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A CONVEXITY THEOREM
FOR SEMISIMPLE SYMMETRIC SPACES

ERIK P. VAN DEN BAN

We generalize Kostant’s convexity theorem for the Iwasawa decom-
position of a real semisimple Lie group G to the following situation. Let
7 be an involution of G, and H = (G")°. Then there exists an Iwasawa
decomposition G = KA,N with certain compatibility properties, e.g.
T(K)=K, 7(4,) = A4,. Let a, = Lie(4,), $: G — a, the projection
according to the Iwasawa decomposition and E,, the projection of «a,
onto the -1 eigenspace a,, of dr(e). Let X € a,,. Then the main
result of this paper describes the image of the map H —»a, , h —
E,, > 9(exp(X) - k) as the vector sum of a closed convex polyhedral
cone and the convex hull of a Weyl group orbit through X. For
7 a Cartan involution it gives precisely Kostant’s description of
9 (exp(X) - K).
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0. Introduction. In this paper we prove a generalization of a con-
vexity theorem of Kostant (cf. [18]), related to a semisimple symmetric
space G/H. Here G is a connected real semisimple Lie group with finite
centre, 7 an involution of G and H an open subgroup of G" = {x €
G; 1(x) = x}.

Let K be a r-stable maximal compact subgroup of G (for its
existence, cf. [6]) and let § be the associated Cartan involution. We denote
the infinitesimal involutions determined by 6 and 7 by the same symbols
and write p, g for their respective —1 eigenspaces in g, the Lie algebra of
G. The +1 eigenspaces of 6 and 7 in g are the respective Lie algebras f
and § of K and H. Since 6 and 7 commute we have the simultaneous
eigenspace decomposition

(0.1) g=fNnagdftNnhepnNnagd®pny.
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Fix a maximal abelian subspace a s Of PN and let a , be a
r-stable maximal abelian subspace of p, containing a »q- Lhen

ap, =0, ®a,,

where a,, = a,Nb.Let E,: a, = a,, denote the corresponding projec-
tion.

The set A = A(g, a,,) of restricted roots of a,, in g is a (possibly
non-reduced) root system (cf. [24]). Let A™ be a choice of positive roots
for A and A a compatible choice of positive roots for A, = A(g, a,). To
the latter choice corresponds an Iwasawa decomposition

(0.2) G = KA,N,
where 4, = exp a,. The real analytic map $: G — a, determined by
x € KexpH(x)N (x€G)

is called the corresponding Iwasawa projection.
The main result of this paper is, for any fixed a € 4,, = exp(a,,,), a

description of the image of the map F,: H — a,,, defined by

(0.3) F,(h) = E,, $(ah)

(see Theorem 1.1). Here H is required to be connected (or to satisfy the
slightly weaker condition (1.2)). If 7 is a Cartan involution, then 7 = 6,

H=K, a,=a,, and the result is precisely the Kostant convexity
theorem.

In the present case the image of F, is a vector sum
(0.4) im(F,) = conv(Wy, - loga) + T(AT).

Here W, ., is a certain Weyl group, I'(A") a closed convex polyhedral
cone and we have used the notations “conv” for convex hull and “log” for
the inverse of exp: a, > 4,. The cone I'(A™) can be entirely described in
terms of a set of roots A™. In particular it is independent of @ and equals
im(F,) = E,,° 9 (H).

We prove the characterization (0.4) by induction over centralizers in
G, using ideas of Heckman [15]. However, since there seems to exist no
infinitesimal version of (0.4), we cannot use his homotopy argument to
reduce to an infinitesimal case. Consequently, we need to compute critical
points and Hessians of F, on the group. This is done in §4 and 5, using
ideas of [8].

Another complication is caused by the non-compactness of H. It is
overcome by showing that the map F,, apart from a right invariance, is
proper (Lemma 3.3), and that its image is not the whole of a,, (Lemma
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3.9). Lemma 3.3 is proved by comparing F, with another map P, (Lemma
3.6). For a restricted class of symmetric spaces, the map P, has been
studied by Oshima and Sekiguchi [23], who pointed out its importance for
the harmonic analysis on G/H. Lemma 3.3 follows from the properness of
P,. For the purpose of proving the latter, we study the holomorphic
continuation of a certain decomposition in Appendix B, generalizing
results of [2] on the Iwasawa decomposition.

In the recent literature, Kostant’s theorem for complex groups has
been generalized to a Hamiltonian framework by Atiyah [1], and by
Guillemin and Sternberg [13]. Duistermaat [7] obtained such a generaliza-
tion for the real case. At present I do not know whether the result of this
paper fits into such a framework or not.

It is a pleasure for me to thank J. J. Duistermaat and G. J. Heckman
for some stimulating discussions on the subject of this paper.

I am grateful to M. Flensted-Jensen and H. Schlichtkrull for suggest-
ing a shorter proof of Lemma 3.9 and to T. H. Koornwinder for providing
me with an independent proof of Theorem A.1.

1. A precise formulation of the result. The group N in the Iwasawa
decomposition (0.2) is given by N = exp(n), where

n= ) g

aEA;’
If a € A= A(g,0q,,), welet H, denote the element of a ,, given by
H, 1 kera, «a(H,)=1.
Here L denotes orthogonality with respect to the Killing form ( -, -) of
g. Moreover, if T is a subset of A*, we put

P(T) = Z R+' Ha’
aeT
where R = [0, o0).

Since @ and 7 commute, # o7 is an involution. The +1 and -1
eigenspaces of for are g,=fNHhd®pnNg and g=fNgdpnNH
respectively. Now @ o 7 acts as the identity on a . Therefore, it leaves the
root spaces g% a € A) invariant. Consequently, writing g%= g* N g,
and g*= g* N g_, we have
(1.1) g°=gi®g? (acA).

We define
A ={a€A;g*+ 0},

andput AT=A N A*
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The notation I'(A*) in (0.4) has now been explained. In addition, the
Weyl group Wy . 4 is defined as

WKﬁH = NKﬁH(apq)/ZKﬁH(apq ’
the normalizer modulo the centralizer of a ra mKnN H.

With the above notations we can formulate our main result. We say
that H is essentially connected if

(12) H = Zy (0, H,

where H° denotes the identity component of H.

THEOREM 1.1. Let G be a connected real semisimple Lie group with
finite centre, T an involution of G, and H an essentially connected open
subgroup of G". Ifa € A, then

im(F,) = conv(Wy - loga) + T(AY).

2. Some notes on the induction procedure. In the proof of Theorem
1.1 (see §6), induction via centralizers in G will be used. Therefore, we
need Theorem 1.1 to be valid under the somewhat more general assump-
tion that G is a reductive group of the Harish-Chandra class (class &), 7
an involution of G and H an open subgroup of G7, satisfying condition
(1.2). All definitions of §§0 and 1 make sense in the context of a group of
class . Instead of the Killing form we use a Ad(G)-invariant non-degen-
erate symmetric bilinear form ( -, -) on g, which is positive definite on f,
negative definite on p, and for which the decomposition (0.1) is orthogo-
nal. For the basic theory of a reductive symmetric space G/H of class &,
we refer the reader to [5].

LEMMA 2.1. Let G be a group of class &, T an involution of G, and H an
essentially connected open subgroup of G*. Then Theorem 1.1 holds for G, H
if it holds for Ad(G)°, Ad(H)°.

Proof. Let v = centre(g) N p. Then V = exp(v) is a closed vector

subgroup of G, and we have a direct product
G =GV,
where °G = N{ker|x|; x: G = R* a continuous homomorphism} (cf. e.g.
[27, p. 196]). Obviously °G and V are 7-invariant, so that
H=(Hn%G)(HnV).
Now clearly E, o9 is right H N V-invariant, and if a e'%Gn4 .
aeVnA,,then
E, o 9(a'ah) = E, o $(ah) + loga’

P
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for all h € H. It thus easily follows that we may reduce the proof to the
case that G =°G. Moreover, E, o $ is right Zyy(a,,)-invariant, so
that by (1.2) we may reduce the proof to the case that H is connected. But
then we may as well assume that G is connected. Finally, the observation
that E, o § is right centre(G)-invariant completes the proof.

For the remainder of this section, let G be a group of class .

Let W(A ) denote the reflection group of the root system A, defined
by
A,={a€A; g5+ 0}
(cf. (1.1)). Since A, can also be viewed as the root system of a pg 10 G, it
follows from standard semisimple theory, applied to [g., g ], that

(2.1) W(A,) = Wgnpe.

PROPOSITION 2.2. Let H be an open subgroup of G™. Then the following
conditions are equivalent.

(i) H is essentially connected,

() W(A,) = Wxnp

Proof. In view of (2.1) the assertion follows straightforwardly from
the fact that

(22) H = Ngoy(a,,) HO.

Now this is seen as follows. H and H° are both #-invariant (cf. [5]), hence
admit the Cartan decompositions H = (K N H)exp(b N §) and H® =
(KN H%exp(p Nh). From this we see that (KN H)°=KN HC.
Moreover, (2.2) will follow from K N H = N, y(a, K N H)°. Thus
let k€ KN H. Then Ad(k™')a,, is maximal abelian in p N q. By
standard semisimple theory applied to g, g_ ] it follows that there exists
a k, € (KN H)® such that Ad(ki'k™")a,, = a,,. Hence kk, €
Ny ~n(a,,) and we are done.

In the proof of Theorem 1.1 we shall use induction via centralizers of
elements Z € a,,. The following result guarantees that the class of pairs
(G, H) under consideration is stable under this induction. If b is a
subalgebra (or subspace) of g, we let b, denote the centralizer of the
element Z € a,, in b. Similarly, if B is a subgroup of G (or a group
acting on a, ), we let B, denote the centralizer of Z in B.

PROPOSITION 2.3. Let Z € a,,. Then G is of class  and t-stable.
Moreover, if H is essentially connected then the same holds for H,,.
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Proof. The first assertion is standard (cf. [27, p. 286]). The second
follows immediately from 7(Z) = -Z.

Clearly, A (Z) = {a € A; a(Z) = 0} is the root system of a,, in
g.N g,. In view of (2.1) we have a commutative diagram of natural
monomorphisms

Wgnn, - Wgan

A g1
v

Wa.(z) 5w,
Here the map g is an isomorphism onto because H is essentially con-
nected (see Proposition 2.2). Obviously ¢ maps Wy into (Wx )z,
and it is well known that im(¢) = W(A,),. Since g is compatible with
the natural actions of Wy, and W(A,) on a,, it follows that
g(W(A.),) = (Wx~n)z and we infer that f is surjective. By Proposition
2.2 this implies that H, is essentially connected.

From now on we assume again that G is connected and semisimple.
In §6 we will prove Theorem 1.1 under the assumption that it has already
been established for centralizers G,, Z € a pg- I View of the results of
this section, this induction procedure is legitimate.

3. Some properties of the map F,. Let L be the centralizer of a,, in
G, [ its Lie algebra. The parabolic subgroup Q = LN of G has the Levi
decomposition

Q = LNQ’
where N, = exp(n,),
Mo = Y a.
aEAT

Let n, =nnNI, N, =NnN L. Then L normalizes N, and we have the
semidirect product
(3.1) N =N/N,.

The ( - ,- )-orthocomplement [, of a,, in [ decomposes as

h=1,,®0,®L,

where we have written [, =[N N g, etc. [ is the Lie algebra of the
closed subgroup L, = (K N L)exp(!,,) of L. Moreover, we have a direct
product

L=LyA

pq



A CONVEXITY THEOREM 27

PROPOSITION 3.1. Let x € G. Then there exist unique a € A
such that

(3.2) x € KLan.

Moreover, loga = E, > $(x).

rg nENQ

Proof. Write x = kayn,, where a, € A,, n; € N. Then a, = a,a,
n, =nen, with a,€4,,, a€4,,, no€N,, n € N,. It follows that
x = kay(anya ")an, whence (3.2) and the last assertion is obvious. The
uniqueness follows easily from the uniqueness for the decompositions
(0.2),(3.1)and 4, = 4,4,

COROLLARY 3.2. The map E,, ° § is right Ly-invariant.
Proof. Use that L, normalizes N, and centralizes 4,,,.

In particular, if a € 4, then F: H > a
rally induces amap F,: H/H N L, = a,,.

defined by (0.3), natu-

P

LEMMA 3.3. Let o/ be a compact subset of A,, Then the map
X H/HN Ly — a,,(a,h)— F,(h) is proper.

We prove this lemma by comparing F, with another map. Using the
direct sum decomposition g = & [, ® n, (cf. [4]), one easily checks
that the map H X L X Ny, = G, (h,1,n) = hin is a submersion onto an
open subset { of G (see also [21], [24]).

LEMMA 3.4. If x € Q then there exist unique I(x) € (H N Ly)\ L,
a,,(x) € A,, andny(x) € Ny such that

(3.3) x € Hl(x)a, (x)ny(x).

The corresponding maps 1, a,, and n, are real analytic. Moreover, if {x,}
is any sequence in § converging to a boundary point x € 9Q, then {a, (x,)}
is not relatively compact in 4.

REMARKS. (i) We prove this lemma at the end of Appendix B.

(i) If the involution 7 arises from a signature on A, (cf. [23]), then
a,=0,, 0, is maximal abelian in q, and the above result is contained
in [23].

In view of Lemma 3.4 we have H N LN = HN L = H N L, so that
the inclusion H = G induces an embedding

it H/HNL - G/Q
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of H/H N L onto an open subset £ of G/Q (the underlining indicates
that @ is the canonical image of £ in G/Q). If a€ 4,,, we let A, or
A(a) denote left multiplication by a on G/Q, and put @, = A(a™")Q. Let
j: K/KNL—->G/Q
be the natural diffeomorphism, and set
QK,a =j—1(s—2u)'

Then Q , is the canonical image of K N a™'Q in K/K N L. Since L,
centralizes A,, and normalizes Ny, the map a,, is right L invariant.
Moreover, K N L, = K N L by definition of L, so that for a € 4, we
can define a map P,: & , > a,, by
(3.4) P(k(KNL)) = logoa, (ak).

If o/ is a subset of A4, we define the subset @, , of /X K/KN L
by

Py’

Q o= ((a.k) e/ X K/KN L ke Q).

LemMa 3.5. If & is a compact subset of A,, then the map
P: Qp ,Xa,, —a,,(a k)= PJk) is proper.

Proof. Clearly, it suffices to prove that the map a,, restricted to
Qi »={(a, k) € A X K; ak € Q} is proper. Let € be a compact subset
of 4, . We claim that the set T = a,,(%) N Q , is compact. For assume
not; then it is not closed in cl(£, ). Hence there exists a point (a, k) €
&/ X K such that ak € cl(2)\ € = 9Q, and a sequence {(a,,k,)} in T
such that a, k, — ak. By Lemma 3.4 the set {a,,(a,k,)} is not relatively

compact in 4 ,,, contradicting the assumption on ¢. Hence T is compact.

LEMMA 3.6. Leta € AM. Then
F = —Pa_loj‘lo)\aoz'.

—a

Proof. From the definitions it is evident that j'e A o/ is a diffeo-
morphism of H/H N L onto @ .. Let h € H, and set ah = kiexpYn,
with (k,[,Y,n) € K X L, X a,, X N,. Then Y = E, o $(ah) =
F,(h(H N L)). On the other hand, a 'k = hl ' exp(~Y)n’, where n’ =
lexpYn~'(lexpY)™ € N,, so that Y = loga, (a"'k). This proves the
lemma.

Proof of Lemma 3.3. The map &/X H/H N L = Qg 1, (a,h) —
JjteA, ci(h) is easily seen to be a diffeomorphism. Thus the assertion
follows from Lemmas 3.5 and 3.6.



A CONVEXITY THEOREM. 29

COROLLARY 3.7. Ifa € A, then the set E, > $(aH) is closed in Qpyr

P

Observe that in view of Lemma 3.6 the following is an equivalent
formulation of Theorem 1.1.

THEOREM 3.8. Let H be essentially connected, and let a € A,,. Then
im(P,) = conv(Wy - loga) +(-T(AY)).

We now come to the second main result of this section. It deals with a

first restriction on the location of the set E, o $(aH). Put
a,,(A%) = {(Uea,;a(U)>0foraeA™}.

LemMA 39. Let a€ 4,,, X € cla, (A")). Then the function

F, x: H — R defined by
F, x(h) = (X, F,(h)),

for h € H, is bounded from below.

pPq’

REMARKS. (i) If 7 arises from a signature on A, (cf. [23], see also
Remark (ii) following Lemma 3.4), then Lemma 3.9 is a consequence of
[23, Prop. 3.8].

(i) The proof presented below was suggested to me by H. Schlicht-
krull and M. Flensted-Jensen independently. Being closely related to that
of [10, Lemma 4.6], it is based on a characterization of £ in terms of
finite dimensional representations as in [14]. Our treatment follows the
presentation in [26].

The proof of the lemma depends on a few propositions. Via the
restriction ( -, -) of the Killing form to a,, we view ay  as a linear
subspace of ay. Welet ( -, -) also denote the dual inner product on ajy,
and set

axt= {}\ € ay; (A,a)>0fora € A;},
*a,,={X€a,;A(X) 2 0for X €d(az*)nar,).

Then from the fact that A*= {ala
lows that

(3.5) *a,,={X€a

pgr @ € A;,alapq # 0}, it easily fol-

b (X, Y) 2 0for Y € a} (A%)}.
ProOPOSITION 3.10. There exist my,...,m, € ay, (! = dim ) such
that
(@) Ta,,={X€a,;m(X)20forl <j<l},
(i) (n,a)(a,a) "' €ENforall1<j<l a €A,.
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Proof. Let 2, X, denote the respective sets of simple rootsin A, A~
andlet 2 , = {a € 2,; a|a,, = 0}. Then according to [26, Lemma 7.2.4]
there exist a non-negative integer /, and an enumeration a;, ..., a, of =
(where n = dim a ), such that

p

1a;=a,modN-3,, (1<j<l-1),

J

aj+,lmOdN'2p0 (l_ll <]$[).

70 ;

0= {a;l+ 1 <j<n}.

Moreover, 2 = {a]a,,,...,qla,,}.

Now let A,..., A, € ay be defined by (A, ;) = 2(a;, a;)§;; for all
1<i, j<n Then (A,a)(a, @)y’ €ENforalll<i<n, a €A,. De-
fine

n,=AX, Ql=<j=<i-1),
m,=N+A,, (I-L<j<l).

Thenn, € a3, (1 <j < /) and (i1) holds. Moreover, if p € a,, then

1y (1.a) :

M
2 1<j<i \%» @

i
From this we infer that cl(a¥*) N a¥ =X, _;_,R,- n;, whence (i).

PrROPOSITION 3.11. If x € G, then
E, °o9(x)=E, 9 (r0x).

Proof. Since 70 = I on a,,, the algebras [ and n, are 76-stable.
Hence the decomposition G = KL,4, N, is T6-stable and the assertion
follows from the characterisation of E, ° § in Proposition 3.1.

PrOPOSITION 3.12. If x € H, then E, ° $(x) € Ta,,,.

Proof. The map E, o $ being left K-invariant, it suffices to prove
this for x = exp X, X € p N h. Moreover, by Proposition 3.10 it suffices
to show that no $(x) > 0forn € {n,,...,n,}.

By [17, Theorem V.4.1.], n is the highest weight of a spherical
representation 7 of G in a finite dimensional complex linear space V. We
let = also denote the associated infinitesimal representation of g, =
C ®x g in V and endow V' with an inner product that makes # unitary
on f®ip. Let v € V' be a highest weight vector of norm 1, and put
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(1) = ||m(exptX)v||> = exp{2n > H(exptX)} for t € R. Then we must
show that f(1) > 1.

Following the proof of [26, Lemma 7.6.1], we expand v in an
orthogonal sum v = ¥ gv, of eigenvectors of «(X), where #(X)v, =
av,. Then f(t) = £ e%*||v,|I>

On the other hand, by Proposition 3.11 the function f is even, whence
f(t) = X coshQat)||v,||* = 1.

Proof of Lemma 39. If x € G, then x € Kexp $(x)N, whence
F(x)=E, c9(ax) € E, o &(aK) + E, > H(x). Since E, > H(aK) is
a compact subset of a,,, it therefore suffices to show that the function
F, y=(X,E, °9) is bounded from below on H. Now this follows from
Proposition 3.12 and the characterization (3.5) of *a .

4. Critical points of the functions F, ,. In this section we let
a€Ad,, and X € a,, be fixed and determine the critical set of the
function F, y: H — R defined by

Fa,X(h) = <X, @(Gh»,

for h € H. Moreover, in the next section we shall compute Hessians of
F, x at points of this set. As it turns out, the computations are highly
analogous to those in [8], and so are the results. As in [8], the critical set is
a finite union of smooth submanifolds depending only on the subsets
{a € A,;a(loga) =0} and {a € A;a(X) =0} of A. Moreover, the
Hessian of F, y at a critical point is non-degenerate transversally to the
critical manifold through it. Though such results hold for general a € 4
we shall only prove them for a € 4’

rPq’
purposes. Here 4, = exp(a/,,), with

a,={Z€a,;a(Z)#0foracA,}.

pq’
this being sufficient for our

pq ’
If u € U(g), the universal enveloping algebra of g, we let R, or

R(u) denote the infinitesimal right regular action of u on smooth vector
valued functions on G. If f is such a function, we also write

fx;u) = (Rf)(x)  (x€G).

In view of the Poincaré-Birkhoff-Witt theorem, the Iwasawa decom-
position g = f ® a, ® n gives rise to a direct sum decomposition

U(g) = (tU(g) + U(g)n) ® U(a,).

Let E, denote the corresponding projection U(g) = U(a ). If v € U(a,),
we denote its homogeneous component of degree m by v,,. This makes
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sense because a, is abelian, so that U(a,) = S(a ), the symmetric
algebra of a, .. Writing » for the N-part in the Iwasawa decomposition,
we now have the following result (cf. [8, Lemma 5.1]).

LemMA 4.1. Let x € G, u € U(g)g. Then
S(x;u) = (Eu(ut(X)))l‘

Here u'™ denotes the image of u under the adjoint action of f(x) =
exp 9(x) - v(x), the “triangular part” of x, and the suffix 1 indicates that
the homogeneous component of degree 1 is taken.

Let Fy: G — R be defined by

Fu(x)=(X,8(x))  (x€q).
Then the following corollary holds (cf. [8. Corollary 5.2]).

COROLLARY 4.2. If x € G, U € g, then
Fy(x;U) ={(U™, X) = (U, x»™7).
LEMMA 4.3. h € H is a critical point for F, y if and only if ah € KA ,Ny.

Proof. Write ah = kbn, with k € K, b € A, n€N. Then
F, «(h;U) = (X"",U), so h is a critical point iff

Ad(n')X L U forallU € p.

The last statement is equivalent to Ad(n~!) X € g, and since Ad(n"}) X =
Xmod n, this in turn is equivalent to Ad(n')X — X € n N g. Since 7
maps 1 onto 1 = 6(n), we have n N g = 0 and the proof is complete.

LEMMA 4.4. Let H be essentially connected, a € A),,, X € a,,. Then
the critical set of F,, y equals the set
¢ = U wH,.
we W(A,)
REMARK. By Proposition 2.2, W(A.) = Ngy(a,,)/Zgqu(a,,)
Since Zy  y(a,,) © Hy, the notation wH (w € W(A,)) makes sense.

Proof of Lemma 44. If x, is a representative of w € W(A,) in
N nnla,,), and h € Hy, then v(ax,h) = v(a* h) = »(h) € Ny. Hence
x,,h is a critical point for F, y (Lemma 4.3).
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Conversely, let h be a critical point for F, y, and write ah = kbn as in
the proof of Lemma 4.3. Then n € Ny and it follows that k~ah = bn €
Gy. Write h = h h,, with hy € HN K, h, € exp(p N §). Then k~lah =
k~'h,(hi'ah,)h,, where k7'h; € K, h{lah, € exp(b N q), h, €
exp(p N §). Using uniqueness properties of the decomposition G =
Kexp(p N g)exp(p N ) and of the analogous decomposition of G
(cf. [9, Thm. 4.1]), we infer that k~'h; € K,, hi'ah; € exp(p N q,),
h, € exp(p N b ). By standard semisimple theory, applied to [g,N g,
a,.N gy] it follows that there exists a /€ KN HY such that
I7"hi'ah,l € exp(a,,). Thus, a being regular for the root system A, =
A(g,, a,,), it follows that Ad(h,/) normalizes a,, Hence h; €
Ny nu(a, (K N HY), so that h € Ny, y(a,,)Hy. In view of Proposi-
tion 2.2 and the assumption on H this implies that & € €.

Observe that %, is a finite union of disjoint smooth manifolds.
Moreover, if y € €y, then

T,y = dX(e)(by),
where T,y denotes the tangent space at y, dA,(e) the derivative of the
mapA,: G~ G, x — yx ate.

5. Hessians of the functions F, ,. As in the previous section, we fix
a€A4, and X €a,, In addition, we assume that H is essentially
connected. Following [8], we write E,, E , E, for the projections g — £,
a, n according to the Iwasawa decompostion g = f & a » © n. Observe
that this definition of E, is compatible with the definition of the map E:
U(g) = U(a,) preceding Lemma 4.1.

LEMMA 5.1. Letx € G; U, V € g. Then
Fy(x; UV) = By (U™, V'),
where the bilinear form B, on g X g is given by
By(U,V) =(E,(UV);, X) =([U, E,(V)], X).
Proof. See [8, Lemma 6.1].
Motivated by the above formula we first study the map V —

E,oAd(¢(x))(V), h — f in more detail. Given x € 4, let O, be the
map H — K defined by

Py

0, (h) = k(xh),
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the K-part in the Iwasawa decomposition of xk. Then, writing
®x(h) = d}\GX(h)(e)—1 ° d®x(h) ° dkh(e)a

we have the following result.

LEMMA 5.2. Letx € A_, h € H. Then

Py

&, (h) = E, o Ad(t(xh)).

Proof. Let V€ b, and set xh = kt, with k € K, ¢ € A,N. For s
sufficiently close to zero, we may write

(5.1) xhexp(sV) = kexpK(s)expA(s)texpN(s),

with K(s) € f, A(s) € a,, N(s) € n smoothly depending on s. Clearly
K(0) = ©_(h)V. Multiplying both sides of (5.1) by k! from the left and
by ¢! from the right and differentiating at s = 0, we infer that K(0) =
E.(Ad(1)V).

LEMMA 5.3. The map ®, maps every coset h(H N L) into a coset
k(ah)(K N L) and induces a diffeomorphism ©®, of H/H N L onto the open
subset Q , of K/K N L. Moreover, for each w € W(A,), it maps the
submanifold wH y, into wkK .

Proof. Fix h € H, | € H N L. We may write ah = k(ah)l,a,n,, with
[, €Ly, a €4,,n €N, Thus

ahl = k(ah)lla,l " n,l = k(ah)x(L1)[exp ©(1L,1)v(11)a,l  nl].
The expression between brackets is easily checked to be contained in
A,N, so that «(ahl) = k(ah)k(l,/). Since k maps L into K N L this
implies that O,(h(H N L)) C k(ah)(H N L). The induced map ©,:
H/HNL— K/KnN Lisjust j7'eX o (see§3), hence maps H/H N L
diffeomorphically onto £, ,. Finally, the last assertion follows from the
fact that k maps G into K.

Let b€, £¢ denote the orthocomplements of [ in §) and f respectively.
Then h=h @ (hnNn)and f =t°® (f N [), and the maps
np—>5h4, U~ U+U, and

n, -t U~ U+ 60U

are linear isomorphisms. They map n, N gy onto h* N gy and tN gy
respectively. We now have the following.



A CONVEXITY THEOREM 35

LEMMA 5.4. If h € H, then the map ©,(h): b — f maps L N b into
LNt and Yy, into ty. Moreover, the induced maps h/H N1 — t/fN I
and Y,/ N1 - £,/f N 1 are bijective.

Proof. The first two assertions follow immediately from Lemma 5.3
and the fact that

d\,(e)'T,(HNL)=5N1, dAg () Toum(KNL)=£NL,

etc. Moreover, by the same lemma the induced map ©,(h): h/h N[ -
f/f N [ must be a linear isomorphism. It maps the canonical image of )
into that of f,. In view of the remarks above Lemma 5.4, the last
assertion now follows for dimensional reasons.

We now return to the Hessian of F, .

LEMMA 55. Letac A
we have:

X € a,, Then forany h € H; U, V €},

pq

Fa,X(h; UV) = <U7 La,X.h(V)>’
where L, y , is the linear map ) — 1) given by
L, x,=-Ad(h)em cAd(a™')eAdO,(h)oad X°6,(h).

Here m, denotes the projection g — Y according to the decomposition g =
h & q.

Proof. By Lemma 5.1 we have
E, o(h;UV) = —<U, my o Ad(1(ah)")oad XoEf(Ad(t(ah))V)>.

Now ah = 0,(h)t(ah), so that t(ah)™ = h™'a '@ (h), and the assertion
follows from Lemma 5.2 and the observation that Ad(4~') commutes with
ﬂhc

LEMMA 5.6. For each a € A,,,, X € a,, the Hessian of F, y at any
critical point is transversally non-degenerate to the critical set of F, .

Proof. Let h = x,h’ be a critical point for F, ,. Here x, is a
representative of w € W(A,) in Ny g(a,,), and k' € Hy. It is obvious
that d\,(e) 'T,(hHy) = . The bilinear form B(U,V) = F, y(h; UV)
on h is symmetric. Since F, , is locally constant on hH, we therefore
have that B =0on h X h and b, X h. We must show that the induced
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bilinear form on §/} 5 is non-degenerate. The Killing form being non-de-
generate on f), this comes down to showing that the map La x,» of Lemma
5.5 has kernel hy. Now L, ., = L, x,, where a’ = a”  still belongs to
A, Therefore we may restrict ourselves to the case that h € Hy. But
then ©,(h) € Ky (Lemma 5.3), so Ad(0,(4)) and ad X commute. Hence
an element V € }) belongs to ker(L,  ,) iff

(5.2) Ad(a')oad X°Ad(©,(h))°0,(h)V € q.

Now ad(X)°Ad(©,(h))°0,(h) maps b into p and if U € p, then
Ad(a™)U € q iff U € a,,, (see the lemma below). So V' € ker(L,, x ;) iff
ad(X)°Ad(®,(h))° 0 (h)VE a,, Now Ad(®,(h))° ©®,(h) maps b into
f, and an easy root space calculatlon shows that (5.2) is equivalent to

Ad(O,(h))e0,(h)V € ty.
Since ©,(h) € K, Ad(®,(h)) maps f , bijectively onto itself. Moreover,

by Lemma 5.4, ©,(h) induces an isomorphism %/, — f/f,, and we
conclude that (5.2) is equivalent to ¥ € b .

LEMMA 5.7. If a € 4
U€a,

Ue€p, then Ad(a)U € q if and only if

rpq

Proof. The if part is obvious. For the converse, suppose that U € p.
Using the decompositions (1.1), we may write
U=U,+ Y (U*-0U%) +(U*- 0U>),
aAt
withU, € lNpnNag=a,, US€ g, U*€ g% Using that r=86 on g,
whereas 1 = -6 on g _, we find

Ad(a™)U=U, + ) (a*U%— a*rU%) +(a U+ a*rU.).

Since a® # a™* for all « € A%, Ad(a™)U € q implies U*= U*= 0 for
alla € A™. Hence U € a,,,.

COROLLARY 58. Let a€ 4,,, X<€a,, we W(A,). Then at all
points of wH y the value of F, and the signature and rank of its Hessian
stay constant.

Proof. From Lemma 5.6 it follows by continuity that the statement is
true on x, HY (w € W(A,)). In view of Proposition 2.3 we have H, =
HRZy ~y(a,,). Moreover, by Corollary 3.2 the function F, , is right
Zg ~ u(a,,)-invariant, and the proof is complete.
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COROLLARY 5.9. Leta € 4, X € a,, wE W(A.,). Then F, x has a
local maximum at the critical point h € wH y; if and only if:

(5.3) a(X)a(wloga) >0 forall a € AT,
(5.4) a(X)<0 foralla €At

Proof. Because of Corollary 5.8, F, , has a local maximum at
h € wHy iff its Hessian at a representative x,, of w in Ngp(a,,) is
negative definite transversally to wH,. For this it is necessary and
sufficient that all its eigenvalues are < 0 (use Lemma 5.6).

By Lemma 5.5, the Hessian of F, , at x,, is given by F, y(x,; UV) =
(U, L, 5. (V)y = (U,L(V)), where L' = L, ., @’ = a”" . In view of
Lemma 5.2 we have

L(V) = —m, o Ad(a”") " cad(X) o E,(V),

for Vep. If a €A%, weput h$={U+ 0U;U € g5} and h*= (U —
0U; U € g*}. Then

b=pbnie Y (2@ ph°).
=
We claim that L’ diagonalizes over this decomposition.
Indeed, it is obvious that L’ =0 on § N [. Moreover, if a € AT,
U € g% then E((U — 0U) = E,2U — (U + 8U)) = —(U + 8U). Also,

Ad(a” ) Vead(X)(U + 0U) = a( X)(a™"*U — a**0U)
=a(X)(a U + a**rU).
Since
a"U+ a"tU=p(U+ 1U) + q(U — 7U),
with

it follows that

L'(U - 8U) = a(X)cosha(wloga)(U — 6U),
for U € g°. A similar computation yields:

L'(U+ 0U) = a(X)sinha(w'loga)(U + 6U),

for U € g%, whence the claim.

Taking into account that the Killing form is negative definite on f
and positive definite on p, we infer that the Hessian has all eigenvalues
< 0iff (5.3, 4), thereby completing the proof.
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6. Proof of the convexity theorem. We prove Theorem 1.1 by
induction on the rank rk(A) of A. If rk(A) = 0, then E,, - $ = 0, and the
theorem evidently holds. So let us assume that rk(A) > 0, and that the
theorem has been proved already for groups of lower rank. In §2 we saw
that this hypothesis implies that the theorem is also valid for lower rank
groups of the Harish-Chandra class.

If Xe€a,, we write A(X) = {a € A;a(X) =0}, A"(X)=A"N
A(X), etc.. Moreover, W(A, (X)) denotes the reflection group generated
by the reflections in roots « € A ( X). Put

a(X,Z)=conv(W(A,(X))-Z)+ (A (X)),
for X, Z € a,, Then the assertion of Theorem 1.1 can be reformulated as
(6.1) im(F,) = a(0,loga).

We shall first prove (6.1) for a € 4/, . As a first step we have:

LEMMA 6.1. Leta € A;q. Then
im(F,) € a(0,loga).

Proof. By Lemma 4.4 the map F,: H — a,, is submersive except at

points of

q

¢= U U wH,.

weW(A,) Xea, \{0}

Being a finite union of lower dimensional closed submanifolds of H, %
has a complement which is open and dense in H. Therefore im( £,) has
dense interior. Moreover, im( F,) being closed (Corollary 3.7), a point Z
of the boundary dim(F,) of im(F,) must be the image F, (/) of some
he €. Write h =x,_h’, with x, a representative of w € W(A,) in
Ngnnla,,), and h" € Hy, X € a,, \ {0}. Then E, oH(ah) =
E, o 9(a”h’) which by the induction hypothesis is contained in
a( X,w!(loga)) (cf. §2). Now put
%= U U a(x,w'(loga)).

weW(A,) Xe€a, \{0}
Then from the above reasoning we infer that
dim(F,) C F,(¥) c 4.

It follows that every component of a,,\ 4 must be entirely contained in
the set F,(H), or have empty intersection with it. Now clearly & C
a(0,loga). In view of Lemma 3.9, im( F,) does not contain the connected



A CONVEXITY THEOREM 39
set a,,\ a(0,loga). Therefore im(F,)\ a(0,loga) = & and the assertion
follows.

LEMMA 6.2. Let a€ A,,, X € a,,. If F, x has a local maximum at

h € H, then (U, X) < F, x(h) forall U € a(0,log a).

Proof. Suppose F, y has a local maximum in h € H. Then & is a
critical point, hence of the form x, h’, with x, a representative of
we W(A,)in Ng,g(a,,), and ' € Hy. Moreover, by Corollary 5.9 we
must have

a(X)a(wlloga) >0 foralla € AT,

a(X)<0 foralla € A,

In Proposition 6.3 below we deduce that the first statement implies that
(X,Z) < (X,w(oga)) for all Z & conv(W(A,)-loga). Moreover,
the second statement implies that ( X,Y) < O forall Y € I'(A"). Hence

(X.0) < (X loga)).

for every U € a(0,loga). Since F, y(x,h') = F, \(x,) = {X,w '(loga)),
the assertion now follows.

PROPOSITION 6.3. Let X, Y € a,, be such that a(X)a(Y) > 0 for all
a €A, Then (X,uY) <(X,Y) forallu € W(A),).

Proof. Let E be the subspace of a,, spanned by H,, « € A,. Then
A, = A(g.,a,,) is a (possibly non-reduced) root system on E. Moreover,
since W(A ) leaves E invariant and acts trivially on E *, it suffices to
prove the statement for X, Y € E. But then it is well known that the
hypothesis implies the existence of a closed Weyl chamber C such that X,
Y € C. The proposition now follows.

LEMMA 6.4. Ifa € 4}, then dim( F,) € 9 a(0,loga).

Proof. Given X € a,,, write
a(X)= Y R-H,.
ac€A(X)
Then for every Z € a ,,, we have

a(X,Z) C Z + a(X).
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By regularity of a, the set a(X,w '(loga)) (w € W(A,)) has non-empty
interior &(X,w'(loga)) in w'(loga) + a(X). Put ‘a,, ={XEq,,
rk A(X) = rk A — 1}. Then clearly
2= U U a(X,w(loga)).
weW(A,) XE'a,,
Moreover,
#= U U a(X,w'(loga))
weW(A,) X€'a,,
is dense in #%. Since im(F,) is the closure of a union of connected
components of a,,\ 4, it follows that 9 1m(F ) N @ is dense in dim(F,).
Therefore it sufflces to show that dim(F,) N @B cC da(0,loga).

Let Z € 3im(F,) N #. Then there exist w € W(A,) and X € ‘a,,
such that Z € a(X,w(loga)). Moreover, by the induction hypothesis
there existsa h € Hy such that Z = E o $(a*"'h) = F,(x,h). Multiply-
ing X by -1 if necessary, we can arrange that X is an outward normal to
F,(H). Thus, F, , attains a local maximum at x /4. By Proposition 6.2 it
now follows that Z = F,(x, k) € 9 a(0,loga).

COROLLARY 6.5. Ifa € A’ , then im( F,) = a(0,log a).

Py

Completion of the proof. Let a € A,,\ 4,,, and select a sequence
{a,} in A7 which converges to a. Then /= {a} U {a,} is a compact
subset of A va

Let h € H. Then

quoH(anh) = (Jn + I/n’

where U, € conv(W(A,) -loga,) and V, € I'(AY). Clearly U, varies in a
compact subset of a, , and so does E, o H(a,h). It follows that {V,} is
relatively compact in I'(A"). Passing to a subsequence if necessary, we
may therefore assume that the sequences {U,} and {V,} converge, to say
U and V respectively. Clearly U € conv(W(A,) - loga), V€ I'(AT). On
the other hand, U+ V = E, > ©(ah), and we have shown that
E, (9(aH)) C a(0,loga).

For the converse, let W € a(0,loga) and write W= U+ V,
with U € conv(W(A,)-loga) and V € I'(A"). Then there exists a
sequence {U,} in a,, which converges to U, and such that U, €
conv(W(A,) - loga,) for all n. By Corollary 6.5 there exists a sequence
{h,} in H such that E, c9(a,h,)= U, + V, and by Lemma 3.3 the
set { h,} must be relatively compact in H. Passing to a subsequence if
necessary, we may therefore assume that A, converges to a point
h € H. 1t follows that E, o &(ah) =lmE, o H(a,h,)=lImU, + V)
= U + V and the proof is complete.
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Appendix A. The group case. Let G be a connected real semisimple
Lie group with finite centre. It may be viewed as a symmetric space in the
following way. Let ‘G = G X G, 'r: ‘G = ‘G the involution given by
'7(x, y) = (y, x). Then '"H = d(G), the diagonal in G X G, and the map
G X G = G,(x, y)— xy~! induces a diffeomorphism 'G/'H = G.

In this appendix we reformulate Theorem 1.1 for the symmetric pair
('G,’H) in terms of the structure of G. If not specified, our notations have
an obvious meaning.

Let & be a Cartan involution for G. Then ' = 6 X @ is a Cartan
involution for ‘G which commutes with ‘7. Thus, on the Lie algebra level
we have 'p = p X p, ‘g = 8(g), 'p N ’qg = 8(p), where we have used the
notation §( g) for the subset {(X,-X); x € g} of ‘g = g X g, etc.

Let a, be maximal abelian in p and put ‘a,=a,Xa,and’a, =
d(a,). Let i: a, > 'a,, be the linear isomorphism given by j(X) =
(X, —X). Then the projection 'E,, : ‘a, = ‘a ,, is given by

'E,(X,Y) = i(3(X - V).
Moreover, with obvious notations, ‘A g = i*1(A ) and if =, denotes the
projection of ‘a ,on the ith coordinate (i = 1, 2), then’A = A » Y LAY -
Let A be a choice of positive roots for A ,

G = KA,N

the associated Iwasawa decomposition and &: G — a, the corresponding
Iwasawa projection. Then 'A; = j*7'(A}) and A} = m*(A)) U np(-A))
are compatible choices of positive roots. The associated Iwasawa decom-
position foi ‘G is 'G = 'K’AP’N, where 'K = K X K, ‘A, = A, X A4,
'N = N X N. The associated projection '9: ‘G — a, is given by "9(x, y)
= (@(X), —@(0y)), SO that
‘E, 0 '9(x,y)=3i(9(x) + £(8y)).
It is now straightforward to derive the following equivalent formulation of
Theorem 1.1 in terms of G’s structure. Let W denote the Weyl group of
a,in g.If « € A;, we let H, denote the element of a, N (kera)* with
a(H,) = 1, and write
I(Ay)= ¥ R.H,.

+
agl,

THEOREM A.l. Let G be a connected real semisimple Lie group with
finite centre, G = KA,N an Iwasawa decomposition for G, and $: G — a,
the corresponding projection. If a € A, then the image of the map ¥,
G — a, given by

¥,(x) = 3($(ax) + $(abx))
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is equal to
im(¥,) = conv(W - loga) + I‘(A;).

In particular, putting a = ¢, and using the Iwasawa decomposition
G = KA, N, one easily finds

9(N) =T(4;}).

Moreover, Lemma 3.3 implies that the map $: N — a 18 proper. Now
these facts can be checked independently as follows.

By [12] (cf. also [25]), there exist a diffeomorphism ®: X, . ,N, — N,
such that

(A1) *@”I)((n aeP) Z $(n,)

a€EP

Here the Cartesian product extends over the set P of indivisible roots in
A, . Moreover, N,= N N G, where G, is a closed semisimple subgroup
of G whose Lie algebra is the real rank one algebra generated by g~2¢,
g% g% g2% The Iwasawa decomposition of G induces the Iwasawa
decompositions G, = K4, N, with K, = K N G,, etc. Thus we see that
by (A.1) the above statements for the map ©: N - a, reduce to the
corresponding statements for the maps §: N, — a, The latter state-
ments can be checked to be true from the explicit formula for the Iwasawa
projection of a real rank one group (cf. [16], [25]).

The following independent proof of Theorem A.1 was communicated

to me by T. H. Koornwinder.

Independent proof of Theorem A.1. Clearly it suffices to prove the
theorem for loga € —cl(a,). The key observation is that in that case we
have

(A2) conv(W - loga) + T(A;) = loga + T'(A}).

Nowif k € K, beAp, n € N, then
L[ (akbn) + $(akb™'0n)]
=3[9 (ak) + logh + $(akk(b0n)) + $(b7'0n)]
= 1[9(ak) + $(ak(b0n)) + H(b~'0nb)].

By the above we have $(b7'9nb) € $(N) = I'(4;). Moreover,
19 (ak) + S(akk(b'0n))] € conv(W - loga) by Kostant’s convexity
theorem. It follows that im(¥,) is contained in the set (A.2).
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On the other hand, if n € N, then 3[$(an)+ H(abn)] = loga
+ 19(abna™"). Hence im(¥,) D loga + T'(A7) and the proof is com-
plete.

Appendix B. Holomorphic continuation of a decomposition.

B.1. Introduction. We assume that g is semisimple, G its adjoint
group. Let G. be the adjoint group of the complexified Lie algebra g,. In
this appendix we study the holomorphic continuation to G, of the
decomposition G = KLyA4,,N, (cf. Prop. 3.1). The main result, Theorem
B.1.2, generalizes a result of [2] on the holomorphic continuation of the
Iwasawa decomposition. In Section B.4 it is used to prove Lemma 3.4.

Let L, be the centralizer of a,, in G, Q. the normalizer of [, + n,,
in G, and N, = exp(n,,). Then it is well known that L, Q and N, are
algebraic and connected. Moreover, Q. is a parabolic subgroup with Levi
decomposition Q.= L N, Let K, 4,, 4,,., L, be the connected
analytic subgroups of G, with Lie algebras £, a ., a,,., Lo

PROPOSITION B.1.1. The groups K, A,., A,,.. Lo are the identity
components ( for the usual topology) of algebraic subgroups of G..

REMARK. If we speak about connected components, it will always be
with respect to the usual (i.e. non-Zariski) topology.

Proof. The holomorphic involutions of G, whose differentials at the
identity are @ and 7, are denoted by the same symbols. Define

'K, ={x€G,;0x=x},
‘A, ={x€G,;0x=x",x|g" € C-1d(g*) fora € A}.

‘A . = {x €'4,,;7(x)= x'l}.

Then K., A pes A,, are the identity components of the algebraic sub-

groups 'K, 'A, ., 'A,,,.. As for the remaining assertion, we claim that L,,

is the identity component of

'Ly, = {x € L;det(x|g*) =1fora € A*}.
To prove this it suffices to show that [, equals

To={X €L tr(ad(X)|g*) = 0 fora € A*}.

Since N{kera; a € A"} = &, we have [, N a,, = 0. Hence it suffices to
show that [, C "I,
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If « €A, we write A (a)={B€A,;B|a,,=a}. Thus, if a« €A,
then
g= 2 g’
BeA ()
Let ¢t (X) = tr(ad(X)|g*), for X € [. Since [ N f acts by skew symmet-

ric transformations on g¢, it follows that z, = 0 on [ N f. Moreover, for
X € a,, we have

(X)= ¥ B(X)dim(g”).
Bed, (o)

Since A (a) = -A (-a), it follows that t, = —¢_, on a,,. On the other
hand, if X € a,,, then 7X = X, so that ¢,(X) = 7,(7X) =
tr(tcad(X)or7'|g%) = tr(ad(X) |g™*) = 1_,(X). Hence 7, =0 on a,,.
Since obviously ¢ (k- X)=1t,(X) for X €[, k € L N K, this implies
that 7, =0 on (LN K)-a,,=1,, hence on /,. We conclude that
[y C L,

Let S, be the complement of K Q. in G. Then S, may be identified
with the union of the lower dimensional K -orbits on the flag manifold
G,/ Q.. Inspecting the proof of Proposition 3.1, one readily checks that
the maps A: G —» (KN L))\ Ly, h,: G = A4,,, vo: G = N, defined by

x € KA(x)h (x)vy(x) (x € G)

are real analytic. The main result of this appendix is the following.

THEOREM B.1.2. The set S, is algebraic. The maps A, h , and v, extend
to multi-valued holomorphic maps G, — Sy = (K. N Ly )\ Ly, 4,,., Ny,
The map v, is rational and there exists an integer m > 0 such that h} is
rational. Moreover, if { x,} is a sequence in G, — S, converging to a point

x € S,, then { h7(x,); k € N} is not relatively compact in 4 ,,,,.

REMARK. By a multi-valued holomorphic map from a connected
complex analytic manifold X into a complex analytic manifold Y, we
mean a holomorphic map from the universal covering X of X into Y.

Loosely said, the line of proof is as follows. Suppose x € K lan. Then
(0x)'x = (0n)~'(6/)a*n. Now [, a, n can be solved from this by using
properties of the N, L, 4,,.N,-decomposition (here N,, = 6(N,,)). The
latter decomposition is studied as follows. First we construct an embed-

ding of G, in the matrix group Gl(n,C) (here n = dim g,). Then, in the
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next section, we generalize certain matrix computations which go back to
[11, Ch. 2, §8].
The proof is completed in §B.3.

Let < be the ordering of a%_ which is lexicographic in the coordi-
nates relative to the simple roots of A, and let a, < --- < &; be the
corresponding enumeration of the elements of A*. For every 1 <j <5,
we put g, = g%. Moreover, we write g,,; =1y, G,., = 0,5 G404 =
0g,.,_;forl <j <s. Nowlet (-, -) be the positive definite inner product
on g defined by (X,Y) = —(X,0Y) for X,Y € g. Then

(B.1) =q,®- - ®g,

(where ¢t = 25 + 2) is an orthogonal direct sum decomposition. Select an
orthonormal basis (e; 1 < i < n) of g which is subordinate to (B.1) and
such that the ordering e,,...,e, of its elements is compatible with the
ordering of the sum in (B.1).

If 1<j<t, let dj = dim(g ) and let P, denote the orthogonal
projection g — g;. In the sequel we shall identify real linear maps
with their complex linear extensions. Also, given a linear endomorphism
X € End(g,), we let X;; denote the d; X d-matrix of the linear map
(P;°oX)|g, from g; 1nto g, and we 1dent1fy X with the matrix of
blocks (X,;1<i,j<1t). With these notations the composition of
endomorphisms corresponds to matrix multiplications in the usual way:

(XY ik = 2 ij jk’

l<j<t

for X,Y € End(g,),1 <i, k<t
Now let

= {X € End(g); X,;=0forl <j<ix<t},
={

={X€End ; X, =0fori#j}.

X € End(g); X,;=0forl <i<j<t},

Then clearly End(g) = it @1 ®n,. Moreover, [ =1, ® g, , where

=rq
Lh={Xeltu(X,)=0forl<ix<t},
={Xel;X,eC-Iforl <j<t}.
Here we have written I; for the identity matrix of size d; X d .
Consequently

(B.2) End(g) =T, ® [, ®q,,® n,.
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PrOPOSITION B.1.3. Let B be any of the algebras T,, L, a,,, n,.
Then ad(B) = ad(g) N B.

Proof. The inclusions ad(®B) C ad(g) N B are obvious (see also the
proof of Prop. B.1.1). Therefore the direct sum decomposition ad(g) =
ad(n,) @ ad(ly) @ ad(a,,) ® ad(n,) is compatible with (B.2). The latter
sum being direct, the inclusions must be equalities.

Now let G = GL(g) G. = GL(g,), and put
={xeG;x—-I€n,},
={xeG;x—-Iei,.},

={x€Gx =0ifi+j},
= {x€L,det(x,)=1for1 <j <1},
quc={xeL(,;ijEC~ijor1sjst}.

These are algebraic subgroups of G, with Lie algebras n,,, Ty, [, Lo,
a,,. respectively. The following corollary is now immediate.

COROLLARY B.1.4. Let B be any of the groups N,, ]VQ, Ly orA,,
Then B, = (G.N B,)°. In particular, B, is the identity component (with
respect to the usual topology) of an algebraic subgroup of GL(g ).

B.2. Decompositions in GL(g,). If 1 <k <t we define the poly-
nomial function D,: G, — Cby

Dk(x) = det( Ij’
for x € G,. Moreover,welet Dy=1and D =D, --- D,

1<i,j<k),

LEmMA B21. Let 1<k <t Ifx€ G, n € NQ(, le L, n€ Ny,
then
D, (nxIn) = D,(nlxn) = D,(x)D,(I).

Proof. If 1 <k <t, x € End(g,), let m,(x) denote the matrix

(x;;1 <i, j <k). Then an easy matrix computation yields m,(nxin) =

my(n)m,(x)m,(lym,(n)and m, (Ix) = m,(/)m,(x). The assertion now
follows by taking determinants.

If 1 < k < t, we define the subgroup G, of G, by
G, ={x€G;x,=0forl <j<k,i>j}.



A CONVEXITY THEOREM 47

Thus G, = G, and G, = L_N,,. Moreover, we define the subgroup N, of
N, by
==Qc

N.={x€Ny;x;=0forj+ik}.

LemMMA B22. Let1 <k <t, y € G, D,(y) # 0. Then there exists a
unique W, (y) € N, such that W(y)y € G,,,. Moreover, the map y -
D, (y)W,(y) is polynomial (in the entries of y).

Proof. The uniqueness follows from the fact that N, N G,,, = {I}.

The existence is proved by sweeping the kth column (y.,) of y. This
amounts to left multiplication by an element of N,. More precisely, let E,
be the space of linar maps from g, into g,,,. ® --- &g,.1lfa € E,, we
put a; = P,eafor k + 1 <j < ¢ and identify a with its matrix

A
a,
Also, we let w,(a) denote the element of N, whose kth column x is given
by x;=0forl1<j<k, x, =1, x;=a; for k <j<tlIf E is viewed
as an abelian group for the addition, then the map w,: E, - N, thus
defined is a group isomorphism.
If y € G, D, (y) # 0, then clearly det( y,,) # 0. Put

Yie+1k
a(y)=- '(Yk_/:)-
Yek
Then w,(a,(y))y € G,,,. Hence W, (y) = w(a,(y)). Since
D,(y)det(y,,) "t = D, _,(»), it follows that D,(y)W,(y) is polynomial
in the entries of y.

COR(lLLARY B23. Let y € G., D(y)+# 0. Then there exist unique
U(y) € Ny, L(y) € L. and V(y) € Ny, such thaty = U(y)ZL(y)V(y).
The maps U, & and V are rational.

Proof. In view of Lemma B.2.1, the polynomial function D is left
_ZVQ(.—invariant. Therefore we may apply Lemma B.2.2 repeatedly and infer
that for y € G, — D'(0) there exists a W(y) € N, such that W(y)y €
L N,,. It is unique because _]_VQC N LN, = {I}. Clearly W(y) is rational
in the entries of y and therefore U(y)= W{(y)! is. The proof is
completed by the easy observation that the map L, X N,. — L.N,,,
(1, n) = In is a diffeomorphism with rational inverse.
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We end this section with a proposition which will be needed in the
next section. If 1 <j <1, d,#0, let the function A;: 4, — C* be
defined by

xlg, =A,(x) I,

for x € 4,,.. It might occur that d; = 0 for some j. This only happens

when [, =0, j=s + 1. In that case we define A ; = 1. Observe that
the latter equality holds in any case.

PROPOSITION B.2.4. If x = ulbv, with u€ Ny, [€ Ly, b€ 4 e
v € Ny, then

A, (b)% = Dy(x)/D, (%),

forl <j<t

Proof. In view of Lemma B.2.1 and the definition of L. we have
D,(x) = D,(b)D;(I) = D;(b). But obviously

D,(b) = ]—[}\(b (1<k<t).

<_] <k
from which the assertion follows (recall that D, = 1).
B.3. Proof of the main result. In this section we complete the proof of

Theorem B.1.2. We start with some results on the N—QCLOLA Ny ~decom-
position.

pqc

LeEmMMA B.3.1. The map p: Ly X A,,.~> L., (I,a)— la is a finite
covering.

Proof. By a standard argument we infer that p is a covering with fibre
p'(e) =L, N A,,, (recall that L, is connected).

From Proposition B.2.4 we deduce that L, N 4,,. consists of ele-
ments b € 4, with

A (b)Y =1

is finite. In view of Corollary B.1.4,
hence finite.

for 1 <j <t Hence Lo, N4,
p~(e) is contained in Ly, N A4

qc

=pqc

LEMMA B.3.2. The map y: Ny, X Lo, X A,,. X Ny, = G, — D7Y(0),
(n,1,a,n) — nlan is a finite covering.
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Proof. By Corollary B.2.3 the map ¢: (7,/, n) — 7ln from # = N,
X L, X Ny onto G, — D7(0) is a diffeomorphism. Since D is not identi-
cally zero on G,, G, — D}(0) is connected. In view of Proposition B.3.1 it
therefore suffices to prove that ™' maps G, — D™'(0) onto /# = N, X
L. X N,,. Now clearly (G, — D7}(0)) D 4. Since ¢ is a diffeomor-
phism, it follows by comparison of dimensions that there exists an open
neighbourhood U of (e,e,e) in A, such that V' ={(U) is an open
neighbourhood of e in G, — D7'(0). Hence ¢! maps V into .#. By
analytic continuation, the holomorphic map ¢! maps the connected
complex analytic manifold G, — D~(0) into the Zariski closure € of /.
By connectedness, ¢1(G, — G1(0)) is contained in the identity compo-
nent €° of the linear algebraic group € (with respect to the usual
topology). Finally, by Corollary B.1.4, ¥° = .#, so that (G, — D7(0))
c M.

The map v is a local diffeomorphism, so has a local inverse (u, /, b, v)
mapping e onto (e, e, e, e). Since v is a covering, this local inverse has a
multi-valued holomorphic extension to G, — S,. We denote it by the same
symbol (u, I, b, v).

PROPOSITION B.3.3. Let 1 < j < t. Then the map \% o b: G, — D~'(0)
— C*, y = A(b(y))% is rational. In fact, ify € G, — D7(0), then

Aj(b()’)) o= Dj(y)/Dj—l(y)-
Proof. This follows immediately from Proposition B.2.4.

COROLLARY B.34. Let p be the least common multiple of
dy,...,d,,1,...,d, Then p > 0, and the maps v: G, — D™(0) - N,, and
b*: G, — D™1(0) > A, are rational. Moreover, if { y,} is a sequence in
G, — D™(0) converging to a pointy € DY(0), then the set { b*(y,); k € N}
is not relatively compact in A , ..

Proof. Obviously v is the restriction of V to G, — D~!(0), hence
rational (see Cor. B.2.3). Since 4,,. centralizes ., we have A, =1.
Hence the rationality of the map b* follows from Proposition B.3.3.

Now let j be the lowest index among 1,...,¢ such that D,(y) = 0.
Then D;_,(y) # 0 (recall that D, = 1) and by Proposition B.3.3 it follows
that we must have d; # 0 and

}‘j(b“(J’k)) = )\j(b()’k))dj'#/dj -0
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as k —> oo. Hence {A;(b*(y,)); k € N} is not relatively compact in the

subset A;(4,,.) of C\ {0}, so that the last assertion follows.

Before proceeding, we recall some facts that can essentially be found
in [20, Thm. I1.1.3 and Proof of Prop. IV.4.4]. Let B be any connected Lie
group and o an involution of B. Then B“ denotes the fixed point set of o.
The set = {x € B;o(x) = x71} is a smooth submanifold of B. Now B
acts on J according to the rule b - x = a(b)xb™'. By a computation of
differentials one may check that all B-orbits are open in 7. Hence the
connected identity component %, (B) of Z is equal to the B-orbit
through e:

S(B) = {a(b)b';b < B}.
The manifold &,(B) is called the space of symmetric elements in B. The
map B — %,(B), b~ o(b)™'b induces a B-equivariant diffeomorphism
B°\ B - &.(B). If C is any open subgroup of B’ then |C\ B’| < o
(cf. [20, Thm. IV. 3.4]) and the above map B — .%,(B) induces a finite
covering C\ B - %, (B).

Applying the above to G, and L, together with the holomorphic
continuation of the Cartan involution 8, we obtain finite coverings

X -2, X, - 7,
where
X=KN\G, X,=(K N L )\Lo., &=%(G,),
S =L9(Loo)-
Let us now return to the proof of Theorem B.1.2. If x € G,, we put

x" = (0x)7!. In view of Lemma B.3.2 the map (/,b,n) — n’lbn maps
L X A, X Ny, into F— D7Y(0).

ProposITION B.3.5. The map & & X A,, X Ny, —%— D70),
(1, b, n) = n'lbn is a finite covering.

Proof. Consider the finite covering y of Lemma B.3.2. One easily

checks that y~}(.#— D~!(0)) equals the smooth submanifold
T = {(7,1,b,n) € Ny, X Lo, X A,,, X Npsn=n",1=1}..

Let S be the connected component of T which contains (e, e, e, ¢). Then
Y|S: S - &£(G,.) — D7'(0) is a finite covering. Moreover, the map
it F X Apy X Ny = No X Lo, X Ayye X Ny, (1,b,n) = (n',1,b,n)
maps #; X 4,,. X Ny, diffeomorphically onto S. Since & = (y|S)° 1, the
proposition follows.
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Define the map
6: X; X A4,,

by 8(1, a, n) = (I'l, a%, n) (here I denotes the coset of /). Then clearly 8 is
a finite covering.

Consider the map 4: G, » %, x = x'x, and define the polynomial
function F: G, - Cby

F(x) = D(¥x) = D(x'x).
Then F is left K -invariant, hence can be viewed as a function on X.
Similarly, F~!(0) can be viewed as a subset of X. As such it is the
preimage of D~1(0) under the finite covering #: X —.% induced by 9.
Being the complement of an analytic null set, X — F~%(0) is connected, so
that the restriction of & to X — F~%(0) is a finite covering
n: X — FY(0) > - D7Y(0).

Finally, if we define the map ¢: X; X 4,,. X Ny, = X by ¢(/,a,n)
= K lan, then ¥ o¢@ = €06, where ¢ is the map of Proposition B.3.5.
Hence im(¢) € 9 }(ime) = X — F~}(0) and the following diagram com-
mutes:

X Ny = &, X A,y X Ny,

P

X, X quc XNy, = X-— F~(0)
8l
& X A,y X Nop.
el o
& — D7Y(0)

Since 8, € and 7 are finite coverings, we now have the following result.

PrROPOSITION B.3.6. The map ¢: (K. N Ly )\ Ly, X 4,,. X Ny, =
K.\ G, — FX0),(l,a,n) = K lan is a finite covering.

Proof of Theorem B.1.2. Let w: G, — F~'(0) > X — F~}(0) be the
restriction of the canonical map G, — X. By Lemma B.3.6 the map ¢ has
a local inverse {, mapping e onto (e, e, e). Since ¢ is a covering, {, has a
multivalued holomorphic extension § = ({},{,,{;) mapping K.\ G, —
F~(0)into (K, N Ly,)\ Ly, X 4,,. X Ny,

Locally at K e, we have {, o7 = (A, h,, v,), by definition of the real
analytic maps on the right. Hence §, o 7, {, o 7, {; o 7 are the multi-valued
holomorphic extensions of A, A pVotoG —F -1(0). Moreover,

7 (X - F(0)) = 7 \(img) = K Ly A4,,.N,. = K0,
and therefore S, = G, — K. Q, = F~(0) is algebraic.
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As for the last three assertions, by holomorphic continuation it
follows that

x'x = vy (x)A(x)AN(x)h2(x)vy(x)
for all x € G, — D7(0). Consequently, with the notations preceding
Proposition B.3.3.,
(B.3) h2#(x) = b(x'x)",
(B.4) vo(x) = v(x'x).

Now put m = 2pu. Then the last assertions readily follow by application of
Corollary B.3.4.

We end this section with two related propositions, which will be
useful in the next section.

PrOPOSITION B.3.7. G, — S, = G/Q..

Proof. From [19, Proposition 1] it follows that G’ ¢ K L. Hence
G(?QC = KCQC'

ProposITION B.3.8. Let (a,n) € A,,. X Ny, and assume that x €
G°L,.an. Then

= (),
n=wy(x).

Proof. It follows that x'x € n’#,a’n. Hence, with the notations
preceding Proposition B.3.3, we have a®* = b(x’x)* and n = v(x’x). The
assertion now follows by comparison of these two formulas with (B.3,
B.4).

B.4. Proof of Lemma 3.4. Obviously it suffices to prove the lemma
under the assumption that G is the adjoint group of the semisimple
algebra g. To make the lemma also available for groups of class ©, we
shall in fact work under the following somewhat weaker assumption.

(A) g is a real semisimple Lie algebra and G is an
open subgroup of the normalizer Gg of g in
the adjoint group G, of g,.

The proof goes by exploitation of the duality introduced by Berger [6]
(and also used by [9, 10, 22]).
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The space

g/=i(tna)e(fnph)e(pna)®i(pnbh)
is a subalgebra of g_, called the real form dual to g. The restriction 8¢ of
the (complex) involution 7 to g¢ is a Cartan involution for g¢ with
associated eigenspace decomposition
g/ =0 p?,

where t9=15,.N g% p?=gq.N g? (read this as: the f in the dual
situation, etc.). Similarly, we put 74 = 8|g% H?=f,N g% q¢=p, N g
Let GY, K9 H? be the connected analytic subgroups of G, with Lie
algebras g, £4 and b respectively. Moreover, let a8, =a,,, 44 =A4,,,

rq’ pPq
LY=L,N G% n} =n, N g’ Nj=exp(n}), and define

L= (KN L) exp(p9 N hén1?).
Then according to Proposition 3.1, we have G?= K‘L§A] N§ with
corresponding maps AY, h‘;, vy: GY—> (LN KY)\ L§, A5, NG de-
termined by

(B.5) x € KON (x)hd(x)rd(x).

The idea is now to view (3.3) and (B.5) as different real forms of the same
multi-valued holomorphic decomposition.

Let H, be the connected analytic subgroup of G, with Lie algebra §.
Set S§ = G, — H,L,N,,. Then according to Theorem B.1.1, the maps A,
h¢, v have multi-valued holomorphic extensions to maps G, — S§ —
(Hc N Lgc)\Lgc’ quc’ NQc'
To complete the proof of Lemma 3.4, we need the following.

PROPOSITION B.4.1. Under the assumption (A), the set Q is a union of
connected components of G — S,

Proof. The group H X Q acts on G, according to the rule (4, q) - x =
hxq~!, for h€ H, g€ Q, x € G.. In view of Proposition B.3.7, this
action leaves G, — Sé’ = G]Q, invariant. Moreover, by an easy computa-
tion of differentials at points of G]Q,, it follows that all H X Q-orbits in
G, — S§ are submanifolds of real dimension dim(G). Hence G — S§ is a
union of open H X Q-orbits. Now {2 is just the H X Q-orbit through e,
hence open and closed in G — S§.

End of proof of Lemma 34. Let I, I, € Ly, a;, a, €4,,, ny,
n, € N, and assume that Hl a;n, = Hl,a,n,. Then GJlain, = G;l,a,n,
and using Proposition B.3.8 we infer that n, = n, and a?* = a3*. The
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map exp: a,, = A,, being a diffeomorphism it follows that a, = a,.
Hence HI, = Hl, from which it is immediate that (H N Ly)/, =
(H N Ly)l,. This proves uniqueness and the maps /, a,,, n, are well
defined by (3.3).

By a standard computation of differentials it now follows that the real
analytic map (/, a,n) = Hlan maps ((H N Ly)\ Ly) X 4,, X N, diffeo-
morphically onto the canonical image € of @ in H\ G. Its inverse {
necessarily is a real analytic map. Now let 7: & — { be the restriction of
the natural map G - H\ G to £. Then (/,a,,, n,) equals { e 7, hence is
real analytic.

Finally, by Proposition B.3.8 we have

a(x)™ = hy(x)™,

for x € Q. By Proposition B.4.1, 3Q is contained in Sg and so the last
assertion of the lemma follows from the corresponding assertion of
Theorem B.1.2.

Py

pq’
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