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A CONVEXITY THEOREM
FOR SEMISIMPLE SYMMETRIC SPACES

ERIK P. VAN DEN BAN

We generalize Kostant's convexity theorem for the Iwasawa decom-
position of a real semisimple Lie group G to the following situation. Let
T be an involution of G, and H = (Gτ)°. Then there exists an Iwasawa
decomposition G = KApN with certain compatibility properties, e.g.
τ(K) = K, τ(Ap) = Ap. Let ap = L ie(^ ) , φ : G -> α^ the projection
according to the Iwasawa decomposition and Epq the projection of ap

onto the -1 eigenspace apq of dτ(e). Let l e apq. Then the main
result of this paper describes the image of the map H -* apq, h ->
Epq °$(exp(X) h) as the vector sum of a closed convex polyhedral
cone and the convex hull of a Weyl group orbit through X. For
T a Cartan involution it gives precisely Kostant's description of
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0. Introduction. In this paper we prove a generalization of a con-

vexity theorem of Kostant (cf. [18]), related to a semisimple symmetric

space G/H. Here G is a connected real semisimple Lie group with finite

centre, τ an involution of G and H an open subgroup of GT = {x e

G;r(x) = x).

Let AT be a τ-stable maximal compact subgroup of G (for its

existence, cf. [6]) and let θ be the associated Cartan involution. We denote

the infinitesimal involutions determined by θ and r by the same symbols

and write p9q for their respective -1 eigenspaces in g, the Lie algebra of

G. The + 1 eigenspaces of θ and T in g are the respective Lie algebras ϊ

and ί) of K and H. Since θ and T commute we have the simultaneous

eigenspace decomposition

(0.1) g = ϊ n q θ ϊ n ί ) Θ t ) n q Θ £ n ί ) .

21



22 ERIK P. VAN DEN BAN

Fix a maximal abelian subspace apq of p Π q and let α^ be a
τ-stable maximal abelian subspace of £, containing α^. Then

where Q ^ ^ α ^ Π ή . Let Epq: ap -> α ^ denote the corresponding projec-
tion.

The set Δ = Δ(g, α^) of restricted roots of apq in g is a (possibly
non-reduced) root system (cf. [24]). Let Δ+ be a choice of positive roots
for Δ and Δ + a compatible choice of positive roots for Δp = Δ(g, α^). To
the latter choice corresponds an Iwasawa decomposition

(0.2) G = KApN,

where Ap = exp ap. The real analytic map ίp: G -> ap determined by

x G # e x p £ ( x ) N (x G G)

is called the corresponding Iwasawa projection.

The main result of this paper is, for any fixed a G Apq = exp(apq), a
description of the image of the map Fa: H -» apq9 defined by

(0.3)

(see Theorem 1.1). Here H is required to be connected (or to satisfy the
slightly weaker condition (1.2)). If T is a Cartan involution, then T = #,
H = K9 ap = apq and the result is precisely the Kostant convexity
theorem.

In the present case the image of Fa is a vector sum

(0.4) ϊm{Fa) = conv(W^n// logα) + Γ(Δΐ).

Here WκnH is a certain Weyl group, Γ(Δ^) a closed convex polyhedral
cone and we have used the notations "conv" for convex hull and "log" for
the inverse of exp: ap -> Ap. The cone Γ(Δ^) can be entirely described in
terms of a set of roots Δ^. In particular it is independent of a and equals

We prove the characterization (0.4) by induction over centrahzers in
G, using ideas of Heckman [15]. However, since there seems to exist no
infinitesimal version of (0.4), we cannot use his homotopy argument to
reduce to an infinitesimal case. Consequently, we need to compute critical
points and Hessians of Fa on the group. This is done in §4 and 5, using
ideas of [8].

Another complication is caused by the non-compactness of H. It is
overcome by showing that the map Fa, apart from a right invariance, is
proper (Lemma 3.3), and that its image is not the whole of α^^ (Lemma
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3.9). Lemma 3.3 is proved by comparing Fa with another map Pa (Lemma
3.6). For a restricted class of symmetric spaces, the map Pa has been
studied by Oshima and Sekiguchi [23], who pointed out its importance for
the harmonic analysis on G/H. Lemma 3.3 follows from the properness of
Pa. For the purpose of proving the latter, we study the holomorphic
continuation of a certain decomposition in Appendix B, generalizing
results of [2] on the Iwasawa decomposition.

In the recent literature, Kostant's theorem for complex groups has
been generalized to a Hamiltonian framework by Atiyah [1], and by
Guillemin and Sternberg [13]. Duistermaat [7] obtained such a generaliza-
tion for the real case. At present I do not know whether the result of this
paper fits into such a framework or not.

It is a pleasure for me to thank J. J. Duistermaat and G. J. Heckman
for some stimulating discussions on the subject of this paper.

I am grateful to M. Flensted-Jensen and H. Schlichtkrull for suggest-
ing a shorter proof of Lemma 3.9 and to T. H. Koornwinder for providing
me with an independent proof of Theorem A.I.

1. A precise formulation of the result. The group N in the Iwasawa

decomposition (0.2) is given by N = exp(n), where

If a e Δ = Δ( g, apg)9 we let Ha denote the element of apq given by

Ha ± kerα, a(Ha) = 1.

Here J_ denotes orthogonality with respect to the Killing form ( , ) of
g. Moreover, if T is a subset of Δ+, we put

where R + = [0, oo).

Since θ and T commute, 9 ° τ is an involution. The + 1 and -1

eigenspaces of θ o T are g + = f Π ί) Θ p Π q and g_= f Π q θ p Π i)

respectively. Now θ ° τ acts as the identity on apq. Therefore, it leaves the

root spaces gα(α e Δ) invariant. Consequently, writing g + = g α Π g +

and g" = gα Π g_, we have

( l . i ) g« = g : e g « (a e Δ).

We define

Δ_= { α e A g ^ O ) ,

and put Δ + = Δ_Π Δ+.
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The notation Γ(Δ+) in (0.4) has now been explained. In addition, the

Weyl group Wκ n H is defined as

= NKnH{apq)/ZKnH(apq),

the normalizer modulo the centralizer of apg in K Π H.

With the above notations we can formulate our main result. We say

that H is essentially connected if

(1-2) H=ZκnH(apq)H°,

where H° denotes the identity component of H.

THEOREM 1.1. Let G be a connected real semisimple Lie group with

finite centre, τ an involution of G, and H an essentially connected open

subgroup of Gτ. If a e Apφ then

im(Fa) = conv(WKnH- loga) + Γ ( Δ ! ) .

2. Some notes on the induction procedure. In the proof of Theorem

1.1 (see §6), induction via centralizers in G will be used. Therefore, we

need Theorem 1.1 to be valid under the somewhat more general assump-

tion that G is a reductive group of the Harish-Chandra class (class φ), T

an involution of G and H an open subgroup of Gτ, satisfying condition

(1.2). All definitions of §§0 and 1 make sense in the context of a group of

class φ. Instead of the Killing form we use a Ad(G)-invariant non-degen-

erate symmetric bilinear form ( , •) on g, which is positive definite on ϊ,

negative definite on $), and for which the decomposition (0.1) is orthogo-

nal. For the basic theory of a reductive symmetric space G/H of class φ,

we refer the reader to [5].

LEMMA 2.1. Let G be a group of class φ, T an involution of G, and H an

essentially connected open subgroup of Gτ. Then Theorem 1.1 holds for G, H

if it holds for Ad(G)°, Ad(#)°.

Proof. Let t) = centre(g) Π £. Then V = exp(b) is a closed vector

subgroup of G, and we have a direct product

G=°GV,
where °G = Π{ker|χ|; χ: G -> R* a continuous homomorphism} (cf. e.g.

[27, p. 196]). Obviously °G and V are τ-invariant, so that

H= (H Π °G)(H Π V).

Now clearly Epq

Q$ is right H Π F-invariant, and if a e°G Π Apφ

ar G V Π Apq, then
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for all h G H. It thus easily follows that we may reduce the proof to the
case that G = °G. Moreover, Epq°$ is right Z^n//(α/7(?)-invariant, so
that by (1.2) we may reduce the proof to the case that H is connected. But
then we may as well assume that G is connected. Finally, the observation
that Epq ° § is right centre(G)-invariant completes the proof.

For the remainder of this section, let G be a group of class $.

Let W(Δ+) denote the reflection group of the root system Δ+ defined
by

Δ + = { α e i n ^ O }

(cf. (1.1)). Since Δ+ can also be viewed as the root system of apq in g+, it
follows from standard semisimple theory, applied to [g+, g+], that

(2.1)

PROPOSITION 2.2. Let H be an open subgroup of Gτ. Then the following

conditions are equivalent.

(i) H is essentially connected,

Proof. In view of (2.1) the assertion follows straightforwardly from
the fact that

(2.2) H = pq

Now this is seen as follows. H and H° are both ^-invariant (cf. [5]), hence
admit the Cartan decompositions H = (K n i/)exp(£ Π £)) and H° =
(K Π H°)exp(p Π ί)). From this we see that (K n H)° = K Π H°.
Moreover, (2.2) will follow from KΓ)H = NKnH(apq)(K n H)°. Thus
let k e K Π H. Then Ad(k~1)apq is maximal abelian in p Π q. By
standard semisimple theory applied to [g+, g+] it follows that there exists
a kλ^(KfλHγ such that Aά{k{ιk-ι)apq = apq. Hence fc^ e
Nκ π //( S ? ) a n d w e a r e d o n e

In the proof of Theorem 1.1 we shall use induction via centralizers of
elements Z e apq. The following result guarantees that the class of pairs
(G,H) under consideration is stable under this induction. If b is a
subalgebra (or subspace) of g, we let b z denote the centralizer of the
element Z e apq in b. Similarly, if B is a subgroup of G (or a group
acting on apq), we let Bz denote the centralizer of Z in B.

PROPOSITION 2.3. Let Z e α^. 77*e« G z w 0/ c t o φ α«t/ τ-stable.
Moreover, if H is essentially connected then the same holds for Hz.
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Proof. The first assertion is standard (cf. [27, p. 286]). The second

follows immediately from τ(Z) = - Z .

Clearly, Δ + ( Z ) = {a e Δ+; a(Z) = 0} is the root system of α ^ in

9 + Π g z . In view of (2.1) we have a commutative diagram of natural

monomorphisms

wκnHz - wκnfI

/T gί

Here the map g is an isomorphism onto because H is essentially con-

nected (see Proposition 2.2). Obviously φ maps WκnHz into (WκnH)z,

and it is well known that im(ψ) = W(Δ+)Z. Since g is compatible with

the natural actions of WκnH and W(Δ+) on apq it follows that

g(W(Δ+)z) = (WκnH)z, and we infer that / is surjective. By Proposition

2.2 this implies that Hz is essentially connected.

From now on we assume again that G is connected and semisimple.

In §6 we will prove Theorem 1.1 under the assumption that it has already

been established for centralizers G z , Z e apq. In view of the results of

this section, this induction procedure is legitimate.

3. Some properties of the map Fa. Let L be the centralizer of apq in

G, I its Lie algebra. The parabolic subgroup Q = LN of G has the Levi

decomposition

where NQ = exp(n^),

Let n L = n Π ί , NL = N Π L. Then L normalizes NQ and we have the

semidirect product

(3.1) N = NLNQ.

The ( , )-orthocomplement I o of apq in I decomposes as
ί — X ffs X m ί
l 0 — lkq ® lkh ^ lph>

where we have written lkq = I Π f Π q, etc. I o is the Lie algebra of the

closed subgroup L o = (K Π L) exp(I/?Λ) of L. Moreover, we have a direct

product

L = L0Apq.
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PROPOSITION 3.1. Let x e G. Then there exist unique a G Apq9 n & NQ

such that

(3.2) x<ΞKLoan.

Moreover, loga = Ep o ίg(x).

Proof. Write x = /ra1/i1, where ax G ̂ , Wj G iV. Then ax = tfoα,

π x = H0H, with α 0 G Aph, a G Λ^, H 0 G ]VL, π G JVβ. It follows that

x = kao(anoa~ι)an, whence (3.2) and the last assertion is obvious. The

uniqueness follows easily from the uniqueness for the decompositions

(0.2), (3.1) and Ap = AphApq.

COROLLARY 3.2. The map Epq ° φ is right L0-invariant.

Proof. Use that Lo normalizes NQ and centralizes Apq.

In particular, if a e Apq, then Fa\ H -> apφ defined by (0.3), natu-

rally induces a map Fa: H/H Γ) Lo-+ apq.

LEMMA 3.3. Let si be a compact subset of Apq. Then the map

s/X H/H Π L 0 - > apφ {a, h) -+ Fa(h) is proper.

We prove this lemma by comparing Fa with another map. Using the

direct sum decomposition Q = t) Θ lqΘ nQ (cf. [4]), one easily checks

that the map H X L X NQ -> G, (A, /, n) •-> hln is a submersion onto an

open subset Ω of G (see also [21], [24]).

LEMMA 3.4. Ifx^Ώ then there exist unique l{x) e (H Π L0)\L0,
a

pq(
x) G A

Pq andnQ(x) e NQ such that

(3.3) x^Hl(x)apq(x)nQ(x).

The corresponding maps /, apq and nQ are real analytic. Moreover, if {xn}

is any sequence in Ω converging to a boundary point x G 3Ω, then [apq(xn)}

is not relatively compact in Apq.

REMARKS, (i) We prove this lemma at the end of Appendix B.

(ii) If the involution T arises from a signature on Δ^ (cf. [23]), then

ap = apq, apq is maximal abelian in q, and the above result is contained

in [23].

In view of Lemma 3.4 we have H Π LN = H Π L = H Π Lθ9 so that

the inclusion H ^> G induces an embedding

i: H/H ΠL-> G/Q
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of H/H Π L onto an open subset Ω of G/Q (the underlining indicates
that Ω is the canonical image of Ω in G/Q). If a G Apφ we let λa or
λ(α) denote left multiplication by α on G/Q, and put Ωα = λ(a~ι)2. Let

y: iί/7Γ Π L ^ G/Q

be the natural diffeomorphism, and set

Then Ω ^ is the canonical image of K Π α-1Ω in K/KΠ L. Since Lo

centralizes yl^ and normalizes NQ, the map apq is right L0-invariant.
Moreover, K Π Lo = K Π L by definition of Lo, so that for a G ̂ 4^ we
can define a map Pa: £tκ a -> α ^ by

(3.4) Pβ(fc(ΛΓΠL)) = logo^(αfc).

If J ^ is a subset of Apq, we define the subset Ω^ ̂  of J / X AT/if Π L
by

{ { ) K/KΠ L k e Ω ^ } .

LEMMA 3.5. // J^/ is a compact subset of Apφ then the map
P: ΏKs/X apg -* apq9(a9k) -> Pa(k) is proper.

Proof. Clearly, it suffices to prove that the map apq restricted to
ΩKj^= {(a, k) G A X K\ak G Ω} is proper. Let ̂  be a compact subset
of y4pίr We claim that the set T = #~*(^) Π QKttS/ is compact. For assume
not; then it is not closed in cl(Ω^ J). Hence there exists a point (α, k) G
J ^ X A: such that ak G cl(Ω)\Ω = 9Ω, and a sequence {(tf^/cj} in T
such that ^̂ A:n -> ̂ /c. By Lemma 3.4 the set {^^(β^A:,,)} is not relatively
compact in Apφ contradicting the assumption on ζ€. Hence T is compact.

LEMMA 3.6. Let a G Apq. Then

Proof. From the definitions it is evident that j ~ ι 4 / / is a diffeo-
morphism of H/H Π L onto Ω^a-i. Let h ^ H, and set α/i = klexpYn,
with (*, / J , / i ) e ί : x L 0 X α ^ X iVρ. Then 7 = EpqoQ(ah) =
Fa(h(H Π L)). On the other hand, a~ιk = A/^expί-Γ)/!7, where ^ r =
/expY/r^/expF)"1 G iVρ, so that ~Y = logα^^ία"1^). This proves the
lemma.

/ Lemma 3.3. The map J / X H/H Π L -> Ω^-i , (a, h) ^
j ~ ι °\a° i(h) is easily seen to be a diffeomorphism. Thus the assertion
follows from Lemmas 3.5 and 3.6.
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COROLLARY 3.7. If a e Apφ then the set Epq <> §(aH) is closed in apq.

Observe that in view of Lemma 3.6 the following is an equivalent
formulation of Theorem 1.1.

THEOREM 3.8. Let H be essentially connected, and let a e Apq. Then

im( Pa) = conw{WKnHΛoga) + (-Γ(Δ+)).

We now come to the second main result of this section. It deals with a
first restriction on the location of the set Epq ° ίg(aH). Put

α;,(Δ+) = {U e apq; a(U) > 0 for a e Δ + }.

LEMMA 3.9. Let a^Apq, I G C 1 ( Q ^ ( Δ + ) ) . Then the function
FaX\ H -• R defined by

for h e H, is bounded from below.

REMARKS, (i) If r arises from a signature on Δ^ (cf. [23], see also
Remark (ii) following Lemma 3.4), then Lemma 3.9 is a consequence of
[23, Prop. 3.8].

(ii) The proof presented below was suggested to me by H. Schlicht-
krull and M. Flensted-Jensen independently. Being closely related to that
of [10, Lemma 4.6], it is based on a characterization of ίρ in terms of
finite dimensional representations as in [14]. Our treatment follows the
presentation in [26].

The proof of the lemma depends on a few propositions. Via the
restriction ( , •) of the Killing form to ap9 we view α ^ as a linear
subspace of α*. We let ( , •) also denote the dual inner product on α*,
and set

α; + = { λ e α ; ; ( λ , α ) > O f o r α G Δ ; } ,

+ apq = {χeapq;λ(X) > 0 f or λ e cl(α;+) n a*pq).

Then from the fact that Δ + = H α ^ ; a e Δ + , α | α ^ =£0}, it easily fol-
lows that

(3.5) \ = [X & apq;{X,Y)>QioxY ^ a+

pq(^)}.

PROPOSITION 3.10. There exist ηv...,r\t e a*q (I = άϊmapq) such
that

(i) +apq = { l e apq; Vj(X) >0forl<j< /},
(ii) (ii .αXα.α)- 1 e Nforalll<j < I, cc e Δ;.
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Proof. Let Σ, Σp denote the respective sets of simple roots in Δ+, Δ + ,
and let Σp0 = {a e Σp; a\ apq = 0}. Then according to [26, Lemma 7.2.4]
there exist a non-negative integer lx and an enumeration av..., an of Σ^
(where n = dim α^), such that

Σpp0 (

τ 0 α y s « y . + / i m o d N Σ , o {l-lλ<j< I).

Moreover, Σ = {aι\apq9...,aι\apq}.

Now let λ l 9 . . ., λn G α* be defined by (λy, αy> = 2(αy, αy)δ y for all
1 < /, j < n. Then (λi9a)(a,a)'1 e N for all 1 < / < n, a G Δ + . De-
fine

Then τj7 e α*q (1 <y < /) and (ii) holds. Moreover, if μ e a*q, then

From this we infer that cl(α*+) Π α*^ = Σ^y^/R+ η7, whence (i).

PROPOSITION 3.11. Ifx e G,

Proof. Since τ# = / on αp<?, the algebras I and nQ are Testable.
Hence the decomposition G = KL0ApqNQ is Testable and the assertion
follows from the characterisation of Epq ° φ in Proposition 3.1.

PROPOSITION 3.12. //x G iί, /Λe« Epq o φ(x) G +0^^.

Proof. The map Epq° $ being left ΛΓ-invariant, it suffices to prove
this for x = expX, I G J } Π [ ) . Moreover, by Proposition 3.10 it suffices
to show that η ° &(x) > 0 for η e { ηv ..., ij7}.

By [17, Theorem V.4.I.], η is the highest weight of a spherical
representation TΓ of G in a finite dimensional complex linear space V. We
let 77 also denote the associated infinitesimal representation of gc =
C <8> R g in V and endow F with an inner product that makes π unitary
on f Θ ip. Let υ ̂  V be a highest weight vector of norm 1, and put
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= \\π(exptX)v\\2 = exp{2ηo$(eχptX)} for / e R. Then we must

show that /(I) > 1.
Following the proof of [26, Lemma 7.6.1], we expand v in an

orthogonal sum v = Σa<ΞΈίva of eigenvectors of ττ(X), where 7r(X)ι;α =

On the other hand, by Proposition 3.11 the function / is even, whence

Proof of Lemma 3.9. If x e G, then x e #exp$(x)N, whence
Fβ(x) = Epq o φ(αx) e JE,? ° φ(α«:) + £ „ o $(*) . Since £ „ o φ(αAΓ) is
a compact subset of apφ it therefore suffices to show that the function
Fe x = (X, Epq° $) is bounded from below on i/. Now this follows from
Proposition 3.12 and the characterization (3.5) of + apq.

4. Critical points of the functions FaX. In this section we let

a e Apq and X ^ apq be fixed and determine the critical set of the
function Fa x: H -> R defined by

for h G i/. Moreover, in the next section we shall compute Hessians of
Fa x at points of this set. As it turns out, the computations are highly
analogous to those in [8], and so are the results. As in [8], the critical set is
a finite union of smooth submanifolds depending only on the subsets
(α e Δ+; α(logα) = 0} and { α E A ; α ( I ) = 0} of Δ. Moreover, the
Hessian of FaX at a critical point is non-degenerate transversally to the
critical manifold through it. Though such results hold for general a e Apφ

we shall only prove them for a ^ A'pφ this being sufficient for our
purposes. Here Apq = exp(a'pq)9 with

a'pq= {Ze apq; a(Z) Φ 0 for a e Δ + } .

If u e ί/(g), the universal enveloping algebra of gc, we let Ru or
i?(w) denote the infinitesimal right regular action of u on smooth vector
valued functions on G. If / is such a function, we also write

f{x;u) = (RJ)(x) ( * e G ) .

In view of the Poincare-Birkhoff-Witt theorem, the Iwasawa decom-
position Q = I Θ ap Θ n gives rise to a direct sum decomposition

U(Q) = (W(Q) + U(Q)Π) ® U(ap).

Let Ea denote the corresponding projection C/(g) -> ^(α^). If y e [/(α^),
we denote its homogeneous component of degree m by vm. This makes
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sense because ap is abelian, so that U(ap) — S(ap), the symmetric
algebra of apc. Writing v for the JV-part in the Iwasawa decomposition,
we now have the following result (cf. [8, Lemma 5.1]).

LEMMA4.1. Letx G G, U G U(Q)Q. Then

Here ut{x) denotes the image of u under the adjoint action of t(x) =
exp $(x) v{x), the "triangular part" of x, and the suffix 1 indicates that
the homogeneous component of degree 1 is taken.

Let Fx: G -> R be defined by

Fx(x)=(X,$(x)) (*€=(?).

Then the following corollary holds (cf. [8. Corollary 5.2]).

COROLLARY 4.2. / / x e G, ί/ e g, then

Fx(x; U) =(Ut(x\ X) = {U, X'W1).

LEMMA 4.3. h G H is a critical point for FaX ifand only ifah G KApNx.

Proof. Write ah = kbn, with k G K, b <Ξ Ap, n <Ξ N. Then
Fa x(h;U) = (Xn~\ U), so A is a critical point iff

- 1 ) * - ! £/ forallί7G ί).

The last statement is equivalent to Ad(n~ι)X G Q, and since Ad(«~1)X =
J m o d n, this in turn is equivalent to Ad(n~ι)X — X G n Π q. Since r
maps n onto n = β(n), we have π Π q = 0 and the proof is complete.

LEMMA 4.4. Let H be essentially connected, a G A'pq9 X G α^^.

the critical set of FaX equals the set

REMARK. By Proposition 2.2, W(A+) « NKnH{apq)/ZKnH{apq).
Since ZκnH( apq) c /ί^, the notation w//^ (w G W^(Δ+)) makes sense.

Proof of Lemma 4.4. If xw is a representative of w G ίΓ(Δ+) in
NκnH(apq), and A G i/x, then v{axwh) = v{aw~ιh) = v{h) G iV̂ . Hence
xwA is a critical point for Fα ̂  (Lemma 4.3).
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Conversely, let h be a critical point for FaX, and write ah = kbn as in
the proof of Lemma 4.3. Then n e Nχ and it follows that k~ιah = bn e
G^. Write Λ = A ^ , with hx^ H fλ K, h2 e exp(£ Π f)). Then ΛrW* =
k~ιhι(hϊιahι)h2, where fc"1/*! e # , ΛfW^ e exp(£ Π q), Λ2 e
exp(£ Π ί)). Using uniqueness properties of the decomposition G =
AΓexp(t> Π q)exp(t) Π ί)) and of the analogous decomposition of Gχ

(cf. [9, Thm. 4.1]), we infer that k~% e JK ,̂ /i^a/^ e exp(t) Π q^),
Λ2 G exp(£ Π ί)^). By standard semisimple theory, applied to [g + Π g z ,
8 + n 8χ] it follows that there exists a / e K Π //^ such that
l~ιhϊιahλl G exp(a^^). Thus, a being regular for the root system Δ+ =
Δ(g+, apq)9 it follows that AdihJ) normalizes apq. Hence hx e
^ n i f ( ^ ) ( ^ Π ^ ) , so that A € NKnH(apq)Hl In view of Proposi-
tion 2.2 and the assumption on / / this implies that h e <gx.

Observe that ^x is a finite union of disjoint smooth manifolds.
Moreover, if y e # Ύ , then

where Ty^x denotes the tangent space at y9 dλy(e) the derivative of the
map λ^: G -> G, x >-+ yx at e.

5. Hessians of the functions FaX. As in the previous section, we fix
a e Apq and X e α^^. In addition, we assume that H is essentially
connected. Following [8], we write Ef, Ea, En for the projections g -> ϊ,
ap, n according to the Iwasawa decompostion g = f θ α / ? θ n . Observe
that this definition of EQ is compatible with the definition of the map Ea:
U( g) -* ί/( α^) preceding Lemma 4.1.

LEMMA 5.1. Let x e G; t/, F e g.

F^(x; ί/F) = B

e bilinear form Bx on g X g ώ

Proof. See [8, Lemma 6.1].

Motivated by the above formula we first study the map F-»
Et o Ad(t(x))(V), ί) -> ϊ in more detail. Given * e ^/?<7, let Θx be the
map H -* K defined by

θx(h) = ιc(xA),
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the K-part in the Iwasawa decomposition of xh. Then, writing

we have the following result.

LEMMA 5.2. Let x G Apφ h G H. Then

Proof. Let V G ί), and set xA = &/, with k G ϋΓ, t ^ ApN. For 5
sufficiently close to zero, we may write

(5.1) jcΛexp(sF) = /cexpi^^exp^^/expΛ^s),

with AΓ(.s) G f, i(,y) e α^, N(s) & n smoothly depending on s. Clearly
K(0) = θx(h)V. Multiplying both sides of (5.1) by k~ι from the left and
by t~ι from the right and differentiating at s = 0, we infer that K(0) =
Et(Ad(t)V).

LEMMA 5.3. The map θa maps every coset h(H Π L) into a coset
κ(ah)(K Π L) and induces a diffeomorphism θa of H/H Π L onto the open
subset ΏKa of K/K Π L. Moreover, for each w G W(Δ+)9 it maps the
submanifold wHx into wKx.

Proof. Fix h G H, I G H Π L. We may write ah = κ(ah)lιaιni, with
lλ e Lo, αx e ^ ^ πx G NQ. Thus

The expression between brackets is easily checked to be contained in
ApN, so that κ(ahl) = κ(ah)κ(lιl). Since /c maps L into K Π L this
implies that Qa(h(H Π L)) c κ(ah)(H Π L). The induced map ΘΛ:
7//i/ Π L ^ #/X Π L is just y-1 °\a°i (see §3), hence maps H/H Π L
diffeomorphically onto QKa. Finally, the last assertion follows from the
fact that K maps Gx into Kx.

Let ί)', fc denote the orthocomplements of I in ί) and f respectively.
Then ί) = ί)f' Θ (ί) Π I) and f = V Θ (ϊ Π I), and the maps

nQ^V\ U^U+τU, and

nQ -> fc, U >-> U + ΘU

are linear isomorphisms. They map π^ Π g^ onto i)c Π gΎ and fc Π g^
respectively. We now have the following.
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LEMMA 5.4. // h e H, then the map θa(h): ί) -> ϊ maps I Π ί) m
ί Π f #«d t) x into I x. Moreover, the induced maps ί)/ί) Π I -> f/f Π I

ί) z/ί) Π I -> f x/ΐ Π I are bijectiυe.

Proof. The first two assertions follow immediately from Lemma 5.3
and the fact that

d\h{eYιTh{H Π L) = ί) Π I, ^ ^ ( e ) - 1 ^ ^ n L) = f Π I,

etc. Moreover, by the same lemma the induced map &a(h): ί)/ί) Π ί -»
ϊ/f Π I must be a linear isomorphism. It maps the canonical image of ί) x

into that of f̂ . In view of the remarks above Lemma 5.4, the last
assertion now follows for dimensional reasons.

We now return to the Hessian of FaX.

LEMMA 5.5. Let a G Apφ X e apq. Then for any h <Ξ H; U, K E ( ) ,

we have:

where La x h is the linear map ΐ) -> ί) given by

Here π^ denotes the projection g -> ί) according to the decomposition g =
ί) θ q.

Proof. By Lemma 5.1 we have

^,^(Λ;ί/F) = -(i7,77 ί ,oAd(/(^r 1 )o a dJroE f (Ad(/(^))F)).

Now a/* = Θa(h)t(ah), so that t(ah)'1 = h~ιa~ι@a{h), and the assertion
follows from Lemma 5.2 and the observation that Aά(h~ι) commutes with

LEMMA 5.6. For each a e A'pq9 X e α^^ ίΛe Hessian of FaX at any
critical point is transversally non-degenerate to the critical set of Fa x.

Proof. Let h = xwh' be a critical point for FaX. Here xw is a
representative of W G W(Δ+) in NκnH(apq), and /*' e i/^. It is obvious
that dλh(e)-ιTh(hHx) = 1jx. The bilinear form β(U,V) = FaX(h; UV)
on ί) is symmetric. Since Fα x is locally constant on hHx, we therefore
have that jβ = 0 o n ί ) X ί ) ^ and ί) x X ί). We must show that the induced
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bilinear form on ί)/t) x is non-degenerate. The Killing form being non-de-
generate on ί), this comes down to showing that the map LaXh of Lemma
5.5 has kernel ϊ)x. Now LaXh = LQ,XW, where a' = aw~ι still belongs to
Apq. Therefore we may restrict ourselves to the case that h e Hx. But
then Θa(h) e Kx (Lemma 5.3), so Ad(Θa(h)) and ad X commute. Hence
an element F e ί ) belongs to keτ(La xh) iff

(5.2) Ad(α-1)oadAΓoAd(ΘΛ(Λ))oΘα(Λ)FG q.

Now 2id(X)°Ad(θa(h))o&a(h) maps ί) into p and if U e p, then
q iff t/ e α ^ (see the lemma below). So V e ker(LΛ x Λ) iff

Λ))°Φα(λ)Fe α^. Now Ad(Θα(A))<>Θ*(Λ) maps'ί) into
ϊ, and an easy root space calculation shows that (5.2) is equivalent to

Ad{&a(h))oθa(h)Veϊx.

Since Qa(h) e Λ^, Ad(Θίl(Λ)) maps lx bijectively onto itself. Moreover,
by Lemma 5.4, &a(h) induces an isomorphism ίi/ί)^-* t/tχ9 and we
conclude that (5.2) is equivalent to V G §χ.

LEMMA 5.7. If a e A'pq9 U e p, then Ad(a~x)U e q if and only if

Proof. The if part is obvious. For the converse, suppose that U e p.
Using the decompositions (1.1), we may write

u=uL+

with ί/L G I Π p Π q = apr t/Je g«, ί7_α e g?. Using that τ = βon g+,
whereas T = -0 on g _, we find

-X)i7= UL + L ( β " α ί / : - α f tτί/:) +(β-αί/_α+ aaτU_).

Since αα # fl"β for all a e Δ+, Adία" 1 )^ e q implies ?7^= £/_"= 0 for
all α e Δ+. Hence U e α^ .̂

COROLLARY 5.8. i>r α G ̂ ^ , I G α^ ,̂ w e ίΓ(Δ+). Then at all
points of wHx the value of FaX and the signature and rank of its Hessian
stay constant.

Proof. From Lemma 5.6 it follows by continuity that the statement is
true on xwHx (w G W(Δ+)). In view of Proposition 2.3 we have Hx =
HχZKnH{apq). Moreover, by Corollary 3.2 the function FaX is right
ZκnH( α^-invariant, and the proof is complete.
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COROLLARY 5.9. Let a e A'pg, X e apφ w e W(Δ+). 7%e/i i ^ Aαs α

local maximum at the critical point h e w//x //αwd 0/ify //:

(5.3) a(X)a(w-1 log a) > 0 for all a ^^X,

(5.4) α ( * ) < 0 for all a e A t

Proof. Because of Corollary 5.8, JFα x has a local maximum at
Λ e w/ί^ iff its Hessian at a representative Jίw of w in NκnH(apq) is
negative definite transversally to w// .̂ For this it is necessary and
sufficient that all its eigenvalues are < 0 (use Lemma 5.6).

By Lemma 5.5, the Hessian of Fa x at xw is given by Fa x(xw; UV) =
(U, La^Xw(V)) = (U, L\V))9 where U = La,^e, a' = a»'\ In view of
Lemma 5.2 we have

L'(V) = -π^oAdia"'1)-1 ozd(X)o Ef(V),

for F G ί). If α e Δ+, we put ί)£= {[/+ Oί/ ί / e g ί } and ΐ)a_= {U-
ΘU Ue Q ! } . Then

We claim that U diagonalizes over this decomposition.
Indeed, it is obvious that U = 0 on ί) Π ί. Moreover, if α e A

C/ G g«, then £ f (ί/ - 0£/) = £ f(21/ - (t/ + βt/)) = -(U + ^ί/). Also,

Since

a'waU + ΛwlVί/ = p(U + rU) + ^(ί/ - τ£/),

with

it follows that

L'(C/ - ^[/) = α(X)coshα(w-1logα)([/ - ΘU),

for U e g^. A similar computation yields:

!/(£/+ βί/) = a(X)sinha(w- 1log^)(i/+ ΘU),

for £/ G g^, whence the claim.
Taking into account that the Killing form is negative definite on f

and positive definite on t>, we infer that the Hessian has all eigenvalues
< 0 iff (5.3, 4), thereby completing the proof.
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6. Proof of the convexity theorem. We prove Theorem 1.1 by
induction on the rank rk(Δ) of Δ. If rk(Δ) = 0, then Epq ίρ = 0, and the
theorem evidently holds. So let us assume that rk(Δ) > 0, and that the
theorem has been proved already for groups of lower rank. In §2 we saw
that this hypothesis implies that the theorem is also valid for lower rank
groups of the Harish-Chandra class.

If I G apq9 we write Δ(X) = {a e Δ a(X) = 0}, Δ+(X) = Δ + Π
Δ(X), etc.. Moreover, W(Δ+(X)) denotes the reflection group generated
by the reflections in roots a e Δ+(X). Put

a(X, Z) = conv(W(Δ + (X)) Z)

for X, Z e apq. Then the assertion of Theorem 1.1 can be reformulated as

(6.1) im(Fβ) = α(0,logfl).

We shall first prove (6.1) for a e Apq. As a first step we have:

LEMMA 6.1. Let a e Apq. Then

im(F β )c α(0,logβ).

Proof, By Lemma 4.4 the map Fa: H -> apq is submersive except at
points of

^ = U U wHx.

Being a finite union of lower dimensional closed submanifolds of H9 *S
has a complement which is open and dense in H. Therefore im(Fa) has
dense interior. Moreover, im(Fa) being closed (Corollary 3.7), a point Z
of the boundary dim(Fa) of im(Fα) must be the image Ffl(A) of some
/ / G ^ . Write A = xwΛ', with i w a representative of w e W(Δ+) in
NκnH(*Pq)> and Λ ' G ^ J Γ e α ^ \ { 0 } . Then ^ 0 ^ ) =
Epq° $(awhf) which by the induction hypothesis is contained in
a(X,w-\loga)) (cf. §2). Now put

#= U U

Then from the above reasoning we infer that

It follows that every component of α^X^? must be entirely contained in
the set Fa(H), or have empty intersection with it. Now clearly ^ c
α(0, logα). In view of Lemma 3.9, im(Fa) does not contain the connected
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set apq\ α(0,loga). Therefore im(FJ\α(O,log0) = 0 and the assertion
follows.

LEMMA 6.2. Let a e Apq, X e apq. If FaX has a local maximum at

h e //, /Λe/i <£/, X) < Ffl *(λ) /era// U e α(0,log*).

Proof. Suppose Fα ̂  has a local maximum in h ^ H. Then Λ is a
critical point, hence of the form xwh\ with xw a representative of
w e W(Δ+) in NκnH(apq), and A' e 7/ .̂ Moreover, by Corollary 5.9 we
must have

a(X)a(w-1loga) > 0 for all a e Δ + ,

In Proposition 6.3 below we deduce that the first statement implies that
(X,Z) < (X,w'λ(\o%a)) for all Z e conv(W(Δ+) logα). Moreover,
the second statement implies that (X, 7> < 0 for all Y e Γ(Δ^). Hence

for every t/ e α(0,logα). Since FaX(xwh
f) = Fβ^(x J =

the assertion now follows.

PROPOSITION 6.3. Lei X, 7 e α^^ be such that a(X)a{Y) > 0 for all
a e Δ+. ΓΛew (X,ι/7> < (X,7> for all u

Proof. Let £ be the subspace of α ^ spanned by 7/ft, α G Δ+. Then
Δ + = Δ(g+, apq) is a (possibly non-reduced) root system on E. Moreover,
since W(Δ+) leaves E invariant and acts trivially on EL, it suffices to
prove the statement for X, Y £ E. But then it is well known that the
hypothesis implies the existence of a closed Weyl chamber C such that X,
Y e C. The proposition now follows.

LEMMA 6.4. //a e Λ ^ then 3im(FJ c 3 α(0,logα).

Proof. Given X e α^ ,̂ write

Then for every Z e α ^ w e have

a(X,Z) aZ+ a(X).
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By regularity of a, the set a(X,w^iloga)) (w e W(Δ+)) has non-empty
interior a(X, w'^logα)) in w^logα) + a(X). Put 'apq = { X e apq;
rk Δ( X) = rk Δ - 1}. Then clearly

a - U U α(*,w

Moreover,

^ = U U

is dense in 38. Since im(i^) is the closure of a union of connected
components of α_Λ ^?, it follows that 9im(Fa) Π $ is dense in 9im(jFJ.
Therefore it suffices to show that 9 im(Fa) Π 38 c 9α(0, log α).

Let Z G 9im(FJ Π J . Then there exist w G W (̂Δ+) and X G ' α ^
such that Z G ά(X, w'^logβ)). Moreover, by the induction hypothesis
there exists a h (Ξ Hx such that Z = Epq<> §{αw~ιh) = Fα(xwh). Multiply-

ing X by -1 if necessary, we can arrange that X is an outward normal to
Fα{H). Thus, FαX attains a local maximum at xwh. By Proposition 6.2 it
now follows that Z = Fα(xwh) G 9 α(0,logtf).

COROLLARY 6.5. 7/α G A'pg9 then im(Fa) = α(0,logα).

Completion of the proof. Let α G ^ ^ \ ^ 4 ^ , and select a sequence
{an} in ^4^ which converges to a. Then j / = { ^ } U { ^ ^ } i s a compact
subset of Apq.

Let h G //. Then

£ M o ^ ( f l B A ) = i / | | + F n ,

where £/„ G conv(ίF(Δ+) logα^) and F̂  G Γ(Δ^). Clearly Un varies in a
compact subset of apφ and so does Epqo <Q(anh). It follows that {Vn) is
relatively compact in Γ(Δ^). Passing to a subsequence if necessary, we
may therefore assume that the sequences {Un} and { Vn} converge, to say
U and F respectively. Clearly U G conv(ίF(Δ+) logα), F G Γ(Δί). On
the other hand, U + V = Epq° $(ah), and we have shown that

For the converse, let W G α(0, logα) and write IF = ί7 + F,
with [/ G conv(PF(Δ+) logα) and K G Γ ( A ! ) . Then there exists a
sequence {ί7n} in αp^ which converges to U, and such that Un G
conv(PF(Δ+) logαj for all w. By Corollary 6.5 there exists a sequence
{/*„} in # such that Epq° §(αnhn) = Un + F, and by Lemma 3.3 the
set {h n} must be relatively compact in H. Passing to a subsequence if
necessary, we may therefore assume that hn converges to a point
h G H. It follows that Epqo$(αh) = \imEpqo %(αnhn) = \im(Un + F)
= U + F and the proof is complete.



A CONVEXITY THEOREM 41

Appendix A. The group case. Let G be a connected real semisimple
Lie group with finite centre. It may be viewed as a symmetric space in the
following way. Let 'G = G X G, 'τ: 'G -> 'G the involution given by
'τ(x, y) = (y, x). Then Ή = d(G), the diagonal in G X G, and the map
G X G ^ G , ( J C , ) / ) ^ cy"1 induces a diffeomorphism fG/ Ή - G.

In this appendix we reformulate Theorem 1.1 for the symmetric pair
('G, Ή) in terms of the structure of G. If not specified, our notations have
an obvious meaning.

Let θ be a Cartan involution for G. Then 'θ = θ X θ is a Cartan
involution for 'G which commutes with 'T. Thus, on the Lie algebra level
we have '£ = t> X t>, 'q = δ(g), 't> Π 'q = δ(£), where we have used the
notation δ( g) for the subset {(X, -X); * e g} of 'g = g X g, etc.

Let ap be maximal abelian in p and put 'ap = apx ap and ' α ^ =
8(ap). Let j : α^ -> 'apq be the linear isomorphism given by \(X) =
(X, -X). Then the projection Έpq\ 'ap -* 'apq is given by

Moreover, with obvious notations, 'Δpq = j*"1(Δ/ 7), and if mi denotes the
projection of 'ap on the /th coordinate (/ = 1,2), then 'Δ^ = ^ Δ ^ U ir*&p-
Let Δ^ be a choice of positive roots for Δ^,

G = KApN

the associated Iwasawa decomposition and φ: G -> α^ the corresponding
Iwasawa projection. Then Ά+q = i*"1(Δ^) and 'Δ^ = π?(Δ+) U ττ2*(-Δ+)
are compatible choices of positive roots. The associated Iwasawa decom-
position fo£ 'G is rG = 'KΆp'N, where 'K = K X K, Άp = ApX Ap9

'N = N X N. The associated projection ' § : 'G -> rap is given by 'φ(x, y)
= (φ(x),-«(0jθ),sothat

It is now straightforward to derive the following equivalent formulation of
Theorem 1.1 in terms of G's structure. Let W denote the Weyl group of
α^ in g. If α G Δ^, we let Ha denote the element of ap Π (kerα) x with
a(Ha) = 1, and write

Γ(Δ;) = Σ κ+na.
Δ ;

THEOREM A.I. Let G be a connected real semisimple Lie group with
finite centre, G = KApN an Iwasawa decomposition for G, and φ: G -> ap

the corresponding projection. If a e Ap, then the image of the map Ψa:
G -> ap given by

x) + $(aθx))
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is equal to

im(Ψj = conv{W logα) ;

In particular, putting a = e, and using the Iwasawa decomposition
G = KApN, one easily finds

Moreover, Lemma 3.3 implies that the map φ: TV -> α^is proper. Now
these facts can be checked independently as follows.

By [12] (cf. also [25]), there exist a diffeomorphism Φ: Iα G ?iVα -> JV,
such that

(A.i) §

Here the Cartesian product extends over the set P of indivisible roots in
Δ^. Moreover, Na = N Π Ga9 where Ga is a closed semisimple subgroup
of G whose Lie algebra is the real rank one algebra generated by Q~2a

9

0~α> 9α> Q2α The Iwasawa decomposition of G induces the Iwasawa
decompositions Ga = KaApaNa with Ka = K Π Ga9 etc. Thus we see that
by (A.I) the above statements for the map ίρ: N -> αp reduce to the
corresponding statements for the maps φ: Λ^ -> α^ α. The latter state-
ments can be checked to be true from the explicit formula for the Iwasawa
projection of a real rank one group (cf. [16], [25]).

The following independent proof of Theorem A.I was communicated
to me by T. H. Koornwinder.

Independent proof of Theorem A.I. Clearly it suffices to prove the
theorem for logα e -cl(α^). The key observation is that in that case we
have

(A.2) conv(^ log*) + Γ(Δ+) = \oga

Now if k e K, b e Ap, n e N, then

i[$(akbn) + $(akb-ιθn)]

k) + log* + §(akκ(b-ιθn)) + §(b'ιθn)]

fc) + ${akκ(b-ιθn))

By the above we have §{b~ιθnb) e φ(/7) = Γ(Δ^). Moreover,
\[§(ak) + §{akκ{b-ιθn))}<Ξ conv{W - log a) by Kostant's convexity
theorem. It follows that im(Ψα) is contained in the set (A.2).
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On the other hand, if n e N, then \[§{an) + ί$(aθn)] = logα
+ ^ ( a f l m r 1 ) . Hence i m ( ^ ) Ώ log a + Γ(Δ+) and the proof is com-
plete.

Appendix B. Holomorphic continuation of a decomposition.

B.I. Introduction. We assume that g is semisimple, G its adjoint
group. Let Gc be the adjoint group of the complexified Lie algebra ĝ .. In
this appendix we study the holomorphic continuation to Gc of the
decomposition G = KL0ApqNQ (cf. Prop. 3.1). The main result, Theorem
B.I.2, generalizes a result of [2] on the holomorphic continuation of the
Iwasawa decomposition. In Section B.4 it is used to prove Lemma 3.4.

Let Lc be the centralizer of apq in Gc, Qc the normalizer of lc + nQc

in Gc and NQc = exp(riρc). Then it is well known that Lc, Qc and NQc are
algebraic and connected. Moreover, Qc is a parabolic subgroup with Levi
decomposition Qc = LcNQc. Let Kc, Apc, Apqc9 LQc be the connected
analytic subgroups of Gc with Lie algebras lc9 apc9 apqc, IOc.

PROPOSITION B.I.I. The groups Kc9 Apc9 Apqc9 LOc are the identity
components (for the usual topology) of algebraic subgroups of Gc.

REMARK. If we speak about connected components, it will always be
with respect to the usual (i.e. non-Zariski) topology.

Proof. The holomorphic involutions of Gc whose differentials at the
identity are θ and T, are denoted by the same symbols. Define

Άpc = {x e Gc; θx = jc-1,X\Q« e C - Id(gft) for α

Then Kc9 A 9 Apqc are the identity components of the algebraic sub-
groups fKc9 Ά 9 Άpqc. As for the remaining assertion, we claim that LOc

is the identity component of

'LOc = {x e Lc; det(;c| gα) = 1 for a e Δ + }.

To prove this it suffices to show that Io equals

Ί o = {XGl;tr(ad(X)|g α ) = O f o r α G Δ + } .

Since Π{kerα; α e i + } = 0, we have Ί o Π apq = 0. Hence it suffices to
show that ί0 c Ί o .



44 ERIK P. VAN DEN BAN

If a G Δ, we write Δp(a) = {β G Ap;β\apq = a}. Thus, if a e Δ,
then

la= Σ Qβ

Let ta( X) = tr(ad(Ar) | gα), for X e I. Since ί Π ϊ acts by skew symmet-
ric transformations on gft, it follows that ta = 0 on I n f. Moreover, for
X e aph we have

= Σ

Since Δ^α) = -Δp(-a), it follows that ta = -t_a on α^. On the other
hand, if X G α^, then TX = X, so that ^(A") = ta(τX) =
tr(τoad(X)o T - 1 | g α ) = tr(ad(Jί)|g-α) = /_α(X). Hence /α = 0on α Λ.
Since obviously /α(A: A") = ίa(X) for I G I , k <Ξ L Π K, this implies
that ία = 0 on (L n ϋΓ) α^̂  = 1^, hence on /0. We conclude that
I o c ' I o .

Let SQ be the complement of KCQC in Gc. Then 5^ may be identified
with the union of the lower dimensional J ĉ.-orbits on the flag manifold
Gc/Qc. Inspecting the proof of Proposition 3.1, one readily checks that
the maps λ: G -> (K n L0)\L09 hq\ G -> Λ^, ^ρ: G -* NQ defined by

)Λ,(jc)irβ(x) (x e G)

are real analytic. The main result of this appendix is the following.

THEOREM B.1.2. The set SQ is algebraic. The maps λ, hq and vQ extend
to multi-valued holomorphic maps Gc — SQ -> (Kc Π LOc)\LOc9 Apqc, NQc.
The map VQ is rational and there exists an integer m > 0 such that h™ is
rational. Moreover, if {xk} is a sequence in Gc — SQ converging to a point
x G SQ, then {h™(xk)\ i e N ) is not relatively compact in Apqc.

REMARK. By a multi-valued holomorphic map from a connected
complex analytic manifold X into a complex analytic manifold 7, we
mean a holomorphic map from the universal covering X of X into Y.

Loosely said, the line of proof is as follows. Suppose x G KJan. Then
(θx)~ιx = (θn)~ι(θl)~1la2n. Now /, a, n can be solved from this by using
properties of the Λ/£6Zθ6^^cΛ/ρc-decomposition (here NQc = θ(NQc)). The
latter decomposition is studied as follows. First we construct an embed-
ding of Gc in the matrix group G\(n,C) (here n = dim gc). Then, in the
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next section, we generalize certain matrix computations which go back to
[11, Ch. 2, §8].

The proof is completed in §B.3.

Let < be the ordering of a*q which is lexicographic in the coordi-
nates relative to the simple roots of Δ+, and let as < < ax be the
corresponding enumeration of the elements of Δ+. For every 1 <j<s,
we put Qj = Qaκ Moreover, we write g 5 + 1 = Io, QS+2 = apq9 Qs+2+j =
θQs+1_jίoτ 1 <j<s. Now let ( , ) be the positive definite inner product
on g defined by (X, Y) = -{X, ΘY) for J J e g . Then

( B . I ) β = fli® ••• © β ,

(where t = 2s + 2) is an orthogonal direct sum decomposition. Select an
orthonormal basis (et; 1 < i < n) of g which is subordinate to (B.I) and
such that the ordering ev...9en of its elements is compatible with the
ordering of the sum in (B.I).

If 1 <j < t, let dj = dim(gy), and let Py denote the orthogonal
projection g -> gy . In the sequel we shall identify real linear maps
with their complex linear extensions. Also, given a linear endomorphism
I G End(gc), we let Xtj denote the di X dy-matrix of the linear map
(Pi°X)\QJ from Qj into g7 and we identify X with the matrix of
blocks {Xi/y 1 < *, j < t). With these notations the composition of
endomorphisms corresponds to matrix multiplications in the usual way:

ik- Σ χ,jYJk,

for X, y e End(gc), 1 </, k < t.
Now let

nQ = {X e End(g); XtJ = 0 for 1 <j <i <t],

ή δ = ( l e End(g); XtJ = 0 for 1 ^ i <j < t),

I = { l e End(g); XtJ = 0 for i Φj).

Then clearly End(g) = n Φ l θ n e . Moreover, I = I o θ apq, where

! 0 = { ί e I; tt(Xlt) = 0 for 1 ^ / < /},

apq = { l e ( ; Xj} e C /y for 1 <j < t}.

Here we have written /, for the identity matrix of size d} x d}.
Consequently

(B.2)
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PROPOSITION B.I.3. Let 93 be any of the algebras nQ, ί0, apq, nQ.
Then ad(23) = ad(g)Π».

Proof. The inclusions ad(93) c ad(g) Π 33 are obvious (see also the
proof of Prop. B.I.I). Therefore the direct sum decomposition ad(g) =
ad(n^) Θ ad(I0) θ aά(apq) θ ad(nρ) is compatible with (B.2). The latter
sum being direct, the inclusions must be equalities.

Now let G = GL(g), Gc = GL(gc), and put

NQc= {x^Gc;x-I^nQc},

L O c = {χ€=L c ;det(x, , ) = l f o r l <j <t),

Apqc = {x e Lc; x7J e C /,. for 1 <y < t}.

These are algebraic subgroups of Gc with Lie algebras nQc, nQc, lc, ίOc,
apqc respectively. The following corollary is now immediate.

COROLLARY B.1.4. Let B be any of the groups NQ9 NQ, Lo or Apq.
Then Bc = (Gc Π Bc)°. In particular, Bc is the identity component (with
respect to the usual topology) of an algebraic subgroup of GL( g c ) .

B.2. Decompositions in GL(g c). If 1 < k < t we define the poly-
nomial function Dk\ Gc -> C by

/)*(*) = det(x i y.;l <ij <k),

for x G Gc. Moreover, we let Do = 1 and D = D1 Dr

LEMMA B.2.I. Let 1 < k < t. If x e Gc, ^ e ^ β c , / e Lc, w G Λ^ C ,

= Dk{x)Dk(l).

Proof. If 1 < k < t, x G End(gc), let mA(x) denote the matrix
(JC/7; 1 < /, j < k). Then an easy matrix computation yields xnk{nxln) =
mk(ή)rnk(x)mk(l)mk(n) and m^(/x) = mk(l)mk(x). The assertion now
follows by taking determinants.

If 1 < k < /, we define the subgroup Gk of Gc by

Gλ = [x ^ ^ JC = Oforl <y < A:, i >y} .
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Thus Gλ = Gc and Gt = LcNQc. Moreover, we define the subgroup Nk of

LEMMA B.2.2. Let 1 < k < t, y e Gk, Dk(y) Φ 0. Then there exists a
unique Wk(y) e Nk such that Wk(y)y e Gk+ι. Moreover, the map y •-*

is polynomial (in the entries ofy).

Proof. The uniqueness follows from the fact that JV̂  Π G^+1 = {/}.
The existence is proved by sweeping the kih column (y.k) of y. This

amounts to left multiplication by an element of Nk. More precisely, let Ek

be the space of linar maps from Qkc into Qk+Ϊc θ θ g/c. If α e £ Λ , we
put ay = Pj° a for k + I <j < t and identify a with its matrix

Also, we let wΛ(α) denote the element of Λ^ whose A:th column x is given
by Xj = 0 for 1 < j < k, xk = /Λ, jcy = αy for A: < j < t. If J?Λ is viewed
as an abelian group for the addition, then the map wk: Ek -> Nk thus
defined is a group isomorphism.

If y e Gk9 Dk(y) Φ 0, then clearly det(j^) Φ 0. Put

Oil

Then w^(α^(^))j e GΛ + 1. Hence Wk(y) = wk(ak(y)). Since
Dk{y)άti{ykky

ι = Dk_x{y\ it follows that Dk{y)Wk(y) is polynomial
in the entries of y.

COROLLARY B.2.3. Let y e Gc, D(y) Φ 0.

ma/?5 I/, <5? aw J F are rational.

exist unique

Proof. In view of Lemma B.2.1, the polynomial function D is left
JVβc-invariant. Therefore we may apply Lemma B.2.2 repeatedly and infer
that for y ^ Gc- D~\0) there exists a W(y) e NQc such that ίF(^)^ e
LcNQc. It is unique because JV^ Π LcNQc = {/}. Clearly W( j;) is rational
in the entries of y and therefore U(y) = W(y)~ι is. The proof is
completed by the easy observation that the map Lc X NQc -> LcNQc,
(/, n) •-> /« is a diffeomorphism with rational inverse.
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We end this section with a proposition which will be needed in the

next section. If 1 <j < t, dj Φ 0, let the function λy: Apqc -> C* be

defined by

for x G Apqc. It might occur that dj = 0 for some j . This only happens

when I o = 0, j = s + 1. In that case we define λs+ι = 1. Observe that

the latter equality holds in any case.

PROPOSITION B.2.4. Ifx = ulbυ, with u G NQc9 I G LOC9 b G Apqc9

v G NQC, then

for 1 < j < t.

Proof. In view of Lemma B.2.1 and the definition of LOc, we have

Dj(x) = Dj(b)Dj(l) = Dj(b). But obviously

- Π \j(b)'< (l<k<t).

from which the assertion follows (recall that Do= 1).

B.3. Proof of the main result. In this section we complete the proof of

Theorem B.1.2. We start with some results on the iVβcL0c^4/,^ciV
Γ

βc-decom-

position.

LEMMA B.3.I. The map p: LOc X Apqc -> Lc9 (/, a) >-* la is a finite

covering.

Proof. By a standard argument we infer that p is a covering with fibre

ρ~λ(e) = LOc Π Apqc (recall that Lc is connected).

From Proposition B.2.4 we deduce that LOc Π Apqc consists of ele-

ments b G Apqc with

for 1 <j < t. Hence LOc Π Apqc is finite. In view of Corollary B.1.4,

p~ι(e) is contained in LQc Π Apqc, hence finite.

LEMMA B.3.2. The map γ: NQc X LO c X ̂ ^ c X Λ^c -» Gc - D~\0),

(n9l9a9n) *-> ̂ ϊ/β« w a finite covering.
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Proof. By Corollary B.2.3 the map ψ: (n,l,n) -+ nln from J[ = NQc

X Lc

χ ^ 2 c o n t o Sc"" D'ι(0) is a diffeomorphism. Since D is not identi-
cally zero on Gc, Gc - D~\ϋ) is connected. In view of Proposition B.3.1 it
therefore suffices to prove that ψ"1 maps Gc - D~\ΰ) onto Jί = NQc X
Lc X iVρc. Now clearly ψ " 1 ^ - D"1^)) D ^ s i n c e Ψ is a diffeomor-
phism, it follows by comparison of dimensions that there exists an open
neighbourhood U of (e, e, e) in Jί, such that F = ψ ( t / ) is an open
neighbourhood of e in Gc - D'^O). Hence ψ"1 maps F into Jί. By
analytic continuation, the holomorphic map ψ"1 maps the connected
complex analytic manifold Gc - D~\ϋ) into the Zariski closure Ή of J(.
By connectedness, ψ"1(Gc - G'^O)) is contained in the identity compo-
nent # ° of the linear algebraic group ^ (with respect to the usual
topology). Finally, by Corollary B.1.4, ^° = Jί, so that χp'\Gc - D~\0))

The map γ is a local diffeomorphism, so has a local inverse (w, /, b, υ)
mapping e onto (e, ey e, e). Since γ is a covering, this local inverse has a
multi-valued holomorphic extension to Gc — SQ. We denote it by the same
symbol (w, /, 6, v).

PROPOSITION B.3.3. Let 1 <j < t. Then the map \dj °b: Gc- D-\0)
-> C*, y -> λj(b(y))dJ is rational. In fact, ify e Gc - D" 1 ^), then

Proof. This follows immediately from Proposition B.2.4.

COROLLARY B.3.4. Let μ be the least common multiple of
dx,..., ds+v ...,dr Then μ > 0, and the maps v: Gc - D~\0) -> NQc and
bμ: Gc — Z>~1(0) -> Apqc are rational. Moreover, if [yk) is a sequence in
Gc - D~\0) converging to a pointy e D'\0)9 then the set {bμ(yk); K N )
is not relatively compact in Apqc.

Proof. Obviously v is the restriction of V to Gc — Z>~1(0), hence
rational (see Cor. B.2.3). Since Apqc centralizes IOc, we have λs+ι = 1.
Hence the rationality of the map bμ follows from Proposition B.3.3.

Now let j be the lowest index among 1,..., t such that Dj(y) = 0.
Then Dj^y) Φ 0 (recall that Do = 1) and by Proposition B.3.3 it follows
that we must have dj Φ 0 and

λj(b»(yk)) = λjibiy,))"^'-* 0
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as k -> oo. Hence {λj(bμ(yk)); k e N) is not relatively compact in the
subset λj(A c) of C \ {0}, so that the last assertion follows.

Before proceeding, we recall some facts that can essentially be found
in [20, Thm. II.1.3 and Proof of Prop. IV.4.4]. Let B be any connected Lie
group and σ an involution of B. Then Bσ denotes the fixed point set of σ.
The set SΓ= {x e B; σ(x) = x'1} is a smooth submanifold of B. Now B
acts on 3Γ according to the rule b - x = σ(b)xb'1. By a computation of
differentials one may check that all 5-orbits are open in 3Γ. Hence the
connected identity component ^σ{B) of SΓ is equal to the 5-orbit
through e:

The manifold S^σ(B) is called the space of symmetric elements in B. The

map B -^> SPσ(B), b >-> σ(b)'ιb induces a 5-equivariant diffeomorphism

Bσ\B ^ Sfσ(B). If C is any open subgroup of B% then \C\Bσ\ < oo

(cf. [20, Thm. IV. 3.4]) and the above map B -> S?σ(B) induces a finite

covering C\B -* &a(B).

Applying the above to Gc and LOc together with the holomorphic
continuation of the Cartan involution 0, we obtain finite coverings

where

X=KC\GC, XL=(KcΠLOc)\LOc9 <?=<?Θ(GC),

Let us now return to the proof of Theorem B.I.2. If x e Gc, we put

x' = (θx)~ι. In view of Lemma B.3.2 the map (l,b,n) •-> n'lbn maps

P R O P O S I T I O N B.3.5. The map ε: ^L X Apqc X NQc -* Sf- D'^Q),

(l,b9n) •-> n'lbn is a finite covering.

Proof. Consider the finite covering γ of Lemma B.3.2. One easily

checks that y~\Sf— D~ι(G)) equals the smooth submanifold

T = {(Λ, /, b, n) e NQc X LOc X Apqc X 7Vρc; π = π ' , / = / ' } . .

Let S be the connected component of T which contains (e, e, β, e). Then

γ IS: S -> y(Gc) — D~λ(0) is a finite covering. Moreover, the map

/: ^ L X ^ , X % -> % . X LO c X ^ c X 7Vρc, (/, 6, n) ^ (« r, /,/>,«)

maps ίfL X ^ ^ c X iVβc diffeomorphically onto S. Since ε = (γ | S) ° /, the

proposition follows.
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Define the map

8: XL X Apqc X NQc -*<?LX Apqc X NQc

by 8(1, α, n) = (/'/, a1, n) (here / denotes the coset of /). Then clearly 8 is
a finite covering.

Consider the map #: Gc -> «Ŝ , x •-> X'JC, and define the polynomial
function F: Gc -> C by

F(x) = Z>(#x) = D(X'JC).

Then F is left ^.-invariant, hence can be viewed as a function on X.

Similarly, F~ι(0) can be viewed as a subset of X. As such it is the
preimage of D~\0) under the finite covering ΰ: X -»S? induced by #.
Being the complement of an analytic null set, X — F'ι(0) is connected, so
that the restriction of & to X — F~ι(0) is a finite covering

η: X- F~l(0) -*&>- D~\$).

Finally, if we define the map φ: XL X Apqc X NQc -+ X by φ(ϊ,a,n)

= KJan, then u>°<p = ε°δ, where ε is the map of Proposition B.3.5.
Hence im(φ) c d ' ^ i m ε ) = X — F'^O) and the following diagram com-
mutes:

XLXApqcXNQc Λ JT-F-^O)

yL x ^ t ^ c x JV^

Since δ, ε and η are finite coverings, we now have the following result.

PROPOSITION B.3.6. The map φ: (Kc n LOc)\LOc X ̂ ^ . X Λ^c ->

^c \ ^c ~" ̂ "1(0)> 0,a>n) ^ AΓcώ« w a finite covering.

Proof of Theorem B.1.2. Let TΓ: GC - F~\ϋ) -+X - F~ι(0) be the
restriction of the canonical map Gc -> X. By Lemma B.3.6 the map φ has
a local inverse ζe mapping e onto (e, e, e). Since φ is a covering, ζe has a
multivalued holomoφhic extension f = (f x,f 2,f 3) mapping KC\GC-

F~\0) into (ΛΓC n LO c) \ L O c X ̂ t ^ c X NQc.

Locally at Kce, we have ζe°π = (λ,hq,vQ),by definition of the real
analytic maps on the right. Hence ζλ ° π9 ζ2 ° v, f3 ° it are the multi-valued
holomoφhic extensions of λ, hφ vQ to Gc — F~ι(0). Moreover,

π-^X- F~ι(0)) = TΓ-^imφ) = KcLOcApqcNQc = KCQC,

and therefore SQ = Gc - KCQC = F'^O) is algebraic.
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As for the last three assertions, by holomorphic continuation it
follows that

for all x e Gc - D'ι(0), Consequently, with the notations preceding
Proposition B.3.3.,

(B.3) hf(x) = b{x'x)\

(B.4) vQ{x) = v(x'x).

Now put m = 2μ. Then the last assertions readily follow by application of
Corollary B.3.4.

We end this section with two related propositions, which will be
useful in the next section.

PROPOSITION B.3.7. GC - SQ = GΘ

CQC.

Proof. From [19, Proposition 1] it follows that Gθ

c c KCLC. Hence

G9

CQC = KCQC.

PROPOSITION B.3.8. Let (a,n) e Apqc X NQc and assume that x e

Gθ

cLOcan. Then

a2* = hf(x),

n = vQ(x).

Proof. It follows that x'x e n'SfLa2n. Hence, with the notations
preceding Proposition B.3.3, we have a2μ = b(x'x)μ and n = v(x'x). The
assertion now follows by comparison of these two formulas with (B.3,
B.4).

B.4. Proof of Lemma 3.4. Obviously it suffices to prove the lemma
under the assumption that G is the adjoint group of the semisimple
algebra g. To make the lemma also available for groups of class § , we
shall in fact work under the following somewhat weaker assumption.

(A) Q is a real semisimple Lie algebra and G is an
open subgroup of the normalizer GR of g in
the adjoint group Gc of gc.

The proof goes by exploitation of the duality introduced by Berger [6]
(and also used by [9,10,22]).
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The space

QJ = i(ϊ n q) e(f n ί)) e(t) n q) e /(t> n ί))

is a subalgebra of gc, called the real form dual to g. The restriction θd of
the (complex) involution r to qd is a Cartan involution for g ,̂ with
associated eigenspace decomposition

Qd = ϊd®pd,

where f £ / = ΐ ) c Π g ί / , t ) ί / = Q c Π g ^ (read this as: the f in the dual
situation, etc.). Similarly, we put τd = θ \ Qd, i)d = ΐc Π g ,̂ q ^ ^ Π g ^ .
Let GJ, ΛΓ̂ , //^ be the connected analytic subgroups of Gc with Lie
algebras Qd, ϊd and Y respectively. Moreover, let ad

pq = apg9 Ad

pq = Apφ

Ld = Lc Π G ,̂ n^ = nQc Π gJ, Λ^ = exp(n^), and define

Ld= {KdnLd)eχp{ρd n ί ) J n ί^).

Then according to Proposition 3.1, we have Gd = KdLd

QAd

pqN£ with
corresponding maps λ̂ , hd, vd: Gd ^ (Ld Π Kd)\Ld, Ad

pφ Nd de-
termined by

(B.5) χeKdλd(x)hd(x)vd(x).

The idea is now to view (3.3) and (B.5) as different real forms of the same
multi-valued holomorphic decomposition.

Let Hc be the connected analytic subgroup of Gc with Lie algebra ί)c.
Set S£ = Gc - HcLcNQc. Then according to Theorem B.I.I, the maps λ̂ ,
hd, VQ have multi-valued holomoφhic extensions to maps Gc— SQ^>
(HcΠLd

c)\Ld

c,Apqc,NQc.
To complete the proof of Lemma 3.4, we need the following.

PROPOSITION B.4.I. Under the assumption (A), the set Ω is a union of
connected components of G — SQ.

Proof. The group H X Q acts on Gc according to the rule (h,q) - x =
hxq'1, for h e H, q e Q, c e Gc. In view of Proposition B.3.7, this
action leaves Gc — SQ = GΎ

CQC invariant. Moreover, by an easy computa-
tion of differentials at points of Gτ

cQc, it follows that all H X β-orbits in
Gc — SQ are submanifolds of real dimension dim(G). Hence G — SQ is a
union of open H X β-orbits. Now Ω is just the H X β-orbit through e,
hence open and closed in G — SQ.

End of proof of Lemma 3.4. Let lv l2 e Lo, al9 a2 e Apφ nl9

n2 G NQ and assume that Hlιaιnι = Hl1a1n1. Then G*lιaιnι = GH1a1n1

and using Proposition B.3.8 we infer that nλ = n2 and α^μ = a\μ. The
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map exp: α -> Apq being a diffeomorphism it follows that aγ = α 2

Hence i/^ = i//2 from which it is immediate that (H Π L0)lλ =
(H Π L0)/2. This proves uniqueness and the maps /, apg9 nQ are well
defined by (3.3).

By a standard computation of differentials it now follows that the real
analytic map (/, a, n) -> Hlan maps ((H Π L0)\L0) X Apq X NQ diffeo-
morphically onto the canonical image Ω of Ω in H \ G. Its inverse ζ
necessarily is a real analytic map. Now let TΓ: Ω -> Ω be the restriction of
the natural map G -> H \ G to Ω. Then (/, apφ nQ) equals ξ°ir, hence is
real analytic.

Finally, by Proposition B.3.8 we have

a(x)2lί = h^xf1,

for x e Ω. By Proposition B.4.1, 3Ω is contained in SQ and so the last
assertion of the lemma follows from the corresponding assertion of
Theorem B.I.2.
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