the bottom is given by 𝜂 ↦→ 𝜎(𝑢)−1𝜂. All maps in the diagram
are linear isomorphisms.
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Proof. Let 𝜑 ∈ 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 . Then ev𝑣 (𝜑) = 𝜑(𝑣) = 𝜑(𝑣𝑄𝑢) = 𝜎(𝑢)−1𝜑(𝑣𝑄) =
𝜎(𝑢)−1ev𝑄 (𝜑). Now ev𝑄 is a linear isomorphism and the map 𝜏 : 𝜂 ↦→ 𝜎(𝑢)−1𝜂 is
a linear automorphism of 𝐻−∞𝜎 . Hence, it suffices to show that 𝜏 maps 𝐻−∞𝜎,𝜒𝑄 onto
𝐻−∞𝑢𝜎,𝜒𝑄 . Let 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 , and suppose that 𝑛 ∈ 𝑀𝑄 ∩ 𝑣−1

𝑄
𝑁0𝑣𝑄 . Then

𝑢𝜎(𝑛) [𝜏(𝜂)] = 𝑢𝜎(𝑛) [𝜎(𝑢)−1𝜂] = 𝜎(𝑢−1𝑛)𝜂 = 𝜎(𝑢−1)𝜒𝑄 (𝑛)𝜂 = 𝜒𝑄 (𝑛)𝜏(𝜂),

so that 𝜏(𝜂) ∈ 𝐻−∞𝑢𝜎,𝜒𝑄 . In a similar fashion it is shown that 𝜏−1(𝐻−∞𝑢𝜎,𝜒𝑄 ) ⊂ 𝐻
−∞
𝜎,𝜒𝑄

. 2

Definition 1.10 Let 𝑄 ∈ P . For each 𝜈 ∈ 𝔞∗
𝑄C

the map

𝑗 (𝑄, 𝜎, 𝜈) : 𝐻−∞𝜎,𝜒𝑄 → 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒

is defined to be the inverse of ev𝑄 := ev𝑣𝑄 : 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 → 𝐻−∞𝜎,𝜒𝑄 .

Corollary 1.11 Let 𝑄 ∈ P, and put 𝑣 = 𝑣𝑄 and 𝑃 := 𝑣𝑄𝑣−1. Then 𝑃 ∈ P̄st. For every
𝜈 ∈ 𝔞∗

𝑄C
, the following is a commutative diagram of linear maps.

𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒
𝑅𝑣−→ 𝐶−∞(𝐺/𝑃 : 𝑣𝜎 : 𝑣𝜈)𝜒

↑ 𝑗 (𝑄,𝜎,𝜈) ↑ 𝑗 (𝑃,𝑣𝜎,𝑣𝜈)
𝐻−∞𝜎,𝜒𝑄

=−→ 𝐻−∞𝑣𝜎,𝜒𝑃

All maps are linear isomorphisms of finite dimensional spaces.

Proof. This is immediate from Cor. 1.8. 2

We chose a non-degenerate Ad(𝐺)-invariant symmetric bilinear form

𝐵 : 𝔤 × 𝔤→ R (1.6)

as in [2, (2.1)] and define an Ad(𝐾) positive definite inner product on 𝔤 by ⟨𝑋 , 𝑌⟩ :=
−𝐵(𝑋, 𝜃𝑌 ). For 𝑄 ∈ P and 𝑅 > 0 we put

𝔞∗(𝑄, 𝑅) = {𝜈 ∈ 𝔞∗𝑄C | ⟨Re 𝜈 , 𝛼⟩ > 𝑅 (∀𝛼 ∈ Σ(𝔫𝑄 , 𝔞𝑄))}. (1.7)

Note that for 𝑤 ∈ 𝑁𝐾 (𝔞) we have 𝑤𝔞∗(𝑄, 𝑅) = 𝔞∗(𝑤𝑄𝑤−1, 𝑅).

Corollary 1.12 Let 𝑄 ∈ P, 𝜎 ∈ 𝑀𝑄,ds and 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 . For every 𝑅 ∈ R there exists
a positive integer 𝑠 such that the assignment 𝜈 ↦→ 𝑗 (𝑄, 𝜎, 𝜈) is holomorphic as a map
𝔞∗(𝑄̄, 𝑅) → 𝐶−𝑠 (𝐾/𝐾𝑄 : 𝜎𝑄).

Proof. If 𝑄 is opposite standard , this follows from [2, Lemma 14.3]. For general
𝑄 ∈ P we observe that it follows from Cor. 1.11 that for a fixed 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 we have
𝑗 (𝑄, 𝜎, 𝜈)𝜂 = 𝑅𝑣−1 ◦ 𝑗 (𝑃, 𝑣𝜎, 𝑣𝜈) for all 𝜈 ∈ 𝔞∗

𝑄C
. Now 𝑅𝑣−1 restricts to a continuous

linear map 𝐶−∞(𝐾 : 𝑣𝜎) → 𝐶−∞(𝐾 : 𝜎), independent of 𝜈. Therefore, the required
result follows from the established case. 2
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Remark 1.13 If Ω ⊂ 𝔞∗
𝑄C

is a bounded open subset, then it follows from Cor. 1.12
that there exists a positive integer 𝑠 such that for all 𝜂 the assignment 𝜈 ↦→ 𝑗 (𝑄, 𝜎, 𝜈)𝜂
is holomorphic as a map Ω→ 𝐶−𝑠 (𝐾/𝐾𝑄 : 𝜎𝑄). The smallest 𝑠 with this property will
be called the order of 𝑗 (𝑄, 𝜎, · ) over Ω.

Remark 1.14 The definition of the space𝐶−𝑠 (𝐾/𝐾𝑄 : 𝜎𝑄) appearing in the preceding
statements is explained in [2, §7].

If 𝑃 ∈ P̄st we fix an arbitrary positive invariant density 𝑑𝑚̄𝑃 on 𝑀𝑃/𝑀𝑃 ∩ 𝑁0.
If 𝑄 ∈ P is conjugate to 𝑃, then 𝑣𝑄𝑄𝑣

−1
𝑄

= 𝑃 and conjugation by 𝑣𝑄 induces a
diffeomorphism from 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1

𝑄
𝑁0𝑣𝑄 onto 𝑀𝑃/𝑀𝑃 ∩ 𝑁0. The pull-back of 𝑑𝑚̄𝑃

under 𝐶𝑣𝑄 is a positive invariant density on 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄
𝑁0𝑣𝑄 which we denote by

𝑑𝑚̄𝑄 .

Lemma 1.15 Let 𝑄,𝑄′ ∈ P be 𝑁𝐾 (𝔞)-conjugate to the same opposite standard
parabolic subgroup 𝑃. Put 𝑤 = 𝑣′

𝑄
−1𝑣𝑄 . Then 𝑄′ = 𝑤𝑄𝑤−1, 𝑤(𝑀𝑄 ∩ 𝑣−1

𝑄
𝑁0𝑣𝑄)𝑤−1 =

(𝑀𝑄′ ∩ 𝑣−1
𝑄′𝑁0𝑣𝑄′) and

C∗𝑤 (𝑑𝑚̄𝑄′) = 𝑑𝑚̄𝑄 .

Proof. The first assertions are evident. By definition of 𝑤 we have C∗𝑤 = C∗𝑣𝑄C
∗−1
𝑣𝑄′

.

Hence
C∗𝑤 (𝑑𝑚̄𝑄′) = C∗𝑣𝑄 (𝑑𝑚̄𝑃) = 𝑑𝑚̄𝑄 .

2

Let 𝑄 ∈ P, 𝜎 ∈ 𝑀𝑄,ds. According to [2, Lemma 9.2] with 𝑀𝑄 in place of 𝐺, we
have the matrix coefficient map

𝜇𝜎 = 𝜇𝑄,𝜎 : 𝐻𝜎 ⊗ 𝐻−∞𝜎,𝜒𝑄 → 𝐿2(𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜒𝑄) (1.8)

given by 𝜇𝜎 (𝑧⊗𝜂) (𝑚) = ⟨𝜎(𝑚)−1𝑧 , 𝜂⟩, for 𝑧 ∈ 𝐻∞𝜎 , 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 and𝑚 ∈ 𝑀𝑄 .Here the
𝐿2-norm is defined with respect to the invariant measure 𝑑𝑚̄𝑄 on 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1

𝑄
𝑁0𝑣𝑄 .

From [2, Cor. 9.5] it follows that the finite dimensional space 𝐻−∞𝜎,𝜒𝑄 carries a
unique inner product such that the map (1.8) is an isometric linear map onto a closed
subspace, which we denote by

𝐿2(𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜒𝑄)𝜎 .

Definition 1.16 Let 𝑄 ∈ P and 𝜎 ∈ 𝑀𝑄,ds. From now on we assume that 𝐻−∞𝜎,𝜒𝑄 is
equipped with the unique Hermitean inner product that makes 𝜇𝑄,𝜎 isometric.

Let 𝑄′ be conjugate to 𝑄 and put 𝑤 = 𝑣−1
𝑄′ 𝑣𝑄 . Then it is readily verified that

conjugation by C−1
𝑤 defomes a diffeomorphism from 𝑀𝑄 onto from 𝑀𝑄′ , which maps

𝑀𝑄 ∩ 𝑣−1
𝑄
𝑁0𝑣𝑄 onto the similar intersection with everywhere𝑄 replaced by𝑄′. In turn

this implies that pull-back under conjugation 𝐶𝑤−1 induces an isometric isomorphism

𝐴𝑤 : 𝐿2(𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜒𝑄)𝜎 → 𝐿2(𝑀𝑄′/𝑀𝑄′ ∩ 𝑣−1

𝑄′𝑁0𝑣𝑄′ : 𝜒𝑄′)𝑤𝜎 .
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Lemma 1.17 Let 𝑄,𝑄′ ∈ P be such that 𝑤𝑄𝑤−1 = 𝑄′ for 𝑤 = 𝑣−1
𝑄′ 𝑣𝑄 . Let 𝜎 ∈ 𝑀𝑄,ds.

The linear spaces 𝐻−∞𝜎,𝜒𝑄 and 𝐻−∞𝑤𝜎,𝜒𝑄′ are equal as subspaces of 𝐻−∞𝜎 . The Her-
mitean inner products, as specified in Definition 1.16 are the same.

Proof. Put 𝑣𝑄 = 𝑣 and 𝑣′ = 𝑣𝑄′ . Then 𝑤 = 𝑣′−1𝑣. It follows from Corollary 2.6 1.6 that

𝐻−∞𝜎,𝜒𝑄 = 𝐻−∞𝑣𝜎,𝜒𝑃 = 𝐻−∞
𝑣′−1𝑣𝜎,𝜒𝑄′

= 𝐻−∞𝑤𝜎,𝜒′
𝑄
.

In view of our choices of measure, the map 𝐴𝑤 given above is an isometry. For 𝑧 ∈ 𝐻𝜎
and 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 we have that

𝐴𝑤 ◦ [𝜇𝑄,𝜎 (𝑧 ⊗ 𝜂)] (𝑚) = 𝜇𝑄,𝜎 (𝑧 ⊗ 𝜂) (𝑤−1𝑚𝑤) = 𝜇𝑄′,𝑤𝜎 (𝑤𝜎 ⊗ 𝜂) (𝑚).

The maps 𝜇𝑄,𝜎 and 𝜇𝑄′,𝑤𝜎 are unitary by definition, and we see that the identity induces
a unitary map

𝐻𝜎 ⊗ 𝐻−∞𝜎,𝜒𝑄 → 𝐻𝑤𝜎 ⊗ 𝐻−∞𝑤𝜎,𝜒𝑄′ .
Since the identity map 𝐻𝜎 → 𝐻𝑤𝜎 is unitary, we conclude that the identity map
𝐻−∞𝜎,𝜒𝑄 → 𝐻−∞𝑤𝜎,𝜒𝑄′ is unitary as well. 2

Lemma 1.18 Let𝑄 ∈ P and 𝑢 ∈ 𝑁𝐾𝑄
(𝔞). Then the map 𝜂 ↦→ 𝜎(𝑢)−1𝜂 is an isometry

from 𝐻−∞𝜎,𝜒𝑄 onto 𝐻−∞𝑢𝜎,𝜒𝑄 .

Proof. From Lemma 1.9 it follows that the linear map 𝜏 : 𝐻−∞𝜎 → 𝐻−∞𝜎 , 𝜉 ↦→ 𝜎(𝑢)−1𝜉
maps 𝐻∞𝜎,𝜒𝑄 onto 𝐻∞𝑢𝜎,𝜒𝑄 . We will finish the proof by showing that 𝜏 is isometric on
𝐻−∞𝜎,𝜒𝑄 .

For 𝑣 ∈ 𝐻∞𝜎 and 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 the matrix coefficient attached to 𝑣 ⊗ 𝜂 is the function
in 𝐶∞(𝑀𝑄/𝑀𝑄 ∩ 𝑣−1

𝑄
𝑁0𝑣𝑄 : 𝜒𝑄) defined by

𝜇𝑣⊗𝜂 (𝑚) = ⟨𝜎(𝑚)−1𝑣 , 𝜂⟩, (𝑚 ∈ 𝑀𝑄).

The sesquilinear map (𝑣, 𝜂) ↦→ 𝑚𝑣⊗𝜂 induces a linear isometry from the pre-Hilbert
space 𝐻∞𝜎 ⊗ 𝐻−∞𝜎,𝜒𝑄 to 𝐿2(𝑀𝑄/𝑀𝑄 ∩ 𝑣−1

𝑄
𝑁0𝑣𝑄 : 𝜒𝑄). This implies that for all 𝑣 ∈ 𝐻∞𝜎

and 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 ,

∥𝑣∥2𝜎∥𝜂∥2𝜎,𝜒𝑄 =

∫
𝑀𝑄/𝑀𝑄∩𝑣−1

𝑄
𝑁0𝑣𝑄

|𝜇𝑣⊗𝜂 (𝑚) |2 𝑑𝑚̄𝑄 . (1.9)

The representation 𝑢𝜎 of 𝑀𝑄 defined by 𝑢𝜎(𝑚) = 𝜎(𝑢−1𝑚𝑢) is irreducible unitary
and belongs to the discrete series of 𝑀𝑄 again. We write 𝐻𝑢𝜎 for the Hilbert space
𝐻𝜎 equipped with the representation 𝑢𝜎 and will discuss the induced inner product
on 𝐻−∞𝑢𝜎,𝜒𝑄 . The identity map is unitary from 𝐻𝜎 to 𝐻𝑢𝜎 . If 𝑣 ∈ 𝐻∞𝜎 , then 𝑣 ∈ 𝐻∞𝑢𝜎 . If
𝜂′ ∈ 𝐻−∞𝑢𝜎,𝜒𝑄 then the associated matrix coefficient 𝜇′

𝑣⊗𝜂′ is given by

𝜇′𝑣⊗𝜂′ (𝑚) = ⟨[𝑢𝜎] (𝑚)−1𝑣 , 𝜂′⟩ = ⟨𝜎(𝑢−1)𝜎(𝑚−1)𝜎(𝑢)𝑣 , 𝜂′⟩ = 𝜇𝑣⊗𝜎(𝑢)𝜂′ (𝑢−1𝑚).
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Substituting 𝜂′ = 𝜏(𝜂) we find that

𝜇′
𝑣⊗𝜏(𝜂) (𝑚) = 𝜇𝑣⊗𝜂 (𝑢−1𝑚).

Using the analogue of (1.9) for 𝑢𝜎 and 𝜇′, combined with the left invariance of the
measure 𝑑𝑚̄𝑄 , we infer that

∥𝜏(𝜂)∥2𝑢𝜎,𝜒𝑄 = ∥𝜂∥2𝜎,𝜒𝑄 , (𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 ).

Hence, 𝜏 is isometric as stated. 2

In [2] the Whittaker integral Wh(𝑃, · ) for 𝑃 ∈ Pst is expressed in terms of ma-
trix coefficients involving 𝑗 (𝑃̄, · ). Guided by this definition we will now use matrix
coefficients involving 𝑗 (𝑄̄, · ) to define the notion of Whittaker integral Wh(𝑄, · ), for
𝑄 ∈ P arbitrary.

As in [2, §9], which in turn relies on Harish-Chandra [6, Lemmas 7.1,9.1] we aim
at defining a linear isomorphism

𝑇 ↦→ 𝜓𝑇 , 𝐶
∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) ⊗ 𝐻−∞𝜎,𝜒𝑄 → 𝐿2(𝜏𝑄 : 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1

𝑄 𝑁0𝑣𝑄 : 𝜒𝑄)𝜎 .

Here 𝜎 ∈ 𝑀𝑄,ds and 𝜎𝑄 denotes the restriction of 𝜎 to 𝐾𝑄 . Furthermore, (𝜏,𝑉𝜏) is
a finite dimensional unitary representation of 𝐾 and 𝜏𝑄 denotes the restriction of 𝜏 to
𝐾𝑄 = 𝐾 ∩ 𝑀𝑄 .

We define the space of spherical functions

𝐿2(𝜏𝑄 : 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜒𝑄) (1.10)

to be the subspace of 𝐾𝑄-fixed elements in 𝐿2(𝑀𝑄/𝑀𝑄∩ 𝑣−1
𝑄
𝑁0𝑣𝑄 : 𝜒𝑄) ⊗𝑉𝜏 . Viewing

(1.10) naturally as a space of functions 𝑀𝑄 → 𝑉𝜏 we shall express the spherical
behavior of its functions by 𝑓 (𝑘𝑚) = 𝜏(𝑘) 𝑓 (𝑚), for 𝑚 ∈ 𝑀𝑄 and 𝑘 ∈ 𝐾𝑄 . The
space is equipped with the restriction of the tensor product Hilbert structure, and thus
is a Hilbert space of its own right. The space of functions in (1.10) which belong
to 𝐿2(𝑀𝑄/𝑀𝑄 ∩ 𝑣−1

𝑄
𝑁0𝑣𝑄 : 𝜒𝑄)𝜎 ⊗ 𝑉𝜏 is indicated by the subscript 𝜎 on the right.

Since only finitely many representations of the discrete series of 𝑀𝑄 have a 𝐾𝑄-type in
common with 𝜏𝑄 , it follows that

𝐿2(𝜏𝑄 : 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜒𝑄) =

⊕
𝜎∈𝑀𝑄,ds

𝐿2(𝜏𝑄 : 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜒𝑄)𝜎

is finite dimensonal. In particular the (orthogonal) sum over the 𝜎 is finite. From this
it also follows that

𝐿2(𝜏𝑄 : 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄 𝑁0𝑣𝑄 : 𝜒𝑄) = C(𝜏𝑄 : 𝑀𝑄/𝑀𝑄 ∩ 𝑣−1

𝑄 𝑁0𝑣𝑄 : 𝜒𝑄),

where the definition of the space on the right is obvious. By finite dimensionality, the
center ℨ𝑄 of 𝑈 (𝔪𝑄) acts finitely on the space on the right. For this reason, that space
is also denoted by A2,𝑄̄ .
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The subspace C(𝑀𝑄/𝑀𝑄 ∩ 𝑣−1
𝑄
𝑁0𝑣𝑄 : 𝜒𝑄)𝜎 ⊗𝑉𝜏 ∩A2,𝑄̄ is denoted byA2,𝑄̄,𝜎 . We

have the finite orthogonal direct sum

A2,𝑄̄ = ⊕
𝜎∈𝑀𝑄,ds

A2,𝑄̄,𝜎 .

After these preparations we define, for 𝜑 ∈ 𝐶∞(𝜏𝑄 : 𝐾/𝐾𝑄 : 𝜎𝑄) and 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄
the function 𝜓𝜑⊗𝜂 : 𝑀𝑄 → 𝑉𝜏 by

𝜓𝜑⊗𝜂 (𝑚) = ⟨(𝜎(𝑚−1) ⊗ 𝐼)𝜑(𝑒) , 𝜂⟩𝜎,1, (𝑚 ∈ 𝑀𝑄),

where the sesquilinear pairing ⟨ · , · ⟩𝜎,1 : (𝐻𝜎 ⊗ 𝑉𝜏) × 𝐻−∞𝜎,𝜒𝑄 → 𝑉𝜏 is given by
⟨𝑧 ⊗ 𝑣 , 𝜂⟩𝜎,1 = ⟨𝑧 , 𝜂⟩𝜎𝑣.

Lemma 1.19 The map (𝜑, 𝜂) ↦→ 𝜓𝜑⊗𝜂 induces an isometric linear isomorphism
𝑇 ↦→ 𝜓𝑇 from 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) ⊗ 𝐻−∞𝜎,𝜒𝑄 onto A2,𝑄̄,𝜎 .

Proof. The proof, which relies on an application of Frobenius reciprocity, is identical
to the proof for the case that 𝑄 = 𝑃 ∈ Pst, in [2, Lemma 9.8]. 2

Finally, we are prepared to define the Whittaker integral associated with 𝑄 ∈ P .

Definition 1.20 Let 𝑄 ∈ P . The Whittaker integral Wh(𝑄, 𝜓, 𝜈), for 𝜓 ∈ A2,𝑄 and
for generic 𝜈 ∈ 𝔞∗

𝑄C
is defined to be the function in 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) determined by

the following requirements.

(a) Wh(𝑄, 𝜓, 𝜈) depends linearly on 𝜓 ∈ A2,𝑄;

(b) for 𝜎 ∈ 𝑀𝑄,ds and 𝑇 = 𝜑 ⊗ 𝜂 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) ⊗ 𝐻−∞𝜎,𝜒𝑄̄ , we have

Wh(𝑄, 𝜓𝑇 , 𝜈) (𝑥) = ⟨𝜋𝑄̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝑗 (𝑄̄, 𝜎, 𝜈̄)𝜂⟩, (𝑥 ∈ 𝑀𝑄).

We retain our assumption that𝑄 ∈ P, 𝜎 ∈ 𝑀𝑄,ds and put 𝑣 = 𝑣
𝑄
. Then 𝑃 := 𝑣𝑄𝑣−1

is the unique standard parabolic subgroup which is conjugate to 𝑄. The Whittaker
integral Wh(𝑄) can now be expressed in terms of Wh(𝑃).

Lemma 1.21 There exists a unique isometric linear isomorphism R𝑄 : A2,𝑄 → A2,𝑃
such that for all 𝜎 ∈ 𝑀𝑄,ds the following is valid

(a) R𝑄 maps A2,𝑄,𝜎 onto A2,𝑃,𝑣𝜎 .

(b) for all 𝑇 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) ⊗ 𝐻−∞𝜎,𝜒𝑄̄ we have

R𝑄𝜓𝑇 = 𝜓(R𝑣⊗𝐼)𝑇 . (1.11)

Here 𝑅𝑣 : 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) → 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : (𝑣𝜎)𝑃) is the map induced by
right translation by 𝑣.
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Proof. Since A2,𝑄 decomposes as the orthogonal finite direct sum of the subspaces
A2,𝑄,𝜎 and since for each 𝜎 the map Ψ𝜎 : 𝑇 ↦→ 𝜓𝑇 is an isometry from 𝑉𝜎 := 𝐶∞(𝜏 :
𝐾/𝐾𝑄 : 𝜎𝑄) ⊗ 𝐻−∞𝜎,𝜒𝑄̄ onto A2,𝑄,𝜎, uniqueness is obvious.

For each𝜎 ∈ 𝑀𝑄,ds the map 𝑅𝑣 : 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) → 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : (𝑣𝜎)𝑃) is
induced by right translation by 𝑣, which is clearly an isometry. Furthermore, 𝐼 denotes
the identity map from 𝐻−∞𝜎,𝜒𝑄̄ to 𝐻−∞𝑣𝜎,𝜒𝑃̄ , which is an isometry by Lemma 1.19. We thus
see that 𝜎𝑅𝑣 : 𝑇 ↦→ (𝑅𝑣 ⊗ 𝐼)𝑇 is an isometry from 𝑉𝜎 onto 𝑉𝑣𝜎 . The condition on R𝑄
may now be reformulated as R𝑄 ◦Ψ𝜎 = Ψ𝑣𝜎 ◦ 𝜎𝑅𝑣 on 𝑉𝜎 . Thus, R𝑄 = Ψ𝑣𝜎 ◦ 𝜎𝑅𝑣 ◦Ψ−1

𝜎

on A2,𝑄,𝜎 . This establishes the existence. 2

Proposition 1.22 Let R𝑄 be as in Lemma 1.21. For all 𝜎 ∈ 𝑀𝑄,ds and all 𝜓 ∈ A2,𝑄,𝜎
we have

Wh(𝑄, 𝜓, 𝜈, 𝑥) = Wh(𝑃,R𝑄𝜓, 𝑣𝜈, 𝑥),
for all 𝜈 ∈ 𝔞∗

𝑄C
and 𝑥 ∈ 𝐺.

Proof. Let 𝜎 ∈ 𝑀𝑄,ds and 𝑇 = 𝜑 ⊗ 𝜂 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄̄) ⊗ 𝐻−∞𝜎,𝜒𝑄 . Then by
Definition 1.20 and Corollary 1.11 we have

Wh(𝑄, 𝜓𝑇 , 𝜈, 𝑥) = ⟨𝜋𝑄̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝑗 (𝑄̄, 𝜎, 𝜈̄, 𝜂)⟩
= ⟨𝑅𝑣𝜋𝑄̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝑗 (𝑃̄, 𝑣𝜎, 𝑣𝜈̄, 𝜂)⟩
= ⟨𝜋𝑃̄,𝑣𝜎,−𝑣𝜈 (𝑥)−1𝑅𝑣𝜑 , 𝑗 (𝑃̄, 𝑣𝜎, 𝑣𝜈̄, 𝜂)⟩
= Wh(𝑃, 𝜓(𝑅𝑣⊗𝐼)𝑇 , 𝑣𝜈, 𝑥).

The proof is completed by using (1.11). 2

Lemma 1.23 Let 𝑄 ∈ P and let 𝑣 = 𝑣𝑄̄ . Then 𝑃 = 𝑣𝑄𝑣−1 is standard. Furthermore,
for 𝜓 ∈ A2,𝑄 and 𝜈 ∈ 𝔞∗

𝑄C
such that Re ⟨𝑣𝜈 , 𝛼⟩ > 0 for all 𝛼 ∈ Σ+ we have

Wh(𝑄, 𝜓, 𝜈) (𝑥) =
∫
𝑁𝑄

[𝑣−1𝜒𝑄̄] (𝑛)−1𝜓𝑄̄,𝜎,−𝜈 (𝑥𝑣𝑛) 𝑑𝑛 (𝑥 ∈ 𝐺).

Remark 1.24 For 𝑄 standard and 𝑣 = 𝑒, we retrieve Harish-Chandra’s formula.
Proof. First of all, by Definition 1.4, 𝑣𝑄̄𝑣−1 ∈ P̄st and it follows that 𝑃 is standard. By
linearity, it suffices to consider the case that 𝜓 = 𝜓𝑇 , with 𝑇 = 𝜑 ⊗ 𝜂 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑄 :
𝜎𝑄) ⊗ 𝐻−∞𝜎,𝜒𝑄̄ , where 𝜎 ∈ 𝑀𝑄,ds. Write 𝜓−𝜈 for the function in 𝐶∞(𝜏 : 𝐺/𝑄̄ : 𝜎 : −𝜈)
given by 𝜓−𝜈 |𝐾 = 𝜓. Then

Wh(𝑄, 𝜓𝑇 , 𝜈) (𝑥) = ⟨𝜋𝑄̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝑗 (𝑄̄, 𝜎,−𝜈)𝜂⟩

=

∫
𝐾/𝐾𝑄

⟨𝜑−𝜈 (𝑥𝑘) , 𝑗 (𝑄̄, 𝜎,−𝜈, 𝜂) (𝑘)⟩ 𝑑𝑘

=

∫
𝑁𝑄

⟨𝜑−𝜈 (𝑥𝑣𝑛) , 𝑗 (𝑄̄, 𝜎,−𝜈, 𝜂)(𝑣𝑛)⟩ 𝑑𝑛

=

∫
𝑁𝑄

𝜒(𝑣𝑛𝑣−1) ⟨𝜑−𝜈 (𝑥𝑣𝑛) , 𝜂⟩ 𝑑𝑛.
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The required representation now follows from the equality

⟨𝜑−𝜈 (𝑦) , 𝜂⟩ = 𝜓𝑄̄,𝜎,−𝜈 (𝑦), (𝑦 ∈ 𝐺).

By left 𝜏-sphericality and right 𝑁̄𝑄-invariance, it suffices to prove the latter equality
for 𝑦 = 𝑚𝑎 ∈ 𝑀𝑄𝐴𝑄 . This in turn follows from

⟨𝜑−𝜈 (𝑚𝑎) , 𝜂⟩ = 𝑎𝜈+𝜌𝑄 ⟨𝜎(𝑚)−1𝜑(𝑒) , 𝜂⟩ = 𝑎𝜈+𝜌𝑄𝜓𝑇 (𝑚) = 𝜓𝑄̄,𝜎,−𝜈 (𝑚𝑎).

2

2 Interaction with the Weyl group
We assume that 𝑄 ∈ P and that 𝜎 ∈ 𝑀𝑄,ds.

Lemma 2.1 Let 𝑤 ∈ 𝑁𝐾 (𝔞), and put 𝑄′ = 𝑤𝑄𝑤−1. There exists a unique linear map

R𝑤,𝑄 : 𝐻−∞𝜎,𝜒𝑄 → 𝐻−∞𝑤𝜎,𝜒𝑄′

such that for every 𝜈 ∈ 𝔞∗
𝑄C

the following diagram commutes:

𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒
𝑅𝑤−→ 𝐶−∞(𝐺/𝑄′ : 𝑤𝜎 : 𝑤𝜈)𝜒

↓ ev𝑄 ↓ ev𝑄′

𝐻−∞𝜎,𝜒𝑄
R𝑤,𝑄−→ 𝐻−∞𝑤𝜎,𝜒𝑄′

(2.1)

The map R𝑤,𝑄 is a unitary linear isomorphism.

Proof. Uniqueness of the map follows from the fact that the remaining maps in diagram
(2.1) are linear isomorphisms. Let 𝑃 be the unique parabolic subgroup in P̄st such that
𝑄 is 𝑊 (𝔞)-conjugate to 𝑃. Let 𝑣 = 𝑣𝑄 and 𝑣′ = 𝑣𝑄′ . Then conjugation by 𝑣′𝑤 maps 𝑄
to 𝑃; hence 𝑣′𝑤 = 𝑣𝑢 for a suitable element 𝑢 ∈ 𝑁𝐾𝑄

(𝔞).
We put 𝑤′ = 𝑤𝑢−1 so that 𝑤′ = (𝑣′)−1𝑣 and observe that 𝑅𝑤 equals the composition

𝑅𝑤′𝑅𝑢, with 𝑅𝑢 : 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒 → 𝐶−∞(𝐺/𝑄 : 𝑢𝜎 : 𝑢𝜈)𝜒 and with 𝑅𝑤′ :
𝐶−∞(𝐺/𝑄 : 𝑢𝜎 : 𝑢𝜈)𝜒 → 𝐶−∞(𝐺/𝑄 : 𝑤𝜎 : 𝑤𝜈)𝜒 . If 𝑓 ∈ 𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒, then

ev𝑄𝑅𝑢 𝑓 = 𝑓 (𝑣𝑄𝑢) = 𝜎(𝑢)−1ev𝑄 ( 𝑓 ).

From Lemma 1.18 we know that 𝜏 : 𝜂 ↦→ 𝜎(𝑢)−1𝜂 defines an isometric linear isomor-
phism

𝜏 : 𝐻−∞𝜎,𝜒𝑄 → 𝐻−∞𝑢𝜎,𝜒𝑄 .
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This gives us the first square of maps in the diagram below, for every 𝜈 ∈ 𝔞∗
𝑄C
.

𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒
𝑅𝑢−→ 𝐶−∞(𝐺/𝑄 : 𝑢𝜎 : 𝜈)𝜒

𝑅𝑤′−→ 𝐶−∞(𝐺/𝑄′ : 𝑤𝜎 : 𝑤𝜈)𝜒
↓ ev𝑄 ↓ ev𝑄 ↓ ev𝑄′

𝐻−∞𝜎,𝜒𝑄
𝜏−→ 𝐻−∞𝑢𝜎,𝜒𝑄

R𝑤′ ,𝑄−→ 𝐻−∞𝑤𝜎,𝜒𝑄′ .
(2.2)

To understand the second square of maps, let 𝑔 ∈ 𝐶−∞(𝐺/𝑄 : 𝑢𝜎 : 𝑢𝜈)𝜒 . Then
ev𝑄′ (𝑅𝑤′𝑔) = 𝑔(𝑣′𝑤′) = 𝑔(𝑣) = ev𝑄 (𝑔). Since 𝑤′ = 𝑣′−1𝑣, it follows from Lemma
1.17 that there is a unique linear isomorphism R𝑤′,𝑄 from 𝐻−∞𝑢𝜎,𝜒𝑄 onto 𝐻−∞𝑤𝜎,𝜒𝑄′ , which
makes the second square of maps commutative. Furthermore, R𝑤′,𝑄 is isometric.

The map 𝑅𝑤,𝑄 := 𝑅𝑤′,𝑄 ◦ 𝜏 makes the diagram (2.1) commutative, and is the
composition of two isometries, hence an isometry of its own right. 2

Corollary 2.2 Let 𝑄 ∈ P, 𝑤 ∈ 𝑁𝐾 (𝔞) and let R𝑤,𝑄 : 𝐻−∞𝜎,𝜒𝑄 → 𝐻−∞𝑤𝜎,𝜒
𝑤𝑄𝑤−1 be the

isometry of Lemma 2.1. The following diagram commutes for every 𝜈 ∈ 𝔞∗
𝑄C

:

𝐶−∞(𝐺/𝑄 : 𝜎 : 𝜈)𝜒
𝑅𝑤−→ 𝐶−∞(𝐺/𝑤𝑄𝑤−1 : 𝑤𝜎 : 𝑤𝜈)𝜒

↑ 𝑗 (𝑄,𝜎,𝜈) ↑ 𝑗 (𝑤𝑄𝑤−1,𝑤𝜎,𝑤𝜈)

(𝐻−∞𝜎 )𝜒𝑄
R𝑤,𝑄−→ (𝐻−∞𝑤𝜎 )𝜒𝑤𝑄𝑤−1

(2.3)

The map R𝑤,𝑄 is an isometric linear isomorphism.

Before proceeding we list some properties of the standard intertwining operators
for two parabolic subgroups 𝑄 𝑗 ∈ P(𝐴) ( 𝑗 = 1, 2) with equal split components. Let
𝑄 𝑗 = 𝑀 𝑗 𝐴 𝑗𝑁 𝑗 , be their Langlands decompositions, then 𝐴1 = 𝐴2 and 𝑀1 = 𝑀2. We
denote by Σ(𝑄 𝑗 ) the set of 𝔞 𝑗 -roots in 𝔫𝑄 𝑗

. For 𝑅 ∈ R we define

𝔞∗(𝑄2 |𝑄1, 𝑅) := {𝜈 ∈ 𝔞∗𝑄1C
| ⟨Re 𝜈 , 𝛼⟩ > 𝑅 (∀𝛼 ∈ Σ(𝑄̄2) ∩ Σ(𝑄1))}. (2.4)

Fix𝜎 ∈ 𝑀1ds and 𝜈 ∈ 𝔞∗(𝑄̄2 |𝑄1, 0).Then the standard intertwining operator 𝐴(𝑄2, 𝑄1, 𝜎, 𝜈)
from 𝐶∞(𝐺/𝑄1 : 𝜎 : 𝜈) to 𝐶∞(𝐺/𝑄2 : 𝜎 : 𝜈) is given by the usual integral formula

𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) 𝑓 (𝑥) =
∫
𝑁2∩𝑁̄1

𝑓 (𝑥𝑛̄) 𝑑𝑛̄ (2.5)

for 𝑓 ∈ 𝐶∞(𝐺/𝑄1 : 𝜎 : 𝜈).
We agree to equip any nilpotent subalgebra 𝔫∗ of 𝔤 with the Riemannian inner

product obtained by restriction of the positive definite inner product −𝐵( · , 𝜃 ( · )). The
associated analytic subgroup 𝑁∗ of 𝐺 is equipped with the associated bi-invariant
unit Haar measure. As a result, for every 𝑘 ∈ 𝐾 the map 𝑛 ↦→ 𝑘𝑛𝑘−1 is measure
preserving from 𝑁∗ to 𝑘𝑁∗𝑘−1. In particular, all standard intertwining operators will
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be normalized in this way. Then for all 𝑤 ∈ 𝑁𝐾 (𝔞), all 𝜈 ∈ 𝔞∗(𝑄2 |𝑄1, 0) and all
𝑓 ∈ 𝐶∞(𝐺/𝑄1 : 𝜎 : 𝜈) we have

𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) 𝑓 = 𝑅−1
𝑤 𝐴(𝑤𝑄2𝑤

−1, 𝑤𝑄1𝑤
−1, 𝑤𝜎, 𝑤𝜈)𝑅𝑤 𝑓 . (2.6)

Indeed this follows from the integral formula (2.5) in view of the normalization of
measures specified in the above.

We shall now describe the well known meromorphic continuation of the intertwin-
ing operator in terms of the compact pictures of the induced representations, where we
exploit the topological linear isomorphism

𝐶∞(𝐺/𝑄 𝑗 : 𝜎 : 𝜈) ≃ 𝐶∞(𝐾/𝐾𝑄 𝑗
: 𝜎𝑄 𝑗

),

induced by restriction to 𝐾. By transfer under this isomorphism, the left regular repre-
sentation 𝐿 in the first space becomes a 𝜈-dependent representation 𝜋𝑄 𝑗 ,𝜎,𝜈 of 𝐺 in the
second space. The operator 𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) can now be viewed as a continuous linear
operator of Fréchet spaces 𝐶∞(𝐾/𝐾𝑄1 : 𝜎) → 𝐶∞(𝐾/𝐾𝑄2 : 𝜎). The dependence
of the intertwining operator of 𝜈 ∈ 𝔞∗1C is known to be meromorphic, by [11], with
singular locusS(𝑄2, 𝑄1, 𝜎) a locally finite union of affine root hyperplanes of the form
⟨𝜈 , 𝛼⟩ = 𝑐, with 𝛼 ∈ Σ(𝔤, 𝔞 𝑗 ) and 𝑐 ∈ R. As a result, the equality (2.6) is valid as
equality of meromorphic functions on 𝔞∗1C with values in 𝐶∞(𝐾/𝐾𝑄1 : 𝜎𝑄1).

Via the equivariant sesquilinear pairing ⟨ · , · ⟩ of the space 𝐶∞(𝑄 : 𝜎 : 𝜈) with
𝐶∞(𝑄 : 𝜎 − 𝜈̄) by integration over 𝐾/𝐾𝑄 we may embed the first space in the con-
jugate continuous linear dual of the second, denoted 𝐶−∞(𝑄 : 𝜎 : 𝜈). In view of the
formula 𝐴(𝑄1, 𝑄2, 𝜎 : −𝜈)∗ = 𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) one sees that the intertwining operator
𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) has a continuous linear extension to a continuous linear intertwining
operator 𝐶−∞(𝐺/𝑄1 : 𝜎 : 𝜈) → 𝐶−∞(𝐺/𝑄2 : 𝜎 : 𝜈) for non-singular values of 𝜈.
In [4] this extended operator is shown to depend meromorphically on 𝜈 ∈ 𝔞∗1C in the
following way, in terms of the compact picture.

Lemma 2.3 For every 𝑅 ∈ R there exists a polynomial function 𝑞 ∈ 𝑃(𝔞∗1C), with
zero set contained in S(𝑄2, 𝑄1, 𝜎), and a constant 𝑟 ∈ N such that for every positive
integer 𝑠 the assignment

𝜈 ↦→ 𝑝(𝜈)𝐴(𝑄2, 𝑄1, 𝜎, 𝜈)
defines a holomorphic function on 𝔞∗(𝑄2 |𝑄1, 𝑅) with values in the Banach space
𝐵(𝐶−𝑠, 𝐶−𝑠−𝑟) of bounded linear maps 𝐶−𝑠 (𝐾/𝑃1 : 𝜎𝐾𝑃1

) → 𝐶−𝑠−𝑟 (𝐾/𝑃2 : 𝜎𝐾𝑃2
).

By continuity and density it now readily follows that (2.6) is valid for all 𝑓 ∈
𝐶−∞(𝐺/𝑄1 : 𝜎 : 𝜈), provided 𝜈 ∈ 𝔞∗1C \ S(𝑄2, 𝑄1, 𝜎).

Corollary 2.4 Let Ω be a bounded open subset of 𝔞∗1C. Then there exists an 𝑟 ∈ N
such that for every 𝑠 ∈ N the assignment 𝜈 ↦→ 𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) defines a meromorphic
function on Ω with values in in the Banach space 𝐵(𝐶−𝑠, 𝐶−𝑠−𝑟) of bounded linear
maps 𝐶−𝑠 (𝐾/𝑃1 : 𝜎𝐾𝑃1

) → 𝐶−𝑠−𝑟 (𝐾/𝑃2 : 𝜎𝐾𝑃2
).
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Definition 2.5 The smallest 𝑟 ∈ N for which the above is valid will be called the order
(of smoothness loss) of the family 𝐴(𝑄2, 𝑄1, 𝜎, · ) over Ω.

Lemma 2.6 Let Ω ⊂ 𝔞∗
𝑄C

be open and suppose that 𝑓 : Ω → 𝐶−∞(𝐾/𝐾𝑄 : 𝜎𝑄) is a
holomorphic function such that

𝜋𝑄,𝜎,𝜈 (𝑛) 𝑓𝜈 = 𝜒(𝑛) 𝑓𝜈, (𝜈 ∈ Ω, 𝑛 ∈ 𝑁0). (2.7)

Then 𝜈 ↦→ ev𝑄 ( 𝑓𝜈) is a holomorphic function Ω→ 𝐻−∞𝜎,𝜒𝑄 .

Proof. Fix 𝜈0 ∈ Ω. Put 𝐼±∞ = 𝐶±∞(𝐾/𝐾𝑄 : 𝜎𝑄). Furthermore, put 𝑉 := 𝐻−∞𝜎,𝜒𝑄 . Then
𝑗 (𝜈) := 𝑗 (𝑄, 𝜎, 𝜈) is a linear map 𝑉 → 𝐼−∞ which depends holomorphically on 𝜈.
From ev𝑄 ◦ 𝑗 (𝜈) = id𝑉 it follows that 𝑗 (𝜈) is injective for every 𝜈 ∈ Ω.

Let 𝐸 := 𝑗 (𝜈0) (𝑉) and let 𝐸⊥ denote the annihilator of 𝐸 ⊂ 𝐼−∞ in 𝐼∞. We fix
a linear subspace 𝑊0 ⊂ 𝐼∞ which is complementary to 𝐸⊥. Then the restriction map
𝑟 : 𝐼−∞ → 𝑊′0, 𝜉 ↦→ 𝜉 |𝑊0 is continuous linear and restricts to a linear isomorphism
from 𝐸 onto𝑊′0.

Since 𝑟 is continuous linear, the function 𝐽 : 𝜈 ↦→ 𝑟 ◦ 𝑗 (𝜈) is holomorphic with
values in Hom(𝑉,𝑊′0). As 𝐽 (𝜈0) is bijective linear 𝑉 → 𝑊′0, the same is true for 𝜈
in a sufficiently small open neighborhood Ω0 ∋ 𝜈0 in Ω. Furthermore, the function
𝜈 ↦→ 𝐽 (𝜈)−1 is holomorphic on Ω0 with values in Hom(𝑊′0, 𝑉).

Let 𝑓 satisfy the hypotheses, and put 𝑎(𝜈) = ev𝑄 𝑓𝜈 . Then 𝑓𝜈 = 𝑗 (𝜈) (𝑎(𝜈)) for
𝜈 ∈ Ω. Furthermore, since 𝜈 ↦→ 𝑓𝜈 is holomorphic as a map with values in 𝐼−∞ it
follows that 𝜈 ↦→ 𝑟 ( 𝑓𝜈) = 𝑟 ◦ 𝑗 (𝜈) [𝑎(𝜈)] is holomorphic in 𝜈 with values in 𝑊′0. It
follows that 𝜈 ↦→ 𝑎(𝜈) = 𝐽 (𝜈)−1 [𝑟 ( 𝑓𝜈)] is holomorphic on Ω0 with values in𝑉. Hence,
ev𝑄 ◦ 𝑓 is a holomorphic function Ω0 → 𝑉. 2

Let 𝑄1, 𝑄2 ∈ P have equal split components: 𝔞𝑄1 = 𝔞𝑄2 . In analogy with the
theory of symmetric spaces, we define, for a regular point 𝜈 ∈ 𝔞∗

𝑄1C
of 𝐴(𝑄2, 𝑄1, 𝜎, · ),

the linear map 𝐵(𝑄2, 𝑄1, 𝜎, 𝜈) : 𝐻−∞𝜎,𝜒𝑄1
→ 𝐻−∞𝜎,𝜒𝑄2

by

𝐵(𝑄2, 𝑄1, 𝜎, 𝜈)𝜂 := ev𝑄2𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) 𝑗 (𝑄1, 𝜎, 𝜈)𝜂, (𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄1
). (2.8)

Here ev𝑄2 = ev𝑣2 , with 𝑣2 = 𝑣𝑄2 , so that 𝑣2𝑄2𝑣
−1
2 belongs to P̄st.

Lemma 2.7 Let 𝑄1, 𝑄2 ∈ P have the same split component, and let 𝜎 ∈ 𝑀𝑄1,ds.

(a) The function 𝐵(𝑄2, 𝑄1, 𝜎, · ) : 𝔞∗1C → Hom(𝐻−∞𝜎,𝜒𝑄1
, 𝐻−∞𝜎,𝜒𝑄2

) is meromorphic.

(b) For every 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄1
,

𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) 𝑗 (𝑄1, 𝜎, 𝜈)𝜂 = 𝑗 (𝑄2, 𝜎, 𝜈)𝐵(𝑄2, 𝑄1, 𝜎, 𝜈)𝜂 (2.9)

as an identity of meromorphic 𝐶−∞(𝐾/𝐾𝑄2 : 𝜎𝑄2)-valued functions of 𝜈 ∈ 𝔞∗
𝑄1C

.
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Proof. For (a), assume that 𝜈0 ∈ 𝔞∗
𝑄1C

and let Ω be a sufficiently small bounded
neighborhood of 𝜈0 in 𝔞∗

𝑄1C
. Then there exists a holomorphic function 𝜑 : 𝔞∗

𝑄1C
→ C

such that the function
𝐴̃ : 𝜈 ↦→ 𝜑(𝜈)𝐴(𝑄2, 𝑄1, 𝜎, 𝜈)

is holomorphic on Ω with values in End(𝐶−∞(𝐾/𝐾𝑄1 : 𝜎𝑄1)) in the sense that there
exists an 𝑟 > 0 such that for every 𝑘 > 0 the function 𝐴̃ defines a holomorphic func-
tion on Ω with values in the Banach space 𝐵(𝐶−𝑘 , 𝐶−𝑘−𝑟) of bounded linear operators
from 𝐶−𝑘 (𝐾/𝐾𝑄1 : 𝜎𝑄1) → 𝐶−𝑘−𝑟 (𝐾/𝐾𝑄2 : 𝜎𝑄2). Furthermore, by holomorphy of
𝑗 (𝑄1, 𝜎, · ) and boundedness of Ω, there exists 𝑠 > 0 such that 𝑗 (𝑄1, 𝜎, · ) defines
a holomorphic function Ω → 𝐵(𝐻−∞𝜎,𝜒𝑄1

, 𝐶−𝑠). Hence, 𝑓 : 𝜈 ↦→ 𝐴(𝜈) 𝑗 (𝑄1, 𝜎, 𝜈)𝜂
defines a holomorphic function on Ω with values in𝐶−𝑠−𝑟 (𝐾/𝐾𝑄2 : 𝜎𝑄2). By the trans-
formation property under 𝑁0 of 𝑗 (𝑄1, 𝜎, 𝜈)𝜂 and the equivariance of 𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) it
follows that 𝑓𝜈 satisfies the transformation property (2.7) with 𝑄 = 𝑄2. By application
of Lemma 2.4 it now follows that ev2 ◦ 𝐴(𝜈) (𝑄1, 𝜎, 𝜈) is holomorphic in 𝜈 ∈ 𝔞∗

𝑄1C
with

values in 𝐻−∞𝜎,𝜒𝑄2
. Hence 𝜈 ↦→ 𝜑(𝜈)𝐵(𝑄2, 𝑄1, 𝜎, 𝜈)𝜂 is holomorphic, and assertion (a)

follows.
The validity of (b) is checked by applying the evaluation ev𝑄2 to both sides of

the equation (2.9) and using that ev𝑄2 is a bijection from 𝐶−∞(𝐺/𝑄2 : 𝜎 : 𝜈)𝜒 onto
𝐻−∞𝜎,𝜒𝑄2

, for every 𝜈 ∈ 𝔞∗
𝑄2C
. 2

Corollary 2.8 Let 𝑤 ∈ 𝑁𝐾 (𝔞) and let 𝑄1, 𝑄2 ∈ P have common split component. Let
𝜎 ∈ 𝑀𝑄1ds. Then

R𝑤,𝑄2 ◦ 𝐵(𝑄2, 𝑄1, 𝜎, 𝜈) = 𝐵(𝑤𝑄2𝑤
−1, 𝑤𝑄1𝑤

−1, 𝑤𝜎, 𝑤𝜈) ◦R𝑤,𝑄1

as meromorphic functions of 𝜈 ∈ 𝔞∗1C with values in Hom(𝐻−∞𝜎,𝜒𝑄1
, 𝐻−∞𝜎,𝜒𝑄2

).

Proof. From (2.6) for generalized functions it follows, for generic 𝜈 ∈ 𝔞∗
𝑄1C

that

𝑅𝑤𝐴(𝑄2, 𝑄1, 𝜎, 𝜈) 𝑗 (𝑄1, 𝜎, 𝜈) = 𝐴(𝑤𝑄2𝑤
−1, 𝑤𝑄1𝑤

−1, 𝑤𝜎, 𝑤𝜈)𝑅𝑤 𝑗 (𝑄1, 𝜎, 𝜈).

Applying ev𝑤𝑄2𝑤−1 to both sides of the equation and using Lemma 2.1 and Corollary
2.2 we find the asserted equality. 2

Corollary 2.9 Let 𝑄1, 𝑄2 ∈ P have the same split component. The following state-
ments are equivalent, for any meromorphic function 𝜂 : 𝔞∗

𝑄1C
→ C and any 𝑤 ∈ 𝑁𝐾 (𝔞).

(a) 𝐵(𝑄2, 𝑄1, 𝜎,−𝜈̄)∗𝐵(𝑄2, 𝑄1, 𝜎, 𝜈) = 𝜂(𝜈)𝐼 for generic 𝜈 ∈ 𝔞∗
𝑄1C
,

(b) 𝐵(𝑤𝑄2𝑤
−1, 𝑤𝑄1𝑤

−1, 𝑤𝜎,−𝑤𝜈̄)∗𝐵(𝑤𝑄2𝑤
−1, 𝑤𝑄1𝑤

−1, 𝑤𝜎, 𝑤𝜈) = 𝜂(𝜈)𝐼 for
generic 𝜈 ∈ 𝔞∗

𝑄1C
.

Proof. Let 𝜈 ∈ 𝔞∗
𝑄1C

be a regular value for each of the finitely many functions involved.
It follows from Lemma 2.1 that R𝑤,𝑄 : 𝐻−∞𝜎,𝜒𝑄 → 𝐻−∞𝑤𝜎,𝜒

𝑤𝑄𝑤−1 is unitary. The result now
follows by a simple argument, using Corollary 2.8. 2
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3 The B-matrices, reduction arguments
Let 𝑃,𝑄 ∈ P have the same split component. Then 𝑀𝑄 = 𝑀𝑃 . If 𝜎 ∈ 𝑀𝑃,ds then
for generic 𝜈 ∈ 𝔞∗

𝑃C
the composition 𝐴(𝑃,𝑄, 𝜎, 𝜈)𝐴(𝑄, 𝑃, 𝜎, 𝜈) of standard inter-

twining operators is a self intertwining operator of Ind𝐺𝑃 (𝜎 ⊗ 𝜈 ⊗ 1). Since the latter
representation is irreducible for generic 𝜈, it follows that

𝐴(𝑃,𝑄, 𝜎, 𝜈)𝐴(𝑄, 𝑃, 𝜎, 𝜈) = 𝜂(𝑄, 𝑃, 𝜎, 𝜈)id, (𝜈 ∈ 𝔞∗𝑃C), (3.1)

for a unique meromorphic function 𝜂(𝑄, 𝑃, 𝜎, 𝜈). It is easy to see that 𝜂(𝑄, 𝑃, 𝜎, 𝜈) =
𝜂(𝑃,𝑄, 𝜎, 𝜈). Furthermore, suppressing id,

𝐴(𝑄, 𝑃, 𝜎,−𝜈̄)∗𝐴(𝑄, 𝑃, 𝜎, 𝜈) = 𝜂(𝑄, 𝑃, 𝜎, 𝜈), (𝜈 ∈ 𝔞∗𝑃C).

For this and other properties of 𝜂, we refer to [9]. In the course of this and the next
sections we will prove the following manifestation of the Maass – Selberg relations.

Theorem 3.1 Let 𝑃,𝑄 ∈ P and suppose that 𝔞𝑃 = 𝔞𝑄 . If 𝜎 ∈ 𝑀𝑃,ds, we have the
following identity of meromorphic functions 𝔞∗

𝑃C
→ End(𝐻−∞𝜎,𝜒𝑃 ) :

𝐵(𝑄, 𝑃, 𝜎,−𝜈̄)∗𝐵(𝑄, 𝑃, 𝜎, 𝜈) = 𝜂(𝑄, 𝑃, 𝜎, 𝜈), (𝜈 ∈ 𝔞∗𝑃C). (3.2)

This result will be proven in the course of the next sections, through reduction to
a basic setting where 𝐺 has compact kernel and 𝑃 is a maximal standard parabolic
subgroup.

Remark 3.2 It immediately follows from (3.1) that 𝐵(𝑃,𝑄, 𝜎, 𝜈)𝐵(𝑄, 𝑃, 𝜎, 𝜈) =

𝜂(𝑄, 𝑃, 𝜎, 𝜈). Therefore, the identity (3.2) is valid if and only if

𝐵(𝑄, 𝑃, 𝜎,−𝜈̄)∗ = 𝐵(𝑃,𝑄, 𝜎, 𝜈), (𝜈 ∈ 𝔞∗𝑃C).

Remark 3.3 Note that for a non-cuspidal parabolic subgroup 𝑃 ∈ P the group 𝑀𝑃 has
no discrete series, so that 𝑀𝑃,ds = ∅. This means that for trivial reasons the assertion
of Theorem 3.1 is automatically fulfilled for 𝑄 ∈ P with 𝔞𝑄 = 𝔞𝑃 .

We will write 𝐺 = 𝑀𝐺𝐴𝐺 for the Langlands decomposition of 𝐺, viewed as a
parabolic subgroup of𝐺. Here 𝐴𝐺 := exp 𝔞𝐺 ,where 𝔞𝐺 is the intersection of the center
of 𝔤 with 𝔭. The group 𝐺 has compact center if and only if 𝐴𝐺 = {𝑒}. The group 𝑀𝐺

is also denoted ◦𝐺 and equals the intersection of the kernels ker 𝜉 where 𝜉 runs over
the collection 𝑋 (𝐺)of multiplicative characters 𝐺 → R+. Write ◦𝐴 = 𝐴∩ ◦𝐺. Then ◦𝐺
is of the Harish-Chandra class, with Iwasawa docomposition

◦𝐺 = 𝐾 ◦𝐴𝑁0.

Let ◦P denote the finite set of parabolic subgroups of ◦𝐺 containing ◦𝐴. Then the map
𝑄 ↦→ ◦𝑄 := 𝑄 ∩ ◦𝐺 is a bijection P → ◦P, with inverse ◦𝑄 ↦→ ◦𝑄𝐴𝐺 . Note that every
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𝑣 ∈ 𝑁𝐾 (𝔞) leaves ◦𝐴 invariant. We define ◦𝑣 : ◦P → 𝑁𝐾 (◦𝐴) by ◦𝑣◦𝑄 = ◦𝑣𝑄 |◦𝐴, for
𝑄 ∈ P .

We note that for 𝑄 ∈ P, ◦𝑄 has the Langlands decomposition ◦𝑄 = 𝑀𝑄
◦𝐴𝑄𝑁𝑄 ,

where ◦𝐴𝑄 = 𝐴𝑄∩◦𝐺. Thus, if 𝑃,𝑄 ∈ P then 𝑃 and𝑄 have the same split components
as elements of P if and only if ◦𝑃 and ◦𝑄 have the same split components as elements
of ◦P .

Furthermore, if 𝑄 ∈ P, 𝑀𝑄 ⊂ ◦𝐺. Therefore, if 𝜎 ∈ 𝑀𝑄,ds, we may identify the
space 𝐻−∞𝜎,𝜒𝑄 with the similar space for the pair ◦𝐺, ◦𝑄. The same is true for the inner
products on these spaces.

Accordingly, we may define the 𝐵 matrices for ◦𝐺, denoted ◦𝐵(◦𝑄, ◦𝑃, 𝜎, 𝜇) in
the obvious fashion as endomorphisms of 𝐻−∞𝜎,𝜒𝑃 , for 𝑃,𝑄 ∈ P with 𝔞𝑃 = 𝔞𝑄 and for
𝜎 ∈ 𝑀𝑃,ds and 𝜇 ∈ ◦𝔞∗

𝑃C
. Then 𝜇 ↦→ ◦𝐵(◦𝑄, ◦𝑃, 𝜎, 𝜇) is a meromorphic function on

◦𝔞∗
𝑃C

with values in End(𝐻−∞𝜎,𝜒𝑄 ). We agree to write ◦𝜈 := 𝜈 |◦𝔞𝑃C for 𝜈 ∈ 𝔞∗
𝑃C
.

Lemma 3.4 Let notation be as in the above text. Then for generic 𝜈 ∈ 𝔞∗
𝑃C
,

(a) 𝜂(𝑄, 𝑃, 𝜎, 𝜈) = ◦𝜂(◦𝑄, ◦𝑃, 𝜎, ◦𝜈);

(b) 𝐵(𝑄, 𝑃, 𝜎, 𝜈) = ◦𝐵(◦𝑄, ◦𝑃, 𝜎, ◦𝜈).

Proof. The proof is straightforward, but a bit tedious. Details are left to the reader. 2

Corollary 3.5 The assertions of Theorem 3.1 are valid for 𝐺 if and only if they are
valid for ◦𝐺.

Let 𝑃 ∈ P . A root of 𝑃 is defined to be a non-trivial linear functional 𝛼 ∈ 𝔞𝑃
∗

such that the space 𝔤𝛼 := ∩𝐻∈𝔞𝑃 ker(ad𝐻 −𝛼(𝐻)) is contained in 𝔫𝑃 . Equivalently this
means that 𝛼 is the restriction of a root 𝛽 ∈ Σ(𝔞) with 𝔤𝛽 ⊂ 𝔫𝑃 . The set of 𝑃-roots is
denoted by Σ(𝑃). We note that 𝔞+

𝑃
is the set of points 𝐻 ∈ 𝔞𝑃 such that 𝛼(𝐻) > 0 for

all 𝛼 ∈ Σ(𝑃).
A 𝑃-root 𝛼 ∈ Σ(𝑃) is called reduced if the multiples of 𝛼 in Σ(𝑃) are all of the

form 𝑐𝛼, with 𝑐 ≥ 1.
For two parabolic subgroups 𝑃,𝑄 ∈ P with the same split component, a 𝑃-root 𝛼 is

said to separate 𝔞+
𝑃

and 𝔞+
𝑄

if the sign of 𝛼 on 𝔞𝑄 is negative, or equivalently, 𝛼 ∈ Σ(𝑄̄).
The distance 𝑑 (𝑃,𝑄) is defined to be the number of reduced 𝑃-roots that separate

𝔞+
𝑃

and 𝔞+
𝑄
. 𝑃 and 𝑄 are said to be adjacent if 𝑑 (𝑃,𝑄) = 1. Equivalently this means

that all roots in Σ(𝑃) ∩ Σ(𝑄̄) are proportional.
If 𝑃,𝑄 have the same split component and are different, then there is a parabolic

subgroup 𝑅 ∈ P with split component 𝔞𝑅 = 𝔞𝑃 such that 𝑃 and 𝑅 are adjacent, and
𝑑 (𝑅,𝑄) < 𝑑 (𝑃, 𝑅). It is well known, see e.g. [9, Cor. 7.7], that for 𝜎 ∈ 𝑀𝑃,ds one has
in this case that

𝐴(𝑄, 𝑃, 𝜎, 𝜈) = 𝐴(𝑄, 𝑅, 𝜎, 𝜈)𝐴(𝑅, 𝑃, 𝜎, 𝜈), (3.3)

for generic 𝜈 ∈ 𝔞∗
𝑃C
.
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Lemma 3.6 In the above setting, 𝐵(𝑄, 𝑃, 𝜎, 𝜈) = 𝐵(𝑄, 𝑅, 𝜎, 𝜈)𝐵(𝑅, 𝑃, 𝜎, 𝜈).

Proof. This follows from 3.3 by application of Lemma 2.7 and (2.8). 2

Lemma 3.7 If the identity of Thm. 3.1 holds for all adjacent 𝑄, 𝑃 ∈ P then it holds
for all 𝑄, 𝑃 ∈ P with 𝔞𝑃 = 𝔞𝑄 .

Proof. We assume that 𝐺 is fixed and that the identity of Thm. 3.1 holds for all
𝑃,𝑄 ∈ P with 𝑑 (𝑃,𝑄) = 1. Arguing by induction on 𝑑 (𝑃,𝑄) we will show that the
identity holds for all 𝑃,𝑄 with the same split component.

Let 𝑘 ≥ 1 and suppose that the identity holds for 𝑃,𝑄 ∈ P with 𝑑 (𝑃,𝑄) ≤ 𝑘.

Assume now that 𝑑 (𝑃,𝑄) = 𝑘 + 1. Then there exists 𝑅 as in the text leading to (3.3).
By induction we know that

𝐵(𝑄, 𝑅, 𝜎,−𝜈̄)∗𝐵(𝑄, 𝑅, 𝜎, 𝜈) = 𝜂(𝑄, 𝑅, 𝜎, 𝜈).

Therefore,

𝐵(𝑄, 𝑃, 𝜎,−𝜈̄)∗𝐵(𝑄, 𝑃, 𝜎, 𝜈) =
= 𝐵(𝑅, 𝑃, 𝜎,−𝜈̄)∗𝐵(𝑄, 𝑅, 𝜎,−𝜈̄)∗ ◦ 𝐵(𝑄, 𝑅, 𝜎, 𝜈)𝐵(𝑅, 𝑃, 𝜎, 𝜈)
= 𝐵(𝑅, 𝑃, 𝜎,−𝜈̄)∗𝜂(𝑄, 𝑅, 𝜎, 𝜈)𝐵(𝑅, 𝑃, 𝜎, 𝜈)
= 𝜂(𝑄, 𝑅, 𝜎, 𝜈) · 𝐵(𝑅, 𝑃, 𝜎,−𝜈̄)∗𝐵(𝑅, 𝑃, 𝜎, 𝜈).

Since 𝑑 (𝑃, 𝑅) = 1, the expression on the last entry of the array equals the product
𝜂(𝑄, 𝑅, 𝜎, 𝜈)𝜂(𝑅, 𝑃, 𝜎, 𝜈). In turn, as a consequence of (3.3), this product equals
𝜂(𝑄, 𝑃, 𝜎, 𝜈). 2

Lemma 3.8 Suppose the identify of Theorem 3.1 holds for𝐺, 𝑃,𝑄, 𝜎 and all 𝜈 ∈ 𝔞∗
𝑃C
.

If 𝑣 ∈ 𝑁𝐾 (𝔞), then the identity of the theorem also holds with 𝐺, 𝑣𝑃𝑣−1, 𝑣𝑄𝑣−1, 𝑣𝜎 in
place of 𝐺, 𝑃,𝑄, 𝜎 respectively, and all 𝜈 ∈ 𝑣𝔞∗

𝑃C
.

Proof. Let the hypothesis be fulfilled, then it suffices to prove the following identity
for all 𝜈 ∈ 𝔞∗

𝑃C
,

𝐵(𝑣𝑄𝑣−1, 𝑣𝑃𝑣−1, 𝑣𝜎,−𝑣𝜈̄)∗𝐵(𝑣𝑄𝑣−1, 𝑣𝑃𝑣−1, 𝑣𝜎, 𝑣𝜈) = 𝜂(𝑣𝑄𝑣−1, 𝑣𝑃𝑣−1, 𝑣𝜎, 𝑣𝜈).
(3.4)

Using Cor. 2.8 and the unitarity of 𝑅𝑣,𝑄 and 𝑅𝑣,𝑃 we may rewrite the expression on the
left-hand side of 3.4 as

𝑅∗𝑣,𝑃𝐵(𝑄, 𝑃, 𝜎,−𝜈̄)∗𝑅∗𝑣,𝑄𝑅𝑣,𝑄𝐵(𝑄, 𝑃, 𝜎, 𝜈)𝑅𝑣,𝑃 =

= 𝑅∗𝑣,𝑃𝐵(𝑄, 𝑃, 𝜎,−𝜈̄)∗𝐵(𝑄, 𝑃, 𝜎, 𝜈)𝑅𝑣,𝑃
= 𝜂(𝑄, 𝑃, 𝜎, 𝜈).

The result now follows from the observation that 𝜂(𝑣𝑄𝑣−1, 𝑣𝑃𝑣−1, 𝑣𝜎, 𝑣𝜈) = 𝜂(𝑄, 𝑃, 𝜎, 𝜈),
in view of (2.6) and the definition of 𝜂(𝑄, 𝑃, 𝜎, 𝜈). 2
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4 Reduction to maximal parabolic subgroups
In this section we will discuss a method that will allow reduction of the proof of the
Maass-Selberg relations to those for maximal parabolic subgroups of lower dimensional
groups of the Harish-Chandra class.

To prepare for this, we will first discuss well known aspects of the structure of
parabolic subgroups. We briefly write Σ(𝔞) := Σ(𝔤, 𝔞). If 𝑃 is a parabolic subgroup
of 𝐺, we denote its Langlands decomposition by 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 . The collection of
𝔞𝑃-roots in 𝔫𝑃 is defined as in the text below Cor. 3.5 and denoted by Σ(𝑃).

The positive chamber 𝔞+
𝑃

consists of the points 𝑋 ∈ 𝔞𝑃 such that 𝛼(𝑋) > 0 for all
𝛼 ∈ Σ(𝑃).

Given a point 𝑋 ∈ 𝔞 we put

Σ+(𝔞, 𝑋) := {𝛼 ∈ Σ(𝔞) | 𝛼(𝑋) > 0}.

We note that for a root 𝛼 ∈ Σ(𝔞), one has 𝛼(𝑋) < 0 ⇐⇒ −𝛼 ∈ Σ+(𝔞, 𝑋) and
𝛼(𝑋) = 0 iff ±𝛼 ∉ Σ+(𝔞, 𝑋).

We define the equivalence relation ∼ on 𝔞 by

𝑋 ∼ 𝑌 ⇐⇒ Σ+(𝔞, 𝑋) = Σ+(𝔞, 𝑌 ), (𝑋,𝑌 ∈ 𝔞). (4.1)

For 𝑋 ∈ 𝔞 we define the subspace 𝔭𝑋 = 𝔪𝑋 ⊕ 𝔞𝑋 ⊕ 𝔫𝑋 of 𝔤 by

𝔭𝑋 = 𝔪 + 𝔞 + ⊕𝛼∈Σ+ (𝔞,𝑋) 𝔤𝛼 . (4.2)

Then, clearly, 𝔭𝑋 = 𝔭𝑌 ⇐⇒ 𝑋 ∼ 𝑌 .
Suppose now that Σ+ is a positive system for Σ(𝔞) and 𝔞+ the associated open

positive chamber in 𝔞. If 𝑋 ∈ cl(𝔞+) then one readily verifies that 𝔭𝑋 = 𝔪𝑋 ⊕ 𝔞𝑋 ⊕ 𝔫𝑋
is the standard parabolic subalgebra 𝔭𝐹 with 𝐹 the collection of simple roots in Σ+

vanishing on 𝑋. The indicated Langlands decomposition is determined by

𝔪𝑋 = ◦𝔷𝔤 (𝑋), 𝔞+𝑋 = [𝑋], 𝔫𝑋 = ⊕𝛼∈Σ+ (𝔞,𝑋) 𝔤𝛼,

where [𝑋] denotes the class of 𝑋 for the equivalence relation ∼ . Write spec(𝑋) for
the spectrum of ad(𝑋) ∈ End(𝔤), and spec(𝑋)+ for its positive part. Then it is readily
checked that

𝔭𝑋 = ker ad(𝑋) + ⊕𝜆∈spec(𝑋)+ ker(ad(𝑋) − 𝜆𝐼).
By using Ad(𝐾) conjugacy, we see that this definition gives a parabolic subalgebra of
𝔤 for any 𝑋 ∈ 𝔤 with 𝜃 (𝑋) = −𝑋. Furthermore, its Langlands components are given by

𝔪𝑋 + 𝔞𝑋 = 𝔷𝔤 (𝑋), 𝔫𝑋 = ⊕𝜆>0 ker (ad(𝑋) − 𝜆𝐼).

As usual, the parabolic subgroup with algebra 𝔭𝑋 is defined by 𝑃𝑋 := 𝑁𝐺 (𝔭𝑋). Its
Langlands components are given by

𝑀𝑋 = ◦𝑍𝐺 (𝑋), 𝐴𝑋 = exp(𝔞𝑋), 𝑁𝑋 = exp(𝔫𝑋).

The following lemma will be used repeatedly in the sequel.
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Lemma 4.1 If 𝔟 is an abelian subspace of 𝔰 and 𝑋 ∈ 𝔟 then for each 𝜆 ∈ spec(𝑋) the
associated eigenspace ker(ad(𝑋) − 𝜆) in 𝔤 equals the direct sum of the ad(𝔟)-weight
spaces 𝔤𝛽 for 𝛽 ∈ Σ(𝔟) ∪ {0} with 𝛽(𝑋) = 𝜆.

Proof. For each 𝑋 ∈ 𝔰, the endomorphism ad𝑋 of 𝔤 is symmetric with respect to
the inner product ⟨ · , · ⟩ hence semisimple with real eigenvalues. The proof is now
straightforward. 2

Let 𝑃 ∈ P have split component 𝔞𝑃 . The complement of the union of the finitely
many hyperplanes ker 𝛽 with 𝛽 ∈ Σ(𝔤, 𝔞𝑃) consists of finitely many convex polyhe-
dral components, called the chambers of 𝔞𝑃 . These chambers are readily seen to be
equivalence classes for the equivalence relation ∼ given by (4.1). For each chamber
[𝑌 ] the associated parabolic subgroup 𝑃[𝑌 ] := 𝑃𝑌 has split component 𝔞𝑃 and positive
chamber 𝔞+

𝑃[𝑌 ]
= [𝑌 ] . Conversely, for each parabolic subgroup 𝑄 with split component

𝔞𝑄 = 𝔞𝑃 the positive chamber 𝔞+
𝑄

is a chamber in 𝔞𝑃 .

Two parabolic subgroups 𝑃,𝑄 ∈ P with the same split components are said to be
adjacent if their positive chambers are separated by precisely one hyperplane from the
collection of hyperplanes ker𝛼 ⊂ 𝔞𝑃 for 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃). A root 𝛽 ∈ Σ(𝔤, 𝔞𝑃) is said to
be reduced iff all its real multiples in Σ(𝔤, 𝔞𝑃) are of the form 𝑐𝛽 with |𝑐 | ≥ 1. Thus, 𝑃
and 𝑄 are adjacent if there is a unique reduced 𝔞𝑃-root 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) such that 𝛼 < 0
on 𝔞+

𝑄
. Note that −𝛼 is the unique reduced root in Σ(𝔫𝑄 , 𝔞𝑄) which is negative on 𝔞𝑃 .

In this situation it is easy to see that

𝔫𝑃 ∩ 𝔫̄𝑄 = 𝔫𝛼 := ⊕𝑐≥1 𝔤𝑐𝛼, (4.3)

where the summation is over the real 𝑐 ≥ 1 such that 𝑐𝛼 is a root of 𝔞𝑃 . We note that
the reduced root 𝛼 has the property that ker𝛼∩ cl(𝔞+

𝑃
) has non-empty interior in ker𝛼.

Conversely if such a reduced root 𝛼 is given, then there is a unique parabolic subgroup
𝑄 with split component 𝔞𝑃 that is adjacent to 𝑃. It is determined by the requirement
that (4.3).

Let 𝑃 ∈ P .We assume that 𝑃 is not maximal and fix a reduced root 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃)
such that ker𝛼 ∩ cl(𝔞+

𝑃
) has non-empty interior as a subset of the hyperplane ker𝛼 in

𝔞𝑃 . A point 𝑋 in this interior will be called (𝑃, 𝛼)-regular if it has the property that for
all 𝛽 ∈ Σ(𝔤, 𝔞𝑃),

𝛽(𝑋) = 0⇒ 𝛽 |ker𝛼 = 0.
As we explained, the pair (𝑃, 𝛼) uniquely determines an adjacent 𝑄. A point 𝑋 in the
interior of ker𝛼∩ cl(𝔞+

𝑃
) = ker𝛼∩ cl(𝔞+

𝑄
) is (𝑃, 𝛼)-regular if and only if it is (𝑄,−𝛼)-

regular. We may select a (𝑃, 𝛼)-regular point 𝑋 in the interior of ker𝛼 ∩ cl(𝔞+
𝑃
). We

fix such an 𝑋 and define the parabolic subalgebra 𝔭𝑋 as in (4.2). The corresponding
parabolic subgroup 𝑁𝐺 (𝔭𝑋) has the Levi decomposition𝑀1𝑋𝑁𝑋 .We put𝐺 (𝛼) := 𝑀1𝑋 ,
ignoring the precise dependence on the choice of the (𝑃, 𝛼)-generic element 𝑋.

Lemma 4.2 The Lie algebra of 𝐺 (𝛼) is given by

𝔤(𝛼) = 𝔫̄𝛼 ⊕ 𝔪1𝑃 ⊕ 𝔫𝛼 . (4.4)
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Proof. By Lemma 4.1, 𝔤(𝛼) = 𝔪1𝑋 = ⊕𝛽 𝔤𝛽 where the sum is taken over the
𝛽 ∈ Σ(𝔞𝑃) ∪ {0} for which either (a): 𝛽 |𝔞𝑃 = 0 or (b): 𝛽 |𝔞𝑃 ≠ 0 and 𝛽(𝑋) = 0.
Condition (a) is equivalent to 𝔤𝛽 ⊂ 𝔪1𝑃 . Condition (b) is equivalent to 𝛽 |ker𝛼 = 0
which in turn is equivalent to 𝛽 = 𝑐𝛼 for a constant 𝑐 ∈ R. The validity of (4.4) follows.
2

Lemma 4.3 𝔫𝑃 = 𝔫𝛼 ⊕ 𝔫𝑋 .

Proof. 𝔫𝑃 is the direct sum of the weight spaces 𝔤𝛽 for 𝛽 ∈ Σ(𝔞𝑃) ∪ {0} such that
𝛽 |𝔞+

𝑃
> 0. This collection of 𝛽 splits into (a) those such that 𝛽(𝑋) > 0 and (b) those

such that 𝛽(𝑋) = 0 and 𝛽 |𝔞+
𝑃
> 0. The terms satisfying (a) are contained in 𝔫𝑋 , those

satisfying (b) satisfy 𝛽 |ker𝛼 = 0 and 𝛽 ≠ 0 hence 𝛽 = 𝑐𝛼 for 𝑐 > 0. It follows that
𝔫𝑃 ⊂ 𝔫𝛼 ⊕ 𝔫𝑋 . Conversely, 𝔫𝑋 is the direct sum of the spaces 𝔤𝛽 with 𝛽(𝑋) > 0. The
latter condition implies 𝛽 > 0 on 𝔞+

𝑃
hence 𝔤𝛽 ∈ 𝔫𝑃 . We see that 𝔫𝑋 ⊂ 𝔫𝑃 . Finally,

𝔫𝛼 is the sum of the root spaces 𝔤𝑐𝛼 with 𝑐 ≥ 1. Since 𝛼 > 0 on 𝔞+
𝑃
, it follows that

𝔫𝛼 ⊂ 𝔫𝑃 . This proves the required identity. 2

Lemma 4.4 𝔭 ⊂ 𝔭𝑋 .

Proof. 𝔭 is the direct sum of the spaces 𝔤𝛽 were 𝛽 ∈ Σ(𝔞) ∪ {0} is such that 𝛽 ≥ 0 on
𝔞+
𝑃
. For all such 𝛽 one has 𝛽(𝑋) ≥ 0 so that 𝔤𝛽 ⊂ 𝔭𝑋 . 2

From 𝔭 ⊂ 𝔭𝑋 it follows that

𝑃(𝛼) := 𝑃 ∩ 𝑀1𝑋 = 𝑃 ∩ 𝐺 (𝛼)

is a parabolic subgroup of 𝐺 (𝛼) with Langlands decomposition

𝑃(𝛼) = 𝑀𝑃𝐴𝑃𝑁𝛼,

The centralizer of 𝐺 (𝛼) in 𝔞𝑃 equals ker𝛼, which has codimension 1. From this we see
that 𝑃(𝛼) is a maximal parabolic subgroup of 𝐺 (𝛼) .

Let now 𝑄 be the adjacent parabolic subgroup determined by the pair (𝑃, 𝛼). Then
𝑋 is (𝑄,−𝛼) generic, and it follows from an easy adaptation of the proof of Lemma
4.3 that

𝔫𝑄 = 𝔫̄𝛼 + 𝔫𝑋 , (4.5)

and that 𝑄 (𝛼) = 𝑄 ∩𝐺 (𝛼) is a parabolic subgroup of 𝐺 (𝛼) , with the Langlands decom-
position

𝑄 (𝛼) = 𝑀𝑃𝐴𝑃𝑁̄𝛼 = 𝑃(𝛼) . (4.6)

Lemma 4.5 The group 𝐺 (𝛼) is of the Harish-Chandra class, and 𝑃(𝛼) and 𝑄 (𝛼) are
maximal parabolic subgroups of 𝐺 (𝛼) . They have the common split component 𝐴𝑃 and
are adjacent and opposite.
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Proof. Since the group 𝐺 (𝛼) = 𝑀1𝑋 is the centralizer of 𝔞𝑋 in 𝐺, it belongs to
the Harish-Chandra class. From (4.6) it follows that both 𝑃(𝛼) and 𝑄 (𝛼) have split
component 𝐴𝑃 .

The maximality of the parabolic sugroups 𝑃(𝛼) and 𝑄 (𝛼) was established in the
above. These parabolics are opposite. In view of their maximality it follows that they
are adjacent as well. 2

The following results will turn out to be key for the argument reducing the proof
of the Maass–Selberg relations for 𝐵 to the case of maximal parabolic subgroups. It
makes that certain data for 𝐺 and for 𝐺 (𝛼) are suitably compatible.

Lemma 4.6 The group 𝐺 (𝛼) normalizes 𝔫𝑃 ∩ 𝔫𝑄 .

Proof. The intersection 𝔫𝑃∩𝔫𝑄 is the sum of the root spaces 𝔤𝛽, (𝛽 ∈ Σ(𝔞)) with 𝛽 > 0
on both 𝔞+

𝑃
and 𝔞+

𝑄
. From the choice of 𝑋 on cl𝔞+

𝑃
∩ cl𝔞+

𝑄
we see that the condition on

𝛽 is equivalent to 𝛽(𝑋) > 0. The latter condition in turn is equivalent to 𝔤𝛽 ⊂ 𝔫𝑋 . It
follows that 𝔫𝑃 ∩ 𝔫𝑄 = 𝔫𝑋 . As 𝐺 (𝛼) = 𝑀1𝑋 , the result follows. 2

Lemma 4.7 We have the following direct sums as linear spaces:
(a) 𝔭 = 𝔪1𝑃 ⊕ 𝔫𝛼 ⊕ 𝔫𝑋 ,

(b) 𝔮 = 𝔪1𝑃 ⊕ 𝔫̄𝛼 ⊕ 𝔫𝑋 .

If 𝑃 is standard, then

(c) 𝔫0 = 𝔫
(𝛼)
0 ⊕ 𝔫𝑋 .

Proof. Since 𝑃 and𝑄 are adjacent, 𝔪1𝑃 = 𝔪1𝑄 . Consequently, (a) and (b) follow from
Lemma 4.3 and (4.5). If 𝑃 is standard, so is 𝑃𝑋 , in view of Lemma 4.4. It follows that
𝔫0 = (𝔫0 ∩𝔪1𝑋) ⊕ 𝔫𝑋 = 𝔫

(𝛼)
0 ⊕ 𝔫𝑋 . 2

The algebra 𝔞 is maximal abelian in the −1 eigenspace of the Cartan involution
𝜃 |𝔤 (𝛼) . It follows that the normalizer of 𝐴 in 𝐾 (𝛼) maps onto the Weyl group 𝑊 (𝛼)

of the root system Σ(𝛼) = Σ(𝔤(𝛼) , 𝔞). It follows from Lemma 4.6 that 𝑊 (𝛼) preserves
𝔫𝑋 = 𝔫𝑃 ∩ 𝔫𝑄 .

Lemma 4.8 Let 𝑣 ∈ 𝑁𝐾 (𝛼) (𝔞) be such that 𝑁 (𝛼)0 𝑣 𝑄̄ (𝛼) is open in𝐺 (𝛼). If 𝑃 is standard,
then 𝑁0𝑣𝑄̄ is open in 𝐺.

Proof. The orbit 𝑁 (𝛼)0 𝑣𝑄̄ (𝛼) is open in 𝐺 (𝛼) iff 𝔫
(𝛼)
0 + Ad(𝑣)𝔮̄(𝛼) = 𝔤(𝛼) . By adding

𝔫𝑋 + 𝔫̄𝑋 to the left and the right of the latter expression, we find, using that Ad(𝑣)
normalizes 𝔫̄𝑋 ,

(𝔫𝛼0 + 𝔫𝑋) + Ad(𝑣) (𝔮̄(𝛼) + 𝔫̄𝑋) = 𝔤. (4.7)
From Lemma 4.7 (b), we see that 𝔮(𝛼) + 𝔫𝑋 = 𝔮. Using this and (4.7), we find, by
taking Lemma 4.7 (c) into account that

𝔫0 + Ad(𝑣)𝔮̄ = 𝔤.

This implies that 𝑁0𝑣𝑄̄ is open in 𝐺. 2
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From now on, we will assume that 𝑃 is standard. Since 𝜃𝑋 = −𝑋 , the group
𝐺 (𝛼) = 𝑀1𝑋 = 𝑍𝐺 (𝑋) is invariant under 𝜃. The restriction 𝜃 (𝛼) := 𝜃 |𝐺 (𝛼) is a Cartan
involution. Its group of fixed points is the maximal compact subgroup 𝐾 (𝛼) = 𝐾∩𝐺 (𝛼)
of 𝐺 (𝛼) .

Furthermore, 𝔞 is a maximal abelian subspace of 𝔰(𝛼) = 𝔰 ∩ 𝔤(𝛼) . The algebra
𝔤(𝛼) = 𝔪1𝑋 is the direct sum of the weight spaces 𝔤𝛽 for 𝛽 ∈ Σ(𝔞) ∪ {0} such that
𝛽(𝑋) = 0. It follows that

Σ(𝔤(𝛼) , 𝔞) = {𝛽 ∈ Σ(𝔞) | 𝛽(𝑋) = 0}.

Since 𝑃 is standard, cl(𝔞+
𝑃
) ⊂ cl(𝔞+), hence also 𝑋 ∈ cl(𝔞+). Therefore,

Σ+(𝔤(𝛼) , 𝔞) := Σ(𝔤(𝛼) , 𝔞) ∩ Σ+(𝔤, 𝔞)

is a positive system for Σ(𝔤(𝛼) , 𝔞). It is well-known that the associated set of simple
roots is given by

Δ(𝛼) := {𝛽 ∈ Δ | 𝛽(𝑋) = 0}.

The standard minimal parabolic subgroup 𝑃0 of 𝐺 is contained in 𝑃𝑋 . Hence, 𝑃(𝛼)0 =

𝑃0 ∩ 𝐺 (𝛼) is a minimal parabolic subgroup of 𝐺 (𝛼) = 𝑀1𝑋 . The nilpotent radical of
𝑃
(𝛼)
0 equals 𝑁 (𝛼)0 = 𝑁0 ∩ 𝐺 (𝛼) . Accordingly, the Iwasawa decompositions

𝐺 = 𝐾𝐴𝑁0 and 𝐺 (𝛼) = 𝐾 (𝛼)𝐴𝑁 (𝛼)0

are compatible. The restriction 𝜒(𝛼) := 𝜒 |
𝑁
(𝛼)
0

is a unitary character of 𝑁 (𝛼)0 .

Lemma 4.9 The character 𝜒(𝛼) is regular with respect to 𝐺 (𝛼) , 𝐴, 𝑁 (𝛼)0 .

Proof. The 𝔞-roots in 𝔫
(𝛼)
0 form the positive system Σ+(𝔤(𝛼) , 𝔞). Let 𝛽 be a simple root

for this positive system. Then 𝛽 ∈ Δ and 𝛽(𝑋) = 0. The simple root space 𝔤
(𝛼)
𝛽

equals
𝔤𝛽. The derivative 𝑑𝜒(𝛼) (𝑒) is the restriction of 𝑑𝜒(𝑒) to 𝔫

(𝛼)
0 . Since 𝜒 is regular and

𝛽 simple,
𝑑𝜒(𝛼) (𝑒) |𝔤𝛽 = 𝑑𝜒(𝑒) |𝔤𝛽 ≠ 0.

It follows that 𝜒(𝛼) is regular. 2

The groups 𝑃(𝛼) = 𝑀𝑃𝐴𝑃𝑁𝛼 and 𝑄 (𝛼) = 𝜃𝑃(𝛼) are opposite maximal parabolic
subgroups of 𝐺 (𝛼) with the same split component. They are adjacent and compatible
with𝑄 and 𝑃. Let𝜎 be a representation of the discrete series of𝑀𝑃 = 𝑀𝑄 .We consider
the characters

𝜒𝑃 = 𝜒 |𝑀𝑃∩𝑁0 and 𝜒
(𝛼)
𝑃 (𝛼)

= 𝜒(𝛼) |
𝑀𝑃∩𝑁 (𝛼)0

.
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Lemma 4.10

(a) 𝑁0 ∩ 𝑀𝑃 = 𝑁
(𝛼)
0 ∩ 𝑀𝑃;

(b) 𝜒𝑃 = 𝜒
(𝛼)
𝑃 (𝛼)

;

(c) 𝐻−∞𝜎,𝜒𝑃 = 𝐻−∞
𝜎,𝜒

(𝛼)
𝑃 (𝛼)

;

(d) the Hermitian inner products on the spaces in (c) are equal.

Proof. If 𝛽 ∈ Σ+(𝔞) is such that 𝔤𝛽 ⊂ 𝔪𝑃 then 𝛽 |𝔞𝑃 = 0 so that 𝛽(𝑋) = 0 which in
turn implies that 𝔤𝛽 ⊂ 𝔫

(𝛼)
0 . This implies (a). Since clearly

𝜒 |
𝑀𝑃∩𝑁 (𝛼)0

= 𝜒(𝛼) |
𝑀𝑃∩𝑁 (𝛼)0

it follow from (a) that (b). Assertion (c) is now immediate. For (d) we note that the
inner product on 𝐻−∞𝜎,𝜒𝑃 is determined by the requirement that the matrix coefficient
map

𝜇𝜎 : 𝐻∞𝜎 ⊗ 𝐻−∞𝜎,𝜒𝑃 → 𝐿2(𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃)
is an isometry. In view of (a), (b) and (c), the matrix coeffient map 𝜇𝜎 coincides with
the matrix coefficient map

𝜇
(𝛼)
𝜎 : 𝐻∞𝜎 ⊗ 𝐻−∞

𝜎,𝜒
(𝛼)
𝑃 (𝛼)
→ 𝐿2(𝑀𝑃/𝑀𝑃 ∩ 𝑁 (𝛼)0 : 𝜒(𝛼)

𝑃
).

Remark 4.11 For (d) it is essential that we agree to equip 𝑀𝑃/𝑀𝑃 ∩ 𝑁 (𝛼)0 with the
same positive invariant measure as 𝑀𝑃/𝑀𝑃 ∩ 𝑁0.

We have now introduced all ingredients needed for the definition of 𝐵(𝛼) (𝑄 (𝛼) , 𝑃(𝛼) , 𝜎, 𝜈)
for the group 𝐺 (𝛼) , the adjacent parabolic subgroups 𝑃(𝛼) , 𝑄 (𝛼) and any 𝜎 ∈ 𝑀𝑃,ds, as
an End(𝐻−∞

𝜎,𝜒
(𝛼)
𝑃 (𝛼)
)-valued meromorphic function of 𝜈 ∈ 𝔞∗

𝑃C
. The following is a crucial

reduction result.

Lemma 4.12 Let 𝑃,𝑄 ∈ P be as before, and assume 𝑃 is standard. Then for all
𝜎 ∈ 𝑀𝑃,ds we have

𝐵(𝑄̄, 𝑃̄, 𝜎, 𝜈) = 𝐵(𝛼) (𝑃(𝛼) , 𝑃̄(𝛼) , 𝜎, 𝜈),

as End(𝐻−∞𝜎,𝜒𝑃 )-valued meromorphic functions of 𝜈 ∈ 𝔞∗
𝑃C
.

Remark 4.13 Here it is important that the Haar measures on 𝑁𝑄 ∩ 𝑁̄𝑃 and on 𝑁̄𝛼,
used in the definition of the standard intertwining operators for 𝐺 and for 𝐺 (𝛼) , are
equal.
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The proof of Lemma 4.12 will be given in the next few sections. In the text below
we shall explain its role in completing the proof of Theorem 3.1.

By a Whittaker datum we shall mean a triple (𝐺, 𝐾𝐴𝑁0, 𝜒) with 𝐺 a group of the
Harish-Chandra class, 𝐾𝐴𝑁0 an Iwasawa decomposition of 𝐺 and 𝜒 a regular unitary
character of 𝑁0. An MS setting is a Whittaker datum as above together with a tuple
𝑃,𝑄 of parabolic subgroups of 𝐺 containing 𝐴, and with equal split components. We
will say that such a setting satsfies he assertions of Thm. 3.1 if for all 𝜎 ∈ 𝑀𝑃,ds the
identity (3.2) is valid. Finally, an MS setting (𝐺 = 𝐾𝐴𝑁0, 𝜒, 𝑃, 𝑄) is called basic if
𝑃,𝑄 are maximal and adjacent. In particular, in this case 𝑃 and 𝑄 are opposite.

Lemma 4.14 If the assertions of Thm. 3.1 hold for every basic 𝑀𝑆-setting, then they
hold in general.

Proof. Suppose the assertions of Thm. 3.1 are valid for every basic setting, and
let (𝐺 = 𝐾𝐴𝑁0, 𝜒) be a Whittaker datum. Let 𝑃′, 𝑄′ determine an associated MS
setting. By Corollary 3.5 it suffices to prove the assertions of Theorem 3.1 for the
setting (𝐺 = 𝐾𝐴𝑁0, 𝜒, 𝑃

′, 𝑄′) under the assumption that 𝐺 has compact center. By
Lemma 3.7 it suffices to prove the assertions under the additional condition that 𝑃′, 𝑄′
are adjacent. By Lemma 3.8 we may further reduce to the case that 𝑃′ is opposite
standard. If 𝑃′ is maximal, so is 𝑄′ and hence (𝐺, 𝑃′, 𝑄′) is basic, and by hypothesis
there is nothing left to be proven. Thus, we may in addition assume that 𝑃′ is not
maximal. We write 𝑃′ = 𝑃̄, with 𝑃 standard. Then 𝑄 := 𝑄̄′ is adjacent to 𝑃. It
remains to prove the assertion of Theorem 3.1 for the setting (𝐺 = 𝐾𝐴𝑁0, 𝜒, 𝑃̄, 𝑄̄).
We now select a subgroup𝐺 (𝛼) of𝐺 related to the pair (𝑃,𝑄) as in the previous section.
Then (𝐺 (𝛼) = 𝐾 (𝛼)𝐴𝑁 (𝛼)0 , 𝜒(𝛼)) is a Whittaker datum, and (𝑃(𝛼) , 𝑄 (𝛼)) determines an
associated MS-setting. By Lemma 4.12 it suffices to prove the assertions of Thm. 3.1
for the latter setting. By Lemma 3.4 we see that it suffices to verify the assertions
of Thm. 3.1 for the setting (𝐺 (𝛼) = 𝐾 (𝛼)◦𝐴𝑁 (𝛼)0 , 𝜒(𝛼) , ◦𝑃(𝛼) , ◦𝑄 (𝛼)). Since the latter
setting is basic, the validity of the assertions is garanteed by the hypothesis. 2

5 Smoothness of 𝐽
In this section, we assume that 𝑃,𝑄 ∈ P are adjacent parabolic subgroups of 𝐺,
containing 𝐴. In addition we assume that 𝑃 is standard and not maximal. Furthermore,
𝛼 ∈ Σ(𝑃) and 𝑋 ∈ ker𝛼 are as in Section 4. We retain the notation introduced in the
text following Lemma 4.1.

Fix 𝜂 ∈ 𝐻−∞𝜎,𝜒𝑃̄ ; recall that 𝑃 is standard. For 𝜈 ∈ 𝔞∗
𝑃C

we define 𝜀𝜈 : 𝑁0𝑃̄ → 𝐻−∞

by
𝜀𝜈 (𝑛𝑚𝑎𝑛̄) = 𝜒(𝑛)𝑎−𝜈+𝜌𝑃𝜎−1(𝑚)𝜂,

for 𝑛 ∈ 𝑁𝑃, 𝑚 ∈ 𝑀𝑃, 𝑎 ∈ 𝐴𝑃 and 𝑛̄ ∈ 𝑁̄𝑃 . We view the restriction of 𝜀𝜈 to 𝐾 ∩ 𝑁0𝑃̄ as
an almost everywhere defined function 𝐾 → 𝐻−∞𝜎 . This function satisfies 𝜀𝜈 (𝑘𝑚) =
𝜎(𝑚)−1𝜀𝜈 (𝑘) for almost all 𝑘 ∈ 𝐾 and 𝑚 ∈ 𝐾𝑃 .

30



From [2, Prop. 8.12] it follows that for Re 𝜈 𝑃-dominant the Whittaker vector
𝑗𝜈 := 𝑗 (𝑃̄, 𝜎, 𝜈)𝜂 is represented by 𝜀𝜈 in the sense that in the compact picture one has,
for all 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎𝑃),

⟨ 𝑗𝜈 , 𝜑⟩ =
∫
𝐾

⟨𝜀𝜈 (𝑘) , 𝜑(𝑘)⟩ 𝑑𝑘, (5.1)

with absolutely convergent integral.
Likewise, the element 𝑗 (𝛼)𝜈 = 𝑗 (𝑃̄(𝛼) , 𝜎, 𝜈)𝜂 associated with 𝐺 (𝛼) is, for 𝜈 ∈ 𝔞∗

𝑃C

with Re 𝜈(𝐻𝛼) > 0, given by the almost everywhere defined function

𝜀(𝛼) (𝑛𝑚𝑎𝑛̄) = 𝜒(𝑛)𝑎−𝜈+𝜌𝑃 (𝛼)𝜎−1(𝑚)𝜂,

for 𝑛 ∈ 𝑁 (𝛼)
𝑃
, 𝑚 ∈ 𝑀𝑃, 𝑎 ∈ 𝐴𝑃 and 𝑛̄ ∈ 𝑁̄𝑃 (𝛼) . Here 𝜌𝑃 (𝛼) is the rho of the standard

parabolic subgroup 𝑃(𝛼) in𝐺 (𝛼) .We note that the difference 𝜌𝑃− 𝜌𝑃 (𝛼) restricts to zero
on ker𝛼 = ◦𝔞 (𝛼) hence does not appear in the analysis on ◦𝐺 (𝛼) .

For 𝜇 ∈ 𝔞∗
𝑃C

we define 𝜑𝜇 : 𝐺 → C by

𝜑𝜇 (𝑘𝑚𝑎𝑛̄) = 𝑎−𝜇, (𝑘 ∈ 𝐾, 𝑚 ∈ 𝑀𝑃, 𝑎 ∈ 𝐴𝑃, 𝑛̄ ∈ 𝑁̄𝑃).

We note that the operator

𝑚𝜈,𝜇 : 𝐶∞(𝐺/𝑃̄ : 𝜎 : 𝜈) → 𝐶∞(𝐺/𝑃̄ : 𝜎 : 𝜈), 𝜓 ↦→ 𝜑𝜇𝜓

is given by the identity of 𝐶∞(𝐾/𝐾𝑃 : 𝜎𝑃) in the compact picture. In particular,
it follows that the operator has a unique continuous linear extension to an operator
𝐶−∞(𝐺/𝑃̄ : 𝜎 : 𝜈) → 𝐶−∞(𝐺/𝑃̄ : 𝜎 : 𝜈 + 𝜇). We denote this operator by 𝑚𝜈,𝜇 again,
and write 𝑚𝜈,𝜇 : 𝜓 ↦→ 𝜑𝜈𝜓. In the compact picture the extended operator 𝑚𝜈,𝜇 is given
by the identity of 𝐶−∞(𝐾/𝐾𝑃 : 𝜎𝑃).

It follows from Cor. 1.12 that 𝜈 ↦→ 𝑗𝜈 defines a holomorphic function 𝔞∗
𝑃C
→

𝐶−∞(𝐾/𝐾𝑃 : 𝜎𝑃). Clearly, (𝜈, 𝜇)𝜈, 𝜇 ↦→ 𝜑𝜇 𝑗𝜈−𝜇 is given by (𝜈, 𝜇) ↦→ 𝑗𝜈−𝜇 |𝐾 in the
compact picture, hence is holomorphic on 𝔞∗

𝑃C
× 𝔞∗

𝑃C
.

It follows from [2, Prop. 8.14-15] that for Re 𝜈 strictly 𝑃-dominant the generalized
function 𝜑𝜇 𝑗𝜈−𝜇 ∈ 𝐶−∞(𝐺/𝑃̄ : 𝜎 : 𝜈) is represented by 𝜑𝜇𝜀𝜈−𝜇 in the sense that for all
𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎𝑃),

⟨𝜑𝜇 𝑗𝜈−𝜇 , 𝜑⟩ =
∫
𝐾

⟨𝜀𝜈−𝜇 (𝑘) , 𝜑(𝑘)⟩ 𝑑𝑘.

Put 𝐴(𝜈) = 𝐴(𝑄̄, 𝑃̄, 𝜎, 𝜈) and let S𝐴 ⊂ 𝔞∗
𝑃C

denote the singular locus for 𝐴( · ). For
(𝜈, 𝜇) ∈ (𝔞∗

𝑃C
\ S𝐴) × 𝔞∗𝑃C

, we define

𝐽𝜈,𝜇 := 𝐴(𝜈) [𝜑𝜇 𝑗𝜈−𝜇] ∈ 𝐶−∞(𝐺/𝑄̄ : 𝜎 : 𝜈). (5.2)

The extra parameter 𝜇 is introduced to allow the choice of pairs (𝜈, 𝜇) where 𝐴(𝜈) and
𝑗𝜈−𝜇 are simultaneously representable by a convergent integral and a locally integrable
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function, respectively. This idea is inspired by an argument of T. Oshima and J.
Sekiguchi [10, text prec. Lemma 4.13], developed further by [1, Lemma 7.4], see also
[5, Prop. 6].

Our first main goal is to understand the dependence of 𝜋𝑄̄,𝜎,𝜈 (𝑛)𝐽𝜈,𝜇 on (𝑛, 𝜈, 𝜇) ∈
𝑁𝑃 × 𝔞∗𝑃C

× 𝔞∗
𝑃C
.

From (1.7) and (2.4) we have, for 𝑅 ∈ R,

𝔞∗(𝑃, 𝑅) : = {𝜈 ∈ 𝔞∗𝑃C | Re ⟨𝛽 , 𝜈⟩ > 𝑅, (𝛽 ∈ Σ(𝑃))},
𝔞∗(𝑄 |𝑃, 𝑅) : = {𝜈 ∈ 𝔞∗𝑃C | Re ⟨𝛽 , 𝜈⟩ > 𝑅, (𝛽 ∈ Σ(𝑄̄) ∩ Σ(𝑃))}.

From [2, Prop 14.8] we know that for every 𝑅 ∈ R there exists a positive integer 𝑠
such that 𝜈 ↦→ 𝑗 (𝑃̄, 𝜎, 𝜈) is holomorphic as a map 𝔞∗

𝑃
(𝑃, 𝑅) → 𝐶−𝑠 (𝐾/𝐾𝑃 : 𝜎𝑃).

Furthermore, for 𝜎 ∈ 𝑀𝑃,ds. we know by Lemma 2.3 that for every 𝑅 ∈ R there
exists a polynomial function 𝑞 : 𝔞∗

𝑃C
→ C and a constant 𝑟 ∈ N such that for every

𝑡 ∈ N the assignment
𝜈 ↦→ 𝑞(𝜈) 𝐴(𝑄̄, 𝑃̄, 𝜎, 𝜈)

is holomorphic as a function on 𝔞∗(𝑄̄ |𝑃̄, 𝑅) with values in 𝐵(𝐶−𝑡 , 𝐶−𝑡−𝑟), the Banach
space of bounded linear maps 𝐶−𝑡 (𝐾/𝐾𝑃 : 𝜎𝑃) → 𝐶−𝑡−𝑟 (𝐾/𝐾𝑃 : 𝜎𝑃).

Lemma 5.1 For every bounded open subset Ω of 𝔞∗
𝑃C
× 𝔞∗

𝑃C
there exists a 𝑝 ∈ N and

a polynomial function 𝑞 ∈ 𝑃(𝔞∗
𝑃
) such that the map (𝑛, 𝜈, 𝜇) ↦→ 𝑞(𝜈)𝜋𝑄̄,𝜎,𝜈 (𝑛)𝐽𝜈,𝜇

is a smooth map 𝑁𝑃 × Ω → 𝐶−𝑝 (𝐾/𝐾𝑃 : 𝜎𝑃) which is holomorphic in the variable
(𝜈, 𝜇) ∈ Ω.

Proof. Without loss of generality we may assume that Ω = Ω1 ×Ω2 with Ω 𝑗 bounded
open in 𝔞∗

𝑃C
. We will write 𝐶𝑠 (𝐾 : 𝜎𝑃) := 𝐶𝑠 (𝐾/𝐾𝑃 : 𝜎𝑃), and keep in mind that

𝐾𝑃 = 𝐾𝑄 . For every 𝑠 ∈ Z we will write 𝜓 ↦→ 𝜓 |𝐾 for the isomorphism 𝐶𝑠 (𝐺/𝑃̄ : 𝜎 :
𝜈) → 𝐶𝑠 (𝐾 : 𝜎𝑃) induced by restriction to 𝐾. Note that with this notation,

𝜋𝑃̄,𝜎,𝜈 (𝑛) [𝜑𝜇 𝑗 (𝑃̄, 𝜎, 𝜈 − 𝜇, 𝜂)] |𝐾 = 𝜓(𝑛, 𝜇) [ 𝑗 (𝑃̄, 𝜎, 𝜈 − 𝜇, 𝜂) |𝐾]

where
𝜓(𝑛, 𝜇) (𝑘) = 𝜒(𝑛)−1𝜑−𝜇 (𝑛−1𝑘) = 𝜒(𝑛)−1𝑎𝑃̄ (𝑛−1𝑘)−𝜇

is a smooth function 𝑁𝑃 × 𝔞∗
𝑃C
→ 𝐶∞(𝐾/𝐾𝑀), which is holomorphic in the second

variable. Let 𝑟 be the order of 𝑗 (𝑃, 𝜎, · ) over Ω1 − Ω2 = {𝜈 − 𝜇 | 𝜈 ∈ Ω1, 𝜇 ∈ Ω2}.
Then (𝜈, 𝜇) ↦→ 𝑗𝜈−𝜇 defines a holomorphic map Ω→ 𝐶−𝑟 (𝐾 : 𝜎𝑃). It follows that the
map

(𝑛, 𝜈, 𝜇) ↦→ 𝜋𝑃̄,𝜎,𝜈 (𝑛) [𝜑𝜇 𝑗𝜈−𝜇 |𝐾]
is smooth 𝑁𝑃 ×Ω→ 𝐶−𝑟 (𝐾 : 𝜎𝑃) and in addition holomorphic in the second variable.

Let 𝑡 be the order of the family 𝐴(𝑄̄, 𝑃̄, 𝜎, · ) overΩ1.Then there exists a polynomial
function 𝑞 : 𝔞∗

𝑃C
→ C such that for every positive integer 𝑠 the operator 𝐴(𝑄̄, 𝑃̄, 𝜎, · )
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defines a holomorphic function Ω1 → 𝐵(𝐶−𝑠 (𝐾 : 𝜎𝑃), 𝐶−𝑠−𝑡 (𝐾 : 𝜎𝑃)). Since the
natural map

𝐵(𝐶−𝑟 (𝐾 : 𝜎𝑃), 𝐶−𝑟−𝑡 (𝐾 : 𝜎𝑃)) × 𝐶−𝑟 (𝐾 : 𝜎𝑃) → 𝐶−𝑟−𝑡 (𝐾 : 𝜎𝑃)

is a continuous bilinear map of Banach spaces, it follows from the usual rules for
differentiation that

(𝑛, 𝜈) ↦→ 𝑞(𝜈)𝜋𝑄̄,𝜎,𝜈 (𝑛)𝐽𝜈,𝜇
= 𝑞(𝜈)𝐴(𝜈)𝜋𝑃̄,𝜎,𝜈 (𝑛) [𝜑𝜇 𝑗𝜈−𝜇 |𝐾] (5.3)

defines a smooth map from 𝑁𝑃 × Ω to 𝐶−𝑟−𝑡 (𝐾 : 𝜎𝑃) which is holomorphic in the
second variable. This proves the result with 𝑝 = 𝑟 + 𝑡. 2

In view of the results of Section 1 for the group 𝐺 (𝛼) in place of 𝐺 there exists an
element 𝑣 ∈ 𝑁𝐾 (𝛼) (𝔞) such that 𝑁 (𝛼)0 𝑣𝑄̄ (𝛼) is open in 𝐺 (𝛼) . We may therefore choose

𝑣𝑄̄ = 𝑣
(𝛼)
𝑄̄ (𝛼)

:= 𝑣

for our maps 𝑣 : P → 𝑁𝐾 (𝔞) and 𝑣(𝛼) : P (𝛼) → 𝑁𝐾 (𝛼) (𝔞) for 𝐺 and 𝐺 (𝛼) as
discussed in Definition 1.4. Then 𝑃̄ = 𝑣𝑄̄𝑣−1. It follows that 𝐺◦ := 𝑁𝑃𝑣𝑄̄ is a right
𝑄̄-invariant (dense) open subset of 𝐺. The action map 𝑁𝑃 → 𝐺/𝑄̄, 𝑛 ↦→ 𝑛𝑣𝑄̄, induces
an open embedding into 𝐺/𝑄̄ with image 𝐺◦/𝑄̄. Composing the defined embedding
𝑁𝑃 → 𝐺/𝑄̄ with the inverse of the diffeomorphism 𝐾/𝐾𝑄 → 𝐺/𝑄̄ we obtain an
embedding 𝑁𝑃 → 𝐾/𝐾𝑄 with image 𝐾◦ = [𝑁𝑃𝑣𝑄̄] ∩ 𝐾. The defined maps form a
commutative diagram of diffeomorphisms

𝑁𝑃 −→ 𝐺◦/𝑄̄
↘ ↑

𝐾◦/𝐾𝑄 .

By pull-back we then obtain for every 𝜈 ∈ 𝔞∗
𝑃C

a commutative diagram of topological
linear isomorphisms

𝐶𝑟 (𝑁𝑃, 𝐻𝜎) ←− 𝐶𝑟 (𝐺◦/𝑄̄ : 𝜎 : 𝜈)
↖ ↑

𝐶𝑟 (𝐾◦/𝐾𝑄 : 𝜎𝑄).

The diagram with arrows representing the inverted maps is still a commutative diagram
of topological linear isomorphisms. For a given 𝑢 ∈ 𝐻∞𝜎 we consider the embedding
𝜄𝑢 : 𝐶 𝑝 (𝑁𝑃) → 𝐶 𝑝 (𝑁𝑃, 𝐻𝜎), 𝑓 ↦→ 𝑓 ⊗ 𝑢. Combining this with the inverted diagram,
we obtain a diagram of continuous linear maps

𝐶𝑟 (𝑁𝑃)
‵
𝑢𝑇𝜈−→ 𝐶𝑟 (𝐺◦/𝑄̄ : 𝜎 : 𝜈)

𝑢𝑇𝜈↘ ↓ 𝑟𝜈
𝐶𝑟 (𝐾◦/𝐾𝑄 : 𝜎𝑄).

(5.4)
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Lemma 5.2 For every 𝑢 ∈ 𝐻∞𝜎 and 𝜈 ∈ 𝔞∗
𝑄C
,

𝜋𝑄̄,𝜎,𝜈 (𝑛) ◦ 𝑢𝑇𝜈 = 𝑢𝑇𝜈 ◦ 𝐿𝑛, (𝑛 ∈ 𝑁𝑃).

Proof. This follows readily from the definitions. 2

Given a compact subsetK ⊂ 𝑁𝑃 we will denote the canonical image ofK𝑣 in𝐺/𝑄̄
by K′ and the image in 𝐾/𝐾𝑄 by K′′. Note that K′ ⊂ 𝐺◦/𝑄̄ and K′′ ⊂ 𝐾◦/𝐾𝑄 . Let 𝑟
be a positive integer. Identifying 𝐶𝑟K′ (𝐺

◦/𝑄̄ : 𝜎 : 𝜈) with 𝐶𝑟K′ (𝐺/𝑄̄) in the usual way,
through extension by zero, and using the analogous identification for functions on 𝐾,
we infer that the diagram (5.4) induces a commutative diagram

𝐶𝑟K (𝑁𝑃)
‵
𝑢𝑇𝜈−→ 𝐶𝑟K′ (𝐺/𝑄̄ : 𝜎 : 𝜈)

𝑢𝑇𝜈↘ ↓ 𝑟𝜈
𝐶𝑟K′′ (𝐾/𝐾𝑄 : 𝜎𝑄)

(5.5)

of bounded linear maps between Banach spaces. If 𝑓 ∈ 𝐶𝑟 (𝑁𝑃) we denote by 𝑢 𝑓𝑄̄,𝜎,𝜈
the function 𝐺◦ → 𝐻∞𝜎 given by

𝑢 𝑓𝑄̄,𝜎,𝜈 (𝑛𝑣𝑚𝑎𝑛̄) = 𝑎−𝜈+𝜌𝑄 𝑓 (𝑛) ⊗ 𝜎(𝑚)−1𝑢, (5.6)

for 𝑛 ∈ 𝑁𝑃, 𝑚 ∈ 𝑀𝑄 , 𝑎 ∈ 𝐴𝑄 and 𝑛̄ ∈ 𝑁̄𝑄 . Then ‵

𝑢𝑇𝜈 and 𝑢𝑇𝜈 are given by
‵

𝑢𝑇𝜈 ( 𝑓 ) = 𝑢 𝑓𝑄̄,𝜎,𝜈, and 𝑢𝑇𝜈 ( 𝑓 ) =
‵

𝑢𝑇𝜈 ( 𝑓 ) |𝐾◦ , ( 𝑓 ∈ 𝐶𝑟 (𝑁𝑃)).

If 𝑓 ∈ 𝐶𝑟K (𝑁𝑃) we view ‵

𝑢𝑇𝜈 ( 𝑓 ) as an element of𝐶𝑟K′ (𝐺/𝑄̄ : 𝜎 : 𝜈) as explained above.
Then 𝑢𝑇𝜈 ( 𝑓 ) = ‵

𝑢𝑇𝜈 ( 𝑓 ) |𝐾 .

Lemma 5.3 Let K ⊂ 𝑁𝑃 be compact, and 𝜈 ∈ 𝔞∗
𝑃C
. For every 𝑟 ∈ N the map

(𝑢, 𝑓 ) ↦→ 𝑢𝑇𝜈 ( 𝑓 ) is continuous bilinear 𝐻∞𝜎 × 𝐶𝑟K (𝑁𝑃) → 𝐶𝑟K′′ (𝐾/𝐾𝑄 , 𝜎𝑄).

Proof. Straightforward. See also [2, Lemma 8.8] for a related discussion. 2

We will now investigate the family 𝐽𝜈,𝜇 ∈ 𝐶−𝑟 (𝐺/𝑄̄ : 𝜎 : 𝜈) in more detail.
First of all, if 𝐽 ∈ 𝐶−𝑟 (𝐺/𝑄̄ : 𝜎 : 𝜈) and 𝑢 ∈ 𝐻∞𝜎 we define the continuous linear

functional 𝑢𝐽 : 𝐶𝑟𝑐 (𝑁𝑃) → C by

𝑢𝐽 ( 𝑓 ) = ⟨𝐽 , 𝑢𝑇−𝜈̄ ( 𝑓 )⟩, ( 𝑓 ∈ 𝐶𝑟 (𝑁𝑃)). (5.7)

We denote by 𝑎𝑄̄ the function 𝐾◦ → 𝐴𝑄 (uniquely) determined by

𝑥 ∈ 𝑁𝑃𝑣𝑀𝑄𝑎𝑄̄ (𝑥)𝑁̄𝑄 , (𝑥 ∈ 𝐾◦).

Then 𝑎𝑄̄ is real analytic 𝐾◦/𝐾𝑄 → 𝐴𝑄 . For 𝑟 ∈ N and 𝜈 ∈ 𝔞∗
𝑃C

we define the map
m𝜈 : 𝐶𝑟 (𝐾◦/𝐾𝑄 : 𝜎𝑄) → 𝐶𝑟 (𝐾◦/𝐾𝑄 : 𝜎𝑄) by

m𝜈 ( 𝑓 ) (𝑘) = 𝑎𝑄̄ (𝑘)−𝜈 𝑓 (𝑘), ( 𝑓 ∈ 𝐶𝑟𝑐 (𝐾◦/𝐾𝑄)).
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Lemma 5.4 Let K be a compact subset of 𝑁𝑃 . Then for every 𝜈 ∈ 𝔞∗
𝑄C

the map
m𝜈 restricts to a bounded automorphism of the Banach space 𝐶𝑟K′′ (𝐾/𝐾𝑄 : 𝜎𝑄). The
assignment 𝜈 ↦→ m𝜈 is holomorphic as a function on 𝔞∗

𝑃C
with values in the space of

bounded operators 𝐵(𝐶𝑟K′′ (𝐾/𝐾𝑄 : 𝜎𝑄)).

Proof. Straightforward. 2

Lemma 5.5 Let 𝑢 ∈ 𝐻∞𝜎 . Let K ⊂ 𝑁𝑃 be a compact subset. For 𝑓 ∈ 𝐶𝑟K (𝑁𝑃) and
𝜈 ∈ 𝔞∗

𝑄C
we have

(a) 𝑢𝑇𝜈 ( 𝑓 ) ∈ 𝐶𝑟K′ (𝐾/𝐾𝑄 : 𝜎 : 𝜈);

(b) 𝑢𝑇𝜈 ( 𝑓 ) = m𝜈 (𝑢𝑇0( 𝑓 ));

(c) the map 𝑢𝑇𝜈 is a bounded linear map between the Banach spaces 𝐶𝑟K (𝑁𝑃) and
𝐶𝑟K′′ (𝐾/𝐾𝑄 : 𝜎𝑄);

(d) the assignment 𝜈 ↦→ 𝑢𝑇𝜈 is holomorphic as a function on 𝔞∗
𝑄C
, with values in

the Banach space 𝐵 of bounded linear maps from 𝐶𝑟K (𝑁𝑃) to 𝐶𝑟K′′ (𝐾/𝐾𝑄 : 𝜎𝑄),
equipped with the operator norm.

Proof. Assertion (a) is true by definition. For (b), fix 𝑘 ∈ K′. Then 𝑘 has a unique
decomposition 𝑘 = 𝑛𝑣𝑚𝑎𝑛̄ ∈ K𝑣𝑄̄ ≃ K𝑣𝑀𝑄𝐴𝑄 𝑁̄𝑄 ⊂ 𝑁𝑃𝑣𝑄̄. It follows that

𝑢𝑇𝜈 ( 𝑓 ) (𝑘) = 𝑓 (𝑛)𝑎−𝜈+𝜌𝑄𝜎(𝑚)−1𝑢

= 𝑎𝑄̄ (𝑘)−𝜈𝑢𝑇0( 𝑓 ) (𝑘) = 𝑚𝜇 (𝑢𝑇0( 𝑓 )) (𝑘).

From (a) and (b) it follows that 𝑢𝑇𝜈 = m𝜈 ◦ 𝑢𝑇0. Thus, view of Lemma 5.4 it suffices
to show (c) for 𝜈 = 0.

Put 𝑋 = 𝐶
𝑝

K (𝑁𝑃), 𝑌 = 𝐶
𝑝

K′′ (𝐾/𝐾𝑄 : 𝜎𝑄); these are Banach spaces. We equip
𝐵(𝑋,𝑌 ) and 𝐵(𝑌 ) with the operator norms and consider the natural map 𝛽 : 𝐵(𝑋,𝑌 ) ×
𝐵(𝑌 ) → 𝐵(𝑋,𝑌 ) (𝜏, 𝜇) ↦→ 𝜇 ◦ 𝜏. Then 𝛽 is bilinear and ∥𝛽(𝜏, 𝜇)∥op = ∥𝜇 ◦ 𝜏∥op ≤
∥𝜇∥∥𝑇 ∥. Thus, 𝛽 is continuous. If 𝜈 ↦→ 𝜏𝜈 and 𝜇 ↦→ 𝜇𝜈 are holomorphic, it follows
readily that 𝜇 ↦→ 𝛽(𝑌𝜈, 𝜇𝜈) is holomorphic with values in 𝐵(𝑋,𝑌 ), Applying this to
𝜏𝜈 = 𝑢𝑇0 and 𝜇𝜈 = 𝑚𝜈, we find that 𝜈 ↦→ 𝑚𝜇 ◦ 𝑢𝑇𝜈 = 𝛽(𝑢𝑇0, 𝑚𝜈) is holomorphic
𝔞∗
𝑄C
→ 𝐵(𝑋,𝑌 ), This establishes (d). 2

Recall the definition of 𝐽𝜈,𝜇 from (5.2), for (𝜈, 𝜇) ∈ (𝔞∗
𝑃C
\ S𝐴) × 𝔞∗𝑃C

. For 𝑢 ∈ 𝐻∞𝜎
we define 𝑢𝐽𝜈,𝜇 as in (5.7). This is an element of 𝐶∞K (𝑁𝑃)

′ for every compactK ⊂ 𝑁𝑃 .

Theorem 5.6 For every 𝑢 ∈ 𝐻∞𝜎 and (𝜈, 𝜇) ∈ (𝔞∗
𝑃C
\ S𝐴) × 𝔞∗𝑃C

there exists a unique
smooth function 𝑢𝐽𝜈,𝜇 ∈ 𝐶∞(𝑁𝑃) such that 𝑢𝐽𝜈,𝜇 is represented by the density 𝑢𝐽𝜈,𝜇𝑑𝑛𝑃
in the sense that

𝑢𝐽𝜈,𝜇 ( 𝑓 ) =
∫
𝑁𝑃

𝑢𝐽𝜈,𝜇 (𝑛𝑃) 𝑓 (𝑛𝑃)𝑑𝑛𝑃, ( 𝑓 ∈ 𝐶∞𝑐 (𝑁𝑃)).

If Ω ⊂ 𝔞∗
𝑃C
× 𝔞∗

𝑃C
is a bounded open subset then there exists a polynomial function

𝑞 : 𝔞∗
𝑃C
→ C such that the map (𝜈, 𝜇) ↦→ 𝑞(𝜈)𝑢𝐽𝜈,𝜇 is holomorphic Ω→ 𝐶∞(𝑁𝑃).
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Proof. Let 𝑢 ∈ 𝐻∞𝜎 be fixed. The asserted uniqueness is clear. Therefore, it suffices to
prove the assertions that arise if we replace (𝔞∗

𝑃C
\ S𝐴) × 𝔞∗𝑃C

by (Ω1 \ S𝐴) ×Ω2 and Ω

by Ω1 ×Ω2 for an arbitrary pair Ω1,Ω2 of bounded open subsets of 𝔞∗
𝑃C
. Suppose such

a pair is fixed and let 𝑞 ∈ 𝑃(𝔞∗
𝑃C
) and 𝑝 ∈ N+ be associated with Ω = Ω1 × Ω2 as in

Lemma 5.1.
Let K ⊂ 𝑁𝑃 be a compact subset. We fix an open neighborhood 𝑉 of 𝑒 in 𝑁𝑃

whose closure in 𝑁𝑃 is compact. ThenK𝑒 := cl(𝑉−1)K is a compact subset of 𝑁𝑃 . We
fix K′𝑒 and K′′𝑒 as in the discussion of the diagram (5.5) with K𝑒 in place of K .

For 𝑓 ∈ 𝐶 𝑝

K (𝑁𝑃) and 𝑛 ∈ 𝑉 we have 𝐿−1
𝑛 𝑓 ∈ 𝐶 𝑝

K𝑒
(𝑁𝑃). We now note that

⟨𝐿𝑛 [𝑢𝐽𝜈,𝜇] , 𝑓 ⟩ = ⟨𝑢𝐽𝜈,𝜇 , 𝐿−1
𝑛 𝑓 ⟩

= ⟨𝐽𝜈,𝜇 , 𝑢𝑇𝜇,−𝜈̄ [𝐿−1
𝑛 𝑓 ]⟩

= ⟨𝐽𝜈,𝜇 , 𝜋𝑄,𝜎,−𝜈̄ (𝑛)−1 [𝑢𝑇𝜇,−𝜈̄ 𝑓 ]⟩
= ⟨𝜋𝑄,𝜎,𝜈 (𝑛)𝐽𝜈,𝜇 , 𝑢𝑇−𝜈̄ ( 𝑓 )⟩.

We write 𝑋 = 𝐶
𝑝

K (𝑁𝑃) and 𝑌 = 𝐶 𝑝 (𝐾/𝐾𝑄 : 𝜎𝑄). Furthermore, 𝑌 denotes the
conjugate of 𝑌 and 𝐵(𝑋,𝑌 ) the space of bounded linear maps from 𝑋 to 𝑌, equipped
with the operator norm.

It follows from Lemma 5.5 (d) that 𝑓 ↦→ 𝑢𝑇−𝜈̄ ( 𝑓 ) is an element of 𝐵(𝑋,𝑌 ), depend-
ing holomorphically on 𝜈 ∈ 𝔞∗

𝑃C
. On the other hand, (𝑛, 𝜈, 𝜇) ↦→ 𝑞(𝜈)𝜋𝑄,𝜎,𝜈 (𝑛)𝐽𝜈,𝜇 is

a smooth function 𝑉 ×Ω→ 𝑌 ′ = 𝐶−𝑝 (𝐾/𝐾𝑄 : 𝜎𝑄), which is holomorphic in (𝜈, 𝜇).
We now consider the natural bilinear map 𝛽 : 𝐵(𝑋,𝑌 ) × 𝑌 ′ → 𝑋′ given by

(𝑡, 𝜂) ↦→ 𝜂 ◦ 𝑡. Note that ∥𝛽(𝑡, 𝜂)∥ ≤ ∥𝜂∥∥𝑡∥; this shows that 𝛽 is continuous bilinear.
We observe that

𝐿𝑛 [𝑢𝐽𝜈,𝜇] = 𝛽(𝑢𝑇−𝜈̄ , 𝜋𝑄,𝜎,𝜈 (𝑛)𝐽𝜈,𝜇).
By the usual rules for differentiation it follows that (𝑛, 𝜇, 𝜈) ↦→ 𝑞(𝜈)𝐿𝑛 [𝑢𝐽𝜈,𝜇] is a
smooth map 𝑁𝑃 ×Ω𝑅1,𝑅2 → 𝐶

𝑝

K (𝑁𝑃)
′, which is holomorphic in the variable from Ω.

Let ‵𝑣1, . . . ,
‵𝑣𝑛 be a basis of the Lie algebra of 𝑁𝑃 and let 𝑣 𝑗 = 𝐿 ‵𝑣 𝑗 be the

associated right invariant vector fields on 𝑁𝑃 . Then it follows for all (𝜈, 𝜇) ∈ Ω and
every multi-index 𝛼 ∈ N𝑛 that the distribution 𝑞(𝜈)𝑣𝛼 (𝑢𝐽𝜈,𝜇) belongs to 𝐶 𝑝

K (𝑁𝑃)
′.

Furthermore,
(𝜈, 𝜇) ↦→ 𝑞(𝜈)𝑣𝛼 (𝑢𝐽𝜈,𝜇) : Ω𝑅1,𝑅2 → 𝐶

𝑝

K (𝑁𝑃)
′

is holomorphic. By application of the lemma of the appendix we now conclude that
𝑞(𝜈)𝑢𝐽𝜈,𝜇 is a smooth density of the form asserted, with holomorphic dependence on
(𝜈, 𝜇). 2

6 A useful integral formula
We keep working under the hypothesis of Section 4. Thus, 𝑃 ∈ P is standard non-
maximal,𝑄 is adjacent to 𝑃 and 𝛼 ∈ Σ(𝑃) ∩ [−Σ(𝑄)] . The element 𝑋 ∈ ker𝛼∩cl(𝔞+

𝑃
)
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is generic. 𝑃𝑋 is the unique parabolic subgroup having 𝑋 in its positive chamber, and
𝐺 (𝛼) = 𝑀1𝑋 = 𝑃𝑋 ∩ 𝑃̄𝑋 .

We define smooth maps 𝑘 𝑃̄ : 𝐺 → 𝐾 , 𝑚𝑃̄ : 𝐺 → 𝑀𝑃 ∩ exp 𝔰, 𝑎𝑃̄ : 𝐺 → 𝐴𝑃 and
𝑛𝑃̄ : 𝐺 → 𝑁̄𝑃 by

𝑥 = 𝑘 𝑃̄ (𝑥)𝑚𝑃̄ (𝑥)𝑎𝑃̄ (𝑥)𝑛𝑃̄ (𝑥), (𝑥 ∈ 𝐺).

The multiplication map 𝐾 × 𝑃̄→ 𝐺 factors through a diffeomorphism 𝐾 ×𝐾𝑃
𝑃̄→ 𝐺.

Since 𝑎−2𝜌𝑃𝑑𝑚𝑑𝑎𝑑𝑛̄ defines a right-invariant measure on the group 𝑃̄, it follows that
for a Lebesgue integrable function 𝑓 : 𝐺 → C we have∫

𝐺

𝑓 (𝑥)𝑑𝑥 =
∫
𝐾×𝑀𝑃×𝐴𝑃×𝑁̄𝑃

𝑓 (𝑘𝑚𝑎𝑛̄) 𝑑𝑘𝑑𝑚𝑑𝑎𝑑𝑛̄.

Lemma 6.1 Let 𝜑 : 𝐾 → C be Lebesgue integrable. Then∫
𝐾

𝜑(𝑘) 𝑑𝑘 =

∫
𝑁𝑋×𝐾 (𝛼)

𝜑(𝑘 𝑃̄ (𝑛𝑋 𝑘𝛼)) 𝑎𝑃̄ (𝑛𝑋 𝑘𝛼)2𝜌𝑃 𝑑𝑛𝑋𝑑𝑘𝛼 .

Proof. We fix 𝜓 ∈ 𝐶𝑐 (𝑃̄) left 𝐾𝑃-invariant, such that∫
𝑀𝑃×𝐴𝑃×𝑁̄𝑃

𝜓(𝑚𝑎𝑛̄)𝑎−2𝜌𝑃𝑑𝑚𝑑𝑎𝑑𝑛̄ = 1. (6.1)

Furthermore, we extend 𝜑 to 𝐺 by the formula

𝜑(𝑘𝑚𝑎𝑛̄) = 𝜑(𝑘)𝜓(𝑚𝑎𝑛),

for 𝑘 ∈ 𝐾, 𝑚 ∈ 𝑀𝑃, 𝑎 ∈ 𝐴𝑃 and 𝑛̄ ∈ 𝑁̄𝑃 . Then 𝜑 is Lebesgue integrable on 𝐺 and∫
𝐺

𝜑(𝑥) 𝑑𝑥 =

∫
𝐾×𝑀𝑃×𝐴×𝑁̄𝑃

𝜑(𝑘)𝜓(𝑚𝑎𝑛̄)𝑎−2𝜌𝑃𝑑𝑘𝑑𝑚𝑑𝑎𝑑𝑛̄

=

∫
𝐾

𝜑(𝑘) 𝑑𝑘.

Since𝐾 (𝛼) normalizes 𝑁𝑋 , the density 𝑑𝑛𝑋𝑑𝑘𝛼 on 𝑁𝑋×𝐾 (𝛼) is left invariant. Therefore,∫
𝐺

𝜑(𝑥) 𝑑𝑥 =
∫
𝑁𝑋×𝐾 (𝛼)×𝑀𝑃×𝐴𝑃×𝑁̄𝑃

𝜑(𝑛𝑋 𝑘𝛼𝑚𝑎𝑛̄) 𝑎−2𝜌𝑃 𝑑𝑛𝑋𝑑𝑘
(𝛼)𝑑𝑚𝑑𝑎𝑑𝑛̄, (6.2)

provided the measures are suitably normalized. The pull-back of 𝑎−2𝜌𝑃𝑑𝑚𝑑𝑎𝑑𝑛 on 𝑃̄
under left multiplication by 𝑚1𝑎1𝑛̄1 equals 𝑎2𝜌𝑃

1 𝑎−2𝜌𝑃𝑑𝑚𝑑𝑎𝑑𝑛. Therefore, the second
integral in (6.2) equals∫

𝑁𝑋×𝐾 (𝛼)×𝑀𝑃×𝐴𝑃×𝑁̄𝑃

𝜑(𝑘 𝑃̄ (𝑛𝑋 𝑘𝛼))𝑎𝑃̄ (𝑛𝑋 𝑘𝛼)2𝜌𝑃 𝜓(𝑚𝑎𝑛̄)𝑎
−2𝜌𝑃
𝑃̄

𝑑𝑚𝑑𝑎𝑑𝑛̄𝑑𝑛𝑋𝑑𝑘𝛼

=

∫
𝑁𝑋×𝐾 (𝛼)

𝜑(𝑘 𝑃̄ (𝑛𝑋 𝑘𝛼)) 𝑎(𝑛𝑋 𝑘𝛼)2𝜌𝑃𝑑𝑛𝑋𝑑𝑘𝛼 .

2
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Lemma 6.2 Let 𝑓 : 𝐺 → C be such that 𝑓 |𝐾 is Lebesgue integrable and

𝑓 (𝑥𝑚𝑎𝑛̄) = 𝑎2𝜌𝑃 𝑓 (𝑥),

for all 𝑥 ∈ 𝐺, (𝑚, 𝑎, 𝑛̄) ∈ 𝑀𝑃 × 𝐴𝑃 × 𝑁̄𝑃 . Then∫
𝐾

𝑓 (𝑘)𝑑𝑘 =

∫
𝑁𝑋×𝐾 (𝛼)

𝑓 (𝑛𝑋 𝑘𝛼) 𝑑𝑛𝑋𝑑𝑘𝛼 .

Proof. ∫
𝐾

𝑓 (𝑘)𝑑𝑘 =

∫
𝑁𝑋×𝐾 (𝛼)

𝑓 (𝑘 𝑃̄ (𝑛𝑋 𝑘𝛼)) 𝑎𝑃̄ (𝑛𝑋 𝑘𝛼)2𝜌𝑃 𝑑𝑛𝑋𝑑𝑘𝛼 .

=

∫
𝑁𝑋×𝐾 (𝛼)

𝑓 (𝑛𝑋 𝑘𝛼) 𝑑𝑛𝑋𝑑𝑘𝛼 .
2

Remark 6.3 In proof given above we have not used the particular definitions of 𝑁𝑋
and 𝐾 (𝛼) . The proof works under the assumptions that 𝔫𝑋 , 𝔫𝛼 are sums of 𝔞-root spaces
such that 𝔫𝑋 ⊕ 𝔫𝛼 = 𝔫𝑃, 𝑁𝑋 = exp 𝔫𝑋 , 𝔨 (𝛼) = 𝔨 ∩ (𝔫𝛼 + 𝔫̄𝛼) + 𝔨𝑃 and 𝐾 (𝛼) is the group
generated by exp(𝔨 (𝛼))𝐾𝑃 . In particular the proof works for the case 𝔫𝛼 = 0, so that in
particular 𝑁𝑋 = 𝑁𝑃 and 𝐾 (𝛼) = 𝐾𝑃 . In this setting the above result is well known.

In the sequel we will also need the following result, for 𝑃 ∈ Pst, and 𝑄 = 𝑣−1𝑃𝑣,
𝑣 ∈ 𝑁𝐾 (𝔞).

Lemma 6.4 Let 𝑓 : 𝐺 → 𝐶 be right 𝑀𝑄 𝑁̄𝑄-invariant, and let 𝑅𝑎 𝑓 = 𝑎2𝜌𝑄 𝑓 for all
𝑎 ∈ 𝐴𝑄 . If 𝑓 |𝐾 is Lebesgue integrable, then∫

𝐾

𝑓 (𝑘) 𝑑𝑘 =

∫
𝑁𝑃

𝑓 (𝑛𝑣) 𝑑𝑛.

Proof. The function 𝐿𝑣 𝑓 : 𝐺 → C has the same 𝑄̄-equivariance on the right at 𝑓 . In
view of Remark 6.3 we obtain∫

𝐾

𝐿𝑣 𝑓 (𝑘) 𝑑𝑘 =

∫
𝑁𝑄

𝑓 (𝑣𝑛𝑄𝑣−1𝑣)𝑑𝑛𝑄 =

∫
𝑁𝑃

𝑓 (𝑛𝑣)𝑑𝑣.

Since 𝑑𝑘 is left invariant, the desired result follows. 2
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7 Comparison of 𝐽 with 𝐽 (𝛼)

The preceding discussion applies to any Whittaker datum (𝐺 = 𝐾𝐴𝑁0, 𝜒). In particular
it applies to the group𝐺 (𝛼) = 𝐾 (𝛼)𝐴𝑁 (𝛼)0 ,with the character 𝜒(𝛼) = 𝜒 |

𝑁
(𝛼)
0

; see Lemma
4.9 and its adjacent parabolic subgroups 𝑃(𝛼) = 𝑃 ∩ 𝐺 (𝛼) and 𝑄 (𝛼) = 𝑄 ∩ 𝐺 (𝛼) .
Their respective nilpotent radicals are 𝑁𝛼 and 𝑁̄𝛼 . Accordingly, 𝑃(𝛼) and 𝑄 (𝛼) are
opposite parabolic subgroups of 𝐺 (𝛼) with split components 𝐴𝑃. Since they are
maximal parabolic subgroups of 𝐺 (𝛼) they are adjacent. The element 𝑣 belongs to the
normalizer in 𝐾 (𝛼) of 𝔞. In particular, from 𝑃 = 𝑣𝑄𝑣−1 it follows that 𝑃(𝛼) = 𝑣𝑄 (𝛼)𝑣−1.

Thus, 𝑁0𝑣𝑄 is open in 𝐺 and 𝑁 (𝛼)0 𝑣𝑄 (𝛼) is open in 𝐺 (𝛼) . Moreover, 𝑁0𝑣𝑄̄ = 𝑁𝑃𝑣𝑄̄

and 𝑁 (𝛼)0 𝑣𝑄̄ (𝛼) = 𝑁𝛼𝑣𝑄̄ (𝛼) .
We recall that 𝔫𝑃 = 𝔫𝛼 ⊕ 𝔫𝑋 . Since both 𝔫𝛼 and 𝔫𝑋 are subalgebras of 𝔫𝑃 and each

of them is a direct sum of root spaces 𝔤𝛽 with 𝛽 ∈ Σ(𝔞), it follows that the multiplication
map 𝑁𝑋 × 𝑁𝛼 → 𝑁𝑃 is a diffeomorphism. Since 𝐺 (𝛼) normalizes 𝑁𝑋 , it follows that
𝑁𝑋 is a normal subgroup of 𝑁𝑃 and

𝑁𝑃 = 𝑁𝑋𝑁𝛼 = 𝑁𝑋 ⋊ 𝑁𝛼 (semidirect product).

We note that also 𝑁𝑋𝐾 (𝛼) is a closed subgroup of 𝐺; clearly

𝑁𝑋𝐾
(𝛼) = 𝑁𝑋 ⋊ 𝐾 (𝛼) .

For 𝜈 ∈ 𝔞∗
𝑃C

with Re 𝜈 strictly𝑃(𝛼)-dominant the Whittaker vector 𝑗 (𝛼) (𝑃̄(𝛼) , 𝜎, 𝜈, 𝜂)
is represented by the function 𝜀(𝛼) : 𝐺 (𝛼) → C defined by

𝜀
(𝛼)
𝜈 (𝑛𝛼𝑚𝑎𝑛̄𝛼) = 𝜒(𝑛𝛼)𝜎(𝑚)−1𝑎−𝜈+𝜌𝑃 (𝛼) 𝜂

for (𝑛𝛼, 𝑚, 𝑎, 𝑛̄𝛼) ∈ 𝑁𝛼×𝑀𝑃×𝐴𝑃× 𝑁̄𝛼 and by zero on the complement of 𝑁𝛼𝑀𝑃𝐴𝑃𝑁̄𝛼 .

For 𝜇 ∈ 𝔞∗
𝑃C

the function 𝜑(𝛼)𝜇 : 𝐺 (𝛼) → C is defined by

𝜑
(𝛼)
𝜇 (𝑘𝛼𝑚𝑎𝑛𝛼) = 𝑎𝜇,

for (𝑘𝛼, 𝑚, 𝑎, 𝑛𝛼) ∈ 𝐾 (𝛼) × 𝑀𝑃 × 𝐴𝑃 × 𝑁𝑃 . We define the character 𝜉 : 𝐴𝑃 → R by

𝜉 (𝑎) = 𝑎𝜌𝑃−𝜌𝑃 (𝛼)

and note that 𝜉 = 1 on expR𝐻𝛼 . Now expR𝐻𝛼 ⊂ 𝑀𝑋 = ◦𝐺 (𝛼) commutes with
𝐴𝑋 = exp ker𝛼. It follows that 𝜉 uniquely extends to a character of 𝐺 (𝛼) which is 1 on
𝑀𝑋 . This extension is also denoted by 𝜉. The following result is straightforward.

Lemma 7.1 For all 𝜈, 𝜇 ∈ 𝔞∗
𝑃C
,

𝜀𝜈 |𝐺 (𝛼) = 𝜉𝜀
(𝛼)
𝜈 and 𝜑𝜇 |𝐺 (𝛼) = 𝜑

(𝛼)
𝜇 .
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As the character 𝜉 is only non-trivial on the center of𝐺 (𝛼) its role is easily understood
in the calculations that follow. From the lemma it follows that 𝜑𝜇𝜀𝜈−𝜇 restricts to
𝜉𝜑
(𝛼)
𝜇 𝜀

(𝛼)
𝜈−𝜇 . This suggests that 𝐽𝜈,𝜇 and 𝐽 (𝛼)𝜈,𝜇 might be related.

In fact, we will show that the following is valid.

Proposition 7.2 Let 𝑢 ∈ 𝐻∞𝜎 . Then, for (𝜈, 𝜇) ∈ 𝔞∗
𝑃C
× 𝔞∗

𝑃C
,

𝑢𝐽𝜈,𝜇 |𝑁𝛼
= 𝑢𝐽

(𝛼)
𝜈,𝜇 .

For the proof we need some preparation. First we will describe a direct relationship
between 𝜑𝜇 𝑗𝜈−𝜇 and 𝜑(𝛼)𝜇 𝑗

(𝛼)
𝜈−𝜇 .

Lemma 7.3 Let Ω ⊂ 𝔞∗
𝑃C
× 𝔞∗

𝑃C
be a bounded connected open subset which contains a

point (𝜇, 𝜈) such that Re (𝜈 − 𝜇) is 𝑃̄-dominant. There exists a positive integer 𝑟 such
that the following assertions are valid.

(a) The map (𝜇, 𝜈) ↦→ 𝑗𝜈−𝜇 is holomorphic Ω→ 𝐶−𝑟 (𝐾/𝐾𝑃 : 𝜎𝑃).

(b) For every 𝑓 ∈ 𝐶𝑟 (𝐾/𝐾𝑃 : 𝜎𝑃) the function 𝑁𝑋 ×Ω→ 𝐶𝑟 (𝐾 (𝛼)/𝐾𝑃 : 𝜎𝑃),

(𝑛𝑋 , 𝜈, 𝜇) ↦→ 𝐿−1
𝑛𝑋
(𝜑𝜇̄)𝐿−1

𝑛𝑋
( 𝑓𝑃,𝜎,−𝜈̄) |𝐾 (𝛼)

is smooth, and holomorphic in the variable (𝜈, 𝜇) from Ω.

(c) For every 𝑓 ∈ 𝐶𝑟 (𝐾/𝐾𝑃 : 𝜎𝑃) with support contained in 𝐾 ∩ 𝑁𝑃𝑃̄,

⟨𝜑𝜇 𝑗𝜈−𝜇 , 𝑓 ⟩ =
∫
𝑁𝑋

𝜒(𝑛𝑋)⟨ 𝑗 (𝛼)𝜈−𝜇 |𝐾 (𝛼) , 𝐿−1
𝑛𝑋
(𝜑𝜇̄)𝐿−1

𝑛𝑋
( 𝑓𝑃̄,𝜎,−𝜈̄) |𝐾 (𝛼) ⟩ 𝑑𝑛𝑋

for all (𝜈, 𝜇) ∈ Ω.

Proof. Assertion (a) follows from Corollary 1.12. Assertion (b) is obvious. We address
(c). The set Ω0 of points (𝜇, 𝜈) ∈ Ω such the real part Re (𝜈− 𝜇) is strictly 𝑃̄-dominant
is non-empty and open. Let (𝜈, 𝜇) ∈ Ω0; then it follows that for 𝑓 ∈ 𝐶𝑟 (𝐾/𝐾𝑃 : 𝜎𝑃)
the function ⟨𝜑𝜇 𝑗𝜈−𝜇 , 𝑓 ⟩𝜎 is integrable over 𝐾/𝐾𝑃 . We now observe that the function
𝐹 : 𝑥 ↦→ ⟨𝜑𝜇 (𝑥) 𝑗𝜈−𝜇 (𝑥) , 𝑓𝑄,𝜎,−𝜈̄ (𝑥)⟩𝜎 on 𝐺 is right 𝑀𝑃𝑁̄𝑃-invariant, and satisfies
𝑅𝑎𝐹 = 𝑎2𝜌𝑃𝐹 for all 𝑎 ∈ 𝐴𝑃 .In view of Lemma 6.2 it follows that

⟨𝜑𝜇 𝑗𝜈−𝜇 , 𝑓 ⟩ =

∫
𝑁𝑋×𝐾 (𝛼)

⟨𝜀𝜈−𝜇 (𝑛𝑋 𝑘𝛼) , (𝜑𝜇̄ 𝑓𝑃̄,𝜎,−𝜈̄) (𝑛𝑋 𝑘𝛼)⟩ 𝑑𝑛𝑋 𝑑𝑘𝛼 =

=

∫
𝑁𝑋

𝜒(𝑛𝑋)
∫
𝐾 (𝛼)
⟨𝜀(𝛼)𝜈−𝜇 (𝑘𝛼) , 𝜑𝜇̄ (𝑛𝑋 𝑘𝛼) 𝑓𝑃̄,𝜎,−𝜈̄) (𝑛𝑋 𝑘𝛼)⟩ 𝑑𝑘𝛼𝑑𝑛𝑋

=

∫
𝑁𝑋

𝜒(𝑛𝑋)⟨ 𝑗 (𝛼)𝜈−𝜇 |𝐾 (𝛼) , 𝐿𝑛−1
𝑋
(𝜑𝜇̄)𝐿𝑛−1

𝑋
( 𝑓𝑃̄,𝜎,−𝜈̄) |𝐾 (𝛼) ⟩ 𝑑𝑛𝑋 .

This establishes the identity of (c) for (𝜈, 𝜇) ∈ Ω0.
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If 𝑓 satisfies the mentioned support condition, it follows that there exists a compact
set K ⊂ 𝑁𝑋 such that

𝐿𝑛−1
𝑋
( 𝑓𝑃̄,𝜎,−𝜈̄) |𝐾 (𝛼) = 0

for all 𝜈 ∈ 𝔞∗
𝑃C

and all 𝑛𝑋 ∈ 𝑁𝑋 \ K . From this it is readily seen that the expressions
on both sides of the equation in (c) are holomorphic functions of (𝜈, 𝜇) ∈ Ω. The full
result now follows by analytic continuation. 2

For 𝜑𝑋 ∈ 𝐶∞𝑐 (𝑁𝑋) and 𝜑𝛼 ∈ 𝐶∞𝑐 (𝑁𝛼), define 𝜑𝑋 ⊗ 𝜑𝛼 ∈ 𝐶∞𝑐 (𝑁𝑃) by

𝜑𝑋 ⊗ 𝜑𝛼 (𝑛𝑋𝑛𝛼) = 𝜑𝑋 (𝑛𝑋)𝜑𝛼 (𝑛𝛼).

We note that for 𝜈 ∈ 𝔞∗
𝑃C
. According to the definition,

‵
𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) ∈ 𝐶𝑟 (𝐺/𝑄̄ : 𝜎 : 𝜈)

is given by

‵
𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) (𝑛𝑋𝑛𝛼𝑣𝑚𝑎𝑛) = 𝑎−𝜈+𝜌𝑄𝜑𝑋 (𝑛𝑋)𝜑𝛼 (𝑛𝛼) 𝜎(𝑚)−1𝑢

for (𝑛𝑋 , 𝑛𝛼, 𝑚𝑎𝑛̄) ∈ 𝑁𝑋 × 𝑁𝛼 ×𝑀𝑃𝐴𝑃𝑁̄𝑄 and by ‵
𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) = 0 on 𝐺 \ 𝑁𝑃𝑣𝑄̄. We

recall that
𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) = ‵

𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) |𝐾 ∈ 𝐶𝑟 (𝐾/𝐾𝑃 : 𝜎𝑃).

The map 𝑢𝑇
(𝛼)
𝜈 is defined similarly for the group 𝐺 (𝛼); note that 𝑁𝑃 (𝛼) = 𝑁𝛼 . For

𝜑 ∈ 𝐶𝑟𝑐 (𝑁𝛼), 𝑢 ∈ 𝐻∞𝜎 and 𝜈 ∈ 𝔞∗
𝑃C

we define ‵
𝑢𝑇
(𝛼)
𝜈 (𝜑) ∈ 𝐶𝑟 (𝐺 (𝛼)/𝑄̄ (𝛼) : 𝜎 : 𝜈) by

‵
𝑢𝑇
(𝛼)
𝜈 (𝜑) (𝑛𝛼𝑣𝑚𝑎𝑛̄) = 𝑎−𝜈+𝜌𝑄 (𝛼)𝜎(𝑚)−1𝜑(𝑛𝛼)𝑢

for 𝑛𝛼𝑣𝑚𝑎𝑛̄ ∈ 𝑁𝛼𝑣𝑀𝑃𝐴𝑃𝑁̄𝑄 (𝛼) and by ‵
𝑢𝑇
(𝛼)
𝜈 (𝜑) = 0 on 𝐺 (𝛼) \ 𝑁𝛼𝑣𝑄̄ (𝛼) . Finally,

𝑢𝑇
(𝛼)
𝜈 : 𝐶𝑟𝑐 (𝑁𝛼) → 𝐶𝑟 (𝐾 (𝛼)/𝐾𝑃 : 𝜎𝑃) is defined by

𝑢𝑇
(𝛼)
𝜈 (𝜑) = ‵

𝑢𝑇𝜈 (𝜑) |𝐾 (𝛼) , (𝜑 ∈ 𝐶𝑟𝑐 (𝑁𝛼)).

Suppose now that 𝑅 is either of the parabolic subgroups 𝑃 and 𝑄. In this situation,
the natural multiplication map 𝑁𝑋 × 𝐾 (𝛼) ×𝐾𝑃

𝑅̄ → 𝐺 is an open embedding. If
𝜑𝑋 ∈ 𝐶𝑟𝑐 (𝑁𝑋), 𝜓𝛼 ∈ 𝐶𝑟 (𝐾 (𝛼)/𝐾𝑃 : 𝜎𝑃) and 𝜈 ∈ 𝔞∗

𝑃C
, we define the 𝐶𝑟-function

𝑆𝑅,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) : 𝐺 → 𝐻𝜎 by

‵𝑆𝑅,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) (𝑛𝑋 𝑘𝛼𝑚𝑎𝑛̄) = 𝑎−𝜈+𝜌𝑅𝜑𝑋 (𝑛𝑋)𝜓𝛼 (𝑘𝛼)𝜎(𝑚)−1𝑢,

for (𝑛𝑋 , 𝑘𝛼, 𝑚𝑎𝑛̄) ∈ 𝑁𝑋 × 𝐾𝛼 × 𝑅̄, and by ‵𝑆𝑅,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) = 0 on 𝐺 \ 𝑁𝑋𝐾𝛼 𝑅̄. Thus,
𝑆𝑅,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) ∈ 𝐶𝑟 (𝐺/𝑅 : 𝜎 : 𝜈). As before, we define

𝑆𝑅,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) = ‵𝑆𝑅,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) |𝐾
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Lemma 7.4 Let 𝑢 ∈ 𝐻∞𝜎 . Then for 𝜑𝑋 ∈ 𝐶𝑟𝑐 (𝑁𝑋) and 𝜑𝛼 ∈ 𝐶𝑟𝑐 (𝑁𝛼),

𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) = 𝑆𝑄,𝜈
(
𝜑𝑋 ⊗ 𝑢𝑇

(𝛼)
𝜈 (𝜑𝛼)

)
,

for 𝜈 ∈ 𝔞∗
𝑃C
.

Proof. We will use the notation 𝜎𝜈 for the character of 𝑄̄ given by 𝜎𝜈 (𝑚𝑎𝑛̄) =

𝑎𝜈−𝜌𝑄𝜎(𝑚).
Let 𝑘 ∈ 𝐾 and suppose 𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) (𝑘) ≠ 0. Then there exist 𝑛𝑋 ∈ 𝑁𝑋 and

𝑛𝛼 ∈ 𝑁𝛼 such that 𝑘 = 𝑛𝑋𝑛𝛼𝑣𝑞 with 𝑞 ∈ 𝑄̄ and

𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) (𝑘) = 𝜎𝜈 (𝑞)−1(𝜑𝑋 (𝑛𝑋)𝜑𝛼 (𝑛𝛼)𝑢).

In particular, 𝜑𝛼 (𝑛𝛼) ≠ 0. Write 𝑛𝛼𝑣 = 𝑘𝛼𝑞𝛼, with 𝑘𝛼 ∈ 𝐾 (𝛼) and 𝑞𝛼 ∈ 𝔮̄(𝛼) . Then
𝑘 = 𝑛𝑋 𝑘𝛼𝑞𝛼𝑞. Hence,

𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝑢𝑇
(𝛼)
𝜈 𝜑𝛼) (𝑘)

= 𝜎𝜈 (𝑞𝛼𝑞)−1𝜑𝑋 (𝑛𝑋)
(
𝑢𝑇
(𝛼)
𝜈 𝜑𝛼 (𝑘𝛼)

)
= 𝜎𝜈 (𝑞𝛼𝑞)−1𝜑𝑋 (𝑛𝑋)𝜎𝜈 (𝑞𝛼)𝜑𝛼 (𝑛𝛼)𝑢
= 𝜎𝜈 (𝑞)−1𝜑𝑋 (𝑛𝑋) 𝜑𝛼 (𝑛𝛼)𝑢
= 𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) (𝑘). (7.1)

Conversely, suppose that

𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝑢𝑇
(𝛼)
𝜈 𝜑𝛼) (𝑘) ≠ 0.

Then there exist 𝑛𝑋 ∈ 𝑁𝑋 , 𝑘𝛼 ∈ 𝐾𝛼 such that 𝑘 = 𝑛𝑋 𝑘𝛼𝑞 with 𝑞 ∈ 𝑄̄. Moreover,

𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝑢𝑇
(𝛼)
𝜈 𝜑𝛼) (𝑘) = 𝜎(𝑞)−1𝜑𝑋 (𝑛𝑋) 𝑢𝑇 (𝛼)𝜈 (𝜑𝛼) (𝑘𝛼).

In particular, 𝑢𝑇 (𝛼)𝜈 (𝜑𝛼) (𝑘𝛼) ≠ 0. Hence, there exist 𝑛𝛼 ∈ 𝑁𝛼 and 𝑞𝛼 ∈ 𝑄̄ (𝛼) such that
𝑘𝛼 = 𝑛𝛼𝑣𝔮̄

(𝛼) . Now
𝑢𝑇
(𝛼)
𝜈 𝜑𝛼 (𝑘𝛼) = 𝜎𝜈 (𝑞𝛼)−1𝜑𝛼 (𝑛𝛼).

We now have 𝑘 = 𝑛𝑋 𝑘𝛼𝑞 and 𝑘𝛼 = 𝑛𝛼𝑣𝑞𝛼 so that 𝑘 = 𝑛𝑋𝑛𝛼𝑣𝑞𝛼𝑞. It follows that

𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) (𝑘)
= 𝜎𝜈 (𝑞𝛼𝑞)−1𝜑𝑋 (𝑛𝑋)𝜑𝛼 (𝑛𝛼)𝑢
= 𝜎𝜈 (𝑞)−1𝜑𝑋 (𝑛𝑋) (𝑢𝑇 (𝛼)𝜈 𝜑𝛼) (𝑘𝛼)
= 𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝑢𝑇

(𝛼)
𝜈 𝜑𝛼) (𝑘).

Thus, we have shown that for 𝑘 ∈ 𝐾, 𝑢𝑇𝜈 (𝜑𝑋 ⊗ 𝜑𝛼) (𝑘) is non-zero if and only if
𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝑢𝑇

(𝛼)
𝜈 𝜑𝛼) (𝑘) is non-zero, and that the desired equality is valid at such 𝑘. In

the remaining points 𝑘 , both functions are zero, hence also equal. 2
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Lemma 7.5 Suppose that Ω is a bounded connected open subset of 𝔞∗
𝑃C
, containing a

point 𝜈 such that Re 𝜈 is 𝑄̄-dominant. Let 𝑡 dominate both the order of 𝐴(𝑃̄, 𝑄̄, 𝜎, · )
over Ω and the order of 𝐴(𝛼) (𝑃̄(𝛼) , 𝑄̄ (𝛼) , 𝜎, 𝜈) over Ω. Then for 𝜑𝑋 ∈ 𝐶𝑟+𝑡𝑐 (𝑁𝑋) and
𝜓 ∈ 𝐶𝑟+𝑡𝑐 (𝐾𝛼/𝐾𝑃 : 𝜎𝑃),

𝐴(𝑃̄, 𝑄̄, 𝜎, 𝜈)𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) = 𝑆𝑃,𝜈 (𝜑𝑋 ⊗ 𝐴(𝛼) (𝑃̄(𝛼) , 𝑄̄ (𝛼) , 𝜎, 𝜈)𝜓𝛼).

as meromorphic functions of 𝜈 ∈ Ω with values in 𝐶𝑟 (𝐾/𝐾𝑃 : 𝜎).

Proof. The statements about meromorphy are well-known, and serve here to allow
meromorphic continuation of identities. Let Ω0 be the set of 𝜈 ∈ Ω such that Re 𝜈 is
𝑄̄-dominant.Then Ω0 is open and non-emtpy. For 𝜈 ∈ Ω0 the intertwining operators
are given by the familiar integral formulas. We use the abbreviated notation 𝐴(𝜈) and
𝐴(𝛼) (𝜈) for the above mentioned intertwining operators. Then it suffices to show that

𝐴(𝜈) ‵𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) = ‵𝑆𝑃,𝜈 (𝜑𝑋 ⊗ 𝐴(𝛼) (𝜈)𝜓𝛼)

at each point 𝑔 := 𝑛𝑋 𝑘𝛼𝑝 ∈ 𝑁𝑋𝐾 (𝛼) 𝑃̄. Since the elements on both sides of the equation
belong to 𝐶𝑟 (𝐺/𝑃̄ : 𝜎 : 𝜈), we may as well assume that 𝑔 = 𝑛𝑋 𝑘𝛼 . Then

𝐴(𝜈) ‵𝑆𝑃,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) (𝑔) =
∫
𝑁̄𝛼

‵𝑆𝑃,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) (𝑛𝑋 𝑘𝛼𝑛̄𝛼)𝑑𝑛̄𝛼 .

Since 𝑛̄𝛼 ∈ 𝐺 (𝛼) we may write 𝑛̄𝛼 = 𝜅(𝑛̄𝛼)𝑝(𝑛𝛼) with 𝜅(𝑛̄𝛼) ∈ 𝐾 (𝛼) and 𝑝(𝑛̄𝛼) ∈ 𝑃̄(𝛼)
smoothly depending on 𝑛̄𝛼 . Therefore,

𝐴(𝜈) ‵𝑆𝑃,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) (𝑔) =

∫
𝑁̄𝛼

𝜎𝜈 (𝑝(𝑛̄𝛼))−1 ‵𝑆𝑃,𝜈 (𝜑𝑋 ⊗ 𝜓𝛼) (𝑛𝑋 𝑘𝛼𝜅(𝑛̄𝛼))𝑑𝑛̄𝛼

=

∫
𝑁̄𝛼

𝜎𝜈 (𝑝(𝑛̄𝛼))−1𝜑𝑋 (𝑛𝑋)𝜓𝛼 (𝑘𝛼𝜅(𝑛̄𝛼)) 𝑑𝑛̄𝛼

= 𝜑𝑋 (𝑛𝑋)
∫
𝑁̄𝛼

𝜎𝜈 (𝑝(𝑛̄𝛼))−1𝜓𝛼 (𝑘𝛼𝜅(𝑛̄𝛼)) 𝑑𝑛̄𝛼

= 𝜑𝑋 (𝑛𝑋)
∫
𝑁̄𝛼

𝜓𝛼 (𝑘𝛼𝑛̄𝛼) 𝑑𝑛̄𝛼 = 𝜑𝑋 (𝑛𝑋) [𝐴(𝛼) (𝜈)𝜓𝛼] (𝑘𝛼)

= ‵𝑆𝑄,𝜈 (𝜑𝑋 ⊗ 𝐴(𝛼) (𝜈)𝜓𝛼) (𝑔).

2

Proof of Prop. 7.2. Suppose that 𝑢 ∈ 𝐻∞𝜎 is fixed. It suffices to prove the identity
for (𝜈, 𝜇) ∈ Ω, where Ω is an open subset of 𝔞∗

𝑃C
× 𝔞∗

𝑃C
satisfying the conditions of

Lemmas 7.3 and 7.5.
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Let 𝜑𝑋 ∈ 𝐶∞𝑐 (𝑁𝑋) and 𝜑𝛼 ∈ 𝐶∞𝑐 (𝑁𝛼); then∫
𝑁𝑋×𝑁𝛼

𝑢𝐽𝜈,𝜇 (𝑛𝑋 , 𝑛𝛼) 𝜑𝑋 (𝑛𝑋) 𝜑𝛼 (𝑛𝛼) 𝑑𝑛𝑋 𝑑𝑛𝛼 (7.2)

= 𝑢𝐽𝜈,𝜇 (𝜑𝑋 ⊗ 𝜑𝛼)
= ⟨𝐽𝜈,𝜇 , 𝑢𝑇−𝜈̄ (𝜑̄𝑋 ⊗ 𝜑̄𝛼)⟩
= ⟨𝐽𝜈,𝜇 , 𝑆𝑄,−𝜈̄ (𝜑̄𝑋 ⊗ 𝑢𝑇

(𝛼)
−𝜈̄ (𝜑̄𝛼)⟩

= ⟨𝐴(𝑄̄, 𝑃̄, 𝜎, 𝜈) (𝜑𝜇 𝑗𝜈−𝜇) , 𝑆𝑄,−𝜈̄ (𝜑̄𝑋 ⊗ 𝑢𝑇
(𝛼)
−𝜈̄ (𝜑̄𝛼)⟩

= ⟨𝜑𝜇 𝑗𝜈−𝜇 , 𝐴(−𝜈̄)𝑆𝑄,−𝜈̄ (𝜑̄𝑋 ⊗ 𝜓̄𝛼,−𝜈̄)⟩
= ⟨𝜑𝜇 𝑗𝜈−𝜇 , 𝑆𝑃,−𝜈̄ (𝜑̄𝑋 ⊗ 𝐴(𝛼) (−𝜈̄)𝜓̄𝛼,−𝜈̄)⟩ (7.3)

where we have written 𝐴(−𝜈̄) = 𝐴(𝑃̄, 𝑄̄, 𝜎,−𝜈̄), 𝐴(𝛼) (−𝜈̄) = 𝐴(𝛼) (𝑃̄(𝛼) , 𝑄̄ (𝛼) , 𝜎,−𝜈̄)
and 𝜓̄𝛼,−𝜈̄ = 𝑇 (𝛼)−𝜈̄ (𝜑̄𝛼). Put

𝐹 = 𝑆𝑃,−𝜈̄ (𝜑̄𝑋 ⊗ 𝐴(𝛼) (−𝜈̄)𝜓̄𝛼,−𝜈̄).
Then 𝐹 ∈ 𝐶𝑟 (𝐾/𝐾𝑃 : 𝜎𝑃). Applying Lemma 7.3 with 𝐹 in place of 𝑓 , we find that
(7.3) equals

⟨𝜑𝜇 𝑗𝜈−𝜇 , 𝐹⟩ =
∫
𝑁𝑋

𝜒(𝑛𝑋)⟨ 𝑗 (𝛼)𝜈−𝜇 |𝐾 (𝛼) , 𝐿−1
𝑛𝑋
(𝜑𝜇̄)𝐿−1

𝑛𝑋
(𝐹𝑃,𝜎,−𝜈̄) |𝐾 (𝛼) ⟩ 𝑑𝑛𝑋 . (7.4)

Now
𝐹𝑃,𝜎,−𝜈̄ (𝑛𝑋 𝑘𝛼) = 𝜑̄𝑋 (𝑛𝑋)𝐴(𝛼) (−𝜈̄)𝜓̄𝛼,−𝜈̄ (𝑘𝛼),

so that (7.4) equals∫
𝑁𝑋

𝜒(𝑛𝑋)𝜑𝑋 (𝑛𝑋)⟨ 𝑗 (𝛼)𝜈−𝜇 |𝐾 (𝛼) , 𝐿−1
𝑛𝑋
(𝜑𝜇̄)𝐴(𝛼) (−𝜈̄)𝜓̄𝛼,−𝜈̄ |𝐾 (𝛼) ⟩ 𝑑𝑛𝑋 . (7.5)

The equality of (7.2) with (7.5) for arbitrary 𝜑𝑋 ∈ 𝐶∞𝑐 (𝑁𝑋) implies that for every
𝑛𝑋 ∈ 𝑁𝑋 ,∫

𝑁𝛼

𝑢𝐽𝜈,𝜇 (𝑛𝑋 , 𝑛𝛼) 𝜑𝛼 (𝑛𝛼) 𝑑𝑛𝛼 = 𝜒(𝑛𝑋)⟨ 𝑗 (𝛼)𝜈−𝜇 |𝐾 (𝛼) , 𝐿−1
𝑛𝑋
(𝜑𝜇̄)𝐴(𝛼) (−𝜈̄)𝜓̄𝛼,−𝜈̄ |𝐾 (𝛼) ⟩.

Substituting 𝑛𝑋 = 𝑒, we find that∫
𝑁𝛼

𝑢𝐽𝜈,𝜇 (𝑒, 𝑛𝛼) 𝜑𝛼 (𝑛𝛼) 𝑑𝑛𝛼

= ⟨ 𝑗 (𝛼)𝜈−𝜇 |𝐾 (𝛼) , (𝜑𝜇̄)𝐴(𝛼) (−𝜈̄)𝜓̄𝛼,−𝜈̄ |𝐾 (𝛼) ⟩
= ⟨𝐴(𝛼) (𝑄̄ (𝛼) , 𝑃̄(𝛼) , 𝜎, 𝜈)𝜑(𝛼)𝜇 𝑗

(𝛼)
𝜈−𝜇 , 𝑢𝑇

(𝛼)
−𝜈̄ (𝜑̄𝛼)⟩

= 𝑢𝐽
(𝛼)
𝜈,𝜇 (𝜑𝛼) =

∫
𝑁𝛼

𝑢𝐽𝜈,𝜇 (𝑛𝛼)𝜑𝛼 (𝑛𝛼)𝑑𝑛𝛼 .

As this is valid for any 𝜑𝛼 ∈ 𝐶∞𝑐 (𝑁𝛼), we conclude that

𝑢𝐽𝜈,𝜇 (𝑒, 𝑛𝛼) = 𝑢𝐽
(𝛼)
𝜈,𝜇 (𝑛𝛼),

for all 𝑛𝛼 ∈ 𝑁𝛼 . 2
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8 Comparison of 𝐵 with 𝐵(𝛼), proof of Lemma 4.12
We retain the notation of the previous section.

Lemma 8.1 For every 𝑢 ∈ 𝐻∞𝜎 the assignment 𝜈 ↦→ 𝑢𝐽𝜈,0 is meromorphic 𝔞∗
𝑃C
→

𝐶∞(𝑁𝑃) and given by

𝑢𝐽𝜈,0(𝑛) = 𝜒(𝑛)⟨𝐵(𝑄̄, 𝑃̄, 𝜎, 𝜈)𝜂 , 𝑢⟩𝜎, (𝑛 ∈ 𝑁𝑃), (8.1)

as an identity of meromorphic functions of the variable 𝜈.

It follows from the assertion about the singular set in Theorem 5.6 that 𝜈 ↦→ 𝑢𝐽𝜈,0
is a genuine meromorphic function of 𝜈 with values in 𝐶∞(𝑁𝑃). On the other hand,
by definition, for regular values of 𝜈 ∈ 𝔞∗

𝑃C
the following identity of elements of

𝐶−∞(𝐺/𝑄̄ : 𝜎 : 𝜈)𝜒 is valid:

𝐽𝜈,0 = 𝐴(𝑄̄, 𝑃̄, 𝜎, 𝜈)𝜑0 𝑗 (𝑃̄, 𝜎, 𝜂) = 𝑗 (𝑄̄, 𝜎, 𝜈)𝐵(𝜈)𝜂,

where 𝐵(𝜈) = 𝐵(𝑄̄, 𝑃̄, 𝜎, 𝜈). From this equality combined with Lemma 1.7 and [2,
Thm. 8.6] it follows that for regular 𝜈, the generalized function 𝐽𝜈,0 ∈ 𝐶−∞(𝐺/𝑄̄ : 𝜎 :
𝜈) is continuous 𝐻−∞𝜎 -valued on the open set 𝑁𝑃𝑣𝑄̄ where it is given by

𝐽𝜈,0 |𝑁𝑃𝑣𝑄̄
(𝑛𝑣𝑚𝑎𝑛̄) = 𝜒(𝑛)𝑎−𝜈+𝜌𝑄𝜎−1(𝑚)𝐵(𝜈)𝜂, (𝑛 ∈ 𝑁𝑃, 𝑚𝑎𝑛̄ ∈ 𝑄̄),

in the sense that the identity is valid after testing with any function 𝜑 from 𝐶∞(𝐺/𝑄̄ :
𝜎 : −𝜈̄) whose support is contained in 𝑁𝑃𝑣𝑄̄, i.e.,

⟨𝐽𝜈,0 , 𝜑⟩ =
∫
𝐾

⟨𝐽𝜈,0 |𝑁𝑃𝑣𝑄̄
, 𝜑⟩𝜎 (𝑘) 𝑑𝑘.

Let 𝑢 ∈ 𝐻∞𝜎 ; then for any 𝑓 ∈ 𝐶∞𝑐 (𝑁𝑃) the function 𝜑 = 𝑢𝑇−𝜈̄ ( 𝑓 ) is of this type.
The function 𝐹 := ⟨𝐽𝜈,0 , 𝑢𝑇−𝜈̄ ( 𝑓 )⟩𝜎 is a continuous function 𝐺 → C which is right
𝑀𝑄 𝑁̄𝑄-invariant and transforming according to the rule 𝑅𝑎𝐹 = 𝑒2𝜌𝑄𝐹. Hence, by
Lemma 6.4 its integral over 𝐾 is given by

⟨𝐽𝜈,0 , 𝑢𝑇−𝜈̄ ( 𝑓 )⟩ =

∫
𝑁𝑃

⟨𝐽𝜈,0(𝑛𝑣) , 𝑢𝑇−𝜈̄ ( 𝑓 ) (𝑛𝑣)⟩ 𝑑𝑛 (8.2)

=

∫
𝑁𝑃

⟨𝐽𝜈,0(𝑛𝑣) , 𝑓 (𝑛)𝑢⟩ 𝑑𝑛

=

∫
𝑁𝑃

𝜒(𝑛)⟨𝐵(𝜈)𝜂 , 𝑢⟩ 𝑓 (𝑛) 𝑑𝑛. (8.3)

The expression on the left-hand side of (8.2) is equal to

⟨𝐽𝜈,0 , 𝑢𝑇−𝜈̄ ( 𝑓 )⟩ = 𝑢𝐽𝜈,0( 𝑓 ) =
∫
𝑁𝑃

𝑓 (𝑛)𝑢𝐽𝜈,0(𝑛) 𝑑𝑛 (8.4)

see the text preceding Theorem 5.6. It follows that the integral in 8.4 is equal to the
integral in (8.3) for all 𝑓 ∈ 𝐶∞𝑐 (𝑁𝑃). Since 𝑢𝐽𝜈,0 and 𝜒 are continuous functions on 𝑁𝑃
the desired identity follows. 2
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End of proof Lemma 4.12. All arguments presented so far in this section are valid
for the triple 𝐺 (𝛼) , 𝑃(𝛼) , 𝑄 (𝛼) = 𝑃̄(𝛼) in place of 𝐺, 𝑃,𝑄. In particular, if 𝑢 ∈ 𝐻∞𝜎 , then
the function 𝑢𝐽

(𝛼)
𝜈,0 ∈ 𝐶

∞(𝑁𝛼) depends meromorphically on 𝜈 ∈ 𝔞∗
𝑃C

and is given by

𝑢𝐽
(𝛼)
𝜈,0 (𝑛) = 𝜒(𝛼) (𝑛)⟨𝐵(𝛼) (𝑄̄ (𝛼) , 𝑃̄(𝛼) , 𝜎, 𝜈)𝜂 , 𝑢⟩ (8.5)

for 𝑛 ∈ 𝑁𝑃 (𝛼) = 𝑁𝛼 . From Proposition 7.2 it follows that

𝑢𝐽𝜈,0(𝑒) = 𝑢𝐽
(𝛼)
𝜈,0 (𝑒)

as meromorphic functions of (𝜈, 𝜇) ∈ 𝔞∗
𝑃C
× 𝔞∗

𝑃C
. Combining this with (8.5) and (8.1)

we obtain that

⟨𝐵(𝑄̄, 𝑃̄, 𝜎, 𝜈)𝜂 , 𝑢⟩ = ⟨𝐵(𝛼) (𝑄̄ (𝛼) , 𝑃̄(𝛼) , 𝜎, 𝜈)𝜂 , 𝑢⟩.
Since this holds for every 𝑢 ∈ 𝐻∞𝜎 the proof is complete. 2

9 The C-functions and the Maass–Selberg relations
From now on we assume that 𝔱 ⊂ 𝔪 is maximal abelian, so that 𝔥 = 𝔱⊕𝔞 is a maximally
split Cartan subalgebra of 𝔤. Let 𝑅 ∈ P . We write ∗𝔥𝑅 for the orthocomplement of 𝔞𝑅
in 𝔥. This is a maximally split Cartan subalgebra of 𝔪𝑅, which decomposes as

∗𝔥𝑅 = 𝔱 ⊕ ∗𝔞𝑅 .
We consider the (𝜏-spherical) Whittaker integral Wh(𝑅, 𝜓, 𝜈), for 𝜓 ∈ A2,𝑅 =

A2(𝜏 : 𝑀𝑅/𝑀𝑅 ∩ 𝑣−1
𝑅
𝑁0𝑣𝑅 : 𝜒𝑅). If 𝑅 is non-cuspidal, then A2,𝑅 = 0 so that the

Whittaker integral is trivial. Therefore, we assume 𝑅 to be cuspidal.
Let Λ ∈ ∗𝔥∗

𝑅C
be the infinitesimal character of a representation of the discrete series

of 𝑀𝑅 . For 𝜀 > 0 we define 𝔞∗
𝑅
(𝜀) = {𝜈 ∈ 𝔞∗

𝑅C
| |Re (𝜈) | < 𝜀}. For 𝑟, 𝜀 > 0 we consider

the set IIhol(Λ, 𝔞𝑅, 𝜀, 𝑟, 𝜏) of families of type IIhol as defined in [3, §7]. This set consists
of families ( 𝑓𝜈)𝜈∈𝔞∗

𝑅
(𝜀) of functions 𝑓𝜈 ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) such that

(a) the function 𝜈 ↦→ 𝑓𝜈 is holomorphic 𝔞∗
𝑅
(𝜀) → 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒);

(b) 𝑍 𝑓𝜈 = 𝛾(𝑍,Λ + 𝜈) 𝑓𝜈 (𝜈 ∈ 𝔞∗
𝑅
(𝜀), 𝑍 ∈ ℨ);

(c) for every 𝑢 ∈ 𝑈 (𝔤) there exist 𝐶 > 0 and 𝑁 ∈ N such that

|𝐿𝑢 𝑓𝜈 (𝑥) | ≤ 𝐶𝑁 | (𝑥, 𝜈) |𝑁𝑒−𝜌𝐻 (𝑥)+𝑟 |Re 𝜈 | |𝐻 (𝑥) |, ((𝜈, 𝑥) ∈ 𝔞∗𝑅 (𝜀) × 𝐺).

Here | (𝑥, 𝜈) | := (1 + |𝐻 (𝑥) |) (1 + |𝜈 |).
Lemma 9.1 Let for 𝜎 ∈ 𝑀𝑅,ds. There exist constants 𝜀 > 0, 𝑟 > 0 such that for every
𝜓2,𝑅,𝜎 ∈ A2,𝑅,𝜎 the family 𝔞∗

𝑅C
→ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒),
𝜈 ↦→Wh(𝑅, 𝜓, 𝜈)

belongs to IIhol(Λ, 𝔞𝑅, 𝜀, 𝑟, 𝜏); here Λ denotes the infinitesimal character of 𝜎.

Proof. See [3]. 2
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In particular, the function Wh(𝑅, 𝜓, 𝜈) belongs to the space A(𝜏 : 𝐺/𝑁0 : 𝜒) of
𝜏-spherical tempered Whittaker functions. More precisely, it follows from Lemma 9.1
and from the theory developed in [3] that for 𝜈 ∈ 𝑖𝔞∗, its constant term along a parabolic
subgroup 𝑄 ∈ P, defined as in [7, §1.4], is denoted by Wh𝑄 (𝑅, 𝜓, 𝜈).

It follows from the theory in [3] that for 𝜀 > 0 sufficiently close to zero this
constant term extends to a holomorphic function Wh𝑄 (𝑅, 𝜓, · ) on 𝔞∗

𝑅
(𝜀) with values

in 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒).
For this constant term to be non-zero for any particular value of 𝜈 ∈ 𝑖𝔞∗

𝑅
, the

parabolic subgroup 𝑄 needs to be standard (see [7] and [3]), and there needs to be a
standard parabolic subgroup 𝑃 contained in𝑄 such that 𝑃 ∼ 𝑅 (meaning that 𝔞𝑅 and 𝔞𝑃
are conjugate under𝑊 (𝔞)). In this case, if𝑄 ≁ 𝑅 the function𝑚 ↦→ 𝑅𝑎 [Wh𝑄 (𝑅, 𝜓, 𝜈)]
is perpendicular to 𝐿2

ds(𝜏 : 𝑀𝑄/𝑀𝑄∩𝑁0 : 𝜒) for all 𝑎 ∈ 𝐴𝑄 . If𝑄 ∼ 𝑅, then the function
𝑚 ↦→ 𝑅𝑎 [Wh𝑄 (𝑅, 𝜓, 𝜈)] belongs to 𝐿2

ds(𝜏 : 𝑀𝑄/𝑀𝑄 ∩ 𝑁0 : 𝜒) for all 𝑎 ∈ 𝐴𝑄 . In this
case, the precise form of the constant term is given in the following result.

If 𝑄, 𝑅 ∈ P then 𝑊 (𝔞𝑄 |𝔞𝑅) denotes the set of 𝑠 ∈ Hom(𝔞𝑅, 𝔞𝑄) for which there
exists a 𝑤 ∈ 𝑊 (𝔞) such that 𝑠 = 𝑤|𝔞𝑅 .

Theorem 9.2 Let 𝑅 ∈ P . Then for 𝜀 > 0 sufficiently small and for every 𝑄 ∈ Pst with
𝑄 ∼ 𝑅 there exist unique meromorphic functions 𝐶𝑄 |𝑅 (𝑠, · ) on 𝔞∗

𝑅C
(𝜀) with values in

Hom(A2,𝑅,A2,𝑄) such that for all 𝜈 ∈ 𝔞∗
𝑅C
(𝜀) and 𝜓 ∈ A2,𝑅, we have

Wh𝑄 (𝑅, 𝜓, 𝜈) (𝑚𝑎) =
∑︁

𝑠∈𝑊 (𝔞𝑄 |𝔞𝑅)
𝑎𝑠𝜈𝐶𝑄 |𝑅 (𝑠, 𝜈) (𝜓) (𝑚), (9.1)

for 𝑚 ∈ 𝑀𝑄 and 𝑎 ∈ 𝐴𝑄 , as meromorphic functions of 𝜈.

From now on we will assume that 𝜀 > 0 is sufficiently small. We proceed to
obtain more detailed information on the𝐶-functions from their characterization through
Theorem 9.2.

Lemma 9.3 Let 𝑄 ∈ Pst. Then for each 𝜎 ∈ 𝑀𝑄,ds appearing as an isotype in
A2(𝜏 : 𝑀𝑄/𝑀𝑄 ∩ 𝑁0 : 𝜒𝑄), and for all 𝑇 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) ⊗ 𝐻−∞𝜎,𝜒𝑄 , we have

𝐶𝑄 |𝑄 (1 : 𝜈)𝜓𝑇 = 𝜓[𝐴(𝑄,𝑄̄,𝜎,−𝜈)⊗𝐼]𝑇 (9.2)

as an identity of meromorphic functions of 𝜈 ∈ 𝔞∗
𝑄
(𝜀).

Proof. By linearity we may assume that 𝑇 = 𝜑 ⊗ 𝜂, with 𝜑 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝜎𝑄) and
𝜂 ∈ 𝐻−∞𝜎,𝜒𝑄 . Then by Definition 1.20 we have, for all 𝜈 ∈ 𝔞∗

𝑄C
with ⟨Re 𝜈 , 𝛼⟩ > 0 for all
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𝛼 ∈ Σ(𝔞𝑄 , 𝔫̄𝑄), and for all (𝑚, 𝑎) ∈ 𝑀𝑄 × 𝐴𝑄 ,

Wh(𝑄, 𝜓𝑇 , 𝜈) (𝑚𝑎) =
∫
𝐾/𝐾𝑄

⟨𝜑𝑄̄,𝜎,−𝜈 (𝑚𝑎𝑘) , 𝑗 (𝑄̄, 𝜎, 𝜈̄, 𝜂) (𝑘)⟩ 𝑑𝑘

=

∫
𝑁𝑄

⟨𝜑𝑄̄,𝜎,−𝜈 (𝑚𝑎𝑛) , 𝑗 (𝑄̄, 𝜎, 𝜈̄, 𝜂)(𝑛)⟩ 𝑑𝑛

= 𝑎𝜈−𝜌𝑄
∫
𝑁𝑄

⟨𝜑𝑄̄,𝜎,−𝜈 (𝑚𝑛) , 𝑗 (𝑄̄, 𝜎, 𝜈̄, 𝜂) (𝑎−1𝑛𝑎)⟩ 𝑑𝑛

= 𝑎𝜈−𝜌𝑄
∫
𝑁𝑄

𝜒(𝑎−1𝑛−1𝑎)⟨𝜎(𝑚)−1𝜑𝑄̄,𝜎,−𝜈 (𝑛) , 𝜂⟩ 𝑑𝑛.

The integrand of the final integral may be estimated by 𝜀(𝑛) := 𝐶𝑒(𝜈−𝜌𝑄̄)𝐻𝑄̄ (𝑛) , with
𝐶 > 0 uniform in 𝑛 ∈ 𝑁𝑄 and 𝑎 ∈ 𝐴𝑄 . Since the mentioned function 𝜀 is absolutely
integrable over 𝑁𝑄 , it follows by dominated convergence that

lim
𝑎
𝑄̄→∞

𝑎−(𝜈−𝜌𝑄)Wh(𝑄, 𝜓𝑇 , 𝜈) (𝑚𝑎) =
∫
𝑁𝑄

⟨𝜎(𝑚)−1𝜑𝑄̄,𝜎,−𝜈 (𝑛) , 𝜂⟩ 𝑑𝑛

= ⟨𝜎(𝑚)−1𝐴(𝑄, 𝑄̄, 𝜎,−𝜈)𝜑 , 𝜂⟩ 𝑑𝑛 = 𝜓[𝐴(𝑄,𝑄̄,𝜎,−𝜈)𝜑⊗𝜂] (𝑚).

Here the limit means that 𝑎𝛼 →∞ for each 𝑄̄-root 𝛼.On the other hand, it follows from
(9.1) that for 𝜈 ∈ 𝔞∗

𝑄
(𝜀) with Re 𝜈 𝑄̄-dominant the limit is given by 𝐶𝑄 |𝑄 (1 : 𝜈)𝜓𝑇 .

This establishes (4.2) for all 𝜈 in a non-empty open subset of 𝔞∗
𝑄
(𝜀). The validity of

(4.2) for all generic 𝜈 ∈ 𝔞∗
𝑄
(𝜀) follows by application of analytic continuation. 2

Lemma 9.4 Let 𝑃, 𝑃′ ∈ P have the same split component and suppose 𝜎 ∈ 𝑀𝑃,ds. If
𝑇 is an element of 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) ⊗ 𝐻−∞𝑃,𝜒𝑃 , then for generic 𝜈 ∈ 𝔞∗

𝑃
(𝜀),

Wh(𝑃, 𝜓𝑇 , 𝜈) = Wh(𝑃′, 𝜓[𝐴(𝑃̄,𝑃̄′,𝜎,−𝜈)−1⊗𝐵(𝑃̄′,𝑃̄,𝜎,𝜈̄)]𝑇 , 𝜈). (9.3)

Proof. We may assume that 𝑇 = 𝜑 ⊗ 𝜂. It follows from Lemma 2.7 that

𝐴(𝑃̄′, 𝑃̄, 𝜎, 𝜈) 𝑗 (𝑃̄, 𝜎, 𝜈)𝜂 = 𝑗 (𝑃̄′, 𝜎, 𝜈)𝐵(𝑃̄′, 𝑃̄, 𝜎, 𝜈)𝜂.

Using this and the identity 𝐴(𝑃̄, 𝑃̄′, 𝜎, 𝜈̄)∗ = 𝐴(𝑃̄′, 𝑃̄, 𝜎,−𝜈), we infer that

Wh(𝑃, 𝜓𝑇 , 𝜈) (𝑥) = ⟨𝜋𝑃̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝑗 (𝑃̄, 𝜎, 𝜈̄)𝜂⟩
= ⟨𝜋𝑃̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝐴(𝑃̄′, 𝑃̄, 𝜎, 𝜈̄)−1 𝑗 (𝑃̄′, 𝜎, 𝜈̄)𝐵(𝑃̄′, 𝑃̄, 𝜎, 𝜈̄)𝜂⟩
= ⟨𝜋𝑃̄′,𝜎,−𝜈 (𝑥)−1𝐴(𝑃̄, 𝑃̄′, 𝜎,−𝜈)−1𝜑 , 𝑗 (𝑃̄′, 𝜎, 𝜈̄)𝐵(𝑃̄′, 𝑃̄, 𝜎, 𝜈̄)𝜂⟩.

The required identity now follows. 2
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Lemma 9.5 Let 𝑃 ∈ P and 𝑄 ∈ Pst have the same split component and suppose
𝜎 ∈ 𝑀𝑃,ds. If 𝑇 is an element of 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) ⊗ 𝐻−∞𝑃,𝜒𝑃 , then

𝐶𝑄 |𝑃 (1, 𝜈)𝜓𝑇 = 𝜓[𝐴(𝑄,𝑃̄,𝜎,−𝜈)⊗𝐵(𝑄̄,𝑃̄,𝜎,𝜈̄)]𝑇

In particular, 𝜈 ↦→ 𝐶𝑄 |𝑃 (1, 𝜈) extends to a meromorphic Hom(A2,𝑃,A2,𝑄)-valued
function on 𝔞∗

𝑃C
.

Proof. For any 𝑃′ ∈ P with the same split component as 𝑃 we obtain, by taking the
constant terms of the Whittaker integrals in (9.3) along 𝑄 and comparing coefficients
of exponents,

𝐶𝑄 |𝑃 (1, 𝜈)𝜓𝑇 = 𝐶𝑄 |𝑃′ (1, 𝜈)𝜓[𝐴(𝑃̄,𝑃̄′,𝜎,−𝜈)−1⊗𝐵(𝑃̄′,𝑃̄,𝜎,𝜈̄)]𝑇

In particular, substituting 𝑃′ = 𝑄 and using Lemma 9.3 we obtain

𝐶𝑄 |𝑃 (1, 𝜈)𝜓𝑇 = 𝜓[𝐴(𝑄,𝑄̄,𝜎,−𝜈)𝐴(𝑃̄,𝑄̄,𝜎,−𝜈)−1⊗𝐵(𝑄̄,𝑃̄,𝜎,𝜈̄)]𝑇
= 𝜓[𝐴(𝑄,𝑃̄,𝜎,−𝜈)⊗𝐵(𝑄̄,𝑃̄,𝜎,𝜈̄)]𝑇 .

2

Corollary 9.6 Let 𝑄 ∈ Pst and suppose 𝜎 ∈ 𝑀𝑄,ds. If 𝑇 is an element of 𝐶∞(𝜏 :
𝐾/𝐾𝑄 : 𝜎𝑄) ⊗ 𝐻−∞𝑄,𝜒𝑄 , then

𝐶𝑄 |𝑄̄ (1, 𝜈)𝜓𝑇 = 𝜓[𝐼⊗𝐵(𝑄̄,𝑄,𝜎,𝜈̄)]𝑇 , (𝜈 ∈ 𝔞∗𝑄C).

Proof. This follows from the previous lemma by taking 𝑃 = 𝑄̄, 2

The next step is to obtain a formula for 𝐶𝑄 |𝑃 (𝑠, 𝜈), for 𝑠 ∈ 𝑁𝐾 (𝔞). Let 𝑄 ∈ Pst,
𝑃 ∈ P and let 𝑠 ∈ 𝑁𝐾 (𝔞) such that 𝑠𝑃𝑠−1 = 𝑄. Then the right regular action of 𝑠 defines
an intertwining operator 𝑅𝑠 : 𝐶∞(𝐺/𝑃 : 𝜎 : 𝜈) → 𝐶∞(𝐺/𝑄 : 𝑠𝜎 : 𝑠𝜈). According to
Cor. 2.2 applied with 𝑃, 𝑠 in place of 𝑄, 𝑤 there exists an isometric isomorphism

R𝑠,𝑃 : 𝐻−∞𝜒𝑃 → 𝐻−∞𝑠𝜎,𝜒
𝑠𝑃𝑠−1

such that 𝑅𝑠 ◦ 𝑗 (𝑃, 𝜎, 𝜈) = 𝑗 (𝑠𝑃𝑠−1, 𝑠𝜎, 𝑠𝜈) ◦R𝑠,𝑃 . Furthermore, 𝑅𝑠 induces an iso-
metric isomorphism R𝑠 : 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) → 𝐶∞(𝜏 : 𝐾/𝐾𝑄 : 𝑠𝜎𝑄). As in Lemma
1.21 it follows that there exists a unique isometric isomorphism R

𝑠
: A2,𝑃 → A2,𝑠𝑃𝑠−1 ,

such that for every 𝜎 ∈ 𝑀𝑃,ds and every 𝑇 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) ⊗ 𝐻−∞𝜎,𝜒𝑃

R
𝑠
(𝜓𝑇 ) = 𝜓(R𝑠⊗R𝑠,𝑃)𝑇 ∈ A2,𝑠𝑃𝑠−1,𝑠𝜎 .

Lemma 9.7 Let 𝑃 ∈ P and 𝑠 ∈ 𝑁𝐾 (𝔞). Then, for 𝑥 ∈ 𝐺,

Wh(𝑃, 𝜓, 𝜈) (𝑥) = Wh(𝑠𝑃𝑠−1,R
𝑠
𝜓, 𝑠𝜈), (𝜈 ∈ 𝔞∗𝑃C).
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Proof. This is derived from the intertwining property of 𝑅𝑠 as follows. Let 𝜎 ∈ 𝑀𝑃,ds
be a type appearing inA2,𝑃 . By linearity it suffices to check the identity for 𝜓 ∈ A2,𝑃,𝜎 .
Then 𝜓 = 𝜓𝑇 with 𝑇 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) ⊗ 𝐻−∞𝜎,𝜒𝑃 . By linearity we may assume that
𝑇 = 𝜑 ⊗ 𝜂. Then

Wh(𝑃, 𝜓, 𝜈) (𝑥) = ⟨𝜋𝑃̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝑗 (𝑃̄, 𝜎, 𝜈̄)𝜂⟩
= ⟨𝑅𝑠 𝜋𝑃̄,𝜎,−𝜈 (𝑥)−1𝜑 , 𝑅𝑠 𝑗 (𝑃̄, 𝜎, 𝜈)𝜂⟩
= ⟨𝜋𝑠𝑃̄𝑠−1,𝑠𝜎,−𝑠𝜈 (𝑥)−1R𝑠𝜑 , 𝑗 (𝑠𝑃̄𝑠−1, 𝑠𝜎, 𝑠𝜈̄)R𝑠,𝑃𝜂⟩
= Wh(𝑠𝑃𝑠−1, 𝜓R𝑠𝜑⊗R𝑠,𝑃𝜂, 𝑠𝜈) (𝑥)
= Wh(𝑠𝑃𝑠−1,R

𝑠
𝜓𝑇 , 𝑠𝜈) (𝑥).

2

Corollary 9.8 Let 𝑠 ∈ 𝑁𝐾 (𝔞) be such that 𝑠(𝔞𝑃) = 𝔞𝑄 . Then

𝐶𝑄 |𝑃 (𝑠, 𝜈)𝜓𝑇 = 𝐶𝑄 |𝑠𝑃𝑠−1 (1, 𝑠𝜈)R
𝑠
𝜓𝑇

for generic 𝜈 ∈ 𝑖𝔞∗
𝑃
.

Corollary 9.9 Let 𝑠 ∈ 𝑁𝐾 (𝔞) be such that 𝑠𝑃𝑠−1 = 𝑄, and let 𝜎 ∈ 𝑀𝑃,ds. Then for
𝜓 ∈ A𝑃,2,𝜎,

𝐶𝑄 |𝑃 (𝑠,−𝜈̄)∗𝐶𝑄 |𝑃 (𝑠, 𝜈)𝜓 = 𝜂(𝑃, 𝑃̄, 𝜎,−𝜈)𝜓. (9.4)

Proof. It suffices to prove this for 𝜓 = 𝜓𝑇 with 𝑇 = 𝑓 ⊗ 𝑣. Combining Cor. 9.8 and
Lemma 9.3 we find

𝐶𝑄 |𝑃 (𝑠, 𝜈)𝜓𝑇 = 𝐶𝑄 |𝑄 (1, 𝑠𝜈)𝜓𝑇 = 𝜓(𝐴(𝑄,𝑄̄,𝑠𝜎,−𝑠𝜈)⊗𝐼)𝑇 .

Hence,

𝐶𝑄 |𝑃 (𝑠,−𝜈̄)∗𝐶𝑄 |𝑃 (𝑠, 𝜈)𝜓𝑇 = 𝜓𝜂(𝑄,𝑄̄,𝑠𝜎,−𝑠𝜈)⊗𝐼)𝑇 = 𝜂(𝑠−1𝑄𝑠, 𝑠−1𝑄̄𝑠, 𝜎,−𝜈)𝜓𝑇

= 𝜂(𝑃, 𝑃̄, 𝜎,−𝜈)𝜓𝑇 .
2

Let 𝑃 ∈ P be a cuspidal parabolic subgroup. We denote by [𝑃]st the set of𝑄 ∈ Pst
that are associated with 𝑃.

Definition 9.10 The following relations MSC(P) will be called Maass-Selberg rela-
tions for the 𝐶-functions of the Whittaker integral Wh(𝑃)
MSC(P): for all 𝑄1, 𝑄2 ∈ [𝑃]st and all 𝑠 𝑗 ∈ 𝑊 (𝔞𝑄 𝑗

, 𝔞𝑃), ( 𝑗 = 1, 2),

∥𝐶𝑄1 |𝑃 (𝑠1, 𝜈)𝜓∥ = ∥𝐶𝑄2 |𝑃 (𝑠2, 𝜈)𝜓∥, (𝜓 ∈ A2,𝑃), (9.5)

for generic 𝜈 ∈ 𝑖𝔞∗
𝑃
.

Lemma 9.11 The Maass-Selberg relations MSC(P) for 𝑃 as stated above are equiva-
lent to the following.
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MSC(P)’: for all𝑄 ∈ [𝑃]st, all 𝑠 ∈ 𝑊 (𝔞𝑄 | 𝔞𝑃), all 𝜎 ∈ 𝑀𝑃,ds and all generic 𝜈 ∈ 𝑖𝔞∗
𝑃
,

𝐶𝑄 |𝑃 (𝑠, 𝜈)∗𝐶𝑄 |𝑃 (𝑠, 𝜈) = 𝜂(𝑃, 𝑃̄, 𝜎,−𝜈) on A2,𝑃,𝜎 .

Proof. Assume that MSC(P) hold. There exists a unique𝑄1 ∈ Pst which is𝑊-conjugate
to 𝑃. It is given by𝑄1 = 𝑠1𝑃𝑠

−1
1 , where 𝑠1 = 𝑣𝑃 . In particular,𝑄1 ∈ [𝑃]st, 𝑠1 ∈ 𝑊 (𝔞𝑄 |

𝔞𝑃) and it follows from Corollary 9.9 that (9.4) is valid with 𝑄1, 𝑠1 in place of 𝑄, 𝑠, for
all 𝜓 ∈ A𝑃,2,𝜎 . For such 𝜓 we find by application of MSC(P) that

⟨𝐶𝑄 |𝑃 (𝑠, 𝜈)∗𝐶𝑄 |𝑃 (𝑠, 𝜈)𝜓 , 𝜓⟩ = ⟨𝐶𝑄1 |𝑃 (𝑠1, 𝜈)∗𝐶𝑄1 |𝑃 (𝑠1, 𝜈)𝜓 , 𝜓⟩
= 𝜂(𝑃, 𝑃̄, 𝜎,−𝜈)⟨𝜓 , 𝜓⟩.

Now 𝐶𝑄 |𝑃 (𝑠, 𝜈)∗𝐶𝑄 |𝑃 (𝑠, 𝜈) is Hermitian, and the only eigenvalue of its restriction to
A𝑃,2,𝜎 can be 𝜂(𝑃, 𝑃̄, 𝜎,−𝜈). It follows that the latter Hermitian map is the scalar
𝜂(𝑃, 𝑃̄, 𝜎,−𝜈) on A𝑃,2,𝜎 . Therefore, MSC(P)’ holds.

The converse implication is straightforward. 2

We will now compare the Maass–Selberg relations formulated above with those for
the 𝐵-matrix. Recall from the text following (3.1) that 𝜂(𝑃,𝑄, 𝜎, 𝜈) = 𝜂(𝑄, 𝑃, 𝜎, 𝜈).

Proposition 9.12 Let 𝑃 ∈ P and 𝜎 ∈ 𝑀𝑃,ds. Then the following assertions are
equivalent, for each 𝑄 ∈ [𝑃]st and all 𝑠 ∈ 𝑊 (𝔞𝑄 | 𝔞𝑃).

(a) 𝐶𝑄 |𝑃 (𝑠, 𝜈)∗𝐶𝑄 |𝑃 (𝑠, 𝜈) = 𝜂(𝑃, 𝑃̄, 𝜎,−𝜈) on A𝑃,2,𝜎 for generic 𝜈 ∈ 𝑖𝔞∗
𝑃

;

(b) 𝐵(𝑠−1𝑄̄𝑠, 𝑃̄, 𝜎,−𝜈)∗𝐵(𝑠−1𝑄̄𝑠, 𝑃̄, 𝜎,−𝜈) = 𝜂(𝑠−1𝑄𝑠, 𝑃, 𝜎,−𝜈) on 𝐻−∞𝜎,𝜒𝑃̄ ,
for generic 𝜈 ∈ 𝑖𝔞∗

𝑃
.

Proof. Let 𝑠 ∈ 𝑊 (𝔞𝑄 | 𝔞𝑃). For 𝑇 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) ⊗ 𝐻−∞𝜎,𝜒𝑃 we have, by
Corollary 9.8 and Lemma 9.5 that

𝐶𝑄 |𝑃 (𝑠 : 𝜈)𝜓𝑇 = 𝐶𝑄 |𝑠𝑃𝑠−1 (1, 𝑠𝜈)𝜓− [(R𝑠 ⊗ R𝑠,𝑃)𝑇]
= 𝜓− [(𝐴(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈) ⊗ 𝐵(𝑄̄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈)𝑅𝑠𝑇] .

Since 𝑇 ↦→ 𝜓𝑇 is unitary from 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) ⊗ 𝐻−∞𝜎,𝜒𝑃 onto A𝑃,2,𝜎, and unitary
from 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝑠𝜎𝑃) ⊗ 𝐻−∞𝑠𝜎,𝜒𝑃 onto A2,𝑃,𝑠𝜎, it follows from the above that

𝐶𝑄 |𝑃 (𝑠 : 𝜈)∗𝜓𝑆 = 𝜓− [𝑅𝑠−1 (𝐴(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈)∗ ⊗ 𝐵(𝑄̄, 𝑠𝑃̄𝑠−1, 𝑠𝜎, 𝑠𝜈)∗)𝑆] .

for 𝑆 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝑠𝜎𝑃) ⊗ 𝐻−∞𝑠𝜎,𝜒𝑃 . Combining the above, and using that
𝐴(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈)∗𝐴(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈) = 𝜂(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈), we infer

𝐶𝑄 |𝑃 (𝑠 : 𝜈)∗𝐶𝑄 |𝑃 (𝑠 : 𝜈)𝜓𝑇 = 𝜓− [𝜂(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈) ⊗ 𝑏(𝜈))𝑇] (9.6)

where

𝑏(𝜈) = 𝑅𝑠−1𝐵(𝑄̄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈)∗𝐵(𝑄̄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈)𝑅𝑠
= 𝐵(𝑠−1𝑄̄𝑠, 𝑃̄, 𝜎,−𝜈)∗𝐵(𝑠−1𝑄̄𝑠, 𝑃̄, 𝜎,−𝜈)
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and where we have used the notation 𝜓−𝑇 := 𝜓𝑇 . Suppose now that (a) is valid. Then it
follows from (9.6) that 𝑏(𝜈) must be a multiple of the identity map by the (non-negative
real) factor

𝜂(𝑃, 𝑃̄, 𝜎,−𝜈)𝜂(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈)−1

= 𝜂(𝑃, 𝑃̄, 𝜎,−𝜈)𝜂(𝑠−1𝑄𝑠, 𝑃̄, 𝜎,−𝜈)−1

= 𝜂(𝑠−1𝑄𝑠, 𝑃, 𝜎,−𝜈),

and (b) follows.
Conversely, suppose that (b) is valid. Then it follows that 𝑏(𝜈) is the scalar

𝜂(𝑠−1𝑄𝑠, 𝑃, 𝜎,−𝜈). From (9.6) we now see that 𝐶𝑄 |𝑃 (𝑠, 𝜈)∗𝐶𝑄 |𝑃 (𝑠, 𝜈) is the scalar

𝜂(𝑄, 𝑠𝑃̄𝑠−1, 𝑠𝜎,−𝑠𝜈)𝜂(𝑠−1𝑄𝑠, 𝑃, 𝜎,−𝜈)
= 𝜂(𝑠−1𝑄𝑠, 𝑃̄, 𝜎,−𝜈)𝜂(𝑠−1𝑄𝑠, 𝑃, 𝜎,−𝜈)
= 𝜂(𝑃̄, 𝑃, 𝜎,−𝜈).

2

Definition 9.13 The following relations MSB(P) will be called Maass-Selberg rela-
tions for the 𝐵-matrices associated with 𝑃:

MSB(P): for all 𝑄 ∈ P with 𝔞𝑄 = 𝔞𝑃 and all 𝜎 ∈ 𝑀𝑃,ds

𝐵(𝑄̄, 𝑃̄, 𝜎, 𝜈)∗𝐵(𝑄̄, 𝑃̄, 𝜎, 𝜈) = 𝜂(𝑄̄, 𝑃̄, 𝜎, 𝜈)

for generic 𝜈 ∈ 𝑖𝔞∗
𝑃
.

From Proposition 9.12 we see, for each 𝑃 ∈ P, that the validity of the relations
MSB(P) implies the validity of the relations MSC(P)’. The converse is not clear a priori,
except in the basic setting, where 𝐺 has compact center and 𝑃 is maximal. This will
be addressed in the next section.

10 Maass–Selberg relations in the basic setting
We consider the basic setting in which 𝐺 has compact center, and 𝑃 ∈ P is a maximal
parabolic subgroup. In this case there is precisely one 𝑄 ∈ P which is adjacent to 𝑃,
namely 𝑃̄. From Proposition 9.12 it follows that the Maass-Selberg relations MSB(P)
for the 𝐵-matrix imply the relations MSC(P)’ for the 𝐶-functions, but the converse is
not obvious. In the present section we will show that the converse is obvious for the
basic setting.

Lemma 10.1 The following assertions are equivalent.

(a) |𝑊 (𝔞𝑃) | = 1;
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(b) 𝑃̄ is not𝑊 (𝔞)-conjugate to 𝑃;

(c) [𝑃]st has two elements.

Proof. First of all, by using the action of𝑊 (𝔞) we see that we may as well assume that
𝑃 is standard.

Suppose (a). Then 𝔞+
𝑃

and −𝔞+
𝑃

are not𝑊 (𝔞𝑃)-conjugate hence not𝑊 (𝔞)-conjugate
and (b) follows.

Suppose (b), then 𝑃̄ is 𝑊 (𝔞)-conjugate to precisely one 𝑄 ∈ Pst which we know
cannot be 𝑃. It follows that [𝑃]st has at least 2 elements. If 𝑅 were a third element
of [𝑃]st then there would be an element 𝑠 ∈ 𝑊 (𝔞) such that 𝑠(𝔞𝑃) = 𝔞𝑅 . Then either
𝑠(𝔞+

𝑃
) = 𝔞+

𝑅
or 𝑠(−𝔞+

𝑃
) = 𝔞+

𝑅
. In the first case it would follow that 𝔞+

𝑄
and 𝔞+

𝑅
are

𝑊 (𝔞)-conjugate. But then, since 𝑃, 𝑅 ∈ Pst, it would follow that 𝑅 = 𝑃, contradiction.
In the second case, it would follow that 𝑄, 𝑃̄ and 𝑅 are conjugate under 𝑊 (𝔞) hence
𝑅 = 𝑄, contradiction.

Finally, suppose (c). Then there is a parabolic subgroup𝑄 ∈ Pst \ {𝑃}. such that 𝔞𝑄
is𝑊 (𝔞)-conjugate to 𝔞𝑃 . Hence, 𝔞+

𝑄
is conjugate to either 𝔞+

𝑃
or −𝔞+

𝑃
. The first cannot

be true since then 𝑃 = 𝑄. Therefore, 𝔞+
𝑃

is not conjugate to −𝔞+
𝑃
. From this it follows

that −𝔞+
𝑃

cannot be conjugate to 𝔞+
𝑃
. It follows that 𝔞+

𝑃
and −𝔞+

𝑃
are not conjugate under

𝑊 (𝔞𝑃). Hence, (a) follows. 2

Remark 10.2 It follows from the proof that in any case [𝑃]st has at most two elements.

Proposition 10.3 Let 𝑃 ∈ P be a maximal parabolic subgroup of 𝐺.
(a) If |𝑊 (𝔞𝑃) | = 1 then [𝑃]st consists of two distinct elements, 𝑄1, 𝑄2 ∈ Pst. The

constant terms of Wh(𝑃, 𝜓, 𝜈) along 𝑄 𝑗 , for 𝑗 = 1, 2, are of the form

Wh(𝑃, 𝜓, 𝜈)𝑄 𝑗
(𝑚𝑎) = 𝑎𝑠 𝑗𝜈𝐶𝑄 𝑗 |𝑃 (𝑠 𝑗 , 𝜈)𝜓(𝑚),

with𝑊 (𝔞𝑄 𝑗
| 𝔞𝑃) = {𝑠 𝑗 }. Furthermore, 𝑠1 |𝔞𝑃 = −𝑠2 |𝔞𝑃 . In this case the Maass-

Selberg relations MSC(P) are equivalent to

∥𝐶𝑄1 |𝑃 (𝑠1, 𝜈)𝜓∥2 = ∥𝐶𝑄2 |𝑃 (𝑠2, 𝜈)𝜓∥2. (10.1)

for all 𝜓 ∈ A2,𝑃 and a dense set of 𝜈 ∈ 𝑖𝔞∗
𝑃
.

(b) If |𝑊 (𝔞𝑃) | = 2, then [𝑃]st consists of a single element 𝑄 in Pst and |𝑊 (𝔞𝑄 |
𝔞𝑃) | = 2. The constant term of Wh(𝑃, 𝜓, 𝜈) along 𝑄 is of the form

Wh(𝑃, 𝜓, 𝜈)𝑄 (𝑚𝑎) = 𝑎𝑠𝜈𝐶𝑄 |𝑃 (𝑠, 𝜈)𝜓(𝑚) + 𝑎−𝑠𝜈𝐶𝑄 |𝑃 (−𝑠, 𝜈)𝜓(𝑚).

where 𝑊 (𝔞𝑄 |𝔞𝑃) = {𝑠,−𝑠}. In this case the Maass-Selberg relations MSC(P)
are equivalent to

∥𝐶𝑄 |𝑃 (𝑠 : 𝜈)𝜓∥2 = ∥𝐶𝑄 |𝑃 (−𝑠 : 𝜈)𝜓∥2. (10.2)

for all 𝜓 ∈ A2,𝑅 and all regular values of 𝜈 ∈ 𝑖𝔞∗
𝑃
.
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Proof. (a) 𝑃 is conjugate to a standard parabolic subgroup 𝑄1. Clearly 𝑄1 ∈ [𝑃]st.
The latter set has two distinct elements, hence equals {𝑄1, 𝑄2} with 𝑄2 a second
maximal parabolic subgroup associated with 𝑃. Since 𝑊 (𝔞𝑃) has a single element,
there exist for each 𝑗 = 1, 2 a single element 𝑠 𝑗 ∈ 𝑊 (𝔞𝑄 𝑗

, 𝔞𝑃). Since 𝑄1, 𝑄2 are
standard and not equal, they cannot be 𝑊 (𝔞)-conjugate. The element 𝑠 = 𝑠2𝑠

−1
1 of

𝑊 (𝔞) maps 𝔞𝑄1 to 𝔞𝑄2 but not 𝔞+
𝑄1

to 𝔞+
𝑄2

. Therefore, there exist a point 𝑋 ∈ 𝔞+
𝑃

such
that 𝑠−1

2 𝑠1(𝑋) ∉ 𝔞+
𝑃
. Since 𝔞+

𝑃
is one dimensonal and since 𝑠−1

2 𝑠1 is length preserving,
it follows that 𝑠−1

2 𝑠1(𝑋) = −𝑋. Hence, 𝑠1 |𝔞𝑃 = −𝑠2 |𝔞𝑃 .
By application of Proposition 9.12 we see that in this case the Maass-Selberg

relations associated with 𝑃 are completely described by (10.1).
We turn to case (b). By Lemma 10.1 there is a unique𝑄 ∈ Pst such that [𝑃]st = {𝑄}.

Hence 𝔞𝑃 and 𝔞𝑄 are 𝑊 (𝔞)-conjugate and |𝑊 (𝔞𝑄 |𝔞𝑃) | = |𝑊 (𝔞𝑃) | = 2. The constant
term of𝑊ℎ(𝑃, 𝜓, 𝜈) along 𝑄 is described by

𝑊ℎ(𝑃, 𝜓, 𝜈)𝑄 (𝑚𝑎) =
∑︁

𝑠∈𝑊 (𝔞𝑄 ,𝔞𝑃)
𝑎𝑠𝜈𝐶𝑄 |𝑃 (𝑠 : 𝜈)𝜓(𝑚).

Take 𝑠 ∈ 𝑊 (𝔞𝑄 |𝔞𝑃), then 𝑊 (𝔞𝑄 |𝔞𝑃) = {±𝑠} and it follows that the description of the
Maass-Selberg relations is complete. 2

Lemma 10.4 Let 𝐺 have compact center and let 𝑃 ∈ P be a maximal parabolic
subgroup of 𝐺. Assume the relations MSC(P) are valid. Then for every 𝜎 ∈ 𝑀𝑃,ds the
Maass-Selberg relations MSB(P) are valid, i.e.

𝐵(𝑃, 𝑃̄, 𝜎,−𝜈)∗𝐵(𝑃, 𝑃̄, 𝜎,−𝜈) = 𝜂(𝑃̄, 𝑃, 𝜎,−𝜈) (10.3)

for generic 𝜈 ∈ 𝑖𝔞∗
𝑃
.

Proof. First assume that we are in case (a): |𝑊 (𝔞𝑃) | = 1. Then [𝑃]st = {𝑄1, 𝑄2} and
𝑠1, 𝑠2 are as in Proposition 10.3. Fix 𝜎 ∈ 𝑀𝑃,ds. Then assertion (a) of Prop. 9.12 is
valid for each choice (𝑄, 𝑠) ∈ {(𝑄1, 𝑠1), (𝑄2, 𝑠2)}. It follows that assertion (b) is valid
for each choice. For one of the choices one has 𝑠−1𝑄𝑠 = 𝑃̄ hence 𝑠−1𝑄̄𝑠 = 𝑃 and the
validity of assertion (b) now implies that (10.3).

Next assume that we are in case (b): |𝑊 (𝔞𝑃) | = 2. Then [𝑃]st = [𝑄]st and there
exists a 𝑠 ∈ 𝑊 (𝔞𝑄 , 𝔞𝑃) which maps 𝔞+

𝑃
to −𝔞+

𝑄
. Then 𝑠𝑃𝑠−1 = 𝑄̄. The condition (a) is

fulfilled hence also (b). We find (10.3). 2

Thus, in order to complete the proof of the MS relations for the 𝐵-matrix, it suffices
to give a proof of the assertions of MSC(P) for the basic setting, as listed in Proposition
10.3. We will do this, following a method of Harish-Chandra [7] in Sections 11 - 12.
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11 The radial part of the Casimir operator
By the Iwasawa decomposition𝐺 = 𝐾𝐴𝑁0, the multiplication map𝑚 : 𝐾×𝐴×𝑁0 → 𝐺

is a diffeomorphism. Accordingly, we may define a topological linear isomorphism
𝑇↑ : 𝐶∞(𝐴,𝑉𝜏) → 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) by

𝑇↑ 𝑓 (𝑘𝑎𝑛) = 𝜒(𝑛)−1𝜏(𝑘) 𝑓 (𝑎),

for 𝑓 ∈ 𝐶∞(𝐴) and (𝑘, 𝑎, 𝑛) ∈ 𝐾 × 𝐴 × 𝑁0. The inverse of this isomorphism is given
by the restriction map 𝑇↓ : 𝑓 ↦→ 𝑓 |𝐴.

For an element 𝑢 ∈ 𝑈 (𝔤)𝑁0 we consider the differential operator 𝑅𝑢 on 𝐶∞(𝐺,𝑉𝜏)
given by 𝑅𝑢 ( 𝑓 ) (𝑥) := 𝑓 (𝑥 ;𝑢). Then 𝑅𝑢 restricts to a differential operator 𝑟𝑢 on 𝐶∞(𝜏 :
𝐺/𝑁0 : 𝜒). The radial part of the latter, denoted Π(𝑢), is defined by

Π(𝑢) = 𝑇↓ ◦ 𝑟𝑢 ◦𝑇↑.

We will determine the radial part of the Casimir element Ω ∈ ℨ associated with the
invariant symmetric bilinear form 𝐵 on 𝔤, see (1.6). For each 𝛼 ∈ Σ+ we fix a basis
𝑋𝛼,𝑖, 1 ≤ 𝑖 ≤ 𝑚𝛼, which is orthogonal with respect to the positive definite inner product
𝑋,𝑌 ↦→ −𝐵(𝑋, 𝜃𝑌 ). Furthermore, we put 𝑋−𝛼,𝑖 = −𝜃𝑋𝛼,𝑖 . Let 𝐻𝛼 ∈ 𝔞 be defined by
𝐻𝛼 ⊥ ker𝛼 and 𝛼(𝐻𝛼) = 1. Then 𝛼 = 𝐵(𝐻𝛼, · ). It is readily seen that

[𝑋𝛼,𝑖, 𝑋−𝛼,𝑖] = 𝐻𝛼, (1 ≤ 𝑖 ≤ 𝑚𝛼).

The Casimir operators of 𝔪 and 𝔞, defined relative to the restrictions of 𝐵 to these Lie
algebra’s, are denoted by Ω𝔪 and Ω𝔞 . It is now well known that

Ω = Ω𝔪 +Ω𝔞 +
∑︁
𝛼,𝑖

(𝑋𝛼,𝑖𝑋−𝛼,𝑖 + 𝑋−𝛼,𝑖𝑋𝛼,𝑖);

here the summation ranges over 𝛼 ∈ Σ+ and 1 ≤ 𝑖 ≤ 𝑚𝛼 . The radial part of an operator
𝑋 ∈ 𝑈 (𝔤)𝑁0 may be calculated by from a decomposition of the form

𝑋 =
∑︁
𝑗

𝑓 𝑗 (𝑎)𝑧𝑎
−1

𝑗 𝑢 𝑗 𝑣 𝑗 , (𝑎 ∈ 𝐴),

with 𝑓 𝑗 ∈ 𝐶∞(𝐴), 𝑍 𝑗 ∈ 𝑈 (𝔨), 𝑢 𝑗 ∈ 𝑈 (𝔞), 𝑣 𝑗 ∈ 𝑈 (𝔫0). Here the superscript 𝑎−1

indicates that the image under Ad(𝑎)−1 is taken. Given a decomposition as above the
radial component may be expressed by

[Π(𝑋)𝜑] (𝑎) =
∑︁
𝑗

𝑓 𝑗 (𝑎) 𝜏∗(𝑧 𝑗 ) 𝜑(𝑎 ;𝑢 𝑗 ) 𝜒∗(𝑣∨𝑗 ).

Put 𝑍𝛼,𝑖 := 𝑋𝛼,𝑖 − 𝑋−𝛼,𝑖 . Then 𝑍𝛼.𝑖 ∈ 𝔨. Furthermore, for each 𝛼 ∈ Σ+ and 1 ≤ 𝑖 ≤ 𝑚𝛼,

𝑋−𝛼,𝑖 = 𝑎
−𝛼𝑍𝑎

−1

𝛼,𝑖 + 𝑎−2𝛼𝑋𝛼,𝑖,

55



It follows from this that

𝑋−𝛼,𝑖𝑋𝛼,𝑖 = 𝑎
−𝛼𝑍𝑎

−1

𝛼,𝑖 𝑋𝛼,𝑖 + 𝑎−2𝛼𝑋2
𝛼,𝑖 .

On the other hand,
𝑋𝛼,𝑖𝑋−𝛼,𝑖 = 𝑋−𝛼,𝑖𝑋𝛼,𝑖 + 𝐻𝛼 .

Hence,

𝑋𝛼,𝑖𝑋−𝛼,𝑖 + 𝑋−𝛼,𝑖𝑋𝛼,𝑖 = 2𝑋−𝛼,𝑖𝑋𝛼,𝑖 + 𝐻𝛼 = 2𝑎−𝛼𝑍𝑎
−1

𝛼,𝑖 𝑋𝛼,𝑖 + 𝐻𝛼 + 2𝑎−2𝛼𝑋2
𝛼,𝑖

Lemma 11.1

Π(Ω) = 𝜏∗(Ω𝔪) +Ω𝔞 +
∑︁
𝛼

𝑚𝛼𝐻𝛼 +
∑︁
𝛼,𝑖

−[2𝑎−𝛼𝜏(𝑍𝛼,𝑖)𝜒∗(𝑋𝛼,𝑖) + 2𝑎−2𝛼𝜒∗(𝑋𝛼,𝑖)2]

For two functions 𝑓 , 𝑔 ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) we define the function [ 𝑓 , 𝑔] : 𝐺 → C
by

[ 𝑓 , 𝑔] (𝑥) = ⟨ 𝑓 (𝑥 ;Ω) , 𝑔(𝑥)⟩ − ⟨ 𝑓 (𝑥) , 𝑔(𝑥 ;Ω)⟩. (11.1)

We define 𝜔 ∈ 𝑈 (𝔞) by
𝜔 = Ω𝔞 +

∑︁
𝛼∈Σ+

𝑚𝛼𝐻𝛼 .

Lemma 11.2

[ 𝑓 , 𝑔] (𝑎) = ⟨ 𝑓 (𝑎;𝜔) , 𝑔(𝑎)⟩ − ⟨ 𝑓 (𝑎) , 𝑔(𝑎 ;𝜔)⟩.

Proof. Since 𝜏 and 𝜒 are unitary, the operators 𝜏∗(𝑌 ) for 𝑌 ∈ 𝔨 are anti-Hermitian,
while 𝜒∗(𝑋) ∈ 𝑖R for 𝑋 ∈ 𝔫0. It follows from this that the operators

𝜏∗(Ω), 𝜏(𝑍𝛼,𝑖), 𝜏(𝑍𝛼,𝑖)𝜒∗(𝑋𝛼,𝑖)

from End(𝑉𝜏) are Hermitian, while 𝜒∗(𝑋𝛼,𝑖)2 ∈ R. It follows that

𝑆(𝑎) := 𝜏∗(Ω𝔪) +
∑︁
𝛼,𝑖

−[2𝑎−𝛼𝜏(𝑍𝛼,𝑖)𝜒∗(𝑋𝛼,𝑖) + 2𝑎−2𝛼𝜒∗(𝑋𝛼,𝑖)2]

is Hermitian for all 𝑎. Now Ω = 𝜔 + 𝑆(𝑎). Hence

[ 𝑓 , 𝑔] (𝑎) = ⟨ 𝑓 (𝑎 ;𝜔)) + 𝑆(𝑎) 𝑓 (𝑎) , 𝑔⟩ − ⟨ 𝑓 , 𝑔(𝑎 ;𝜔) + 𝑆(𝑎)𝑔(𝑎)⟩
= ⟨ 𝑓 (𝑎 ;𝜔) , 𝑔(𝑎)⟩ − ⟨ 𝑓 , 𝑔(𝑎 ;𝜔)⟩ + ⟨𝑆(𝑎) 𝑓 (𝑎) , 𝑔⟩ − ⟨ 𝑓 , 𝑆(𝑎)𝑔(𝑎)⟩
= ⟨ 𝑓 (𝑎 ;𝜔) , 𝑔(𝑎)⟩ − ⟨ 𝑓 , 𝑔(𝑎 ;𝜔)⟩.

2
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Lemma 11.3 𝑎𝜌 ◦𝜔 ◦ 𝑎−𝜌 = Ω𝔞 − ⟨𝜌 , 𝜌⟩.

Proof. Let 𝐻 𝑗 be an orthonormal basis for 𝔞. The dual inner product on 𝔞∗ makes
𝐵 : 𝔞 → 𝔞∗ orthogonal; in particular, 𝐵(𝐻 𝑗 ), for 1 ≤ 𝑗 ≤ ℓ, is an orthonormal basis
for 𝔞∗. Accordingly, if 𝜆, 𝜇 ∈ 𝔞∗ then ⟨𝜆 , 𝐵(𝑋 𝑗 )⟩ = 𝜆(𝐻 𝑗 ) and it follows that

⟨𝜆 , 𝜇⟩ =
∑︁
1≤ℓ

𝜆(𝐻 𝑗 )𝜇(𝐻 𝑗 ).

The Casimir operator of 𝔞 is given by Ω𝔞 =
∑ℓ
𝑗=1 𝐻

2
𝑗
. Moreover 𝑢 ↦→ 𝑎𝜌 ◦ 𝑢 ◦ 𝑎−𝜌

equals the algebra automorphism 𝑇 = 𝑇−𝜌 of𝑈 (𝔞), determined by 𝑇 (𝐻) = 𝐻 − 𝜌(𝐻).
From this it follows that

𝑇Ω𝔞 =
∑︁
𝑗

[𝐻 𝑗 − 𝜌(𝐻 𝑗 )]2 = Ω𝔞 −
∑︁
𝑗

2𝜌(𝐻 𝑗 )𝐻 𝑗 + ⟨𝜌 , 𝜌⟩.

On the other hand,∑︁
𝑗

2𝜌(𝐻 𝑗 )𝐻 𝑗 =
∑︁
𝛼>0

∑︁
𝑗

𝑚𝛼𝛼(𝐻 𝑗 )𝐻 𝑗 =
∑︁
𝛼>0, 𝑗

𝑚𝛼𝐵(𝐻𝛼, 𝐻 𝑗 )𝐻 𝑗 =
∑︁
𝛼>0

𝑚𝛼𝐻𝛼

from which
𝑇Ω𝛼 = Ω𝔞 −

∑︁
𝛼

𝑚𝛼𝐻𝛼 + ⟨𝜌 , 𝜌⟩.

Hence,

𝑇 (𝜔) = 𝑇 (Ω𝔞 +
∑︁
𝛼

𝑚𝛼𝐻𝛼)

= Ω𝔞 −
∑︁
𝛼

𝑚𝛼𝜌(𝐻𝛼) + ⟨𝜌 , 𝜌⟩

= Ω𝔞 − ⟨𝜌 , 𝜌⟩.

2

Let Δ denote the collection of simple roots for the positive system Σ+. We define
◦𝔞 := ◦𝔤 ∩ 𝔞.

This is the orthocomplement of the intersection of root hyperplanes ker𝛼, for 𝛼 ∈ Δ.
Let {𝐻0

𝛼 | 𝛼 ∈ Δ} be the 𝐵-dual of the basis Δ in ◦𝔤. This subset of ◦𝔞 is determined by

𝐵(𝐻0
𝛼, 𝐻𝛽) = 𝛿𝛼𝛽, (𝛼, 𝛽 ∈ Δ).

Lemma 11.4 Suppose 𝐺 has compact center, then

⟨ 𝑓 (𝑎 ;Ω𝔞) , 𝑔(𝑎)⟩ − ⟨ 𝑓 (𝑎) , 𝑔(𝑎 ;Ω𝔞)⟩
=

∑︁
𝛼∈Δ

𝑅(𝐻𝛼) (⟨𝑅(𝐻0
𝛼) 𝑓 , 𝑔⟩ − ⟨ 𝑓 , 𝑅(𝐻0

𝛼)𝑔⟩)(𝑎)
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Proof. Since {𝐻0
𝛼} is 𝐵-dual to {𝐻𝛼} we have

Ω𝔞 =
∑︁
𝛼∈Δ

𝐻𝛼𝐻
0
𝛼 .

In the following, we will abbreviate 𝑅(𝐻) 𝑓 by 𝐻 𝑓 . By substituting this in the left hand
side of the above equation, and by application of the Leibniz rule for differentiation, we
find that the above equation holds provided we add to the right hand side the expression

R( 𝑓 , 𝑔, 𝑎) =
∑︁
𝛼∈Δ
⟨𝐻0

𝛼 𝑓 (𝑎) , 𝐻𝛼𝑔(𝑎)⟩ − ⟨𝐻𝛼 𝑓 (𝑎) , 𝐻0
𝛼𝑔(𝑎)⟩.

We will finish the proof by showing that R( 𝑓 , 𝑔, 𝑎) = 0. Substituting 𝐻𝛼 =∑
𝑖 𝐵(𝐻𝛼, 𝐻𝑖)𝐻𝑖 and 𝐻0

𝛼 =
∑
𝑗 𝐵(𝐻0

𝛼, 𝐻 𝑗 )𝐻 𝑗 , we find that

R( 𝑓 , 𝑔) =
∑︁
𝛼,𝑖, 𝑗

[𝐵(𝐻0
𝛼, 𝐻𝑖)𝐵(𝐻𝛼, 𝐻 𝑗 ) − 𝐵(𝐻𝛼, 𝐻𝑖)𝐵(𝐻0

𝛼, 𝐻 𝑗 )]⟨𝐻𝑖 𝑓 , 𝐻 𝑗𝑔⟩.

Fix 𝑖, 𝑗 . By duality of {𝐻𝛼} and {𝐻0
𝛼}, 𝐻 𝑗 =

∑
𝛼 𝐵(𝐻𝛼, 𝐻 𝑗 )𝐻0

𝛼 . In turn this implies

𝐵(𝐻𝑖, 𝐻 𝑗 ) =
∑︁
𝛼

𝐵(𝐻0
𝛼, 𝐻𝑖)𝐵(𝐻𝛼, 𝐻 𝑗 ).

By a similar reasoning this identity holds with 𝑖 and 𝑗 interchanged. Therefore,

R( 𝑓 , 𝑔) =
∑︁
𝑖, 𝑗

[𝐵(𝐻𝑖, 𝐻 𝑗 ) − 𝐵(𝐻 𝑗 , 𝐻𝑖)]⟨𝐻𝑖 𝑓 , 𝐻 𝑗𝑔⟩ = 0.

2

Given 𝑓 , 𝑔 ∈ 𝐶∞(𝐴,𝑉𝜏) and 𝐻 ∈ 𝔞, we define the function ( 𝑓 , 𝑔)𝐻 : 𝐴→ C by

( 𝑓 , 𝑔)𝐻 (𝑎) = 𝑑0(𝑎)2 [⟨ 𝑓 (𝑎;𝐻) , 𝑔(𝑎)⟩ − ⟨ 𝑓 (𝑎) , 𝑔(𝑎;𝐻)⟩] , (11.2)

for 𝑎 ∈ 𝐴. The following lemma is given without proof in [7, page 208].

Lemma 11.5 Let 𝑓 , 𝑔 ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒). Then

𝑑0(𝑎)2 [ 𝑓 , 𝑔] (𝑎) =
∑︁
𝛼∈Δ

𝐻𝛼 ( 𝑓 , 𝑔)𝐻0
𝛼
(𝑎), (𝑎 ∈ 𝐴).

Proof. It follows from Lemma 11.2 that

𝑑0(𝑎)2 [ 𝑓 , 𝑔] (𝑎) = 𝑑0(𝑎)2⟨𝜔 𝑓 (𝑎) , 𝑔(𝑎)⟩ − ⟨ 𝑓 (𝑎) , 𝜔𝑔(𝑎)⟩.

58



Using Lemma 11.3 we now find that

𝑑0(𝑎)2 [ 𝑓 , 𝑔] (𝑎) = ⟨Ω𝔞 (𝑑0 𝑓 ) , 𝑑0𝑔⟩(𝑎) − ⟨𝑑0 𝑓 , Ω𝔞 (𝐷0𝑔)⟩(𝑎)
=

∑︁
𝛼∈Δ

𝐻𝛼 (⟨𝐻0
𝛼𝑑0 𝑓 , 𝑑0𝑔⟩ − ⟨𝑑0 𝑓 , 𝐻

0
𝛼𝑑0𝑔)⟩(𝑎)

=
∑︁
𝛼∈Δ

𝐻𝛼𝑑
2
0 (⟨𝐻

0
𝛼 𝑓 + 𝜌(𝐻𝛼) 𝑓 , 𝑔⟩(𝑎) − ⟨ 𝑓 , 𝐻0

𝛼𝑔 + 𝜌(𝐻𝛼)𝑔⟩(𝑎)

=
∑︁
𝛼∈Δ

𝐻𝛼𝑑
2
0 (⟨𝐻

0
𝛼 𝑓 , 𝑔⟩(𝑎) − ⟨ 𝑓 , 𝐻0

𝛼𝑔⟩(𝑎))

=
∑︁
𝛼∈Δ

𝐻𝛼 ( 𝑓 , 𝑔)𝐻0
𝛼
(𝑎).

2

12 A result of Harish-Chandra
We retain the assumption that 𝐺 has compact center.

Let 𝜇 ∈ 𝔞∗ be defined by ⟨𝜇 , 𝛼⟩ = 1 for all 𝛼 ∈ Δ. Equivalently, 𝐵−1𝜇 =
∑
𝛼∈Δ 𝐻

0
𝛼 .

For 𝑡 > 0 we define 𝔞 [𝑡] to be the subset of 𝔞 consisting of the points 𝐻 ∈ 𝔞 such that
for all 𝛼 ∈ Δ,

⟨𝐻0
𝛼 , 𝐻⟩ ≤ 𝑡 and 𝜇(𝐻) ≥ −𝑡.

Clearly, 𝔞 [𝑡] = 𝑡𝔞 [1] . We agree to write 𝐴[𝑡] = exp 𝔞 [𝑡] and 𝐺 [𝑡] = 𝐾𝐴[𝑡]𝑁0.

Lemma 12.1 The set 𝔞 [1] is a compact neighborhood of 0 in 𝔞.

Proof. Put 𝜇𝛼 = 𝐵𝐻0
𝛼 = ⟨𝐻0

𝛼 , · ⟩; then 𝜇 =
∑
𝛼∈Δ 𝜇𝛼 . The set 𝔞 [1] is given by the

inequalities 𝜇𝛼 ≤ 1 and 𝜇 ≥ −1, hence closed, and a neighborhood of 0. It remains to
prove its boundedness. If 𝐻 ∈ 𝔞 [1] then

𝜇𝛼 (𝐻) = 𝜇(𝐻) −
∑︁
𝛽≠𝛼

𝛽(𝐻) ≥ −1 − (|Δ| − 1) = −|Δ|.

Since {𝜇𝛼 | 𝛼 ∈ Δ} form a set of linear coordinates for 𝔞, the boundedness follows. 2

Note that the argument in fact demonstrates that 𝔞 [1] is an ℓ-dimensional simplex,
with ℓ = dim 𝔞.

In the discussion that follows we will make full use of the Euclidean structure on 𝐴
obtained by transfer of structure under the exponential map exp : 𝔞 → 𝐴. Our notation
will be in terms of the multiplicative group in order to emphasize the connection with
the structure of the group 𝐺.

For 𝑓 , 𝑔 ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) it is readily checked that the function [ 𝑓 , 𝑔] is left
𝐾-invariant, and right 𝑁0-invariant. Hence, for 𝑡 > 0,∫

𝐺 [𝑡]/𝑁0

[ 𝑓 , 𝑔] (𝑥) 𝑑𝑥 =
∫
𝐴[𝑡]

𝑑0(𝑎)2 [ 𝑓 , 𝑔] (𝑎) 𝑑𝑎.
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Using Lemma 11.5 we find∫
𝐺 [𝑡]/𝑁0

[ 𝑓 , 𝑔] (𝑥)𝑑𝑥 =
∫
𝐴[𝑡]

∑︁
𝛼∈Δ

𝐻𝛼 ( 𝑓 , 𝑔)𝐻0
𝛼
(𝑎) 𝑑𝑎. (12.1)

The integration over 𝐴[𝑡] coincides with the Lebesgue integration over 𝔞 [𝑡] and the
differentiation on 𝐴 induced by the right regular action coincides with the usual direc-
tional derivative on 𝔞. This makes Gauss’ divergence theorem for the simplex 𝔞 [𝑡] in
𝔞 available, and we obtain:∫

𝐺 [𝑡]/𝑁0

[ 𝑓 , 𝑔] (𝑥)𝑑𝑥 =
∑︁
𝛼∈Δ

∫
𝜕𝐴[𝑇]

⟨𝜈 , 𝐻𝛼⟩( 𝑓 , 𝑔)𝐻0
𝛼
𝑑𝑠(𝑎). (12.2)

Here 𝜈 corresponds to the outward normal vector to the boundary 𝜕𝔞 [𝑡] and 𝑑𝑠 is
the ℓ − 1 dimensional Euclidean Lebesgue measure on the boundary.

We will now introduce some structure that is necessary for a proper understanding
of the integral on the right. The boundary 𝜕𝔞 [1] of 𝔞 [1] is the union of ℓ simplices
𝔰𝛾, for 𝛾 ∈ Δ ∪ {𝜈}, of dimension ℓ − 1, namely 𝔰𝛽 for 𝛽 ∈ Δ and a remaining
simplex 𝔰𝜇 . More precisely, 𝔰𝛽 (𝛽 ∈ Δ) is the intersection of 𝔞 [1] with the hyperplane
𝜎𝛽 := {𝐻 ∈ 𝔞 | ⟨𝐻 , 𝐻0

𝛽
⟩ = |𝛽 |} and 𝔰𝜇 is the intersection of 𝔞 [1] with the hyperplane

𝜎𝜇 := {𝐻 ∈ 𝔞 | 𝜇(𝐻) = −1}. The outward normals are 𝜈𝔰𝛽 = 𝐻0
𝛽

for 𝛽 ∈ Δ and
𝜈𝔰𝜇 = −|𝜇 |−1𝐵−1𝜇. We note that

⟨𝜈𝔰𝛽 , 𝐻𝛼⟩ = 𝛿𝛼𝛽 and ⟨𝜈𝔰𝜇 , 𝐻𝛼⟩ = −|𝜇 |−1.

For 𝑡 > 0 we define the multiplication operator 𝑀𝑡 : 𝐴 → 𝐴 by 𝑀𝑡 (exp𝐻) = exp 𝑡𝐻
for 𝐻 ∈ 𝔞. Then 𝑀𝑡 maps 𝐴[1] onto 𝐴[𝑡] and 𝜕𝐴[1] onto 𝜕𝐴[𝑡] . Since 𝜈 is the outward
unit normal, we find that 𝜈(𝑀𝑡𝑎) = 𝜈(𝑎) for 𝑎 ∈ 𝜕𝐴[1] . The pull-back of the surface
measure 𝑑𝑠 by 𝑀𝑡 is given by 𝑀∗𝑡 𝑑𝑠 = 𝑡ℓ−1𝑑𝑠.

Write Δ̂ = Δ ∪ {𝜇} and put 𝑐𝛾 = 1 for 𝛾 ∈ Δ and 𝑐𝛾 = −|𝜇 |−1 for 𝛾 = 𝜇. For 𝛾 ∈ Δ̂
we put 𝑆𝛾 = exp(𝔰𝛾). Then ∪

𝛾∈Δ̂𝑆𝛾 = 𝜕𝐴[1] and (12.2) takes the following form.

Lemma 12.2 For 𝑡 > 0 and 𝑓 , 𝑔 ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒),∫
𝐺 [𝑡]/𝑁0

[ 𝑓 , 𝑔] (𝑥)𝑑𝑥 =
∑︁
𝛾∈Δ̂

𝑐𝛾

∫
𝑀𝑡𝑆𝛾

( 𝑓 , 𝑔)𝐻0
𝛼
(𝑎) 𝑑𝑠(𝑎).

We will investigate the asymptotic behavior of the given integrals over the hypersurfaces
𝑀𝑡𝑆𝛾 as 𝑡 → ∞. The dominant asymptotic behavior will come from 𝛾 ∈ Δ and
neighborhoods of the point exp𝐻0

𝛾 ∈ 𝑆𝛾 . The integral for 𝛾 = 𝜇 will turn out to have
exponential decay for 𝑡 → ∞. The following lemma suggests the relevance of our
discussion for the behavior of the constant terms along maximal parabolic subgroups.

If 𝑓1, 𝑓2 ∈ 𝐶∞(𝐴,𝑉𝜏) and 𝐻 ∈ 𝔞, we define the function ⟨ 𝑓1 , 𝑓2⟩𝐻 : 𝐴→ C by

⟨ 𝑓1 , 𝑓2⟩𝐻 (𝑎) = ⟨ 𝑓1(𝑎 ;𝐻) , 𝑓2(𝑎)⟩ − ⟨ 𝑓1(𝑎) , 𝑓2(𝑎 ;𝐻)⟩, (𝑎 ∈ 𝐴). (12.3)

The following useful lemma is easy to prove.
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Lemma 12.3 Let 𝜉 : 𝐴→]0,∞ be a character. Then for 𝑓1, 𝑓2 ∈ 𝐶∞(𝐴,𝑉𝜏),

𝜉2⟨ 𝑓1 , 𝑓2⟩𝐻 = ⟨𝜉 𝑓1 , 𝜉 𝑓2⟩𝐻 .

If 𝑓1, 𝑓2 ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) and 𝐻 ∈ 𝔞 then by using the isomorphism 𝐶∞(𝜏 :
𝐺/𝑁0 : 𝜒) ≃ 𝐶∞(𝐴,𝑉𝜏) we define the function ⟨ 𝑓1 , 𝑓2⟩𝐻 : 𝐴 → C as above. Note
that by (11.2) we have

( 𝑓1, 𝑓2)𝐻 = 𝑑2
0 ⟨ 𝑓1 , 𝑓2⟩𝐻 = ⟨𝑑0 𝑓1 , 𝑑0 𝑓2⟩𝐻 . (12.4)

For 𝑓1, 𝑓2 ∈ 𝐶∞(𝜏 : 𝑀1𝐹/(𝑀1𝐹 ∩ 𝑁0) : 𝜒) we identify 𝑓1, 𝑓2 with functions in
𝐶∞(𝐴,𝑉𝜏) and then,

∗𝑑2⟨ 𝑓1 , 𝑓2⟩𝐻 = ⟨∗𝑑𝑓1 , ∗𝑑𝑓2⟩𝐻 . (12.5)

Here ∗𝑑 (𝑎) = 𝑑0(𝑎)/𝑑𝐹 (𝑎). Harish-Chandra [7, p. 211] uses the notation ( 𝑓1, 𝑓2)𝐻 for
the function in (12.5), which he also used for the different function (12.3). We tried to
avoid the confusion that may arise from this.

Let 𝑓1, 𝑓2 ∈ A(𝜏 : 𝐺/𝑁0 : 𝜒), 𝛼 ∈ Δ, 𝐹 = 𝐹𝛼 = Δ \ {𝛼}. We write 𝑓 𝑗𝐹𝛼 for 𝑓 𝑗𝑃𝐹
,

for 𝑗 = 1, 2.

Lemma 12.4 Let𝑈𝛼 be a sufficiently small open neighborhood of exp𝐻0
𝛼 in 𝑆𝛼 . Then

there exist 𝐶, 𝛿 > 0 such that, for 𝑡 ≥ 0,∫
𝑀𝑡𝑈𝛼

���( 𝑓1, 𝑓2)𝐻0
𝛼
(𝑎) − ⟨∗𝑑 𝑓1𝐹𝛼 , ∗𝑑 𝑓2𝐹𝛼⟩𝐻0

𝛼
(𝑎)

��� 𝑑𝑠(𝑎) ≤ 𝐶𝑒−𝛿𝑡 .
Proof. We write 𝐹 for 𝐹𝛼 = Δ \ {𝛼} and define 𝑅 𝑗 ∈ 𝐶∞(𝐴,𝑉𝜏), for 𝑗 = 1, 2, by
𝑅 𝑗 (𝑎) = 𝑑𝐹 (𝑎) 𝑓 𝑗 (𝑎) − 𝑓 𝑗𝐹 (𝑎). Then

( 𝑓1, 𝑓2)𝐻0
𝛼
= ⟨𝑑0 𝑓1 , 𝑑0 𝑓2⟩𝐻0

𝛼
= ⟨∗𝑑 ( 𝑓1𝐹 + 𝑅1) , ∗𝑑 ( 𝑓2𝐹 + 𝑅2)⟩𝐻0

𝛼
,

hence

( 𝑓1, 𝑓2)𝐻0
𝛼
− ⟨∗𝑑 𝑓1𝐹 , ∗𝑑 𝑓2𝐹⟩𝐻0

𝛼
=

= ⟨∗𝑑 𝑓1𝐹 , ∗𝑑 𝑅2⟩𝐻0
𝛼
+ ⟨∗𝑑 𝑅1 ,

∗𝑑 𝑓2𝐹⟩𝐻0
𝛼
+ ⟨∗𝑑 𝑅1 ,

∗𝑑 𝑅2⟩𝐻0
𝛼
. (12.6)

By the theory of the constant term, there exists an open neighborhood 𝑉 of 𝐻0
𝛼 in 𝔞, a

constant 𝛿1 > 0 and for every 𝑋 ∈ 𝑈 (𝔞)1 a constant 𝐶1 > 0 such that for all 𝐻 ∈ 𝑉 and
𝑡 ≥ 0, one has, for 𝑗 = 1, 2,

|∗𝑑 (exp 𝑡𝐻)𝑅 𝑗 (exp 𝑡𝐻) | ≤ 𝐶1𝑒
−𝛿1𝑡 .

Replacing 𝑉 by a smaller open neighborhood if necessary, we may arrange to have in
addition an estimate of the form

∗𝑑 (exp 𝑡𝐻) | 𝑓 𝑗𝐹 (exp 𝑡𝐻) | ≤ 𝐶2(1 + 𝑡)𝑁 , (𝐻 ∈ 𝑉, 𝑡 ≥ 0),
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for 𝑗 = 1, 2. Combining these estimates with (12.6) we find for a fixed 0 < 𝛿3 < 𝛿1 that
there exists a constant 𝐶3 > 0 such that for all 𝐻 ∈ 𝑉 and 𝑡 ≥ 0 we have the estimate���( 𝑓1, 𝑓2)𝐻0

𝛼
(exp 𝑡𝐻) − ⟨∗𝑑 𝑓1𝐹𝛼 , ∗𝑑 𝑓2𝐹𝛼⟩𝐻0

𝛼
(exp 𝑡𝐻)

��� ≤ 𝐶3𝑒
−𝛿3𝑡 .

Let now 𝑈𝛼 = exp(𝑉) ∩ 𝑆𝛼, then by pulling back the integration over 𝑀𝑡𝑈 by 𝑀𝑡 , we
find∫

𝑀𝑡𝑈𝛼

���( 𝑓1, 𝑓2)𝐻0
𝛼
(𝑎) − ⟨∗𝑑 𝑓1𝐹𝛼 , ∗𝑑 𝑓2𝐹𝛼⟩|𝐻0

𝛼
(𝑎)

��� 𝑑𝑠(𝑎) ≤ 𝐶3𝑒
−𝛿3𝑡 (1 + 𝑡)ℓ−1

∫
𝑈𝛼

𝑑𝑠.

The proof is now easily completed. 2

Following Harish-Chandra, let 𝑓 , 𝑔 ∈ A(𝜏 : 𝐺/𝑁0 : 𝜒), and suppose that 𝑓𝐹 = 0
for 𝐹 ⊂ Δ with |Δ \ 𝐹 | ≥ 2. For 𝛼 ∈ Δ we define the function { 𝑓 , 𝑔}𝛼 : 𝑀1𝐹𝛼 → C by

{ 𝑓 , 𝑔}𝛼 (𝑚) := ⟨ 𝑓𝐹𝛼 (𝑚 ;𝐻0
𝛼) , 𝑔𝐹𝛼 (𝑚)⟩ − ⟨ 𝑓𝐹𝛼 (𝑚) , 𝑔𝐹𝛼 (𝑚 ;𝐻0

𝛼)⟩.

For 𝑡 ∈ R we define the function { 𝑓 , 𝑔}𝛼,𝑡 : 𝑀𝐹𝛼 → C by

{ 𝑓 , 𝑔}𝛼,𝑡 (𝑚) = { 𝑓 , 𝑔}𝛼 (𝑚 exp 𝑡𝐻0
𝛼). (12.7)

Furthermore, we consider integral

𝐽𝛼 ( 𝑓 , 𝑔, 𝑡) :=
∫
𝑀𝐹𝛼/(𝑀𝐹𝛼∩𝑁0)

{ 𝑓 , 𝑔}𝛼,𝑡 𝑑 ¤𝑚. (12.8)

Lemma 12.5 Assume that 𝑓𝐹 = 0 for 𝐹 ⊂ Δ such that |Δ \ 𝐹 | > 1. Let 𝛼 ∈ Δ. Then
the integral in (12.8) converges absolutely. If 𝑈𝛼 is a sufficiently small neighborhood
of exp𝐻0

𝛼 in 𝑆𝛼 then there exist constants 𝐶 > 0, 𝛿 > 0 such that for all 𝑡 ≥ 0,����∫
𝑀𝑡𝑈𝛼

(𝑑∗)2⟨ 𝑓𝐹𝛼 , 𝑔𝐹𝛼⟩𝐻0
𝛼
𝑑𝑠(𝑎) − 𝐽𝛼 ( 𝑓 , 𝑔, 𝑡)

���� ≤ 𝐶𝑒−𝛿𝑡 . (12.9)

Proof. For 𝑡 ∈ R we define the function 𝑓𝛼,𝑡 : 𝑀𝐹 → 𝑉𝜏, 𝑚 ↦→ 𝑓𝐹𝛼 (𝑚 exp 𝑡𝐻0
𝛼). The

function 𝑔𝐹𝛼,𝑡 is defined in a similar way. Both of these functions behave finitely under
𝑑/𝑑𝑡, hence can be expressed as

𝑓𝐹𝛼,𝑡 =
∑︁

𝜂∈E, 0≤𝑘≤𝑛
𝑓𝐹𝛼,𝜂,𝑘 𝑡

𝑘𝑒𝑡𝜂 𝑔𝐹𝛼,𝑡 =
∑︁

𝜂∈E, 0≤𝑘≤𝑛
𝑔𝐹𝛼,𝜂,𝑘 𝑡

𝑘𝑒𝑡𝜂, (12.10)

where E ⊂ 𝑖R a finite subset and 𝑛 ∈ N. Since the exponential polynomial functions
𝑡 ↦→ 𝑡𝑘𝑒𝜂𝑡 are linearly independent over C, the expressions in (12.10) are unique. By
temperedness of 𝑓 and 𝑔, the functions 𝑓𝐹𝛼𝜂,𝑘 and 𝑔𝐹𝛼,𝜂,𝑘 belong toA(𝜏 : 𝑀𝐹/𝑀𝐹∩𝑁0 :
∗𝜒). By transitivity of the constant term, each 𝑓𝐹𝛼,𝜂,𝑘 has constant term zero along every
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proper standard parabolic subgroup of𝑀𝐹 .This implies the existence of constants 𝜀 > 0
and 𝐶 > 0 such that for all 𝜂 ∈ E and 0 ≤ 𝑘 ≤ 𝑛,

| 𝑓𝐹𝛼,𝜂,𝑘 (exp ∗𝐻) ≤ 𝐶𝑒−∗𝜌(∗𝐻)−𝜀 |∗𝐻 |, (∗𝐻 ∈ ∗𝔞).

For 𝑔 there exist constants 𝐶′, 𝑁 > 0 such that for all 𝜂 ∈ E and 0 ≤ 𝑘 ≤ 𝑛 we have the
tempered estimates

|𝑔𝐹𝛼,𝜂,𝑘 (exp ∗𝐻) | ≤ 𝐶′(1 + |∗𝐻 |)𝑁𝑒−∗𝜌(∗𝐻) , (∗𝐻 ∈ ∗𝔞).

It follows from the definitions that, for 𝑚 ∈ 𝑀𝐹 and 𝑡 ∈ R,

{ 𝑓 , 𝑔}𝛼,𝑡 (𝑚) = ⟨
𝑑

𝑑𝑡
𝑓𝐹𝛼,𝑡 (𝑚) , 𝑔𝐹𝛼,𝑡 (𝑚)⟩ − ⟨ 𝑓𝐹𝛼,𝑡 (𝑚) ,

𝑑

𝑑𝑡
𝑔𝐹𝛼,𝑡 (𝑚)⟩.

From the estimates given above, we infer the existence of 𝐶′′ > 0 and 𝜀′ > 0 such that
for all 𝑡,

{ 𝑓 , 𝑔}𝛼,𝑡 (exp ∗𝐻) ≤ 𝐶′′(1 + 𝑡)2𝑛𝑒−2∗𝜌(∗𝐻)−𝜀′ |∗𝐻 |, (∗𝐻 ∈ ∗𝔞).

This implies the estimates

|{ 𝑓 , 𝑔}𝛼,𝑡 (𝑚) | ≤ 𝐶′′(1 + 𝑡)2𝑛𝑒−2∗𝜌(𝐻 (𝑚))−𝜀′ |𝐻 (𝑚) |, (𝑚 ∈ 𝑀𝐹𝛼)

so that the integral defining 𝐽𝛼 ( 𝑓 , 𝑔, 𝑡), see (12.8), converges absolutely, and

|𝐽𝛼 ( 𝑓 , 𝑔, 𝑡) | = O((1 + |𝑡 |)2𝑛) (𝑡 ∈ R).

Let now𝑈𝛼 be a neighborhood of𝐻0
𝛼 in 𝑆𝛼 . Then the set𝑉𝛼 := log𝑈𝛼 is a neighborhood

of 𝐻0
𝛼 in 𝔰𝛼 = 𝜕𝔞 [1] ∩ (𝐻0

𝛼 + ∗𝔞). Therefore, 𝑉𝛼 = ∗𝑉𝛼 + 𝐻0
𝛼, with ∗𝑉𝛼 := 𝑉𝛼 ∩ 𝔞⊥

𝐹𝛼

a neighborhood of 0 in ∗𝔞. It follows that 𝑈𝛼 = ∗𝑈𝛼 exp𝐻0
𝔞 with ∗𝑈𝛼 a neighborhood

of 𝑒 in ∗𝐴. Hence, 𝑀𝑡𝑈𝛼 = 𝑀𝑡 (∗𝑈𝛼) exp(𝑡𝐻0
𝛼). The Euclidean measure 𝑑𝑠 on 𝑀𝑡𝑈𝛼 is

the translate of the Euclidean measure 𝑑∗𝑎 on 𝑀𝑡 (∗𝑈𝛼) by exp 𝑡𝐻0
𝛼 . Consequently, the

integral on the left of (12.9) may be rewritten as∫
𝑀𝑡
∗𝑈𝛼

∗𝑑 (𝑎)2{ 𝑓 , 𝑔}𝛼 (∗𝑎 exp 𝑡𝐻0
𝛼) 𝑑 ∗𝑎 =

∫
𝑀𝑡
∗𝑈𝛼

∗𝑑 (𝑎)2{ 𝑓 , 𝑔}𝛼,𝑡 (∗𝑎)𝑑 ∗𝑎.

In view of (12.7) the latter integral may be rewritten as∫
O𝑡
{ 𝑓 , 𝑔}𝛼,𝑡 (𝑚) 𝑑𝑚̄, (12.11)

where O𝑡 is the image of 𝐾𝐹𝑀𝑡 (∗𝑈𝛼) in 𝑀𝐹/𝑀𝐹 ∩ 𝑁0. The difference of (12.11) with
𝐽𝛼 ( 𝑓 , 𝑔, 𝑡) is the integral with O𝑡 replaced by its complement O𝑐𝑡 in 𝑀𝐹/𝑀𝐹 ∩ 𝑁0. To
finish the proof, it suffices to show that there exists a 𝛿 > 0 such that∫

O𝑐
𝑡

|{ 𝑓 , 𝑔}𝛼,𝑡 (𝑚) | 𝑑𝑚̄ = O(𝑒−𝛿𝑡).

63



Choose 𝑟 > 0 such that the ball 𝐵𝑟 ⊂ ∗𝔞 with center 0 and radius 𝑟 > 0 is contained
in log ∗𝑈𝛼 . Then O𝑡 contains the image of 𝐾𝐹 exp(𝑡𝐵𝑟) in 𝑀1𝐹/𝑀1𝐹 ∩ 𝑁0, hence its
complement O𝑐𝑡 is contained in 𝐾𝐹 exp(𝑡𝐵𝑐𝑟 )𝑁0, so that∫

O𝑐
𝑡

|{ 𝑓 , 𝑔}𝛼,𝑡 (𝑚) |𝑑𝑚̄ ≤
∫

exp 𝑡𝐵𝑐
𝑟

|∗𝑑 (𝑎)2{ 𝑓 , 𝑔}𝛼,𝑡 (∗𝑎) |𝑑∗𝑎

=

∫
∗𝔞\𝑡𝐵𝑟

𝐶′′(1 + 𝑡)2𝑛𝑒−𝜀′ |∗𝐻 |𝑑∗𝐻.

Now fix 0 < 𝛿 < 𝜀′/𝑟; then by using polar coordinates one readily checks that there
exists a constant 𝐶 > 0 such that the latter integral is bounded by 𝐶𝑒−𝛿𝑡 , for 𝑡 ≥ 0. 2

Lemma 12.6 With assumptions as in Lemma 12.5, let 𝐻0 be any point of 𝜕𝔞 [1]
different from the points 𝐻0

𝛼, for 𝛼 ∈ Δ. Then there exists an open neighborhood 𝑈 of
exp𝐻0 in 𝜕𝐴[1] and constants 𝐶, 𝛿 > 0 such that∫

𝑀𝑡𝑈

���( 𝑓 , 𝑔)𝐻0
𝛼
(𝑎)

��� 𝑑𝑠(𝑎) ≤ 𝐶𝑒−𝛿𝑡 . (12.12)

Proof. We will show that there exists an open neighborhood𝑉 of 𝐻0 in 𝔞 and constants
𝐶1, 𝛿1 > 0 such that for all 𝐻 ∈ 𝑉 and 𝑡 ≥ 1 we have the estimate

| ( 𝑓 , 𝑔)𝐻0
𝛼
(exp(𝑡𝐻)) | ≤ 𝐶1𝑒

−𝛿1𝑡 . (12.13)

Before proving this estimate we will first show that it implies the required estimate
(12.12). Indeed, let𝑈 = 𝑉 ∩ 𝐴[1] . By pulling back under 𝑀𝑡 and applying substitution
of variables we obtain∫

𝑀𝑡𝑈

���( 𝑓 , 𝑔)𝐻0
𝛼
(𝑎)

��� 𝑑𝑠(𝑎) =

∫
𝑈

���( 𝑓 , 𝑔)𝐻0
𝛼
(𝑀𝑡𝑎)

��� 𝑡ℓ−1𝑑𝑠(𝑎)

≤
∫
𝑈

𝐶1𝑒
−𝛿1𝑡𝑡ℓ−1𝑑𝑠(𝑎).

From this the result follows for any 0 < 𝛿 < 𝛿1 and for 𝐶 suitably chosen.
We now turn to the proof of (12.13). Let 𝐻0 ∈ 𝔞 [1] and assume that 𝐻0 ≠ 𝐻0

𝛼 for
all 𝛼 ∈ Δ. First we assume that 𝐻0 ∉ cl(𝔞+). By the argument of [2, Cor. 2.4] it follows
that for any 𝑟 > 0 there exists an open neighborhood 𝑉 of 𝐻0 and a constant 𝐶′ > 0
such that for 𝜑 equal to one of the functions 𝑓 , 𝐿𝐻0∨

𝛼
𝑓 , 𝑔 or 𝐿𝐻0∨

𝛼
𝑔, we have

|𝜑(𝑡𝐻) | ≤ 𝐶′𝑒−𝑟𝑡/2, (𝐻 ∈ 𝑉, 𝑡 ≥ 1).

In view of (11.2) the above estimate implies

| ( 𝑓 , 𝑔)𝐻0
𝛼
| ≤ (𝐶′)2𝑑0(exp 𝑡𝐻)−2𝑒−𝑟𝑡 = (𝐶′)2𝑒−𝑟 ′𝑡
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with 𝑟′ < 𝑟 − 2 sup𝐻∈𝑉 𝜌(𝐻).
Note that if 𝐻0 ∈ 𝑆𝜇 then 𝜇(𝐻0) < −1 so that 𝐻0 ∉ cl(𝔞+) and we are in the setting

just discussed.
We now assume that 𝐻0 ∈ cl(𝔞+). As just noticed, 𝐻0 ∉ 𝑆𝜇 so that 𝐻0 ∈ ∪𝛾∈Δ𝑆𝛾 .

Let 𝐹 be the collection of 𝛼 ∈ Δ vanishing on 𝐻0. Since 𝐻0 ≠ 𝐻0
𝛼 for every 𝛼 ∈ Δ, it

follows that |Δ \ 𝐹 | > 1, so that by assumption, 𝑓𝐹 = 0. It now follows by application
of [3, Lemma 3.8]that also [𝐿𝐻0∨

𝛼
𝑓 ]𝐹 = 0. Thus for 𝜑 equal to 𝑓 or 𝐿𝐻0∨

𝛼
𝑓 it follows

from the estimation of 𝑑𝐹𝜑 − 𝜑𝐹 in [3, Lemma 3.5] that for a sufficiently small open
neighborhood 𝑉 of 𝐻0 in 𝔞 there exist constants 𝐶, 𝑁, 𝜂 > 0 such that, for 𝐻 ∈ 𝑉 and
𝑡 ≥ 0,

|𝑑𝐹𝜑(𝑡𝐻) | ≤ 𝐶 (1 + 𝑡)𝑁𝑒−
∗𝜌𝐹 (𝑡∗𝐻)𝑒−𝜂𝑡 .

Hence, for 0 < 𝜂′ < 𝜂 there exists 𝐶′ > 0 such that

|𝜑(𝑡𝐻) | ≤ 𝐶′𝑒−𝑡𝜌(𝐻)−𝑡𝜂′ , (𝐻 ∈ 𝑉, 𝑡′ ≥ 0).

Combining this with the tempered estimates for 𝑔 and 𝐿𝐻∗∨𝛼 𝑔, and using (12.3) we
obtain (12.13) with 0 < 𝛿1 < 𝜂

′ and a suitable 𝐶1 > 0. 2

Theorem 12.7 [Harish-Chandra] Let 𝑓 , 𝑔 ∈ A(𝜏 : 𝐺/𝑁0 : 𝜒) and assume that 𝑓𝐹 = 0
for each subset 𝐹 ⊂ Δ with |Δ \ 𝐹 | > 1. Then there exists 𝛿 > 0 such that∫

𝐺 [𝑡]/𝑁0

[ 𝑓 , 𝑔] (𝑥) 𝑑𝑥 =
∑︁
𝛼∈Δ

𝐽𝛼 ( 𝑓 , 𝑔, 𝑡) + O(𝑒−𝛿𝑡), (𝑡 →∞).

Proof. For each 𝛼 ∈ Δ let 𝑈𝛼 be an open subset of 𝑆𝛼 with the properties of Lemma
12.4. Put𝑈𝜇 = ∅. Then it follows from combining Lemmas 12.2, 12.4 and 12.5, that∫

𝐺 [𝑡]/𝑁0

[ 𝑓 , 𝑔] (𝑥) 𝑑𝑥 −
∑︁
𝛼∈Δ

𝐽𝛼 ( 𝑓 , 𝑔, 𝑡) =

=
∑︁
𝛾∈Δ̂

𝑐𝛾

∫
𝑀𝑡 (𝑆𝛾\𝑈𝛾)

( 𝑓1, 𝑓2)𝐻0
𝛼
(𝑎) 𝑑𝑠(𝑎) + O(𝑒−𝛿𝑡).

We now consider the compact set K = 𝜕𝐴[1] \ ∪
𝛾∈Δ̂𝑈𝛾 . It follows by application of

Lemma 12.6 and compactness that there exist constants 𝐶, 𝛿 > 0 such that the estimate
of the lemma is valid with 𝑈 replaced by K . This implies the existence of 𝛿 > 0 such
that ∑︁

𝛾∈Δ
𝑐𝛾

∫
𝑀𝑡 (𝑆𝛾\𝑈𝛾)

( 𝑓1, 𝑓2)𝐻0
𝛼
(𝑎) 𝑑𝑠(𝑎) =

=
∑︁
𝛾∈Δ

𝑐𝛾

∫
𝑀𝑡 (𝑆𝛾∩K)

( 𝑓1, 𝑓2)𝐻0
𝛼
(𝑎) 𝑑𝑠(𝑎) = O(𝑒−𝛿𝑡).
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We will now show that in the basic setting Theorem 12.7 implies the Maass-Selberg
relations, see also [7, p. 206]. In the basic setting, 𝐺 has compact center. 𝑃 ∈ Pst is a
maximal standard parabolic subgroup 𝑃 of𝐺. Suppose 𝜎 ∈ 𝑀𝑃,ds and 𝜓 ∈ A2,𝑃,𝜎 . Let
Λ ∈ ∗𝔥∗

𝑃C
be the infinitesimal character of 𝜎. Then Λ is real and regular in the sense

that the inner products with the roots of ∗𝔥𝑃 in 𝔪𝑃C are real and non-zero. In addition
we fix 𝜈 ∈ 𝑖𝔞∗

𝑃
such that 𝜈 ≠ 0, Λ + 𝜈 is regular. Put 𝑓 = 𝑓𝜈 = Wh(𝑃, 𝜓, 𝜈). The

infinitesimal character of Ind𝐺
𝑃̄
(𝜎 ⊗−𝜈) is given by 𝑍 ↦→ 𝛾(𝑍,Λ− 𝜈). From Definition

1.20 one sees that

𝑍 𝑓 = 𝑅𝑍 𝑓 = 𝛾(𝑍,Λ − 𝜈) 𝑓 , (𝑍 ∈ ℨ).

It follows that the CasimirΩ acts on 𝑓 by the real eigenvalue ⟨Λ , Λ⟩+⟨𝜈 , 𝜈⟩−⟨𝜌𝑃 , 𝜌𝑃⟩.
In turn this implies that

[ 𝑓 , 𝑓 ] = 0;
see (11.1). Since 𝑃 is maximal, it follows from the discussion below Lemma 9.1 that
the constant term of 𝑓𝜈 along a standard parabolic subgroup 𝑄 is zero if 𝑄 is not
maximal. From Theorem 12.7 it now follows that∑︁

𝛼∈Δ
𝐽𝛼 ( 𝑓 , 𝑓 , 𝑡) → 0 (𝑡 →∞). (12.14)

For 𝛼 ∈ Δ let 𝐹𝛼 = Δ \ {𝛼}. We write 𝑓𝐹𝛼 for the constant term of 𝑓 along the standard
parabolic subgroup 𝑃𝐹𝛼 whose split component is R𝐻0

𝛼 .

According to Poposition 10.3 there are two possibilities, (a): |𝑊 (𝔞𝑃) | = 1 and (b):
|𝑊 (𝔞𝑃) | = 2.

In case (a) there exist precisely two distinct roots 𝛼1, 𝛼2 ∈ Δ for which 𝑄 𝑗 :=
𝑃𝐹𝛼𝑗

∼ 𝑃. Moreover,𝑊 (𝔞𝑄 𝑗
|𝔞𝑃) = {𝑠 𝑗 } and 𝑠2 = −𝑠1, so, for 𝑚 𝑗 ∈ 𝑀𝐹𝛼𝑗

, 𝑡 ∈ R,

𝑓𝐹𝛼1
(𝑚1 exp 𝑡𝐻0

𝛼) = 𝑒𝑖𝜆𝑡𝜑1(𝑚1), 𝑓𝐹𝛼2
(𝑚2 exp 𝑡𝐻0

𝛼) = 𝑒−𝑖𝜆𝑡𝜑2(𝑚2)

with 𝜆 = −𝑖𝜈(𝐻0
𝛼) ∈ R \ {0}. It now follows that

𝐽𝛼1 ( 𝑓 , 𝑓 , 𝑡) + 𝐽𝛼2 ( 𝑓 , 𝑓 , 𝑡) = −𝜆2⟨𝜑1 , 𝜑1⟩ + 𝜆2⟨𝜑2 , 𝜑2⟩ → 0,

from which we conclude that ∥𝜑1∥2 = ∥𝜑2∥2.
In case (b) we have |𝑊 (𝔞𝑃) | = 2 and there is precisely one simple root 𝛼 ∈ Δ

such that 𝑄 := 𝑃𝐹𝛼 ∼ 𝑃. It follows that𝑊 (𝔞𝑄 |𝔞𝑃) consists of two elements, 𝑠 and −𝑠.
Moreover, the constant term of 𝑓 along 𝑄 is of the form

𝑓𝐹𝛼 (𝑚 exp 𝑡𝐻0
𝛼) = 𝑒𝑖𝜆𝑡𝜑1(𝑚) + 𝑒−𝑖𝜆𝑡𝜑2(𝑚)

for 𝑚 ∈ 𝑀𝐹𝛼 , 𝑡 ≥ 0. It follows that

𝐽𝛼 ( 𝑓 , 𝑓 , 𝑡) = 𝑖𝜆⟨𝑒𝑖𝜆𝑡𝜑1 − 𝑒−𝑖𝜆𝑡𝜑2 , 𝑒
𝑖𝜆𝑡𝜑1 + 𝑒−𝑖𝜆𝑡𝜑2⟩ −

−𝑖𝜆⟨𝑒𝑖𝜆𝑡𝜑1 + 𝑒−𝑖𝜆𝑡𝜑2 , 𝑒
𝑖𝜆𝑡𝜑1 − 𝑒−𝑖𝜆𝑡𝜑2⟩

= 2𝑖𝜆(∥𝜑1∥2 − |𝜑2∥2)

From 𝐽𝛼 ( 𝑓 , 𝑓 , 𝑡) → 0 it now follows that ∥𝜑1∥2 = ∥𝜑2∥2. 2
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Completion of the proof of Theorem 3.1. In view of Proposition 10.3, we have
now completed the proof of the Maass-Selberg relations MSC(P) for the basic setting.
According to Lemma 10.4 this implies the validity of MSB(P) for the basic setting. By
Lemma 4.14 this implies the validity of the Maass-Selberg relations for the 𝐵-matrix
as formulated in Theorem 3.1. 2

Proof of the Maass-Selberg relations MSC(P). By Proposition 9.12 we now conclude
the validity of all Maass-Selberg relations for the 𝐶-functions as formulated in Lemma
9.11. 2

For 𝑃 ∈ P we define the meromorphic function 𝜂∗(𝑃, 𝑃̄) : 𝔞∗
𝑃C
→ End(A2,𝑃) by

𝜂∗(𝑃, 𝑃̄, 𝜈) |A2,𝑃,𝜎
= 𝜂(𝑃, 𝑃̄, 𝜎, 𝜈) id|A2,𝑃,𝜎

.

We may now formulate the validity of the entire collection of Maass-Selberg relations
for the 𝐶-functions as follows.

Theorem 12.8 Let 𝑃 ∈ P, 𝑄 ∈ Pst and suppose that 𝑄 ∼ 𝑃. Then for each 𝑠 ∈
𝑊 (𝔞𝑄 |𝔞𝑃),

𝐶𝑄 |𝑃 (𝑠,−𝜈̄)∗𝐶𝑄 |𝑃 (𝑠, 𝜈) = 𝜂∗(𝑃, 𝑃̄,−𝜈)
as an identity of meromorphic functions in 𝜈 ∈ 𝔞∗

𝑃C
.

Proof. The expressions on both sides of the equation define meromorphic functions of
𝜈 ∈ 𝔞∗

𝑃C
. Hence, it suffices to prove the identity

𝐶𝑄 |𝑃 (𝑠, 𝜈)∗𝐶𝑄 |𝑃 (𝑠, 𝜈) = 𝜂∗(𝑃, 𝑃̄,−𝜈)

for generic 𝜈 ∈ 𝑖𝔞∗
𝑃
. This identity is equivalent to the MSC(P) as formulated in Lemma

9.11, which were proven to be valid in the text preceding the theorem. 2

13 The normalized Whittaker integral
For 𝑃 ∈ Pst (standard is mandatory) we consider the meromorphic function 𝜈 ↦→
𝐶𝑃 |𝑃 (1, 𝜈), 𝔞∗𝑃C

→ End(A2,𝑃). We recall from Lemma 9.3 that for each 𝜎 ∈ 𝑀𝑃,ds and
all 𝑇 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃) ⊗ 𝐻−∞𝜎,𝜒𝑃 we have

𝐶𝑃 |𝑃 (1, 𝜈)𝜓𝑇 = 𝜓(𝐴(𝑃,𝑃̄,𝜎,−𝜈)⊗𝐼)𝑇

as meromorphic functions of 𝜈 ∈ 𝔞∗
𝑃C

with values in End(A2,𝑃,𝜎). We recall that, for
𝑅 > 0,

𝔞∗𝑃 (𝑃, 𝑅) := {𝜈 ∈ 𝔞∗𝑃C | ⟨Re 𝜈 , 𝛼⟩ > 𝑅 (∀𝛼 ∈ Σ(𝑃))}.
For 𝑄 ∈ P we define ΠΣ(𝑄),R(𝔞∗𝑄) to be the set of polynomial functions 𝑞 ∈ 𝑃(𝔞∗

𝑄
)

which can be written as a product of linear factors of the form ⟨𝛼 , · ⟩−𝑐with 𝛼 ∈ Σ(𝑄)
and 𝑐 ∈ R.

The following result is due to Harish-Chandra.
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Lemma 13.1 For every 𝑅 ∈ R there exist 𝐶, 𝑁 > 0 and a polynomial function
𝑞 ∈ ΠΣ(𝑃),R(𝔞∗𝑃) such that the meromorphic function 𝜈 ↦→ 𝑞(𝜈)𝐶𝑃 |𝑃 (1, 𝜈) is regular
on 𝔞∗

𝑃
(𝑃, 𝑅) and such that

∥𝑞(𝜈)𝐶𝑃 |𝑃 (1, 𝜈)∥op ≤ 𝐶 (1 + ∥𝜈∥)𝑁 , (𝜈 ∈ 𝔞∗𝑃 (𝑃, 𝑅).

Proof. It suffices to prove this for the restriction of 𝐶𝑃 |𝑃 (1, 𝜈) to A2,𝑃,𝜎, for each
representation of the finite set of 𝜎 ∈ 𝑀𝑃,ds for which A2,𝑃,𝜎 ≠ 0. Since 𝑇 ↦→ 𝜓𝑇 is a
linear isomorphism of finite dimensional spaces, it suffices to prove a similar estimate
for 𝐴(𝑃, 𝑃̄, 𝜎,−𝜈) restricted to the finite dimensional space 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎𝑃). By
equivalence of norms on the latter space, that estimate is a consequence of [4, Cor. 1.4]
which in turn is a straightforward consequence of [11], see [12]. 2

Lemma 13.2 Let 𝜎 ∈ 𝑀𝑃,ds. There exist constants 𝜀, 𝐶, 𝑁 > 0 such that the mero-
morphic function 𝜈 ↦→ 𝜂(𝑃̄, 𝑃, 𝜎, 𝜈)−1 is regular on 𝔞∗

𝑃
(𝜀) and

|𝜂(𝑂̄, 𝑃, 𝜎, 𝜈)−1 | ≤ 𝐶 (1 + |𝜈 |)𝑁 , (𝜈 ∈ 𝔞∗𝑃 (𝜀)).

Proof. This result is due to Harish–Chandra for 𝜎 a representation of the discrete series
of 𝑀𝑃 . His notation for 𝜂(𝑃̄, 𝑃, 𝜎, 𝜈)−1 is 𝜇𝑃,𝜎 (𝜈). Under the weaker assumption that
𝜎 is unitary with real infinitesimal character, the same result is proven in [11, p. 235].
2

Recall the definition of 𝜂∗(𝑃̄, 𝑃, 𝜈) ∈ End(A2,𝑃) in the text preceding Theorem
12.8.

Corollary 13.3 There exist a polynomial function 𝑞 ∈ ΠΣ(𝑃),R(𝔞∗𝑃) and constants
𝜀, 𝐶, 𝑁 > 0 such that the meromorphic function 𝜈 ↦→ 𝑞(𝜈)𝐶𝑃 |𝑃 (1, 𝜈)−1 is regular on
𝔞∗
𝑃
(𝜀) and

∥𝑞(𝜈)𝐶𝑃 |𝑃 (1, 𝜈)−1∥op ≤ 𝐶 (1 + |𝜈 |)𝑁 , (𝜈 ∈ 𝔞∗𝑃 (𝜀)).

Proof. From Theorem 12.8 it follows that

𝐶𝑃 |𝑃 (1, 𝜈)−1 = 𝜂∗(𝑃, 𝑃̄, 𝜈)−1𝐶𝑃 |𝑃 (1,−𝜈̄)

as meromorphic functions of 𝜈 ∈ 𝔞∗
𝑃C
. The result now follows from Lemmas 13.1 and

13.2. 2

For 𝑃 ∈ Pst we define the associated normalized Whittaker integral by

Wh◦(𝑃, 𝜓, 𝜈) (𝑥) := Wh(𝑃,𝐶𝑃 |𝑃 (1, 𝜈)−1𝜓, 𝜈) (𝑥),

for 𝜓 ∈ A2,𝑃, 𝜈 ∈ 𝔞∗𝑃C
, 𝑥 ∈ 𝐺.
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Let 𝜀, 𝑞 as in Corollary 13.3, and let 𝜎 ∈ 𝑀𝑃,ds. It is readily verified that for suitable
0 < 𝜀′ < 𝜀, 𝑟 > 0 and for 𝜓 ∈ A2,𝑃,𝜎 the function

𝜈 ↦→ 𝑞(𝜈)Wh◦(𝑃, 𝜓, 𝜈) ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) (13.1)

belongs to IIhol(Λ𝜎, 𝔞∗𝑃, 𝜀, 𝑟, 𝜏). Here Λ𝜎 denotes the infinitesimal character of 𝜎.
The constant term of (13.1) along a standard parabolic subgroup𝑄 ∈ Pst associated

with 𝑃 is given by

𝑞(𝜈)Wh◦𝑄 (𝑃, 𝜓, 𝜈, 𝑚𝑎) = 𝑞(𝜈)
∑︁

𝑠∈𝑊 (𝔞𝑄 |𝔞𝑃)
𝑎𝑠𝜈 [𝐶◦

𝑄 |𝑃 (𝑠, 𝜈)𝜓] (𝑚) (𝑎),

for 𝜈 ∈ 𝑖𝔞∗
𝑃
, 𝑚 ∈ 𝑀𝑄 , 𝑎 ∈ 𝐴𝑄 . Here

𝐶◦
𝑄 |𝑃 (𝑠, 𝜈) := 𝐶𝑄 |𝑃 (𝑠, 𝜈)𝐶𝑃 |𝑃 (1, 𝜈)−1

are meromorphic Hom(A2,𝑃,A2,𝑄)-valued functions of 𝜈 ∈ 𝔞∗
𝑃C
. The following result

is an important manifestation of the Maass-Selberg relations.

Lemma 13.4 Let 𝑃,𝑄 ∈ Pst. Then for all 𝑠 ∈ 𝑊 (𝔞𝑄 |𝔞𝑃),

𝐶◦
𝑄 |𝑃 (𝑠,−𝜈̄)

∗𝐶◦
𝑄 |𝑃 (𝑠, 𝜈) = idA2,𝑃

as meromorphic functions of 𝜈 ∈ 𝔞∗
𝑃C
.

Proof. This follows from Theorem 12.8. 2

Lemma 13.5

(a) There exists a constant 𝜀 > 0 such that 𝜈 ↦→ 𝐶◦
𝑄 |𝑃 (𝑠, 𝜈) is a holomorphic

Hom(A2,𝑃,A2,𝑄)-valued function on 𝔞∗
𝑃
(𝜀).

(b) The constant 𝜀 > 0 can be chosen such that there exist 𝐶, 𝑁 > 0 such that

∥𝐶◦
𝑄 |𝑃 (𝑠, 𝜈)∥ ≤ 𝐶 (1 + |𝜈 |)

𝑁 , (𝜈 ∈ 𝔞∗𝑃 (𝜀)).

(c) The constant 𝜀 > 0 can be chosen such that for all 𝑢 ∈ 𝑈 (𝔞∗
𝑃
) there exist constants

𝐶𝑢, 𝑁𝑢 > 0 such that

∥𝐶◦
𝑄 |𝑃 (𝑠, 𝜈 ;𝑢)∥ ≤ 𝐶𝑢 (1 + |𝜈 |)𝑁𝑢 .

Proof. From Cor. 13.3 and [3, Lemmas 10.1, 10.2] it follows that there exists a
𝑞 ∈ ΠΣ(𝑃) (𝔞∗𝑃) and a constant 𝜀 > 0 such that Γ : 𝜈 ↦→ 𝑞(𝜈)𝐶◦

𝑄 |𝑃 (𝑠, 𝜈) is holomorphic
on 𝔞∗

𝑃
(𝜀) and satisfies the estimate

∥Γ(𝜈)∥op ≤ 𝐶 (1 + |𝜈 |)𝑁 (𝜈 ∈ 𝔞∗𝑃 (𝜀)). (13.2)
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Let ℓ : 𝜈 ↦→ ⟨𝛼 , 𝜈⟩ − 𝑐 be a linear factor of 𝑞. Then ℓ−1(0) consists of 𝜈 ∈ 𝔞∗
𝑄C

such that Im ⟨𝛼 , 𝜈⟩ = Im 𝑐 and Re ⟨𝜈 , 𝛼⟩ = Re 𝑐. If Re 𝑐 ≠ 0 then for 0 < 𝜀 <

|Re 𝑐 | (1 + |𝛼 |)−1 we have ℓ−1(0) ∩ 𝔞∗
𝑃
(𝜀) = ∅. Furthermore,

|ℓ(𝜈) |−1 ≤ (|Re 𝑐 | − 𝜀)−1 (𝜈 ∈ 𝔞∗𝑃 (𝜀)).

We may write 𝑞 = 𝑞0𝑞1 with 𝑞0 equal to the product of the linear factors ℓ with
Re 𝑐 = 0 and with 𝑞1 equal to the product of the remaining factors. By choosing 𝜀 > 0
sufficiently small we may arrange that |𝑞1 |−1 is bounded from above on 𝔞∗

𝑃
(𝜀). Then

𝑞0(𝜈)𝐶◦𝑄 |𝑃 (𝑠, 𝜈) = 𝑞1𝜈)−1Γ(𝜈) is holomorphic in 𝜈 ∈ 𝔞∗
𝑃
(𝜀) and we have an estimate

like (13.2) with 𝑞−1
1 Γ in place of Γ. Thus, we may as well assume that 𝑞 = 𝑞0 from the

start.
From Lemma 13.4 it follows that the Hilbert-Schmid norm ∥𝐶◦

𝑄 |𝑃 (𝑠, 𝜈)∥ is bounded
for 𝜈 ∈ 𝑖𝔞∗

𝑃
\ 𝑞−1(0). The latter set is open and dense in 𝑖𝔞∗

𝑃
. Let ℓ be a linear factor

of 𝑞, and let 𝜈0 ∈ ℓ−1(0) ∩ 𝑖𝔞∗
𝑃
. There exists a sequence 𝜇 𝑗 in 𝑖𝔞∗

𝑃
\ 𝑞−1(0) with limit

𝜈0. The sequence ∥𝐶◦
𝑄 |𝑃 (𝑠, 𝜇 𝑗 )∥ is bounded, hence Γ(𝜇 𝑗 ) = 𝑞(𝜇 𝑗 )𝐶◦𝑄 |𝑃 (𝑠, 𝜇 𝑗 ) tends to

zero for 𝑗 →∞. It follows that Γ(𝜈0) = 0. Hence Γ = 0 on ℓ−1(0) ∩ 𝑖𝔞∗
𝑃
. The latter set

is a hyperplane in the real linear space 𝑖𝔞∗
𝑃
. Furthermore. ℓ−1(0) ∩𝔞∗

𝑃
(𝜀) is a connected

open part of the complex hyperplane ℓ−1(0). By analytic continuation it follows that
Γ = 0 on ℓ−1(0) ∩𝔞∗

𝑃
(𝜀).We claim that this implies that ℓ−1Γ extends to a holomorphic

function Γ̃ on 𝔞∗
𝑃
(𝜀). Indeed, by choosing suitable (affine linear) coordinates 𝑧 𝑗 on 𝔞∗

𝑃C

we may arrange that ℓ = 𝑧1. By using local power series expansions we find that 𝑧1
divides Γ.

By a straightforward application of Cauchy’s integral formula we infer that Γ̃

satisfies an estimate of type (13.2) with 𝜀 = 𝜀/2 in place of 𝜀. Repeating this process
we reduce 𝑞 to a non-zero constant, so that (a) and (b) are valid.

Finally, (c) follows from (b) by an easy application of Cauchy’s integral formula.
2

We observe that on account of Lemma 13.5 we have

Lemma 13.6 Let 𝑃,𝑄 ∈ Pst be associated and suppose that 𝑠 ∈ 𝑊 (𝔞𝑄 |𝔞𝑃). Then the
map

𝜑 ↦→ 𝑠−1∗ [𝐶◦
𝑄 |𝑃 (𝑠, · )𝜑]

is continuous linear from S(𝑖𝔞∗
𝑃
,A2,𝑃) to S(𝑖𝔞∗

𝑄
,A2,𝑄). Here 𝑠−1∗ denotes pull-back

under 𝑠−1 : 𝑖𝔞∗
𝑃
→ 𝑖𝔞∗

𝑄
.

Corollary 13.7 There exist 𝜀 > 0, 𝑟 > 0 such that for each 𝜎 ∈ 𝑀𝑃,ds the function
𝜈 ↦→ 𝑊ℎ◦(𝑃, 𝜓, 𝜈) belongs to II′hol(𝔞𝑃,Λ𝜎, 𝜀, 𝑟, 𝜏).

Proof. This follows from [3, Cor. 11.5], in view of Lemma 13.5. 2
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14 Fourier transform and Wave packets
Let 𝑃 ∈ Pst. SinceA2,𝑃 is the finite orthogonal direct sum of the finite dimensional non-
zero subspaces A2,𝑃,𝜎 with 𝜎 ∈ 𝑀𝑃,ds it follows from Cor. 13.6, that the normalized
Whittaker integral Wh◦(𝑃, 𝜓) satisfies the uniformly tempered estimates of [2, Thm.
16.2].

In analogy with the definition of the Fourier transform F𝑃 in [2, §16] we define the
normalized Fourier transform F ◦

𝑃
: C(𝜏 : 𝐺/𝑁0 : 𝜒) → 𝐶0(𝑖𝔞∗

𝑃
,A2,𝑃) by

⟨F ◦𝑃 ( 𝑓 ) (𝜈) , 𝜓⟩ = ⟨ 𝑓 , Wh◦(𝑃, 𝜓, 𝜈)⟩2 :=
∫
𝐺/𝑁0

⟨ 𝑓 (𝑥) , Wh◦(𝑃, 𝜓, 𝜈) (𝑥)⟩𝜏 𝑑 ¤𝑥,

for 𝜓 ∈ A2,𝑃, 𝜈 ∈ 𝑖𝔞∗𝑃 .

Theorem 14.1 The normalized Fourier transformF ◦ defines a continuous linear map.

F ◦𝑃 : C(𝜏 : 𝐺/𝑁0 : 𝜒) → S(𝑖𝔞∗𝑃,A2,𝑃). (14.1)

Proof. This result is the analogue of [2, Thm. 16.6]. The proof is identical, provided
one uses the uniformly tempered estimates for the normalized Whittaker integral. 2

Later on it will be convenient to employ a characterization of the normalized Fourier
transform in terms of an integral kernel. For this point of view it is convenient to view
the normalized Whittaker integral Wh◦(𝑃, · , 𝜈), for 𝑃 ∈ Pst and 𝜈 ∈ 𝔞∗

𝑃C
, as a function

𝐺 → Hom(A2,𝑃, 𝑉𝜏). Accordingly we write

Wh◦(𝑃, 𝜈) (𝑥)𝜓 := Wh◦(𝑃, 𝜓, 𝜈, 𝑥),

for 𝑥 ∈ 𝐺 and 𝜓 ∈ A2,𝑃 . Note that 𝜈 ↦→ Wh◦(𝑃, 𝜈) may thus be viewed as a
meromorphic function with values in the Fréchet space 𝐶∞(𝐺,Hom(A2,𝑃, 𝜏)).

We adopt the similar point of view for the unnormalized Whittaker integral Wh(𝑃, 𝜈, 𝑥)
and note that the two are related by

Wh◦(𝑃, 𝜈, 𝑥) = Wh(𝑃, 𝜈, 𝑥)𝐶𝑃 |𝑃 (1, 𝜈)−1

We proceed to the promised characterization of F ◦
𝑃

with an integral kernel. For
𝐴 ∈ Hom(A2,𝑃, 𝑉𝜏) we denote by 𝐴∗ the Hermitian adjoint in Hom(𝑉𝜏,A2,𝑃) with
respect to the given Hilbert structures on A2,𝑃 and 𝑉𝜏 . Next, we define the dual
Whittaker integral Wh∗(𝑃, 𝜈) by

Wh∗(𝑃, 𝜈) (𝑥) := Wh◦(𝑃,−𝜈̄, 𝑥)∗, (𝜈 ∈ 𝔞∗𝑃C, 𝑥 ∈ 𝐺).

We note that 𝜈 ↦→Wh∗(𝑃, 𝜈) is a meromorphic function 𝔞∗
𝑃C
→ 𝐶∞(𝐺,Hom(𝑉𝜏,A2,𝑃))

satisfying the transformation laws

Wh∗(𝑃, 𝜈, 𝑘𝑥𝑛) = 𝜒(𝑛)Wh∗(𝑃, 𝜈, 𝑥)𝜏(𝑘)−1,
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for 𝑥 ∈ 𝐺, 𝑘 ∈ 𝐾 and 𝑛 ∈ 𝑁0. If 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒) we use the notation Wh∗(𝑃, 𝜈) 𝑓
for the function 𝐺/𝑁0 → A2,𝑃 defined by

Wh∗(𝑃, 𝜈) 𝑓 : 𝑥 ↦→Wh∗(𝑃, 𝜈) (𝑥) 𝑓 (𝑥).

It is now readily checked that the normalized Fourier transform (14.1) is given by

F ◦𝑃 𝑓 (𝜈) =
∫
𝐺/𝑁0

Wh∗(𝑃, 𝜈, 𝑥) 𝑓 (𝑥) 𝑑𝑥, (𝜈 ∈ 𝑖𝔞∗𝑃). (14.2)

We retain the assumption that 𝑃 ∈ Pst and denote by 𝑑𝜈 the Lebesgue measure on
the real linear space 𝑖𝔞∗

𝑃
, normalized in such a way that the usual Euclidean Fourier

transform F𝑒 : S(𝐴𝑃) → S(𝑖𝔞∗𝑃) given by F𝑒 ( 𝑓 ) (𝜈) =
∫
𝐴
𝑓 (𝑎)𝑎−𝜈 𝑑𝑎 is an isometry

for the obvious 𝐿2-inner products on S(𝐴𝑃) and S(𝑖𝔞∗
𝑃
).

Definition 14.2 The inverse transform J𝑃 : S(𝑖𝔞∗
𝑃
,A2,𝑃) → 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒), also

called Wave packet transform, is defined by the formula

J𝑃𝜑(𝑥) =
∫
𝑖𝔞∗

𝑃

Wh◦(𝑃, 𝜈, 𝑥)𝜑(𝜆) 𝑑𝜆, (14.3)

for 𝜑 ∈ A2,𝑃, 𝑥 ∈ 𝐺.

We note that by the integral (14.3) is absolutely convergent and defines a smooth
function of 𝑥 in view of the uniformly tempered estimates for the normalized Whittaker
integral.

Theorem 14.3 The normalized Wave packet transform J𝑃, for 𝑃 ∈ P, defines a
continuous linear map

J𝑃 : S(𝑖𝔞∗𝑃,A2,𝑃) → C(𝜏 : 𝐺/𝑁0 : 𝜒).

Proof. We fix 𝜎 ∈ 𝑀𝑃,ds such thatA2,𝑃,𝜎 ≠ 0. Let 𝜓 be an element of the latter space.
Then by linearity and finite dimensionality of A2,𝑃 it suffices to show that the map

𝜑 ↦→
∫
𝑖𝔞∗

𝑃

𝜑(𝜈)Wh◦(𝑃, 𝜓, 𝜈, 𝑥) 𝑑𝑥

is continuous linear S(𝑖𝔞∗
𝑃
) → C(𝜏 : 𝐺/𝑁0 : 𝜒). Since Wh◦(𝑃, 𝜓) is a family in

II′hol(𝔞
∗
𝑃
,Λ𝜎, 𝜀, 𝑟, 𝜏), see Cor. 13.7, this follows from [2, Thm. 12.1]. 2

Lemma 14.4 Let 𝑃 ∈ Pst. The transforms F ◦
𝑃

and J𝑃 are conjugate in the sense that

⟨F ◦𝑃 𝑓 , 𝜑⟩2 = ⟨ 𝑓 , J𝑃𝜑⟩2,

for 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒) and 𝜑 ∈ S(𝑖𝔞∗
𝑃
) ⊗ A2,𝑃 .
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Proof. The brackets on the left indicate the 𝐿2-type inner product on 𝐿2(𝑖𝔞∗
𝑃
,A2,𝑃)

and the brackets on the right indicated the inner product on 𝐿2(𝜏 : 𝐺/𝑁0 : 𝜒).
The inclusions S(𝑖𝔞∗

𝑃
,A2,𝑃) → 𝐿2(𝑖𝔞∗

𝑃
,A2,𝑃) and C(𝜏 : 𝐺/𝑁0 : 𝜒) → 𝐿2(𝜏 :

𝐺/𝑁0 : 𝜒) are continuous linear. It follows that the pairings ( 𝑓 , 𝜑) ↦→ ⟨F ◦
𝑃
𝑓 , 𝜑⟩ and

( 𝑓 , 𝜑) ↦→ ⟨ 𝑓 , J𝑃𝜑⟩ are continuous sesquilinear C(𝜏 : 𝐺/𝑁0 : 𝜒) × S(𝑖𝔞∗
𝑃
,A2,𝑃) →

C. By density of 𝐶∞𝑐 (𝜏 : 𝐺/𝑁0 : 𝜒) in C(𝜏 : 𝐺/𝑁0 : 𝜒) and of 𝐶∞𝑐 (𝑖𝔞∗𝑃,A2,𝑃)
in S(𝑖𝔞∗

𝑃
,A2,𝑃) it suffices to prove the identity for 𝑓 ∈ 𝐶∞𝑐 (𝜏 : 𝐺/𝑁0 : 𝜒) and

𝜑 ∈ 𝐶∞𝑐 (𝑖𝔞∗𝑃,A2,𝑃). For such 𝑓 and 𝜑 we have

⟨F ◦𝑃 𝑓 , 𝜑⟩2 =

∫
𝑖𝔞∗

𝑃

⟨
∫
𝐺/𝑁0

Wh∗(𝑃, 𝜈, 𝑥) 𝑓 (𝑥)𝑑𝑥 , 𝜑(𝜈)⟩ 𝑑𝜈

=

∫
𝑖𝔞∗

𝑃

∫
𝐺/𝑁0

⟨Wh∗(𝑃, 𝜈, 𝑥) 𝑓 (𝑥) , 𝜑(𝜈)⟩ 𝑑𝑥 𝑑𝜈

=

∫
𝐺/𝑁0

∫
𝑖𝔞∗

𝑃

⟨ 𝑓 (𝑥) , Wh◦(𝑃, 𝜈, 𝑥)𝜑(𝜈)⟩ 𝑑𝜈 𝑑𝑥

= ⟨ 𝑓 , J𝑃𝜑⟩2
2

15 The functional equations
Based on the results of the previous section, we shall now derive Harish-Chandra’s
functional equation, see [7, §1.7].

Lemma 15.1 Let 𝑃,𝑄 ∈ Pst be associated and let 𝑠 ∈ 𝑊 (𝔞𝑄 | 𝔞𝑃). Then

Wh◦(𝑃, 𝜈) = Wh◦(𝑄, 𝑠𝜈) 𝐶◦
𝑄 |𝑃 (𝑠, 𝜈) (15.1)

as an identity of meromorphic functions of the variable 𝜈 ∈ 𝔞∗
𝑃C
.

Proof. We will first establish the existence of a meromorphic function 𝐹 : 𝔞∗
𝑃C
→

Hom(A2,𝑃,A2,𝑄) such that

Wh◦(𝑃, 𝜈) = Wh◦(𝑄, 𝑠𝜈)𝐹 (𝜈), (𝜈 ∈ 𝔞∗𝑃C). (15.2)

Indeed, by Lemma 9.7 there exists an element 𝐹𝑠 ∈ Hom(A2,𝑃,A2,𝑄) such that

Wh(𝑃, 𝜈) = Wh(𝑠𝑃𝑠−1, 𝑠𝜈)𝐹𝑠, (𝜈 ∈ 𝔞∗𝑃C).

Since 𝑠𝑃𝑠−1 and 𝑄 have the same split component, it follows from Lemma 9.4 that
there exists a meromorphic 𝐺 : 𝔞∗

𝑄C
→ End(A2,𝑄) such that

Wh(𝑠−1𝑃𝑠, 𝑠𝜈) = Wh(𝑄, 𝑠𝜈)𝐺 (𝜈).
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Combining these assertions it follows that (15.2) is valid with everywhere Wh in place
of Wh◦ and with 𝐺 (𝜈)𝐹𝑠 in place of 𝐹 (𝜈). If we combine this observation with the
definition of the normalized Whittaker integrals, we find that (15.2) is valid with

𝐹 (𝜈) := 𝐶◦
𝑃 |𝑃 (1, 𝜈)

−1 ◦𝐺 (𝜈) ◦ 𝐹𝑠 ◦𝐶◦𝑄 |𝑄 (1, 𝑠𝜈), (𝜈 ∈ 𝔞∗𝑃C).

Let Ω ⊂ 𝑖𝔞∗
𝑄

be the set of all 𝜈 ∈ 𝑖𝔞∗
𝑄

which are a regular point of all meromorphic
functions in the above expression for 𝐹, and for which the elements 𝑣𝜈, for 𝑣 ∈ 𝑊 (𝔞𝑄),
are mutually distinct. Then Ω is open dense in 𝑖𝔞∗

𝑄
. For 𝜈 ∈ Ω, the functions on the

left and right of (15.2) are tempered and belong to A(𝜏 : 𝐺/𝑁0 : 𝜒). By taking the
constant terms of these functions along 𝑄 and comparing the appearing exponential
functions with exponent 𝑠𝜈, we find that 𝐹 (𝜈) = 𝐶◦

𝑄 |𝑃 (𝑠, 𝜈) for all 𝜈 ∈ Ω. By analytic
continuation this identity is valid as an identity of meromorphic functions of 𝜈 ∈ 𝔞∗

𝑄C
,

and (15.1) follows. 2

Corollary 15.2 Let 𝑃,𝑄, 𝑅 ∈ Pst all be associated to each other. For all 𝑠 ∈ 𝑊 (𝔞𝑄 |
𝔞𝑃) and 𝑡 ∈ 𝑊 (𝔞𝑅 | 𝔞𝑄),

𝐶◦
𝑅 |𝑃 (𝑡𝑠, 𝜈) = 𝐶

◦
𝑅 |𝑄 (𝑡, 𝑠𝜈) 𝐶

◦
𝑄 |𝑃 (𝑠, 𝜈) (15.3)

as an identity of meromorphic functions of 𝜈 ∈ 𝔞∗
𝑃C
.

Proof. Let 𝜈 ∈ 𝑖𝔞∗
𝑃

be a regular point for each of the three meromorphic functions
appearing in equation (15.1). Then (15.3) follows by taking the constant terms along 𝑅
of the tempered functions on both sides of (15.1). The proof is finished by application
of analytic continuation. 2

The functional equations have important consequences for the Fourier and Wave
packet transforms.

Corollary 15.3 Let 𝑃,𝑄 ∈ Pst be associated and suppose that 𝑠 ∈ 𝑊 (𝔞𝑄 |𝔞𝑃). Then
for all 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒),

𝐶◦
𝑄 |𝑃 (𝑠, 𝜈)F

◦
𝑃 𝑓 (𝜈) = F ◦𝑄 𝑓 (𝑠𝜈), (𝜈 ∈ 𝑖𝔞∗𝑃) (15.4)

Proof. From Lemma 15.1 we deduce that, for 𝜈 ∈ 𝑖𝔞∗
𝑃
,

Wh∗(𝑃, 𝜈) = 𝐶◦
𝑄 |𝑃 (𝑠,−𝜈̄)

∗Wh∗(𝑄, 𝑠𝜈) = 𝐶◦
𝑄 |𝑃 (𝑠, 𝜈)

−1Wh∗(𝑄, 𝑠𝜈).

This implies that
𝐶◦
𝑄 |𝑃 (𝑠, 𝜈)Wh∗(𝑃, 𝜈) = Wh∗(𝑄, 𝑠𝜈).

The identity (15.4) now follows in view of the characterization of the normalized
Fourier transform in (14.2). 2
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Corollary 15.4 Let 𝑃,𝑄 ∈ Pst be associated and suppose that 𝑠 ∈ 𝑊 (𝔞𝑄 |𝔞𝑃). Then
for all 𝜑 ∈ S(𝑖𝔞∗

𝑃
,A2,𝑃),

J𝑃𝜑 = J𝑄𝑠−1∗ [𝐶◦
𝑄 |𝑃 (𝑠 : · )𝜑] .

Here 𝑠−1∗ denotes pull-back by 𝑠−1 : 𝑖𝔞∗
𝑄
→ 𝑖𝔞∗

𝑃
.

Proof. By using the definition of J𝑃 and Lemma 15.1, taking into account Lemma
13.6 we find

J𝑃𝜑 =

∫
𝑖𝔞∗

𝑃

Wh◦(𝑄, 𝑠𝜈)𝐶◦
𝑄 |𝑃 (𝑠, 𝜈)𝜑(𝜈) 𝑑𝜈

=

∫
𝑖𝔞∗

𝑄

Wh◦(𝑄, 𝜈)𝑠−1∗ [𝐶◦
𝑄 |𝑃 (𝑠, · )𝜑] (𝜈) 𝑑𝜈.

Now use the definition of J𝑄 .
2

Corollary 15.5 Let 𝑃,𝑄 ∈ Pst. Then

J𝑃F ◦𝑃 𝑓 = J𝑄F ◦𝑄 𝑓 , ( 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒)).

Proof. By Corollaries 15.4 and 15.3 we have

J𝑃F ◦𝑃 𝑓 = J𝑄𝑠−1∗ [𝐶◦
𝑄 |𝑃 (𝑠, · )F

◦
𝑃 𝑓 ] = J𝑄𝑠−1∗ [𝑠∗(F ◦𝑄 𝑓 )] = J𝑄F

◦
𝑄 𝑓 .

2

16 Appendix: criterion of smoothness for distributions
In this appendix, we will prove a result needed in Section 5. Let𝑈 be a smooth manifold
of dimension 𝑛. For K ⊂ 𝑈 a compact subset and 𝑢 ∈ D′(𝑈) = 𝐶∞𝑐 (𝑈)′ we denote by
𝑢K the restriction of 𝑢 to 𝐶∞K (R

𝑛). We will say that 𝑢 has order 𝑟 on K if 𝑢K extends
to a continuous linear functional on 𝐶𝑟K (𝑈).

We will write 𝐶∞K (𝑈) for the Fréchet space of smooth functions 𝜑 ∈ 𝐶∞(𝑈) with
support contained in K . For 𝑝 ∈ N we have 𝐶∞K (𝑈) ⊂ 𝐶

𝑝

K (𝑈). The latter space has
a natural Banach topology, for which the inclusion is continuous with dense image.
Transposition induces a natural inclusion of the dual spaces equipped with the strong
dual topologies,

𝐶
𝑝

K (𝑈)
′ ⊂ 𝐶∞K (𝑈)

′.

The topology on the first of these spaces is the dual Banach topology.
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Let Ω be an open subset of R𝑞 and suppose a map 𝑇 : Ω → 𝐶∞𝑐 (𝑈)′, 𝑦 ↦→ 𝑇𝑦 =

𝑇 (𝑦) is given. For a compact subset K ⊂ 𝑈 we define

𝑇K : Ω→ 𝐶∞K (𝑈)
′ (16.1)

by
𝑇K (𝑦) := 𝑇𝑦 |𝐶∞K (𝑈) , (𝑥 ∈ 𝑈).

We say that 𝑇K maps to the Banach space 𝐶 𝑝

K (𝑈)
′ if 𝑇K (𝑦) ∈ 𝐶 𝑝

K (𝑈)
′ for all 𝑦 ∈ Ω.

Let 𝑣1, . . . , 𝑣𝑞 be a collection of smooth vector fields on𝑈, such that for each 𝑥 ∈ 𝑈
the vectors 𝑣 𝑗 (𝑥) span the tangent space𝑇𝑥𝑈. If 𝛼 ∈ N𝑞,we denote by 𝑣𝛼 the differential
operator 𝑣𝛼1

1 · · · 𝑣
𝛼𝑞
𝑞 on𝑈.

Theorem 16.1 Let Ω ⊂ R𝑛 be open and let 𝑇 : Ω→ 𝐶∞𝑐 (𝑈)′ be a map.
If for each 𝛼 ∈ N𝑞 and every compact set K ⊂ 𝑈 the map

𝑦 ↦→ [𝑣𝛼 (𝑇𝑦)]K (16.2)

is continuous from Ω to the Banach space 𝐶 𝑝

K (𝑈)
′, then

(a) for every 𝑦 ∈ Ω the density 𝑇𝑦 is of the form 𝜏𝑦𝑑𝑥 with 𝜏𝑦 ∈ 𝐶∞(𝑈) and 𝑑𝑥 a
smooth positive density on𝑈;

(b) for each 𝛼 ∈ N𝑛 the function 𝑦 ↦→ 𝜕𝛼 (𝜏𝑦), Ω→ 𝐶∞(𝑈), is continuous.

If Ω ⊂ R𝑘 × Cℓ and for every compact K ⊂ 𝑈 the map (16.2) is continuous from Ω to
the Banach space 𝐶 𝑝

K (𝑈)
′ and in addition holomorphic in the variable from Cℓ, then

for each 𝛼 ∈ N𝑞 the function 𝑦 ↦→ 𝑣𝛼 (𝜏𝑦), Ω→ 𝐶∞(𝑈), is continuous and in addition
holomorphic in the variable from Cℓ .

Proof. If 𝜒 ∈ 𝐶∞𝑐 (𝑈) then by a straightforward application of the Leibniz rule for
differentiation, it follows that the map 𝑇 : 𝑦 ↦→ 𝜒𝑇𝑦 fulfills the hypotheses with 𝑇 in
place of 𝑇. Clearly, it suffices to prove the conclusions (a), (b) and the final assertion
with 𝑇 in place of 𝑇, for any choice of 𝜒.

Therefore, we may as well assume that there exists a compact set K0 contained in
the interior of a compact subset K ⊂ 𝑈 such that supp𝑇𝑦 ⊂ K0 for all 𝑦 ∈ Ω. Then
the hypothesis that for every 𝛼 ∈ N𝑛 the function (8.2) is continuous is fulfilled for
this particular K . We will keep the sets K0 and K fixed from now on and fix a cut off
function 𝜒 ∈ 𝐶∞K (R

𝑛) which is 1 on an open neighborhood of 𝐾0. Then 𝜒𝑇◦ = 𝑇◦ for
every distribution 𝑇◦ ∈ 𝐶∞(𝑈)′ with support contained in K0. In particular this is true
for 𝑇◦ = 𝑇𝑦 (𝑦 ∈ Ω).

We denote by F the Euclidean Fourier transform which on a function 𝑓 from the
Schwartz space S(R𝑛) is given by

F 𝑓 (𝜉) =
∫
R𝑛

𝑓 (𝑥)𝑒−𝑖𝜉 ·𝑥 𝑑𝑥, (𝜉 ∈ R𝑛).
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This operator is a topological linear isomorphism from S(R) onto itself. The inverse
transform is given by S(R𝑛) ∋ 𝑔 ↦→ 𝑆F (𝑔), where 𝑆𝑔(𝑥) = 𝑔(−𝑥). (No constant is
appearing provided Lebesgue measure is replaced by a suitable positive multiple.)

On the space S′(R𝑛) of tempered distributions, the Fourier transform is given
by transposition of the transform on Schwartz functions, hence a topological linear
isomorphism from the spaceS′(R𝑛) onto itself; it is also denoted F . This is compatible
with the notation for Schwartz functions if we embed S(R𝑛) into S′(R𝑛) by 𝑓 ↦→ 𝑓 𝑑𝑥,

where 𝑑𝑥 denotes the standard smooth density on R𝑛. On the space of tempered
distributions, the inverse Fourier transform is given by the transpose of 𝑆F .

For every 𝑦 ∈ Ω the distribution 𝑇𝑦 is compactly supported, with support inK0. Let
𝑇◦ ∈ 𝐶∞𝑐 (𝑈)′ be any distribution with compact support contained in K0 and such that
(𝜕𝛼𝑇◦)K belongs to 𝐶 𝑝

K (𝑈)
′, for every 𝛼 ∈ N𝑛. It particular, such a 𝑇◦ is a tempered

distribution and the associated Euclidean Fourier transform is the tempered distribution
given by the analytic function R𝑛 → C defined by

F (𝑇◦) : 𝜉 ↦→ 𝑇◦(𝑒−𝑖𝜉), (𝜉 ∈ R𝑛).

Here 𝑒−𝑖𝜉 denotes the exponentional function 𝑥 ↦→ 𝑒−𝑖𝜉 ·𝑥 ,R𝑛 → C. By the inversion
formula,

𝑇◦ = F ◦ 𝑆(F𝑇◦). (16.3)

We fix a norm ∥ · ∥K,𝑟 which gives the Banach topology on 𝐶 𝑝

K (𝑈),

∥𝜑∥K,𝑝 := max
|𝛼 |≤𝑝

sup
K
|𝜕𝛼𝜑|,

and we denote the dual norm on 𝐶 𝑝

K (𝑈)
′ by ∥ · ∥∗. One readily verifies that there exists

a constant 𝑐 > 0 such that for every 𝜉 ∈ R𝑛,

∥𝜒𝑒−𝑖𝜉 ∥K,𝑝 ≤ 𝑐(1 + ∥𝜉∥)𝑝, (𝜉 ∈ R𝑛).

Suppose now that for every 𝛼 ∈ N𝑛 the distribution 𝜕𝛼 (𝑇◦) satisfies (𝜕𝛼𝑇◦)K ∈
𝐶
𝑝

K (𝑈)
′. Put Δ :=

∑𝑛
𝑗=1 𝜕

2
𝑗
. Then for every 𝑁 ∈ N and all 𝜉 ∈ R𝑛,

| (1 + ∥𝜉∥2)𝑁F (𝑇◦) (𝜉) | = |F ((1 − Δ)𝑁𝑇◦) (𝜉) |
= |⟨(1 − Δ)𝑁𝑇◦ , 𝜒𝑒−𝑖𝜉⟩|
≤ ∥(1 − Δ)𝑁𝑇◦∥∗ ∥𝜒𝑒−𝑖𝜉 ∥K,𝑝 ≤ 𝐶𝑁 (𝑇◦) (1 + ∥𝜉∥)𝑝,

where
𝐶𝑁 (𝑇◦) := 𝑐∥(1 − Δ)𝑁𝑇◦∥∗.

This leads to the estimate

|F (𝑇◦) (𝜉) | ≤ 𝐶𝑁 (𝑇◦) (1 + ∥𝜉∥2)𝑝/2−𝑁 , (𝜉 ∈ R𝑛) (16.4)
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for every 𝑁 ∈ N. It follows from this estimate that the inverse Fourier transform of
F (𝑇) is the continuous density given by 𝑇◦ = 𝜏◦𝑑𝑥 where 𝑑𝑥 is the standard smooth
density on R𝑛, and where

𝜏◦(𝑥) = 𝑆FF (𝑇◦) (𝑥) =
∫
R𝑛

𝑒𝑖𝜉 ·𝑥F (𝑇◦) (𝜉) 𝑑𝜉. (16.5)

Using the estimate (16.4) – with 𝑁 sufficiently large – for domination under the
integral sign, we infer that 𝜏◦ is a smooth function and for each 𝛽 ∈ N𝑛, the derivative
𝜕𝛽𝜏◦ is given by differentiation under the integral sign. Substituting 𝑇𝑦 for 𝑇◦ in the
resulting expression, and writing 𝑇𝑦 = 𝜏𝑦𝑑𝑥, we obtain

𝜕𝛽𝜏𝑦 (𝑥) =
∫
R𝑛

𝑒𝑖𝜉 ·𝑥 (𝑖𝜉)𝛽 F (𝑇𝑦) (𝜉) 𝑑𝜉, (𝑦 ∈ Ω). (16.6)

We note that 𝑦 ↦→ (𝑇𝑦)K is continuous Ω → 𝐶
𝑝

K (𝑈)
′ by assumption. On the other

hand, it is straightforward that 𝜉 ↦→ 𝜒𝑒−𝑖𝜉 is continuous R𝑛 → 𝐶
𝑝

K (𝑈). Since the
natural pairing 𝐶 𝑝

K (𝑈)
′ × 𝐶 𝑝

K (𝑈) → C is continuous bilinear it follows that the map

Ω × R𝑛 → C, (𝑦, 𝜉) ↦→ ⟨𝑇𝑦 , 𝜒𝑒−𝑖𝜉⟩ = F (𝑇𝑦) (𝜉)

is continuous. It now easily follows that the integrand 𝐼 (𝑦, 𝑥, 𝜉) of (16.6) is a continuous
function of (𝑦, 𝑥, 𝜉) ∈ Ω ×𝑈 × R𝑛. On the other hand, the integrand is dominated by

𝐶𝑁 (𝑇𝑦) (1 + ∥𝜉∥) |𝛽 | (1 + ∥𝜉∥)2)𝑝/2−𝑁 (16.7)

while 𝐶𝑁 (𝑇𝑦) is locally bounded in 𝑦. Since this is valid for 𝑁 arbitrarily high, we
conclude that the function (𝑦, 𝑥) ↦→ 𝜕𝛽𝜏𝑦 (𝑥) belongs to 𝐶 (Ω × 𝑈). This in turn is
equivalent to the assertion that 𝑦 ↦→ 𝜕𝛽𝜏𝑦 is continuous from Ω to 𝐶 (𝑈). As 𝛽 ∈ N𝑛

was arbitrary we conclude that 𝑦 ↦→ 𝜏𝑦 is continuous Ω→ 𝐶∞(𝑈).
We now turn to the statement about holomorphy. Write 𝑦 = (𝑧, 𝜆) according to the

decomposition R𝑞 ≃ R𝑘 ×Cℓ . It remains to prove the final assertion about holomorphy
in the variable 𝜆. For this we first investigate the holomorphy of F (𝑇𝜆).

By assumption the map 𝑦 ↦→ 𝑇𝑦 is continuous Ω→ 𝐶
𝑝

K (𝑈)
′ and holomorphic in 𝜆.

This implies that (𝑦, 𝜉) ↦→ ⟨𝑇𝑦 , 𝑒−𝑖𝜉⟩ is continuous Ω × R𝑛 → C, with holomorphy in
the variable 𝜆. The integrand 𝐼 (𝑦, 𝑥, 𝜉) introduced above is continuous, and holomor-
phic in 𝜆, while it is dominated by (16.7). It is a well-known result that this implies
that (𝑥, 𝑦) ↦→ 𝜕𝛽 (𝜏𝑦) (𝑥) is holomorphic in the variable 𝜆. It follows from this that the
map 𝑦 → 𝜏𝑦 is continuous from Ω to 𝐶∞(𝑈) and holomorphic in the variable 𝜆. 2

17 Appendix: divergence for a convex polyhedron
This appendix gives a rigorous proof of Gauss’ divergence theorem for a compact
convex polyhedral set in Euclidean space. For a more systematic treatment of Stokes’
theorem on manifolds with singularities, we refer the reader to [8].
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By an affine hyperplane 𝜎 in R𝑛 we mean a translate of a linear subspace of
codimension 1. Its complement R𝑛 \𝜎 is a disjoint union of two open half-spaces. The
closures of these are called the closed half-spaces associated with 𝜎. The latter can be
retrieved as the intersection of its closed half-spaces.

Any affine hyperplane can be described by a formula of the form 𝜎 = {𝑥 ∈ R𝑛 |
𝜉 (𝑥) = 𝑐}, where 𝜉 ∈ R𝑛∗ \ {0} and 𝑐 ∈ R. The associated closed half-spaces are then
described by 𝜉 ≤ 𝑐 and by 𝜉 ≥ 𝑐.

In this section we assume that 𝐶 is a compact convex polyhedral subset of R𝑛, i.e.,
a compact finite intersection of closed half-spaces.

Assume that 𝐶 has non-empty interior. Then by a hyperplane facet of 𝐶 we mean
an affine hyperplane 𝜎 such that 𝐶 is contained in precisely one of the two closed half-
spaces determined by 𝜎 and such that 𝐶𝜎 := 𝐶 ∩ 𝜎 has non-empty interior (denoted
by 𝐶◦𝜎) as a subset of 𝜎. The sets 𝐶𝜎 and 𝐶◦𝜎 will be called the closed and open facets
associated with 𝜎. Note that 𝜎 is the affine span of the open facet 𝐶◦𝜎 . The collection
Σ = Σ(𝐶) of affine facets of 𝐶 is finite. Furthermore, it is readily verified that

𝜕𝐶 = ∪𝜎∈Σ 𝐶𝜎

If 𝜎1 and 𝜎2 are distinct affine facets, then 𝐶◦𝜎1 ∩ 𝐶
◦
𝜎2 = ∅. If 𝜎 ∈ Σ then by 𝜈𝜎 we

denote the unit vector in 𝜎⊥ which points away from the closed half-space associated
with 𝜎 that contains 𝐶. We write 𝜈 : 𝜕𝐶 → R𝑛 for the partially defined function
determined by 𝜈(𝑠) = 𝜈𝜎, for 𝑠 ∈ 𝐶◦𝜎 . This function is called the outward unit normal
to 𝜕𝐶.

If 𝑓 : 𝑈 → R is a 𝐶1-function on an open subset 𝑈 ⊂ R𝑛 and 𝐻 ∈ R𝑛 then we
define the directional derivative 𝜕𝐻 𝑓 by 𝜕𝐻 𝑓 (𝑥) = 𝑑/𝑑𝑡 𝑓 (𝑥 + 𝑡𝐻) |𝑡=0, (𝑥 ∈ 𝑈).

Lemma 17.1 Let 𝑓 : 𝐶 → R be a continuous function which is partially differentiable
on int(𝐶) with partial deriatives that extend continuously to𝐶. Then for every 𝐻 ∈ R𝑛,∫

𝐶

𝜕𝐻 𝑓 (𝑥)𝑑𝑥 =
∫
𝜕𝐶

⟨𝜈(𝑠) , 𝐻⟩ 𝑓 (𝑠) 𝑑𝑠.

Remark 17.2 Let Σ denote the set of affine facets of 𝜕𝐶. Then∫
𝜕𝐶

⟨𝜈(𝑠) , 𝐻⟩ 𝑓 (𝑠) 𝑑𝑠 =
∑︁
𝜎∈Σ
⟨𝜈𝜎 , 𝐻⟩

∫
𝐶∩𝜎

𝑓 (𝑠) 𝑑𝑠.

The lemma will be proven in the rest of this section. We start with investigating
partial differentiation for integration over R𝑛+, where R+ =] 0,∞ [.

Lemma 17.3 Let 𝑓 : R𝑛+ → R be a 𝐶1-function, with partial derivatives up to order
1 extending continuously to [0,∞[𝑛 and with support bounded in R𝑛. Then for every
𝐻 ∈ R𝑛, ∫

R𝑛
+

𝜕𝐻 𝑓 (𝑥) 𝑑𝑥 =
𝑛∑︁
𝑗=1

∫
R 𝑗−1
+ ×R

𝑛− 𝑗
+

−𝐻 𝑗 𝑓 (𝑥, 0, 𝑦) 𝑑𝑥𝑑𝑦.
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Proof. This is elementary from Fubini, and the formula− 𝑓 (𝑥, 0, 𝑦) =
∫ ∞

0 𝜕𝑡 𝑓 (𝑥, 𝑡, 𝑦)𝑑𝑡.
2

As a next step, we consider the cone Γ in R𝑛 generated by an 𝑛-tuple of distinct
vectors 𝛾1, . . . , 𝛾𝑛. We denote by 𝜕𝑗Γ the cone generated by the points 𝛾𝑘 , 𝑘 ≠ 𝑗 . Then
𝜕Γ is the union of the cones 𝜕𝑗Γ. The outward unit normal to 𝜕𝑗Γ is denoted by 𝜈 𝑗 .

Lemma 17.4 Let 𝑓 : int(Γ) → R be a𝐶1 function with partial derivatives up to order
1 that extend continuously to Γ. In addition it is assumed that 𝑓 has bounded support.
Then ∫

Γ

𝜕𝐻 𝑓 (𝑥) 𝑑𝑥 =
𝑛∑︁
𝑗=1
⟨𝜈 𝑗 , 𝐻⟩

∫
𝜕 𝑗Γ

𝑓 (𝑠) 𝑑𝑠.

Proof. The previous lemma is a special case. To obtain the more generala result from
the present lemma, let 𝑇 : R𝑛 → R𝑛 be the linear map determined by 𝑇𝑒 𝑗 = 𝛾 𝑗 , for
1 ≤ 𝑗 ≤ 𝑛. Then 𝑇 (R𝑛+) = Γ. The boundary part 𝜕𝑗Γ is the image under 𝑇 of the
boundary part 𝜕𝑗 := 𝜕𝑗R𝑛+. The outward normal vector 𝑛 𝑗 at points of the interior of 𝜕𝑗
relative to the affine span of 𝜕𝑗 is related to 𝜈 𝑗 as follows.

A half-line 𝑥 + R+𝐻 emanates from 𝜕𝑗Γ in the outward direction if and only if
𝑇−1𝑥 + R+𝑇−1𝐻 emanates from 𝜕𝑗 in the outward direction. From this it follows that
for all 𝐻 ∈ R𝑛 \ {0}, we have that ⟨𝜈 𝑗 , 𝐻⟩ > 0 if and only if ⟨𝑛 𝑗 , 𝑇−1𝐻⟩ > 0. This
implies that there exists a constant 𝑐 𝑗 > 0 such that

𝜈 𝑗 = 𝑐 𝑗 𝑇
−1∗(𝑛 𝑗 ). (17.1)

Since 𝜈 𝑗 has unit length it follows that 𝑐 𝑗 = ∥𝑇−1∗𝑛 𝑗 ∥−1.
By linear substitution of variables and application of the previous lemma we obtain∫

Γ

𝜕𝐻 𝑓 (𝑥) 𝑑𝑥 =
∫
R𝑛
+

𝜕𝐻 𝑓 (𝑇 (𝑧)) 𝑑𝑧

= | det𝑇 |
∫
R𝑛
+

𝜕𝑇−1𝐻 [𝑇∗ 𝑓 ] (𝑧) 𝑑𝑧

= | det𝑇 |
𝑛∑︁
𝑗=1

∫
R 𝑗−1
+ ×R

𝑛− 𝑗
+

−(𝑇−1𝐻) 𝑗 (𝑇∗ 𝑓 ) (𝑥, 0, 𝑦)𝑑𝑥𝑑𝑦, (17.2)

where 𝑥 𝑗 = (𝑥1 . . . 𝑥 𝑗−1𝑥 𝑗+1 . . . 𝑥𝑛). We consider the 𝑗 − 𝑡ℎ term, and compare with the
surface integral over 𝜕𝑗Γ. Let𝑈 𝑗 := R 𝑗−1

+ × {0} × 𝑅
𝑛− 𝑗
+ . Then a regular parametrisation

of 𝜕𝑗Γ is given by the map 𝑇𝑗 : 𝑈 𝑗 → 𝜕𝑗Γ, (𝑥, 𝑦) ↦→ 𝑇 (𝑥, 0, 𝑦). Now∫
𝜕 𝑗Γ

⟨𝜈 𝑗 , 𝐻)⟩ 𝑓 (𝑠) 𝑑𝑠 =
∫
𝑈 𝑗

⟨𝜈 𝑗 , 𝐻⟩ 𝑓 (𝑇 (𝑥, 0, 𝑦)) |𝐽 𝑗 (𝑇) | 𝑑𝑥 𝑑𝑦, (17.3)
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where 𝐽 𝑗 (𝑇) = 𝑇𝑒1 × · · · × 𝑇𝑒 𝑗 × · · · × 𝑇𝑒𝑛. By the definition of the exterior product,
we have, for all 𝑣 ∈ R𝑛, that

⟨𝐽 𝑗 (𝑇) , 𝑣⟩ = det(𝑣, 𝑇𝑒1, . . . , 𝑇𝑒 𝑗 , . . . 𝑇𝑒𝑛)
= det𝑇 · det(𝑇−1𝑣, 𝑒1, . . . , 𝑒 𝑗 , . . . , 𝑒𝑛)
= (−1) 𝑗−1 det𝑇 · (𝑇−1𝑣) 𝑗 = (−1) 𝑗 · det𝑇 · ⟨𝑛 𝑗 , 𝑇−1𝑣⟩,

from which we infer that 𝐽 𝑗 (𝑇) = (−1) 𝑗 det𝑇 · 𝑇−1∗𝑛 𝑗 , so that 𝑐 𝑗 |𝐽 𝑗 (𝑇) | = | det𝑇 |, see
the line below (17.1). Using (17.1) it now follows that

⟨𝜈 𝑗 , 𝐻⟩ |𝐽 𝑗 (𝑇) | = 𝑐 𝑗 ⟨𝑛 𝑗 , 𝑇−1𝐻⟩|𝐽 𝑗 (𝑇) | = ⟨𝑛 𝑗 , 𝑇−1𝐻⟩| det𝑇 |.

Hence the integrals on the right of (17.2) and of (17.3) are identical. 2

Completion of the proof of Lemma 17.1. By an easy translation argument, Lemma
17.1 is seen to be valid with domain 𝑎 + Γ (𝑎 ∈ R𝑛) in place of Γ.

We will now give the proof for 𝐶 an 𝑛-dimensonal simplex in R𝑛, i.e., the convex
hull co(𝑎0, . . . , 𝑎𝑛) of 𝑛 + 1 points in R𝑛 whose affine span is R𝑛. For 0 ≤ 𝑗 ≤ 0 we
denote by Γ 𝑗 the cone in R𝑛 spanned by 𝑎𝑖 − 𝑎 𝑗 , for 𝑖 ≠ 𝑗 . Then 𝐶 ⊂ 𝑎 𝑗 + Γ 𝑗 .

By a simple argument there exists a cover of 𝐶 by bounded open subsets O 𝑗 ⊂ R𝑛,
for 0 ≤ 𝑗 ≤ 𝑛, such that 𝑎 𝑗 ∈ O 𝑗 and O 𝑗 ∩ co(𝑎0, . . . , 𝑎̂ 𝑗 , . . . , 𝑎𝑛) = ∅. We fix
a 𝐶1-partition of unity {𝜓 𝑗 | 0 ≤ 𝑗 ≤ 0} over 𝐶 subordinate to the given cover.
Thus, 𝜓 𝑗 ∈ 𝐶1

𝑐 (O 𝑗 ), 0 ≤ 𝜓 𝑗 ≤ 1, and
∑𝑛
𝑗=0 𝜓 𝑗 = 1 on an open neighborhood of 𝐶.

Let 𝑓 satisfy the hypothesis of Lemma 17.1 and define, for each 𝑗 , 𝑓 𝑗 = 𝜓 𝑗 𝑓 . Then
𝑓 =

∑𝑛
𝑗=0 𝑓 𝑗 and by linearity it suffices to prove the assertion of the lemma for each 𝑓 𝑗 ;

fix 𝑗 .
The function 𝑓 𝑗 : int(𝐶) → R is continuous and its partial derivatives up to order

1 extend continuously to 𝐶. Moreover, since 𝑓 𝑗 = 0 on an open neighborhood of
co(𝑎0, . . . , 𝑎̂ 𝑗 , . . . , 𝑎𝑛) it follows that the extension of 𝑓 𝑗 to 𝑎 𝑗 + Γ 𝑗 , by requiring it to
be zero outside 𝐶 has bounded support and its partial derivatives of order at most 1
extend continuously to 𝑎 𝑗 + Γ 𝑗 . By the first part of this proof, it follows that∫

𝑎 𝑗+Γ 𝑗

𝜕𝐻 𝑓 𝑗 (𝑥) 𝑑𝑥 =
∫
𝑎 𝑗+𝜕Γ 𝑗

⟨𝜈Γ 𝑗
, 𝐻⟩ 𝑓 (𝑠)𝑑𝑠.

The integrands of both integrals are zero on an open neighborhood of (𝑎 𝑗 + Γ \ 𝐶).
Therefore, ∫

𝐶

𝜕𝐻 𝑓 𝑗 (𝑥) 𝑑𝑥 =
∫
𝐶∩(𝑎 𝑗+𝜕Γ 𝑗 )

⟨𝜈Γ 𝑗
, 𝐻⟩ 𝑓 (𝑠)𝑑𝑠.

The domain of the latter integration equals 𝜕𝐶 \ co(𝑎0, . . . , 𝑎̂ 𝑗 , . . . , 𝑎𝑛). Since 𝑓 𝑗
vanishes on co(𝑎0, . . . , 𝑎̂ 𝑗 , . . . , 𝑎𝑛) it follows that the value of the latter integral remains
unchanged if the domain is replaced by 𝜕𝐶. This completes the proof for 𝐶 a simplex.

Let now 𝐶 ⊂ R𝑛 be a compact convex polyhedral set with non-empty interior and
fix a simplicial decompostion Σ of𝐶. Let let Σ𝑛 denote the (finite) set of 𝑛-dimensional
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simplices 𝑆 ∈ Σ. Then 𝐶 = ∪Σ𝑛 while all points of overlap are contained in the union
of the simplices from Σ𝑛−1. The integral of 𝜕𝐻 𝑓 over 𝐶 equals∑︁

𝑆∈Σ𝑛

∫
𝑆

𝜕𝐻 𝑓 (𝑥) 𝑑𝑥 =
∑︁
𝑆∈Σ𝑛

∫
𝜕𝑆

⟨𝜈𝑆 , 𝐻⟩ 𝑓 (𝑠)𝑑𝑠

=
∑︁
𝑆∈Σ𝑛

∑︁
𝜎∈𝑆𝑛−1 (𝜕𝑆)

∫
𝜎

⟨𝜈𝜎 , 𝐻⟩ 𝑓 (𝑠)𝑑𝑠. (17.4)

where 𝑆𝑛−1 [𝜕𝑆] denotes the set of 𝜎 ∈ 𝑆𝑛−1 which are contained in 𝜕𝑆 (the appearing
unit normal 𝜈𝜎 points out of 𝑆). The double sum presenting the last integral can be
rewritten as a sum of integrals over 𝜎 ∈ 𝑆𝑛−1. The elements of 𝑆𝑛−1 [𝜕𝐶] cover 𝜕𝐶
with overlap contained in the negligable set ∪𝑆𝑛−2. The remaining elements, from
𝑆𝑛−1 \ 𝑆𝑛−1 [𝜕𝐶], can be grouped in pairs of simplices in Σ𝑛−1 [𝑆 ∩ 𝑆′], (𝑆, 𝑆′ ∈ 𝑆𝑛)
equipped with opposite unit normals. As the contributions of these pairs cancel each
other, the final sum in (17.4) can be rewritten as∑︁

𝜎∈Σ𝑛−1 [𝜕𝐶]

∫
𝜎

⟨𝜈𝜎 , 𝐻⟩ 𝑓 (𝑠)𝑑𝑠 =
∫
𝜕𝐶

⟨𝜈𝜎 , 𝐻⟩ 𝑓 (𝑠)𝑑𝑠.

2
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